
Arm® Architecture Reference
Manual Supplement Morello

for A-profile Architecture

Document number DDI0606

Document version A.k

Document confidentiality Non-confidential

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.

Important message
Morello is a prototype architecture, which has a particular meaning to Arm of which the recipient

must be aware as follows:
Subject to change without consent of all parties, and it is not committed for product development.

Includes the majority of expected features.
Includes detail on the majority of expected features.

Includes some necessary information from documentation relating to earlier architectures, but
some cross-referencing might be necessary.

See the architecture release notes for more detail.
No license, express or implied, by estoppel or otherwise to any intellectual property rights is

granted by this document unless specifically stated.

Release information

Date Version Changes

2022/Jan/17 A.k • PROTO_REL 04
• PROTO_REL 04 external release

2021/Jun/25 A.j • PROTO_REL 03
• PROTO_REL 03 external release

2021/Mar/19 A.i • PROTO_REL 02
• PROTO_REL 02 external release

2020/Dec/18 A.h • PROTO_REL 01
• PROTO_REL 01 external release

2020/Oct/28 A.g • PROTO_REL 00
• PROTO_REL 00 external release
• CHERI reference updated to version 8

2020/Sep/30 A.f • PROTO_REL 00
• PROTO_REL 00 external release

2020/Aug/13 A.e • PROTO_EAC 01
• PROTO_EAC 01 release, limited circulation

2020/Jul/02 A.d • PROTO_EAC 00
• PROTO_EAC release, limited circulation

2020/May/29 A.c • Beta 02
• Beta release, limited circulation

2020/Apr/09 A.b • Beta 01
• Beta release, limited circulation

2020/Mar/25 A.b • Beta 01 RC
• Beta release candidate, limited circulation

2020/Jan/20 Beta 00 • Beta draft, limited circulation

2019/Dec/09 Alpha 01 • First draft for review

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks
.

Copyright © 2019-2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

Product Status

The information in this document is for a prototype extension to the Armv8-A architecture.

Changes in PROTO_REL_04

[1633]
The Embedded Trace Macrocell Architecture Specification expects instructions to be classified in to direct branches, indirect
branches, and not a branch. The Morello specification did not contain enough information to make this classification. This has
been corrected by adding a new rule KHQMC.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks

[1623]
The ASL of the registers CDBGDTR_EL0 and CDLR_EL0 is corrected with respect to the trapping due to CPTR_EL2.CEN at
EL2 and EL3.

[1618]
Rule R KDDZF step 10 references to B_ie[4] and T_ie[4] have been corrected to B_ie[3] and T_ie[3].

[1616]
In section 2.5.1 (Morello Bounds format), sub-section "Setting and encoding Bounds", the syntax used for SignExtend() when oE
< 48 was incorrect, making it difficult to read. This has been corrected.

In section 2.5.2 (Representability checks), rule R LMXSB is clarified to describe the guaranteed range of the Capability Value,
with respect to the base and the limit.

In section 2.8 (Capability memory relocation), rule R GFXBJ is clarified to apply the CCTLR_ELx.DDCBO field when executing
in ELx.

[1594]
AArch64.SecondStageTranslate() is corrected for the case where the first stage of translation results in a Capability fault due to a
store of a valid capability (CDBM == 0 && SC == 1). The second stage translation should not perform the hardware update if
the second stage entry has CDBM == 1.

[1593]
The CheckLoadTagsPermission() function is corrected to use the Exception level for the translation regime, instead of the current
Exception level.

[1592]
The code in MemAttrDefaults() that initialized fields related to the handling of the LC and SC bits has been removed,
because generally these fields have been initialized before this function is called. The initialization code was missing in
AArch64.TranslateAddressS1Off(), and so it has been added there.

[1590]
The ASL for MSR (immediate) is corrected to show that writes of SPSel are ignored when the PE is in Restricted.

[1589]
In R KDDZF, step 5 for bounds setting contains a wrong variable E, which has been corrected to E’.

[1585]
The pseudocode functions AArch64.SysInstrInputIsCapability() was incorrectly checking for DC IVAC using op1 == 3 and crm
== 6, and has been corrected to check for op1 == 0 and crm == 6.

[1584]
The ASL functions AArch64.MemSingle(), AArch64.CapabilityTag(), MemAtomicCompareAndSwapC(), and MemAtomicC()
are updated to correctly handle faulting due to the LC bit on Device memory.

[1582]
The text in section 2.5.1 describing how the Capability Bounds are decoded was corrected in order to match the related pseudocode
in section 5. The specific correction is in the decoding of T[15:14].

[1580]
The description for BLRS (pair of capabilities) is corrected in removing the suggestion that this instruction would perform a
switch to Restricted.

[1156]
In section 2.9, Compartment ID, the informational text state BYCZR is clarified to explain the intention with respect to how an
implementation might use this information.

Known issues

[635]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

The pseudo-instruction "MOV Cn,CZR", which maps to "MOV Xn, XZR", is not described in the instruction set.

[626]
The <extend> specifier on the following instructions is shown as a mandatory part of the syntax.
* ADD (extended register),
* Load/Store with a offset register.

This does not match the syntax for the equivalent instructions in the base architecture

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

Arm® Architecture Reference Manual Supplement Morello for
A-profile Architecture

Release information . ii
Non-Confidential Proprietary Notice . iii
Product Status . iii
Changes in PROTO_REL_04 . iii
Known issues . iv

Preface
About this book . xxix
Conventions . xxx

Numbers . xxxi
Pseudocode descriptions . xxxi
Assembler syntax descriptions . xxxi

Rules-based writing . xxxii
Identifiers . xxxii
Examples . xxxii

Additional reading . xxxiii
Arm publications . xxxiii
Other publications . xxxiii

Feedback . xxxiv
Feedback on this book . xxxiv

Progressive terminology commitment . xxxv

Chapter 1 Introduction
1.1 About the Morello architecture . 36
1.2 The CHERI protection model . 38
1.3 The Morello architecture in the Armv8-A profile 39

1.3.1 Capability registers and memory . 39
1.3.2 Capability tagged memory . 39
1.3.3 ISA . 39
1.3.4 Controlled non-monotonicity . 39
1.3.5 Capability memory protection . 40
1.3.6 Capability protection for System registers and instructions 40
1.3.7 Capability memory relocation . 40
1.3.8 Recursive immutability . 41
1.3.9 The Virtual Memory System Architecture 41
1.3.10 Debug and trace . 41

1.4 The Morello architecture features . 42

Chapter 2 Capability architecture rules
2.1 Capabilities . 43
2.2 Capability registers . 45
2.3 Changes to Armv8 terminology . 47
2.4 Capabilities in memory . 48
2.5 Capability encoding . 49

2.5.1 Morello Bounds format . 50
2.5.2 Representability checks . 55

2.6 Manipulating capabilities . 57

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

2.6.1 Monotonic manipulation: sealing operations 57
2.6.2 Controlled non-monotonic manipulation 58

2.7 Using capabilities . 61
2.7.1 System permission . 61
2.7.2 Capability memory protection . 62
2.7.3 Capability memory protection exceptions 63
2.7.4 Recursive immutability . 64

2.8 Capability memory relocation . 65
2.9 Compartment ID . 66
2.10 Instruction set selection . 67
2.11 Reset . 68
2.12 Access to the Morello architecture . 69
2.13 Exception model . 70

2.13.1 Non-capability exception entry or return 70
2.13.2 Capability exception entry and return 70
2.13.3 Exception types . 71
2.13.4 Exception routing . 72
2.13.5 Exception priorities . 72

2.14 The Virtual Memory System Architecture . 75
2.14.1 Translation table descriptors . 77

2.15 Self-hosted debug . 79
2.15.1 Watchpoints . 79

2.16 The Embedded Trace Macrocell architecture 80
2.16.1 Exception instruction trace element . 80
2.16.2 Address and Context tracing packets 80

2.17 Performance Monitoring Unit . 83
2.18 Statistical profiling extension . 87

2.18.1 The Statistical Profiling Buffer . 87
2.18.2 Statistical profiling extension packets 87

2.19 External debug . 88
2.19.1 Entering Debug state . 88
2.19.2 Exiting Debug state . 88
2.19.3 Executing instructions in Debug state 88
2.19.4 Instructions in Debug state . 88
2.19.5 Debug Communications Channel (DCC) access 90

Chapter 3 Register definitions
3.1 Register index . 91

3.1.1 AArch64 registers . 92
3.1.2 Changes to existing registers . 93
3.1.3 New registers added by Morello . 94
3.1.4 External registers . 95

3.2 Alphabetical list of registers . 95
3.2.1 CCTLR_EL0, Capability Control Register (EL0) 96
3.2.2 CCTLR_EL1, Capability Control Register (EL1) 101
3.2.3 CCTLR_EL2, Capability Control Register (EL2) 107
3.2.4 CCTLR_EL3, Capability Control Register (EL3) 113
3.2.5 CDBGDTR_EL0, Capability Debug Data Transfer Register, half-duplex . 117
3.2.6 CDLR_EL0, Capability Debug Link Register 121
3.2.7 CHCR_EL2, Capability Hypervisor Configuration Register 124
3.2.8 CID_EL0, Compartment ID Register . 127
3.2.9 CNTVCT_EL0, Counter-timer Virtual Count register 130
3.2.10 CPACR_EL1, Architectural Feature Access Control Register 132
3.2.11 CPTR_EL2, Architectural Feature Trap Register (EL2) 138
3.2.12 CPTR_EL3, Architectural Feature Trap Register (EL3) 147

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

3.2.13 CSCR_EL3, Capability Secure Configuration Register 151
3.2.14 DBGDTR2A, Debug Data Transfer Register 2A 153
3.2.15 DBGDTR2B, Debug Data Transfer Register 2B 154
3.2.16 DDC_EL0, Default Data Capability (EL0) 155
3.2.17 DDC_EL1, Default Data Capability (EL1) 159
3.2.18 DDC_EL2, Default Data Capability (EL2) 163
3.2.19 DDC_EL3, Default Data Capability (EL3) 166
3.2.20 DSPSR_EL0, Debug Saved Program Status Register 169
3.2.21 EDSCR2, External Debug Status and Control Register 2 177
3.2.22 ELR_EL1, Exception Link Register (EL1) 179
3.2.23 ELR_EL2, Exception Link Register (EL2) 186
3.2.24 ELR_EL3, Exception Link Register (EL3) 192
3.2.25 ESR_EL1, Exception Syndrome Register (EL1) 196
3.2.26 ESR_EL2, Exception Syndrome Register (EL2) 239
3.2.27 ESR_EL3, Exception Syndrome Register (EL3) 283
3.2.28 FAR_EL1, Fault Address Register (EL1) 324
3.2.29 FAR_EL2, Fault Address Register (EL2) 328
3.2.30 FAR_EL3, Fault Address Register (EL3) 332
3.2.31 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 335
3.2.32 PMBSR_EL1, Profiling Buffer Status/syndrome Register 340
3.2.33 RDDC_EL0, Restricted Default Data Capability 346
3.2.34 RSP_EL0, Restricted Stack Pointer . 350
3.2.35 RTPIDR_EL0, Restricted Read/Write Software Thread ID Register . . . 355
3.2.36 SP_EL0, Stack Pointer (EL0) . 368
3.2.37 SP_EL1, Stack Pointer (EL1) . 372
3.2.38 SP_EL2, Stack Pointer (EL2) . 376
3.2.39 SP_EL3, Stack Pointer (EL3) . 380
3.2.40 SPSR_EL1, Saved Program Status Register (EL1) 382
3.2.41 SPSR_EL2, Saved Program Status Register (EL2) 391
3.2.42 SPSR_EL3, Saved Program Status Register (EL3) 400
3.2.43 TPIDR_EL0, EL0 Read/Write Software Thread ID Register 408
3.2.44 TPIDR_EL1, EL1 Software Thread ID Register 412
3.2.45 TPIDR_EL2, EL2 Software Thread ID Register 416
3.2.46 TPIDR_EL3, EL3 Software Thread ID Register 420
3.2.47 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register 423
3.2.48 VBAR_EL1, Vector Base Address Register (EL1) 427
3.2.49 VBAR_EL2, Vector Base Address Register (EL2) 435
3.2.50 VBAR_EL3, Vector Base Address Register (EL3) 443

Chapter 4 Instruction definitions
4.1 The instruction sets . 448
4.2 Modified base instructions . 450

4.2.1 ADR . 450
4.2.2 ADRP . 451
4.2.3 BL . 452
4.2.4 BLR . 453
4.2.5 BR . 454
4.2.6 CAS, CASA, CASAL, CASL . 455
4.2.7 CASB, CASAB, CASALB, CASLB . 457
4.2.8 CASH, CASAH, CASALH, CASLH . 459
4.2.9 CASP, CASPA, CASPAL, CASPL . 461
4.2.10 DC . 463
4.2.11 ERET . 464
4.2.12 IC . 465
4.2.13 LDADD, LDADDA, LDADDAL, LDADDL 466

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

4.2.14 LDADDB, LDADDAB, LDADDALB, LDADDLB 468
4.2.15 LDADDH, LDADDAH, LDADDALH, LDADDLH 470
4.2.16 LDAPR . 472
4.2.17 LDAPRB . 473
4.2.18 LDAPRH . 474
4.2.19 LDAR . 475
4.2.20 LDARB . 476
4.2.21 LDARH . 477
4.2.22 LDAXP . 478
4.2.23 LDAXR . 481
4.2.24 LDAXRB . 483
4.2.25 LDAXRH . 485
4.2.26 LDCLR, LDCLRA, LDCLRAL, LDCLRL 487
4.2.27 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB 489
4.2.28 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH 491
4.2.29 LDEOR, LDEORA, LDEORAL, LDEORL 493
4.2.30 LDEORB, LDEORAB, LDEORALB, LDEORLB 495
4.2.31 LDEORH, LDEORAH, LDEORALH, LDEORLH 497
4.2.32 LDLAR . 499
4.2.33 LDLARB . 500
4.2.34 LDLARH . 501
4.2.35 LDNP . 502
4.2.36 LDP . 504
4.2.37 LDPSW . 507
4.2.38 LDR (immediate) . 510
4.2.39 LDR (literal) . 513
4.2.40 LDR (register) . 514
4.2.41 LDRB (immediate) . 517
4.2.42 LDRB (register) . 520
4.2.43 LDRH (immediate) . 522
4.2.44 LDRH (register) . 525
4.2.45 LDRSB (immediate) . 527
4.2.46 LDRSB (register) . 530
4.2.47 LDRSH (immediate) . 533
4.2.48 LDRSH (register) . 536
4.2.49 LDRSW (immediate) . 539
4.2.50 LDRSW (literal) . 542
4.2.51 LDRSW (register) . 543
4.2.52 LDSET, LDSETA, LDSETAL, LDSETL 545
4.2.53 LDSETB, LDSETAB, LDSETALB, LDSETLB 547
4.2.54 LDSETH, LDSETAH, LDSETALH, LDSETLH 549
4.2.55 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL 551
4.2.56 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB 553
4.2.57 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH 555
4.2.58 LDSMIN, LDSMINA, LDSMINAL, LDSMINL 557
4.2.59 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB 559
4.2.60 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH 561
4.2.61 LDTR . 563
4.2.62 LDTRB . 565
4.2.63 LDTRH . 567
4.2.64 LDTRSB . 569
4.2.65 LDTRSH . 571
4.2.66 LDTRSW . 573
4.2.67 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL 575
4.2.68 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB 577

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

4.2.69 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH 579
4.2.70 LDUMIN, LDUMINA, LDUMINAL, LDUMINL 581
4.2.71 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB 583
4.2.72 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH 585
4.2.73 LDUR . 587
4.2.74 LDURB . 589
4.2.75 LDURH . 591
4.2.76 LDURSB . 593
4.2.77 LDURSH . 595
4.2.78 LDURSW . 597
4.2.79 LDXP . 599
4.2.80 LDXR . 602
4.2.81 LDXRB . 604
4.2.82 LDXRH . 606
4.2.83 PRFM (immediate) . 608
4.2.84 PRFM (literal) . 611
4.2.85 PRFM (register) . 613
4.2.86 PRFUM . 616
4.2.87 RET . 619
4.2.88 STADD, STADDL . 620
4.2.89 STADDB, STADDLB . 622
4.2.90 STADDH, STADDLH . 623
4.2.91 STCLR, STCLRL . 624
4.2.92 STCLRB, STCLRLB . 626
4.2.93 STCLRH, STCLRLH . 627
4.2.94 STEOR, STEORL . 628
4.2.95 STEORB, STEORLB . 630
4.2.96 STEORH, STEORLH . 631
4.2.97 STLLR . 632
4.2.98 STLLRB . 633
4.2.99 STLLRH . 634
4.2.100 STLR . 635
4.2.101 STLRB . 636
4.2.102 STLRH . 637
4.2.103 STLXP . 638
4.2.104 STLXR . 641
4.2.105 STLXRB . 644
4.2.106 STLXRH . 647
4.2.107 STNP . 650
4.2.108 STP . 652
4.2.109 STR (immediate) . 655
4.2.110 STR (register) . 658
4.2.111 STRB (immediate) . 661
4.2.112 STRB (register) . 664
4.2.113 STRH (immediate) . 666
4.2.114 STRH (register) . 669
4.2.115 STSET, STSETL . 671
4.2.116 STSETB, STSETLB . 673
4.2.117 STSETH, STSETLH . 674
4.2.118 STSMAX, STSMAXL . 675
4.2.119 STSMAXB, STSMAXLB . 677
4.2.120 STSMAXH, STSMAXLH . 678
4.2.121 STSMIN, STSMINL . 679
4.2.122 STSMINB, STSMINLB . 681
4.2.123 STSMINH, STSMINLH . 682

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

4.2.124 STTR . 683
4.2.125 STTRB . 685
4.2.126 STTRH . 687
4.2.127 STUMAX, STUMAXL . 689
4.2.128 STUMAXB, STUMAXLB . 691
4.2.129 STUMAXH, STUMAXLH . 692
4.2.130 STUMIN, STUMINL . 693
4.2.131 STUMINB, STUMINLB . 695
4.2.132 STUMINH, STUMINLH . 696
4.2.133 STUR . 697
4.2.134 STURB . 699
4.2.135 STURH . 701
4.2.136 STXP . 703
4.2.137 STXR . 706
4.2.138 STXRB . 709
4.2.139 STXRH . 712
4.2.140 SWP, SWPA, SWPAL, SWPL . 715
4.2.141 SWPB, SWPAB, SWPALB, SWPLB . 717
4.2.142 SWPH, SWPAH, SWPALH, SWPLH . 719

4.3 Modified SIMD&FP instructions . 721
4.3.1 LD1 (multiple structures) . 721
4.3.2 LD1 (single structure) . 725
4.3.3 LD1R . 728
4.3.4 LD2 (multiple structures) . 731
4.3.5 LD2 (single structure) . 733
4.3.6 LD2R . 736
4.3.7 LD3 (multiple structures) . 739
4.3.8 LD3 (single structure) . 742
4.3.9 LD3R . 745
4.3.10 LD4 (multiple structures) . 748
4.3.11 LD4 (single structure) . 751
4.3.12 LD4R . 754
4.3.13 LDNP (SIMD&FP) . 757
4.3.14 LDP (SIMD&FP) . 759
4.3.15 LDR (immediate, SIMD&FP) . 762
4.3.16 LDR (literal, SIMD&FP) . 765
4.3.17 LDR (register, SIMD&FP) . 766
4.3.18 LDUR (SIMD&FP) . 769
4.3.19 ST1 (multiple structures) . 771
4.3.20 ST1 (single structure) . 775
4.3.21 ST2 (multiple structures) . 778
4.3.22 ST2 (single structure) . 780
4.3.23 ST3 (multiple structures) . 783
4.3.24 ST3 (single structure) . 785
4.3.25 ST4 (multiple structures) . 788
4.3.26 ST4 (single structure) . 791
4.3.27 STNP (SIMD&FP) . 794
4.3.28 STP (SIMD&FP) . 796
4.3.29 STR (immediate, SIMD&FP) . 799
4.3.30 STR (register, SIMD&FP) . 802
4.3.31 STUR (SIMD&FP) . 805

4.4 New instructions . 807
4.4.1 ADD (extended register) . 807
4.4.2 ADD (immediate) . 808
4.4.3 ADRDP . 809

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

4.4.4 ADRP . 810
4.4.5 ALIGND . 811
4.4.6 ALIGNU . 812
4.4.7 BICFLGS (immediate) . 813
4.4.8 BICFLGS (register) . 814
4.4.9 BLR (indirect) . 815
4.4.10 BLR (memory indirect) . 816
4.4.11 BLRR . 818
4.4.12 BLRS (capability) . 819
4.4.13 BLRS (pair of capabilities) . 820
4.4.14 BR (indirect) . 821
4.4.15 BR (memory indirect) . 822
4.4.16 BRR . 823
4.4.17 BRS (capability) . 824
4.4.18 BRS (pair of capabilities) . 825
4.4.19 BUILD . 826
4.4.20 BX . 827
4.4.21 CAS . 828
4.4.22 CASA . 829
4.4.23 CASAL . 830
4.4.24 CASL . 831
4.4.25 CFHI . 832
4.4.26 CHKEQ . 833
4.4.27 CHKSLD . 834
4.4.28 CHKSS . 835
4.4.29 CHKSSU . 836
4.4.30 CHKTGD . 837
4.4.31 CLRPERM (immediate) . 838
4.4.32 CLRPERM (register) . 839
4.4.33 CLRTAG . 840
4.4.34 CMP . 841
4.4.35 CPY . 842
4.4.36 CPYTYPE . 843
4.4.37 CPYVALUE . 844
4.4.38 CSEAL . 845
4.4.39 CSEL . 846
4.4.40 CTHI . 847
4.4.41 CVT (to capability) . 848
4.4.42 CVT (to pointer) . 849
4.4.43 CVTD (to capability) . 850
4.4.44 CVTD (to pointer) . 851
4.4.45 CVTDZ . 852
4.4.46 CVTP (to capability) . 853
4.4.47 CVTP (to pointer) . 854
4.4.48 CVTPZ . 855
4.4.49 CVTZ . 856
4.4.50 EORFLGS (immediate) . 857
4.4.51 EORFLGS (register) . 858
4.4.52 GCBASE . 859
4.4.53 GCFLGS . 860
4.4.54 GCLEN . 861
4.4.55 GCLIM . 862
4.4.56 GCOFF . 863
4.4.57 GCPERM . 864
4.4.58 GCSEAL . 865

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

4.4.59 GCTAG . 866
4.4.60 GCTYPE . 867
4.4.61 GCVALUE . 868
4.4.62 LDAPR . 869
4.4.63 LDAR (capability, alternate base) . 870
4.4.64 LDAR (capability, normal base) . 871
4.4.65 LDAR (integer) . 872
4.4.66 LDARB . 873
4.4.67 LDAXP . 874
4.4.68 LDAXR . 875
4.4.69 LDCT . 876
4.4.70 LDNP . 877
4.4.71 LDP (post-indexed) . 878
4.4.72 LDP (pre-indexed) . 880
4.4.73 LDP (signed offset) . 882
4.4.74 LDPBLR . 883
4.4.75 LDPBR . 885
4.4.76 LDR (literal) . 886
4.4.77 LDR (post-indexed) . 887
4.4.78 LDR (pre-indexed) . 888
4.4.79 LDR (register offset, capability, alternate base) 889
4.4.80 LDR (register offset, capability, normal base) 891
4.4.81 LDR (register offset, integer) . 892
4.4.82 LDR (register offset, SIMD&FP) . 894
4.4.83 LDR (unsigned offset, capability, alternate base) 896
4.4.84 LDR (unsigned offset, capability, normal base) 897
4.4.85 LDR (unsigned offset, integer) . 898
4.4.86 LDRB (register offset) . 900
4.4.87 LDRB (unsigned offset) . 901
4.4.88 LDRH . 902
4.4.89 LDRSB . 904
4.4.90 LDRSH . 906
4.4.91 LDTR . 908
4.4.92 LDUR (capability, alternate base) . 909
4.4.93 LDUR (capability, normal base) . 910
4.4.94 LDUR (integer) . 911
4.4.95 LDUR (SIMD&FP) . 912
4.4.96 LDURB . 914
4.4.97 LDURH . 915
4.4.98 LDURSB . 916
4.4.99 LDURSH . 917
4.4.100 LDURSW . 918
4.4.101 LDXP . 919
4.4.102 LDXR . 920
4.4.103 MOV . 921
4.4.104 MRS . 922
4.4.105 MSR . 923
4.4.106 ORRFLGS (immediate) . 924
4.4.107 ORRFLGS (register) . 925
4.4.108 RET . 926
4.4.109 RETR . 927
4.4.110 RETS (capability) . 928
4.4.111 RETS (pair of capabilities) . 929
4.4.112 RRLEN . 930
4.4.113 RRMASK . 931

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents

4.4.114 SCBNDS (immediate) . 932
4.4.115 SCBNDS (register) . 933
4.4.116 SCBNDSE . 934
4.4.117 SCFLGS . 935
4.4.118 SCOFF . 936
4.4.119 SCTAG . 937
4.4.120 SCVALUE . 938
4.4.121 SEAL (capability) . 939
4.4.122 SEAL (immediate) . 940
4.4.123 STCT . 941
4.4.124 STLR (capability, alternate base) . 942
4.4.125 STLR (capability, normal base) . 943
4.4.126 STLR (integer) . 944
4.4.127 STLRB . 945
4.4.128 STLXP . 946
4.4.129 STLXR . 948
4.4.130 STNP . 950
4.4.131 STP (post-indexed) . 951
4.4.132 STP (pre-indexed) . 953
4.4.133 STP (signed offset) . 955
4.4.134 STR (post-indexed) . 956
4.4.135 STR (pre-indexed) . 957
4.4.136 STR (register offset, capability, alternate base) 958
4.4.137 STR (register offset, capability, normal base) 960
4.4.138 STR (register offset, integer) . 962
4.4.139 STR (register offset, SIMD&FP) . 964
4.4.140 STR (unsigned offset, capability, alternate base) 966
4.4.141 STR (unsigned offset, capability, normal base) 967
4.4.142 STR (unsigned offset, integer) . 968
4.4.143 STRB (register offset) . 970
4.4.144 STRB (unsigned offset) . 971
4.4.145 STRH . 972
4.4.146 STTR . 973
4.4.147 STUR (capability, alternate base) . 974
4.4.148 STUR (capability, normal base) . 975
4.4.149 STUR (integer) . 976
4.4.150 STUR (SIMD&FP) . 977
4.4.151 STURB . 979
4.4.152 STURH . 980
4.4.153 STXP . 981
4.4.154 STXR . 983
4.4.155 SUB . 985
4.4.156 SUBS . 986
4.4.157 SWP . 987
4.4.158 SWPA . 988
4.4.159 SWPAL . 989
4.4.160 SWPL . 990
4.4.161 UNSEAL . 991

4.5 Index by encoding . 992

Chapter 5 Pseudocode definitions
5.1 aarch64/debug/breakpoint/AArch64.BreakpointMatch1100
5.2 aarch64/debug/breakpoint/AArch64.BreakpointValueMatch1100
5.3 aarch64/debug/breakpoint/AArch64.StateMatch 1101
5.4 aarch64/debug/enables/AArch64.GenerateDebugExceptions1102

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Contents

5.5 aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom1102
5.6 aarch64/debug/pmu/AArch64.CheckForPMUOverflow1102
5.7 aarch64/debug/pmu/AArch64.CountEvents .1103
5.8 aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess 1104
5.9 aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess 1104
5.10 aarch64/debug/statisticalprofiling/CollectContextIDR1 1104
5.11 aarch64/debug/statisticalprofiling/CollectContextIDR2 1104
5.12 aarch64/debug/statisticalprofiling/CollectPhysicalAddress 1104
5.13 aarch64/debug/statisticalprofiling/CollectRecord1105
5.14 aarch64/debug/statisticalprofiling/CollectTimeStamp1105
5.15 aarch64/debug/statisticalprofiling/OpType .1105
5.16 aarch64/debug/statisticalprofiling/ProfilingBufferEnabled1106
5.17 aarch64/debug/statisticalprofiling/ProfilingBufferOwner1106
5.18 aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier1106
5.19 aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled1106
5.20 aarch64/debug/statisticalprofiling/SysRegAccess1106
5.21 aarch64/debug/statisticalprofiling/TimeStamp1106
5.22 aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState 1107
5.23 aarch64/debug/watchpoint/AArch64.WatchpointByteMatch 1107
5.24 aarch64/debug/watchpoint/AArch64.WatchpointMatch1108
5.25 aarch64/exceptions/aborts/AArch64.Abort .1108
5.26 aarch64/exceptions/aborts/AArch64.AbortSyndrome1109
5.27 aarch64/exceptions/aborts/AArch64.CheckPCAlignment1109
5.28 aarch64/exceptions/aborts/AArch64.DataAbort1109
5.29 aarch64/exceptions/aborts/AArch64.InstructionAbort1109
5.30 aarch64/exceptions/aborts/AArch64.PCAlignmentFault1110
5.31 aarch64/exceptions/aborts/AArch64.SPAlignmentFault1110
5.32 aarch64/exceptions/aborts/CapabilityFault .1110
5.33 aarch64/exceptions/aborts/CheckCapability 1111
5.34 aarch64/exceptions/aborts/CheckPCCCapability 1111
5.35 aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException 1111
5.36 aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException1112
5.37 aarch64/exceptions/asynch/AArch64.TakePhysicalSErrorException1112
5.38 aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException1112
5.39 aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException1113
5.40 aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException1113
5.41 aarch64/exceptions/debug/AArch64.BreakpointException1113
5.42 aarch64/exceptions/debug/AArch64.SoftwareBreakpoint 1114
5.43 aarch64/exceptions/debug/AArch64.SoftwareStepException 1114
5.44 aarch64/exceptions/debug/AArch64.VectorCatchException 1114
5.45 aarch64/exceptions/debug/AArch64.WatchpointException 1114
5.46 aarch64/exceptions/exceptions/AArch64.ExceptionClass1115
5.47 aarch64/exceptions/exceptions/AArch64.ReportException1115
5.48 aarch64/exceptions/exceptions/AArch64.ResetControlRegisters1116
5.49 aarch64/exceptions/exceptions/AArch64.TakeReset1116
5.50 aarch64/exceptions/ieeefp/AArch64.FPTrappedException 1117
5.51 aarch64/exceptions/syscalls/AArch64.CallHypervisor 1117
5.52 aarch64/exceptions/syscalls/AArch64.CallSecureMonitor 1117
5.53 aarch64/exceptions/syscalls/AArch64.CallSupervisor1118
5.54 aarch64/exceptions/takeexception/AArch64.TakeException1118
5.55 aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap1119
5.56 aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome . . .1119
5.57 aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap1120
5.58 aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps 1121
5.59 aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled 1121

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xv

Contents

5.60 aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap 1121
5.61 aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap 1121
5.62 aarch64/exceptions/traps/AArch64.CheckForWFxTrap1122
5.63 aarch64/exceptions/traps/AArch64.CheckIllegalState1122
5.64 aarch64/exceptions/traps/AArch64.MonitorModeTrap1122
5.65 aarch64/exceptions/traps/AArch64.SystemAccessTrap1122
5.66 aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome1123
5.67 aarch64/exceptions/traps/AArch64.UndefinedFault1123
5.68 aarch64/exceptions/traps/AArch64.WFxTrap 1124
5.69 aarch64/exceptions/traps/CapabilityAccessTrap 1124
5.70 aarch64/exceptions/traps/CheckCapabilitiesEnabled 1124
5.71 aarch64/exceptions/traps/CheckFPAdvSIMDEnabled641125
5.72 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL01125
5.73 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL11125
5.74 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL21125
5.75 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL31125
5.76 aarch64/exceptions/traps/IsAccessToCapabilitiesEnabledAtEL1126
5.77 aarch64/exceptions/traps/IsInC64 .1126
5.78 aarch64/exceptions/traps/IsTagSettingDisabled1126
5.79 aarch64/exceptions/traps/TargetELForCapabilityExceptions1126
5.80 aarch64/functions/aborts/AArch64.CreateFaultRecord 1127
5.81 aarch64/functions/aborts/AArch64.FaultSyndrome 1127
5.82 aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass 1127
5.83 aarch64/functions/exclusive/AArch64.IsExclusiveVA1128
5.84 aarch64/functions/exclusive/AArch64.MarkExclusiveVA1128
5.85 aarch64/functions/exclusive/AArch64.SetExclusiveMonitors1128
5.86 aarch64/functions/fusedrstep/FPRSqrtStepFused1128
5.87 aarch64/functions/fusedrstep/FPRecipStepFused1129
5.88 aarch64/functions/memory/AArch64.CheckAlignment1129
5.89 aarch64/functions/memory/AArch64.MemSingle1130
5.90 aarch64/functions/memory/AArch64.TaggedMemSingle1130
5.91 aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess 1131
5.92 aarch64/functions/memory/CapabilityTag .1132
5.93 aarch64/functions/memory/CheckSPAlignment1133
5.94 aarch64/functions/memory/Mem .1133
5.95 aarch64/functions/memory/MemAtomic .1135
5.96 aarch64/functions/memory/MemAtomicC .1135
5.97 aarch64/functions/memory/MemAtomicCompareAndSwap1136
5.98 aarch64/functions/memory/MemAtomicCompareAndSwapC1136
5.99 aarch64/functions/ras/AArch64.ESBOperation 1137
5.100 aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome1138
5.101 aarch64/functions/ras/AArch64.ReportDeferredSError1138
5.102 aarch64/functions/ras/AArch64.vESBOperation1138
5.103 aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers1138
5.104 aarch64/functions/registers/AArch64.ResetGeneralRegisters1138
5.105 aarch64/functions/registers/AArch64.ResetSIMDFPRegisters1139
5.106 aarch64/functions/registers/AArch64.ResetSpecialRegisters1139
5.107 aarch64/functions/registers/AArch64.ResetSystemRegisters1139
5.108 aarch64/functions/registers/C .1139
5.109 aarch64/functions/registers/CSP .1140
5.110 aarch64/functions/registers/CapIsSystemAccessEnabled1140
5.111 aarch64/functions/registers/Capability .1140
5.112 aarch64/functions/registers/DDC .1140
5.113 aarch64/functions/registers/IsInRestricted . 1141
5.114 aarch64/functions/registers/PC . 1141

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvi

Contents

5.115 aarch64/functions/registers/PCC .1142
5.116 aarch64/functions/registers/SP .1142
5.117 aarch64/functions/registers/V .1143
5.118 aarch64/functions/registers/VirtualAddress .1143
5.119 aarch64/functions/registers/VirtualAddressType1143
5.120 aarch64/functions/registers/Vpart .1143
5.121 aarch64/functions/registers/X . 1144
5.122 aarch64/functions/sysregisters/CCTLR . 1144
5.123 aarch64/functions/sysregisters/CELR .1145
5.124 aarch64/functions/sysregisters/CNTKCTL .1145
5.125 aarch64/functions/sysregisters/CNTKCTLType1145
5.126 aarch64/functions/sysregisters/CPACR .1145
5.127 aarch64/functions/sysregisters/CPACRType1146
5.128 aarch64/functions/sysregisters/CVBAR .1146
5.129 aarch64/functions/sysregisters/ELR .1146
5.130 aarch64/functions/sysregisters/ESR .1146
5.131 aarch64/functions/sysregisters/ESRType . 1147
5.132 aarch64/functions/sysregisters/FAR . 1147
5.133 aarch64/functions/sysregisters/MAIR .1148
5.134 aarch64/functions/sysregisters/MAIRType .1148
5.135 aarch64/functions/sysregisters/SCTLR .1148
5.136 aarch64/functions/sysregisters/SCTLRType1148
5.137 aarch64/functions/sysregisters/VBAR .1148
5.138 aarch64/functions/system/AArch64.CheckSystemAccess1149
5.139 aarch64/functions/system/AArch64.ExecutingATS1xPInstr1149
5.140 aarch64/functions/system/AArch64.SysInstr1150
5.141 aarch64/functions/system/AArch64.SysInstrInputIsCapability1150
5.142 aarch64/functions/system/AArch64.SysInstrWithCapability1150
5.143 aarch64/functions/system/AArch64.SysInstrWithResult1150
5.144 aarch64/functions/system/AArch64.SysRegRead1150
5.145 aarch64/functions/system/AArch64.SysRegWrite1150
5.146 aarch64/functions/virtualaddress/VAAdd .1150
5.147 aarch64/functions/virtualaddress/VACheckAddress1150
5.148 aarch64/functions/virtualaddress/VACheckPerm 1151
5.149 aarch64/functions/virtualaddress/VAFromBits64 1151
5.150 aarch64/functions/virtualaddress/VAFromCapability 1151
5.151 aarch64/functions/virtualaddress/VAIsBits64 1151
5.152 aarch64/functions/virtualaddress/VAIsCapability1152
5.153 aarch64/functions/virtualaddress/VAToBits641152
5.154 aarch64/functions/virtualaddress/VAToCapability1152
5.155 aarch64/functions/virtualaddress/VAddress .1152
5.156 aarch64/instrs/branch/eret/AArch64.ExceptionReturn1152
5.157 aarch64/instrs/branch/eret/AArch64.ExceptionReturnToCapability1153
5.158 aarch64/instrs/countop/CountOp .1153
5.159 aarch64/instrs/extendreg/DecodeRegExtend1153
5.160 aarch64/instrs/extendreg/ExtendReg . 1154
5.161 aarch64/instrs/extendreg/ExtendType . 1154
5.162 aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp 1154
5.163 aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp 1154
5.164 aarch64/instrs/float/convert/fpconvop/FPConvOp 1154
5.165 aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred 1154
5.166 aarch64/instrs/integer/bitmasks/DecodeBitMasks1155
5.167 aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp . . .1156
5.168 aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred1156
5.169 aarch64/instrs/integer/shiftreg/DecodeShift . 1157

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xvii

Contents

5.170 aarch64/instrs/integer/shiftreg/ShiftReg . 1157
5.171 aarch64/instrs/integer/shiftreg/ShiftType . 1157
5.172 aarch64/instrs/logicalop/LogicalOp . 1157
5.173 aarch64/instrs/memory/memop/MemAtomicOp 1157
5.174 aarch64/instrs/memory/memop/MemOp . 1157
5.175 aarch64/instrs/memory/prefetch/Prefetch . 1157
5.176 aarch64/instrs/system/barriers/barrierop/MemBarrierOp1158
5.177 aarch64/instrs/system/hints/syshintop/SystemHintOp1158
5.178 aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField1158
5.179 aarch64/instrs/system/sysops/sysop/SysOp1158
5.180 aarch64/instrs/system/sysops/sysop/SystemOp1159
5.181 aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp .1159
5.182 aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp1159
5.183 aarch64/instrs/vector/logical/immediateop/ImmediateOp1159
5.184 aarch64/instrs/vector/reduce/reduceop/Reduce1160
5.185 aarch64/instrs/vector/reduce/reduceop/ReduceOp1160
5.186 aarch64/translation/attrs/AArch64.CombineS1S2Desc1160
5.187 aarch64/translation/attrs/AArch64.InstructionDevice 1161
5.188 aarch64/translation/attrs/AArch64.S1AttrDecode 1161
5.189 aarch64/translation/attrs/AArch64.TranslateAddressS1Off1162
5.190 aarch64/translation/checks/AArch64.AccessIsPrivileged1162
5.191 aarch64/translation/checks/AArch64.AccessUsesEL1163
5.192 aarch64/translation/checks/AArch64.CheckLoadTagsPermission1163
5.193 aarch64/translation/checks/AArch64.CheckPermission1163
5.194 aarch64/translation/checks/AArch64.CheckS2Permission 1164
5.195 aarch64/translation/checks/AArch64.CheckStoreTagsPermission1165
5.196 aarch64/translation/debug/AArch64.CheckBreakpoint1165
5.197 aarch64/translation/debug/AArch64.CheckDebug1165
5.198 aarch64/translation/debug/AArch64.CheckWatchpoint1166
5.199 aarch64/translation/faults/AArch64.AccessFlagFault1166
5.200 aarch64/translation/faults/AArch64.AddressSizeFault1166
5.201 aarch64/translation/faults/AArch64.AlignmentFault1166
5.202 aarch64/translation/faults/AArch64.AsynchExternalAbort 1167
5.203 aarch64/translation/faults/AArch64.DebugFault 1167
5.204 aarch64/translation/faults/AArch64.NoFault . 1167
5.205 aarch64/translation/faults/AArch64.PermissionFault1168
5.206 aarch64/translation/faults/AArch64.TranslationFault1168
5.207 aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor1168
5.208 aarch64/translation/translation/AArch64.FirstStageTranslate1169
5.209 aarch64/translation/translation/AArch64.FirstStageTranslateWithTag1169
5.210 aarch64/translation/translation/AArch64.FullTranslate1170
5.211 aarch64/translation/translation/AArch64.FullTranslateWithTag1170
5.212 aarch64/translation/translation/AArch64.IsStageOneEnabled1170
5.213 aarch64/translation/translation/AArch64.SecondStageTranslate 1171
5.214 aarch64/translation/translation/AArch64.SecondStageWalk 1171
5.215 aarch64/translation/translation/AArch64.TranslateAddress1172
5.216 aarch64/translation/translation/AArch64.TranslateAddressWithTag1172
5.217 aarch64/translation/walk/AArch64.TranslationTableWalk1172
5.218 aarch64/translation/walk/EffectiveHWU .1178
5.219 shared/debug/ClearStickyErrors/ClearStickyErrors1179
5.220 shared/debug/DebugTarget/DebugTarget .1179
5.221 shared/debug/DebugTarget/DebugTargetFrom1179
5.222 shared/debug/DoubleLockStatus/DoubleLockStatus1179
5.223 shared/debug/authentication/AllowExternalDebugAccess1179
5.224 shared/debug/authentication/AllowExternalPMUAccess1180

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Contents

5.225 shared/debug/authentication/Debug_authentication1180
5.226 shared/debug/authentication/ExternalInvasiveDebugEnabled1180
5.227 shared/debug/authentication/ExternalNoninvasiveDebugAllowed1180
5.228 shared/debug/authentication/ExternalNoninvasiveDebugEnabled1180
5.229 shared/debug/authentication/ExternalSecureInvasiveDebugEnabled 1181
5.230 shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled . . . 1181
5.231 shared/debug/authentication/IsCorePowered 1181
5.232 shared/debug/breakpoint/CheckValidStateMatch 1181
5.233 shared/debug/cti/CTI_SetEventLevel .1182
5.234 shared/debug/cti/CTI_SignalEvent .1182
5.235 shared/debug/cti/CrossTrigger .1182
5.236 shared/debug/dccanditr/CDBGDTR_EL0 .1182
5.237 shared/debug/dccanditr/CheckForDCCInterrupts1183
5.238 shared/debug/dccanditr/DBGDTRRX_EL0 .1183
5.239 shared/debug/dccanditr/DBGDTRTX_EL0 . 1184
5.240 shared/debug/dccanditr/DBGDTR_EL0 . 1184
5.241 shared/debug/dccanditr/DTR .1185
5.242 shared/debug/dccanditr/EDITR .1185
5.243 shared/debug/halting/DCPSInstruction .1185
5.244 shared/debug/halting/DRPSInstruction .1186
5.245 shared/debug/halting/DebugHalt .1186
5.246 shared/debug/halting/DisableITRAndResumeInstructionPrefetch 1187
5.247 shared/debug/halting/ExecuteA64 . 1187
5.248 shared/debug/halting/ExecuteT32 . 1187
5.249 shared/debug/halting/ExitDebugState . 1187
5.250 shared/debug/halting/Halt . 1187
5.251 shared/debug/halting/HaltOnBreakpointOrWatchpoint1188
5.252 shared/debug/halting/Halted .1188
5.253 shared/debug/halting/HaltingAllowed .1188
5.254 shared/debug/halting/Restarting .1189
5.255 shared/debug/halting/StopInstructionPrefetchAndEnableITR1189
5.256 shared/debug/halting/UpdateEDSCRFields .1189
5.257 shared/debug/haltingevents/CheckExceptionCatch1189
5.258 shared/debug/haltingevents/CheckHaltingStep1190
5.259 shared/debug/haltingevents/CheckOSUnlockCatch1190
5.260 shared/debug/haltingevents/CheckPendingOSUnlockCatch1190
5.261 shared/debug/haltingevents/CheckPendingResetCatch1190
5.262 shared/debug/haltingevents/CheckResetCatch1190
5.263 shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters 1191
5.264 shared/debug/haltingevents/ExternalDebugRequest 1191
5.265 shared/debug/haltingevents/HaltingStep_DidNotStep 1191
5.266 shared/debug/haltingevents/HaltingStep_SteppedEX 1191
5.267 shared/debug/haltingevents/RunHaltingStep 1191
5.268 shared/debug/interrupts/ExternalDebugInterruptsDisabled1192
5.269 shared/debug/interrupts/InterruptID .1192
5.270 shared/debug/interrupts/SetInterruptRequestLevel1192
5.271 shared/debug/samplebasedprofiling/CreatePCSample1192
5.272 shared/debug/samplebasedprofiling/EDPCSRlo1192
5.273 shared/debug/samplebasedprofiling/PCSample1193
5.274 shared/debug/samplebasedprofiling/PMPCSR1193
5.275 shared/debug/softwarestep/CheckSoftwareStep1193
5.276 shared/debug/softwarestep/DebugExceptionReturnSS 1194
5.277 shared/debug/softwarestep/SSAdvance . 1194
5.278 shared/debug/softwarestep/SoftwareStep_DidNotStep 1194
5.279 shared/debug/softwarestep/SoftwareStep_SteppedEX 1194

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xix

Contents

5.280 shared/exceptions/exceptions/ConditionSyndrome1195
5.281 shared/exceptions/exceptions/Exception .1195
5.282 shared/exceptions/exceptions/ExceptionRecord1195
5.283 shared/exceptions/exceptions/ExceptionSyndrome1196
5.284 shared/exceptions/traps/ReservedValue .1196
5.285 shared/exceptions/traps/UnallocatedEncoding1196
5.286 shared/functions/aborts/EncodeLDFSC .1196
5.287 shared/functions/aborts/IPAValid . 1197
5.288 shared/functions/aborts/IsAsyncAbort . 1197
5.289 shared/functions/aborts/IsDebugException . 1197
5.290 shared/functions/aborts/IsExternalAbort . 1197
5.291 shared/functions/aborts/IsExternalSyncAbort1198
5.292 shared/functions/aborts/IsFault .1198
5.293 shared/functions/aborts/IsSErrorInterrupt .1198
5.294 shared/functions/aborts/IsSecondStage .1198
5.295 shared/functions/aborts/LSInstructionSyndrome1198
5.296 shared/functions/capability/CAP_BASE_EXP_HI_BIT1199
5.297 shared/functions/capability/CAP_BASE_HI_BIT1199
5.298 shared/functions/capability/CAP_BASE_LO_BIT1199
5.299 shared/functions/capability/CAP_BASE_MANTISSA_LO_BIT1199
5.300 shared/functions/capability/CAP_BASE_MANTISSA_NUM_BITS1199
5.301 shared/functions/capability/CAP_BOUND_MAX1199
5.302 shared/functions/capability/CAP_BOUND_MIN1199
5.303 shared/functions/capability/CAP_BOUND_NUM_BITS1199
5.304 shared/functions/capability/CAP_FLAGS_HI_BIT1199
5.305 shared/functions/capability/CAP_FLAGS_LO_BIT1199
5.306 shared/functions/capability/CAP_IE_BIT .1199
5.307 shared/functions/capability/CAP_LENGTH_NUM_BITS1200
5.308 shared/functions/capability/CAP_LIMIT_EXP_HI_BIT1200
5.309 shared/functions/capability/CAP_LIMIT_HI_BIT1200
5.310 shared/functions/capability/CAP_LIMIT_LO_BIT1200
5.311 shared/functions/capability/CAP_LIMIT_MANTISSA_LO_BIT1200
5.312 shared/functions/capability/CAP_LIMIT_MANTISSA_NUM_BITS1200
5.313 shared/functions/capability/CAP_LIMIT_NUM_BITS1200
5.314 shared/functions/capability/CAP_MAX_ENCODEABLE_EXPONENT1200
5.315 shared/functions/capability/CAP_MAX_EXPONENT1200
5.316 shared/functions/capability/CAP_MAX_FIXED_SEAL_TYPE1200
5.317 shared/functions/capability/CAP_MAX_OBJECT_TYPE1200
5.318 shared/functions/capability/CAP_MW . 1201
5.319 shared/functions/capability/CAP_NO_SEALING 1201
5.320 shared/functions/capability/CAP_OTYPE_HI_BIT 1201
5.321 shared/functions/capability/CAP_OTYPE_LO_BIT 1201
5.322 shared/functions/capability/CAP_OTYPE_NUM_BITS 1201
5.323 shared/functions/capability/CAP_PERMS_HI_BIT 1201
5.324 shared/functions/capability/CAP_PERMS_LO_BIT 1201
5.325 shared/functions/capability/CAP_PERMS_NUM_BITS 1201
5.326 shared/functions/capability/CAP_PERM_BRANCH_SEALED_PAIR 1201
5.327 shared/functions/capability/CAP_PERM_COMPARTMENT_ID 1201
5.328 shared/functions/capability/CAP_PERM_EXECUTE 1201
5.329 shared/functions/capability/CAP_PERM_EXECUTIVE1202
5.330 shared/functions/capability/CAP_PERM_GLOBAL1202
5.331 shared/functions/capability/CAP_PERM_LOAD1202
5.332 shared/functions/capability/CAP_PERM_LOAD_CAP1202
5.333 shared/functions/capability/CAP_PERM_MUTABLE_LOAD1202
5.334 shared/functions/capability/CAP_PERM_NONE1202

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xx

Contents

5.335 shared/functions/capability/CAP_PERM_SEAL1202
5.336 shared/functions/capability/CAP_PERM_STORE1202
5.337 shared/functions/capability/CAP_PERM_STORE_CAP1202
5.338 shared/functions/capability/CAP_PERM_STORE_LOCAL1202
5.339 shared/functions/capability/CAP_PERM_SYSTEM1202
5.340 shared/functions/capability/CAP_PERM_UNSEAL1203
5.341 shared/functions/capability/CAP_SEAL_TYPE_LB1203
5.342 shared/functions/capability/CAP_SEAL_TYPE_LPB1203
5.343 shared/functions/capability/CAP_SEAL_TYPE_RB1203
5.344 shared/functions/capability/CAP_TAG_BIT .1203
5.345 shared/functions/capability/CAP_VALUE_FOR_BOUND_HI_BIT1203
5.346 shared/functions/capability/CAP_VALUE_FOR_BOUND_NUM_BITS1203
5.347 shared/functions/capability/CAP_VALUE_HI_BIT1203
5.348 shared/functions/capability/CAP_VALUE_LO_BIT1203
5.349 shared/functions/capability/CAP_VALUE_NUM_BITS1203
5.350 shared/functions/capability/CapAdd .1203
5.351 shared/functions/capability/CapBoundsAddress 1204
5.352 shared/functions/capability/CapBoundsEqual 1204
5.353 shared/functions/capability/CapBoundsUsesValue 1204
5.354 shared/functions/capability/CapCheckPermissions 1204
5.355 shared/functions/capability/CapClearPerms1205
5.356 shared/functions/capability/CapGetBase .1205
5.357 shared/functions/capability/CapGetBottom .1205
5.358 shared/functions/capability/CapGetBounds .1205
5.359 shared/functions/capability/CapGetExponent1206
5.360 shared/functions/capability/CapGetLength .1206
5.361 shared/functions/capability/CapGetObjectType 1207
5.362 shared/functions/capability/CapGetOffset . 1207
5.363 shared/functions/capability/CapGetPermissions 1207
5.364 shared/functions/capability/CapGetRepresentableMask 1207
5.365 shared/functions/capability/CapGetTag . 1207
5.366 shared/functions/capability/CapGetTop .1208
5.367 shared/functions/capability/CapGetValue .1208
5.368 shared/functions/capability/CapIsBaseAboveLimit1208
5.369 shared/functions/capability/CapIsEqual .1208
5.370 shared/functions/capability/CapIsExecutePermitted1208
5.371 shared/functions/capability/CapIsExecutive .1208
5.372 shared/functions/capability/CapIsInBounds .1209
5.373 shared/functions/capability/CapIsInternalExponent1209
5.374 shared/functions/capability/CapIsLocal .1209
5.375 shared/functions/capability/CapIsMutableLoadPermitted1209
5.376 shared/functions/capability/CapIsRangeInBounds1209
5.377 shared/functions/capability/CapIsRepresentable1209
5.378 shared/functions/capability/CapIsRepresentableFast1210
5.379 shared/functions/capability/CapIsSealed .1210
5.380 shared/functions/capability/CapIsSubSetOf .1210
5.381 shared/functions/capability/CapIsSystemAccessPermitted 1211
5.382 shared/functions/capability/CapIsTagClear . 1211
5.383 shared/functions/capability/CapIsTagSet . 1211
5.384 shared/functions/capability/CapNull . 1211
5.385 shared/functions/capability/CapPermsInclude 1211
5.386 shared/functions/capability/CapSetBounds . 1211
5.387 shared/functions/capability/CapSetObjectType1213
5.388 shared/functions/capability/CapSetOffset .1213
5.389 shared/functions/capability/CapSetTag .1213

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxi

Contents

5.390 shared/functions/capability/CapSetValue . 1214
5.391 shared/functions/capability/CapSquashPostLoadCap 1214
5.392 shared/functions/capability/CapUnseal . 1214
5.393 shared/functions/capability/CapUnsignedGreaterThan 1214
5.394 shared/functions/capability/CapUnsignedGreaterThanOrEqual 1214
5.395 shared/functions/capability/CapUnsignedLessThan1215
5.396 shared/functions/capability/CapUnsignedLessThanOrEqual1215
5.397 shared/functions/capability/CapWithTagClear1215
5.398 shared/functions/capability/CapWithTagSet .1215
5.399 shared/functions/capability/CapabilityFromData1215
5.400 shared/functions/capability/DataFromCapability1215
5.401 shared/functions/common/ASR .1216
5.402 shared/functions/common/ASR_C .1216
5.403 shared/functions/common/Abs .1216
5.404 shared/functions/common/Align .1216
5.405 shared/functions/common/BitCount .1216
5.406 shared/functions/common/CountLeadingSignBits 1217
5.407 shared/functions/common/CountLeadingZeroBits 1217
5.408 shared/functions/common/Elem . 1217
5.409 shared/functions/common/Extend . 1217
5.410 shared/functions/common/HighestSetBit . 1217
5.411 shared/functions/common/Int .1218
5.412 shared/functions/common/IsOnes .1218
5.413 shared/functions/common/IsZero .1218
5.414 shared/functions/common/IsZeroBit .1218
5.415 shared/functions/common/LSL .1218
5.416 shared/functions/common/LSL_C .1218
5.417 shared/functions/common/LSR .1219
5.418 shared/functions/common/LSR_C .1219
5.419 shared/functions/common/LowestSetBit .1219
5.420 shared/functions/common/Max .1219
5.421 shared/functions/common/Min .1219
5.422 shared/functions/common/Ones .1219
5.423 shared/functions/common/ROR .1220
5.424 shared/functions/common/ROR_C .1220
5.425 shared/functions/common/Replicate .1220
5.426 shared/functions/common/RoundDown .1220
5.427 shared/functions/common/RoundTowardsZero1220
5.428 shared/functions/common/RoundUp .1220
5.429 shared/functions/common/SInt . 1221
5.430 shared/functions/common/SignExtend . 1221
5.431 shared/functions/common/UInt . 1221
5.432 shared/functions/common/ZeroExtend . 1221
5.433 shared/functions/common/Zeros . 1221
5.434 shared/functions/crc/BitReverse .1222
5.435 shared/functions/crc/HaveCRCExt .1222
5.436 shared/functions/crc/Poly32Mod2 .1222
5.437 shared/functions/crypto/AESInvMixColumns1222
5.438 shared/functions/crypto/AESInvShiftRows .1223
5.439 shared/functions/crypto/AESInvSubBytes .1223
5.440 shared/functions/crypto/AESMixColumns .1223
5.441 shared/functions/crypto/AESShiftRows . 1224
5.442 shared/functions/crypto/AESSubBytes . 1224
5.443 shared/functions/crypto/FFmul02 . 1224
5.444 shared/functions/crypto/FFmul03 .1225

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxii

Contents

5.445 shared/functions/crypto/FFmul09 .1225
5.446 shared/functions/crypto/FFmul0B .1226
5.447 shared/functions/crypto/FFmul0D .1226
5.448 shared/functions/crypto/FFmul0E .1226
5.449 shared/functions/crypto/HaveAESExt . 1227
5.450 shared/functions/crypto/HaveBit128PMULLExt 1227
5.451 shared/functions/crypto/HaveSHA1Ext . 1227
5.452 shared/functions/crypto/HaveSHA256Ext . 1227
5.453 shared/functions/crypto/HaveSHA3Ext . 1227
5.454 shared/functions/crypto/HaveSHA512Ext . 1227
5.455 shared/functions/crypto/HaveSM3Ext .1228
5.456 shared/functions/crypto/HaveSM4Ext .1228
5.457 shared/functions/crypto/ROL .1228
5.458 shared/functions/crypto/SHA256hash .1228
5.459 shared/functions/crypto/SHAchoose .1228
5.460 shared/functions/crypto/SHAhashSIGMA0 .1229
5.461 shared/functions/crypto/SHAhashSIGMA1 .1229
5.462 shared/functions/crypto/SHAmajority .1229
5.463 shared/functions/crypto/SHAparity .1229
5.464 shared/functions/crypto/Sbox .1229
5.465 shared/functions/exclusive/ClearExclusiveByAddress1229
5.466 shared/functions/exclusive/ClearExclusiveLocal1230
5.467 shared/functions/exclusive/ClearExclusiveMonitors1230
5.468 shared/functions/exclusive/ExclusiveMonitorsStatus1230
5.469 shared/functions/exclusive/IsExclusiveGlobal1230
5.470 shared/functions/exclusive/IsExclusiveLocal1230
5.471 shared/functions/exclusive/MarkExclusiveGlobal1230
5.472 shared/functions/exclusive/MarkExclusiveLocal1230
5.473 shared/functions/exclusive/ProcessorID .1230
5.474 shared/functions/extension/AArch32.HaveHPDExt1230
5.475 shared/functions/extension/AArch64.HaveHPDExt 1231
5.476 shared/functions/extension/Have52BitVAExt 1231
5.477 shared/functions/extension/HaveAArch32BF16Ext 1231
5.478 shared/functions/extension/HaveAArch32Int8MatMulExt 1231
5.479 shared/functions/extension/HaveAtomicExt . 1231
5.480 shared/functions/extension/HaveCapabilitiesExt 1231
5.481 shared/functions/extension/HaveCommonNotPrivateTransExt1232
5.482 shared/functions/extension/HaveDOTPExt .1232
5.483 shared/functions/extension/HaveDoubleLock1232
5.484 shared/functions/extension/HaveExtendedECDebugEvents1232
5.485 shared/functions/extension/HaveExtendedExecuteNeverExt1232
5.486 shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext1232
5.487 shared/functions/extension/HaveHPMDExt .1232
5.488 shared/functions/extension/HaveIESB .1233
5.489 shared/functions/extension/HaveMPAMExt .1233
5.490 shared/functions/extension/HaveNoSecurePMUDisableOverride1233
5.491 shared/functions/extension/HavePANExt .1233
5.492 shared/functions/extension/HavePageBasedHardwareAttributes1233
5.493 shared/functions/extension/HavePrivATExt .1233
5.494 shared/functions/extension/HaveQRDMLAHExt1233
5.495 shared/functions/extension/HaveRASExt . 1234
5.496 shared/functions/extension/HaveSBExt . 1234
5.497 shared/functions/extension/HaveSSBSExt . 1234
5.498 shared/functions/extension/HaveStatisticalProfiling 1234
5.499 shared/functions/extension/HaveTraceExt . 1234

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxiii

Contents

5.500 shared/functions/extension/HaveUAOExt . 1234
5.501 shared/functions/extension/HaveVirtHostExt1235
5.502 shared/functions/extension/InsertIESBBeforeException1235
5.503 shared/functions/float/bfloat/BFAdd .1235
5.504 shared/functions/float/bfloat/BFMatMulAdd .1235
5.505 shared/functions/float/bfloat/BFMul .1236
5.506 shared/functions/float/bfloat/BFRound .1236
5.507 shared/functions/float/bfloat/BFUnpack . 1237
5.508 shared/functions/float/bfloat/FPConvertBF . 1237
5.509 shared/functions/float/bfloat/FPRoundCVBF1238
5.510 shared/functions/float/fixedtofp/FixedToFP .1238
5.511 shared/functions/float/fpabs/FPAbs .1238
5.512 shared/functions/float/fpadd/FPAdd .1238
5.513 shared/functions/float/fpcompare/FPCompare1239
5.514 shared/functions/float/fpcompareeq/FPCompareEQ1239
5.515 shared/functions/float/fpcomparege/FPCompareGE1239
5.516 shared/functions/float/fpcomparegt/FPCompareGT1240
5.517 shared/functions/float/fpconvert/FPConvert .1240
5.518 shared/functions/float/fpconvertnan/FPConvertNaN1240
5.519 shared/functions/float/fpcrtype/FPCRType . 1241
5.520 shared/functions/float/fpdecoderm/FPDecodeRM 1241
5.521 shared/functions/float/fpdecoderounding/FPDecodeRounding 1241
5.522 shared/functions/float/fpdefaultnan/FPDefaultNaN 1241
5.523 shared/functions/float/fpdiv/FPDiv .1242
5.524 shared/functions/float/fpexc/FPExc .1242
5.525 shared/functions/float/fpinfinity/FPInfinity .1242
5.526 shared/functions/float/fpmax/FPMax .1242
5.527 shared/functions/float/fpmaxnormal/FPMaxNormal1243
5.528 shared/functions/float/fpmaxnum/FPMaxNum1243
5.529 shared/functions/float/fpmin/FPMin .1243
5.530 shared/functions/float/fpminnum/FPMinNum1243
5.531 shared/functions/float/fpmul/FPMul . 1244
5.532 shared/functions/float/fpmuladd/FPMulAdd . 1244
5.533 shared/functions/float/fpmuladdh/FPMulAddH1245
5.534 shared/functions/float/fpmuladdh/FPProcessNaNs3H1245
5.535 shared/functions/float/fpmulx/FPMulX .1246
5.536 shared/functions/float/fpneg/FPNeg .1246
5.537 shared/functions/float/fponepointfive/FPOnePointFive1246
5.538 shared/functions/float/fpprocessexception/FPProcessException 1247
5.539 shared/functions/float/fpprocessnan/FPProcessNaN 1247
5.540 shared/functions/float/fpprocessnans/FPProcessNaNs 1247
5.541 shared/functions/float/fpprocessnans3/FPProcessNaNs31248
5.542 shared/functions/float/fprecipestimate/FPRecipEstimate1248
5.543 shared/functions/float/fprecipestimate/RecipEstimate1249
5.544 shared/functions/float/fprecpx/FPRecpX .1249
5.545 shared/functions/float/fpround/FPRound .1250
5.546 shared/functions/float/fpround/FPRoundCV 1251
5.547 shared/functions/float/fprounding/FPRounding1252
5.548 shared/functions/float/fproundingmode/FPRoundingMode1252
5.549 shared/functions/float/fproundint/FPRoundInt1252
5.550 shared/functions/float/fproundintn/FPRoundIntN1253
5.551 shared/functions/float/fprsqrtestimate/FPRSqrtEstimate1253
5.552 shared/functions/float/fprsqrtestimate/RecipSqrtEstimate 1254
5.553 shared/functions/float/fpsqrt/FPSqrt .1255
5.554 shared/functions/float/fpsub/FPSub .1255

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxiv

Contents

5.555 shared/functions/float/fpthree/FPThree .1255
5.556 shared/functions/float/fptofixed/FPToFixed .1255
5.557 shared/functions/float/fptwo/FPTwo .1256
5.558 shared/functions/float/fptype/FPType .1256
5.559 shared/functions/float/fpunpack/FPUnpack .1256
5.560 shared/functions/float/fpunpack/FPUnpackBase 1257
5.561 shared/functions/float/fpunpack/FPUnpackCV1258
5.562 shared/functions/float/fpzero/FPZero .1258
5.563 shared/functions/float/vfpexpandimm/VFPExpandImm1258
5.564 shared/functions/integer/AddWithCarry .1258
5.565 shared/functions/memory/AArch64.BranchAddr1259
5.566 shared/functions/memory/AccType .1259
5.567 shared/functions/memory/AccessDescriptor1259
5.568 shared/functions/memory/AddrTop .1259
5.569 shared/functions/memory/AddressDescriptor1260
5.570 shared/functions/memory/Allocation .1260
5.571 shared/functions/memory/BigEndian .1260
5.572 shared/functions/memory/BigEndianReverse1260
5.573 shared/functions/memory/BranchAddr .1260
5.574 shared/functions/memory/Cacheability . 1261
5.575 shared/functions/memory/CreateAccessDescriptor 1261
5.576 shared/functions/memory/CreateAccessDescriptorPTW 1261
5.577 shared/functions/memory/DataMemoryBarrier 1261
5.578 shared/functions/memory/DataSynchronizationBarrier 1261
5.579 shared/functions/memory/DescriptorUpdate 1261
5.580 shared/functions/memory/DeviceType . 1261
5.581 shared/functions/memory/EffectiveTBI .1262
5.582 shared/functions/memory/EffectiveTGEN .1262
5.583 shared/functions/memory/Fault .1262
5.584 shared/functions/memory/FaultRecord .1263
5.585 shared/functions/memory/FullAddress .1263
5.586 shared/functions/memory/Hint_Prefetch .1263
5.587 shared/functions/memory/MBReqDomain .1263
5.588 shared/functions/memory/MBReqTypes .1263
5.589 shared/functions/memory/MemAttrHints .1263
5.590 shared/functions/memory/MemType . 1264
5.591 shared/functions/memory/MemoryAttributes 1264
5.592 shared/functions/memory/Permissions . 1264
5.593 shared/functions/memory/PrefetchHint . 1264
5.594 shared/functions/memory/SpeculativeStoreBypassBarrierToPA 1264
5.595 shared/functions/memory/SpeculativeStoreBypassBarrierToVA 1264
5.596 shared/functions/memory/TLBRecord . 1264
5.597 shared/functions/memory/_Mem .1265
5.598 shared/functions/mpam/DefaultMPAMinfo .1265
5.599 shared/functions/mpam/DefaultPARTID .1265
5.600 shared/functions/mpam/DefaultPMG .1265
5.601 shared/functions/mpam/GenMPAMcurEL .1265
5.602 shared/functions/mpam/MAP_vPARTID .1266
5.603 shared/functions/mpam/MPAMisEnabled .1266
5.604 shared/functions/mpam/MPAMisVirtual .1266
5.605 shared/functions/mpam/genMPAM . 1267
5.606 shared/functions/mpam/genMPAMel . 1267
5.607 shared/functions/mpam/genPARTID . 1267
5.608 shared/functions/mpam/genPMG . 1267
5.609 shared/functions/mpam/getMPAM_PARTID .1268

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxv

Contents

5.610 shared/functions/mpam/getMPAM_PMG .1268
5.611 shared/functions/mpam/mapvpmw .1268
5.612 shared/functions/registers/BranchTo .1269
5.613 shared/functions/registers/BranchToAddr .1269
5.614 shared/functions/registers/BranchToOffset .1269
5.615 shared/functions/registers/BranchType .1270
5.616 shared/functions/registers/Hint_Branch .1270
5.617 shared/functions/registers/NextInstrAddr .1270
5.618 shared/functions/registers/ResetExternalDebugRegisters1270
5.619 shared/functions/registers/ThisInstrAddr .1270
5.620 shared/functions/registers/_PC .1270
5.621 shared/functions/registers/_R .1270
5.622 shared/functions/registers/_V . 1271
5.623 shared/functions/sysregisters/SPSR . 1271
5.624 shared/functions/system/ArchVersion . 1271
5.625 shared/functions/system/ClearEventRegister 1271
5.626 shared/functions/system/ClearPendingPhysicalSError 1271
5.627 shared/functions/system/ClearPendingVirtualSError 1271
5.628 shared/functions/system/ConditionHolds .1272
5.629 shared/functions/system/ConsumptionOfSpeculativeDataBarrier1272
5.630 shared/functions/system/CurrentInstrSet .1272
5.631 shared/functions/system/EL0 .1272
5.632 shared/functions/system/EL2Enabled .1272
5.633 shared/functions/system/ELFromSPSR .1272
5.634 shared/functions/system/ELIsInHost .1273
5.635 shared/functions/system/ELStateUsingAArch321273
5.636 shared/functions/system/ELStateUsingAArch32K1273
5.637 shared/functions/system/ELUsingAArch32 . 1274
5.638 shared/functions/system/ELUsingAArch32K 1274
5.639 shared/functions/system/EndOfInstruction . 1274
5.640 shared/functions/system/EnterLowPowerState 1274
5.641 shared/functions/system/EventRegister . 1274
5.642 shared/functions/system/GetPSRFromPSTATE 1274
5.643 shared/functions/system/HasArchVersion .1275
5.644 shared/functions/system/HaveAArch32EL .1275
5.645 shared/functions/system/HaveAnyAArch32 .1275
5.646 shared/functions/system/HaveAnyAArch64 .1275
5.647 shared/functions/system/HaveEL .1275
5.648 shared/functions/system/HaveELUsingSecurityState1276
5.649 shared/functions/system/HaveFP16Ext .1276
5.650 shared/functions/system/HighestEL .1276
5.651 shared/functions/system/HighestELUsingAArch321276
5.652 shared/functions/system/Hint_Yield .1276
5.653 shared/functions/system/IllegalExceptionReturn1276
5.654 shared/functions/system/InstrSet . 1277
5.655 shared/functions/system/InstructionSynchronizationBarrier 1277
5.656 shared/functions/system/InterruptPending . 1277
5.657 shared/functions/system/IsEventRegisterSet 1277
5.658 shared/functions/system/IsHighestEL . 1277
5.659 shared/functions/system/IsInHost .1278
5.660 shared/functions/system/IsPhysicalSErrorPending1278
5.661 shared/functions/system/IsSecure .1278
5.662 shared/functions/system/IsSecureBelowEL31278
5.663 shared/functions/system/IsVirtualSErrorPending1278
5.664 shared/functions/system/Mode_Bits .1278

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxvi

Contents
Contents

5.665 shared/functions/system/PSTATE .1279
5.666 shared/functions/system/PrivilegeLevel .1279
5.667 shared/functions/system/ProcState .1279
5.668 shared/functions/system/SCRType .1279
5.669 shared/functions/system/SCR_GEN .1279
5.670 shared/functions/system/SendEvent .1279
5.671 shared/functions/system/SendEventLocal .1280
5.672 shared/functions/system/SetPSTATEFromPSR1280
5.673 shared/functions/system/ShouldAdvanceIT .1280
5.674 shared/functions/system/SpeculationBarrier1280
5.675 shared/functions/system/SynchronizeContext1280
5.676 shared/functions/system/SynchronizeErrors1280
5.677 shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts 1281
5.678 shared/functions/system/TakeUnmaskedSErrorInterrupts 1281
5.679 shared/functions/system/ThisInstr . 1281
5.680 shared/functions/system/ThisInstrLength . 1281
5.681 shared/functions/system/Unreachable . 1281
5.682 shared/functions/system/UsingAArch32 . 1281
5.683 shared/functions/system/WaitForEvent . 1281
5.684 shared/functions/system/WaitForInterrupt . 1281
5.685 shared/functions/unpredictable/ConstrainUnpredictable1282
5.686 shared/functions/unpredictable/ConstrainUnpredictableBits1283
5.687 shared/functions/unpredictable/ConstrainUnpredictableBool1283
5.688 shared/functions/unpredictable/ConstrainUnpredictableInteger 1284
5.689 shared/functions/unpredictable/Constraint . 1284
5.690 shared/functions/unpredictable/Unpredictable 1284
5.691 shared/functions/vector/AdvSIMDExpandImm1285
5.692 shared/functions/vector/MatMulAdd .1286
5.693 shared/functions/vector/PolynomialMult .1286
5.694 shared/functions/vector/SatQ .1286
5.695 shared/functions/vector/SignedSatQ . 1287
5.696 shared/functions/vector/UnsignedRSqrtEstimate 1287
5.697 shared/functions/vector/UnsignedRecipEstimate 1287
5.698 shared/functions/vector/UnsignedSatQ . 1287
5.699 shared/translation/attrs/CanonicalizeMemoryAttributes1288
5.700 shared/translation/attrs/CombineS1S2AttrHints1288
5.701 shared/translation/attrs/CombineS1S2Device1288
5.702 shared/translation/attrs/CombineS1S2LCSC1288
5.703 shared/translation/attrs/LongConvertAttrsHints1289
5.704 shared/translation/attrs/S1CacheDisabled .1289
5.705 shared/translation/attrs/S2AttrDecode .1289
5.706 shared/translation/attrs/S2CacheDisabled .1290
5.707 shared/translation/attrs/S2ConvertAttrsHints1290
5.708 shared/translation/attrs/ShortConvertAttrsHints1290
5.709 shared/translation/attrs/WalkAttrDecode . 1291
5.710 shared/translation/translation/HasS2Translation 1291
5.711 shared/translation/translation/Have16bitVMID 1291
5.712 shared/translation/translation/PAMax . 1291
5.713 shared/translation/translation/S1TranslationRegime 1291
5.714 shared/translation/translation/VAMax .1292

Chapter 6 Glossary

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxvii

Preface

xxviii

About this book

This book is the Arm® Architecture Reference Manual Supplement Morello for A-profile Architecture. This book
describes only the architectural changes that are introduced by Morello to the Armv8-A architecture. Therefore,
this supplement must be read in conjunction with the specific version of Arm® Architecture Reference Manual,
Armv8-A, for Armv8-A architecture profile listed in the Additional reading section of this supplement. Together, the
manual and this supplement provide a full description of the Armv8-A architecture, including Morello functionality.
For details about the base Armv8-A architecture, the Arm® Architecture Reference Manual is the definitive source
of information.

It is assumed that the reader is familiar with the Armv8-A architecture.

xxix

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Colored text

Indicates a link. This can be:

• A URL, for example http://developer.arm.com
• A cross-reference to another location within the document
• A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that

defines the colored term.

{ and }

Braces, { and }, have two distinct uses:

Optional items

In syntax descriptions braces enclose optional items. In the following example they indicate
that the <shift> parameter is optional:

ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}

Similarly they can be used in generalized field descriptions, for example TCR_ELx.{I}PS
refers to a field in the TCR_ELx registers that is called either IPS or PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set of
two register fields, HCR_EL2.E2H and HCR_EL2.TGE

Notes

Notes are formatted as:

xxx

http://developer.arm.com

Preface
Conventions

Note

This is a note.

In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note may repeat architectural information given elsewhere in the Manual, a Note
never provides any part of the definition of the architecture.

Signals

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level

The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW. Asserted
means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lower-case n

At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xxxi

Rules-based writing

This specification consists of a set of individual rules. Each rule is clearly identified by the letter R.

Rules must not be read in isolation, and where more than one rule relating to a particular feature exists, individual
rules are grouped into sections and subsections to provide the proper context. Where appropriate, these sections
contain a short introduction to aid the reader. An implementation which is compliant with the architecture must
conform to all of the rules in this specification.

Some architecture rules are accompanied by rationale statements which explain why the architecture was specified
as it was. Rationale statements are identified by the letter X.

Some sections contain additional information and guidance that do not constitute rules. This information and
guidance is provided purely as an aid to understanding the architecture. Information statements are clearly
identified by the letter I.

Implementation notes are identified by the letter U.

Software usage descriptions are identified by the letter S.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Rules, rationale statements, information statements, implementation notes and software usage statements are
collectively referred to as content items.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002, . . .).
• Identifiers are volatile: the identifier for a given content item may change between versions of the document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

R This is a rule statement.

RX001 This is a rule statement.

I This is an information statement.

X This is a rationale statement.

U This is an implementation note.

S This is a software usage description.

xxxii

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer http://developer.arm.com for access to Arm documentation.

Arm publications

• Arm® Architecture Reference Manual, Armv8-A, for Armv8-A architecture profile (ARM DDI 0487 F.c).

• Arm® Embedded Trace Macrocell Architecture Specification, ETMv4.0 to ETMv4.5 (ARM IHI 0064 G.b).

Other publications

• Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe, Hesham Almatary, Jonathan
Anderson, John Baldwin, Graeme Barnes, David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel
Wesley Filardo, Richard Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon
W. Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert Norton, Alexander Richardson, Peter Rugg,
Peter Sewell, Stacey Son, and Hongyan Xia. Technical Report Number 951, Hardware Enhanced RISC
Instructions: CHERI Instruction- Set Architecture (Version 8) , the University of Cambridge, Computer
Laboratory, September 2020.

xxxiii

http://developer.arm.com
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-951.html

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send your feedback using the Support Portal. Alternatively,
send an e-mail to support-morello@arm.com. For us to address your comments accurately, provide the following
information:

• The title (Arm® Architecture Reference Manual Supplement Morello for A-profile Architecture).
• The number (DDI0606 A.k).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

xxxiv

https://support.developer.arm.com/my-cases/open-case/

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

xxxv

Chapter 1
Introduction

1.1 About the Morello architecture

The Morello architecture aims to improve the robustness and security of systems using the following design goals:

• Fine-grained memory protection leading to increased memory safety.
• Scalable compartmentalization.

To achieve these goals, the Morello architecture introduces the principles defined in the Technical Report Number
951, Hardware Enhanced RISC Instructions: CHERI Instruction- Set Architecture (Version 8) , including the
principles of least privilege and intentional use. The Morello architecture is backwards compatible with and
complementary to the existing Armv8-A architecture.

The CHERI model introduces architectural capabilities. Capabilities are tokens of authority that are unforgeable
and delegable. In the CHERI model, they are integer values that have been extended with metadata to protect their
integrity, limit how they are manipulated, and control their use.

This introduction summarizes the concept of capabilities by extracting content from Technical Report Number
951, Hardware Enhanced RISC Instructions: CHERI Instruction- Set Architecture (Version 8) . It also illustrates
how the existing system incorporates the addition of capabilities, in order to benefit from the security features
provided. The subsequent chapters expand this introduction in broadly two parts: the first part provides definition a
conceptual of a new data type, the capability; the second part delineates expected hardware behavior in the context
of the Armv8-A system. A list of registers that are changed by or added to the Morello architecture is added,
followed by A64 and C64 instruction sets, as well as pseudocode for the functional description.

Arm acknowledges the contribution of the following named individuals and institutions in the derivation of the
concepts within this architecture: Robert N. M. Watson, Peter G. Neumann, Jonathan Woodruff, Michael Roe,
Hesham Almatary, Jonathan Anderson, John Baldwin, David Chisnall, Jessica Clarke, Brooks Davis, Nathaniel

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter 1. Introduction
1.1. About the Morello architecture

Wesley Filardo, Alexandre Joannou, Ben Laurie, A. Theodore Markettos, Simon W. Moore, Steven Murdoch,
Kyndylan Nienhuis, Robert Norton, Alex Richardson, Peter Rugg, Peter Sewell, Stacey Son, and Hongyan Xia,
the University of Cambridge, and SRI International.

The Morello architecture is based on concepts first described and developed in the Technical Report Number
927, Hardware Enhanced RISC Instructions: CHERI Instruction- Set Architecture , developed by the University
of Cambridge and SRI International, with support from DARPA. In this supplement, some material from the
Technical Report Number 927, Hardware Enhanced RISC Instructions: CHERI Instruction- Set Architecture has
been extracted and modified. The incorporation of these concepts in Morello is in accordance with an existing
agreement between Arm Limited and the Department of Computer Science and Technology, the University of
Cambridge.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter 1. Introduction
1.2. The CHERI protection model

1.2 The CHERI protection model

A capability in the CHERI model consists of a value and the following additional metadata:

• Validity Tag: Providing integrity protection.
• Permissions: Limiting operations that can be performed.
• Bounds: Limiting how the value can be used, for example, for memory access.
• An object type: Supporting higher-level software encapsulation.

The CHERI model enforces several important security properties on changes to capability metadata:

• Provenance validity: Valid capabilities can only be constructed by instructions that do so explicitly, for
example, from other valid capabilities.

• Capability monotonicity: Instructions cannot exceed the permissions and bounds of the original capability
when creating valid capabilities, other than in controlled non-monotonicity, such as exception entry.

and a number of important security properties on sets of capabilities:

• Reachable capability monotonicity: In any execution of arbitrary code, until execution is yielded to another
domain, the set of accessible capabilities cannot increase.

• Controlled non-monotonicity: Enables access to more capabilities on a control-flow transfer to a protected
entry point.

Capabilities can be held in registers or in memory, and are accessed, manipulated, loaded, stored, and used as
memory addresses by instructions that expect capability operands rather than integer values. The CHERI model
adds new instructions to perform the following operations:

• Retrieving capability fields: Retrieves properties defined by capabilities, for example, a lower bound.
• Manipulating capability fields: Sets or modifies capability fields within the constraints of monotonicity.
• Loading or storing using capabilities: Loads or stores integer, capability, or other values using a suitably

authorized capability.
• Controlling execution flow: Performs a branch or branch-and-link-register to a capability destination.
• Non-monotonic execution flow: Transferring control to a domain with a different set of accessible capabilities.

See also:

• Technical Report Number 951, Hardware Enhanced RISC Instructions: CHERI Instruction-Set Architecture
(Version 8) listed in Other publications.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter 1. Introduction
1.3. The Morello architecture in the Armv8-A profile

1.3 The Morello architecture in the Armv8-A profile

The Morello architecture extends the Armv8.2-A profile with features that implement the CHERI protection model.
It implements 129-bit CHERI capabilities, simplified as capabilities in this supplement, with compressed bounds
which provide a compromise between memory consumption and bounds precision.

The Morello architecture inherits the rules for architectural features and extensions from Armv8.2-A. This
supplement describes changes to those rules, and defines any new features added.

The Morello Architecture is only supported in AArch64 state. An implementation supporting Morello does not
support AArch32. To support the properties of the Morello architecture, some existing definitions of terms are
modified.

See also:

• 2.3 Changes to Armv8 terminology

1.3.1 Capability registers and memory

General-purpose registers, certain System registers, and certain Special-purpose registers are extended to 129
bits to hold capabilities. A Program Counter Capability(PCC) extends the existing Program Counter(PC) to be a
capability, providing validity, permission, bounds, and other checks on instruction fetch, along with some ambient
permissions on certain classes of instructions.

1.3.2 Capability tagged memory

To prevent forgery, when a Capability is stored in memory, bit 128 of a capability, containing the Capability Tag, is
stored in a separate location that is not accessible by normal load and store instructions. The other 128 bits of the
capability are stored in regular memory locations.

See also:

• 2.2 Capability registers

1.3.3 ISA

The Morello Architecture is supported in AArch64 state. The A64 ISA is extended with instructions to manipulate,
copy, and retrieve fields from capabilities. To a limited extent, the A64 ISA also allows using capabilities for
instruction fetch and memory access. A variant of the A64 ISA, C64, is added to provide a richer set of instructions
to use capabilities, at the expense of instructions using 64-bit values as address to access memory.

See also:

• Chapter 4 Instruction definitions

1.3.4 Controlled non-monotonicity

The Morello architecture provides the following methods for controlled non-monotonicity:

• Exception handling: The addition of capability exception handling registers enables access to new sets of
capabilities via capability exception entry.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter 1. Introduction
1.3. The Morello architecture in the Armv8-A profile

• Executive/Restricted: The PE can switch between two states, Executive and Restricted, on a capability branch
or return. This option provides controlled access to a selection of capability registers within an Exception
level.

• Unsealing operations: The operations allowing sealed capabilities to be unsealed for different purposes as
defined by the Capability ObjectType field. Unsealing operations include the following operations:

– Unseal pair of capabilities and branch.
– Unseal using an unsealing capability.
– Unseal, Load pair of capabilities and branch.
– Check subset and unseal.
– Unseal and branch.

See also:

• 2.6.2 Controlled non-monotonic manipulation

1.3.5 Capability memory protection

The Morello architecture provides an additional layer of memory protection, requiring that any access using a
virtual address is checked implicitly or explicitly against a capability. Instructions using a capability as an address
check every location accessed against that capability. Instructions not using a capability as an address, check every
location accessed against the capability in a Default Data Capability (DDC).

For instruction fetch, and loads relative to the PC, the memory protection is provided by the capability in PCC.

See also:

• 2.7.2 Capability memory protection

1.3.6 Capability protection for System registers and instructions

Particularly at higher Exception levels, access to System registers and System instructions gives significant privilege.
The Morello architecture provides a capability System permission which, when absent from the capability in PCC,
prevents access to most System registers and System instructions.

See also:

• 2.7.1 System permission

1.3.7 Capability memory relocation

The Morello architecture adds controls to support a degree of relocation of capability-unaware code, and its access
to data, within an address space, facilitating compartmentalization of that code.

See also:

• 2.8 Capability memory relocation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter 1. Introduction
1.3. The Morello architecture in the Armv8-A profile

1.3.8 Recursive immutability

The Morello architecture introduces a capability mutability permission which, when absent from a capability used
to load other capabilities, removes both write and mutability permission from any valid unsealed capability that is
loaded.

This feature provides a recursive property on capabilities such that any memory reachable from an initial capability,
other than via controlled non-monotonicity, can be made read-only.

See also:

• 2.7.4 Recursive immutability

1.3.9 The Virtual Memory System Architecture

The Morello architecture extends the virtual memory system with new permissions in page table entries to control
access to capabilities in memory, and also to track the writing of capabilities to memory.

See also:

• 2.14 The Virtual Memory System Architecture

1.3.10 Debug and trace

The external debug architecture is extended to allow both capability-aware and capability-unaware debuggers.

Performance monitoring events are added monitor Morello specific architectural and micro-architectural behavior.

The Statistical Profiling Extension is extended to track loads and stores of capabilities.

See also:

• 2.16 The Embedded Trace Macrocell architecture
• 2.17 Performance Monitoring Unit
• 2.19 External debug

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter 1. Introduction
1.4. The Morello architecture features

1.4 The Morello architecture features

The Morello architecture is an extension to the Armv8-A architecture version Armv8.2-A.

An implementation of the Morello architecture includes all of the mandatory Armv8.2-A features, and the following
optional features:

• FEAT_FP16, Half-precision floating-point data processing.
• FEAT_DotProd, SIMD Dot Product.
• FEAT_HPDS2, Translation table page-based hardware attributes.
• FEAT_LVA, Large VA support.
• FEAT_IESB, Implicit error synchronization event.
• FEAT_EVT, Enhanced Virtualization Traps.

In addition to the Armv8.2-A extension, a Morello implementation includes the following additional features:

• The Statistical Profiling Extension.
• FEAT_LRCPC, Load-acquire RCpc instructions.
• FEAT_SSBS, Speculative Store Bypass Safe.

Other features defined in the Arm architecture after Armv8.2-A are not supported in the Morello architecture.

An implementation of the Morello architecture does not support the following:

• The AArch32 state.
• Mixed-endian at any Exception level.
• Fixed big-endian. The architecture only supports fixed little-endian.

The feature names have been changed in the Arm® Architecture Reference Manual, Armv8-A and this document
uses the feature names updated in the Arm® Architecture Reference Manual, Armv8-A listed in Arm publications.
A mapping between the legacy feature names and new names has been provided.

See also:

• Appendix K13, Legacy Feature Naming Convention, Arm® Architecture Reference Manual, Armv8-A:
Mapping of the legacy feature names for the Armv8.x extensions.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter 2
Capability architecture rules

2.1 Capabilities

RGGSXN A capability is a composite data type with the following fields:

Name Description

Value Provides values used in capability-based operations.

Bounds Limits how the Capability Value can be used.

Permissions Limits how the capability can be used.

ObjectType Determines whether a capability is sealed and, for a sealed capability, how the capability is sealed.

Global Restricts the locations where a capability can be stored.

Executive Controls banking of certain System registers.

Flags Holds unrestricted user data.

Tag Defines the validity of a capability.

RGKNXV The Capability Value is 64 bits.

RVHRRV The Capability Value can be accessed as one of the following:

• An absolute value.
• An offset from the bounds base defined by the Capability Bounds.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter 2. Capability architecture rules
2.1. Capabilities

IHTNXS The Capability Bounds define a 65-bit upper and 64-bit lower bound, depending on how a capability is used.

RYSBDT The Capability Tag defines the validity of a capability in one of the following ways:

• If the Capability Tag is 1, the capability is valid.
• If the Capability Tag is 0, the capability is invalid.

RKFRHT The Capability Permissions contain all of the following permission controls:

Name Permission

Load Load from memory

Store Store to memory

Execute Execute instructions

LoadCap Load a valid capabilty to a Capability register

StoreCap Store a valid capabilty from a Capability register

StoreLocalCap Store a Local capability to memory

Seal Seal an unsealed capability

Unseal Unseal a sealed capability

System Access System registers and instructions

BranchSealedPair Use in an unsealing branch

CompartmentID Use as a compartment ID

MutableLoad Load to a Capability register with mutable permissions

User[N] Software defined permissions

RVYQWL A capability is either sealed or unsealed.

RRVFDY The ObjectType of a capability determines if that capability is sealed:

• If the ObjectType of a capability is 0, the capability is unsealed.
• If the ObjectType of a capability is nonzero, the capability is sealed.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter 2. Capability architecture rules
2.2. Capability registers

2.2 Capability registers

RBVJJF The Morello architecture introduces the term “Capability register” to define a register that can hold a capability.

RNWDGC Capability registers are 129 bits.

RYXLPL When Morello is implemented, general-purpose registers, some System registers, and some Special-purpose
registers, are extended to be Capability registers.

RPMLYT Capability registers can have the following access views:

• 129-bit: the Capability access view.
• 64-bit.
• 32-bit.

RJXNGH The following table provides an overview of general-purpose registers when the Morello architecture is
implemented:

General-purpose register name (n=0-30) Access view provided (bits)
Register names based
on access view (n=0-30)

Rn 64 Xn

32 Wn

129 Cn

In a general-purpose register field, the value 31 represents either the current stack pointer or the zero register,
depending on the instruction and the operand position, as summarized in the following tables:

Access view provided (bits) Register names based on access view

64 SP

32 WSP

129 CSP

Register size (bits) Register names based on size accessed

64 XZR

32 WZR

129 CZR

ITSPCV The Morello architecture adds a set of Default Data Capability registers:

• DDC_EL0.
• DDC_EL1.
• DDC_EL2.
• DDC_EL3.
• RDDC_EL0.

The mnemonic DDC is used as an accessor to refer to the current (R)DDC_ELx register based on other contexts
and settings.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter 2. Capability architecture rules
2.2. Capability registers

IHXBKV The Program Counter (PC) is extended to be a Program Counter Capability register (PCC).

RVJSVC No explicit synchronization is required between accessing a System register using different access views.

RRWCXN When writing to a register using an access view narrower than the maximum access view, the upper bits, including
the Capability Tag, of the register are set to 0.

See also:

• Chapter B1.2, Registers in AArch64 Execution state, Arm® Architecture Reference Manual, Armv8-A: more
details about Armv8-A registers.

• Chapter C5.1.5, op0==0b11, Moves to and from Special-purpose registers, Arm® Architecture Reference
Manual, Armv8-A: more details about special-purpose registers.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter 2. Capability architecture rules
2.3. Changes to Armv8 terminology

2.3 Changes to Armv8 terminology

RTRWTV If an UNPREDICTABLE operation writes a capability register, the write does not increase the set of reachable
capabilities.

RTSNJF If an UNKNOWN value is written to a capability register or to capability-tagged memory, the write does not increase
the Capability defined rights available to software.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter 2. Capability architecture rules
2.4. Capabilities in memory

2.4 Capabilities in memory

RMPSCL The Morello architecture introduces capability tag locations, separate to byte locations.

RRBKYF A capability-tagged location is a byte location associated with a capability tag location.

RPSBDR The set of 16 contiguous capability-tagged locations starting at a 16-byte aligned address is associated with the
same distinct Capability Tag.

IJYMJV In a system implementing the Morello architecture extension, all byte locations in general-purpose memory are
capability-tagged locations.

RBYQDV The lower 128 bits of a capability in memory are in little-endian byte order.

RDHDNX A capability store to a 16-byte aligned address, N, atomically stores the following:

• The lower 128 bits of the capability to the 16 byte locations starting at N.
• The Capability Tag to the capability tag location associated with those byte locations.

RRVNCT A capability load from a 16-byte aligned address, N, atomically loads the following:

• The lower 128 bits of the capability from the 16 byte locations starting at N.
• The Capability Tag from the capability tag location associated with those byte locations.

RVRTNV If a capability store is not to a 16-byte aligned address, the store generates an alignment fault.

RWQKKP If a capability load is not from a 16-byte aligned address, the load generates an alignment fault.

RHGFYZ A non-capability store to a capability-tagged location atomically writes the capability tag location associated with
that capability-tagged location to 0.

RDYYBT If a capability is written to a non-capability-tagged location, it is IMPLEMENTATION DEFINED which of the
following applies:

• The byte locations are written and the Capability Tag is ignored.
• The byte locations become UNKNOWN and the Capability Tag is ignored.
• An External abort is generated.

RPKWPL If a capability is read from a non-capability-tagged location, it is IMPLEMENTATION DEFINED which one of the
following applies:

• The byte locations are read and the Capability Tag is read as 0.
• The destination Capability register becomes UNKNOWN.
• An External abort is generated.

RDLCPG For a non-capability atomic operation writing to a byte location associated with a capability tag location, if the
operation does not change the value in the byte location, it is IMPLEMENTATION DEFINED whether the capability
tag location is written to 0.

See also:

• Chapter B2.3.1 Basic definitions, Arm® Architecture Reference Manual: Definition of byte location.

• Chapter B2.3 Definition of the Armv8 memory model, Arm® Architecture Reference Manual: Introduction to
the concept of locations in Armv8-A architecture.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter 2. Capability architecture rules
2.5. Capability encoding

2.5 Capability encoding

IPQHKQ The Morello Capability format is similar but not identical to the CHERI-concentrate format.

RHRVBQ A Capability value comprises the following fields:

• Value: 64 bits.
• Bounds: 87 bits.
• Flags: 8 bits.
• ObjectType: 15 bits.
• Permissions: 16 bits.
• Tag: 1 bit.
• Global: 1 bit.
• Executive: 1 bit.

The Flags and the lower 56 bits of the Capability Bounds share encoding with the Capability Value.

RZLYBF

64128 127
6395

94109

ObjectType [14:0]Permissions [17:2]

Capability Tag [0]

80

79

93

Bounds [86:56] Bounds

Value Value [63:0]
0

Flags [7:0] Bounds[55:0]

Global [0]Executive [1]

111

For the encoding of a capability, the following fields are encoded together:

• Global [0].
• Executive [1].
• Permissions [17:2]

The Permissions field [17:2] is encoded as the following:

Bits Permission

17 Load

16 Store

15 Execute

14 LoadCap

13 StoreCap

12 StoreLocalCap

11 Seal

10 Unseal

9 System

8 BranchSealedPair

7 CompartmentID

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter 2. Capability architecture rules
2.5. Capability encoding

Bits Permission

6 MutableLoad

5:2 User[4]

See also:

• CHERI Instruction-Set Architecture.

2.5.1 Morello Bounds format

IDWRPY The 87 bits of Capability Bounds can be accessed as one of the following:

• A base, b, and limit, t.
• A base and length, l.

For the base, limit, and length of bounds, all of the following are true:

• Base is a 64-bit quantity.
• Limit is a 65-bit quantity.
• Length is a 65-bit quantity.

RXKVDF The Bounds field encodes the following 5 values used to encode and decode the base and limit of a capability:

Element Description

Bottom(B) 16-bit quantity used to derive the base.

The Internal Exponent(IE) The value of IE determines if E is encoded in the bounds or treated as 0:
• When IE is 0: E is treated as 0.
• When IE is 1: E is encoded in the lower bits of T and B.

This bit is stored inverted.

Top(T) A 16-bit quantity used to derive the limit. T[15:14] are encoded using B, IE, and the
other bits of T.

The Exponent(E) A 6-bit quantity that determines the position at which B and T are inserted into A to
recover base and limit. E is stored inverted.

A A 66-bit value used to define the base and limit when E<48. Bits [55:0] are encoded in
Bounds, the other bits are derived from A[55] or are set to 0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter 2. Capability architecture rules
2.5. Capability encoding

64 0
95

94

93

B[15:3]T[13:3]

8082

0

~E[5:3] ~E[2:0]

B[15:0]T[13:0]1No exponent:

Internal exponent:

~IE[0]

~IE[0]

63

63 55

Flags[7:0] Bounds[55:0]

Value [63:0]
Bounds [86:56]

A[55:0]

63 0

0

A[55:0]

RSFKZW A, B, T, E, and IE are decoded in the following ways:

• A is derived using the following:

A[65 : 64] = 0

A[63 : 0] = SignExtend(V alue[55 : 0], 64)

• IE is derived using the following:

IE = ∼Bounds[86]

• E is derived using the following:

E[5 : 0] =

{
0, if IE == 0

∼Bounds[74 : 72] : ∼Bounds[58 : 56], if IE == 1

• The T and B values are decoded as follows:

B[15 : 3] = Bounds[71 : 59]

B[2 : 0] =

{
Bounds[58 : 56], if IE == 0

0, if IE == 1

T [13 : 3] = Bounds[85 : 75]

T [2 : 0] =

{
Bounds[74 : 72], if IE == 0

0, if IE == 1

T[15:14] is decoded as follows:

T [15 : 14] =

B[15 : 14], if (T [13 : 0] ≥ B[13 : 0]) ∧ (IE == 0)

B[15 : 14] + 1, if (T [13 : 0] < B[13 : 0]) ∧ (IE == 0)

B[15 : 14] + 1, if (T [13 : 3] ≥ B[13 : 3]) ∧ (IE == 1)

B[15 : 14] + 2, if (T [13 : 3] < B[13 : 3]) ∧ (IE == 1)

RDJZDW A, B, T, E, and IE are encoded into the Capability Bounds field as the following:

Bounds[86] = ∼ IE

Bounds[85 : 75] = T [13 : 3]

Bounds[74 : 72] =

{
T [2 : 0], if IE == 0

∼E[5 : 3], if IE == 1

Bounds[71 : 59] = B[15 : 3]

Bounds[58 : 56] =

{
B[2 : 0], if IE == 0

∼E[2 : 0], if IE == 1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter 2. Capability architecture rules
2.5. Capability encoding

Bounds[55 : 0] = A[55 : 0]

ICKZPG The Capability Bounds are valid or invalid.

RFPZNM If any of the following is true, the Capability Bounds are valid:

• The value of the Exponent equals to 63.
• The value of the Exponent is less than 51.

Otherwise, the Capability Bounds are invalid.

Decoding Bounds

RGZYKG 1. The Capability Bounds field is decoded to the Capability Base, base, and the Capability Limit, limit. Base
and limit are derived from A, B, T, and E. Base is a 64-bit value. Limit is a 65-bit value.

• If E == 63:

• base = 0
• limit = 264

• The Capability Bounds are valid.

• If 51 ≤ E ≤ 62:

• base = 0
• limit = 264

• The Capability Bounds are invalid.

• If E<51:

• base[65 : 0] = (A[65 : (E + 16)] + Cb) : B[15 : 0] : Zeros(E)
• limit[65 : 0] = (A[65 : (E + 16)] + Ct) : T [15 : 0] : Zeros(E)
• The Capability Bounds are valid.

A[65:(E+16)] + cb

A[65:(E+16)] + ct

E
0

E+16

T[15:0] 000 000...0 0

0≤E≤50 and bounds are aligned to 2E

E Zeros

B[15:0] 000 000...0 0base:

limit:

65

The upper regions of base and limit (those derived from A) are subject to a correction factor
of +/- 1, where Cb and Ct are derived using the following:

A3 = A[E + 15 : E + 13]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter 2. Capability architecture rules
2.5. Capability encoding

B3 = B[15 : 13]

T3 = T [15 : 13]

R3 = B3− 0b001

aHi =

{
1, if A3 < R3

0, otherwise

bHi =

{
1, if B3 < R3

0, otherwise

tHi =

{
1, if T3 < R3

0, otherwise

Cb = bHi− aHi

Ct = tHi− aHi

2. The base and limit are generated as follows:

base[65 : 0] = (A[65 : (E + 16)] + Cb) : B[15 : 0] : Zeros(E)

limit[65 : 0] = (A[65 : (E + 16)] + Ct) : T [15 : 0] : Zeros(E)

Setting and encoding Bounds

RKDDZF Bounds setting uses a Capability Value, Value, and an Exponent, oE, to derive a requested base, nb, along with a
requested length, nl, to derive a requested limit, nt. The requested base and limit are used to generate A, B, T, E,
and IE fields, to be encoded in a Capability Bounds field.

The encoded A, B, T, E, and IE are generated as follows:

1. Calculate the requested base, nb:

nb[65 : 64] = 0

nb[63 : 0] =

{
SignExtend(V alue[55 : 0], 64), if oE < 48

V alue[63 : 0], otherwise

2. Calculate the requested limit, nt:

nt[65 : 0] = nb[65 : 0] + 0 : nl[64 : 0]

3. Calculate A:

A = SignExtend(V alue[55 : 0], 66)

4. Calculate a candidate exponent, E’:

E′ = 50− CountLeadingZeroes(nl[64 : 15])

Lengths less than 215 are encoded with E′ == 0

5. Calculate IE:

IE =

{
0, if (E′ == 0) ∧ (nl[14] == 0)

1, otherwise

6. Calculate a candidate Bottom, B_ne, and a candidate Top, T_ne, for the no internal exponent encoding:

B_ne[15 : 0] = nb[15 : 0]

T_ne[15 : 0] = nt[15 : 0]

7. Calculate a candidate Bottom, B_ie, and a candidate Top, T_ie, for the internal exponent encoding:

B_ie[15 : 0] = nb[E′ + 15 : E′ + 3] : 000

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter 2. Capability architecture rules
2.5. Capability encoding

T_ie[15 : 0] = nt[E′ + 15 : E′ + 3] : 000

8. Calculate rounded base and rounded limit to check whether rounding is required on the new base and limit in
the internal exponent encoding, and a new candidate top that is rounded up, not down:

rounded_base = nb[E′ + 2 : 0] 6= 0

rounded_limit = nt[E′ + 2 : 0] 6= 0

T_ie′ =

{
T_ie+ 8, if rounded_limit

T_ie, otherwise

9. Calculate a new candidate exponent, E”, for the internal exponent encoding, increased by 1 if the candidate
Top has the top bit set:

adjust_E = T_ie′ −B_ie ≥ 215

E′′ =

{
E′ + 1, if adjust_E
E′, otherwise

10. Calculate a new candidate Top, T_ie”, a new candidate Bottom, B_ie’, rounded_base, and rounded_limit,
based on whether E was adjusted. Again ensure that the candidate Top is rounded up, not down:

T_ie′′ =

{
nt[E′′ + 15 : E′′ + 3] : 000, if adjust_E
T_ie′, otherwise

B_ie′ =

{
nb[E′′ + 15 : E′′ + 3] : 000, if adjust_E
B_ie, otherwise

rounded_base′ =

{
True, if (adjust_E) ∧ (B_ie[3] == 1)

rounded_base, otherwise

rounded_limit′ =

{
True, if (adjust_E) ∧ (T_ie′[3] == 1)

rounded_limit, otherwise

T_ie′′′ =

{
T_ie′′ + 8, if (adjust_E) ∧ (rounded_limit′)

T_ie′′, otherwise

11. Select the appropriate candidate T, B, and E:

E =

{
E′′, if IE == 1

E′, otherwise

T =

{
T_ie′′′, if IE == 1

T_ne, otherwise

B =

{
B_ie′, if IE == 1

B_ne, otherwise

12. Calculate whether the Capability Bounds were encoded exactly:

inexact =

{
rounded_base′ ∨ rounded_limit′, if IE == 1

False, otherwise

A, T, B, E, and IE are then encoded in a Capability Bounds field as described in RDJZDW.

RSTDNY If any of the following are true, the Bounds are considered invalid:

• The request was for exact bounds and the encoded bounds are inexact.
• The requested base is lower than the original base.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter 2. Capability architecture rules
2.5. Capability encoding

• The requested limit is above the original limit.

IQKCRL If all of the following are true, the bounds are guaranteed to be exactly representable:

• (nb)AND (NOT nlMask)== 0: Where nb is the requested base and nlMask is the value returned by the RRMASK

instruction when passed the requested length, nl, as its source.
• nl == Rnl: Where nl is the requested length and Rnl is the value returned by the RRLEN instruction when

passed the requested length, nl, as its source.

2.5.2 Representability checks

RCYMZJ Not all combinations of Capability base, limit, and Value are representable. When modifying a Capability
Value field, an operation may cause the Capability Bounds to change, and the encode base and limit to become
unrepresentable. If the modification causes the base and limit to become unrepresentable, the Capability Tag is set
to 0.

The concept of the representability of capabilities:

limit

base

representable
 region

s

s

s

Multiple of s = 2E+16

The representable region covers the range of values that are between 12.5% below the base and 25% above the
limit.

Note: Not all capabilities with large bounds have a contiguous representable region.

RJXHKF A representability check is applied when manipulating a Capability Value.

RLCBNH If modifying a Capability Value causes the base or limit to change, a representabilty check fails. Some versions of
the check may fail in additional cases.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter 2. Capability architecture rules
2.5. Capability encoding

RLMXSB If the Capability Value is modified, the encoding of the capability allows the Capability Value to change within the
representable region, otherwise the base and limit may become unrepresentable.

RBYTMV If modifying a capability causes a representability check to fail, the Capability Tag on the generated capability is
set to 0.

ISMYZK The Representable check has two versions: “full” and “fast”. The full check confirms that the Capability Bounds
are unchanged by a change in Capability Value. The fast check determines whether incrementing the Capability
Value leads to it being unrepresentable. In some cases the fast check returns a false negative result, but never
returns a false positive result.

RSVFVW None of following operations can make Capability Bounds unrepresentable:

• Modifying the Capability Flags field directly.
• Modifying the Capability Flags field indirectly by modifying the Capability Value.

Fast Representability Check

RYJVDC The Fast representability check uses the following elements:

• An increment, I, modified by sign extending from bit 55
• The E field encoded in the Capability Bounds.
• The A field encoded in the Capability Bounds.

The Fast representability check comprises the following tests:

1. BigExp:

If the Exponent is large enough, the Capability Value is not used to reconstruct base and limit:

BigExp == E ≥ 48

2. InRange:

If the absolute value of the increment is larger than the Representable range, s, the result is not
representable.

InRange = (I[63 : E + 16] == −1) ∨ (I[63 : E + 16] == 0)

3. InLimit:

A Representable limit, R, is defined as the following:

R[15 : 13] = B[15 : 13]− 1

R[12 : 0] = 0

Then a comparison is made depending on sign of the increment, as follows:

InLimit =

{
I[E + 15 : E] < R[15 : 0]−A[E + 15 : E]− 1, if I ≥ 0

(I[E + 15 : E] ≥ R[15 : 0]−A[E + 15 : E]) ∧ (R[15 : 0] 6= A[E + 15 : E]), otherwise

4. FixedMSBVal:

If E < 48, A is used to form the base and A must not change sign:

FixedMSBV al = (A[55] == (A+ I)[55])

The Fast Representability check combines the four tests as:

FastRep = (InRange ∧ InLimit ∧ FixedMSBV al) ∨BigExp

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter 2. Capability architecture rules
2.6. Manipulating capabilities

2.6 Manipulating capabilities

RHRBLB Manipulating a capability is defined as copying a capability, possibly changing the value of capability fields of the
copy.

RPLJJR A valid capability can only be created by one of the following:

• Monotonic manipulation.
• Controlled non-monotonic manipulation.

RFLXBS Monotonic manipulation includes the following operations:

• Modifying the Capability Value.
• Reducing the Capability Bounds.
• Reducing the Capability Permissions.
• Modifying the Capability Flags
• Sealing operations.

RLZSVB Controlled non-monotonic manipulation includes the following operations:

• Unsealing a capability using an unsealing operation.
• Using a permitted, privileged capability creating instruction to mark a register or memory location as holding

a valid capability.

RPXLGP When a capability is manipulated, any of the following clears the Capability Tag:

• If the capability is sealed, an attempt to manipulate the capability other than using an unsealing operation.
• An attempt to increase the Capability Bounds.

RJGSBX Sealing and then unsealing a capability does not increase the rights granted by that capability.

2.6.1 Monotonic manipulation: sealing operations

RMFMKV Sealing a capability restricts its use to compatible unsealing operations.

RZJHJX A valid unsealed capability can be sealed by one of the following instructions:

• Sealing with a sealing capability:

– SEAL (capability), Seal capability.
– CSEAL, Conditionally Seal capability.

• Sealing with a branch with link instruction.

• Sealing without a capability:

– SEAL (immediate), Seal capability (immediate).

RFJNDZ For a sealing instruction that is not CSEAL, if any of conditions in a sealing operation fails, the Capability Tag of
the source capability is cleared.

For CSEAL instruction, if any of conditions in a sealing operation fails, the source capability is written to the
destination capability unchanged.

RDRTLX If all of the following are true, SEAL (capability) and CSEAL generate a valid sealed capability:

• The unsealed capability is valid.

• For the sealing capability, all of the following are true:

– The capability is valid.
– The capability is unsealed.
– The capability has the Seal permission.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter 2. Capability architecture rules
2.6. Manipulating capabilities

– The Capability Value is within the Capability Bounds.
– The Capability Value is within the range of Capability ObjectType values.

RXXKYX If a capability is sealed by SEAL (capability) or CSEAL, the ObjectType of the capability to be sealed is set to the
sealing Capability Value.

RDXGLZ If a branch with link instruction generates a sealed capability in C30, the sealed capability ObjectType is set to 1.

RGCQCJ If all of the following are true, SEAL (immediate) generates a valid sealed capability:

• The capability to be sealed is unsealed.
• The capability to be sealed is valid.

RJBPWS If a capability is sealed by SEAL (immediate), the sealed capability ObjectType is set to the value of the form field
in the instruction encoding.

2.6.2 Controlled non-monotonic manipulation

Privileged capability creation:

RDBXPL A privileged capability creating instruction is one of the following:

• Set the Capability Tag of a register: SCTAG.
• Store Capability Tags to memory: STCT.

IGSKXG If CSCR_EL3.SETTAG is 0 and the PE is in an Exception level that is lower than EL3, a privileged capability
creating instruction can not create a valid capability.

IPKDYL If CHCR_EL2.SETTAG is 0 and the PE is in an Exception level that is lower than EL2, a privileged capability
creating instruction can not create a valid capability.

RNZDTP A privileged capability creating instruction is not permitted to create capabilities in EL0: the instruction is
UNDEFINED in EL0.

See also:

• 2.4 Capabilities in memory

Unsealing operations

RWTHDH A valid sealed capability can only be used in a capability unsealing operation.

RYQZKX A permitted unsealing operation on a valid sealed capability generates a valid unsealed capability.

RVNPYT A non-permitted unsealing operation does one of the following:

• Clears the Capability Tag of the generated capability.
• Leaves the generated capability sealed.

RSXXQW All of the following are unsealing operations:

• Unsealing with an unsealing capability, UNSEAL.
• Unsealing with a check subset, setting flags and conditionally unseal instruction, CHKSSU.
• A branch or return with a capability register as the target.
• A load capability pair and branch, LDPBR, using C29.
• A load and branch, BR (memory indirect), using C29.
• A branch to sealed capability pair.

RSXVWB If all of the following are true, unsealing with an unsealing capability is a permitted unsealing operation:

• For the capability being unsealed, all of the following are true:

– The capability is valid.
– The capability is sealed.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter 2. Capability architecture rules
2.6. Manipulating capabilities

• For the unsealing capability, all of the following are true:

– The capability is valid.
– The capability is unsealed.
– The capability has the Unseal permission.
– The Capability Value is within the Capability Bounds.
– The Capability Value is within the range of Capability ObjectType values.
– The Capability Value is equal to the ObjectType of the capability to be unsealed.

RJZTTZ If the ObjectType of a capability is 1, the following are permitted unsealing operations:

• A branch operation using that capability as a target.
• A return to that capability.

RFLNXF If all of the following are true, unsealing a sealed capability using a testing capability by a Check Subset, setting
flags and conditionally unseal instruction, CHKSSU, is a permitted unsealing operation:

• The sealed capability is valid.
• The testing capability is valid.
• The testing capability is unsealed.
• The Capability Bounds of the sealed capability are a subset of Capability Bounds of the testing capability.
• The Capability Permissions of the sealed capability are a subset of the Capability Permissions of the testing

capability.

RPKKBS If all of the following are true, unsealing a capability using a Load Pair of capabilities and Branch instruction,
LDPBR, is a permitted unsealing operation:

• The capability is valid.
• The capability is sealed.
• The capability ObjectType is 2.
• The destination capability register of the instruction is C29.

RFWMNR If all of the following are true, unsealing a capability using an Unseal load and branch (immediate) instruction,
BR (memory indirect), is a permitted unsealing operation:

• The capability is valid.
• The capability is sealed.
• The capability ObjectType is 3.
• The base capability register of the load and branch is C29.

RTZRYW If all of the following are true, branch to sealed capability pair instruction with a first and a second capability is a
permitted unsealing operation:

• The first and second capabilities are valid sealed capabilities.
• The first and second capabilities have BranchSealedPair permission.
• The first capability ObjectType is greater than 3.
• The ObjectType of the first and the second capabilities are the same.
• The first capability has Execute permission.
• The second capability does not have Execute permission.

Executive/Restricted banking

RNHGSJ The Executive permission in PCC determines whether the PE is in Executive or Restricted:

• 0: The PE is in Restricted.
• 1: The PE is in Executive.

RMXBDJ The combination of the Executive permission in PCC, PSTATE.SP, and the current Exception level, ELx, determines
the registers selected to be accessed, as outlined in the following table:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter 2. Capability architecture rules
2.6. Manipulating capabilities

Register
mnemonic

Executive,
when PSTATE.SP is 1

Executive,
when PSTATE.SP is 0

Restricted,
PSTATE.SP is treated as 0

DDC DDC_ELx DDC_EL0 RDDC_EL0

SP SP_ELx SP_EL0 RSP_EL0

TPIDR_ELx TPIDR_ELx TPIDR_ELx RTPIDR_EL0

When a register is accessible using the register mnemonic listed in the register mnemonic column in the table
above, accessing that register using other register mnemonics is UNDEFINED.

In Restricted, accessing the Executive registers is UNDEFINED.

RYNLZF Transition from Executive to Restricted is only permitted in one of the following ways:

• A branch (restricted) instruction, BRR, BLRR.
• A Return from subroutine with possible switch to Restricted, RETR.
• Capability exception return.
• Capability exception entry.

IQXPDW When the PE is in Restricted, branch (restricted) instructions are UNDEFINED.

IJGDJF If a transition from Executive to Restricted is not permitted, the Capability Tag of PCC is cleared.

RGNBDH Transition from Restricted to Executive is only permitted in one of the following ways:

• A branch instruction that meets all of the following conditions:

– The target of the instruction is a capability.
– The instruction is not a branch (restricted) instruction.

• Capability exception return.

• Capability exception entry.

RVMGDS For a PE in Restricted, RDDC_EL0 is used as the current DDC for loads and stores.

RRGKSN For a PE in Restricted, SPSel is RAZ/WI.

RQFFSK For a PE in Executive in ELx, if PSTATE.SP is 1, DDC_ELx is used as the current DDC for loads and stores in
ELx.

RLHLFL For a PE in Executive in ELx, if PSTATE.SP is 0, DDC_EL0 is used as the current DDC for loads and stores.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter 2. Capability architecture rules
2.7. Using capabilities

2.7 Using capabilities

RVBQMJ Using a capability is defined as performing an operation that relies on the rights granted by that capability.

RDHFGV A capability-restricted resource is one of the following:

• A virtual memory location.
• A System register.
• A System instruction.

2.7.1 System permission

RCRYKT The System permission bit in PCC determines whether access to capability-restricted System registers and
instructions is permitted:

• When the System permission of PCC is 1, System permission is enabled.

• When the System permission bit of PCC is 0, System permission is disabled and the MRS and MSR instruction
access to System registers is limited in the following ways:

– 64-bit MRS and MSR instruction access to System registers is limited to the following register mnemonics
only:

* TPIDR_ELx.
* RTPIDR_EL0.
* TPIDRRO_EL0.
* DCZID_EL0.
* CTR_EL0.
* CNTVCT_EL0, unless CCTLR_ELx.PERMVCT for the current Exception level is 0.

– Capability MRS and MSR instruction access to System registers is limited to the following register
mnemonics only:

* CTPIDR_ELx.
* RCTPIDR_EL0.
* CTPIDRRO_EL0.
* CID_EL0.

RSKQFC If MRS and MSR instructions are used to access System registers without the required System permission, a trap is
generated based on the access view used:

• For 64-bit MRS and MSR instructions, the access generates a Trapped MSR, MRS, or System instruction
execution in AArch64 state exception.

• For capability MRS and MSR instructions, the access generates a Trapped capability MSR or MRS instruction
execution exception.

RNZSZL Access to Special-purpose registers is not restricted by System permission.

RWRJDH If the System permission of PCC is 0, it is IMPLEMENTATION DEFINED which IMPLEMENTATION DEFINED
System registers and System instructions are trapped.

IBCGWP In the condition mentioned in RWRJDH, it is expected that most, if not all, IMPLEMENTATION DEFINED System
registers and instructions are trapped.

RDFMNS If the System permission of PCC is 0, any of the following generate a Trapped MSR, MRS, or System instruction
execution in AArch64 state exception:

• Data cache operations, other than operations by VA.
• Instruction cache operations, other than operations by VA.
• TLBI operations.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter 2. Capability architecture rules
2.7. Using capabilities

• AT operations.

RBFSBQ If the System permission of PCC is 0, all of the following are true:

• ERET causes the Capability Tag on the capability written to PCC to be cleared.
• SCTAG does not set the Capability Tag on the destination register.
• STCT treats the Capability Value in the transfer register as 0.

IDMBKP The behavior of SVC, HVC, and SMC are not affected by System permission.

2.7.2 Capability memory protection

RGMYFJ Every access to a memory location using a VA is restricted by a capability.

RCLBHX If a load, store, or cache maintenance by VA instruction uses a capability base register, all of the following are true:

• The instruction uses the Capability Value of that capability base register as the base address for the operation.
• Memory locations accessed by the instruction are restricted by that capability base register.

INRTCV Following RCLBHX, the full 64 bits of the Capability Value, including the Capability Flags, is used as the base
address. To avoid an address size fault, software must ensure one of the following:

• The Capability Flags are canonicalized before using these bits in a memory access instruction.
• The MMU is configured to ignore bits [63:56] of the address.

RQWGWC For a load, store, or cache maintenance by VA instruction using a 64-bit base register, memory locations accessed
by the instruction are restricted by the capability in the current DDC.

RKBMFJ For the purpose of Capability memory protection, the STCT instruction is treated as a store of capabilities.

RBLNHL For the purpose of Capability memory protection, the LDCT instruction is treated as a load of capabilities.

RTLVCS For Load (literal), LDR, memory locations accessed by the instruction are restricted by the capability in PCC.

RCXQNV Memory locations accessed by instruction fetch are restricted by the capability in PCC.

RCNSTH For a cache maintenance by VA instruction, the required Capability Permissions are as follows:

• IC IVAU: Load permission.
• DC C(I)VA*: Load permission.
• DC IVAC: Store permission.

RCTCDF For a cache maintenance by VA operation, the input capability provides an address that is contained in a contiguous
set of memory locations. This set of memory locations is required to be within the bounds of that capability, with
the alignment and number of memory locations in the set defined by the following fields:

• IC*: CTR_EL0.IminLine.
• DC*, except DC IVA*: CTR_EL0.DminLine.
• DC IVA*: CTR_EL0.CWG

IFQXVN The requirement in RCTCDF means that, for a cache clean operation or a cache clean and invalidate operation that
uses a capability as an input, if the capability used does not describe all bytes of the cache line being cleaned in the
Capability Bounds, the operation is not permitted by the Morello architecture.

Software must ensure that cache clean operations, and cache clean and invalidate operations, meet this requirement.

See also:

• Chapter D13.2.33 CTR_EL0, Cache Type Register, Arm® Architecture Reference Manual.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter 2. Capability architecture rules
2.7. Using capabilities

2.7.3 Capability memory protection exceptions

Load, store, and cache maintenance by VA instructions

RYZYBQ If a load, store, or cache maintenance by VA instruction uses an invalid capability, the instruction generates a
synchronous Data Abort with a capability tag fault.

RGHBFX If a load, store, or cache maintenance by VA instruction uses a valid sealed capability, but the instruction is a
non-permitted unsealing operation, the instruction generates a synchronous Data Abort with a capability sealed
fault.

RSZLNW If a load instruction with an unsealing operation uses a valid sealed capability, but the sealed capability has the
wrong ObjectType for the instruction, the instruction generates a synchronous Data Abort with a capability sealed
fault.

RQTRFK An atomic memory access instruction always performs a load and a store operation from the perspective of
capability Store, Load, StoreCap, and LoadCap permission checking.

RJQYTZ A Load, store, or cache maintenance by VA instruction uses the Capability Bounds as an upper and lower limit on
the memory locations that can be accessed.

RPWQTJ If a load, store, or cache maintenance by VA instruction accesses any location at a VA outside of the Capability
Bounds, the instruction generates a synchronous Data Abort with a capability bounds fault.

RZCYYB If all of the following are true, a store of a valid capability to memory generates a synchronous Data Abort with a
capability permission fault:

• The source Capability Global bit is set to 0.
• The StoreLocalCap permission of the capability used for the store is set to 0.

RNTJQD If the LoadCap permission of the capability used is set to 0, a load to a Capability register clears the Capability
Tag of the loaded capability.

RRJZNK If the StoreCap permission of the capability used is set to 0, a store of a valid capability generates a synchronous
Data Abort with a capability permission fault.

RHMXNK If the Load permission of the capability used is set to 0, a load generates a synchronous Data Abort with a capability
permission fault.

RTTHKK For a cache maintenance by VA which requires read access permission, if the Load permission of the capability
used is set to 0, the instruction generates a synchronous Data Abort with a capability permission fault.

RYPPQB If the Store permission of the capability used is set to 0, a store generates a synchronous Data Abort with a
capability permission fault.

RMGWWD For a cache maintenance by VA which requires write access permission, if the Store permission of the capability
used is set to 0, the instruction generates a synchronous Data Abort with a capability permission fault.

RZFMVL If a load or store instruction generates a synchronous Data Abort with one of the following, the faulting address is
one of the locations accessed by the instruction:

• A capability tag fault.
• A capability sealed fault.
• A capability bounds fault.
• A capability permission fault.

RZGHNJ An instruction that both uses a capability and modifies the Capability Value of that capability has two sets of
checks:

• The capability checks on using the capability.
• The representability check on modifying the Capability Value.

The capability checks are performed before the representability check.

RPVKGX An instruction that both uses a sealed capability and modifies that sealed capability has two sets of checks:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter 2. Capability architecture rules
2.7. Using capabilities

• The capability checks on using the capability.
• The sealed capability check on modifying the capability.

The capability checks are performed before the sealed capability check.

RVVXZL If a cache maintenance by VA instruction or a data cache zero by VA instruction generates a synchronous Data
Abort with one of the following, the faulting address is the address specified in the register argument of the
instruction:

• A capability tag fault.
• A capability sealed fault.
• A capability bounds fault.
• A capability permission fault.

Instruction fetch

RGZTVP If the capability in PCC is invalid, instruction fetch generates a synchronous Instruction Abort with a capability tag
fault.

RZZWCP If the capability in PCC does not have Execute permission, instruction fetch generates a synchronous Instruction
Abort with a capability permission fault.

RFZVKC If an instruction fetch accesses any location at a VA outside of the Capability Bounds in PCC, the access generates
a synchronous Instruction Abort with a capability bounds fault.

RMDMPG If the capability in PCC is sealed, instruction fetch generates a synchronous Instruction Abort with a capability
sealed fault.

IMPLEMENTATION DEFINED behavior

RKPSBV If an atomic operation with a conditional store does not perform a store, it is IMPLEMENTATION DEFINED whether
that operation performs a required capability Store, StoreCap, or StoreLocalCap permission check.

RHCBBH If a cache maintenance by VA instruction is implemented as a NOP, it is IMPLEMENTATION DEFINED whether
capability memory protection is applied to that operation.

RYZHQD For a memory access, cache maintenance operation, or instruction fetch operation, if any of the following conditions
are true, it is IMPLEMENTATION DEFINED whether the operation can cause a capability tag fault, capability sealed
fault, capability bounds fault, or capability permission fault.

• Stage 1 translation is enabled and the operation is to an address outside the maximum VA range or VA
subranges for that stage of translation.

• Stage 1 translation is disabled and the operation is to an address larger than the implemented PA size.

RZXDMZ If an LDCT or STCT instruction accesses a Non-cacheable location, it is IMPLEMENTATION DEFINED whether the
access generates a Data Abort caused by a LDCT/STCT to Non-cacheable memory.

See also:

• Chapter D1.13.5, Taking an interrupt or other exception during a multi-access load or store, Arm® Architec-
ture Reference Manual.

• 2.13 Exception model

2.7.4 Recursive immutability

RYYPMC If a valid unsealed capability is loaded using a capability without MutableLoad permission, the MutableLoad,
Store, StoreCap, and StoreLocalCap permissions of the loaded capability are cleared.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter 2. Capability architecture rules
2.8. Capability memory relocation

2.8 Capability memory relocation

RBZSPS For a branch instruction variant using a 64-bit target address, and for return instructions returning to a 64-bit return
address, if CCTLR_ELx.PCCBO is 1 and the PE is in ELx, the capability base in PCC is added to the address
written to the PC.

RPHVFM For branch with link instructions writing a 64-bit return address to X30, if CCTLR_ELx.PCCBO is 1 and the PE is
in ELx, the instructions subtract the PCC base from the PC used to generate the link address.

RVTNGL For a PC-relative address calculation instruction writing a 64-bit address to a destination register, if
CCTLR_ELx.PCCBO is 1 and the PE is in ELx, the instruction subtracts the PCC base from the PC used
to generate the address.

RGFXBJ For load and store, cache maintenance by VA, and prefetch instructions using a 64-bit base address, if
CCTLR_ELx.DDCBO is 1 and the PE is executing in ELx, the instructions add the DDC base to the address used
to perform the access.

RWLPTB For a CVTD* instruction writing a 64-bit value to a destination register, if CCTLR_ELx.DDCBO is 1 and the PE is
executing in ELx, the instruction subtracts the DDC base from the value written.

RZZSZP If CCTLR_ELx.DDCBO is 1 and the PE is executing in ELx, CVT(flag setting) subtracts the base of the second
source register from the 64-bit value written to the destination register.

IPJKGP Software must be aware of RZZSZP to ensure that a suitable capability is written to the second source register for
CVT(flag setting). If CCTLR_ELx.DDCBO is 1 and the PE is executing in ELx, the DDC used by the subtraction
is the one in the same context as the instruction.

RWSWGD For a CVT(D)(Z) instruction writing a capability to a destination register, if CCTLR_ELx.DDCBO is 1 and the PE is
executing in ELx, the instruction adds the DDC base to the Capability Value.

RMDMXN For a CVTP instruction writing a 64-bit value to a destination register, if CCTLR_ELx.PCCBO is 1 and the PE is
executing in ELx, the instruction subtracts the PCC base from the value written.

RMKGPV For a CVTP(Z) instruction writing a capability to a destination register, if CCTLR_ELx.PCCBO is 1 and the PE
executes in ELx, the instruction adds the PCC base to the Capability Value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter 2. Capability architecture rules
2.9. Compartment ID

2.9 Compartment ID

ILRZVM The CompartmentID permission does not have an architecturally observable effect. The intent is to provide an
unforgeable value that is distinct from other capability and non-capability values which hardware can use to
partition the behavior of execution prediction resources to reduce the opportunity for side-channel attacks.

RXLYMV The Morello architecture defines a compartment context ID as a value that can be used by hardware to partition the
behavior of execution prediction resources to reduce the opportunity for side-channel attacks.

RBWXVW A compartment context ID is a capability.

RCSPXQ If all of the following are true for a capability, it represents a compartment context ID that is distinct from a
compartment context ID defined by a capability where any of the following are not true, or where the Capability
Value is different:

• The capability is valid.
• The capability is unsealed.
• The value is within the Capability Bounds.
• The capability has CompartmentID permission.

IHTCXS The capability in CID_EL0 is the current compartment context ID.

IBYCZR The current compartment context ID may be used by an implementation as part of the execution context of an
execution prediction resource.

RCGMBK If the current compartment context ID is part of the execution context of an execution prediction resource, any
predictions made by the execution prediction resource cannot be based on information gathered from an execution
with a compartment context ID that is distinct from the current compartment context ID.

See also:

• 2.5 Capability encoding: information about modifications which can make a capability non-representable.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter 2. Capability architecture rules
2.10. Instruction set selection

2.10 Instruction set selection

RZRMXS PSTATE.C64 determines the current instruction set:

• PSTATE.C64 is 0: The current instruction set is A64.
• PSTATE.C64 is 1: The current instruction set is C64.

RZTMWK If executing an instruction, PSTATE.C64 is updated by any of the following:

• The Capability Value[0] of a branch with a capability target.
• A BX #4.

RGVJPY When a branch with link instruction writes a capability to C30, PSTATE.C64 is copied to the Capability Value[0]
in C30.

RXQNPW If PSTATE.C64 is 0, all of the following are true:

• A branch and link instruction writes the link address to X30.
• A PC-relative address generation instruction writes an address to Xd.
• A Cache maintenance by VA instruction uses the 64-bit address in Xn, with capability memory relocation

applied.

RTXVNQ If PSTATE.C64 is 1, all of the following are true:

• A branch and link instruction writes the link address to C30.
• A PC-relative address generation instruction writes an address to Cd.
• A Cache maintenance by VA instruction uses Capability address in Cn.

IQQMVV In Morello instruction forms are encoded the same in A64 and C64 but with a different interpretation of the
operands depending on the state of PSTATE.C64.

In particular, memory access instructions encoded in A64 to use a 64-bit base register, use a Capability base
register in C64, and vice versa.

See also:

• 4.1 The instruction sets: information about the A64 and C64 instruction sets.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter 2. Capability architecture rules
2.11. Reset

2.11 Reset

RVFMMV CMAX is a capability with all of the following:

• Maximum Capability Bounds: the base is 0x0 and the limit is 2ˆ64.
• Maximum Capability Permissions.
• Executive is 1.
• ObjectType is 0.
• Tag is 1.

RFHMFL On a reset, the following state is defined:

• PCC:

– The Capability Value of PCC is determined by RVBAR_ELx for the highest implemented Exception
level.

– The rest of PCC is set to CMAX.

• All DDC_ELx:

– The Capability Value of DDC_ELx is 0.
– The rest of DDC_ELx is set to CMAX.

• PSTATE.C64 is set to 0.

• CPTR_EL3.EC is set to 0.

• All other Capability registers are UNKNOWN.

RLFSPN On a reset, the state of caches is IMPLEMENTATION DEFINED.

RCGXJK On a reset, the sequence of operations to invalidate capabilities from caches is IMPLEMENTATION DEFINED.

IGPJYK On a system reset, the state of system memory and system caches is IMPLEMENTATION DEFINED.

INNHHF On a system reset, the sequence of operations to invalidate capabilities from system memory and system caches is
IMPLEMENTATION DEFINED.

See also:

• Chapter D1.9.1, PE state on reset to AArch64 state, Arm® Architecture Reference Manual, Armv8-A: more
details about PE state on reset.

• Chapter D4.4.5, Behavior of caches at reset, Arm® Architecture Reference Manual, Armv8-A: more details
about caches on reset.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter 2. Capability architecture rules
2.12. Access to the Morello architecture

2.12 Access to the Morello architecture

RXWTKD Access to the Morello architecture can be trapped at each Exception level.

RGRLBX If access to the Morello architecture is trapped at an Exception level, ELx, access to the Morello architecture at all
Exception levels lower than ELx is also trapped.

RPZHJT Access to the Morello architecture is controlled by the following:

• CPACR_EL1.CEN.
• CPTR_EL2.TC.
• CPTR_EL2.CEN.
• CPTR_EL3.EC.

RTPNMD If access to the Morello architecture is trapped at ELx and when the PE executes in ELx, all of the following are
true:

• Access to any CCTLR_ELy is trapped unless it is UNDEFINED in ELx.
• If executing at EL2, CHCR_EL2 is trapped.
• If executing at EL3, CSCR_EL3 and CHCR_EL2 are trapped.
• Instructions added to A64 by the Morello architecture are trapped.

RVCNGF If access to the Morello architecture is trapped at ELx, the architecture has no effect on the following:

• The effects of controls in CCTLR_ELx.
• The effects of PCC.
• The effects of DDC.
• Capability memory relocation.
• The effect of PSTATE.C64.

RKWQVW If access to the Morello architecture is trapped, accessing the Morello architecture causes a synchronous exception.

RRPPMH A synchronous exception due to an access to the Morello architecture being trapped is reported with an
Exception class of Access to the Morello architecture trapped as a result of CPACR_EL1.CEN, CPTR_EL2.TC,
CPTR_EL2.CEN, or CPTR_EL3.EC.

RNHZKT For an instruction that is UNPREDICTABLE in an Exception level due to access to the Morello architecture being
disabled, it is IMPLEMENTATION DEFINED whether that instruction can cause a capability exception.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter 2. Capability architecture rules
2.13. Exception model

2.13 Exception model

RFVQQT The Morello architecture provides the following Exception model variants:

• If access to the Morello architecture is trapped at ELx, a non-capability exception entry to ELx, and return
from ELx.

• If access to the Morello architecture is not trapped at ELx, a capability exception entry to ELx, and return
from ELx.

RTHRFG The following registers determine which variant of an exception entry or return is configured:

• CPACR_EL1.CEN.
• CPTR_EL2.TC.
• CPTR_EL2.CEN.
• CPTR_EL3.EC.

IMVGRH For the Morello architecture, the exception vectors used when taking an exception are the same as described in
Arm® Architecture Reference Manual, Armv8-A apart from RGXNXG.

RGXNXG If the PE is in Restricted and an exception is taken from the current Exception level, exception entry uses the same
exception vector as an exception taken from the current Exception level with SP_EL0.

RRZTFR On an illegal exception return from ELx, the effect on PSTATE.C64 is one of the following:

• If a non-capability exception return from ELx is configured, it is set to 0.
• If a capability exception return from ELx is configured, it is unchanged.

2.13.1 Non-capability exception entry or return

RJLYXK If a non-capability exception entry to ELx is configured, on exception entry to ELx, the Morello architecture
changes the following aspects in the existing Armv8-A architecture:

• PSTATE.C64 is set to 0.
• The Capability Value of PCC is set to VBAR_ELx, with VBAR_ELx[10:0] treated as zero, plus the vector

offset.

RYTFBY If a non-capability exception return from ELx is configured, on exception return from ELx, the Morello architecture
changes the following aspects of the existing Armv8-A architecture:

• ELR_ELx[63:0] is copied to the Capability Value in PCC.
• PSTATE.C64 is set to 0.

2.13.2 Capability exception entry and return

RFBWJT The following registers are extended to 129-bit to support capability exception handling:

Register mnemonic Description

SP_ELx Stack Pointer registers

ELR_ELx Exception Link Registers

VBAR_ELx Vector Base Address Registers

RYSMLC If capability exception entry and return are configured, the preferred exception return capability generated on an
exception is a capability with the Capability Value set to the preferred return address for the exception.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter 2. Capability architecture rules
2.13. Exception model

RKHSLH If capability exception entry is configured for ELx, on exception entry to ELx, the Morello architecture changes
the existing Armv8-A architecture in all of the following aspects:

• ELR_ELx is set to the preferred exception return capability.
• PSTATE.C64 is set to CCTLR_ELx.C64E.
• PCC is set to the capability in VBAR_ELx, with VBAR_ELx[10:0] treated as zero, plus the vector offset.

RVPMLJ If capability exception return is configured for ELx, on exception return from ELx, the Morello Architecture
changes the existing Armv8-A architecture in all of the following aspects:

• ELR_ELx is copied to PCC.
• If the exception return is to an Exception level where access to the Morello architecture is not trapped,

SPSR_ELx.C64 is copied to PSTATE.C64.
• If the exception return is to an Exception level where access to the Morello architecture is trapped,

PSTATE.C64 is set to 0.

IBRTMS If capability exception return is configured, and the value in ELR_ELx[1:0] is not 0, a subsequent instruction fetch
using PCC generates a PC alignment fault.

RLNNPH If capability exception return is configured for ELx and the Capability Bounds to be written to PCC are invalid, on
an exception return from ELx the Capability Tag of the capability written to PCC is cleared.

See also:

• Chapter E1.2.4 Process state, PSTATE, Arm® Architecture Reference Manual, Armv8-A.
• Chapter D1.10 Exception entry, Arm® Architecture Reference Manual, Armv8-A.
• 2.5.1 Morello Bounds format: information about valid and invalid Capability Bounds.

2.13.3 Exception types

IMMJJD The Morello architecture introduces new types of exception reported using both existing Exception classes and
new Exception classes:

Name of the fault Exception class Section for more information

Alignment fault Data Abort 2.4 Capabilities in memory

Capability access fault due to SC and LC bits in
the translation table

Synchronous Data Abort 2.14.1 Translation table
descriptors

Capability bounds fault on data access Synchronous Data Abort 2.7.3 Capability memory
protection exceptions

Capability bounds fault on instruction fetch Synchronous Instruction Abort 2.7.3 Capability memory
protection exceptions

Capability permission fault on data access Synchronous Data Abort 2.7.3 Capability memory
protection exceptions

Capability permission fault on instruction fetch Synchronous Instruction Abort 2.7.3 Capability memory
protection exceptions

Capability sealed fault on data access Synchronous Data Abort 2.7.3 Capability memory
protection exceptions

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter 2. Capability architecture rules
2.13. Exception model

Name of the fault Exception class Section for more information

Capability sealed fault on instruction fetch Synchronous Instruction Abort 2.7.3 Capability memory
protection exceptions

Capability tag fault on data access Synchronous Data Abort 2.7.3 Capability memory
protection exceptions

Capability tag fault on instruction fetch Synchronous Instruction Abort 2.7.3 Capability memory
protection exceptions

Trap due to any of the following:
• CPACR_EL1.CEN.
• CPTR_EL2.TC.
• CPTR_EL2.CEN.
• CPTR_EL3.EC.

Access to the Morello architecture
trapped as a result of any of the
following:

• CPACR_EL1.CEN.
• CPTR_EL2.TC.
• CPTR_EL2.CEN.
• CPTR_EL3.EC.

2.12 Access to the Morello
architecture

Trapped 64-bit MRS, MSR due to System
permission

Trapped MSR, MRS, or System
instruction execution in AArch64
state exception

2.7.1 System permission

Trapped capability MRS, MSR due to System
permission

Trapped capability MSR or MRS
instruction execution exception

2.7.1 System permission

RMSLGB On a stage 2 fault that is caused by the access of a capability, ESR_EL2.ISV is 0.

See also:

• Chapter G1.16.8, Data Abort exception, Arm® Architecture Reference Manual, Armv8-A.

2.13.4 Exception routing

RTYNPY An exception caused by use of the Capability Tag, Capability ObjectType, Capability Permissions, or Capability
Bounds in a capability is called a capability exception.

RWFQXC The Morello architecture defines the following capability exceptions:

• Capability tag fault.
• Capability sealed fault.
• Capability permission fault.
• Capability bounds fault.
• Trapped capability MRS, MSR due to System permission.
• Trapped 64-bit MRS, MSR due to System permission.

RKLRDW If a capability exception targets an Exception level where access to the Morello architecture is trapped, it is routed
to the lowest Exception level where access to the Morello architecture is not trapped. If access to the Morello
architecture is trapped at all Exception levels, the exception is routed to the highest implemented Exception level.

2.13.5 Exception priorities

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter 2. Capability architecture rules
2.13. Exception model

IMKBWQ This section outlines the priority of the exceptions introduced by the Morello architecture regarding the synchronous
exception prioritization list in Chapter D1.12.4 Synchronous exception prioritization for exceptions taken to
AArch64 state, Arm® Architecture Reference Manual, Armv8-A.

RNNLGC The following table introduces the prioritization of Morello faults and exceptions within existing exception
prioritization in the base architecture, where 1 is the highest priority. The base priority refers to the specific issue
of Arm® Architecture Reference Manual, Armv8-A indicated in Arm publications section of this document.

Name of the fault Reporting mechanism
Base
priority

Sub-
priority

Capability tag fault Synchronous Instruction Abort 6.5 1

Capability sealed fault Synchronous Instruction Abort 6.5 2

Capability permission fault Synchronous Instruction Abort 6.5 3

Capability bounds fault Synchronous Instruction Abort 6.5 4

Executive/Restricted banking Attempting to execute an instruction that
is UNDEFINED

13 -

Trapped capability MRS, MSR due to System permission Trapped capability MSR or MRS
instruction execution exception

13.5 -

Trapped 64-bit MRS, MSR due to System permission Trapped MSR, MRS, or System
instruction execution in AArch64 state
exception

13.5 -

Trap due to CPACR_EL1 Access to the Morello architecture
trapped as a result of CPACR_EL1.CEN,
CPTR_EL2.CEN, CPTR_EL2.TC, or
CPTR_EL3.EC

14 -

Trap due to CPTR_EL2 Access to the Morello architecture
trapped as a result of CPACR_EL1.CEN,
CPTR_EL2.CEN, CPTR_EL2.TC, or
CPTR_EL3.EC

16 -

Trap due to CPTR_EL3 Access to the Morello architecture
trapped as a result of CPACR_EL1.CEN,
CPTR_EL2.CEN, CPTR_EL2.TC, or
CPTR_EL3.EC

23 -

Capability tag fault Synchronous Data Abort 28.5 1

Capability sealed fault Synchronous Data Abort 28.5 2

Capability permission fault Synchronous Data Abort 28.5 3

Capability bounds fault Synchronous Data Abort 28.5 4

Alignment fault caused by LDCT/STCT to
Non-cacheable memory

Synchronous Data Abort 29 27.5

Capability access fault - SC stage 1 Synchronous Data Abort 30.5 1

Capability access fault - SC stage 2 Synchronous Data Abort 30.5 2

Capability access fault - LC on an access to Device
memory

Synchronous Data Abort 30.5 3

Capability access fault - LC on an Atomic access Synchronous Data Abort 30.5* 3

Capability access fault - LC on an access to Normal
memory

Synchronous Data Abort 32 -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter 2. Capability architecture rules
2.13. Exception model

* It is IMPLEMENTATION DEFINED whether Capability access fault - LC on an Atomic access is prioritized at 30.5
or 32.

The Morello architecture does not allow synchronous External aborts to be prioritized at 29.

A 0.5 increment in the base priority indicates that the Morello exception is located in between two exception
priorities of the base architecture.

A decimal number in the subpriority indicates that the base architecture has sublists and the Morello exception is
inserted into the sublist.

ITQHYY In the base architecture, exceptions due to attempting to execute an instruction that is defined to be inaccessible at
the current Exception level, regardless of any enables or traps, are in priority 13. The Morello architecture clarifies
that this also includes instructions which are not accessible due to the current Security state.

RHBVNP For capability exceptions reported as a Synchronous Data Abort, if an instruction results in more than one
single-copy atomic memory access, the prioritization between synchronous exceptions generated on each of those
different memory accesses is not defined by the architecture.

See also:

• Chapter D1.12.4, Synchronous exception prioritization for exceptions taken to AArch64 state, Arm® Architec-
ture Reference Manual, Armv8-A: Main prioritization of exceptions for the base architecture.

• Chapter D5.8.3, AArch64 state prioritization of synchronous aborts from a single stage of address translation,
Arm® Architecture Reference Manual, Armv8-A: Sublist for some Synchronous Data Abort.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter 2. Capability architecture rules
2.14. The Virtual Memory System Architecture

2.14 The Virtual Memory System Architecture

IBFVBR This section requires understanding of the Armv8 Virtual Memory System Architecture (VMSA).

A group of Translation Table Base Registers, TTBRy_ELx, and Capability Control Registers, CCTLR_ELx, are
used, and the value of x and y depends on the relevant translation stage and the translation table.

In this section, the variable y is used to indicate the address range and therefore the relevant TTBRy_ELx. The
combination of x and y in TTBRy_ELx correlates to the combination used in the Page table tag generation bit in
CCTLR_ELx.TGENy, which controls whether to fault a load of a valid capability.

MMU capability access controls

RWXVWF When the Morello architecture is implemented, MMU capability access controls provide control of access to valid
capabilities in memory.

RJJNSN For the purpose of MMU capability access controls, an atomic access is treated as both loading and storing a
capability.

MMU faulting of stores of valid capabilities

RZGDGP A memory location can be marked as faulting stores of valid capabilities.

RGQRQJ If a location is marked as faulting stores of valid capabilities, a store of a valid capability to that location causes a
capability access fault, and the write to the location does not occur.

RNTKXV Each stage of translation for a translation regime can mark a location as faulting stores of valid capabilities.

RJQHGK Stage 1 faulting of stores of valid capabilities to a location in a translation regime is controlled by the SC and
CDBM bits in the stage 1 translation table entry block and page descriptor for that location.

RGKLNJ Stage 2 faulting of stores of valid capabilities to a location in a translation regime is controlled by the SC and
CDBM bits in the stage 2 translation table entry block and page descriptor for that location.

RPQKQY If a location is marked as faulting stores of valid capabilities, and an atomic operation with a conditional store
of a valid capability to that location does not perform the store, it is IMPLEMENTATION DEFINED whether that
operation causes a Capability access fault.

RDLYTV If a stage of translation for a translation regime is disabled, that stage of translation does not cause a Capability
access fault due to a store of a valid capability.

RFQDQJ If an exception due to a Capability access fault on a store of a valid capability is taken to ELx, the lowest faulting
address is recorded in FAR_ELx.

RSLRGN If an exception is taken to ELx due to a Capability access fault on a store of a valid capability as part of an atomic
access, the exception is reported as a write in ESR_ELx.WnR.

RXNLFJ For the purpose of faulting stores of valid capabilities, a STCT instruction is treated as storing capabilities.

RZKDFC If an instruction stores more than one capability, and at least one of the stores causes a capability access fault, it is
CONSTRAINED UNPREDICTABLE whether any capability stored by the instruction which does not cause a fault is
stored to memory.

MMU tracking of capability stores of valid capabilities

RBVHDN A memory location can be marked as tracking stores of valid capabilities.

RGQKPD If a location is marked as tracking stores of valid capabilities, and if a valid capability is stored to that location,
that location is marked as Capability dirty, instead of generating a Capability access fault.

RPGBNQ If an instruction stores more than one capability to memory, each store of a valid capability is tracked independently.

RBBTCZ Each stage of translation can independently mark a location as tracking stores of valid capabilities.

RMTCWN Each stage of translation can independently mark a location as Capability dirty.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter 2. Capability architecture rules
2.14. The Virtual Memory System Architecture

RGXLYY Stage 1 tracking of stores of valid capabilities to a location in a translation regime is controlled by the CDBM bit
in the stage 1 translation table entry block and page descriptor for that location.

RLXSXB Stage 2 tracking of stores of valid capabilities to a location in a translation regime is controlled by the CDBM bit
in the stage 2 translation table entry block and page descriptor for that location.

RJFSGC Stage 1 Capability dirty state for a location in a translation regime is recorded by setting the SC bit to 1 in the stage
1 translation table entry block and page descriptor for that location.

RQJDRL Stage 2 Capability dirty state for a location in a translation regime is recorded setting the SC bit to 1 in the stage 2
translation table entry block and page descriptor for that location.

IHBKYK Tracking of capability writes follows the same principles as Hardware management of dirty state as defined in
Chapter D5.4.11, Hardware management of the Access flag and dirty state, Arm® Architecture Reference Manual,
Armv8-A.

RGVCBG If a location is marked as tracking stores of valid capabilities, and an atomic operation with a conditional store of a
valid capability to that location does not perform the store, it is IMPLEMENTATION DEFINED whether the store is
tracked.

RQBLBN If a stage of translation for a translation regime is disabled, that stage of translation does not track stores of valid
capabilities.

RDHRCK For the purpose of tracking stores of valid capabilities, a STCT instruction is treated as storing capabilities.

MMU faulting of loads of valid capabilities

RSXCVB A memory location can be marked as faulting loads of valid capabilities.

RCQJDQ If a location is marked as faulting loads of valid capabilities, a load of a valid capability from that location causes a
Capability access fault.

RQDKBL If a location is marked as Device and as faulting loads of valid capabilities, a load of a capability from that location
causes a Capability access fault, and the location is not read.

RHQVST The stage 1 translation for a translation regime can mark a location as faulting loads of valid capabilities.

RCPRKD Stage 1 faulting of loads of valid capabilities from a location in the translation regime for ELx is controlled by the
LC bit in the stage 1 translation table entry block and page descriptor, and the CCTLR_ELx.TGENy field, for that
location.

RRKGLC If a stage of translation for a translation regime is disabled, that stage of translation cannot cause a Capability
access fault due to a load of a valid capability.

RGFNJJ If an exception is taken to ELx due to a Capability access fault on a load of a valid capability, the lowest faulting
address is recorded in FAR_ELx.

RNKSBV If a location is marked as faulting loads of valid capabilities, and an atomic operation to that location causes a
Capability access fault, the location is not written.

RVVNDW If a location is marked as faulting loads of valid capabilities, an atomic operation to that location which would read
a valid capability from that location causes a Capability access fault.

RTKKMV If a location is marked as faulting loads of valid capabilities, and an atomic operation to that location would read an
invalid capability from that location, it is IMPLEMENTATION DEFINED whether the operation causes a Capability
access fault.

RKRJXL For the purpose of faulting loads of valid capabilities, a LDCT instruction is treated as loading capabilities.

RJFHGB If an instruction loads more than one capability, and at least one of the loads causes a capability access fault, it is
CONSTRAINED UNPREDICTABLE whether any capability loaded by the instruction that does not cause a fault is
read from memory.

MMU zeroing of Capability Tags when loading capabilities

RRBHHQ A memory location can be marked as zeroing Capability Tags on loads of capabilities

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter 2. Capability architecture rules
2.14. The Virtual Memory System Architecture

RDJSPV If a location is marked as zeroing Capability Tags on loads of capabilities, the Capability tag on a capability loaded
from that memory is set to zero.

RQWGTB Each stage of translation for a translation regime can mark a location as zeroing Capability Tags on loads of
capabilities.

RHQBZK Stage 1 zeroing of Capability Tags on capabilities loaded from a location in a translation regime is controlled by
the LC bit in stage 1 translation table entry block and page descriptor for that location.

RTRMCY Stage 2 zeroing of Capability Tags on capabilities loaded from a location in a translation regime is controlled by
the LC bit in stage 2 translation table entry block and page descriptor for that location.

RYVRVV If a location is marked as zeroing Capability Tags on loads by Stage 2, a capability loaded from the location is
treated as invalid for the purpose of faulting of loads of valid capabilities.

RGVMCL If a stage of translation for a translation regime is disabled, that stage of translation does not cause zeroing of
Capability Tags on loaded capabilities.

RRHTRV For the purpose of MMU zeroing of Capability Tags when loading capabilities, a LDCT instruction is treated as
loading capabilities.

RCVTTF If a memory location is marked as zeroing Capability Tags on loads of capabilities, the zeroing is applied before
the application of faulting of loads of valid capabilities from that location.

RHFGKN If an instruction loads more than one capability, each capability is treated independently for the purpose of zeroing
of capability Tags on loading capabilities.

2.14.1 Translation table descriptors

RHTXWL For each stage of translation, the following registers contain hardware use control bits for the Block and Page
descriptor fields used by the Morello architecture.

If a Hardware Use control bit is 0, its corresponding bit in the Block and Page descriptor field is treated as 0:

Hardware use control bit Translation stage
Corresponding Block and Page
descriptor bit

TCR_ELx.HWU62 Stage 1 LC, bit 62

TCR_ELx.HWU61 Stage 1 LC, bit 61

TCR_ELx.HWU60 Stage 1 SC, bit 60

TCR_ELx.HWU59 Stage 1 CDBM, bit 59

VTCR_EL2.HWU61 Stage 2 LC, bit 61

VTCR_EL2.HWU60 Stage 2 SC, bit 60

VTCR_EL2.HWU59 Stage 2 CDBM, bit 59

RLBFNG The table below outlines the stage 1 Block and Page descriptor fields, which are part of the PBHA bits:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter 2. Capability architecture rules
2.14. The Virtual Memory System Architecture

Name Field Description

LC 62:61 Control of loads of capabilities from memory:
• 0b00: Zero Capability Tags.
• 0b01: No effect.
• 0b10: If CCTLR_ELx.TGENy is 1, fault loads of valid capabilities; otherwise no effect.

The value of x and y is determined by the translation table base register TTBRy_ELx
used for the access.

• 0b11: If CCTLR_ELx.TGENy is 0, fault loads of valid capabilities; otherwise no effect.
The value of x and y is determined by the translation table base register TTBRy_ELx
used for the access.

SC 60 Control of stores of valid capabilities to memory:
• 0b0: If CDBM is 0, fault stores of valid capabilities, otherwise no effect.
• 0b1: No effect.

CDBM 59 Control tracking of stores of valid capabilities:
• 0b0: No effect
• 0b1: Track stores of valid capabilities.

RKPDCT The stage 2 Block and Page descriptors are extended to control access to capabilities in capability-tagged memory.

The table below outlines the stage 2 Block and Page descriptor fields, which are part of the PBHA bits:

Name Field Description

LC 61 Control of loads capabilities from memory:
• 0b00: Zero Capability tags
• 0b01: No effect

SC 60 Control of stores of valid capabilities to memory:
• 0b0: If CDBM is 0, fault stores of valid capabilities , otherwise no effect.
• 0b1: No effect.

CDBM 59 Control tracking of stores of valid capabilities:
• 0b0: No effect.
• 0b1: Track stores of valid capabilities.

See also:

• Chapter D5.3.3, Memory attribute fields in the VMSAv8-64 translation table format descriptors, Arm®

Architecture Reference Manual, Armv8-A.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter 2. Capability architecture rules
2.15. Self-hosted debug

2.15 Self-hosted debug

2.15.1 Watchpoints

RBGBZW For the purpose of watchpoint checking, the following instructions are treated as accessing four capabilities:

• STCT.
• LDCT.

RHXVZS For the purpose of watchpoint checking, the following instructions are treated as accessing an entire cacheline:

• STXP.
• STLXP.

See also:

• Chapter D2, AArch64 Self-hosted Debug, Arm® Architecture Reference Manual, Armv8-A.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter 2. Capability architecture rules
2.16. The Embedded Trace Macrocell architecture

2.16 The Embedded Trace Macrocell architecture

2.16.1 Exception instruction trace element

RTCXZX The Embedded Trace Macrocell architecture groups exceptions into different types. For the exceptions added by
the Morello architecture, the exception types used in the Embedded Trace Macrocell are the following:

The Morello architecture exception types Exception type

Trap due to any of the following:
• CPACR_EL1.CEN.
• CPTR_EL2.TC.
• CPTR_EL2.CEN.
• CPTR_EL3.EC.

Trap

Trapped capability MRS, MSR due to System permission Trap

Trapped 64-bit MRS, MSR due to System permission Trap

Capability permission fault on instruction fetch Inst Fault

Capability sealed fault on instruction fetch Inst Fault

Capability bounds fault on instruction fetch Inst Fault

Capability access fault due to SC and LC bits in the translation table Data Fault

Capability bounds fault on data access Data Fault

Capability permission fault on data access Data Fault

Capability sealed fault on data access Data Fault

Capability tag fault on data access Data Fault

See also:

• Chapter 5.2.7, Exception instruction trace element, Arm® Embedded Trace Macrocell Architecture Specifica-
tion.

2.16.2 Address and Context tracing packets

IKMSXD The instruction set can be decoded by the state of the SF bit and the header byte of an Address packet.

RNJWNK The instruction set is indicated by the combination of the SF bit and the header byte of an Address packet, as the
following table shows:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter 2. Capability architecture rules
2.16. The Embedded Trace Macrocell architecture

SF bit value Instruction set Alignment ISA in use

1 IS1 Halfword-aligned C64

1 IS0 Word-aligned A64

IKMWPR The table in RNJWNK only includes information for when SF bit is 1, because the Morello architecture does not
support the instruction sets A32 and T32, which are indicated by the SF bit being 0.

RKHQMC The Embedded Trace Macrocell architecture groups instructions into different types.

For the instructions added by the Morello architecture, the instructions categorized as direct branches by the
Embedded Trace Macrocell are the following:

Instruction Description Link? Return from exception?

BX Branch Exchange No No

For the instructions added by the Morello architecture, the instructions categorized as indirect branches by the
Embedded Trace Macrocell are the following:

Instruction Description Link? Return from
exception?

BLR (indirect) Branch with Link to capability Register Yes No

BLR (memory
indirect)

Unseal load, branch and link Yes No

BLRR Branch with Link to capability Register with possible switch to
Restricted

Yes No

BLRS (capability) Branch with Link to sealed capability Yes No

BLRS (pair of
capabilities)

Branch with Link to sealed capability Register with possible
switch to Restricted

Yes No

BR (indirect) Branch to capability Register No No

BR (memory indirect) Unseal load and branch No No

BRR Branch to capability Register with possible switch to Restricted No No

BRS (capability) Branch to sealed capability No No

BRS (pair of
capabilities)

Branch to sealed capability pair No No

LDPBLR Load Pair of capabilities and Branch with Link Yes No

LDPBR Load Pair of capabilities and Branch No No

RET Return from subroutine No No

RETR Return from subroutine with possible switch to Restricted No No

RETS (capability) Return to sealed capability No No

RETS (pair of
capabilities)

Return to sealed capability pair No No

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter 2. Capability architecture rules
2.16. The Embedded Trace Macrocell architecture

See also:

• Chapter D3, AArch64 Self-hosted Trace, Arm® Architecture Reference Manual, Armv8-A.
• Chapter 6.4.12, Address and Context tracing packets, Arm® Embedded Trace Macrocell Architecture Specifi-

cation.
• Chapter F.1.1, A64 Instruction set, Arm® Embedded Trace Macrocell Architecture Specification.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter 2. Capability architecture rules
2.17. Performance Monitoring Unit

2.17 Performance Monitoring Unit

RLCHRS The Morello architecture adds the following performance events, using the IMPLEMENTATION DEFINED events
space defined for an Armv8 implementation, 0x00C0-0x03FF.

Events added by the Morello architecture are in the range 0x0200-0x03FF.

Morello PMU events

0x0200, BR_MIS_PRED_RS Branch mispredict restricted.
The counter counts each correction to the predicted program flow that occurs because of a misprediction or
no prediction, and relates to switches between Restricted and Executive.

0x0201, BR_MIS_PRED_C64 Branch mispredict C64.
The counter counts each correction to the predicted program flow that occurs because of a misprediction or
no prediction, and relates to switches between A64 and C64.

0x0202, BR_MIS_PRED_SYS Branch mispredict system permission.
The counter counts each correction to the predicted program flow that occurs because of a misprediction or
no prediction, and relates to System permission.

0x0203, PCCRF_FULL PCC register file full.
The counter counts every cycle counted by the CPU_CYCLES event on which no operation was issued
because the PCC write tracking register file was full.

0x0204, EXECUTIVE_ENTRY Entry to Executive, Operations Speculatively Executed.
The counter counts speculatively executed operations that cause an entry into Executive.

0x0205, EXECUTIVE_EXIT Exit from Executive, Operations Speculatively Executed.
The counter counts speculatively executed operations that cause an exit from Executive.

0x0206, INST_SPEC_A64 Instructions in A64, Operations Speculatively Executed.
The counter counts speculatively executed operations due to all instructions in A64.

0x0207, INST_SPEC_C64 Instructions in C64, Operations Speculatively Executed.
The counter counts speculatively executed operations due to all instructions in C64.

0x0208, CID_EL0_WRITE_RETIRED Instruction architecturally executed, Write to CID_EL0.
The counter counts architecturally executed instructions which write to the Compartment ID Register.

0x0209, DDC_WRITE_RETIRED Instruction architecturally executed, Write to DDC_ELx, RDDC_EL0.
The counter counts architecturally executed instructions which write to any Default Data Capability.

0x020A, DDC_READ_SPEC Read from DDC_ELx, RDDC_EL0, Operations Speculatively Executed.
The counter counts speculatively executed operations which read from any Default Data Capability.

0x020B, INST_SPEC_CVTD CVTD Instructions, Operations Speculatively Executed.
The counter counts speculatively executed operations due to the following instructions:

• CVTD (not flag setting): Convert pointer to capability offset from DDC.
• CVTD (flag setting): Convert capability to pointer offset from DDC, setting flags.
• CVTDZ: Convert pointer to capability offset from DDC, with null capability from zero semantics.

0x020E, INST_SPEC_SCBNDS_NONEXACT SCBNDS or SCBNDSE Instructions which do not set exact
bounds, Operations Speculatively Executed.
The counter counts speculatively executed operations due to any of the following instructions not succeeding
in setting the requested bounds exactly:

• SCBNDS (register): Set Bounds (register).
• SCBNDS (immediate): Set Bounds (immediate).
• SCBNDSE: Set Bounds Exact.

0x020F, CDBM_SET_SC SC set due to CDBM.

The counter counts each setting of the permission bit to write Capability Tags to memory in a translation
table entry which is due to the CDBM bit being set.

0x0210, CAP_LD_SPEC Capability Load Instructions, Operations Speculatively Executed.

The counter counts speculatively executed operations due to Capability load instructions.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter 2. Capability architecture rules
2.17. Performance Monitoring Unit

0x0211, CAP_ST_SPEC Capability Store Instructions, Operations Speculatively Executed.

The counter counts speculatively executed operations due to Capability store instructions.

0x0212, CAP_ALT_LD_SPEC Alternate Base Capability Load Instructions, Operations Speculatively
Executed.

The counter counts speculatively executed operations due to Alternate Base Capability load instructions.

0x0213, CAP_ALT_ST_SPEC Alternate Base Capability Store Instructions, Operations Speculatively
Executed.

The counter counts speculatively executed operations due to Alternate Base Capability store instructions.

0x0214, ALT_LD_SPEC Alternate Base Load Instructions, Operations Speculatively Executed.

The counter counts speculatively executed operations due to Alternate Base load instructions.

0x0215, ALT_ST_SPEC Alternate Base Store Instructions, Operations Speculatively Executed.

The counter counts speculatively executed operations due to Alternate Base store instructions.

0x0216, LDCT_SPEC LDCT Instructions, Operations Speculatively Executed.

The counter counts speculatively executed operations due to Load Tags instructions.

0x0217, LDCT_NO_CAP_SPEC LDCT Instructions When Capability Tags are Zero, Operations Speculatively
Executed.

The counter counts speculatively executed operations due to Load Capability Tags instructions where the
Capability Tags to be loaded are all zero.

0x0218, DC_ZVA_RET Data Cache Zero.

The counter counts architecturally executed DC ZVA instructions.

0x021A, LDCT_REFILL Data cache refill due to LDCT, Operations Speculatively Executed.

The counter counts each access counted by L1D_CACHE that causes a demand refill of any cache due to
execution of an LDCT instruction.

0x021B, STCT_REFILL Data cache refill due to STCT, Operations Speculatively Executed.

The counter counts each access counted by L1D_CACHE that causes a demand refill of any cache due to
execution of an STCT instruction.

0x021C, L1D_CACHE_RD_CTAG Attributable Level 1 data cache access, read, valid capability.

The counter counts each access counted by L1D_CACHE_RD which loaded a valid capability.

0x021D, L1D_CACHE_WR_CTAG Attributable Level 1 data cache access, write, valid capability.

The counter counts each access counted by L1D_CACHE_WR which stored a valid capability.

0x021E, L1D_CACHE_WB_CTAG Attributable Level 1 data cache write-back, valid capability.

The counter counts each access counted by L1D_CACHE_WB where at least one valid capability was present
in the cache line.

0x021F, L1D_CACHE_REFILL_RD_CTAG Attributable Level 1 data cache refill, capability.

The counter counts each access counted by L1D_CACHE_REFILL_RD where at least one valid capability
was present in the cache line.

0x0220, L1D_CACHE_REFILL_WR_CTAG Attributable Level 1 data cache refill, capability.

The counter counts each access counted by L1D_CACHE_REFILL_WR where at least one valid capability
was present in the cache line.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter 2. Capability architecture rules
2.17. Performance Monitoring Unit

0x0221, L1D_CACHE_REFILL_INNER_CTAG Attributable Level 1 data cache refill, inner, valid capability.

The counter counts each access counted by L1D_CACHE_REFILL_INNER where at least one valid capability
was present in the cache line.

0x0222, L1D_CACHE_REFILL_OUTER_CTAG Attributable Level 1 data cache refill, outer, valid
capability.

The counter counts each access counted by L1D_CACHE_REFILL_OUTER where at least one valid
capability was present in the cache line.

0x0223, L1D_CACHE_WB_VICTIM_CTAG Attributable Level 1 data cache Write-Back, victim, valid
capability.

The counter counts each access counted by L1D_CACHE_WB_VICTIM where at least one valid capability
was present in the cache line.

0x0224, L1D_CACHE_WB_CLEAN_CTAG Attributable Level 1 data cache Write-Back, cleaning, and
coherency, valid capability.

The counter counts each access counted by L1D_CACHE_WB_CLEAN where at least one valid capability
was present in the cache line.

0x0226, L2D_CACHE_RD_CTAG Attributable Level 2 data cache access, read, valid capability.

The counter counts each access counted by L2D_CACHE_RD which loaded a valid Capability.

0x0227, L2D_CACHE_WR_CTAG Attributable Level 2 data cache access, write, valid capability.

The counter counts each access counted by L2D_CACHE_WR which stored a valid Capability.

0x0228, L2D_CACHE_REFILL_RD_CTAG Attributable Level 2 data cache refill, valid capability.

The counter counts each access counted by L2D_CACHE_REFILL_RD where at least one valid capability
was present in the cache line.

0x022A, L2D_CACHE_WB_VICTIM_CTAG Attributable Level 2 data cache Write-Back, victim, valid
capability.

The counter counts each access counted by L2D_CACHE_WB_VICTIM where at least one valid capability
was present in the cache line.

0x022B, L2D_CACHE_WB_CLEAN_CTAG Attributable Level 2 data cache Write-Back, cleaning and
coherency, valid capability.

The counter counts each access counted by L2D_CACHE_WB_CLEAN where at least one valid capability
was present in the cache line.

0x022C, L2D_CACHE_INVAL_CTAG Attributable Level 2 data cache invalidate, valid capability.

The counter counts each access counted by L2D_CACHE_INVAL where at least one valid capability was
present in the cache line.

0x022D, BUS_ACCESS_RD_CTAG Bus access, read, valid capability.

The counter counts each access counted by BUS_ACCESS_RD where a Capability Tag was set in at least
one beat of the access.

0x022E, BUS_ACCESS_WR_CTAG Bus access, write, valid capability.

The counter counts each access counted by BUS_ACCESS_WR where a Capability Tag was set in at least
one beat of the access.

0x022F, CNT_ST_ZERO_BYTE Store of zeros.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter 2. Capability architecture rules
2.17. Performance Monitoring Unit

In combination with the CNT_ST_ZERO_16TH_BYTE, the counter counts the number of bytes written
by architecturally executed store instructions, not including DC ZVA where only zeros are stored and not
including stores which store 16 bytes of zero.

0x0230, CNT_ST_ZERO_16_BYTES Store of zeros, 16 byte stores.

The counter counts when 16 bytes of zero are written by an architecturally executed store instruction.

0x0233, MEM_ACCESS_RD_CTAG Data memory access, read, valid capability.

The counter counts each access counted by MEM_ACCESS_RD where a Capability Tag was set in at least
one part of the access.

0x0234, MEM_ACCESS_WR_CTAG Data memory access, write, valid capability.

The counter counts each access counted by MEM_ACCESS_WR where a Capability Tag was set in at least
one part of the access.

0x0235, CAP_MEM_ACCESS_RD Data memory access, read, capability.

The counter counts each access counted by MEM_ACCESS_RD due to an instruction which loads a capability.
It is not sensitive to the validity of the capability.

0x0236, CAP_MEM_ACCESS_WR Data memory access, write, capability.

The counter counts each access counted by MEM_ACCESS_WR due to an instruction which stores a
capability. It is not sensitive to the validity of the capability.

0x0237, INST_SPEC_RESTRICTED Instructions in Restricted, Operations Speculatively Executed.

The counter counts speculatively executed operations due to all instructions in Restricted.

0x0238, LD_CAP_PERM_CLR_CTAG Load permission cleared, Operations Speculatively Executed.

The counter counts speculatively executed operations due to load instructions where the capability tag is
cleared due to the operation having been performed without LoadCap permission.

See also:

• Chapter D7.11.2 The PMU event number space and common events, Arm® Architecture Reference Manual,
Armv8-A.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter 2. Capability architecture rules
2.18. Statistical profiling extension

2.18 Statistical profiling extension

RFXNWM For the purpose of Statistical profiling, an LDCT instruction is treated as a load of capabilities.

RWCKHL For the purpose of Statistical profiling, an STCT instruction is treated as a store of capabilities.

RPWXRJ For the purpose of Statistical profiling, it is IMPLEMENTATION DEFINED whether LDPBR, LDPBLR,
BR (memory indirect), and BLR (memory indirect) are treated as one of the following:

• A load of capabilities or a branch.
• A load of capabilities and a branch.

2.18.1 The Statistical Profiling Buffer

RJYXCQ The writes to the Profiling Buffer are checked against DDC_ELx for the controlling Exception level, after capability
memory relocation is applied.

IPTYCB RJYXCQ means that the Profiling Buffer is associated with Executive state in the controlling Exception level.

RBDWLM The DDC_ELx base is added to the Profiling Buffer address defined by PMBPTR_EL1.

RDXDVH For a VA with capability memory relocation applied, the Address packet payload ADDR contains the
post-relocation VA.

RPPRMG For a VA with capability memory relocation applied, the buffer pointer value is relocated.

RJSDVB The Profiling Buffer full condition is determined using an unrelocated value derived from PMBPTR_EL1 and a
value taken from PMBLIMITR_EL1.

RDQDSZ Faults due to capability memory protection on buffer writes are reported in PMBPTR_EL1.

IXFNCQ Synchronous faults on writes to the Profiling Buffer are prioritized as described in Exception priorities section.

See also:

• Chapter D9.7.1 Restrictions on the current write pointer, Arm® Architecture Reference Manual, Armv8-A.
• Chapter D10.2.1 Address packet, Arm® Architecture Reference Manual, Armv8-A.

2.18.2 Statistical profiling extension packets

RBKFLY The following Operation Type packet payload (load/store) bit assignments are defined for subclasses:

SUBCLASS Description Bit assignments are same as

0b0010000x A load/store targeting 129-bit general-purpose registers General-purpose load/store

0b001xxx1x An atomic operation, load-acquire, store-release, or exclusive
targeting 129-bit general-purpose registers

An extended load/store

RYCMGT For the Address packet type, if the INDEX field is 0b00001, branch target address, the Address packet payload
ADDR[0] is always zero.

See also:

• Chapter D10.2.7 Operation Type packet, Arm® Architecture Reference Manual, Armv8-A.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter 2. Capability architecture rules
2.19. External debug

2.19 External debug

2.19.1 Entering Debug state

RXRJJB On entry to Debug state, all of the following apply:

• PCC is copied to CDLR_EL0 with the Capability Value set to the preferred restart address for the debug
event.

• PSTATE.C64 is copied to DSPSR_EL0.C64.
• PSTATE.C64 is set to 0.

All other behavior is as described in the Arm® Architecture Reference Manual, Armv8-A.

See also:

• Chapter H2.3 Entering Debug state, Arm® Architecture Reference Manual, Armv8-A.

2.19.2 Exiting Debug state

RYJBHN On exit from Debug state in ELx, if non-capability exception return from ELx is configured, the Morello architecture
changes the following aspects of the existing Armv8-A architecture:

• PCC is set to the Capability in CDLR_EL0.
• PSTATE.C64 is set to 0.

RLGDCX On exit from Debug state in ELx, if capability exception return from ELx is configured, the Morello architecture
changes the existing Armv8-A architecture in all of the following aspects:

• PCC is set to the Capability in CDLR_EL0.
• If the Debug state exit is an illegal exception return, PSTATE.C64 is left unchanged.
• If the Debug state exit is not an illegal exception return, and is to an Exception level where access to the

Morello architecture is not trapped, DSPSR_EL0.C64 is copied to PSTATE.C64.
• If the Debug state exit is not an illegal exception return, and is to an Exception level where access to the

Morello architecture is trapped, PSTATE.C64 is set to 0.

See also:

• Chapter H2.5 Exiting Debug state, Arm® Architecture Reference Manual, Armv8-A.

2.19.3 Executing instructions in Debug state

RHLGQQ If the PE is in Debug state, all of the following are true:

• The PE is treated as if in Executive.
• System permission of PCC is treated as 1.
• PCC is UNKNOWN.

RQHCRC A write to DLR_EL0 writes to bits [63:0] of CDLR_EL0. It does not change CDLR_EL0 [128:64].

IVNPCB The effect of a write to DLR_EL0 on CDLR_EL0 differs to a write to other System registers using a 64-bit access
view. This permits a Morello-unaware external debugger to correctly modify the return address without overwriting
the rest of the preserved PCC.

2.19.4 Instructions in Debug state

Instructions changed in Debug state

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter 2. Capability architecture rules
2.19. External debug

RQYDGQ On executing an instruction other than MSR, where the Armv8-A architecture defines the behavior of the instruction
as setting DLR_EL0 to an UNKNOWN value, this behavior is changed by the Morello architecture to preserve the
original value of DLR_EL0.

IZLCRF The change described in RQYDGQ applies in cases where executing an instruction in Debug state is described as
CONSTRAINED UNPREDICTABLE in the Armv8-A architecture. One or more of these permitted behaviors include
the setting of DLR_EL0 to an UNKNOWN value. All other aspects of the permitted behaviors are as defined in the
Armv8-A architecture.

RNVSTF On executing a DCPSx instruction, the Morello architecture changes the following aspects of the existing Armv8-A
architecture:

• CCTLR_ELx.C64E is copied to PSTATE.C64.
• DLR_EL0 is left unchanged.

RRQDKQ If non-capability exception return from ELx is configured, on executing a DRPS instruction in ELx, the Morello
architecture changes the following aspects of the existing Armv8-A architecture:

• PSTATE.C64 is set to 0.
• DLR_EL0 is left unchanged.

If capability exception return is configured for ELx, on executing a DRPS instruction in ELx, the Morello
architecture changes the existing Armv8-A architecture in all of the following aspects:

• If the exception return is to an Exception level where access to the Morello architecture is not trapped,
SPSR_ELx.C64 is copied to PSTATE.C64.

• If the exception return is to an Exception level where access to the Morello architecture is trapped,
PSTATE.C64 is set to 0.

• DLR_EL0 is left unchanged.

Instructions added in Debug state

IVLXZM The availability of existing instructions in Debug state is unchanged.

RSBYXB The following instructions added by Morello are available in Debug state:

• Add (immediate).
• Subtract (immediate).
• Move from Capability register to System register.
• Move from System register to Capability register.
• Move from Capability register to Special-purpose Capability register.
• Move from Special-purpose Capability register to Capability register.
• Load and store of all data types with and without alternate mode base, other than literal and non-exclusive

pair forms.
• Load and store of Capability Tags.
• All atomics.
• Copy From High.
• Copy To High.
• Set the Capability Tag field.
• Get the Tag field of a capability.
• Copy Capability register.
• Load and store of Capability single or exclusive, with or without acquire or release.
• Set Value field of a capability.
• Branch Exchange.

If an instruction added by the Morello architecture is not available in the Debug state, the instruction is CON-
STRAINED UNPREDICTABLE and behaves in one of the following ways:

• It is UNDEFINED.
• It executes as a NOP.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter 2. Capability architecture rules
2.19. External debug

• It has the same behavior as in Non-debug state with instructions that read the PC, PCC, or PSTATE fields
using an UNKNOWN value for those registers or fields.

RTCMPQ The following instructions are defined in Debug state, and are UNDEFINED in Non-debug state:

• MRS Cd, CDLR_EL0.
• MRS Cd, CDBGDTR_EL0.
• MSR CDLR_EL0, Cn.
• MSR CDBGDTR_EL0, Cn.

2.19.5 Debug Communications Channel (DCC) access

IXHSMC Three 32-bit external Debug registers allow external debug to access the Morello architecture within the PE.

DCC and capabilities

RVYGYG In Debug state, software can transfer a capability to or from external debug by accessing CDBGDTR_EL0.

RBKDHS In Debug state, external debug can transfer a capability to or from software by accessing the following 32-bit
External Debug registers:

• DTRTX.
• DTRRX.
• DBGDTR2A.
• DBGDTR2B.
• EDSCR2.

Memory access mode

INTSWF If the PE is in Debug state and in Memory access mode, and when PSTATE.C64 is 0, memory access is subject to
capability memory relocation.

RRTTJG If the PE is in Debug state and in Memory access mode and when PSTATE.C64 is 1, the Morello architecture
changes all of the following from the base architecture:

• External reads from DBGDTRTX_EL0 causes the equivalent of LDR W1, [C0], #4 to be executed.
• External writes to DBGDTRRX_EL0 causes the equivalent of STR W1, [C0], #4 to be executed.

See also:

• Chapter H4.3.2, Memory access mode, Arm® Architecture Reference Manual, Armv8-A: behavior resulted
from an access by the external debug interface.

• 2.7.2 Capability memory protection
• 2.8 Capability memory relocation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter 3
Register definitions

3.1 Register index

IXHWZG This chapter describes the following:

• The base architecture registers extended by the Morello architecture.
• The new registers added in the Morello architecture.

Registers described in this document

IJMGWF Be aware of the following when reading the descriptions of the registers for the base architecture in this supplement:

The register descriptions include references to AArch32, which do not apply in Morello.

Registers that are extended in the Morello architecture to be 129-bit include new accessor descriptions that use the
name prefixed with a ‘C’.

Effects of System permission

IKHTDY This chapter does not include detailed descriptions of registers defined in the base architecture where the only
change in the Morello architecture is the addition of access controls due to System permission.

For a register that can be accessed at EL0 or EL1, the following code is added to the accessibility pseudocode:
1 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
2 if TargetELForCapabilityExceptions() == EL1 then
3 AArch64.SystemAccessTrap(EL1, 0x18);
4 elsif TargetELForCapabilityExceptions() == EL2 then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 AArch64.SystemAccessTrap(EL3, 0x18);

For a register that can be accessed at EL2, the following code is added to the accessibility pseudocode:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter 3. Register definitions
3.1. Register index

1 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
2 if TargetELForCapabilityExceptions() == EL2 then
3 AArch64.SystemAccessTrap(EL2, 0x18);
4 else
5 AArch64.SystemAccessTrap(EL3, 0x18);

For a register that can be accessed at EL3, the following code is added to the accessibility pseudocode:
1 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
2 AArch64.SystemAccessTrap(EL3, 0x18);

3.1.1 AArch64 registers

Name Description

CCTLR_EL0 Capability Control Register (EL0)

CCTLR_EL1 Capability Control Register (EL1)

CCTLR_EL2 Capability Control Register (EL2)

CCTLR_EL3 Capability Control Register (EL3)

CDBGDTR_EL0 Capability Debug Data Transfer Register, half-duplex

CDLR_EL0 Capability Debug Link Register

CHCR_EL2 Capability Hypervisor Configuration Register

CID_EL0 Compartment ID Register

CNTVCT_EL0 Counter-timer Virtual Count register

CPACR_EL1 Architectural Feature Access Control Register

CPTR_EL2 Architectural Feature Trap Register (EL2)

CPTR_EL3 Architectural Feature Trap Register (EL3)

DDC_EL0 Default Data Capability (EL0)

DDC_EL1 Default Data Capability (EL1)

DDC_EL2 Default Data Capability (EL2)

DDC_EL3 Default Data Capability (EL3)

DSPSR_EL0 Debug Saved Program Status Register

ELR_EL1 Exception Link Register (EL1)

ELR_EL2 Exception Link Register (EL2)

ELR_EL3 Exception Link Register (EL3)

ESR_EL1 Exception Syndrome Register (EL1)

ESR_EL2 Exception Syndrome Register (EL2)

ESR_EL3 Exception Syndrome Register (EL3)

FAR_EL1 Fault Address Register (EL1)

FAR_EL2 Fault Address Register (EL2)

FAR_EL3 Fault Address Register (EL3)

ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter 3. Register definitions
3.1. Register index

Name Description

PMBSR_EL1 Profiling Buffer Status/syndrome Register

RDDC_EL0 Restricted Default Data Capability

RSP_EL0 Restricted Stack Pointer

RTPIDR_EL0 Restricted Read/Write Software Thread ID Register

SP_EL0 Stack Pointer (EL0)

SP_EL1 Stack Pointer (EL0)

SP_EL2 Stack Pointer (EL0)

SP_EL3 Stack Pointer (EL0)

SPSR_EL1 Saved Program Status Register (EL1)

SPSR_EL2 Saved Program Status Register (EL2)

SPSR_EL3 Saved Program Status Register (EL3)

TPIDR_EL0 EL0 Read/Write Software Thread ID Register

TPIDR_EL1 EL1 Software Thread ID Register

TPIDR_EL2 EL2 Software Thread ID Register

TPIDR_EL3 EL3 Software Thread ID Register

TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register

VBAR_EL1 Vector Base Address Register (EL1)

VBAR_EL2 Vector Base Address Register (EL2)

VBAR_EL3 Vector Base Address Register (EL3)

3.1.2 Changes to existing registers

Name Description

CNTVCT_EL0 Counter-timer Virtual Count register

CPACR_EL1 Architectural Feature Access Control Register

CPTR_EL2 Architectural Feature Trap Register (EL2)

CPTR_EL3 Architectural Feature Trap Register (EL3)

DSPSR_EL0 Debug Saved Program Status Register

ELR_EL1 Exception Link Register (EL1)

ELR_EL2 Exception Link Register (EL2)

ELR_EL3 Exception Link Register (EL3)

ESR_EL1 Exception Syndrome Register (EL1)

ESR_EL2 Exception Syndrome Register (EL2)

ESR_EL3 Exception Syndrome Register (EL3)

FAR_EL1 Fault Address Register (EL1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter 3. Register definitions
3.1. Register index

Name Description

FAR_EL2 Fault Address Register (EL2)

FAR_EL3 Fault Address Register (EL3)

ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1

PMBSR_EL1 Profiling Buffer Status/syndrome Register

SP_EL0 Stack Pointer (EL0)

SP_EL1 Stack Pointer (EL0)

SP_EL2 Stack Pointer (EL0)

SP_EL3 Stack Pointer (EL0)

SPSR_EL1 Saved Program Status Register (EL1)

SPSR_EL2 Saved Program Status Register (EL2)

SPSR_EL3 Saved Program Status Register (EL3)

TPIDR_EL0 EL0 Read/Write Software Thread ID Register

TPIDR_EL1 EL1 Software Thread ID Register

TPIDR_EL2 EL2 Software Thread ID Register

TPIDR_EL3 EL3 Software Thread ID Register

TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register

VBAR_EL1 Vector Base Address Register (EL1)

VBAR_EL2 Vector Base Address Register (EL2)

VBAR_EL3 Vector Base Address Register (EL3)

3.1.3 New registers added by Morello

Name Description

CCTLR_EL0 Capability Control Register (EL0)

CCTLR_EL1 Capability Control Register (EL1)

CCTLR_EL2 Capability Control Register (EL2)

CCTLR_EL3 Capability Control Register (EL3)

CDBGDTR_EL0 Capability Debug Data Transfer Register, half-duplex

CDLR_EL0 Capability Debug Link Register

CHCR_EL2 Capability Hypervisor Configuration Register

CID_EL0 Compartment ID Register

DDC_EL0 Default Data Capability (EL0)

DDC_EL1 Default Data Capability (EL1)

DDC_EL2 Default Data Capability (EL2)

DDC_EL3 Default Data Capability (EL3)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Name Description

RDDC_EL0 Restricted Default Data Capability

RSP_EL0 Restricted Stack Pointer

RTPIDR_EL0 Restricted Read/Write Software Thread ID Register

3.1.4 External registers

Name Description

DBGDTR2A Debug Data Transfer Register 2A

DBGDTR2B Debug Data Transfer Register 2B

EDSCR2 External Debug Status and Control Register 2

3.2 Alphabetical list of registers

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.1 CCTLR_EL0, Capability Control Register (EL0)

The CCTLR_EL0 characteristics are:

Purpose

Provides control of capability-related functionality at EL0.

Attributes

CCTLR_EL0 is a 64-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to CCTLR_EL0
are UNDEFINED.

Field descriptions

The CCTLR_EL0 bit assignments are:

RES0

63 32

RES0

31 8 7 6

0

5 4 3 2

RES0

1 0

SBL
PERMVCT

DDCBO
PCCBO

ADRDPB

Bits [63:8]

Reserved, RES0.

SBL, bit [7]

Controls whether branch-and-link instructions at EL0 seal the capability generated in C30.

Controls whether the following instructions at EL0 require a target capability with ObjectType set to 1:

BLRR, BLRS (capability), BRR, BRS (capability), RETR, RETS (capability).

Value Meaning

0b0 Branch-and-link instructions which generate a capability in C30 do
not seal the capability.
The specified instructions do not require a target capability with
ObjectType set to 1.

0b1 Branch-and-link instructions which generate a capability in C30 seal
the generated capability with ObjectType set to 1.
The specified instructions require a target capability with ObjectType
set to 1.

This field resets to an architecturally UNKNOWN value.

PERMVCT, bit [6]

Permits access to CNTVCT_EL0 without PCC System permission at EL0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Access to CNTVCT_EL0 at EL0 requires PCC System permission

0b1 This field has no effect

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

ADRDPB, bit [4]

ADRDP instruction base register selection at EL0

Value Meaning

0b0 ADRDP uses DDC as a base register

0b1 ADRDP uses C28 as a base register

This field resets to an architecturally UNKNOWN value.

PCCBO, bit [3]

PCC base offset enable for A64 instructions writing PC or generating a PC derived 64-bit value at EL0

Value Meaning

0b0 Accesses do not add PCC base to the address written to PC, and do
not subtract PCC base from the address read from PCC.

0b1 Accesses add PCC base to the address written to PC, and subtract
PCC base from the address read from PCC.

Note: this affects the following instructions:

• BR Xn

• RET Xn

• BL imm (the value written to LR)

• BLR Xn (both the Xn and LR values)

• ADR(P) Xd, label

This field resets to an architecturally UNKNOWN value.

DDCBO, bit [2]

DDC base offset enable for accesses using a 64-bit base register at EL0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Accesses do not add or subtract DDC base from the accessed address.

0b1 Accesses add or subtract DDC base from the accessed address,
depending on the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the CCTLR_EL0

Read using name CCTLR_EL0

The assembler syntax is:

MRS <Xt>, CCTLR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
3 if TargetELForCapabilityExceptions() == EL1 then
4 AArch64.SystemAccessTrap(EL1, 0x18);
5 elsif TargetELForCapabilityExceptions() == EL2 then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
10 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 else
13 AArch64.SystemAccessTrap(EL1, 0x29);
14 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
15 AArch64.SystemAccessTrap(EL2, 0x29);
16 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
17 AArch64.SystemAccessTrap(EL2, 0x29);
18 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
19 AArch64.SystemAccessTrap(EL2, 0x29);
20 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
21 AArch64.SystemAccessTrap(EL3, 0x29);
22 else
23 return CCTLR_EL0;
24 elsif PSTATE.EL == EL1 then
25 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
26 if TargetELForCapabilityExceptions() == EL1 then
27 AArch64.SystemAccessTrap(EL1, 0x18);
28 elsif TargetELForCapabilityExceptions() == EL2 then
29 AArch64.SystemAccessTrap(EL2, 0x18);
30 else
31 AArch64.SystemAccessTrap(EL3, 0x18);
32 elsif CPACR_EL1.CEN == 'x0' then
33 AArch64.SystemAccessTrap(EL1, 0x29);
34 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
35 AArch64.SystemAccessTrap(EL2, 0x29);
36 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
37 AArch64.SystemAccessTrap(EL2, 0x29);
38 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter 3. Register definitions
3.2. Alphabetical list of registers

39 AArch64.SystemAccessTrap(EL3, 0x29);
40 else
41 return CCTLR_EL0;
42 elsif PSTATE.EL == EL2 then
43 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
44 if TargetELForCapabilityExceptions() == EL2 then
45 AArch64.SystemAccessTrap(EL2, 0x18);
46 else
47 AArch64.SystemAccessTrap(EL3, 0x18);
48 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
49 AArch64.SystemAccessTrap(EL2, 0x29);
50 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
51 AArch64.SystemAccessTrap(EL2, 0x29);
52 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
53 AArch64.SystemAccessTrap(EL3, 0x29);
54 else
55 return CCTLR_EL0;
56 elsif PSTATE.EL == EL3 then
57 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
58 AArch64.SystemAccessTrap(EL3, 0x18);
59 elsif CPTR_EL3.EC == '0' then
60 AArch64.SystemAccessTrap(EL3, 0x29);
61 else
62 return CCTLR_EL0;

Write using name CCTLR_EL0

The assembler syntax is:

MSR CCTLR_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
3 if TargetELForCapabilityExceptions() == EL1 then
4 AArch64.SystemAccessTrap(EL1, 0x18);
5 elsif TargetELForCapabilityExceptions() == EL2 then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
10 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 else
13 AArch64.SystemAccessTrap(EL1, 0x29);
14 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
15 AArch64.SystemAccessTrap(EL2, 0x29);
16 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
17 AArch64.SystemAccessTrap(EL2, 0x29);
18 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
19 AArch64.SystemAccessTrap(EL2, 0x29);
20 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
21 AArch64.SystemAccessTrap(EL3, 0x29);
22 else
23 CCTLR_EL0 = X[t];
24 elsif PSTATE.EL == EL1 then
25 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
26 if TargetELForCapabilityExceptions() == EL1 then
27 AArch64.SystemAccessTrap(EL1, 0x18);
28 elsif TargetELForCapabilityExceptions() == EL2 then
29 AArch64.SystemAccessTrap(EL2, 0x18);
30 else
31 AArch64.SystemAccessTrap(EL3, 0x18);
32 elsif CPACR_EL1.CEN == 'x0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter 3. Register definitions
3.2. Alphabetical list of registers

33 AArch64.SystemAccessTrap(EL1, 0x29);
34 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
35 AArch64.SystemAccessTrap(EL2, 0x29);
36 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
37 AArch64.SystemAccessTrap(EL2, 0x29);
38 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x29);
40 else
41 CCTLR_EL0 = X[t];
42 elsif PSTATE.EL == EL2 then
43 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
44 if TargetELForCapabilityExceptions() == EL2 then
45 AArch64.SystemAccessTrap(EL2, 0x18);
46 else
47 AArch64.SystemAccessTrap(EL3, 0x18);
48 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
49 AArch64.SystemAccessTrap(EL2, 0x29);
50 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
51 AArch64.SystemAccessTrap(EL2, 0x29);
52 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
53 AArch64.SystemAccessTrap(EL3, 0x29);
54 else
55 CCTLR_EL0 = X[t];
56 elsif PSTATE.EL == EL3 then
57 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
58 AArch64.SystemAccessTrap(EL3, 0x18);
59 elsif CPTR_EL3.EC == '0' then
60 AArch64.SystemAccessTrap(EL3, 0x29);
61 else
62 CCTLR_EL0 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.2 CCTLR_EL1, Capability Control Register (EL1)

The CCTLR_EL1 characteristics are:

Purpose

Provides control of capability-related functionality at EL1.

Attributes

CCTLR_EL1 is a 64-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to CCTLR_EL1
are UNDEFINED.

Field descriptions

The CCTLR_EL1 bit assignments are:

RES0

63 32

RES0

31 8 7 6 5 4 3 2 1 0

SBL
PERMVCT

C64E
ADRDPB

TGEN0
TGEN1

DDCBO
PCCBO

Bits [63:8]

Reserved, RES0.

SBL, bit [7]

Controls whether branch-and-link instructions at EL1 seal the capability generated in C30.

Controls whether the following instructions at EL1 require a target capability with ObjectType set to 1:

BLRR, BLRS (capability), BRR, BRS (capability), RETR, RETS (capability).

Value Meaning

0b0 Branch-and-link instructions which generate a capability in C30 do
not seal the capability.
The specified instructions do not require a target capability with
ObjectType set to 1.

0b1 Branch-and-link instructions which generate a capability in C30 seal
the generated capability with ObjectType set to 1.
The specified instructions require a target capability with ObjectType
set to 1.

This field resets to an architecturally UNKNOWN value.

PERMVCT, bit [6]

Permits access to CNTVCT_EL0 without PCC System permission at EL1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Access to CNTVCT_EL0 at EL1 requires PCC System permission

0b1 This field has no effect

This field resets to an architecturally UNKNOWN value.

C64E, bit [5]

Capability mode on exception entry to EL1

Value Meaning

0b0 On exception entry PSTATE.C64 is set to 0.

0b1 On exception entry PSTATE.C64 is set to 1.

This field resets to 0b0.

ADRDPB, bit [4]

ADRDP instruction base register selection at EL1

Value Meaning

0b0 ADRDP uses DDC as a base register

0b1 ADRDP uses C28 as a base register

This field resets to an architecturally UNKNOWN value.

PCCBO, bit [3]

PCC base offset enable for A64 instructions writing PC or generating a PC derived 64-bit value at EL1

Value Meaning

0b0 Accesses do not add PCC base to the address written to PC, and do
not subtract PCC base from the address read from PCC.

0b1 Accesses add PCC base to the address written to PC, and subtract
PCC base from the address read from PCC.

Note: this affects the following instructions:

• BR Xn

• RET Xn

• BL imm (the value written to LR)

• BLR Xn (both the Xn and LR values)

• ADR(P) Xd, label

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

DDCBO, bit [2]

DDC base offset enable for accesses using a 64-bit base register at EL1

Value Meaning

0b0 Accesses do not add or subtract DDC base from the accessed address.

0b1 Accesses add or subtract DDC base from the accessed address,
depending on the instruction.

This field resets to an architecturally UNKNOWN value.

TGEN1, bit [1]

Tag generation bit for TTBR1_EL1 based memory accesses

Value Meaning

0b0 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b11.

0b1 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b10.

This field resets to an architecturally UNKNOWN value.

TGEN0, bit [0]

Tag generation bit for TTBR0_EL1 based memory accesses

Value Meaning

0b0 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b11.

0b1 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b10.

This field resets to an architecturally UNKNOWN value.

Accessing the CCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CCTLR_EL1
or CCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name CCTLR_EL1

The assembler syntax is:

MRS <Xt>, CCTLR_EL1

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return CCTLR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 return CCTLR_EL2;
35 else
36 return CCTLR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return CCTLR_EL1;

Write using name CCTLR_EL1

The assembler syntax is:

MSR CCTLR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 CCTLR_EL1 = X[t];
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 CCTLR_EL2 = X[t];
35 else
36 CCTLR_EL1 = X[t];
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 CCTLR_EL1 = X[t];

Read using name CCTLR_EL12

The assembler syntax is:

MRS <Xt>, CCTLR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 return CCTLR_EL1;
18 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter 3. Register definitions
3.2. Alphabetical list of registers

19 UNDEFINED;
20 elsif PSTATE.EL == EL3 then
21 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 AArch64.SystemAccessTrap(EL3, 0x18);
24 elsif CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 return CCTLR_EL1;
28 else
29 UNDEFINED;

Write using name CCTLR_EL12

The assembler syntax is:

MSR CCTLR_EL12, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 CCTLR_EL1 = X[t];
18 else
19 UNDEFINED;
20 elsif PSTATE.EL == EL3 then
21 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 AArch64.SystemAccessTrap(EL3, 0x18);
24 elsif CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 CCTLR_EL1 = X[t];
28 else
29 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.3 CCTLR_EL2, Capability Control Register (EL2)

The CCTLR_EL2 characteristics are:

Purpose

Provides control of capability-related functionality at EL2.

Attributes

CCTLR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when Morello is implemented. Otherwise, direct accesses to CCTLR_EL2
are UNDEFINED.

Field descriptions

The CCTLR_EL2 bit assignments are:

RES0

63 32

RES0

31 8 7 6 5 4 3 2 1 0

SBL
PERMVCT

C64E
ADRDPB

TGEN0
TGEN1

DDCBO
PCCBO

Bits [63:8]

Reserved, RES0.

SBL, bit [7]

Controls whether branch-and-link instructions at EL2 seal the capability generated in C30.

Controls whether the following instructions at EL2 require a target capability with ObjectType set to 1:

BLRR, BLRS (capability), BRR, BRS (capability), RETR, RETS (capability).

Value Meaning

0b0 Branch-and-link instructions which generate a capability in C30 do
not seal the capability.
The specified instructions do not require a target capability with
ObjectType set to 1.

0b1 Branch-and-link instructions which generate a capability in C30 seal
the generated capability with ObjectType set to 1.
The specified instructions require a target capability with ObjectType
set to 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

PERMVCT, bit [6]

Permits access to CNTVCT_EL0 without PCC System permission at EL2

Value Meaning

0b0 Access to CNTVCT_EL0 at EL2 requires PCC System permission

0b1 This field has no effect

This field resets to an architecturally UNKNOWN value.

C64E, bit [5]

Capability mode on exception entry to EL2

Value Meaning

0b0 On exception entry PSTATE.C64 is set to 0.

0b1 On exception entry PSTATE.C64 is set to 1.

This field resets to 0b0.

ADRDPB, bit [4]

ADRDP instruction base register selection at EL2

Value Meaning

0b0 ADRDP uses DDC as a base register

0b1 ADRDP uses C28 as a base register

This field resets to an architecturally UNKNOWN value.

PCCBO, bit [3]

PCC base offset enable for A64 instructions writing PC or generating a PC derived 64-bit value at EL2

Value Meaning

0b0 Accesses do not add PCC base to the address written to PC, and do
not subtract PCC base from the address read from PCC.

0b1 Accesses add PCC base to the address written to PC, and subtract
PCC base from the address read from PCC.

Note: this affects the following instructions:

• BR Xn

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• RET Xn

• BL imm (the value written to LR)

• BLR Xn (both the Xn and LR values)

• ADR(P) Xd, label

This field resets to an architecturally UNKNOWN value.

DDCBO, bit [2]

DDC base offset enable for accesses using a 64-bit base register at EL2

Value Meaning

0b0 Accesses do not add or subtract DDC base from the accessed address.

0b1 Accesses add or subtract DDC base from the accessed address,
depending on the instruction.

This field resets to an architecturally UNKNOWN value.

TGEN1, bit [1]

When ARMv8.1-VHE is implemented and HCR_EL2.E2H == 1:

Tag generation bit for TTBR1_EL2 based accesses

Value Meaning

0b0 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b11.

0b1 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b10.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TGEN0, bit [0]

Tag generation bit for TTBR0_EL2 based accesses

Value Meaning

0b0 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b11.

0b1 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b10.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the CCTLR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CCTLR_EL2
or CCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name CCTLR_EL2

The assembler syntax is:

MRS <Xt>, CCTLR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return CCTLR_EL2;
19 elsif PSTATE.EL == EL3 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x18);
22 elsif CPTR_EL3.EC == '0' then
23 AArch64.SystemAccessTrap(EL3, 0x29);
24 else
25 return CCTLR_EL2;

Write using name CCTLR_EL2

The assembler syntax is:

MSR CCTLR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 CCTLR_EL2 = X[t];
19 elsif PSTATE.EL == EL3 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x18);
22 elsif CPTR_EL3.EC == '0' then
23 AArch64.SystemAccessTrap(EL3, 0x29);
24 else
25 CCTLR_EL2 = X[t];

Read using name CCTLR_EL1

The assembler syntax is:

MRS <Xt>, CCTLR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return CCTLR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 return CCTLR_EL2;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter 3. Register definitions
3.2. Alphabetical list of registers

35 else
36 return CCTLR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return CCTLR_EL1;

Write using name CCTLR_EL1

The assembler syntax is:

MSR CCTLR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 CCTLR_EL1 = X[t];
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 CCTLR_EL2 = X[t];
35 else
36 CCTLR_EL1 = X[t];
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 CCTLR_EL1 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.4 CCTLR_EL3, Capability Control Register (EL3)

The CCTLR_EL3 characteristics are:

Purpose

Provides control of capability-related functionality at EL3.

Attributes

CCTLR_EL3 is a 64-bit register.

Configuration

This register is present only when Morello is implemented and HaveEL(EL3). Otherwise, direct
accesses to CCTLR_EL3 are UNDEFINED.

Field descriptions

The CCTLR_EL3 bit assignments are:

RES0

63 32

RES0

31 8 7 6 5 4 3 2

0

1 0

SBL
PERMVCT

C64E

TGEN0
DDCBO

PCCBO
ADRDPB

Bits [63:8]

Reserved, RES0.

SBL, bit [7]

Controls whether branch-and-link instructions at EL3 seal the capability generated in C30.

Controls whether the following instructions at EL3 require a target capability with ObjectType set to 1:

BLRR, BLRS (capability), BRR, BRS (capability), RETR, RETS (capability).

Value Meaning

0b0 Branch-and-link instructions which generate a capability in C30 do
not seal the capability.
The specified instructions do not require a target capability with
ObjectType set to 1.

0b1 Branch-and-link instructions which generate a capability in C30 seal
the generated capability with ObjectType set to 1.
The specified instructions require a target capability with ObjectType
set to 1.

This field resets to an architecturally UNKNOWN value.

PERMVCT, bit [6]

Permits access to CNTVCT_EL0 without PCC System permission at EL3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Access to CNTVCT_EL0 at EL3 requires PCC System permission

0b1 This field has no effect

This field resets to an architecturally UNKNOWN value.

C64E, bit [5]

Capability mode on exception entry to EL3

Value Meaning

0b0 On exception entry PSTATE.C64 is set to 0.

0b1 On exception entry PSTATE.C64 is set to 1.

This field resets to 0b0.

ADRDPB, bit [4]

ADRDP instruction base register selection at EL3

Value Meaning

0b0 ADRDP uses DDC as a base register

0b1 ADRDP uses C28 as a base register

This field resets to an architecturally UNKNOWN value.

PCCBO, bit [3]

PCC base offset enable for A64 instructions writing PC or generating a PC derived 64-bit value at EL3

Value Meaning

0b0 Accesses do not add PCC base to the address written to PC, and do
not subtract PCC base from the address read from PCC.

0b1 Accesses add PCC base to the address written to PC, and subtract
PCC base from the address read from PCC.

Note: this affects the following instructions:

• BR Xn

• RET Xn

• BL imm (the value written to LR)

• BLR Xn (both the Xn and LR values)

• ADR(P) Xd, label

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

DDCBO, bit [2]

DDC base offset enable for accesses using a 64-bit base register at EL3

Value Meaning

0b0 Accesses do not add or subtract DDC base from the accessed address.

0b1 Accesses add or subtract DDC base from the accessed address,
depending on the instruction.

This field resets to an architecturally UNKNOWN value.

Bit [1]

Reserved, RES0.

TGEN0, bit [0]

Tag generation bit for TTBR0_EL3 based accesses

Value Meaning

0b0 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b11.

0b1 Generates a fault when loading a valid capability from memory
where the Block and Page descriptor LC field is 0b10.

This field resets to an architecturally UNKNOWN value.

Accessing the CCTLR_EL3

Read using name CCTLR_EL3

The assembler syntax is:

MRS <Xt>, CCTLR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter 3. Register definitions
3.2. Alphabetical list of registers

9 AArch64.SystemAccessTrap(EL3, 0x18);
10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return CCTLR_EL3;

Write using name CCTLR_EL3

The assembler syntax is:

MSR CCTLR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 CCTLR_EL3 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.5 CDBGDTR_EL0, Capability Debug Data Transfer Register, half-duplex

The CDBGDTR_EL0 characteristics are:

Purpose

Transfers 129 bits of data between the PE and an external debugger. Can transfer both ways using only
a single register.

Attributes

CDBGDTR_EL0 is a 129-bit register.

Configuration

AArch64 System register CDBGDTR_EL0[63:0] is architecturally mapped to AArch64 System register
DBGDTR_EL0[63:0].

AArch64 System register CDBGDTR_EL0[128] is architecturally mapped to External register
EDSCR2[0].

AArch64 System register CDBGDTR_EL0[127:96] is architecturally mapped to External register
DBGDTR2B[31:0].

AArch64 System register CDBGDTR_EL0[95:64] is architecturally mapped to External register
DBGDTR2A[31:0].

AArch64 System register CDBGDTR_EL0[63:32] is architecturally mapped to AArch32 System
register DBGDTRRXint[31:0]when written.

AArch64 System register CDBGDTR_EL0[63:32] is architecturally mapped to External register
DBGDTRRX_EL0[31:0]when written.

AArch64 System register CDBGDTR_EL0[63:32] is architecturally mapped to AArch64 System
register DBGDTRRX_EL0[31:0]when written.

AArch64 System register CDBGDTR_EL0[31:0] is architecturally mapped to AArch32 System register
DBGDTRTXint[31:0]when written.

AArch64 System register CDBGDTR_EL0[31:0] is architecturally mapped to External register
DBGDTRTX_EL0[31:0]when written.

AArch64 System register CDBGDTR_EL0[31:0] is architecturally mapped to AArch64 System register
DBGDTRTX_EL0[31:0]when written.

AArch64 System register CDBGDTR_EL0[63:32] is architecturally mapped to AArch32 System
register DBGDTRTXint[31:0]when read.

AArch64 System register CDBGDTR_EL0[63:32] is architecturally mapped to External register
DBGDTRTX_EL0[31:0]when read.

AArch64 System register CDBGDTR_EL0[63:32] is architecturally mapped to AArch64 System
register DBGDTRTX_EL0[31:0]when read.

AArch64 System register CDBGDTR_EL0[31:0] is architecturally mapped to AArch32 System register
DBGDTRRXint[31:0]when read.

AArch64 System register CDBGDTR_EL0[31:0] is architecturally mapped to External register
DBGDTRRX_EL0[31:0]when read.

AArch64 System register CDBGDTR_EL0[31:0] is architecturally mapped to AArch64 System register
DBGDTRRX_EL0[31:0]when read.

This register is present only when Morello is implemented. Otherwise, direct accesses to
CDBGDTR_EL0 are UNDEFINED.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Field descriptions

The CDBGDTR_EL0 bit assignments are:

128128

127 96

95 64

63 32

31 0

Bits [128:0]

Writes to this register set:

• EDSCR2.DTRTAG to bit[128] of this field

• DTR2B to bits[127:96] of this field

• DTR2A to bits[95:64] of this field

• DTRRX to bits[63:32] of this field

• DTRTX to bits[31:0] of this field

• TXfull to 1

If RXfull is set to 1, reads of this register return:

• EDSCR2.DTRTAG in bit[128] of this field

• DTR2B in bits[127:96] of this field

• DTR2A in bits[95:64] of this field

• DTRTX in bits[63:32] of this field

• DTRRX in bits[31:0] of this field

If RXfull is set to 0, reads of this register return an UNKNOWN value.

After the read, RXfull is cleared to 0.

Accessing the CDBGDTR_EL0

Read using name CDBGDTR_EL0

The assembler syntax is:

MRS <Ct>, CDBGDTR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0100 0b000

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if !Halted() then
2 UNDEFINED;
3 elsif PSTATE.EL == EL0 then
4 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return CDBGDTR_EL0;
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return CDBGDTR_EL0;
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 return CDBGDTR_EL0;
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return CDBGDTR_EL0;

Write using name CDBGDTR_EL0

The assembler syntax is:

MSR CDBGDTR_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b10 0b011 0b0000 0b0100 0b000

Accessibility:
1 if !Halted() then
2 UNDEFINED;
3 elsif PSTATE.EL == EL0 then
4 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter 3. Register definitions
3.2. Alphabetical list of registers

14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 CDBGDTR_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 CDBGDTR_EL0 = C[t];
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 CDBGDTR_EL0 = C[t];
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 CDBGDTR_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.6 CDLR_EL0, Capability Debug Link Register

The CDLR_EL0 characteristics are:

Purpose

In Debug state, holds the capability to restart from.

Attributes

CDLR_EL0 is a 129-bit register.

Configuration

AArch64 System register CDLR_EL0[31:0] is architecturally mapped to AArch32 System register
DLR[31:0].

AArch64 System register CDLR_EL0[63:0] is architecturally mapped to AArch64 System register
DLR_EL0[63:0].

This register is present only when Morello is implemented. Otherwise, direct accesses to CDLR_EL0
are UNDEFINED.

Field descriptions

The CDLR_EL0 bit assignments are:

128128

Restart
capability

Restart capability

127 96

Restart capability

95 64

Restart capability

63 32

Restart capability

31 0

Bits [128:0]

Restart capability.

Accessing the CDLR_EL0

Read using name CDLR_EL0

The assembler syntax is:

MRS <Ct>, CDLR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b001

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if !Halted() then
2 UNDEFINED;
3 elsif PSTATE.EL == EL0 then
4 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return CDLR_EL0;
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return CDLR_EL0;
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 return CDLR_EL0;
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return CDLR_EL0;

Write using name CDLR_EL0

The assembler syntax is:

MSR CDLR_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b001

Accessibility:
1 if !Halted() then
2 UNDEFINED;
3 elsif PSTATE.EL == EL0 then
4 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter 3. Register definitions
3.2. Alphabetical list of registers

14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 CDLR_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 CDLR_EL0 = C[t];
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 CDLR_EL0 = C[t];
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 CDLR_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.7 CHCR_EL2, Capability Hypervisor Configuration Register

The CHCR_EL2 characteristics are:

Purpose

Provides control over privileged access to capabilities

Attributes

CHCR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if
EL2 is not enabled in the current Security state.

This register is present only when Morello is implemented. Otherwise, direct accesses to CHCR_EL2
are UNDEFINED.

Field descriptions

The CHCR_EL2 bit assignments are:

RES0

63 32

RES0

31 1 0

SETTAG

Bits [63:1]

Reserved, RES0.

SETTAG, bit [0]

Access to privileged capability creating instructions, SCTAG and STCT.

Value Meaning

0b0 No effect.

0b1 Privileged capability creating instructions clear the tag if executed at
EL1.

This field resets to an architecturally UNKNOWN value.

Accessing the CHCR_EL2

Read using name CHCR_EL2

The assembler syntax is:

MRS <Xt>, CHCR_EL2

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return CHCR_EL2;
19 elsif PSTATE.EL == EL3 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x18);
22 elsif CPTR_EL3.EC == '0' then
23 AArch64.SystemAccessTrap(EL3, 0x29);
24 else
25 return CHCR_EL2;

Write using name CHCR_EL2

The assembler syntax is:

MSR CHCR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 CHCR_EL2 = X[t];
19 elsif PSTATE.EL == EL3 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x18);
22 elsif CPTR_EL3.EC == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter 3. Register definitions
3.2. Alphabetical list of registers

23 AArch64.SystemAccessTrap(EL3, 0x29);
24 else
25 CHCR_EL2 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.8 CID_EL0, Compartment ID Register

The CID_EL0 characteristics are:

Purpose

Provides a number that can be used to separate out different context numbers with each Exception level.

Attributes

CID_EL0 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to CID_EL0 are
UNDEFINED.

Field descriptions

The CID_EL0 bit assignments are:

128128

Compartment
ID

Compartment ID

127 96

Compartment ID

95 64

Compartment ID

63 32

Compartment ID

31 0

Bits [128:0]

Compartment ID

This field resets to an architecturally UNKNOWN value.

Accessing the CID_EL0

Read using name CID_EL0

The assembler syntax is:

MRS <Ct>, CID_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b111

Accessibility:
1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 else
16 return CID_EL0;
17 elsif PSTATE.EL == EL1 then
18 if CPACR_EL1.CEN == 'x0' then
19 AArch64.SystemAccessTrap(EL1, 0x29);
20 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
21 AArch64.SystemAccessTrap(EL2, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 return CID_EL0;
28 elsif PSTATE.EL == EL2 then
29 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
34 AArch64.SystemAccessTrap(EL3, 0x29);
35 else
36 return CID_EL0;
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.EC == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x29);
40 else
41 return CID_EL0;

Write using name CID_EL0

The assembler syntax is:

MSR CID_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b111

Accessibility:
1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 else
16 CID_EL0 = C[t];
17 elsif PSTATE.EL == EL1 then
18 if CPACR_EL1.CEN == 'x0' then
19 AArch64.SystemAccessTrap(EL1, 0x29);
20 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter 3. Register definitions
3.2. Alphabetical list of registers

21 AArch64.SystemAccessTrap(EL2, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 CID_EL0 = C[t];
28 elsif PSTATE.EL == EL2 then
29 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
34 AArch64.SystemAccessTrap(EL3, 0x29);
35 else
36 CID_EL0 = C[t];
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.EC == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x29);
40 else
41 CID_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.9 CNTVCT_EL0, Counter-timer Virtual Count register

The CNTVCT_EL0 characteristics are:

Purpose

Holds the 64-bit virtual count value. The virtual count value is equal to the physical count value minus
the virtual offset visible in CNTVOFF_EL2.

Attributes

CNTVCT_EL0 is a 64-bit register.

Configuration

The value of this register is the same as the value of CNTPCT_EL0 in the following conditions:

• When EL2 is not implemented.
• When EL2 is implemented, HCR_EL2.E2H is 1, and this register is read from EL2.
• When EL2 is implemented and enabled in the current Security state, HCR_EL2.{E2H, TGE} is {1,

1}, and this register is read from EL0 or EL2.

AArch64 System register CNTVCT_EL0[63:0] is architecturally mapped to AArch32 System register
CNTVCT[63:0].

Field descriptions

The CNTVCT_EL0 bit assignments are:

Virtual count value

63 32

Virtual count value

31 0

Bits [63:0]

Virtual count value.

Accessing the CNTVCT_EL0

Read using name CNTVCT_EL0

The assembler syntax is:

MRS <Xt>, CNTVCT_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1110 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && CCTLR_EL0.PERMVCT == '0' && !CapIsSystemAccessEnabled() &&

↪→!Halted() then
3 if TargetELForCapabilityExceptions() == EL1 then
4 AArch64.SystemAccessTrap(EL1, 0x18);
5 elsif TargetELForCapabilityExceptions() == EL2 then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter 3. Register definitions
3.2. Alphabetical list of registers

8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VCTEN ==

↪→'0' then
10 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 AArch64.SystemAccessTrap(EL1, 0x18);
14 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VCTEN == '0'

↪→then
15 AArch64.SystemAccessTrap(EL2, 0x18);
16 else
17 return CNTVCT_EL0;
18 elsif PSTATE.EL == EL1 then
19 if IsFeatureImplemented("Morello") && CCTLR_EL1.PERMVCT == '0' && !CapIsSystemAccessEnabled() &&

↪→!Halted() then
20 if TargetELForCapabilityExceptions() == EL1 then
21 AArch64.SystemAccessTrap(EL1, 0x18);
22 elsif TargetELForCapabilityExceptions() == EL2 then
23 AArch64.SystemAccessTrap(EL2, 0x18);
24 else
25 AArch64.SystemAccessTrap(EL3, 0x18);
26 else
27 return CNTVCT_EL0;
28 elsif PSTATE.EL == EL2 then
29 if IsFeatureImplemented("Morello") && CCTLR_EL2.PERMVCT == '0' && !CapIsSystemAccessEnabled() &&

↪→!Halted() then
30 if TargetELForCapabilityExceptions() == EL2 then
31 AArch64.SystemAccessTrap(EL2, 0x18);
32 else
33 AArch64.SystemAccessTrap(EL3, 0x18);
34 else
35 return CNTVCT_EL0;
36 elsif PSTATE.EL == EL3 then
37 if IsFeatureImplemented("Morello") && CCTLR_EL3.PERMVCT == '0' && !CapIsSystemAccessEnabled() &&

↪→!Halted() then
38 AArch64.SystemAccessTrap(EL3, 0x18);
39 else
40 return CNTVCT_EL0;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.10 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, SVE, Advanced SIMD and floating-point, and the Morello architecture.

Attributes

CPACR_EL1 is a 64-bit register.

Configuration

When HCR_EL2.{E2H, TGE} == {1, 1}, the fields in this register have no effect on execution at EL0
and EL1. In this case, the controls provided by CPTR_EL2 are used.

AArch64 System register CPACR_EL1[31:0] is architecturally mapped to AArch32 System register
CPACR[31:0].

Field descriptions

The CPACR_EL1 bit assignments are:

RES0

63 32

RES0

31 29 28

RES0

27 22

FPEN

21 20

CEN

19 18

ZEN

17 16

RES0

15 0

TTA

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers to EL1, or to EL2 when it is
implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states as
follows:

• In AArch64 state, accesses to trace registers are trapped, reported using EC syndrome value 0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using EC syndrome value
0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using EC syndrome
value 0x0C.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 This control causes EL0 and EL1 System register accesses to all
implemented trace registers to be trapped.

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture
is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because the value of
CPACR_EL1.TTA is 1.

• The Armv8-A architecture does not provide traps on trace register accesses through the optional

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter 3. Register definitions
3.2. Alphabetical list of registers

memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL0 and EL1 accesses to the SVE, Advanced SIMD, and floating-point registers to EL1, reported using EC
syndrome value 0x07, or to EL2 reported using EC syndrome value 0x00, when EL2 is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from both Execution states as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers V0-V31, including
their views as D0-D31 registers or S0-31 registers. See x‘The SIMD and floating-point registers, V0-V31’.

• FPSCR, and any of the SIMD and floating-point registers Q0-15, including their views as D0-D31 registers
or S0-31 registers. See x‘Advanced SIMD and floating-point System registers’.

Value Meaning

0b00 This control causes any instructions at EL0 or EL1 that use the
registers associated with SVE, Advanced SIMD and floating-point
execution to be trapped, unless they are trapped by
CPACR_EL1.ZEN.

0b01 This control causes any instructions at EL0 that use the registers
associated with SVE, Advanced SIMD and floating- point execution
to be trapped, unless they are trapped by CPACR_EL1.ZEN, but does
not cause any instruction at EL1 to be trapped.

0b10 This control causes any instructions at EL0 or EL1 that use the
registers associated with SVE, Advanced SIMD and floating-point
execution to be trapped, unless they are trapped by
CPACR_EL1.ZEN.

0b11 This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether
these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any

resulting exception is higher priority than an exception that would be generated because the value of
CPACR_EL1.FPEN is not 0b11.

This field resets to an architecturally UNKNOWN value.

CEN, bits [19:18]

When Morello is implemented:

Traps Morello instructions and instructions that access Morello System registers at EL0 and EL1 to EL1, or to EL2
when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b00 This control causes these instructions executed at EL0 or EL1 to be
trapped.

0b01 This control causes these instructions executed at EL0 to be trapped,
but does not cause any instructions at EL1 to be trapped.

0b10 This control causes these instructions executed at EL0 or EL1 to be
trapped.

0b11 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ZEN, bits [17:16]

When SVE is implemented:

Traps SVE instructions and instructions that access SVE System registers at EL0 and EL1 to EL1, or to EL2 when
it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1.

Value Meaning

0b00 This control causes these instructions executed at EL0 or EL1 to be
trapped.

0b01 This control causes these instructions executed at EL0 to be trapped,
but does not cause any instruction at EL1 to be trapped.

0b10 This control causes these instructions executed at EL0 or EL1 to be
trapped.

0b11 This control does not cause any instruction to be trapped.

If xSVEis not implemented, this field is RES0.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [15:0]

Reserved, RES0.

Accessing the CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name CPACR_EL1

The assembler syntax is:

MRS <Xt>, CPACR_EL1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 else
16 return CPACR_EL1;
17 elsif PSTATE.EL == EL2 then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 if TargetELForCapabilityExceptions() == EL2 then
20 AArch64.SystemAccessTrap(EL2, 0x18);
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
24 AArch64.SystemAccessTrap(EL3, 0x18);
25 elsif HCR_EL2.E2H == '1' then
26 return CPTR_EL2;
27 else
28 return CPACR_EL1;
29 elsif PSTATE.EL == EL3 then
30 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
31 AArch64.SystemAccessTrap(EL3, 0x18);
32 else
33 return CPACR_EL1;

Write using name CPACR_EL1

The assembler syntax is:

MSR CPACR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter 3. Register definitions
3.2. Alphabetical list of registers

12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 else
16 CPACR_EL1 = X[t];
17 elsif PSTATE.EL == EL2 then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 if TargetELForCapabilityExceptions() == EL2 then
20 AArch64.SystemAccessTrap(EL2, 0x18);
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
24 AArch64.SystemAccessTrap(EL3, 0x18);
25 elsif HCR_EL2.E2H == '1' then
26 CPTR_EL2 = X[t];
27 else
28 CPACR_EL1 = X[t];
29 elsif PSTATE.EL == EL3 then
30 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
31 AArch64.SystemAccessTrap(EL3, 0x18);
32 else
33 CPACR_EL1 = X[t];

Read using name CPACR_EL12

The assembler syntax is:

MRS <Xt>, CPACR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
13 AArch64.SystemAccessTrap(EL3, 0x18);
14 else
15 return CPACR_EL1;
16 else
17 UNDEFINED;
18 elsif PSTATE.EL == EL3 then
19 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x18);
22 else
23 return CPACR_EL1;
24 else
25 UNDEFINED;

Write using name CPACR_EL12

The assembler syntax is:

MSR CPACR_EL12, <Xt>

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
13 AArch64.SystemAccessTrap(EL3, 0x18);
14 else
15 CPACR_EL1 = X[t];
16 else
17 UNDEFINED;
18 elsif PSTATE.EL == EL3 then
19 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x18);
22 else
23 CPACR_EL1 = X[t];
24 else
25 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.11 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls:

• Trapping to EL2 of access to CPACR, CPACR_EL1, trace functionality, SVE, Advanced SIMD
and floating-point functionality, and to the Morello architecture.

• EL2 access to trace functionality, SVE, Advanced SIMD and floating-point functionality, and to
the Morello architecture.

Attributes

CPTR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register CPTR_EL2[31:0] is architecturally mapped to AArch32 System register
HCPTR[31:0].

Field descriptions

The CPTR_EL2 bit assignments are:

When ARMv8.1-VHE is implemented and HCR_EL2.E2H == 1:

RES0

63 32

31

0

30 29 28

RES0

27 22

FPEN

21 20

CEN

19 18

ZEN

17 16

RES0

15 0

TCPAC TTA

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

When HCR_EL2.TGE is 0, traps EL1 accesses to CPACR_EL1 reported using EC syndrome value 0x18, and
accesses to CPACR reported using EC syndrome value 0x03, to EL2 when EL2 is enabled in the current Security
state.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2 when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CPACR_EL1 and CPACR are not accessible at EL0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Bit [30:29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the current
Security state, from both Execution states, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, are trapped to EL2,
reported using EC syndrome value 0x05.

• In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opc1=1, are trapped to EL2,
reported using EC syndrome value 0x0C.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1 or EL2, to execute a System register access
to an implemented trace register is trapped to EL2 when EL2 is
enabled in the current Security state, unless HCR_EL2.TGE is 0 and
it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.
When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a
System register access to an implemented trace register is trapped to
EL2 when EL2 is enabled in the current Security state.

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture
is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because the value of
CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps EL0, EL2 and, when HCR_EL2.TGE is 0, EL1 accesses to the SVE, Advanced SIMD and floating-point
registers to EL2 when EL2 is enabled in the current Security state, from both Execution states.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b00 This control causes any instructions at EL0, EL1, or EL2 that use the
registers associated with SVE, Advanced SIMD and floating-point
execution to be trapped, subject to the exception prioritization rules,
unless they are trapped by CPTR_EL2.ZEN.

0b01 When HCR_EL2.TGE is 0, this control does not cause any
instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes instructions at EL0
that use the registers associated with SVE, Advanced SIMD and
floating-point execution to be trapped, unless they are trapped by
CPTR_EL2.ZEN, but does not cause any instruction at EL2 to be
trapped.

0b10 This control causes any instructions at EL0, EL1, or EL2 that use the
registers associated with SVE, Advanced SIMD and floating-point
execution to be trapped, subject to the exception prioritization rules,
unless they are trapped by CPTR_EL2.ZEN.

0b11 This control does not cause any instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether
these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any resulting

exception is higher priority than an exception that would be generated because the value of CPTR_EL2.FPEN
is not 0b11.

This field resets to an architecturally UNKNOWN value.

CEN, bits [19:18]

When Morello is implemented:

Traps execution at EL2, EL1, and EL0 of Morello instructions or instructions that access Morello System registers
to EL2 when EL2 is enabled in the current Security state.

Value Meaning

0b00 This control causes execution at EL2, EL1, and EL0 of Morello
instructions to be trapped, subject to the exception prioritization rules.

0b01 When HCR_EL2.TGE is 0, this control does not cause any
instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes these instructions
executed at EL0 to be trapped, but does not cause any instructions at
EL2 to be trapped.

0b10 This control causes execution at EL2, EL1, and EL0 of these
instructions to be trapped, subject to the exception prioritization rules.

0b11 This control does not cause any instructions to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter 3. Register definitions
3.2. Alphabetical list of registers

RES0

ZEN, bits [17:16]

When SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions or instructions that access SVE System registers to
EL2 when EL2 is enabled in the current Security state.

Value Meaning

0b00 This control causes execution at EL2, EL1, and EL0 of these
instructions to be trapped, subject to the exception prioritization rules.

0b01 When HCR_EL2.TGE is 0, this control does not cause any
instruction to be trapped.
When HCR_EL2.TGE is 1, this control causes these instructions
executed at EL0 to be trapped, but does not cause any instruction at
EL2 to be trapped.

0b10 This control causes execution at EL2, EL1, and EL0 of these
instructions to be trapped, subject to the exception prioritization rules.

0b11 This control does not cause any instruction to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [15:0]

Reserved, RES0.

Otherwise:

RES0

63 32

31

0

30 21 20

RES0

19 14

RES1

13 12

0

11 10

TC

9

TZ

8

RES1

7 0

TCPAC TTA TFP

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps EL1 accesses to CPACR_EL1, reported using EC syndrome value 0x18 and accesses to CPACR, reported
using EC syndrome value 0x03, to EL2 when EL2 is enabled in the current Security state.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2 when
EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CPACR_EL1 and CPACR are not accessible at EL0.

This field resets to an architecturally UNKNOWN value.

Bit [30:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers to EL2 when EL2 is enabled in the current
Security state, from both Execution states as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1 are trapped to EL2, reported using EC
syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1 are trapped to EL2,
reported using EC syndrome value 0x05.

• In AArch32 state, MRRC or MCRR accesses to trace registers with cpnum=14, opc1=1 are trapped to EL2,
reported using EC syndrome value 0x0C.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1, or EL2, to execute a System register access
to an implemented trace register is trapped to EL2 when EL2 is
enabled in the current Security state, unless it is trapped by
CPACR.TRCDIS or CPACR_EL1.TTA.

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture
is implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and
any resulting exception is higher priority than an exception that would be generated because the value of
CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps accesses to SVE, Advanced SIMD and floating-point functionality to EL2 when EL2 is enabled in the current
Security state, from both Execution states, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x07:

– FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-31 registers. See x‘The SIMD and floating-point registers, V0-V31’.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x07:

– MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15,
including their views as D0-D31 registers or S0-31 registers. See x‘Advanced SIMD and floating-point
System registers’. For the purposes of this trap, the architecture defines a VMSR access to FPSID from
EL1 or higher as an access to a SIMD and floating point register. Otherwise, permitted VMSR accesses
to FPSID are ignored.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at EL0, EL1 or EL2, to execute an instruction that uses
the registers associated with SVE, Advanced SIMD and
floating-point execution is trapped to EL2 when EL2 is enabled in the
current Security state, subject to the exception prioritization rules,
unless it is trapped by CPTR_EL2.TZ.

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MRFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

This field resets to an architecturally UNKNOWN value.

TC, bit [9]

When Morello is implemented:

Traps execution at EL2, EL1, or EL0 of Morello instructions and instructions that access Morello System registers
to EL2 when EL2 is enabled in the current Security state.

Value Meaning

0b0 Does not cause Morello instructions to be trapped.

0b1 Causes Morello instructions to be trapped.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

TZ, bit [8]

When SVE is implemented:

Traps execution at EL2, EL1, or EL0 of SVE instructions and instructions that access SVE System registers to
EL2 when EL2 is enabled in the current Security state.

Value Meaning

0b0 This control does not cause any instruction to be trapped.

0b1 This control causes these instructions to be trapped, subject to the
exception prioritization rules.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

Bits [7:0]

Reserved, RES1.

Accessing the CPTR_EL2

Read using name CPTR_EL2

The assembler syntax is:

MRS <Xt>, CPTR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
12 AArch64.SystemAccessTrap(EL3, 0x18);
13 else
14 return CPTR_EL2;
15 elsif PSTATE.EL == EL3 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter 3. Register definitions
3.2. Alphabetical list of registers

19 return CPTR_EL2;

Write using name CPTR_EL2

The assembler syntax is:

MSR CPTR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
12 AArch64.SystemAccessTrap(EL3, 0x18);
13 else
14 CPTR_EL2 = X[t];
15 elsif PSTATE.EL == EL3 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 CPTR_EL2 = X[t];

Read using name CPACR_EL1

The assembler syntax is:

MRS <Xt>, CPACR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter 3. Register definitions
3.2. Alphabetical list of registers

13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 else
16 return CPACR_EL1;
17 elsif PSTATE.EL == EL2 then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 if TargetELForCapabilityExceptions() == EL2 then
20 AArch64.SystemAccessTrap(EL2, 0x18);
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
24 AArch64.SystemAccessTrap(EL3, 0x18);
25 elsif HCR_EL2.E2H == '1' then
26 return CPTR_EL2;
27 else
28 return CPACR_EL1;
29 elsif PSTATE.EL == EL3 then
30 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
31 AArch64.SystemAccessTrap(EL3, 0x18);
32 else
33 return CPACR_EL1;

Write using name CPACR_EL1

The assembler syntax is:

MSR CPACR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TCPAC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 else
16 CPACR_EL1 = X[t];
17 elsif PSTATE.EL == EL2 then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 if TargetELForCapabilityExceptions() == EL2 then
20 AArch64.SystemAccessTrap(EL2, 0x18);
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TCPAC == '1' then
24 AArch64.SystemAccessTrap(EL3, 0x18);
25 elsif HCR_EL2.E2H == '1' then
26 CPTR_EL2 = X[t];
27 else
28 CPACR_EL1 = X[t];
29 elsif PSTATE.EL == EL3 then
30 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
31 AArch64.SystemAccessTrap(EL3, 0x18);
32 else
33 CPACR_EL1 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.12 CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

Purpose

Controls:

• Trapping to EL3 of access to CPACR_EL1, CPTR_EL2, trace functionality, SVE, Advanced
SIMD and floating-point functionality, and to the Morello architecture.

• EL3 access to trace functionality, SVE, Advanced SIMD and floating-point functionality, and to
the Morello architecture.

Attributes

CPTR_EL3 is a 64-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to CPTR_EL3 are
UNDEFINED.

Field descriptions

The CPTR_EL3 bit assignments are:

RES0

63 32

31

0

30 21 20

RES0

19 11 10

EC

9

EZ

8

RES0

7 0

TCPAC TTA TFP

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Security states and both Execution states.

• EL2 accesses to CPTR_EL2, reported using EC syndrome value 0x18, or HCPTR, reported using EC
syndrome value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using EC syndrome value 0x18, or CPACR reported using
EC syndrome value 0x03.

When CPTR_EL3.TCPAC is:

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1
accesses to the CPACR_EL1 or CPACR, are trapped to EL3, unless
they are trapped by CPTR_EL2.TCPAC.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Bit [30:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, both Security states, and
both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, are trapped to EL3 and reported using EC syndrome
value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14 and opc1=1 are
reported using EC syndrome value 0x05.

• In AArch32 state, accesses using MCRR or MRRC to the Trace registers with cpnum=14 and opc1=1 are
reported using EC syndrome value 0x0C.

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any System register access to the trace registers is trapped to EL3,
subject to the exception prioritization rules, unless it is trapped by
CPACR.TRCDIS, CPACR_EL1.TTA or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

The ETMv4 architecture does not permit EL0 to access the trace registers. If the Armv8-A architecture is
implemented with an ETMv4 implementation, EL0 accesses to the trace registers are UNDEFINED, and any
resulting exception is higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see x‘Traps on instructions’.

This field resets to an architecturally UNKNOWN value.

Bits [19:11]

Reserved, RES0.

TFP, bit [10]

Traps all accesses to SVE, Advanced SIMD and floating-point functionality, from all Exception levels, both
Security states, and both Execution states, to EL3. Defined values are:

This includes the following registers, all reported using EC syndrome value 0x07:

• FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their views
as D0-D31 registers or S0-31 registers. See x‘The SIMD and floating-point registers, V0-V31’.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15,
including their views as D0-D31 registers or S0-31 registers. See x‘Advanced SIMD and floating-point
System registers’.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture define a VMSR
access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 This control does not cause any instructions to be trapped.

0b1 Any attempt at any Exception level to execute an instruction that uses
the registers associated with SVE, Advanced SIMD and
floating-point is trapped to EL3, subject to the exception
prioritization rules, unless it is trapped by CPTR_EL3.EZ.

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MRFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

This field resets to an architecturally UNKNOWN value.

EC, bit [9]

When Morello is implemented:

Traps all accesses to the Morello architecture and registers from all Exception levels, and both Security states, to
EL3.

Value Meaning

0b0 This control causes these instructions executed at any Exception level
to be trapped, subject to the exception prioritization rules.

0b1 This control does not cause any instructions to be trapped.

This field resets to 0b0.

Otherwise:

RES0

EZ, bit [8]

When SVE is implemented:

Traps all accesses to SVE functionality and registers from all Exception levels, and both Security states, to EL3.

Value Meaning

0b0 This control causes these instructions executed at any Exception level
to be trapped, subject to the exception prioritization rules.

0b1 This control does not cause any instruction to be trapped.

This field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter 3. Register definitions
3.2. Alphabetical list of registers

RES0

Bits [7:0]

Reserved, RES0.

Accessing the CPTR_EL3

Read using name CPTR_EL3

The assembler syntax is:

MRS <Xt>, CPTR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 return CPTR_EL3;

Write using name CPTR_EL3

The assembler syntax is:

MSR CPTR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 CPTR_EL3 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.13 CSCR_EL3, Capability Secure Configuration Register

The CSCR_EL3 characteristics are:

Purpose

Provides control over privileged access to capabilities

Attributes

CSCR_EL3 is a 64-bit register.

Configuration

This register is present only when Morello is implemented and HaveEL(EL3). Otherwise, direct
accesses to CSCR_EL3 are UNDEFINED.

Field descriptions

The CSCR_EL3 bit assignments are:

RES0

63 32

RES0

31 1 0

SETTAG

Bits [63:1]

Reserved, RES0.

SETTAG, bit [0]

Access to privileged capability creating instructions, SCTAG and STCT.

Value Meaning

0b0 No effect.

0b1 Privileged capability creating instructions clear the tag if executed at
EL2 or EL1.

This field resets to an architecturally UNKNOWN value.

Accessing the CSCR_EL3

Read using name CSCR_EL3

The assembler syntax is:

MRS <Xt>, CSCR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b011

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return CSCR_EL3;

Write using name CSCR_EL3

The assembler syntax is:

MSR CSCR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 CSCR_EL3 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.14 DBGDTR2A, Debug Data Transfer Register 2A

The DBGDTR2A characteristics are:

Purpose

Allows external debuggers to access capability state within PE. Transfers lower 32 bits of the upper
half of capabilities. It is a component of the Debug Communications Channel.

Attributes

DBGDTR2A is a 32-bit register.

Configuration

External register DBGDTR2A[31:0] is architecturally mapped to AArch64 System register
CDBGDTR_EL0[95:64].

This register is present only when Morello is implemented. Otherwise, direct accesses to DBGDTR2A
are RES0.

Field descriptions

The DBGDTR2A bit assignments are:

DTR2A

31 0

Bits [31:0]

Data transfer register for bits 95:64 of capability tranfers.

On a cold reset, this field resets to an UNKNOWN value.

Accessing the DBGDTR2A

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of
any operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed

by the instruction are left in an UNKNOWN state.

DBGDTR2A can be accessed through the external debug interface:

Component Offset Instance

Debug 0x040 DBGDTR2A

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() access to this
register is RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() access to this
register is RW.

• Otherwise access to this register returns an ERROR.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.15 DBGDTR2B, Debug Data Transfer Register 2B

The DBGDTR2B characteristics are:

Purpose

Allows external debuggers to access capability state within PE. Transfers higher 32 bits of the upper
half of capabilities. It is a component of the Debug Communications Channel.

Attributes

DBGDTR2B is a 32-bit register.

Configuration

External register DBGDTR2B[31:0] is architecturally mapped to AArch64 System register
CDBGDTR_EL0[127:96].

This register is present only when Morello is implemented. Otherwise, direct accesses to DBGDTR2B
are RES0.

Field descriptions

The DBGDTR2B bit assignments are:

DTR2B

31 0

Bits [31:0]

Data transfer register for bits 127:96 of capability tranfers.

On a cold reset, this field resets to an UNKNOWN value.

Accessing the DBGDTR2B

If EDSCR.ITE == 0 when the PE exits Debug state on receiving a Restart request trigger event, the behavior of
any operation issued by a DTR access in memory access mode that has not completed execution is CONSTRAINED
UNPREDICTABLE, and must do one of the following:

• It must complete execution in Debug state before the PE executes the restart sequence.
• It must complete execution in Non-debug state before the PE executes the restart sequence.
• It must be abandoned. This means that the instruction does not execute. Any registers or memory accessed

by the instruction are left in an UNKNOWN state.

DBGDTR2B can be accessed through the external debug interface:

Component Offset Instance

Debug 0x044 DBGDTR2B

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() access to this
register is RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() access to this
register is RW.

• Otherwise access to this register returns an ERROR.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.16 DDC_EL0, Default Data Capability (EL0)

The DDC_EL0 characteristics are:

Purpose

Holds the default data capability associated with EL0 when the PE is in Executive.

Attributes

DDC_EL0 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to DDC_EL0
are UNDEFINED.

Field descriptions

The DDC_EL0 bit assignments are:

128128

Default data
capability

Default data capability

127 96

Default data capability

95 64

Default data capability

63 32

Default data capability

31 0

Bits [128:0]

Default data capability.

This field resets to 0x1FFFFC000000100050000000000000000.

Accessing the DDC_EL0

Read using name DDC_EL0

The assembler syntax is:

MRS <Ct>, DDC_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if PSTATE.SP == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 UNDEFINED;
6 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif CPACR_EL1.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL1, 0x29);

10 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 return DDC_EL0;
18 elsif PSTATE.EL == EL2 then
19 if PSTATE.SP == '0' then
20 UNDEFINED;
21 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
22 UNDEFINED;
23 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
24 AArch64.SystemAccessTrap(EL2, 0x29);
25 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
26 AArch64.SystemAccessTrap(EL2, 0x29);
27 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x29);
29 else
30 return DDC_EL0;
31 elsif PSTATE.EL == EL3 then
32 if PSTATE.SP == '0' then
33 UNDEFINED;
34 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
35 UNDEFINED;
36 elsif CPTR_EL3.EC == '0' then
37 AArch64.SystemAccessTrap(EL3, 0x29);
38 else
39 return DDC_EL0;

Write using name DDC_EL0

The assembler syntax is:

MSR DDC_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if PSTATE.SP == '0' then
5 UNDEFINED;
6 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif CPACR_EL1.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL1, 0x29);

10 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 DDC_EL0 = C[t];
18 elsif PSTATE.EL == EL2 then
19 if PSTATE.SP == '0' then
20 UNDEFINED;
21 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
22 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter 3. Register definitions
3.2. Alphabetical list of registers

23 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
24 AArch64.SystemAccessTrap(EL2, 0x29);
25 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
26 AArch64.SystemAccessTrap(EL2, 0x29);
27 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x29);
29 else
30 DDC_EL0 = C[t];
31 elsif PSTATE.EL == EL3 then
32 if PSTATE.SP == '0' then
33 UNDEFINED;
34 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
35 UNDEFINED;
36 elsif CPTR_EL3.EC == '0' then
37 AArch64.SystemAccessTrap(EL3, 0x29);
38 else
39 DDC_EL0 = C[t];

Read using name DDC

The assembler syntax is:

MRS <Ct>, DDC

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 return RDDC_EL0;
18 elsif PSTATE.SP == '0' then
19 return DDC_EL0;
20 elsif PSTATE.EL == EL0 then
21 return DDC_EL0;
22 elsif PSTATE.EL == EL1 then
23 return DDC_EL1;
24 elsif PSTATE.EL == EL2 then
25 return DDC_EL2;
26 elsif PSTATE.EL == EL3 then
27 return DDC_EL3;

Write using name DDC

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MSR DDC, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 RDDC_EL0 = C[t];
18 elsif PSTATE.SP == '0' then
19 DDC_EL0 = C[t];
20 elsif PSTATE.EL == EL0 then
21 DDC_EL0 = C[t];
22 elsif PSTATE.EL == EL1 then
23 DDC_EL1 = C[t];
24 elsif PSTATE.EL == EL2 then
25 DDC_EL2 = C[t];
26 elsif PSTATE.EL == EL3 then
27 DDC_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.17 DDC_EL1, Default Data Capability (EL1)

The DDC_EL1 characteristics are:

Purpose

Holds the default data capability associated with EL1 when the PE is in Executive.

Attributes

DDC_EL1 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to DDC_EL1
are UNDEFINED.

Field descriptions

The DDC_EL1 bit assignments are:

128128

Default data
capability

Default data capability

127 96

Default data capability

95 64

Default data capability

63 32

Default data capability

31 0

Bits [128:0]

Default data capability.

This field resets to 0x1FFFFC000000100050000000000000000.

Accessing the DDC_EL1

Read using name DDC_EL1

The assembler syntax is:

MRS <Ct>, DDC_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
13 AArch64.SystemAccessTrap(EL3, 0x29);
14 else
15 return DDC_EL1;
16 elsif PSTATE.EL == EL3 then
17 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
18 UNDEFINED;
19 elsif CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 else
22 return DDC_EL1;

Write using name DDC_EL1

The assembler syntax is:

MSR DDC_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
13 AArch64.SystemAccessTrap(EL3, 0x29);
14 else
15 DDC_EL1 = C[t];
16 elsif PSTATE.EL == EL3 then
17 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
18 UNDEFINED;
19 elsif CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 else
22 DDC_EL1 = C[t];

Read using name DDC

The assembler syntax is:

MRS <Ct>, DDC

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 return RDDC_EL0;
18 elsif PSTATE.SP == '0' then
19 return DDC_EL0;
20 elsif PSTATE.EL == EL0 then
21 return DDC_EL0;
22 elsif PSTATE.EL == EL1 then
23 return DDC_EL1;
24 elsif PSTATE.EL == EL2 then
25 return DDC_EL2;
26 elsif PSTATE.EL == EL3 then
27 return DDC_EL3;

Write using name DDC

The assembler syntax is:

MSR DDC, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter 3. Register definitions
3.2. Alphabetical list of registers

13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 RDDC_EL0 = C[t];
18 elsif PSTATE.SP == '0' then
19 DDC_EL0 = C[t];
20 elsif PSTATE.EL == EL0 then
21 DDC_EL0 = C[t];
22 elsif PSTATE.EL == EL1 then
23 DDC_EL1 = C[t];
24 elsif PSTATE.EL == EL2 then
25 DDC_EL2 = C[t];
26 elsif PSTATE.EL == EL3 then
27 DDC_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.18 DDC_EL2, Default Data Capability (EL2)

The DDC_EL2 characteristics are:

Purpose

Holds the default data capability associated with EL2 when the PE is in Executive.

Attributes

DDC_EL2 is a 129-bit register.

Configuration

This register has no effect if EL2 is not enabled in the current Security state.

This register is present only when Morello is implemented. Otherwise, direct accesses to DDC_EL2
are UNDEFINED.

Field descriptions

The DDC_EL2 bit assignments are:

128128

Default data
capability

Default data capability

127 96

Default data capability

95 64

Default data capability

63 32

Default data capability

31 0

Bits [128:0]

Default data capability.

This field resets to 0x1FFFFC000000100050000000000000000.

Accessing the DDC_EL2

Read using name DDC_EL2

The assembler syntax is:

MRS <Ct>, DDC_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 UNDEFINED;

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return DDC_EL2;

Write using name DDC_EL2

The assembler syntax is:

MSR DDC_EL2, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 UNDEFINED;

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 DDC_EL2 = C[t];

Read using name DDC

The assembler syntax is:

MRS <Ct>, DDC

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter 3. Register definitions
3.2. Alphabetical list of registers

8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&
↪→CPTR_EL2.CEN != '11' then

9 AArch64.SystemAccessTrap(EL2, 0x29);
10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&

↪→CPTR_EL2.CEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 return RDDC_EL0;
18 elsif PSTATE.SP == '0' then
19 return DDC_EL0;
20 elsif PSTATE.EL == EL0 then
21 return DDC_EL0;
22 elsif PSTATE.EL == EL1 then
23 return DDC_EL1;
24 elsif PSTATE.EL == EL2 then
25 return DDC_EL2;
26 elsif PSTATE.EL == EL3 then
27 return DDC_EL3;

Write using name DDC

The assembler syntax is:

MSR DDC, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 RDDC_EL0 = C[t];
18 elsif PSTATE.SP == '0' then
19 DDC_EL0 = C[t];
20 elsif PSTATE.EL == EL0 then
21 DDC_EL0 = C[t];
22 elsif PSTATE.EL == EL1 then
23 DDC_EL1 = C[t];
24 elsif PSTATE.EL == EL2 then
25 DDC_EL2 = C[t];
26 elsif PSTATE.EL == EL3 then
27 DDC_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.19 DDC_EL3, Default Data Capability (EL3)

The DDC_EL3 characteristics are:

Purpose

Holds the default data capability associated with EL3 when the PE is in Executive.

Attributes

DDC_EL3 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to DDC_EL3
are UNDEFINED.

Field descriptions

The DDC_EL3 bit assignments are:

128128

Default data
capability

Default data capability

127 96

Default data capability

95 64

Default data capability

63 32

Default data capability

31 0

Bits [128:0]

Default data capability.

This field resets to 0x1FFFFC000000100050000000000000000.

Accessing the DDC_EL3

Read using name DDC

The assembler syntax is:

MRS <Ct>, DDC

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter 3. Register definitions
3.2. Alphabetical list of registers

4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 return RDDC_EL0;
18 elsif PSTATE.SP == '0' then
19 return DDC_EL0;
20 elsif PSTATE.EL == EL0 then
21 return DDC_EL0;
22 elsif PSTATE.EL == EL1 then
23 return DDC_EL1;
24 elsif PSTATE.EL == EL2 then
25 return DDC_EL2;
26 elsif PSTATE.EL == EL3 then
27 return DDC_EL3;

Write using name DDC

The assembler syntax is:

MSR DDC, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 RDDC_EL0 = C[t];
18 elsif PSTATE.SP == '0' then
19 DDC_EL0 = C[t];
20 elsif PSTATE.EL == EL0 then
21 DDC_EL0 = C[t];
22 elsif PSTATE.EL == EL1 then
23 DDC_EL1 = C[t];
24 elsif PSTATE.EL == EL2 then
25 DDC_EL2 = C[t];
26 elsif PSTATE.EL == EL3 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter 3. Register definitions
3.2. Alphabetical list of registers

27 DDC_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.20 DSPSR_EL0, Debug Saved Program Status Register

The DSPSR_EL0 characteristics are:

Purpose

Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written
to this register. On exiting Debug state, values are copied from this register to PSTATE.

Attributes

DSPSR_EL0 is a 64-bit register.

Configuration

AArch64 System register DSPSR_EL0[31:0] is architecturally mapped to AArch32 System register
DSPSR[31:0].

Field descriptions

The DSPSR_EL0 bit assignments are:

When exiting Debug state to AArch32 state:

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

0

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0] PAN
SSBS

M[4]

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Copied to PSTATE.N on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Copied to PSTATE.Z on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Copied to PSTATE.C on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Copied to PSTATE.IT[1:0] on exiting Debug state.

On exiting Debug state DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

Bit [24]

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Copied to PSTATE.IT[7:2] on exiting Debug state.

DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter 3. Register definitions
3.2. Alphabetical list of registers

If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the implementation does
not support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug state, if the implementation does
not support big-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES0, and if the
implementation does not support little-endian operation at the Exception level being returned to, DSPSR_EL0.E is
RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Copied to PSTATE.A on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

Value Meaning

0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

Value Meaning

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1011 Undefined.

0b1111 System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in x‘Illegal return events from AArch64 state’.

This field resets to an architecturally UNKNOWN value.

When entering Debug state from AArch64 state and exiting Debug state to AArch64 state:

RES0

63 32

N

31

Z

30

C

29

V

28

0

27 26

0

25 24 23 22

SS

21

IL

20

RES0

19 13 12

RES0

11 10

D

9

A

8

I

7

F

6

0

5 4

M[3:0]

3 0

C64 PAN
UAO

SSBS M[4]

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Bit [27]

Reserved, RES0.

C64, bit [26]

When Morello is implemented:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Current instruction set state. Set to the value of PSTATE.C64 on entering Debug state, and copied to PSTATE.C64
on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [25:24]

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to PSTATE.UAO on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN
on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on
exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS
on exiting Debug state.

This field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter 3. Register definitions
3.2. Alphabetical list of registers

RES0

Bits [11:10]

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to PSTATE.D on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting
Debug state.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state, and copied to
PSTATE.nRW on exiting Debug state.

Value Meaning

0b0 AArch64 execution state.

If AArch32 is not supported at any Exception level, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

Value Meaning

0b0000 EL0t.

0b0100 EL1t.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0101 EL1h.

0b1000 EL2t.

0b1001 EL2h.

0b1100 EL3t.

0b1101 EL3h.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in x‘Illegal return events from AArch64 state’.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL on exiting Debug
state.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on exiting Debug

state

This field resets to an architecturally UNKNOWN value.

Accessing the DSPSR_EL0

Read using name DSPSR_EL0

The assembler syntax is:

MRS <Xt>, DSPSR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b000

Accessibility:
1 if !Halted() then
2 UNDEFINED;
3 else
4 return DSPSR_EL0;

Write using name DSPSR_EL0

The assembler syntax is:

MSR DSPSR_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0101 0b000

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if !Halted() then
2 UNDEFINED;
3 else
4 DSPSR_EL0 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.21 EDSCR2, External Debug Status and Control Register 2

The EDSCR2 characteristics are:

Purpose

Extended control register for the debug implementation

Attributes

EDSCR2 is a 32-bit register.

Configuration

External register EDSCR2[0] is architecturally mapped to AArch64 System register
CDBGDTR_EL0[128].

This register is present only when Morello is implemented. Otherwise, direct accesses to EDSCR2 are
RES0.

Field descriptions

The EDSCR2 bit assignments are:

RES0

31 5

CE

4 1 0

DTRTAG

Bits [31:5]

Reserved, RES0.

CE, bits [4:1]

Access to Morello Feature status. In Debug state, each bit gives the current access to the Morello architecture
extension at each Exception level as controlled by CPTR_ELx and CPACR_EL1:

Value Meaning

0b1111 All Exception levels have access to the Morello architecture
extension or the PE is in Non-debug state.

0b1110 The PE is in Debug state. EL0 does not have access to the Morello
architecture extension. All other Exception levels have access to the
Morello architecture extension.

0b1100 The PE is in Debug state. EL0 and EL1 do not have access to the
Morello architecture extension. All other Exception levels have
access to the Morello architecture extension.

0b1000 The PE is in Debug state. EL3 has access to the Morello architecture
extension. All other Exception levels do not have access to the
Morello architecture extension.

0b0000 The PE is in Debug state. No Exception level has access to the
Morello architecture extension.

In Non-debug state, this field is RAO.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Access to this field is RO.

DTRTAG, bit [0]

Capability data transfer register tag.

On a cold reset, this field resets to an UNKNOWN value.

Accessing the EDSCR2

Access to EDSCR2 is only possible externally

EDSCR2 can be accessed through the external debug interface:

Component Offset Instance

Debug 0x048 EDSCR2

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() access to this
register is RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() access to this
register is RW.

• Otherwise access to this register returns an ERROR.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.22 ELR_EL1, Exception Link Register (EL1)

The ELR_EL1 characteristics are:

Purpose

When taking an exception to EL1, holds the address to return to.

Attributes

ELR_EL1 is a 129-bit register.

Field descriptions

The ELR_EL1 bit assignments are:

When Morello is implemented and Capability access at EL1 is not trapped:

128128

Capability
return
address

Capability return address

127 96

Capability return address

95 64

Capability return address

63 32

Capability return address

31 0

Bits [128:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

When Morello is implemented and Capability access at EL1 is trapped:

128128

RES0

RES0

127 96

RES0

95 64

Return address

63 32

Return address

31 0

Bits [128:64]

Reserved, RES0.

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Return address

63 32

Return address

31 0

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or
ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name ELR_EL1

The assembler syntax is:

MRS <Xt>, ELR_EL1

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 return ELR_EL1<63:0>;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 return ELR_EL2<63:0>;
8 else
9 return ELR_EL1<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return ELR_EL1<63:0>;

Write using name ELR_EL1

The assembler syntax is:

MSR ELR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 ELR_EL1 = ZeroExtend(X[t]);
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 ELR_EL2 = ZeroExtend(X[t]);
8 else
9 ELR_EL1 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 ELR_EL1 = ZeroExtend(X[t]);

Read using name ELR_EL12

The assembler syntax is:

MRS <Xt>, ELR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 return ELR_EL1<63:0>;
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL3 then
11 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
12 return ELR_EL1<63:0>;
13 else
14 UNDEFINED;

Write using name ELR_EL12

The assembler syntax is:

MSR ELR_EL12, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 ELR_EL1 = ZeroExtend(X[t]);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL3 then
11 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
12 ELR_EL1 = ZeroExtend(X[t]);
13 else
14 UNDEFINED;

Read using name CELR_EL1

The assembler syntax is:

MRS <Ct>, CELR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return ELR_EL1;
14 elsif PSTATE.EL == EL2 then
15 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 elsif HCR_EL2.E2H == '1' then
22 return ELR_EL2;
23 else
24 return ELR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return ELR_EL1;

Write using name CELR_EL1

The assembler syntax is:

MSR CELR_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 ELR_EL1 = C[t];
14 elsif PSTATE.EL == EL2 then
15 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 elsif HCR_EL2.E2H == '1' then
22 ELR_EL2 = C[t];
23 else
24 ELR_EL1 = C[t];
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 ELR_EL1 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Read using name CELR_EL12

The assembler syntax is:

MRS <Ct>, CELR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then

10 AArch64.SystemAccessTrap(EL3, 0x29);
11 else
12 return ELR_EL1;
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 if CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return ELR_EL1;
21 else
22 UNDEFINED;

Write using name CELR_EL12

The assembler syntax is:

MSR CELR_EL12, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then

10 AArch64.SystemAccessTrap(EL3, 0x29);
11 else
12 ELR_EL1 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter 3. Register definitions
3.2. Alphabetical list of registers

13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 if CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 ELR_EL1 = C[t];
21 else
22 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.23 ELR_EL2, Exception Link Register (EL2)

The ELR_EL2 characteristics are:

Purpose

When taking an exception to EL2, holds the address to return to.

Attributes

ELR_EL2 is a 129-bit register.

Configuration

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register ELR_EL2[31:0] is architecturally mapped to AArch32 System register
ELR_hyp[31:0].

Field descriptions

The ELR_EL2 bit assignments are:

When Morello is implemented and Capability access at EL2 is not trapped:

128128

Capability
return
address

Capability return address

127 96

Capability return address

95 64

Capability return address

63 32

Capability return address

31 0

Bits [128:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

When Morello is implemented and Capability access at EL2 is trapped:

128128

RES0

RES0

127 96

RES0

95 64

Return address

63 32

Return address

31 0

Bits [128:64]

Reserved, RES0.

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Return address

63 32

Return address

31 0

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3 and AArch64
execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value that they did before AArch32
execution. Which option is adopted is determined by an implementation, and might vary dynamically within an
implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two
values.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or
ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name ELR_EL2

The assembler syntax is:

MRS <Xt>, ELR_EL2

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 return ELR_EL2<63:0>;
7 elsif PSTATE.EL == EL3 then
8 return ELR_EL2<63:0>;

Write using name ELR_EL2

The assembler syntax is:

MSR ELR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 ELR_EL2 = ZeroExtend(X[t]);
7 elsif PSTATE.EL == EL3 then
8 ELR_EL2 = ZeroExtend(X[t]);

Read using name ELR_EL1

The assembler syntax is:

MRS <Xt>, ELR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter 3. Register definitions
3.2. Alphabetical list of registers

4 return ELR_EL1<63:0>;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 return ELR_EL2<63:0>;
8 else
9 return ELR_EL1<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return ELR_EL1<63:0>;

Write using name ELR_EL1

The assembler syntax is:

MSR ELR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 ELR_EL1 = ZeroExtend(X[t]);
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 ELR_EL2 = ZeroExtend(X[t]);
8 else
9 ELR_EL1 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 ELR_EL1 = ZeroExtend(X[t]);

Read using name CELR_EL2

The assembler syntax is:

MRS <Ct>, CELR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return ELR_EL2;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter 3. Register definitions
3.2. Alphabetical list of registers

14 elsif PSTATE.EL == EL3 then
15 if CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return ELR_EL2;

Write using name CELR_EL2

The assembler syntax is:

MSR CELR_EL2, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 ELR_EL2 = C[t];
14 elsif PSTATE.EL == EL3 then
15 if CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 ELR_EL2 = C[t];

Read using name CELR_EL1

The assembler syntax is:

MRS <Ct>, CELR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter 3. Register definitions
3.2. Alphabetical list of registers

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return ELR_EL1;
14 elsif PSTATE.EL == EL2 then
15 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 elsif HCR_EL2.E2H == '1' then
22 return ELR_EL2;
23 else
24 return ELR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return ELR_EL1;

Write using name CELR_EL1

The assembler syntax is:

MSR CELR_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 ELR_EL1 = C[t];
14 elsif PSTATE.EL == EL2 then
15 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 elsif HCR_EL2.E2H == '1' then
22 ELR_EL2 = C[t];
23 else
24 ELR_EL1 = C[t];
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 ELR_EL1 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.24 ELR_EL3, Exception Link Register (EL3)

The ELR_EL3 characteristics are:

Purpose

When taking an exception to EL3, holds the address to return to.

Attributes

ELR_EL3 is a 129-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to ELR_EL3 are UNDE-
FINED.

Field descriptions

The ELR_EL3 bit assignments are:

When Morello is implemented and Capability access at EL3 is not trapped:

128128

Capability
return
address

Capability return address

127 96

Capability return address

95 64

Capability return address

63 32

Capability return address

31 0

Bits [128:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

When Morello is implemented and Capability access at EL3 is trapped:

128128

RES0

RES0

127 96

RES0

95 64

Return address

63 32

Return address

31 0

Bits [128:64]

Reserved, RES0.

Bits [63:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Return address

63 32

Return address

31 0

Bits [63:0]

Return address.

An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL3

Read using name ELR_EL3

The assembler syntax is:

MRS <Xt>, ELR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 return ELR_EL3<63:0>;

Write using name ELR_EL3

The assembler syntax is:

MSR ELR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 ELR_EL3 = ZeroExtend(X[t]);

Read using name CELR_EL3

The assembler syntax is:

MRS <Ct>, CELR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.EC == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x29);

10 else
11 return ELR_EL3;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name CELR_EL3

The assembler syntax is:

MSR CELR_EL3, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.EC == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x29);

10 else
11 ELR_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.25 ESR_EL1, Exception Syndrome Register (EL1)

The ESR_EL1 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL1.

Attributes

ESR_EL1 is a 64-bit register.

Configuration

AArch64 System register ESR_EL1[31:0] is architecturally mapped to AArch32 System register
DFSR[31:0].

Field descriptions

The ESR_EL1 bit assignments are:

RES0

63 32

EC

31 26

IL

25

ISS

24 0

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of
ESR_EL1 is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

Value Meaning Link Applies

0b000000 Unknown reason. ISS - exceptions with an unknown reason

0b000001 Trapped WFI or WFE instruction
execution.
Conditional WFE and WFI instructions
that fail their condition code check do
not cause an exception.

ISS - an exception from a WFI or WFE instruction

0b000011 Trapped MCR or MRC access with
(coproc==0b1111) that is not reported
using EC 0b000000.

ISS - an exception from an MCR or MRC access

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b000100 Trapped MCRR or MRRC access with
(coproc==0b1111) that is not reported
using EC 0b000000.

ISS - an exception from an MCRR or MRRC
access

0b000101 Trapped MCR or MRC access with
(coproc==0b1110).

ISS - an exception from an MCR or MRC access

0b000110 Trapped LDC or STC access.
The only architected uses of these
instruction are:

• An STC to write data to memory
from DBGDTRRXint.

• An LDC to read data from
memory to DBGDTRTXint.

ISS - an exception from an LDC or STC instruction

0b000111 Access to SVE, Advanced SIMD, or
floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN,
CPTR_EL2.TFP, or CPTR_EL3.TFP
control.
Excludes exceptions resulting from
CPACR_EL1 when the value of
HCR_EL2.TGE is 1, or because SVE or
Advanced SIMD and floating-point are
not implemented. These are reported
with EC value 0b000000 as described in
’EC encodings when routing exceptions
to EL2’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A
architecture profile, section D1.10.4.

ISS - an exception from an access to SVE,
Advanced SIMD or floating-point functionality,
resulting from CPACR_EL1.FPEN,
CPTR_EL2.FPEN or CPTR_ELx.TFP

0b001100 Trapped MRRC access with
(coproc==0b1110).

ISS - an exception from an MCRR or MRRC
access

0b001110 Illegal Execution state. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b010001 SVC instruction execution in AArch32
state.
This is reported in ESR_EL2 only when
the exception is generated because the
value of HCR_EL2.TGE is 1.

ISS - an exception from HVC or SVC instruction
execution

0b010101 SVC instruction execution in AArch64
state.

ISS - an exception from HVC or SVC instruction
execution

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b011000 Trapped MSR, MRS or System
instruction execution in AArch64 state,
that is not reported using EC 0b000000,
0b000001, 0b000111 or 0b101010.
If xARMv8.0-CSV2 is implemented,
also Cache Speculation Variant
exceptions.
If xARMv8.2-EVT is implemented, also
traps for EL1 and EL0 Cache controls.
This includes all instructions that cause
exceptions that are part of the encoding
space defined in ’System instruction
class encoding overview’ in the Arm®
Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section
C5.2.2, except for those exceptions
reported using EC values 0b000000,
0b000001, or 0b000111.

ISS - an exception from MSR, MRS, or System
instruction execution in AArch64 state

0b011001 Access to SVE functionality trapped as a
result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is not reported
using EC 0b000000.
This EC is defined only if xSVEis
implemented.

ISS - an exception from an access to SVE
functionality, resulting from CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

0b100000 Instruction Abort from a lower
Exception level, that might be using
AArch32 or AArch64.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for debug
related exceptions.

ISS - an exception from an Instruction Abort

0b100001 Instruction Abort taken without a change
in Exception level.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for debug
related exceptions.

ISS - an exception from an Instruction Abort

0b100010 PC alignment fault exception. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b100100 Data Abort from a lower Exception level,
that might be using AArch32 or
AArch64.
Used for MMU faults generated by data
accesses, alignment faults other than
those caused by Stack Pointer
misalignment, and synchronous External
aborts, including synchronous parity or
ECC errors. Not used for debug related
exceptions.

ISS - an exception from a Data Abort

0b100101 Data Abort taken without a change in
Exception level.
Used for MMU faults generated by data
accesses, alignment faults other than
those caused by Stack Pointer
misalignment, and synchronous External
aborts, including synchronous parity or
ECC errors. Not used for debug related
exceptions.

ISS - an exception from a Data Abort

0b100110 SP alignment fault exception. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b101000 Trapped floating-point exception taken
from AArch32 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it is
reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

ISS - an exception from a trapped floating-point
exception

0b101001 Access to the Morello architecture
trapped as a result of CPACR_EL1.CEN,
CPTR_EL2.CEN, CPTR_EL2.TC, or
CPTR_EL3.EC.

ISS - an exception from an access to the Morello
architecture

When
Morello is
implemented

0b101010 Trapped capability MSR or MRS
instruction execution.
This EC value is valid if Morello
architecture is implemented, otherwise it
is reserved. Used for trapped accesses to
capability System registers via MSR or
MRS instructions.

ISS - an exception from capability MSR or MRS
instruction execution

When
Morello is
implemented

0b101100 Trapped floating-point exception taken
from AArch64 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it is
reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

ISS - an exception from a trapped floating-point
exception

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b101111 SError interrupt. ISS - an SError interrupt

0b110000 Breakpoint exception from a lower
Exception level, that might be using
AArch32 or AArch64.

ISS - an exception from a Breakpoint or Vector
Catch debug exception

0b110001 Breakpoint exception taken without a
change in Exception level.

ISS - an exception from a Breakpoint or Vector
Catch debug exception

0b110010 Software Step exception from a lower
Exception level, that might be using
AArch32 or AArch64.

ISS - an exception from a Software Step exception

0b110011 Software Step exception taken without a
change in Exception level.

ISS - an exception from a Software Step exception

0b110100 Watchpoint exception from a lower
Exception level, that might be using
AArch32 or AArch64.

ISS - an exception from a Watchpoint exception

0b110101 Watchpoint exception taken without a
change in Exception level.

ISS - an exception from a Watchpoint exception

0b111000 BKPT instruction execution in AArch32
state.

ISS - an exception from execution of a Breakpoint
instruction

0b111100 BRK instruction execution in AArch64
state.
This is reported in ESR_EL3 only if a
BRK instruction is executed.

ISS - an exception from execution of a Breakpoint
instruction

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in ’Reserved values in System and memory-mapped registers and translation table entries’ in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

Value Meaning

0b0 16-bit instruction trapped.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 32-bit instruction trapped. This value is also used when the exception
is one of the following:

• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit has
its standard meaning:

– 0b0: 16-bit T32 BKPT instruction.
– 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see x‘Mapping of the general-purpose registers between the Execution
states’.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
– The AArch64 view of the register number of a register that might have been used at the Exception level

from which the exception was taken.
– The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

exceptions with an unknown reason

RES0

24 0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter 3. Register definitions
3.2. Alphabetical list of registers

– A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

– A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

– Instruction encodings that are unallocated.
– Instruction encodings for instructions that are not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug

state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted

access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

– An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
– An SMC instruction when disabled by SCR_EL3.SMD.
– An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

– A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented in
the current Security state.

– A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current Security
state.

– A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.

See x‘Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32’.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.
• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE

was 0 would have been reported with an ESR_ELx.EC value of 0b000111.
• When SVE is not implemented, attempted execution of:

– An SVE instruction.
– An MSR or MRS instruction to access ZCR_EL1, ZCR_EL2, or ZCR_EL3.

an exception from a WFI or WFE instruction

CV

24

COND

23 20

RES0

19 1

TI

0

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter 3. Register definitions
3.2. Alphabetical list of registers

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

Value Meaning

0b0 WFI trapped.

0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

an exception from an MCR or MRC access

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter 3. Register definitions
3.2. Alphabetical list of registers

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC
access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc ==
0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter 3. Register definitions
3.2. Alphabetical list of registers

state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using

AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.
• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR

or MRC access (coproc == 0b1111) trapped to EL2.
• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using

AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.
• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32

state, MCR or MRC access (coproc == 0b1111) trapped to EL3.
• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,

MCR or MRC access (coproc == 0b1111) trapped to EL3.
• For information on other traps using EC value 0b000011, see x‘Traps to EL3 of Secure monitor functionality

from Secure EL1 using AArch32’.
• If xARMv8.6-FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2. [endif]

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1
or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC
access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc
== 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access
trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

an exception from an MCRR or MRRC access

CV

24

COND

23 20

Opc1

19 16

0

15

Rt2

14 10

Rt

9 5

CRm

4 1 0

Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the
Execution states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to
EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1
using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111)
trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

The following sections describe configuration settings for generating exceptions that are reported using EC value
0b001100:

• CPACR_EL1.TTA for accesses to trace registers using MCR or MRC instructions, MCRR or MRRC access
(coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers DBGDSAR and
DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or
EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for traps to powerdown debug registers using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCRR or MRRC access (coproc
== 0b1110) trapped to EL3.

an exception from an LDC or STC instruction

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter 3. Register definitions
3.2. Alphabetical list of registers

set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Value Meaning

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

Value Meaning

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this
encoding is reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in x‘Reserved values in System and memory-mapped registers
and translation table entries’.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from
CPACR_EL1.FPEN, CPTR_EL2.FPEN or CPTR_ELx.TFP

CV

24

COND

23 20

RES0

19 0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, or CPTR_EL3.EZ

RES0

24 0

Bits [24:0]

When SVE is implemented:

Reserved, RES0.

Otherwise:

RES0

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter 3. Register definitions
3.2. Alphabetical list of registers

an exception from an Illegal Execution state, or a PC or SP alignment fault

RES0

24 0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions see x‘The Illegal Execution state exception’ and x‘PC
alignment checking’.

x‘SP alignment checking’ describes the configuration settings for generating SP alignment fault exceptions.

an exception from HVC or SVC instruction execution

RES0

24 16

imm16

15 0

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
– For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
– For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not
require conditionality information.

For T32 and A32 instructions, see x‘SVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile and x‘HVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

For A64 instructions, see x‘SVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile and x‘HVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from SMC instruction execution in AArch32 state

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter 3. Register definitions
3.2. Alphabetical list of registers

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

Value Meaning

0b0 The instruction was unconditional, or was conditional and passed its
condition code check.

0b1 The instruction was conditional, and might have failed its condition
code check.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter 3. Register definitions
3.2. Alphabetical list of registers

In an implementation in which an SMC instruction that fails it code check is not trapped, this field can always
return the value 0.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

x‘System calls’ describes the case where these exceptions are trapped to EL3.

an exception from SMC instruction execution in AArch64 state

RES0

24 16

imm16

15 0

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to

EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

x‘System calls’ describes the case where these exceptions are trapped to EL3.

an exception from MSR, MRS, or System instruction execution in AArch64 state

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see x‘System instructions’ subsection of ‘Branches, exception
generating and System instructions’ for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer registers
using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to
EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter register, TRFCR_EL1, using AArch64 state, MSR or MRS
access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.
• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or

MRS access trapped to EL2.
• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access

trapped to EL2.
• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS

access trapped to EL2.
• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,

trapped to EL2.
• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to

EL2.
• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access, trapped

to EL2.
• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS

access trapped to EL3.
• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR

or MRS access trapped to EL3.
• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped

to EL3.
• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS

access trapped to EL3.
• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to

EL3.
• MDCR_EL3.TTRF, for accesses to the filter trace control registers, TRFCR_EL1 and TRFCR_EL2, using

AArch64 state, MSR or MRS access trapped to EL3.
• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to

EL3.
• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS access

trapped to EL3.
• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access

trapped to EL3.
• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,

trapped to EL3.
• If xARMv8.2-EVT is implemented, HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4} and

HCR2.{TTLBIS, TICAB, TOCU, TID4} control traps for EL1 and EL0 Cache controls that use this
EC value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter 3. Register definitions
3.2. Alphabetical list of registers

an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED

24 0

IMPLEMENTATION DEFINED, bits [24:0] IMPLEMENTATION DEFINED

an exception from an Instruction Abort

RES0

24 13

SET

12 11 10

EA

9

0

8 7

0

6

IFSC

5 0

FnV S1PTW

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 0b010000, describes the state of
the PE after taking the Instruction Abort exception. The possible values of this field are:

Value Meaning

0b00 Recoverable error (UER).

0b10 Uncontainable error (UC).

0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Software can use this information to determine what recovery might be possible. Taking a synchronous External
Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

Value Meaning

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter 3. Register definitions
3.2. Alphabetical list of registers

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table
walk:

Value Meaning

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation
table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

Value Meaning

0b000000 Address size fault, level 0 of translation or translation table base
register

0b000001 Address size fault, level 1

0b000010 Address size fault, level 2

0b000011 Address size fault, level 3

0b000100 Translation fault, level 0

0b000101 Translation fault, level 1

0b000110 Translation fault, level 2

0b000111 Translation fault, level 3

0b001001 Access flag fault, level 1

0b001010 Access flag fault, level 2

0b001011 Access flag fault, level 3

0b001101 Permission fault, level 1

0b001110 Permission fault, level 2

0b001111 Permission fault, level 3

0b010000 Synchronous External abort, not on translation table walk

0b010100 Synchronous External abort, on translation table walk, level 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b010101 Synchronous External abort, on translation table walk, level 1

0b010110 Synchronous External abort, on translation table walk, level 2

0b010111 Synchronous External abort, on translation table walk, level 3

0b011000 Synchronous parity or ECC error on memory access, not on
translation table walk

0b011100 Synchronous parity or ECC error on memory access on translation
table walk, level 0

0b011101 Synchronous parity or ECC error on memory access on translation
table walk, level 1

0b011110 Synchronous parity or ECC error on memory access on translation
table walk, level 2

0b011111 Synchronous parity or ECC error on memory access on translation
table walk, level 3

0b101000 Capability tag fault.

0b101001 Capability sealed fault.

0b101010 Capability bound fault.

0b101011 Capability permission fault.

0b110000 TLB conflict abort

0b110001 Unsupported atomic hardware update fault, if the implementation
includes xARMv8.1-TTHM. Otherwise reserved.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011100, 0b011101, 0b011110, and 0b011111, are reserved.

Armv8.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see x‘The level associated with MMU faults’
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor,
they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation
walk.

This field resets to an architecturally UNKNOWN value.

an exception from a Data Abort

24

SAS

23 22 21

SRT

20 16

SF

15

AR

14

0

13

SET

12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV SSE FnV WnR
S1PTW

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111,
including those with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive, excluding
those with writeback and excluding accesses of a capability.

• AArch32 instructions where the instruction:
– Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
– Is not performing register writeback.
– Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and
otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome,
and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2
translation table walk is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

Value Meaning

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data
item must be sign extended. For these cases, the possible values of this bit are:

Value Meaning

0b0 Sign-extension not required.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction. If the
exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the register.
See x‘Mapping of the general-purpose registers between the Execution states’ in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:

Value Meaning

0b0 Instruction loads/stores a 32-bit wide register.

0b1 Instruction loads/stores a 64-bit wide register.

This field specifies the register width identified by the instruction, not the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

Value Meaning

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

Bit [13]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 0b010000, describes the state of
the PE after taking the Data Abort exception. The possible values of this field are:

Value Meaning

0b00 Recoverable error (UER).

0b10 Uncontainable error (UC).

0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Software can use this information to determine what recovery might be possible. Taking a synchronous External
Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

Value Meaning

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

Value Meaning

0b0 The Data Abort was not generated by the execution of one of the
System instructions identified in the description of value 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 The Data Abort was generated by either the execution of a cache
maintenance instruction or by a synchronous fault on the execution of
an address translation instruction. The DC ZVA instruction is not
classified as a cache maintenance instruction, and therefore its
execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table
walk:

Value Meaning

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation
table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location,
or by an instruction reading from a memory location. The possible values of this bit are:

Value Meaning

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read
of the address specified by the instruction would have generated the fault which is being reported, otherwise it is
set to 1. The architecture permits, but does not require, a relaxation of this requirement such that for all stage 2
aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

For Page table LC or SC permission violation faults from an atomic instruction that both reads and writes a valid
capability from a memory location, this bit is set to 1 if a write of a valid capability from the memory location
would have generated the fault which is being reported, otherwise it is set to 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Data Fault Status Code. Possible values of this field are:

Value Meaning

0b000000 Address size fault, level 0 of translation or translation table base
register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Synchronous Tag Check fail

0b010100 Synchronous External abort, on translation table walk, level 0.

0b010101 Synchronous External abort, on translation table walk, level 1.

0b010110 Synchronous External abort, on translation table walk, level 2.

0b010111 Synchronous External abort, on translation table walk, level 3.

0b011000 Synchronous parity or ECC error on memory access, not on
translation table walk.

0b011100 Synchronous parity or ECC error on memory access on translation
table walk, level 0.

0b011101 Synchronous parity or ECC error on memory access on translation
table walk, level 1.

0b011110 Synchronous parity or ECC error on memory access on translation
table walk, level 2.

0b011111 Synchronous parity or ECC error on memory access on translation
table walk, level 3.

0b100001 Alignment fault.

0b101000 Capability tag fault.

0b101001 Capability sealed fault.

0b101010 Capability bound fault.

0b101011 Capability permission fault.

0b101100 Page table LC or SC permission violation fault.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b110000 TLB conflict abort.

0b110001 Unsupported atomic hardware update fault, if the implementation
includes xARMv8.1-TTHM. Otherwise reserved.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic
access).

0b110110 Unsupported LDCT or SDCT to Device or Non-cacheable.

0b111101 Section Domain Fault, used only for faults reported in the PAR_EL1.

0b111110 Page Domain Fault, used only for faults reported in the PAR_EL1.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011100, 0b011101, 0b011110, and 0b011111, are reserved.

For more information about the lookup level associated with a fault, see x‘The level associated with MMU faults’
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor,
they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation
walk.

This field resets to an architecturally UNKNOWN value.

an exception from an access to the Morello architecture

RES0

24 0

Bits [24:0]

Reserved, RES0.

In an implementation that supports Morello architecture, from an Exception level using AArch64, the
CPACR_EL1.CEN, CPTR_EL2.{CEN, DC} and CPTR_EL3.EC bits control whether Morello instructions and
accesses to Morello System registers are trapped.

an exception from capability MSR or MRS instruction execution

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Ct

9 5

CRm

4 1 0

Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Ct, bits [9:5]

The Ct value from the issued instruction, the capability register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

an exception from a trapped floating-point exception

0

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

TFV IDF
IXF

UFF

IOF
DZF

OFF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions. The possible values of this bit are:

Value Meaning

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid
information about trapped floating-point exceptions and are
UNKNOWN.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 One or more floating-point exceptions occurred during an operation
performed while executing the reported instruction. The IDF, IXF,
UFF, OFF, DZF, and IOF bits indicate trapped floating-point
exceptions that occurred. For more information see x‘Floating- point
exceptions and exception traps’.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating
point exception from a vector instruction.

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point exception from a
vector instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of
the reported instruction.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter 3. Register definitions
3.2. Alphabetical list of registers

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of
the reported instruction.

This field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution
of the reported instruction.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter 3. Register definitions
3.2. Alphabetical list of registers

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

an SError interrupt

24

RES0

23 14 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS IESB

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

Value Meaning

0b0 Bits[23:0] of the ISS field holds the fields described in this encoding.
If the RAS Extension is not implemented, this means that bits[23:0]
of the ISS field are RES0.

0b1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When ARMv8.2-IESB is implemented:

Implicit error synchronization event.

Value Meaning

0b0 The SError interrupt was either not synchronized by the implicit error
synchronization event or not taken immediately.

0b1 The SError interrupt was synchronized by the implicit error
synchronization event and taken immediately.

This field is RES0 if the value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension and xARMv8.2-IESB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

AET, bits [12:10]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 0b010001, describes the state of the PE after taking the
SError interrupt exception. The possible values of this field are:

Value Meaning

0b000 Uncontainable error (UC).

0b001 Unrecoverable error (UEU).

0b010 Restartable error (UEO).

0b011 Recoverable error (UER).

0b110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Software can use this information to determine what recovery might be possible. The recovery software must also
examine any implemented fault records to determine the location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED
classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Data Fault Status Code. When the RAS Extension is implemented, possible values of this field are:

Value Meaning

0b000000 Uncategorized.

0b010001 Asynchronous SError interrupt.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter 3. Register definitions
3.2. Alphabetical list of registers

All other values are reserved.

If the RAS Extension is not implemented, this field is RES0.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

an exception from a Breakpoint or Vector Catch debug exception

RES0

24 6

IFSC

5 0

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see x‘Breakpoint exceptions’.
• For exceptions from AArch32, see x‘Breakpoint exceptions’ and x‘Vector Catch exceptions’.

an exception from a Software Step exception

24

RES0

23 7

EX

6

IFSC

5 0

ISV

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

Value Meaning

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

This field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

Value Meaning

0b0 An instruction other than a Load- Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter 3. Register definitions
3.2. Alphabetical list of registers

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Software Step exceptions’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile,.

an exception from a Watchpoint exception

RES0

24 14

0

13

RES0

12 9

CM

8

0

7 6

DFSC

5 0

WnR

Bits [24:14]

Reserved, RES0.

Bit [13]

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

Value Meaning

0b0 The Watchpoint exception was not generated by the execution of one
of the System instructions identified in the description of value 1.

0b1 The Watchpoint exception was generated by either the execution of a
cache maintenance instruction or by a synchronous Watchpoint
exception on the execution of an address translation instruction. The
DC ZVA instruction is not classified as a cache maintenance
instruction, and therefore its execution cannot cause this field to be
set to 1.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location. The possible values of this bit are:

Value Meaning

0b0 Watchpoint exception caused by an instruction reading from a
memory location.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 Watchpoint exception caused by an instruction writing to a memory
location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a
value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Watchpoint exceptions’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from execution of a Breakpoint instruction

RES0

24 16

Comment

15 0

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary. For the AArch32 BKPT instructions, the
comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Breakpoint instruction exceptions’ in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0

RES0

24 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter 3. Register definitions
3.2. Alphabetical list of registers

an exception from a Pointer Authentication instruction authentication failure

RES0

24 2 1 0

Bit [1] Bit [0]

Bits [24:2]

Reserved, RES0.

Bit [1], bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Value Meaning

0b0 Instruction Key.

0b1 Data Key.

This field resets to an architecturally UNKNOWN value.

Bit [0], bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Value Meaning

0b0 A key.

0b1 B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when the
address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter 3. Register definitions
3.2. Alphabetical list of registers

ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name ESR_EL1

The assembler syntax is:

MRS <Xt>, ESR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 return ESR_EL1;
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 return ESR_EL2;
23 else
24 return ESR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 return ESR_EL1;

Write using name ESR_EL1

The assembler syntax is:

MSR ESR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter 3. Register definitions
3.2. Alphabetical list of registers

6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 ESR_EL1 = X[t];
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 ESR_EL2 = X[t];
23 else
24 ESR_EL1 = X[t];
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 ESR_EL1 = X[t];

Read using name ESR_EL12

The assembler syntax is:

MRS <Xt>, ESR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 else
13 return ESR_EL1;
14 else
15 UNDEFINED;
16 elsif PSTATE.EL == EL3 then
17 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 return ESR_EL1;
22 else
23 UNDEFINED;

Write using name ESR_EL12

The assembler syntax is:

MSR ESR_EL12, <Xt>

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 else
13 ESR_EL1 = X[t];
14 else
15 UNDEFINED;
16 elsif PSTATE.EL == EL3 then
17 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 ESR_EL1 = X[t];
22 else
23 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.26 ESR_EL2, Exception Syndrome Register (EL2)

The ESR_EL2 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL2.

Attributes

ESR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register ESR_EL2[31:0] is architecturally mapped to AArch32 System register
HSR[31:0].

Field descriptions

The ESR_EL2 bit assignments are:

RES0

63 32

EC

31 26

IL

25

ISS

24 0

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of
ESR_EL2 is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

Value Meaning Link Applies

0b000000 Unknown reason. ISS - exceptions with an unknown reason

0b000001 Trapped WFI or WFE instruction
execution.
Conditional WFE and WFI instructions
that fail their condition code check do
not cause an exception.

ISS - an exception from a WFI or WFE instruction

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b000011 Trapped MCR or MRC access with
(coproc==0b1111) that is not reported
using EC 0b000000.

ISS - an exception from an MCR or MRC access

0b000100 Trapped MCRR or MRRC access with
(coproc==0b1111) that is not reported
using EC 0b000000.

ISS - an exception from an MCRR or MRRC
access

0b000101 Trapped MCR or MRC access with
(coproc==0b1110).

ISS - an exception from an MCR or MRC access

0b000110 Trapped LDC or STC access.
The only architected uses of these
instruction are:

• An STC to write data to memory
from DBGDTRRXint.

• An LDC to read data from
memory to DBGDTRTXint.

ISS - an exception from an LDC or STC instruction

0b000111 Access to SVE, Advanced SIMD, or
floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN,
CPTR_EL2.TFP, or CPTR_EL3.TFP
control.
Excludes exceptions resulting from
CPACR_EL1 when the value of
HCR_EL2.TGE is 1, or because SVE or
Advanced SIMD and floating-point are
not implemented. These are reported
with EC value 0b000000 as described in
’EC encodings when routing exceptions
to EL2’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A
architecture profile, section D1.10.4.

ISS - an exception from an access to SVE,
Advanced SIMD or floating-point functionality,
resulting from CPACR_EL1.FPEN,
CPTR_EL2.FPEN or CPTR_ELx.TFP

0b001000 Trapped VMRS access, from ID group
trap, that is not reported using EC
0b000111.

ISS - an exception from an MCR or MRC access

0b001100 Trapped MRRC access with
(coproc==0b1110).

ISS - an exception from an MCRR or MRRC
access

0b001110 Illegal Execution state. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b010001 SVC instruction execution in AArch32
state.
This is reported in ESR_EL2 only when
the exception is generated because the
value of HCR_EL2.TGE is 1.

ISS - an exception from HVC or SVC instruction
execution

0b010010 HVC instruction execution in AArch32
state, when HVC is not disabled.

ISS - an exception from HVC or SVC instruction
execution

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b010011 SMC instruction execution in AArch32
state, when SMC is not disabled.
This is reported in ESR_EL2 only when
the exception is generated because the
value of HCR_EL2.TSC is 1.

ISS - an exception from SMC instruction execution
in AArch32 state

0b010101 SVC instruction execution in AArch64
state.

ISS - an exception from HVC or SVC instruction
execution

0b010110 HVC instruction execution in AArch64
state, when HVC is not disabled.

ISS - an exception from HVC or SVC instruction
execution

0b010111 SMC instruction execution in AArch64
state, when SMC is not disabled.
This is reported in ESR_EL2 only when
the exception is generated because the
value of HCR_EL2.TSC is 1.

ISS - an exception from SMC instruction execution
in AArch64 state

0b011000 Trapped MSR, MRS or System
instruction execution in AArch64 state,
that is not reported using EC 0b000000,
0b000001, 0b000111 or 0b101010.
If xARMv8.0-CSV2 is implemented,
also Cache Speculation Variant
exceptions.
If xARMv8.2-EVT is implemented, also
traps for EL1 and EL0 Cache controls.
This includes all instructions that cause
exceptions that are part of the encoding
space defined in ’System instruction
class encoding overview’ in the Arm®
Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section
C5.2.2, except for those exceptions
reported using EC values 0b000000,
0b000001, or 0b000111.

ISS - an exception from MSR, MRS, or System
instruction execution in AArch64 state

0b011001 Access to SVE functionality trapped as a
result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is not reported
using EC 0b000000.
This EC is defined only if xSVEis
implemented.

ISS - an exception from an access to SVE
functionality, resulting from CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

0b100000 Instruction Abort from a lower
Exception level, that might be using
AArch32 or AArch64.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for debug
related exceptions.

ISS - an exception from an Instruction Abort

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b100001 Instruction Abort taken without a change
in Exception level.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for debug
related exceptions.

ISS - an exception from an Instruction Abort

0b100010 PC alignment fault exception. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b100100 Data Abort from a lower Exception level,
excluding Data Aborts taken to EL2 as a
result of accesses generated associated
with VNCR_EL2 as part of nested
virtualization support.
These Data Aborts might be generated
from Exception levels using AArch32 or
AArch64.
Used for MMU faults generated by data
accesses, alignment faults other than
those caused by Stack Pointer
misalignment, and synchronous External
aborts, including synchronous parity or
ECC errors. Not used for debug related
exceptions.

ISS - an exception from a Data Abort

0b100101 Data Abort without a change in
Exception level, or Data Aborts taken to
EL2 as a result of accesses generated
associated with VNCR_EL2 as part of
nested virtualization support.
Used for MMU faults generated by data
accesses, alignment faults other than
those caused by Stack Pointer
misalignment, and synchronous External
aborts, including synchronous parity or
ECC errors. Not used for debug related
exceptions.

ISS - an exception from a Data Abort

0b100110 SP alignment fault exception. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b101000 Trapped floating-point exception taken
from AArch32 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it is
reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

ISS - an exception from a trapped floating-point
exception

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b101001 Access to the Morello architecture
trapped as a result of CPACR_EL1.CEN,
CPTR_EL2.CEN, CPTR_EL2.TC, or
CPTR_EL3.EC.

ISS - an exception from an access to the Morello
architecture

When
Morello is
implemented

0b101010 Trapped capability MSR or MRS
instruction execution.
This EC value is valid if Morello
architecture is implemented, otherwise it
is reserved. Used for trapped accesses to
capability System registers via MSR or
MRS instructions.

ISS - an exception from capability MSR or MRS
instruction execution

When
Morello is
implemented

0b101100 Trapped floating-point exception taken
from AArch64 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it is
reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

ISS - an exception from a trapped floating-point
exception

0b101111 SError interrupt. ISS - an SError interrupt

0b110000 Breakpoint exception from a lower
Exception level, that might be using
AArch32 or AArch64.

ISS - an exception from a Breakpoint or Vector
Catch debug exception

0b110001 Breakpoint exception taken without a
change in Exception level.

ISS - an exception from a Breakpoint or Vector
Catch debug exception

0b110010 Software Step exception from a lower
Exception level, that might be using
AArch32 or AArch64.

ISS - an exception from a Software Step exception

0b110011 Software Step exception taken without a
change in Exception level.

ISS - an exception from a Software Step exception

0b110100 Watchpoint from a lower Exception level,
excluding Watchpoint Exceptions taken
to EL2 as a result of accesses generated
associated with VNCR_EL2 as part of
nested virtualization support.
These Watchpoint Exceptions might be
generated from Exception levels using
AArch32 or AArch64

ISS - an exception from a Watchpoint exception

0b110101 Watchpoint exceptions without a change
in Exception level, or Watchpoint
exceptions taken to EL2 as a result of
accesses generated associated with
VNCR_EL2 as part of nested
virtualization support.

ISS - an exception from a Watchpoint exception

0b111000 BKPT instruction execution in AArch32
state.

ISS - an exception from execution of a Breakpoint
instruction

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b111010 Vector Catch exception from AArch32
state.
The only case where a Vector Catch
exception is taken to an Exception level
that is using AArch64 is when the
exception is routed to EL2 and EL2 is
using AArch64.

ISS - an exception from a Breakpoint or Vector
Catch debug exception

0b111100 BRK instruction execution in AArch64
state.
This is reported in ESR_EL3 only if a
BRK instruction is executed.

ISS - an exception from execution of a Breakpoint
instruction

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in ’Reserved values in System and memory-mapped registers and translation table entries’ in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

Value Meaning

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception
is one of the following:

• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit has
its standard meaning:

– 0b0: 16-bit T32 BKPT instruction.
– 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see x‘Mapping of the general-purpose registers between the Execution
states’.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
– The AArch64 view of the register number of a register that might have been used at the Exception level

from which the exception was taken.
– The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

exceptions with an unknown reason

RES0

24 0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

– A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

– A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

– Instruction encodings that are unallocated.
– Instruction encodings for instructions that are not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug

state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted

access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

– An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
– An SMC instruction when disabled by SCR_EL3.SMD.
– An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• Attempted execution, in Debug state, of:
– A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented in

the current Security state.
– A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current Security

state.
– A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.

• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.
See x‘Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32’.

• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an
instruction that is configured to trap to EL3.

• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)
instruction to SPSR_mon, SP_mon, or LR_mon.

• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE
was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

• When SVE is not implemented, attempted execution of:
– An SVE instruction.
– An MSR or MRS instruction to access ZCR_EL1, ZCR_EL2, or ZCR_EL3.

an exception from a WFI or WFE instruction

CV

24

COND

23 20

RES0

19 1

TI

0

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

Value Meaning

0b0 WFI trapped.

0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

an exception from an MCR or MRC access

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter 3. Register definitions
3.2. Alphabetical list of registers

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC
access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc ==
0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see x‘Traps to EL3 of Secure monitor functionality
from Secure EL1 using AArch32’.

• If xARMv8.6-FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2. [endif]

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1
or EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC
access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc
== 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access
trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

an exception from an MCRR or MRRC access

CV

24

COND

23 20

Opc1

19 16

0

15

Rt2

14 10

Rt

9 5

CRm

4 1 0

Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter 3. Register definitions
3.2. Alphabetical list of registers

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the
Execution states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to
EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1
using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111)
trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

The following sections describe configuration settings for generating exceptions that are reported using EC value
0b001100:

• CPACR_EL1.TTA for accesses to trace registers using MCR or MRC instructions, MCRR or MRRC access
(coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers DBGDSAR and
DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or
EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for traps to powerdown debug registers using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCRR or MRRC access (coproc
== 0b1110) trapped to EL3.

an exception from an LDC or STC instruction

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Value Meaning

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

Value Meaning

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this
encoding is reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in x‘Reserved values in System and memory-mapped registers
and translation table entries’.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from
CPACR_EL1.FPEN, CPTR_EL2.FPEN or CPTR_ELx.TFP

CV

24

COND

23 20

RES0

19 0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter 3. Register definitions
3.2. Alphabetical list of registers

set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, or CPTR_EL3.EZ

RES0

24 0

Bits [24:0]

When SVE is implemented:

Reserved, RES0.

Otherwise:

RES0

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

an exception from an Illegal Execution state, or a PC or SP alignment fault

RES0

24 0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions see x‘The Illegal Execution state exception’ and x‘PC
alignment checking’.

x‘SP alignment checking’ describes the configuration settings for generating SP alignment fault exceptions.

an exception from HVC or SVC instruction execution

RES0

24 16

imm16

15 0

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
– For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
– For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not
require conditionality information.

For T32 and A32 instructions, see x‘SVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile and x‘HVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

For A64 instructions, see x‘SVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile and x‘HVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from SMC instruction execution in AArch32 state

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

Value Meaning

0b0 The instruction was unconditional, or was conditional and passed its
condition code check.

0b1 The instruction was conditional, and might have failed its condition
code check.

In an implementation in which an SMC instruction that fails it code check is not trapped, this field can always
return the value 0.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

x‘System calls’ describes the case where these exceptions are trapped to EL3.

an exception from SMC instruction execution in AArch64 state

RES0

24 16

imm16

15 0

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to

EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

x‘System calls’ describes the case where these exceptions are trapped to EL3.

an exception from MSR, MRS, or System instruction execution in AArch64 state

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write access, including MSR instructions.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see x‘System instructions’ subsection of ‘Branches, exception
generating and System instructions’ for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer registers
using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to
EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter register, TRFCR_EL1, using AArch64 state, MSR or MRS
access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.
• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or

MRS access trapped to EL2.
• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access

trapped to EL2.
• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS

access trapped to EL2.
• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,

trapped to EL2.
• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to

EL2.
• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access, trapped

to EL2.
• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS

access trapped to EL3.
• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR

or MRS access trapped to EL3.
• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped

to EL3.
• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS

access trapped to EL3.
• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to

EL3.
• MDCR_EL3.TTRF, for accesses to the filter trace control registers, TRFCR_EL1 and TRFCR_EL2, using

AArch64 state, MSR or MRS access trapped to EL3.
• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to

EL3.
• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS access

trapped to EL3.
• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access

trapped to EL3.
• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,

trapped to EL3.
• If xARMv8.2-EVT is implemented, HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4} and

HCR2.{TTLBIS, TICAB, TOCU, TID4} control traps for EL1 and EL0 Cache controls that use this
EC value.

an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED

24 0

IMPLEMENTATION DEFINED, bits [24:0] IMPLEMENTATION DEFINED

an exception from an Instruction Abort

RES0

24 13

SET

12 11 10

EA

9

0

8 7

0

6

IFSC

5 0

FnV S1PTW

Bits [24:13]

Reserved, RES0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter 3. Register definitions
3.2. Alphabetical list of registers

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 0b010000, describes the state of
the PE after taking the Instruction Abort exception. The possible values of this field are:

Value Meaning

0b00 Recoverable error (UER).

0b10 Uncontainable error (UC).

0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Software can use this information to determine what recovery might be possible. Taking a synchronous External
Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

Value Meaning

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table
walk:

Value Meaning

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 Fault on the stage 2 translation of an access for a stage 1 translation
table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

Value Meaning

0b000000 Address size fault, level 0 of translation or translation table base
register

0b000001 Address size fault, level 1

0b000010 Address size fault, level 2

0b000011 Address size fault, level 3

0b000100 Translation fault, level 0

0b000101 Translation fault, level 1

0b000110 Translation fault, level 2

0b000111 Translation fault, level 3

0b001001 Access flag fault, level 1

0b001010 Access flag fault, level 2

0b001011 Access flag fault, level 3

0b001101 Permission fault, level 1

0b001110 Permission fault, level 2

0b001111 Permission fault, level 3

0b010000 Synchronous External abort, not on translation table walk

0b010100 Synchronous External abort, on translation table walk, level 0

0b010101 Synchronous External abort, on translation table walk, level 1

0b010110 Synchronous External abort, on translation table walk, level 2

0b010111 Synchronous External abort, on translation table walk, level 3

0b011000 Synchronous parity or ECC error on memory access, not on
translation table walk

0b011100 Synchronous parity or ECC error on memory access on translation
table walk, level 0

0b011101 Synchronous parity or ECC error on memory access on translation
table walk, level 1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b011110 Synchronous parity or ECC error on memory access on translation
table walk, level 2

0b011111 Synchronous parity or ECC error on memory access on translation
table walk, level 3

0b101000 Capability tag fault.

0b101001 Capability sealed fault.

0b101010 Capability bound fault.

0b101011 Capability permission fault.

0b110000 TLB conflict abort

0b110001 Unsupported atomic hardware update fault, if the implementation
includes xARMv8.1-TTHM. Otherwise reserved.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011100, 0b011101, 0b011110, and 0b011111, are reserved.

Armv8.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see x‘The level associated with MMU faults’
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor,
they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation
walk.

This field resets to an architecturally UNKNOWN value.

an exception from a Data Abort

24

SAS

23 22 21

SRT

20 16

SF

15

AR

14

0

13

SET

12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV SSE FnV WnR
S1PTW

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

Value Meaning

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111,
including those with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive, excluding
those with writeback and excluding accesses of a capability.

• AArch32 instructions where the instruction:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter 3. Register definitions
3.2. Alphabetical list of registers

– Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,
LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.

– Is not performing register writeback.
– Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and
otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome,
and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2
translation table walk is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

Value Meaning

0b00 Byte

0b01 Halfword

0b10 Word

0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data
item must be sign extended. For these cases, the possible values of this bit are:

Value Meaning

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction. If the

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter 3. Register definitions
3.2. Alphabetical list of registers

exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the register.
See x‘Mapping of the general-purpose registers between the Execution states’ in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:

Value Meaning

0b0 Instruction loads/stores a 32-bit wide register.

0b1 Instruction loads/stores a 64-bit wide register.

This field specifies the register width identified by the instruction, not the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

Value Meaning

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 0b010000, describes the state of
the PE after taking the Data Abort exception. The possible values of this field are:

Value Meaning

0b00 Recoverable error (UER).

0b10 Uncontainable error (UC).

0b11 Restartable error (UEO) or Corrected error (CE).

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter 3. Register definitions
3.2. Alphabetical list of registers

All other values are reserved.

Software can use this information to determine what recovery might be possible. Taking a synchronous External
Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

Value Meaning

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

Value Meaning

0b0 The Data Abort was not generated by the execution of one of the
System instructions identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache
maintenance instruction or by a synchronous fault on the execution of
an address translation instruction. The DC ZVA instruction is not
classified as a cache maintenance instruction, and therefore its
execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table
walk:

Value Meaning

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 Fault on the stage 2 translation of an access for a stage 1 translation
table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location,
or by an instruction reading from a memory location. The possible values of this bit are:

Value Meaning

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read
of the address specified by the instruction would have generated the fault which is being reported, otherwise it is
set to 1. The architecture permits, but does not require, a relaxation of this requirement such that for all stage 2
aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

For Page table LC or SC permission violation faults from an atomic instruction that both reads and writes a valid
capability from a memory location, this bit is set to 1 if a write of a valid capability from the memory location
would have generated the fault which is being reported, otherwise it is set to 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

Value Meaning

0b000000 Address size fault, level 0 of translation or translation table base
register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Synchronous Tag Check fail

0b010100 Synchronous External abort, on translation table walk, level 0.

0b010101 Synchronous External abort, on translation table walk, level 1.

0b010110 Synchronous External abort, on translation table walk, level 2.

0b010111 Synchronous External abort, on translation table walk, level 3.

0b011000 Synchronous parity or ECC error on memory access, not on
translation table walk.

0b011100 Synchronous parity or ECC error on memory access on translation
table walk, level 0.

0b011101 Synchronous parity or ECC error on memory access on translation
table walk, level 1.

0b011110 Synchronous parity or ECC error on memory access on translation
table walk, level 2.

0b011111 Synchronous parity or ECC error on memory access on translation
table walk, level 3.

0b100001 Alignment fault.

0b101000 Capability tag fault.

0b101001 Capability sealed fault.

0b101010 Capability bound fault.

0b101011 Capability permission fault.

0b101100 Page table LC or SC permission violation fault.

0b110000 TLB conflict abort.

0b110001 Unsupported atomic hardware update fault, if the implementation
includes xARMv8.1-TTHM. Otherwise reserved.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic
access).

0b110110 Unsupported LDCT or SDCT to Device or Non-cacheable.

0b111101 Section Domain Fault, used only for faults reported in the PAR_EL1.

0b111110 Page Domain Fault, used only for faults reported in the PAR_EL1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter 3. Register definitions
3.2. Alphabetical list of registers

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011100, 0b011101, 0b011110, and 0b011111, are reserved.

For more information about the lookup level associated with a fault, see x‘The level associated with MMU faults’
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor,
they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation
walk.

This field resets to an architecturally UNKNOWN value.

an exception from an access to the Morello architecture

RES0

24 0

Bits [24:0]

Reserved, RES0.

In an implementation that supports Morello architecture, from an Exception level using AArch64, the
CPACR_EL1.CEN, CPTR_EL2.{CEN, DC} and CPTR_EL3.EC bits control whether Morello instructions and
accesses to Morello System registers are trapped.

an exception from capability MSR or MRS instruction execution

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Ct

9 5

CRm

4 1 0

Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Ct, bits [9:5]

The Ct value from the issued instruction, the capability register used for the transfer.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter 3. Register definitions
3.2. Alphabetical list of registers

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

an exception from a trapped floating-point exception

0

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

TFV IDF
IXF

UFF

IOF
DZF

OFF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions. The possible values of this bit are:

Value Meaning

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid
information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation
performed while executing the reported instruction. The IDF, IXF,
UFF, OFF, DZF, and IOF bits indicate trapped floating-point
exceptions that occurred. For more information see x‘Floating- point
exceptions and exception traps’.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating
point exception from a vector instruction.

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point exception from a
vector instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter 3. Register definitions
3.2. Alphabetical list of registers

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of
the reported instruction.

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Divide by Zero floating-point exception has not occurred.

0b1 Divide by Zero floating-point exception occurred during execution of
the reported instruction.

This field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution
of the reported instruction.

This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

an SError interrupt

24

RES0

23 14 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS IESB

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Bits[23:0] of the ISS field holds the fields described in this encoding.
If the RAS Extension is not implemented, this means that bits[23:0]
of the ISS field are RES0.

0b1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When ARMv8.2-IESB is implemented:

Implicit error synchronization event.

Value Meaning

0b0 The SError interrupt was either not synchronized by the implicit error
synchronization event or not taken immediately.

0b1 The SError interrupt was synchronized by the implicit error
synchronization event and taken immediately.

This field is RES0 if the value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension and xARMv8.2-IESB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

AET, bits [12:10]

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 0b010001, describes the state of the PE after taking the
SError interrupt exception. The possible values of this field are:

Value Meaning

0b000 Uncontainable error (UC).

0b001 Unrecoverable error (UEU).

0b010 Restartable error (UEO).

0b011 Recoverable error (UER).

0b110 Corrected error (CE).

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter 3. Register definitions
3.2. Alphabetical list of registers

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Software can use this information to determine what recovery might be possible. The recovery software must also
examine any implemented fault records to determine the location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED
classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Data Fault Status Code. When the RAS Extension is implemented, possible values of this field are:

Value Meaning

0b000000 Uncategorized.

0b010001 Asynchronous SError interrupt.

All other values are reserved.

If the RAS Extension is not implemented, this field is RES0.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

an exception from a Breakpoint or Vector Catch debug exception

RES0

24 6

IFSC

5 0

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see x‘Breakpoint exceptions’.
• For exceptions from AArch32, see x‘Breakpoint exceptions’ and x‘Vector Catch exceptions’.

an exception from a Software Step exception

24

RES0

23 7

EX

6

IFSC

5 0

ISV

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

Value Meaning

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

This field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

Value Meaning

0b0 An instruction other than a Load- Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Software Step exceptions’ in the Arm® Architecture

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Reference Manual, Armv8, for Armv8-A architecture profile,.

an exception from a Watchpoint exception

RES0

24 14

0

13

RES0

12 9

CM

8

0

7 6

DFSC

5 0

WnR

Bits [24:14]

Reserved, RES0.

Bit [13]

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

Value Meaning

0b0 The Watchpoint exception was not generated by the execution of one
of the System instructions identified in the description of value 1.

0b1 The Watchpoint exception was generated by either the execution of a
cache maintenance instruction or by a synchronous Watchpoint
exception on the execution of an address translation instruction. The
DC ZVA instruction is not classified as a cache maintenance
instruction, and therefore its execution cannot cause this field to be
set to 1.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location. The possible values of this bit are:

Value Meaning

0b0 Watchpoint exception caused by an instruction reading from a
memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory
location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a
value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter 3. Register definitions
3.2. Alphabetical list of registers

generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Watchpoint exceptions’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from execution of a Breakpoint instruction

RES0

24 16

Comment

15 0

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary. For the AArch32 BKPT instructions, the
comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Breakpoint instruction exceptions’ in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0

RES0

24 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

an exception from a Pointer Authentication instruction authentication failure

RES0

24 2 1 0

Bit [1] Bit [0]

Bits [24:2]

Reserved, RES0.

Bit [1], bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 Instruction Key.

0b1 Data Key.

This field resets to an architecturally UNKNOWN value.

Bit [0], bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Value Meaning

0b0 A key.

0b1 B key.

This field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when the
address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name ESR_EL2

The assembler syntax is:

MRS <Xt>, ESR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter 3. Register definitions
3.2. Alphabetical list of registers

2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 return ESR_EL2;
13 elsif PSTATE.EL == EL3 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 return ESR_EL2;

Write using name ESR_EL2

The assembler syntax is:

MSR ESR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 ESR_EL2 = X[t];
13 elsif PSTATE.EL == EL3 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 ESR_EL2 = X[t];

Read using name ESR_EL1

The assembler syntax is:

MRS <Xt>, ESR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 return ESR_EL1;
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 return ESR_EL2;
23 else
24 return ESR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 return ESR_EL1;

Write using name ESR_EL1

The assembler syntax is:

MSR ESR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 ESR_EL1 = X[t];
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 ESR_EL2 = X[t];
23 else
24 ESR_EL1 = X[t];
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter 3. Register definitions
3.2. Alphabetical list of registers

29 ESR_EL1 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.27 ESR_EL3, Exception Syndrome Register (EL3)

The ESR_EL3 characteristics are:

Purpose

Holds syndrome information for an exception taken to EL3.

Attributes

ESR_EL3 is a 64-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to ESR_EL3 are UNDE-
FINED.

Field descriptions

The ESR_EL3 bit assignments are:

RES0

63 32

EC

31 26

IL

25

ISS

24 0

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of
ESR_EL3 is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a
result of an exception from the same Exception level that generated the exception as a result of a situation that is
not UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:32]

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

Value Meaning Link Applies

0b000000 Unknown reason. ISS - exceptions with an unknown reason

0b000001 Trapped WFI or WFE instruction
execution.
Conditional WFE and WFI instructions
that fail their condition code check do
not cause an exception.

ISS - an exception from a WFI or WFE instruction

0b000011 Trapped MCR or MRC access with
(coproc==0b1111) that is not reported
using EC 0b000000.

ISS - an exception from an MCR or MRC access

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b000100 Trapped MCRR or MRRC access with
(coproc==0b1111) that is not reported
using EC 0b000000.

ISS - an exception from an MCRR or MRRC
access

0b000101 Trapped MCR or MRC access with
(coproc==0b1110).

ISS - an exception from an MCR or MRC access

0b000110 Trapped LDC or STC access.
The only architected uses of these
instruction are:

• An STC to write data to memory
from DBGDTRRXint.

• An LDC to read data from
memory to DBGDTRTXint.

ISS - an exception from an LDC or STC instruction

0b000111 Access to SVE, Advanced SIMD, or
floating-point functionality trapped by
CPACR_EL1.FPEN, CPTR_EL2.FPEN,
CPTR_EL2.TFP, or CPTR_EL3.TFP
control.
Excludes exceptions resulting from
CPACR_EL1 when the value of
HCR_EL2.TGE is 1, or because SVE or
Advanced SIMD and floating-point are
not implemented. These are reported
with EC value 0b000000 as described in
’EC encodings when routing exceptions
to EL2’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A
architecture profile, section D1.10.4.

ISS - an exception from an access to SVE,
Advanced SIMD or floating-point functionality,
resulting from CPACR_EL1.FPEN,
CPTR_EL2.FPEN or CPTR_ELx.TFP

0b001100 Trapped MRRC access with
(coproc==0b1110).

ISS - an exception from an MCRR or MRRC
access

0b001110 Illegal Execution state. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b010011 SMC instruction execution in AArch32
state, when SMC is not disabled.
This is reported in ESR_EL2 only when
the exception is generated because the
value of HCR_EL2.TSC is 1.

ISS - an exception from SMC instruction execution
in AArch32 state

0b010101 SVC instruction execution in AArch64
state.

ISS - an exception from HVC or SVC instruction
execution

0b010110 HVC instruction execution in AArch64
state, when HVC is not disabled.

ISS - an exception from HVC or SVC instruction
execution

0b010111 SMC instruction execution in AArch64
state, when SMC is not disabled.
This is reported in ESR_EL2 only when
the exception is generated because the
value of HCR_EL2.TSC is 1.

ISS - an exception from SMC instruction execution
in AArch64 state

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b011000 Trapped MSR, MRS or System
instruction execution in AArch64 state,
that is not reported using EC 0b000000,
0b000001, 0b000111 or 0b101010.
If xARMv8.0-CSV2 is implemented,
also Cache Speculation Variant
exceptions.
This includes all instructions that cause
exceptions that are part of the encoding
space defined in ’System instruction
class encoding overview’ in the Arm®
Architecture Reference Manual, Armv8,
for Armv8-A architecture profile, section
C5.2.2, except for those exceptions
reported using EC values 0b000000,
0b000001, or 0b000111.

ISS - an exception from MSR, MRS, or System
instruction execution in AArch64 state

0b011001 Access to SVE functionality trapped as a
result of CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is not reported
using EC 0b000000.
This EC is defined only if xSVEis
implemented.

ISS - an exception from an access to SVE
functionality, resulting from CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

0b011111 IMPLEMENTATION DEFINED exception
to EL3.

ISS - an IMPLEMENTATION DEFINED exception to
EL3

0b100000 Instruction Abort from a lower
Exception level, that might be using
AArch32 or AArch64.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for debug
related exceptions.

ISS - an exception from an Instruction Abort

0b100001 Instruction Abort taken without a change
in Exception level.
Used for MMU faults generated by
instruction accesses and synchronous
External aborts, including synchronous
parity or ECC errors. Not used for debug
related exceptions.

ISS - an exception from an Instruction Abort

0b100010 PC alignment fault exception. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning Link Applies

0b100100 Data Abort from a lower Exception level,
that might be using AArch32 or
AArch64.
Used for MMU faults generated by data
accesses, alignment faults other than
those caused by Stack Pointer
misalignment, and synchronous External
aborts, including synchronous parity or
ECC errors. Not used for debug related
exceptions.

ISS - an exception from a Data Abort

0b100101 Data Abort taken without a change in
Exception level.
Used for MMU faults generated by data
accesses, alignment faults other than
those caused by Stack Pointer
misalignment, and synchronous External
aborts, including synchronous parity or
ECC errors. Not used for debug related
exceptions.

ISS - an exception from a Data Abort

0b100110 SP alignment fault exception. ISS - an exception from an Illegal Execution state,
or a PC or SP alignment fault

0b101001 Access to the Morello architecture
trapped as a result of CPACR_EL1.CEN,
CPTR_EL2.CEN, CPTR_EL2.TC, or
CPTR_EL3.EC.

ISS - an exception from an access to the Morello
architecture

When
Morello is
implemented

0b101010 Trapped capability MSR or MRS
instruction execution.
This EC value is valid if Morello
architecture is implemented, otherwise it
is reserved. Used for trapped accesses to
capability System registers via MSR or
MRS instructions.

ISS - an exception from capability MSR or MRS
instruction execution

When
Morello is
implemented

0b101100 Trapped floating-point exception taken
from AArch64 state.
This EC value is valid if the
implementation supports trapping of
floating-point exceptions, otherwise it is
reserved. Whether a floating-point
implementation supports trapping of
floating-point exceptions is
IMPLEMENTATION DEFINED.

ISS - an exception from a trapped floating-point
exception

0b101111 SError interrupt. ISS - an SError interrupt

0b111100 BRK instruction execution in AArch64
state.
This is reported in ESR_EL3 only if a
BRK instruction is executed.

ISS - an exception from execution of a Breakpoint
instruction

All other EC values are reserved by Arm, and:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be
used for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE, as
described in ’Reserved values in System and memory-mapped registers and translation table entries’ in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile, section K1.1.11.

This field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

Value Meaning

0b0 16-bit instruction trapped.

0b1 32-bit instruction trapped. This value is also used when the exception
is one of the following:

• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is 0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit has
its standard meaning:

– 0b0: 16-bit T32 BKPT instruction.
– 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

This field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see x‘Mapping of the general-purpose registers between the Execution
states’.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that

must be either:
– The AArch64 view of the register number of a register that might have been used at the Exception level

from which the exception was taken.
– The value 0b11111.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter 3. Register definitions
3.2. Alphabetical list of registers

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

exceptions with an unknown reason

RES0

24 0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions that
are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not accessible
at the current Exception level and Security state, including:

– A read access using a System register pattern that is not allocated for reads or that does not permit reads
at the current Exception level and Security state.

– A write access using a System register pattern that is not allocated for writes or that does not permit
writes at the current Exception level and Security state.

– Instruction encodings that are unallocated.
– Instruction encodings for instructions that are not implemented in the implementation.

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-debug

state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an attempted

access to Advanced SIMD or floating-point functionality under conditions where that access would be
permitted if that functionality was present. This includes the attempted execution of an Advanced SIMD or
floating-point instruction, and attempted accesses to Advanced SIMD and floating-point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control bits.
• Attempted execution of:

– An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
– An SMC instruction when disabled by SCR_EL3.SMD.
– An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution, in Debug state, of:

– A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not implemented in
the current Security state.

– A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the current Security
state.

– A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using R13_mon.

See x‘Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32’.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.
• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of HCR_EL2.TGE

was 0 would have been reported with an ESR_ELx.EC value of 0b000111.
• When SVE is not implemented, attempted execution of:

– An SVE instruction.
– An MSR or MRS instruction to access ZCR_EL1, ZCR_EL2, or ZCR_EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter 3. Register definitions
3.2. Alphabetical list of registers

an exception from a WFI or WFE instruction

CV

24

COND

23 20

RES0

19 1

TI

0

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:1]

Reserved, RES0.

TI, bit [0]

Trapped instruction. Possible values of this bit are:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 WFI trapped.

0b1 WFE trapped.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

an exception from an MCR or MRC access

CV

24

COND

23 20

Opc2

19 17

Opc1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter 3. Register definitions
3.2. Alphabetical list of registers

– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional

instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to System register space. MCR instruction.

0b1 Read from System register space. MRC or VMRS instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or MRC
access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc ==
0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see x‘Traps to EL3 of Secure monitor functionality
from Secure EL1 using AArch32’.

• If xARMv8.6-FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2. [endif]

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to EL1
or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and EL1
using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32, MRC
access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access (coproc
== 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter 3. Register definitions
3.2. Alphabetical list of registers

(coproc == 0b1110) trapped to EL3.
• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc ==

0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS access
trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

an exception from an MCRR or MRRC access

CV

24

COND

23 20

Opc1

19 16

0

15

Rt2

14 10

Rt

9 5

CRm

4 1 0

Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter 3. Register definitions
3.2. Alphabetical list of registers

set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the
Execution states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to System register space. MCRR instruction.

0b1 Read from System register space. MRRC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC value
0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to
EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access (coproc

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter 3. Register definitions
3.2. Alphabetical list of registers

== 0b1111) trapped to EL2.
• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and EL1

using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using

AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.
• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and

AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111)
trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32 state,
MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

The following sections describe configuration settings for generating exceptions that are reported using EC value
0b001100:

• CPACR_EL1.TTA for accesses to trace registers using MCR or MRC instructions, MCRR or MRRC access
(coproc == 0b1110) trapped to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers DBGDSAR and
DBGDRAR at EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or
EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc == 0b1110)
trapped to EL3.

• MDCR_EL3.TDOSA, for traps to powerdown debug registers using AArch32, MCRR or MRRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCRR or MRRC access (coproc
== 0b1110) trapped to EL3.

an exception from an LDC or STC instruction

CV

24

COND

23 20

imm8

19 12

RES0

11 10

Rn

9 5 4

AM

3 1 0

Offset Direction

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter 3. Register definitions
3.2. Alphabetical list of registers

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported value
gives the AArch64 view of the register. See x‘Mapping of the general-purpose registers between the Execution
states’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Value Meaning

0b0 Subtract offset.

0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b000 Immediate unindexed.

0b001 Immediate post-indexed.

0b010 Immediate offset.

0b011 Immediate pre-indexed.

0b100 For a trapped STC instruction or a trapped T32 LDC instruction this
encoding is reserved.

0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that behavior
is CONSTRAINED UNPREDICTABLE, as described in x‘Reserved values in System and memory-mapped registers
and translation table entries’.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write to memory. STC instruction.

0b1 Read from memory. LDC instruction.

This field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value 0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from
CPACR_EL1.FPEN, CPTR_EL2.FPEN or CPTR_ELx.TFP

CV

24

COND

23 20

RES0

19 0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter 3. Register definitions
3.2. Alphabetical list of registers

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

This field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following sections describe the configuration settings for the traps that are reported using EC value 0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, or CPTR_EL3.EZ

RES0

24 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Bits [24:0]

When SVE is implemented:

Reserved, RES0.

Otherwise:

RES0

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE system registers, ZCR_ELx and ID_AA64ZFR0_EL1.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

an exception from an Illegal Execution state, or a PC or SP alignment fault

RES0

24 0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions see x‘The Illegal Execution state exception’ and x‘PC
alignment checking’.

x‘SP alignment checking’ describes the configuration settings for generating SP alignment fault exceptions.

an exception from HVC or SVC instruction execution

RES0

24 16

imm16

15 0

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
– For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
– For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an exception
only if it passes its condition code check. Therefore, the syndrome information for these exceptions does not
require conditionality information.

For T32 and A32 instructions, see x‘SVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A
architecture profile and x‘HVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter 3. Register definitions
3.2. Alphabetical list of registers

For A64 instructions, see x‘SVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture
profile and x‘HVC’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from SMC instruction execution in AArch32 state

CV

24

COND

23 20 19

RES0

18 0

CCKNOWNPASS

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS encoding
is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid. Possible values of this bit are:

Value Meaning

0b0 The COND field is not valid.

0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch64, this field is set to 0b1110.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
– If the instruction is conditional, COND is set to the condition code field value from the instruction.
– If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
– With COND set to 0b1110, the value for unconditional.
– With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
– CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT field to

determine the condition, if any, of the T32 instruction.
– CV is set to 1 and COND is set to the condition code for the condition that applied to the instruction.

• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped conditional
instruction only if the instruction passes its condition code check, these definitions mean that when CV is
set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to the value of any
condition that applied to the instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field is only valid if CCKNOWNPASS is 1, otherwise it is RES0.

This field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

Value Meaning

0b0 The instruction was unconditional, or was conditional and passed its
condition code check.

0b1 The instruction was conditional, and might have failed its condition
code check.

In an implementation in which an SMC instruction that fails it code check is not trapped, this field can always
return the value 0.

This field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

x‘System calls’ describes the case where these exceptions are trapped to EL3.

an exception from SMC instruction execution in AArch64 state

RES0

24 16

imm16

15 0

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

This field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is taken to

EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

x‘System calls’ describes the case where these exceptions are trapped to EL3.

an exception from MSR, MRS, or System instruction execution in AArch64 state

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Rt

9 5

CRm

4 1 0

Direction

Bits [24:22]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

This field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see x‘System instructions’ subsection of ‘Branches, exception
generating and System instructions’ for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC value
0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1 or
EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer registers
using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using AArch64
state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access trapped to
EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter register, TRFCR_EL1, using AArch64 state, MSR or MRS
access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS access
trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to EL2.
• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state, MSR or

MRS access trapped to EL2.
• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access

trapped to EL2.
• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS

access trapped to EL2.
• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS access,

trapped to EL2.
• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access, trapped to

EL2.
• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access, trapped

to EL2.
• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS

access trapped to EL3.
• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state, MSR

or MRS access trapped to EL3.
• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access trapped

to EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TTRF, for accesses to the filter trace control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If xARMv8.2-EVT is implemented, HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4} and
HCR2.{TTLBIS, TICAB, TOCU, TID4} control traps for EL1 and EL0 Cache controls that use this
EC value.

an IMPLEMENTATION DEFINED exception to EL3

IMPLEMENTATION DEFINED

24 0

IMPLEMENTATION DEFINED, bits [24:0] IMPLEMENTATION DEFINED

an exception from an Instruction Abort

RES0

24 13

SET

12 11 10

EA

9

0

8 7

0

6

IFSC

5 0

FnV S1PTW

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and IFSC is 0b010000, describes the state of
the PE after taking the Instruction Abort exception. The possible values of this field are:

Value Meaning

0b00 Recoverable error (UER).

0b10 Uncontainable error (UC).

0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Software can use this information to determine what recovery might be possible. Taking a synchronous External
Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the IFSC field is not 0b010000.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

Value Meaning

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is only valid if the IFSC code is 0b010000. It is RES0 for all other aborts.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table
walk:

Value Meaning

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation
table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. Possible values of this field are:

Value Meaning

0b000000 Address size fault, level 0 of translation or translation table base
register

0b000001 Address size fault, level 1

0b000010 Address size fault, level 2

0b000011 Address size fault, level 3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b000100 Translation fault, level 0

0b000101 Translation fault, level 1

0b000110 Translation fault, level 2

0b000111 Translation fault, level 3

0b001001 Access flag fault, level 1

0b001010 Access flag fault, level 2

0b001011 Access flag fault, level 3

0b001101 Permission fault, level 1

0b001110 Permission fault, level 2

0b001111 Permission fault, level 3

0b010000 Synchronous External abort, not on translation table walk

0b010100 Synchronous External abort, on translation table walk, level 0

0b010101 Synchronous External abort, on translation table walk, level 1

0b010110 Synchronous External abort, on translation table walk, level 2

0b010111 Synchronous External abort, on translation table walk, level 3

0b011000 Synchronous parity or ECC error on memory access, not on
translation table walk

0b011100 Synchronous parity or ECC error on memory access on translation
table walk, level 0

0b011101 Synchronous parity or ECC error on memory access on translation
table walk, level 1

0b011110 Synchronous parity or ECC error on memory access on translation
table walk, level 2

0b011111 Synchronous parity or ECC error on memory access on translation
table walk, level 3

0b101000 Capability tag fault.

0b101001 Capability sealed fault.

0b101010 Capability bound fault.

0b101011 Capability permission fault.

0b110000 TLB conflict abort

0b110001 Unsupported atomic hardware update fault, if the implementation
includes xARMv8.1-TTHM. Otherwise reserved.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011100, 0b011101, 0b011110, and 0b011111, are reserved.

Armv8.2 requires the implementation of the RAS Extension.

For more information about the lookup level associated with a fault, see x‘The level associated with MMU faults’
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor,
they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation
walk.

This field resets to an architecturally UNKNOWN value.

an exception from a Data Abort

24

SAS

23 22 21

SRT

20 16

SF

15

AR

14

0

13

SET

12 11 10

EA

9

CM

8 7 6

DFSC

5 0

ISV SSE FnV WnR
S1PTW

ISV, bit [24]

Instruction syndrome valid. Indicates whether the syndrome information in ISS[23:14] is valid.

Value Meaning

0b0 No valid instruction syndrome. ISS[23:14] are RES0.

0b1 ISS[23:14] hold a valid instruction syndrome.

This bit is 0 for all faults reported in ESR_EL2 except the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with 0b11111,
including those with Acquire/Release semantics, but excluding Load Exclusive or Store Exclusive, excluding
those with writeback and excluding accesses of a capability.

• AArch32 instructions where the instruction:
– Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
– Is not performing register writeback.
– Is not using R15 as a source or destination register.

For these cases, ISV is UNKNOWN if the exception was generated in Debug state in memory access mode, and
otherwise indicates whether ISS[23:14] hold a valid syndrome.

ISV is 0 for all faults reported in ESR_EL1 or ESR_EL3.

When the RAS Extension is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction syndrome,
and therefore ISV is 0 for these aborts.

When the RAS Extension is not implemented, the value of ISV on a synchronous External abort on a stage 2
translation table walk is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

Syndrome Access Size. When ISV is 1, indicates the size of the access attempted by the faulting operation.

Value Meaning

0b00 Byte

0b01 Halfword

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b10 Word

0b11 Doubleword

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SSE, bit [21]

Syndrome Sign Extend. When ISV is 1, for a byte, halfword, or word load operation, indicates whether the data
item must be sign extended. For these cases, the possible values of this bit are:

Value Meaning

0b0 Sign-extension not required.

0b1 Data item must be sign-extended.

For all other operations this bit is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SRT, bits [20:16]

Syndrome Register transfer. When ISV is 1, the register number of the Rt operand of the faulting instruction. If the
exception was taken from an Exception level that is using AArch32 then this is the AArch64 view of the register.
See x‘Mapping of the general-purpose registers between the Execution states’ in the Arm® Architecture Reference
Manual, Armv8, for Armv8-A architecture profile.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

SF, bit [15]

Width of the register accessed by the instruction is Sixty-Four. When ISV is 1, the possible values of this bit are:

Value Meaning

0b0 Instruction loads/stores a 32-bit wide register.

0b1 Instruction loads/stores a 64-bit wide register.

This field specifies the register width identified by the instruction, not the Execution state.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

AR, bit [14]

Acquire/Release. When ISV is 1, the possible values of this bit are:

Value Meaning

0b0 Instruction did not have acquire/release semantics.

0b1 Instruction did have acquire/release semantics.

This field is UNKNOWN when the value of ISV is UNKNOWN.

This field is RES0 when the value of ISV is 0.

This field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

SET, bits [12:11]

Synchronous Error Type. When the RAS Extension is implemented and DFSC is 0b010000, describes the state of
the PE after taking the Data Abort exception. The possible values of this field are:

Value Meaning

0b00 Recoverable error (UER).

0b10 Uncontainable error (UC).

0b11 Restartable error (UEO) or Corrected error (CE).

All other values are reserved.

Software can use this information to determine what recovery might be possible. Taking a synchronous External
Abort exception might result in an unrecoverable PE state.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010000.

This field resets to an architecturally UNKNOWN value.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation table
walk.

Value Meaning

0b0 FAR is valid.

0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

Value Meaning

0b0 The Data Abort was not generated by the execution of one of the
System instructions identified in the description of value 1.

0b1 The Data Abort was generated by either the execution of a cache
maintenance instruction or by a synchronous fault on the execution of
an address translation instruction. The DC ZVA instruction is not
classified as a cache maintenance instruction, and therefore its
execution cannot cause this field to be set to 1.

This field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation table
walk:

Value Meaning

0b0 Fault not on a stage 2 translation for a stage 1 translation table walk.

0b1 Fault on the stage 2 translation of an access for a stage 1 translation
table walk.

For any abort other than a stage 2 fault this bit is RES0.

This field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory location,
or by an instruction reading from a memory location. The possible values of this bit are:

Value Meaning

0b0 Abort caused by an instruction reading from a memory location.

0b1 Abort caused by an instruction writing to a memory location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if a read

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter 3. Register definitions
3.2. Alphabetical list of registers

of the address specified by the instruction would have generated the fault which is being reported, otherwise it is
set to 1. The architecture permits, but does not require, a relaxation of this requirement such that for all stage 2
aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

For Page table LC or SC permission violation faults from an atomic instruction that both reads and writes a valid
capability from a memory location, this bit is set to 1 if a write of a valid capability from the memory location
would have generated the fault which is being reported, otherwise it is set to 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. Possible values of this field are:

Value Meaning

0b000000 Address size fault, level 0 of translation or translation table base
register.

0b000001 Address size fault, level 1.

0b000010 Address size fault, level 2.

0b000011 Address size fault, level 3.

0b000100 Translation fault, level 0.

0b000101 Translation fault, level 1.

0b000110 Translation fault, level 2.

0b000111 Translation fault, level 3.

0b001001 Access flag fault, level 1.

0b001010 Access flag fault, level 2.

0b001011 Access flag fault, level 3.

0b001101 Permission fault, level 1.

0b001110 Permission fault, level 2.

0b001111 Permission fault, level 3.

0b010000 Synchronous External abort, not on translation table walk.

0b010001 Synchronous Tag Check fail

0b010100 Synchronous External abort, on translation table walk, level 0.

0b010101 Synchronous External abort, on translation table walk, level 1.

0b010110 Synchronous External abort, on translation table walk, level 2.

0b010111 Synchronous External abort, on translation table walk, level 3.

0b011000 Synchronous parity or ECC error on memory access, not on
translation table walk.

0b011100 Synchronous parity or ECC error on memory access on translation
table walk, level 0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b011101 Synchronous parity or ECC error on memory access on translation
table walk, level 1.

0b011110 Synchronous parity or ECC error on memory access on translation
table walk, level 2.

0b011111 Synchronous parity or ECC error on memory access on translation
table walk, level 3.

0b100001 Alignment fault.

0b101000 Capability tag fault.

0b101001 Capability sealed fault.

0b101010 Capability bound fault.

0b101011 Capability permission fault.

0b101100 Page table LC or SC permission violation fault.

0b110000 TLB conflict abort.

0b110001 Unsupported atomic hardware update fault, if the implementation
includes xARMv8.1-TTHM. Otherwise reserved.

0b110100 IMPLEMENTATION DEFINED fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED fault (Unsupported Exclusive or Atomic
access).

0b110110 Unsupported LDCT or SDCT to Device or Non-cacheable.

0b111101 Section Domain Fault, used only for faults reported in the PAR_EL1.

0b111110 Page Domain Fault, used only for faults reported in the PAR_EL1.

All other values are reserved.

When the RAS Extension is implemented, 0b011000, 0b011100, 0b011101, 0b011110, and 0b011111, are reserved.

For more information about the lookup level associated with a fault, see x‘The level associated with MMU faults’
in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Because Access flag faults and Permission faults can only result from a Block or Page translation table descriptor,
they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1 translation
walk.

This field resets to an architecturally UNKNOWN value.

an exception from an access to the Morello architecture

RES0

24 0

Bits [24:0]

Reserved, RES0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter 3. Register definitions
3.2. Alphabetical list of registers

In an implementation that supports Morello architecture, from an Exception level using AArch64, the
CPACR_EL1.CEN, CPTR_EL2.{CEN, DC} and CPTR_EL3.EC bits control whether Morello instructions and
accesses to Morello System registers are trapped.

an exception from capability MSR or MRS instruction execution

RES0

24 22

Op0

21 20

Op2

19 17

Op1

16 14

CRn

13 10

Ct

9 5

CRm

4 1 0

Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Ct, bits [9:5]

The Ct value from the issued instruction, the capability register used for the transfer.

This field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

This field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction. The possible values of this bit are:

Value Meaning

0b0 Write access, including MSR instructions.

0b1 Read access, including MRS instructions.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

an exception from a trapped floating-point exception

0

24 23

RES0

22 11

VECITR

10 8 7

RES0

6 5 4 3 2 1 0

TFV IDF
IXF

UFF

IOF
DZF

OFF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions. The possible values of this bit are:

Value Meaning

0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid
information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an operation
performed while executing the reported instruction. The IDF, IXF,
UFF, OFF, DZF, and IOF bits indicate trapped floating-point
exceptions that occurred. For more information see x‘Floating- point
exceptions and exception traps’.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating
point exception from a vector instruction.

This is not a requirement. Implementations can set this field to 1 on a trapped floating-point exception from a
vector instruction and return valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

This field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

This field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Input denormal floating-point exception has not occurred.

0b1 Input denormal floating-point exception occurred during execution of
the reported instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Inexact floating-point exception has not occurred.

0b1 Inexact floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Underflow floating-point exception has not occurred.

0b1 Underflow floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

Value Meaning

0b0 Overflow floating-point exception has not occurred.

0b1 Overflow floating-point exception occurred during execution of the
reported instruction.

This field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Divide by Zero floating-point exception has not occurred.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 Divide by Zero floating-point exception occurred during execution of
the reported instruction.

This field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

Value Meaning

0b0 Invalid Operation floating-point exception has not occurred.

0b1 Invalid Operation floating-point exception occurred during execution
of the reported instruction.

This field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each of
the floating-point exception traps.

an SError interrupt

24

RES0

23 14 13

AET

12 10

EA

9

RES0

8 6

DFSC

5 0

IDS IESB

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome. Possible values of this bit are:

Value Meaning

0b0 Bits[23:0] of the ISS field holds the fields described in this encoding.
If the RAS Extension is not implemented, this means that bits[23:0]
of the ISS field are RES0.

0b1 Bits[23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

This field was previously called ISV.

This field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter 3. Register definitions
3.2. Alphabetical list of registers

IESB, bit [13]

When ARMv8.2-IESB is implemented:

Implicit error synchronization event.

Value Meaning

0b0 The SError interrupt was either not synchronized by the implicit error
synchronization event or not taken immediately.

0b1 The SError interrupt was synchronized by the implicit error
synchronization event and taken immediately.

This field is RES0 if the value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension and xARMv8.2-IESB.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

AET, bits [12:10]

Asynchronous Error Type.

When the RAS Extension is implemented and DFSC is 0b010001, describes the state of the PE after taking the
SError interrupt exception. The possible values of this field are:

Value Meaning

0b000 Uncontainable error (UC).

0b001 Unrecoverable error (UEU).

0b010 Restartable error (UEO).

0b011 Recoverable error (UER).

0b110 Corrected error (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall state of the PE is reported. For
example, if both a Recoverable and Unrecoverable error occurred, the state is Unrecoverable.

Software can use this information to determine what recovery might be possible. The recovery software must also
examine any implemented fault records to determine the location and extent of the error.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

EA, bit [9]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter 3. Register definitions
3.2. Alphabetical list of registers

External abort type. When the RAS Extension is implemented, this bit can provide an IMPLEMENTATION DEFINED
classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

This field is RES0 if either:

• The RAS Extension is not implemented.
• The value returned in the DFSC field is not 0b010001.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Data Fault Status Code. When the RAS Extension is implemented, possible values of this field are:

Value Meaning

0b000000 Uncategorized.

0b010001 Asynchronous SError interrupt.

All other values are reserved.

If the RAS Extension is not implemented, this field is RES0.

Armv8.2 requires the implementation of the RAS Extension.

This field resets to an architecturally UNKNOWN value.

an exception from a Breakpoint or Vector Catch debug exception

RES0

24 6

IFSC

5 0

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see x‘Breakpoint exceptions’.
• For exceptions from AArch32, see x‘Breakpoint exceptions’ and x‘Vector Catch exceptions’.

an exception from a Software Step exception

24

RES0

23 7

EX

6

IFSC

5 0

ISV

ISV, bit [24]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

Value Meaning

0b0 EX bit is RES0.

0b1 EX bit is valid.

See the EX bit description for more information.

This field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was stepped.

Value Meaning

0b0 An instruction other than a Load- Exclusive instruction was stepped.

0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

This field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Software Step exceptions’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile,.

an exception from a Watchpoint exception

RES0

24 14

0

13

RES0

12 9

CM

8

0

7 6

DFSC

5 0

WnR

Bits [24:14]

Reserved, RES0.

Bit [13]

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 The Watchpoint exception was not generated by the execution of one
of the System instructions identified in the description of value 1.

0b1 The Watchpoint exception was generated by either the execution of a
cache maintenance instruction or by a synchronous Watchpoint
exception on the execution of an address translation instruction. The
DC ZVA instruction is not classified as a cache maintenance
instruction, and therefore its execution cannot cause this field to be
set to 1.

This field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location. The possible values of this bit are:

Value Meaning

0b0 Watchpoint exception caused by an instruction reading from a
memory location.

0b1 Watchpoint exception caused by an instruction writing to a memory
location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns a
value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

This field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code. This field is set to 0b100010, to indicate a Debug exception.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Watchpoint exceptions’ in the Arm® Architecture
Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from execution of a Breakpoint instruction

RES0

24 16

Comment

15 0

Bits [24:16]

Reserved, RES0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary. For the AArch32 BKPT instructions, the
comment field is described as the immediate field.

This field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see x‘Breakpoint instruction exceptions’ in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0

RES0

24 0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to EL3.

an exception from a Pointer Authentication instruction authentication failure

RES0

24 2 1 0

Bit [1] Bit [0]

Bits [24:2]

Reserved, RES0.

Bit [1], bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Value Meaning

0b0 Instruction Key.

0b1 Data Key.

This field resets to an architecturally UNKNOWN value.

Bit [0], bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Value Meaning

0b0 A key.

0b1 B key.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when the
address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL3

Read using name ESR_EL3

The assembler syntax is:

MRS <Xt>, ESR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0010 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 return ESR_EL3;

Write using name ESR_EL3

The assembler syntax is:

MSR ESR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0101 0b0010 0b000

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 ESR_EL3 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.28 FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault
and Watchpoint exceptions that are taken to EL1.

Attributes

FAR_EL1 is a 64-bit register.

Configuration

AArch64 System register FAR_EL1[31:0] is architecturally mapped to AArch32 System register
DFAR[31:0] (NS).

AArch64 System register FAR_EL1[63:32] is architecturally mapped to AArch32 System register
IFAR[31:0] (NS).

Field descriptions

The FAR_EL1 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL1

63 32

Faulting Virtual Address for synchronous exceptions taken to EL1

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1 is generated from a data cache maintenance or other DC instruction, this
field holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are
all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store is CONSTRAINED UNPREDICTABLE. See ’Out of range VA’ in Appendix
K1 Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see ’Address
tagging in AArch64 state’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter 3. Register definitions
3.2. Alphabetical list of registers

If the Morello architecture is implemented, this field holds the address with any capability memory relocation
applied. If the memory fault is generated from a data cache maintenance or other DC instruction, this field holds
the address supplied in the register argument of the instruction with any capability memory relocation applied.

If the Morello architecture is implemented, for capability faults due to instruction performing multiple data
accesses, such as load or store of pairs, this field holds the faulting address. The faulting address is the lowest
address accessed by one of the data accesses. It is IMPLEMENTATION DEFINED which data access is selected to
provide the faulting address.

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception
that gave rise to the instruction or data abort. It is the lower address that gave rise to the fault. Where different
faults from different addresses arise from the same instruction, such as for an instruction that loads or stores a
mis-aligned address that crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

This field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name FAR_EL1

The assembler syntax is:

MRS <Xt>, FAR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 return FAR_EL1;
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 return FAR_EL2;
23 else
24 return FAR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 return FAR_EL1;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name FAR_EL1

The assembler syntax is:

MSR FAR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 FAR_EL1 = X[t];
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 FAR_EL2 = X[t];
23 else
24 FAR_EL1 = X[t];
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 FAR_EL1 = X[t];

Read using name FAR_EL12

The assembler syntax is:

MRS <Xt>, FAR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter 3. Register definitions
3.2. Alphabetical list of registers

6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 else
13 return FAR_EL1;
14 else
15 UNDEFINED;
16 elsif PSTATE.EL == EL3 then
17 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 return FAR_EL1;
22 else
23 UNDEFINED;

Write using name FAR_EL12

The assembler syntax is:

MSR FAR_EL12, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 else
13 FAR_EL1 = X[t];
14 else
15 UNDEFINED;
16 elsif PSTATE.EL == EL3 then
17 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 FAR_EL1 = X[t];
22 else
23 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.29 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault
and Watchpoint exceptions that are taken to EL2.

Attributes

FAR_EL2 is a 64-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register FAR_EL2[31:0] is architecturally mapped to AArch32 System register
HDFAR[31:0].

AArch64 System register FAR_EL2[63:32] is architecturally mapped to AArch32 System register
HIFAR[31:0].

AArch64 System register FAR_EL2[31:0] is architecturally mapped to AArch32 System register
DFAR[31:0] (S)when HaveEL(EL2).

AArch64 System register FAR_EL2[63:32] is architecturally mapped to AArch32 System register
IFAR[31:0] (S)when HaveEL(EL2).

Field descriptions

The FAR_EL2 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL2

63 32

Faulting Virtual Address for synchronous exceptions taken to EL2

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2 is generated from a data cache maintenance or other DC instruction, this
field holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32 bits are
all zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE. See ’Out of range VA’ in
Appendix K1 Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see ’Address
tagging in AArch64 state’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

If the Morello architecture is implemented, this field holds the address with any capability memory relocation
applied. If the memory fault is generated from a data cache maintenance or other DC instruction, this field holds
the address supplied in the register argument of the instruction with any capability memory relocation applied.

If the Morello architecture is implemented, for capability faults due to instruction performing multiple data
accesses, such as load or store of pairs, this field holds the faulting address. The faulting address is the lowest
address accessed by one of the data accesses. It is IMPLEMENTATION DEFINED which data access is selected to
provide the faulting address.

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception
that gave rise to the instruction or data abort. It is the lower address that gave rise to the fault. Where different
faults from different addresses arise from the same instruction, such as for an instruction that loads or stores a
mis-aligned address that crosses a page boundary, the architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

This field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or
FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name FAR_EL2

The assembler syntax is:

MRS <Xt>, FAR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 return FAR_EL2;
13 elsif PSTATE.EL == EL3 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 return FAR_EL2;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name FAR_EL2

The assembler syntax is:

MSR FAR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 FAR_EL2 = X[t];
13 elsif PSTATE.EL == EL3 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 FAR_EL2 = X[t];

Read using name FAR_EL1

The assembler syntax is:

MRS <Xt>, FAR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 return FAR_EL1;
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter 3. Register definitions
3.2. Alphabetical list of registers

18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 return FAR_EL2;
23 else
24 return FAR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 return FAR_EL1;

Write using name FAR_EL1

The assembler syntax is:

MSR FAR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 FAR_EL1 = X[t];
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 FAR_EL2 = X[t];
23 else
24 FAR_EL1 = X[t];
25 elsif PSTATE.EL == EL3 then
26 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 FAR_EL1 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.30 FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment
fault exceptions that are taken to EL3.

Attributes

FAR_EL3 is a 64-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to FAR_EL3 are UNDE-
FINED.

Field descriptions

The FAR_EL3 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL3

63 32

Faulting Virtual Address for synchronous exceptions taken to EL3

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC
holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3 is generated from a data cache maintenance or other DC instruction, this
field holds the address specified in the register argument of the instruction.

If the exception that updates FAR_EL3 is taken from an Exception Level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE. See ’Out of range VA’ in
Appendix K1 Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see ’Address
tagging in AArch64 state’ in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

Execution at EL2, EL1 or EL0 makes FAR_EL3 become UNKNOWN.

If the Morello architecture is implemented, this field holds the address with any capability memory relocation
applied. If the memory fault is generated from a data cache maintenance or other DC instruction, this field holds
the address supplied in the register argument of the instruction with any capability memory relocation applied.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter 3. Register definitions
3.2. Alphabetical list of registers

If the Morello architecture is implemented, for capability faults due to instruction performing multiple data
accesses, such as load or store of pairs, this field holds the faulting address. The faulting address is the lowest
address accessed by one of the data accesses. It is IMPLEMENTATION DEFINED which data access is selected to
provide the faulting address.

The address held in this register is an address accessed by the instruction fetch or data access that caused the
exception that actually gave rise to the instruction or data abort. It is the lowest address that gave rise to the fault.
Where different faults from different addresses arise from the same instruction, such as for an instruction that loads
or stores a mis-aligned address that crosses a page boundary, the architecture does not prioritize between those
different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

This field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL3

Read using name FAR_EL3

The assembler syntax is:

MRS <Xt>, FAR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 return FAR_EL3;

Write using name FAR_EL3

The assembler syntax is:

MSR FAR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 FAR_EL3 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.31 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see x‘Principles of the ID scheme
for fields in ID registers’.

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR1_EL1 bit assignments are:

RES0

63 32

RES0

31 24

CE

23 20

RES0

19 16

RAS_frac

15 12

MTE

11 8

SSBS

7 4

BT

3 0

Bits [63:24]

Reserved, RES0.

CE, bits [23:20]

When Morello is implemented:

Morello architecture.

Value Meaning

0b0000 Morello architecture is not implemented.

0b0001 Morello architecture is implemented.

All other values are reserved.

Otherwise:

RES0

Bits [19:16]

Reserved, RES0.

RAS_frac, bits [15:12]

From ARMv8.4:

RAS Extension fractional field.

Value Meaning

0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension
implemented.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds support
for:

• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to support
the optional RAS Common Fault Injection Model Extension.

Error records accessed through System registers conform to RAS
System Architecture v1.1, which includes simplifications to ext-
ERR<n>STATUS, and support for the optional RAS Timestamp and
RAS Common Fault Injection Model Extensions.

All other values are reserved.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

Otherwise:

RES0

MTE, bits [11:8]

From ARMv8.5:

Support for the Memory Tagging Extension.

Value Meaning

0b0000 Memory Tagging Extension is not implemented.

0b0001 Memory Tagging Extension instructions accessible at EL0 are
implemented. Instructions and System Registers defined by the
extension not configurably accessible at EL0 are Unallocated and
other System Register fields defined by the extension are RES0.

0b0010 Memory Tagging Extension is implemented.

All other values are reserved.

xARMv8.5-MemTag implements the functionality identified by the value 0b0001.

When ID_AA64PFR1_EL1.MTE != 0b0010:

• All register fields added to existing System registers and Special-purpose registers as part of the extension
are RES0, and treated as 0.

• The following System registers are UNDEFINED:

– GMID_EL1, GCR_EL1, RGSR_EL1, TFSRE0_EL1, and TFSR_ELx.

• The following System instructions are UNDEFINED:

– DC CGSW, DC CIGSW, DC IGSW, DC CGDSW, DC CIGDSW, DC IGDSW, DC IGVAC, and DC
IGDVAC.

• The following instructions are UNDEFINED:

– LDGM, STGM, and STZGM.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• The Tagged memory type encoding in MAIR_ELx is UNPREDICTABLE.

Otherwise:

RES0

SSBS, bits [7:4]

From ARMv8.5:

Speculative Store Bypassing controls in AArch64 state. Defined values are:

Value Meaning

0b0000 AArch64 provides no mechanism to control the use of Speculative
Store Bypassing.

0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark regions
that are Speculative Store Bypass Safe.

0b0010 AArch64 provides the PSTATE.SSBS mechanism to mark regions
that are Speculative Store Bypassing Safe, and the MSR and MRS
instructions to directly read and write the PSTATE.SSBS field

All other values are reserved.

Otherwise:

RES0

BT, bits [3:0]

From ARMv8.5:

Branch Target Identification mechanism support in AArch64 state. Defined values are:

Value Meaning

0b0000 The Branch Target Identification mechanism is not implemented.

0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

xARMv8.5-BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Otherwise:

RES0

Accessing the ID_AA64PFR1_EL1

Read using name ID_AA64PFR1_EL1

The assembler syntax is:

MRS <Xt>, ID_AA64PFR1_EL1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter 3. Register definitions
3.2. Alphabetical list of registers

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 else
14 return ID_AA64PFR1_EL1;
15 elsif PSTATE.EL == EL2 then
16 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
17 if TargetELForCapabilityExceptions() == EL2 then
18 AArch64.SystemAccessTrap(EL2, 0x18);
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 else
22 return ID_AA64PFR1_EL1;
23 elsif PSTATE.EL == EL3 then
24 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
25 AArch64.SystemAccessTrap(EL3, 0x18);
26 else
27 return ID_AA64PFR1_EL1;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.32 PMBSR_EL1, Profiling Buffer Status/syndrome Register

The PMBSR_EL1 characteristics are:

Purpose

Provides syndrome information to software when the buffer is disabled because the management
interrupt has been raised.

Attributes

PMBSR_EL1 is a 64-bit register.

Configuration

This register is present only when SPE is implemented. Otherwise, direct accesses to PMBSR_EL1 are
UNDEFINED.

Field descriptions

The PMBSR_EL1 bit assignments are:

RES0[63:32]

63 32

EC

31 26

RES0[25:20]

25 20

DL

19

EA

18

S

17 16

MSS

15 0

COLL

Bits [63:32, 25:20]

Reserved, RES0.

EC, bits [31:26]

Exception class

Top-level description of the cause of the buffer management event

Value Meaning Link

0b000000 Other buffer management event. All buffer
management events other than those described
by other defined Exception class codes.

MSS - other buffer management events

0b100100 Stage 1 Data Abort on write to Profiling
Buffer.

MSS - stage 1 or stage 2 Data Aborts on write to buffer

0b100101 Stage 2 Data Abort on write to Profiling
Buffer.

MSS - stage 1 or stage 2 Data Aborts on write to buffer

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act
as reserved values when writing to this register.

On a warm reset, this field resets to an architecturally UNKNOWN value.

DL, bit [19]

Partial record lost.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Following a buffer management event other than an asynchronous External abort, indicates whether the last record
written to the Profiling Buffer is complete.

Value Meaning

0b0 PMBPTR_EL1 points to the first byte after the last complete record
written to the Profiling Buffer.

0b1 Part of a record was lost because of a buffer management event or
synchronous External abort. PMBPTR_EL1 might not point to the
first byte after the last complete record written to the buffer, and so
restarting collection might result in a data record stream that software
cannot parse. All records prior to the last record have been written to
the buffer.

When the buffer management event was because of an asynchronous external abort, this bit is set to 1 and software
must not assume that any valid data has been written to the Profiling Buffer.

This bit is RES0 if the PE never sets this bit as a result of a buffer management event caused by an asynchronous
External abort.

On a warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [18]

External abort.

Value Meaning

0b0 An external abort has not been asserted.

0b1 An external abort has been asserted and detected by the Statistical
Profiling Extension.

This bit is RES0 if the PE never sets this bit as the result of an External abort.

On a warm reset, this field resets to an architecturally UNKNOWN value.

S, bit [17]

Service

Value Meaning

0b0 PMBIRQ is not asserted.

0b1 PMBIRQ is asserted. All profiling data has either been written to the
buffer or discarded.

On a warm reset, this field resets to an architecturally UNKNOWN value.

COLL, bit [16]

Collision detected.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b0 No collision events detected.

0b1 At least one collision event was recorded.

On a warm reset, this field resets to an architecturally UNKNOWN value.

MSS, bits [15:0]

Management Event Specific Syndrome.

Contains syndrome specific to the management event.

stage 1 or stage 2 Data Aborts on write to buffer

RES0

15 6

FSC

5 0

Bits [15:6]

Reserved, RES0.

FSC, bits [5:0]

Fault status code

Value Meaning Applies

0b0000xx Address Size fault. Bits [1:0] encode the level.

0b0001xx Translation fault. Bits [1:0] encode the level.

0b0010xx Access Flag fault. Bits [1:0] encode the level.

0b0011xx Permission fault. Bits [1:0] encode the level.

0b010000 Synchronous External abort on write.

0b0101xx Synchronous External abort on translation table walk or hardware
update of translation table. Bits [1:0] encode the level.

0b010001 Asynchronous External abort on write.

0b100001 Alignment fault.

0b101000 Capability tag fault. When Morello is implemented

0b101001 Capability sealed fault. When Morello is implemented

0b101010 Capability bound fault. When Morello is implemented

0b101011 Capability permission fault. When Morello is implemented

0b110000 TLB Conflict fault.

0b110001 Unsupported atomic hardware update fault. When ARMv8.1-TTHM is
implemented

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act
as reserved values when writing to this register.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter 3. Register definitions
3.2. Alphabetical list of registers

It is IMPLEMENTATION DEFINED whether each of the Access Flag fault, asynchronous External abort and
synchronous External abort, Alignment fault, and TLB Conflict abort values can be generated by the PE. For more
information see x‘Faults and Watchpoints’.

On a warm reset, this field resets to an architecturally UNKNOWN value.

other buffer management events

RES0

15 6

BSC

5 0

Bits [15:6]

Reserved, RES0.

BSC, bits [5:0]

Buffer status code

Value Meaning

0b000000 Buffer not filled

0b000001 Buffer filled

All other values are reserved. Reserved values might be defined in a future version of the architecture.

Writing a reserved value to this field will make the value of this field UNKNOWN. Values that are not supported act
as reserved values when writing to this register.

On a warm reset, this field resets to an architecturally UNKNOWN value.

The syndrome contents for each management event are described in the following sections.

Accessing the PMBSR_EL1

Read using name PMBSR_EL1

The assembler syntax is:

MRS <Xt>, PMBSR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x18);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter 3. Register definitions
3.2. Alphabetical list of registers

13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
16 AArch64.SystemAccessTrap(EL3, 0x18);
17 else
18 return PMBSR_EL1;
19 elsif PSTATE.EL == EL2 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 if TargetELForCapabilityExceptions() == EL2 then
22 AArch64.SystemAccessTrap(EL2, 0x18);
23 else
24 AArch64.SystemAccessTrap(EL3, 0x18);
25 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
28 AArch64.SystemAccessTrap(EL3, 0x18);
29 else
30 return PMBSR_EL1;
31 elsif PSTATE.EL == EL3 then
32 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
33 AArch64.SystemAccessTrap(EL3, 0x18);
34 else
35 return PMBSR_EL1;

Write using name PMBSR_EL1

The assembler syntax is:

MSR PMBSR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1001 0b1010 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.E2PB == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
16 AArch64.SystemAccessTrap(EL3, 0x18);
17 else
18 PMBSR_EL1 = X[t];
19 elsif PSTATE.EL == EL2 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 if TargetELForCapabilityExceptions() == EL2 then
22 AArch64.SystemAccessTrap(EL2, 0x18);
23 else
24 AArch64.SystemAccessTrap(EL3, 0x18);
25 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
28 AArch64.SystemAccessTrap(EL3, 0x18);
29 else
30 PMBSR_EL1 = X[t];
31 elsif PSTATE.EL == EL3 then
32 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
33 AArch64.SystemAccessTrap(EL3, 0x18);
34 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter 3. Register definitions
3.2. Alphabetical list of registers

35 PMBSR_EL1 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.33 RDDC_EL0, Restricted Default Data Capability

The RDDC_EL0 characteristics are:

Purpose

Holds the default data capability associated when the PE is in Restricted

Attributes

RDDC_EL0 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to RDDC_EL0
are UNDEFINED.

Field descriptions

The RDDC_EL0 bit assignments are:

128128

Restricted
Default Data
Capability.

Restricted Default Data Capability.

127 96

Restricted Default Data Capability.

95 64

Restricted Default Data Capability.

63 32

Restricted Default Data Capability.

31 0

Bits [128:0]

Restricted Default Data Capability.

This field resets to 0x1FFFFC000000100050000000000000000.

Accessing the RDDC_EL0

Read using name RDDC_EL0

The assembler syntax is:

MRS <Ct>, RDDC_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0011 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter 3. Register definitions
3.2. Alphabetical list of registers

4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'
↪→then

5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return RDDC_EL0;
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 return RDDC_EL0;
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 return RDDC_EL0;
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 return RDDC_EL0;

Write using name RDDC_EL0

The assembler syntax is:

MSR RDDC_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0011 0b001

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter 3. Register definitions
3.2. Alphabetical list of registers

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 RDDC_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 RDDC_EL0 = C[t];
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 RDDC_EL0 = C[t];
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 RDDC_EL0 = C[t];

Read using name DDC

The assembler syntax is:

MRS <Ct>, DDC

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter 3. Register definitions
3.2. Alphabetical list of registers

14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 return RDDC_EL0;
18 elsif PSTATE.SP == '0' then
19 return DDC_EL0;
20 elsif PSTATE.EL == EL0 then
21 return DDC_EL0;
22 elsif PSTATE.EL == EL1 then
23 return DDC_EL1;
24 elsif PSTATE.EL == EL2 then
25 return DDC_EL2;
26 elsif PSTATE.EL == EL3 then
27 return DDC_EL3;

Write using name DDC

The assembler syntax is:

MSR DDC, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0001 0b001

Accessibility:
1 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') &&

↪→CPACR_EL1.CEN != '11' then
2 if EL2Enabled() && HCR_EL2.TGE == '1' then
3 AArch64.SystemAccessTrap(EL2, 0x29);
4 else
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif PSTATE.EL == EL1 && CPACR_EL1.CEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x29);
8 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' &&

↪→CPTR_EL2.CEN != '11' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' &&
↪→CPTR_EL2.CEN == 'x0' then

11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif PSTATE.EL IN {EL0, EL2, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' &&

↪→CPTR_EL2.TC == '1' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 elsif IsInRestricted() then
17 RDDC_EL0 = C[t];
18 elsif PSTATE.SP == '0' then
19 DDC_EL0 = C[t];
20 elsif PSTATE.EL == EL0 then
21 DDC_EL0 = C[t];
22 elsif PSTATE.EL == EL1 then
23 DDC_EL1 = C[t];
24 elsif PSTATE.EL == EL2 then
25 DDC_EL2 = C[t];
26 elsif PSTATE.EL == EL3 then
27 DDC_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.34 RSP_EL0, Restricted Stack Pointer

The RSP_EL0 characteristics are:

Purpose

Holds the stack pointer when the PE is in Restricted. This is used as the current stack pointer at all
Exception levels when the PE is in Restricted.

Attributes

RSP_EL0 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to RSP_EL0 are
UNDEFINED.

Field descriptions

The RSP_EL0 bit assignments are:

128128

Capability
stack
pointer

Capability stack pointer

127 96

Capability stack pointer

95 64

Capability stack pointer

63 32

Capability stack pointer

31 0

Bits [128:0]

Capability stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the RSP_EL0

When the PE is in Restricted, this register is accessible as the current stack pointer.

Read using name RSP_EL0

The assembler syntax is:

MRS <Xt>, RSP_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b111 0b0100 0b0001 0b011

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return RSP_EL0<63:0>;
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 return RSP_EL0<63:0>;
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 return RSP_EL0<63:0>;
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 return RSP_EL0<63:0>;

Write using name RSP_EL0

The assembler syntax is:

MSR RSP_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b111 0b0100 0b0001 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter 3. Register definitions
3.2. Alphabetical list of registers

7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 RSP_EL0 = ZeroExtend(X[t]);
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 RSP_EL0 = ZeroExtend(X[t]);
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 RSP_EL0 = ZeroExtend(X[t]);
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 RSP_EL0 = ZeroExtend(X[t]);

Read using name RCSP_EL0

The assembler syntax is:

MRS <Ct>, RCSP_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b111 0b0100 0b0001 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter 3. Register definitions
3.2. Alphabetical list of registers

14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return RSP_EL0;
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 return RSP_EL0;
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 return RSP_EL0;
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 return RSP_EL0;

Write using name RCSP_EL0

The assembler syntax is:

MSR RCSP_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b111 0b0100 0b0001 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 RSP_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter 3. Register definitions
3.2. Alphabetical list of registers

21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 RSP_EL0 = C[t];
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 RSP_EL0 = C[t];
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 RSP_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.35 RTPIDR_EL0, Restricted Read/Write Software Thread ID Register

The RTPIDR_EL0 characteristics are:

Purpose

Provides a location where software can store thread identifying information, for OS management
purposes.

The PE makes no use of this register.

Attributes

RTPIDR_EL0 is a 129-bit register.

Configuration

This register is present only when Morello is implemented. Otherwise, direct accesses to RTPIDR_EL0
are UNDEFINED.

Field descriptions

The RTPIDR_EL0 bit assignments are:

128128

Restricted
Capability
Thread ID

Restricted Capability Thread ID

127 96

Restricted Capability Thread ID

95 64

Restricted Capability Thread ID

63 32

Restricted Capability Thread ID

31 0

Bits [128:0]

Restricted Thread ID. The version of the Thread ID when the PE is in Restricted.

This field resets to an architecturally UNKNOWN value.

Accessing the RTPIDR_EL0

Access to RTPIDR_EL0 via MSR aand MRS instructions is only possible when the PE is in Executive.

When the PE is in Restricted, operations which use TPIDR_ELx or CTPIDR_ELx access RTPIDR_EL0.

Read using name RTPIDR_EL0

The assembler syntax is:

MRS <Xt>, RTPIDR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b100

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return RTPIDR_EL0<63:0>;
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 return RTPIDR_EL0<63:0>;
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 return RTPIDR_EL0<63:0>;
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 return RTPIDR_EL0<63:0>;

Write using name RTPIDR_EL0

The assembler syntax is:

MSR RTPIDR_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter 3. Register definitions
3.2. Alphabetical list of registers

6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 RTPIDR_EL0 = ZeroExtend(X[t]);
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 RTPIDR_EL0 = ZeroExtend(X[t]);
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 RTPIDR_EL0 = ZeroExtend(X[t]);
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 RTPIDR_EL0 = ZeroExtend(X[t]);

Read using name TPIDR_EL0

The assembler syntax is:

MRS <Xt>, TPIDR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 return RTPIDR_EL0<63:0>;
4 else
5 return TPIDR_EL0<63:0>;
6 elsif PSTATE.EL == EL1 then
7 return TPIDR_EL0<63:0>;
8 elsif PSTATE.EL == EL2 then
9 return TPIDR_EL0<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return TPIDR_EL0<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name TPIDR_EL0

The assembler syntax is:

MSR TPIDR_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 RTPIDR_EL0 = ZeroExtend(X[t]);
4 else
5 TPIDR_EL0 = ZeroExtend(X[t]);
6 elsif PSTATE.EL == EL1 then
7 TPIDR_EL0 = ZeroExtend(X[t]);
8 elsif PSTATE.EL == EL2 then
9 TPIDR_EL0 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 TPIDR_EL0 = ZeroExtend(X[t]);

Read using name TPIDR_EL1

The assembler syntax is:

MRS <Xt>, TPIDR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
5 return RTPIDR_EL0<63:0>;
6 else
7 return TPIDR_EL1<63:0>;
8 elsif PSTATE.EL == EL2 then
9 return TPIDR_EL1<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return TPIDR_EL1<63:0>;

Write using name TPIDR_EL1

The assembler syntax is:

MSR TPIDR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
5 RTPIDR_EL0 = ZeroExtend(X[t]);
6 else
7 TPIDR_EL1 = ZeroExtend(X[t]);
8 elsif PSTATE.EL == EL2 then
9 TPIDR_EL1 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 TPIDR_EL1 = ZeroExtend(X[t]);

Read using name TPIDR_EL2

The assembler syntax is:

MRS <Xt>, TPIDR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 return RTPIDR_EL0<63:0>;
8 else
9 return TPIDR_EL2<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return TPIDR_EL2<63:0>;

Write using name TPIDR_EL2

The assembler syntax is:

MSR TPIDR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 RTPIDR_EL0 = ZeroExtend(X[t]);
8 else
9 TPIDR_EL2 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 TPIDR_EL2 = ZeroExtend(X[t]);

Read using name TPIDR_EL3

The assembler syntax is:

MRS <Xt>, TPIDR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 return RTPIDR_EL0<63:0>;

10 else
11 return TPIDR_EL3<63:0>;

Write using name TPIDR_EL3

The assembler syntax is:

MSR TPIDR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 RTPIDR_EL0 = ZeroExtend(X[t]);

10 else
11 TPIDR_EL3 = ZeroExtend(X[t]);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Read using name RCTPIDR_EL0

The assembler syntax is:

MRS <Ct>, RCTPIDR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return RTPIDR_EL0;
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 return RTPIDR_EL0;
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 return RTPIDR_EL0;
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 return RTPIDR_EL0;

Write using name RCTPIDR_EL0

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MSR RCTPIDR_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 UNDEFINED;
4 elsif !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11'

↪→then
5 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x29);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 RTPIDR_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 elsif CPACR_EL1.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL1, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x29);
28 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
29 AArch64.SystemAccessTrap(EL3, 0x29);
30 else
31 RTPIDR_EL0 = C[t];
32 elsif PSTATE.EL == EL2 then
33 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
34 UNDEFINED;
35 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
36 AArch64.SystemAccessTrap(EL2, 0x29);
37 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
38 AArch64.SystemAccessTrap(EL2, 0x29);
39 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
40 AArch64.SystemAccessTrap(EL3, 0x29);
41 else
42 RTPIDR_EL0 = C[t];
43 elsif PSTATE.EL == EL3 then
44 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
45 UNDEFINED;
46 elsif CPTR_EL3.EC == '0' then
47 AArch64.SystemAccessTrap(EL3, 0x29);
48 else
49 RTPIDR_EL0 = C[t];

Read using name CTPIDR_EL0

The assembler syntax is:

MRS <Ct>, CTPIDR_EL0

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
16 return RTPIDR_EL0;
17 else
18 return TPIDR_EL0;
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return TPIDR_EL0;
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 return TPIDR_EL0;
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return TPIDR_EL0;

Write using name CTPIDR_EL0

The assembler syntax is:

MSR CTPIDR_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
16 RTPIDR_EL0 = C[t];
17 else
18 TPIDR_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 TPIDR_EL0 = C[t];
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 TPIDR_EL0 = C[t];
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 TPIDR_EL0 = C[t];

Read using name CTPIDR_EL1

The assembler syntax is:

MRS <Ct>, CTPIDR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 return RTPIDR_EL0;
14 else
15 return TPIDR_EL1;
16 elsif PSTATE.EL == EL2 then
17 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
18 AArch64.SystemAccessTrap(EL2, 0x29);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter 3. Register definitions
3.2. Alphabetical list of registers

19 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
20 AArch64.SystemAccessTrap(EL2, 0x29);
21 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x29);
23 else
24 return TPIDR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return TPIDR_EL1;

Write using name CTPIDR_EL1

The assembler syntax is:

MSR CTPIDR_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 RTPIDR_EL0 = C[t];
14 else
15 TPIDR_EL1 = C[t];
16 elsif PSTATE.EL == EL2 then
17 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
20 AArch64.SystemAccessTrap(EL2, 0x29);
21 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x29);
23 else
24 TPIDR_EL1 = C[t];
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 TPIDR_EL1 = C[t];

Read using name CTPIDR_EL2

The assembler syntax is:

MRS <Ct>, CTPIDR_EL2

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 return RTPIDR_EL0;
14 else
15 return TPIDR_EL2;
16 elsif PSTATE.EL == EL3 then
17 if CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return TPIDR_EL2;

Write using name CTPIDR_EL2

The assembler syntax is:

MSR CTPIDR_EL2, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 RTPIDR_EL0 = C[t];
14 else
15 TPIDR_EL2 = C[t];
16 elsif PSTATE.EL == EL3 then
17 if CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 TPIDR_EL2 = C[t];

Read using name CTPIDR_EL3

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MRS <Ct>, CTPIDR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.EC == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x29);

10 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
11 return RTPIDR_EL0;
12 else
13 return TPIDR_EL3;

Write using name CTPIDR_EL3

The assembler syntax is:

MSR CTPIDR_EL3, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.EC == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x29);

10 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
11 RTPIDR_EL0 = C[t];
12 else
13 TPIDR_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.36 SP_EL0, Stack Pointer (EL0)

The SP_EL0 characteristics are:

Purpose

Holds the capability stack pointer associated with EL0 and Executive state. At higher Exception levels,
this is used as the current capability stack pointer when the value of SPSel.SP is 0 and the PE is in
Executive.

Attributes

SP_EL0 is a 129-bit register.

Field descriptions

The SP_EL0 bit assignments are:

When Morello is implemented:

128128

Stack
pointer

Stack pointer

127 96

Stack pointer

95 64

Stack pointer

63 32

Stack pointer

31 0

Bits [128:0]

Stack pointer

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Stack pointer

63 32

Stack pointer

31 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL0

When the value of PSTATE.SP is 0 and the PE is in Executive, this register is accessible at all Exception levels as

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter 3. Register definitions
3.2. Alphabetical list of registers

the current stack pointer.

Read using name SP_EL0

The assembler syntax is:

MRS <Xt>, SP_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if PSTATE.SP == '0' then
5 UNDEFINED;
6 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 else
9 return SP_EL0<63:0>;

10 elsif PSTATE.EL == EL2 then
11 if PSTATE.SP == '0' then
12 UNDEFINED;
13 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
14 UNDEFINED;
15 else
16 return SP_EL0<63:0>;
17 elsif PSTATE.EL == EL3 then
18 if PSTATE.SP == '0' then
19 UNDEFINED;
20 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 else
23 return SP_EL0<63:0>;

Write using name SP_EL0

The assembler syntax is:

MSR SP_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if PSTATE.SP == '0' then
5 UNDEFINED;
6 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 else
9 SP_EL0 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL2 then
11 if PSTATE.SP == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter 3. Register definitions
3.2. Alphabetical list of registers

12 UNDEFINED;
13 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
14 UNDEFINED;
15 else
16 SP_EL0 = ZeroExtend(X[t]);
17 elsif PSTATE.EL == EL3 then
18 if PSTATE.SP == '0' then
19 UNDEFINED;
20 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
21 UNDEFINED;
22 else
23 SP_EL0 = ZeroExtend(X[t]);

Read using name CSP_EL0

The assembler syntax is:

MRS <Ct>, CSP_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if PSTATE.SP == '0' then
5 UNDEFINED;
6 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif CPACR_EL1.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL1, 0x29);

10 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 return SP_EL0;
18 elsif PSTATE.EL == EL2 then
19 if PSTATE.SP == '0' then
20 UNDEFINED;
21 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
22 UNDEFINED;
23 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
24 AArch64.SystemAccessTrap(EL2, 0x29);
25 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
26 AArch64.SystemAccessTrap(EL2, 0x29);
27 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x29);
29 else
30 return SP_EL0;
31 elsif PSTATE.EL == EL3 then
32 if PSTATE.SP == '0' then
33 UNDEFINED;
34 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
35 UNDEFINED;
36 elsif CPTR_EL3.EC == '0' then
37 AArch64.SystemAccessTrap(EL3, 0x29);
38 else
39 return SP_EL0;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name CSP_EL0

The assembler syntax is:

MSR CSP_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if PSTATE.SP == '0' then
5 UNDEFINED;
6 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif CPACR_EL1.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL1, 0x29);

10 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 SP_EL0 = C[t];
18 elsif PSTATE.EL == EL2 then
19 if PSTATE.SP == '0' then
20 UNDEFINED;
21 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
22 UNDEFINED;
23 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
24 AArch64.SystemAccessTrap(EL2, 0x29);
25 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
26 AArch64.SystemAccessTrap(EL2, 0x29);
27 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x29);
29 else
30 SP_EL0 = C[t];
31 elsif PSTATE.EL == EL3 then
32 if PSTATE.SP == '0' then
33 UNDEFINED;
34 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
35 UNDEFINED;
36 elsif CPTR_EL3.EC == '0' then
37 AArch64.SystemAccessTrap(EL3, 0x29);
38 else
39 SP_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.37 SP_EL1, Stack Pointer (EL1)

The SP_EL1 characteristics are:

Purpose

Holds the capability stack pointer associated with EL1 and Executive. When executing at EL1, the
values of SPSel.SP and the Executive bit of PCC determine the current capability stack pointer:

SPSel.SP Executive bit of PCC Current stack pointer

0bx 0b0 RSP_EL0

0b0 0b1 SP_EL0

0b1 0b1 SP_EL1

Attributes

SP_EL1 is a 129-bit register.

Field descriptions

The SP_EL1 bit assignments are:

When Morello is implemented:

128128

Stack
pointer

Stack pointer

127 96

Stack pointer

95 64

Stack pointer

63 32

Stack pointer

31 0

Bits [128:0]

Stack pointer

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Stack pointer

63 32

Stack pointer

31 0

Bits [63:0]

Stack pointer.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL1

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL1 as the current stack pointer.

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Read using name SP_EL1

The assembler syntax is:

MRS <Xt>, SP_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 else
9 return SP_EL1<63:0>;

10 elsif PSTATE.EL == EL3 then
11 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
12 UNDEFINED;
13 else
14 return SP_EL1<63:0>;

Write using name SP_EL1

The assembler syntax is:

MSR SP_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 else
9 SP_EL1 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter 3. Register definitions
3.2. Alphabetical list of registers

11 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
12 UNDEFINED;
13 else
14 SP_EL1 = ZeroExtend(X[t]);

Read using name CSP_EL1

The assembler syntax is:

MRS <Ct>, CSP_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 UNDEFINED;
8 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
13 AArch64.SystemAccessTrap(EL3, 0x29);
14 else
15 return SP_EL1;
16 elsif PSTATE.EL == EL3 then
17 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
18 UNDEFINED;
19 elsif CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 else
22 return SP_EL1;

Write using name CSP_EL1

The assembler syntax is:

MSR CSP_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter 3. Register definitions
3.2. Alphabetical list of registers

7 UNDEFINED;
8 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x29);
12 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
13 AArch64.SystemAccessTrap(EL3, 0x29);
14 else
15 SP_EL1 = C[t];
16 elsif PSTATE.EL == EL3 then
17 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
18 UNDEFINED;
19 elsif CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 else
22 SP_EL1 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.38 SP_EL2, Stack Pointer (EL2)

The SP_EL2 characteristics are:

Purpose

Holds the capability stack pointer associated with EL2 and Executive state. When executing at EL2, the
values of SPSel.SP and the Executive bit of PCC determine the current capability stack pointer:

SPSel.SP Executive bit of PCC Current stack pointer

0bx 0b0 RSP_EL0

0b0 0b1 SP_EL0

0b1 0b1 SP_EL2

Attributes

SP_EL2 is a 129-bit register.

Configuration

This register has no effect if EL2 is not enabled in the current Security state.

Field descriptions

The SP_EL2 bit assignments are:

When Morello is implemented:

128128

Stack
pointer

Stack pointer

127 96

Stack pointer

95 64

Stack pointer

63 32

Stack pointer

31 0

Bits [128:0]

Stack pointer

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Stack pointer

63 32

Stack pointer

31 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL2

This accessibility information only applies to accesses using the MRS or MSR instructions.

When the value of SPSel.SP is 1, this register is also accessible at EL2 as the current stack pointer.

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

Read using name SP_EL2

The assembler syntax is:

MRS <Xt>, SP_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 UNDEFINED;

10 else
11 return SP_EL2<63:0>;

Write using name SP_EL2

The assembler syntax is:

MSR SP_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 UNDEFINED;

10 else
11 SP_EL2 = ZeroExtend(X[t]);

Read using name CSP_EL2

The assembler syntax is:

MRS <Ct>, CSP_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 UNDEFINED;

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return SP_EL2;

Write using name CSP_EL2

The assembler syntax is:

MSR CSP_EL2, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0001 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter 3. Register definitions
3.2. Alphabetical list of registers

8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 UNDEFINED;

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 SP_EL2 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.39 SP_EL3, Stack Pointer (EL3)

The SP_EL3 characteristics are:

Purpose

Holds the capability stack pointer associated with EL3. When executing at EL3, the values of SPSel.SP
and the Executive bit of PCC determine the current capability stack pointer:

SPSel.SP Executive bit of PCC Current stack pointer

0bx 0b0 RSP_EL0

0b0 0b1 SP_EL0

0b1 0b1 SP_EL3

Attributes

SP_EL3 is a 129-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to SP_EL3 are UNDEFINED.

Field descriptions

The SP_EL3 bit assignments are:

When Morello is implemented:

128128

Stack
pointer

Stack pointer

127 96

Stack pointer

95 64

Stack pointer

63 32

Stack pointer

31 0

Bits [128:0]

Stack pointer

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Stack pointer

63 32

Stack pointer

31 0

Bits [63:0]

Stack pointer.

This field resets to an architecturally UNKNOWN value.

Accessing the SP_EL3

This register is not accessible using MRS and MSR instructions.

When the value of SPSel.SP is 1, this register is accessible at EL3 as the current stack pointer.

When the value of SPSel.SP is 0, SP_EL0 is used as the current stack pointer at all Exception levels.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.40 SPSR_EL1, Saved Program Status Register (EL1)

The SPSR_EL1 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL1.

Attributes

SPSR_EL1 is a 64-bit register.

Configuration

AArch64 System register SPSR_EL1[31:0] is architecturally mapped to AArch32 System register
SPSR_svc[31:0].

Field descriptions

The SPSR_EL1 bit assignments are:

When exception taken from AArch32 state:

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

0

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0] PAN
SSBS

M[4]

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V
on executing an exception return operation in EL1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and copied to PSTATE.Q
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL1, and copied to PSTATE.IT[1:0] on
executing an exception return operation in EL1.

On executing an exception return operation in EL1 SPSR_EL1.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

Bit [24]

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to
PSTATE.PAN on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and copied to
PSTATE.GE on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL1, and copied to PSTATE.IT[7:2] on
executing an exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E on executing
an exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does
not support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL1, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied to PSTATE.T on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32 state, and
copied to PSTATE.nRW on executing an exception return operation in EL1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to PSTATE.M[3:0]
on executing an exception return operation in EL1.

Value Meaning

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0111 Abort.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in x‘Illegal return
events from AArch64 state’.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

RES0

63 32

N

31

Z

30

C

29

V

28

0

27 26

0

25 24 23 22

SS

21

IL

20

RES0

19 13 12

RES0

11 10

D

9

A

8

I

7

F

6

0

5 4

M[3:0]

3 0

C64 PAN
UAO

SSBS M[4]

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on
executing an exception return operation in EL1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Bit [27]

Reserved, RES0.

C64, bit [26]

When Morello is implemented:

Current instruction set state. Set to the value of PSTATE.C64 on taking an exception to EL1, and copied to
PSTATE.C64 on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [25:24]

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied to PSTATE.UAO
on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to
PSTATE.PAN on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter 3. Register definitions
3.2. Alphabetical list of registers

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [11:10]

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to PSTATE.D on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on
executing an exception return operation in EL1.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on
executing an exception return operation in EL1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64 state, and
copied to PSTATE.nRW on executing an exception return operation in EL1.

Value Meaning

0b0 AArch64 execution state.

If AArch32 is not supported at any Exception level, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

Value Meaning

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in x‘Illegal return
events from AArch64 state’.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL1 and copied to PSTATE.EL on
executing an exception return operation in EL1.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to PSTATE.SP on executing

an exception return operation in EL1

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or
SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name SPSR_EL1

The assembler syntax is:

MRS <Xt>, SPSR_EL1

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 return SPSR_EL1;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 return SPSR_EL2;
8 else
9 return SPSR_EL1;

10 elsif PSTATE.EL == EL3 then
11 return SPSR_EL1;

Write using name SPSR_EL1

The assembler syntax is:

MSR SPSR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 SPSR_EL1 = X[t];
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 SPSR_EL2 = X[t];
8 else
9 SPSR_EL1 = X[t];

10 elsif PSTATE.EL == EL3 then
11 SPSR_EL1 = X[t];

Read using name SPSR_EL12

The assembler syntax is:

MRS <Xt>, SPSR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b000

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 return SPSR_EL1;
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL3 then
11 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
12 return SPSR_EL1;
13 else
14 UNDEFINED;

Write using name SPSR_EL12

The assembler syntax is:

MSR SPSR_EL12, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 SPSR_EL1 = X[t];
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL3 then
11 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
12 SPSR_EL1 = X[t];
13 else
14 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.41 SPSR_EL2, Saved Program Status Register (EL2)

The SPSR_EL2 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL2.

Attributes

SPSR_EL2 is a 64-bit register.

Configuration

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register SPSR_EL2[31:0] is architecturally mapped to AArch32 System register
SPSR_hyp[31:0].

Field descriptions

The SPSR_EL2 bit assignments are:

When exception taken from AArch32 state:

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

0

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0] PAN
SSBS

M[4]

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N
on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V
on executing an exception return operation in EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and copied to PSTATE.Q
on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL2, and copied to PSTATE.IT[1:0] on
executing an exception return operation in EL2.

On executing an exception return operation in EL2 SPSR_EL2.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

Bit [24]

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to
PSTATE.PAN on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and copied to
PSTATE.GE on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL2, and copied to PSTATE.IT[7:2] on
executing an exception return operation in EL2.

SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E on executing
an exception return operation in EL2.

If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the implementation does
not support little-endian operation, SPSR_EL2.E is RES1. On executing an exception return operation in EL2, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL2.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL2.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied to PSTATE.T on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32 state, and
copied to PSTATE.nRW on executing an exception return operation in EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Value Meaning

0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to PSTATE.M[3:0]
on executing an exception return operation in EL2.

Value Meaning

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in x‘Illegal return
events from AArch64 state’.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

RES0

63 32

N

31

Z

30

C

29

V

28

0

27 26

0

25 24 23 22

SS

21

IL

20

RES0

19 13 12

RES0

11 10

D

9

A

8

I

7

F

6

0

5 4

M[3:0]

3 0

C64 PAN
UAO

SSBS M[4]

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N
on executing an exception return operation in EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V
on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Bit [27]

Reserved, RES0.

C64, bit [26]

When Morello is implemented:

Current instruction set state. Set to the value of PSTATE.C64 on taking an exception to EL2, and copied to
PSTATE.C64 on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [25:24]

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL2, and copied to PSTATE.UAO
on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to
PSTATE.PAN on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Otherwise:

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [11:10]

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to PSTATE.D on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on
executing an exception return operation in EL2.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on
executing an exception return operation in EL2.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64 state, and
copied to PSTATE.nRW on executing an exception return operation in EL2.

Value Meaning

0b0 AArch64 execution state.

If AArch32 is not supported at any Exception level, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

Value Meaning

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.

0b1000 EL2t.

0b1001 EL2h.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in x‘Illegal return
events from AArch64 state’.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to PSTATE.EL on
executing an exception return operation in EL2.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to PSTATE.SP on executing

an exception return operation in EL2

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or
SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Read using name SPSR_EL2

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MRS <Xt>, SPSR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 return SPSR_EL2;
7 elsif PSTATE.EL == EL3 then
8 return SPSR_EL2;

Write using name SPSR_EL2

The assembler syntax is:

MSR SPSR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 SPSR_EL2 = X[t];
7 elsif PSTATE.EL == EL3 then
8 SPSR_EL2 = X[t];

Read using name SPSR_EL1

The assembler syntax is:

MRS <Xt>, SPSR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter 3. Register definitions
3.2. Alphabetical list of registers

2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 return SPSR_EL1;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 return SPSR_EL2;
8 else
9 return SPSR_EL1;

10 elsif PSTATE.EL == EL3 then
11 return SPSR_EL1;

Write using name SPSR_EL1

The assembler syntax is:

MSR SPSR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 SPSR_EL1 = X[t];
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 SPSR_EL2 = X[t];
8 else
9 SPSR_EL1 = X[t];

10 elsif PSTATE.EL == EL3 then
11 SPSR_EL1 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.42 SPSR_EL3, Saved Program Status Register (EL3)

The SPSR_EL3 characteristics are:

Purpose

Holds the saved process state when an exception is taken to EL3.

Attributes

SPSR_EL3 is a 64-bit register.

Configuration

AArch64 System register SPSR_EL3[31:0] can be mapped to AArch32 System register
SPSR_mon[31:0], but this is not architecturally mandated.

This register is present only when HaveEL(EL3). Otherwise, direct accesses to SPSR_EL3 are
UNDEFINED.

Field descriptions

The SPSR_EL3 bit assignments are:

When exception taken from AArch32 state:

RES0

63 32

N

31

Z

30

C

29

V

28

Q

27 26 25

0

24 23 22

SS

21

IL

20

GE

19 16

IT[7:2]

15 10

E

9

A

8

I

7

F

6

T

5 4

M[3:0]

3 0

IT[1:0] PAN
SSBS

M[4]

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and copied to PSTATE.Q
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IT[1:0], bits [26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL3, and copied to PSTATE.IT[1:0] on
executing an exception return operation in EL3.

On executing an exception return operation in EL3 SPSR_EL1.IT must contain a value that is valid for the
instruction being returned to.

This field resets to an architecturally UNKNOWN value.

Bit [24]

Reserved, RES0.

SSBS, bit [23]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to
PSTATE.PAN on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and copied to
PSTATE.GE on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL3, and copied to PSTATE.IT[7:2] on
executing an exception return operation in EL3.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

This field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E on executing
an exception return operation in EL3.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does
not support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL3, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied to PSTATE.T on
executing an exception return operation in EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32 state, and
copied to PSTATE.nRW on executing an exception return operation in EL3.

Value Meaning

0b1 AArch32 execution state.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to PSTATE.M[3:0]
on executing an exception return operation in EL3.

Value Meaning

0b0000 User.

0b0001 FIQ.

0b0010 IRQ.

0b0011 Supervisor.

0b0110 Monitor.

0b0111 Abort.

0b1010 Hyp.

0b1011 Undefined.

0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in x‘Illegal return
events from AArch64 state’.

This field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

RES0

63 32

N

31

Z

30

C

29

V

28

0

27 26

0

25 24 23 22

SS

21

IL

20

RES0

19 13 12

RES0

11 10

D

9

A

8

I

7

F

6

0

5 4

M[3:0]

3 0

C64 PAN
UAO

SSBS M[4]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter 3. Register definitions
3.2. Alphabetical list of registers

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bit [27]

Reserved, RES0.

C64, bit [26]

When Morello is implemented:

Current instruction set state. Set to the value of PSTATE.C64 on taking an exception to EL3, and copied to
PSTATE.C64 on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [25:24]

Reserved, RES0.

UAO, bit [23]

When ARMv8.2-UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied to PSTATE.UAO
on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter 3. Register definitions
3.2. Alphabetical list of registers

RES0

PAN, bit [22]

When ARMv8.1-PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to
PSTATE.PAN on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to
PSTATE.SS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When ARMv8.0-SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [11:10]

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to PSTATE.D on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on
executing an exception return operation in EL3.

This field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64 state, and
copied to PSTATE.nRW on executing an exception return operation in EL3.

Value Meaning

0b0 AArch64 execution state.

If AArch32 is not supported at any Exception level, this bit is RES0.

This field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

Value Meaning

0b0000 EL0t.

0b0100 EL1t.

0b0101 EL1h.

0b1000 EL2t.

0b1001 EL2h.

0b1100 EL3t.

0b1101 EL3h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in x‘Illegal return
events from AArch64 state’.

The bits in this field are interpreted as follows:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to PSTATE.EL on
executing an exception return operation in EL3.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to PSTATE.SP on executing

an exception return operation in EL3

This field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL3

Read using name SPSR_EL3

The assembler syntax is:

MRS <Xt>, SPSR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 return SPSR_EL3;

Write using name SPSR_EL3

The assembler syntax is:

MSR SPSR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b0100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 SPSR_EL3 = X[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.43 TPIDR_EL0, EL0 Read/Write Software Thread ID Register

The TPIDR_EL0 characteristics are:

Purpose

Provides a location where software executing at EL0 can store thread identifying information, for OS
management purposes.

The PE makes no use of this register.

Attributes

TPIDR_EL0 is a 129-bit register.

Configuration

AArch64 System register TPIDR_EL0[31:0] is architecturally mapped to AArch32 System register
TPIDRURW[31:0].

Field descriptions

The TPIDR_EL0 bit assignments are:

When Morello is implemented:

128128

Thread ID

Thread ID

127 96

Thread ID

95 64

Thread ID

63 32

Thread ID

31 0

Bits [128:0]

Thread ID. Thread identifying information stored by software running at this Exception level

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL0

Read using name TPIDR_EL0

The assembler syntax is:

MRS <Xt>, TPIDR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 return RTPIDR_EL0<63:0>;
4 else
5 return TPIDR_EL0<63:0>;
6 elsif PSTATE.EL == EL1 then
7 return TPIDR_EL0<63:0>;
8 elsif PSTATE.EL == EL2 then
9 return TPIDR_EL0<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return TPIDR_EL0<63:0>;

Write using name TPIDR_EL0

The assembler syntax is:

MSR TPIDR_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
3 RTPIDR_EL0 = ZeroExtend(X[t]);
4 else
5 TPIDR_EL0 = ZeroExtend(X[t]);
6 elsif PSTATE.EL == EL1 then
7 TPIDR_EL0 = ZeroExtend(X[t]);
8 elsif PSTATE.EL == EL2 then
9 TPIDR_EL0 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 TPIDR_EL0 = ZeroExtend(X[t]);

Read using name CTPIDR_EL0

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MRS <Ct>, CTPIDR_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
16 return RTPIDR_EL0;
17 else
18 return TPIDR_EL0;
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return TPIDR_EL0;
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 return TPIDR_EL0;
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return TPIDR_EL0;

Write using name CTPIDR_EL0

The assembler syntax is:

MSR CTPIDR_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b010

Accessibility:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter 3. Register definitions
3.2. Alphabetical list of registers

1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
16 RTPIDR_EL0 = C[t];
17 else
18 TPIDR_EL0 = C[t];
19 elsif PSTATE.EL == EL1 then
20 if CPACR_EL1.CEN == 'x0' then
21 AArch64.SystemAccessTrap(EL1, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
25 AArch64.SystemAccessTrap(EL2, 0x29);
26 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 TPIDR_EL0 = C[t];
30 elsif PSTATE.EL == EL2 then
31 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
34 AArch64.SystemAccessTrap(EL2, 0x29);
35 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
36 AArch64.SystemAccessTrap(EL3, 0x29);
37 else
38 TPIDR_EL0 = C[t];
39 elsif PSTATE.EL == EL3 then
40 if CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 TPIDR_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.44 TPIDR_EL1, EL1 Software Thread ID Register

The TPIDR_EL1 characteristics are:

Purpose

Provides a location where software executing at EL1 can store thread identifying information, for OS
management purposes.

The PE makes no use of this register.

Attributes

TPIDR_EL1 is a 129-bit register.

Configuration

AArch64 System register TPIDR_EL1[31:0] is architecturally mapped to AArch32 System register
TPIDRPRW[31:0].

Field descriptions

The TPIDR_EL1 bit assignments are:

When Morello is implemented:

128128

Thread ID

Thread ID

127 96

Thread ID

95 64

Thread ID

63 32

Thread ID

31 0

Bits [128:0]

Thread ID. Thread identifying information stored by software running at this Exception level

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL1

Read using name TPIDR_EL1

The assembler syntax is:

MRS <Xt>, TPIDR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
5 return RTPIDR_EL0<63:0>;
6 else
7 return TPIDR_EL1<63:0>;
8 elsif PSTATE.EL == EL2 then
9 return TPIDR_EL1<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return TPIDR_EL1<63:0>;

Write using name TPIDR_EL1

The assembler syntax is:

MSR TPIDR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
5 RTPIDR_EL0 = ZeroExtend(X[t]);
6 else
7 TPIDR_EL1 = ZeroExtend(X[t]);
8 elsif PSTATE.EL == EL2 then
9 TPIDR_EL1 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 TPIDR_EL1 = ZeroExtend(X[t]);

Read using name CTPIDR_EL1

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MRS <Ct>, CTPIDR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 return RTPIDR_EL0;
14 else
15 return TPIDR_EL1;
16 elsif PSTATE.EL == EL2 then
17 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
20 AArch64.SystemAccessTrap(EL2, 0x29);
21 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x29);
23 else
24 return TPIDR_EL1;
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 return TPIDR_EL1;

Write using name CTPIDR_EL1

The assembler syntax is:

MSR CTPIDR_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1101 0b0000 0b100

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 RTPIDR_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter 3. Register definitions
3.2. Alphabetical list of registers

14 else
15 TPIDR_EL1 = C[t];
16 elsif PSTATE.EL == EL2 then
17 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
20 AArch64.SystemAccessTrap(EL2, 0x29);
21 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x29);
23 else
24 TPIDR_EL1 = C[t];
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.EC == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x29);
28 else
29 TPIDR_EL1 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.45 TPIDR_EL2, EL2 Software Thread ID Register

The TPIDR_EL2 characteristics are:

Purpose

Provides a location where software executing at EL2 can store thread identifying information, for OS
management purposes.

The PE makes no use of this register.

Attributes

TPIDR_EL2 is a 129-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register TPIDR_EL2[31:0] is architecturally mapped to AArch32 System register
HTPIDR[31:0].

Field descriptions

The TPIDR_EL2 bit assignments are:

When Morello is implemented:

128128

Thread ID

Thread ID

127 96

Thread ID

95 64

Thread ID

63 32

Thread ID

31 0

Bits [128:0]

Thread ID. Thread identifying information stored by software running at this Exception level

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL2

Read using name TPIDR_EL2

The assembler syntax is:

MRS <Xt>, TPIDR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 return RTPIDR_EL0<63:0>;
8 else
9 return TPIDR_EL2<63:0>;

10 elsif PSTATE.EL == EL3 then
11 return TPIDR_EL2<63:0>;

Write using name TPIDR_EL2

The assembler syntax is:

MSR TPIDR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
7 RTPIDR_EL0 = ZeroExtend(X[t]);
8 else
9 TPIDR_EL2 = ZeroExtend(X[t]);

10 elsif PSTATE.EL == EL3 then
11 TPIDR_EL2 = ZeroExtend(X[t]);

Read using name CTPIDR_EL2

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MRS <Ct>, CTPIDR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 return RTPIDR_EL0;
14 else
15 return TPIDR_EL2;
16 elsif PSTATE.EL == EL3 then
17 if CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return TPIDR_EL2;

Write using name CTPIDR_EL2

The assembler syntax is:

MSR CTPIDR_EL2, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
13 RTPIDR_EL0 = C[t];
14 else
15 TPIDR_EL2 = C[t];
16 elsif PSTATE.EL == EL3 then
17 if CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 TPIDR_EL2 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter 3. Register definitions
3.2. Alphabetical list of registers

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.46 TPIDR_EL3, EL3 Software Thread ID Register

The TPIDR_EL3 characteristics are:

Purpose

Provides a location where software executing at EL3 can store thread identifying information, for OS
management purposes.

The PE makes no use of this register.

Attributes

TPIDR_EL3 is a 129-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to TPIDR_EL3 are
UNDEFINED.

Field descriptions

The TPIDR_EL3 bit assignments are:

When Morello is implemented:

128128

Thread ID

Thread ID

127 96

Thread ID

95 64

Thread ID

63 32

Thread ID

31 0

Bits [128:0]

Thread ID. Thread identifying information stored by software running at this Exception level

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDR_EL3

Read using name TPIDR_EL3

The assembler syntax is:

MRS <Xt>, TPIDR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 return RTPIDR_EL0<63:0>;

10 else
11 return TPIDR_EL3<63:0>;

Write using name TPIDR_EL3

The assembler syntax is:

MSR TPIDR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
9 RTPIDR_EL0 = ZeroExtend(X[t]);

10 else
11 TPIDR_EL3 = ZeroExtend(X[t]);

Read using name CTPIDR_EL3

The assembler syntax is:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter 3. Register definitions
3.2. Alphabetical list of registers

MRS <Ct>, CTPIDR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.EC == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x29);

10 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
11 return RTPIDR_EL0;
12 else
13 return TPIDR_EL3;

Write using name CTPIDR_EL3

The assembler syntax is:

MSR CTPIDR_EL3, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1101 0b0000 0b010

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.EC == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x29);

10 elsif IsFeatureImplemented("Morello") && IsInRestricted() && !Halted() then
11 RTPIDR_EL0 = C[t];
12 else
13 TPIDR_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.47 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register

The TPIDRRO_EL0 characteristics are:

Purpose

Provides a location where software executing at EL1 or higher can store thread identifying information
that is visible to software executing at EL0, for OS management purposes.

The PE makes no use of this register.

Attributes

TPIDRRO_EL0 is a 129-bit register.

Configuration

AArch64 System register TPIDRRO_EL0[31:0] is architecturally mapped to AArch32 System register
TPIDRURO[31:0].

Field descriptions

The TPIDRRO_EL0 bit assignments are:

When Morello is implemented:

128128

Thread ID

Thread ID

127 96

Thread ID

95 64

Thread ID

63 32

Thread ID

31 0

Bits [128:0]

Thread ID. Thread identifying information stored by software running at this Exception level

This field resets to an architecturally UNKNOWN value.

When Morello is not implemented:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread ID. Thread identifying information stored by software running at this Exception level.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter 3. Register definitions
3.2. Alphabetical list of registers

This field resets to an architecturally UNKNOWN value.

Accessing the TPIDRRO_EL0

Read using name TPIDRRO_EL0

The assembler syntax is:

MRS <Xt>, TPIDRRO_EL0

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 return TPIDRRO_EL0<63:0>;
3 elsif PSTATE.EL == EL1 then
4 return TPIDRRO_EL0<63:0>;
5 elsif PSTATE.EL == EL2 then
6 return TPIDRRO_EL0<63:0>;
7 elsif PSTATE.EL == EL3 then
8 return TPIDRRO_EL0<63:0>;

Write using name TPIDRRO_EL0

The assembler syntax is:

MSR TPIDRRO_EL0, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 TPIDRRO_EL0 = ZeroExtend(X[t]);
5 elsif PSTATE.EL == EL2 then
6 TPIDRRO_EL0 = ZeroExtend(X[t]);
7 elsif PSTATE.EL == EL3 then
8 TPIDRRO_EL0 = ZeroExtend(X[t]);

Read using name CTPIDRRO_EL0

The assembler syntax is:

MRS <Ct>, CTPIDRRO_EL0

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.CEN != '11' then
3 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x29);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x29);
7 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.CEN != '11' then
8 AArch64.SystemAccessTrap(EL2, 0x29);
9 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then

10 AArch64.SystemAccessTrap(EL2, 0x29);
11 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
14 AArch64.SystemAccessTrap(EL3, 0x29);
15 else
16 return TPIDRRO_EL0;
17 elsif PSTATE.EL == EL1 then
18 if CPACR_EL1.CEN == 'x0' then
19 AArch64.SystemAccessTrap(EL1, 0x29);
20 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
21 AArch64.SystemAccessTrap(EL2, 0x29);
22 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
23 AArch64.SystemAccessTrap(EL2, 0x29);
24 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 return TPIDRRO_EL0;
28 elsif PSTATE.EL == EL2 then
29 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
32 AArch64.SystemAccessTrap(EL2, 0x29);
33 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
34 AArch64.SystemAccessTrap(EL3, 0x29);
35 else
36 return TPIDRRO_EL0;
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.EC == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x29);
40 else
41 return TPIDRRO_EL0;

Write using name CTPIDRRO_EL0

The assembler syntax is:

MSR CTPIDRRO_EL0, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b011

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if CPACR_EL1.CEN == 'x0' then
5 AArch64.SystemAccessTrap(EL1, 0x29);
6 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Chapter 3. Register definitions
3.2. Alphabetical list of registers

7 AArch64.SystemAccessTrap(EL2, 0x29);
8 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
9 AArch64.SystemAccessTrap(EL2, 0x29);

10 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 TPIDRRO_EL0 = C[t];
14 elsif PSTATE.EL == EL2 then
15 if HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
18 AArch64.SystemAccessTrap(EL2, 0x29);
19 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
20 AArch64.SystemAccessTrap(EL3, 0x29);
21 else
22 TPIDRRO_EL0 = C[t];
23 elsif PSTATE.EL == EL3 then
24 if CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 TPIDRRO_EL0 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

426

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.48 VBAR_EL1, Vector Base Address Register (EL1)

The VBAR_EL1 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL1.

Attributes

VBAR_EL1 is a 129-bit register.

Configuration

AArch64 System register VBAR_EL1[31:0] is architecturally mapped to AArch32 System register
VBAR[31:0].

Field descriptions

The VBAR_EL1 bit assignments are:

When Morello is implemented and Capability access at EL1 is not trapped:

128128

Capability
Vector Base
Address

Capability Vector Base Address

127 96

Capability Vector Base Address

95 64

Capability Vector Base Address

63 32

Capability Vector Base Address

31 0

Bits [128:0]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

Bits [10:0] are treated as 0 for the purpose of calculating the exception vector address.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter 3. Register definitions
3.2. Alphabetical list of registers

When Morello is implemented and Capability access at EL1 is trapped:

128128

RES0

RES0

127 96

RES0

95 64

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0

Bits [128:64]

Reserved, RES0.

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

When Morello is not implemented:

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using a mnemonic ending in _EL1
or _EL12 are not guaranteed to be ordered with respect to accesses using a mnemonic with the other ending.

Read using name VBAR_EL1

The assembler syntax is:

MRS <Xt>, VBAR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 return VBAR_EL1<63:0>;
13 elsif PSTATE.EL == EL2 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 if TargetELForCapabilityExceptions() == EL2 then
16 AArch64.SystemAccessTrap(EL2, 0x18);
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 elsif HCR_EL2.E2H == '1' then
20 return VBAR_EL2<63:0>;
21 else
22 return VBAR_EL1<63:0>;
23 elsif PSTATE.EL == EL3 then
24 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
25 AArch64.SystemAccessTrap(EL3, 0x18);
26 else
27 return VBAR_EL1<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name VBAR_EL1

The assembler syntax is:

MSR VBAR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 VBAR_EL1 = ZeroExtend(X[t]);
13 elsif PSTATE.EL == EL2 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 if TargetELForCapabilityExceptions() == EL2 then
16 AArch64.SystemAccessTrap(EL2, 0x18);
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 elsif HCR_EL2.E2H == '1' then
20 VBAR_EL2 = ZeroExtend(X[t]);
21 else
22 VBAR_EL1 = ZeroExtend(X[t]);
23 elsif PSTATE.EL == EL3 then
24 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
25 AArch64.SystemAccessTrap(EL3, 0x18);
26 else
27 VBAR_EL1 = ZeroExtend(X[t]);

Read using name VBAR_EL12

The assembler syntax is:

MRS <Xt>, VBAR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter 3. Register definitions
3.2. Alphabetical list of registers

8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 else
13 return VBAR_EL1<63:0>;
14 else
15 UNDEFINED;
16 elsif PSTATE.EL == EL3 then
17 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 return VBAR_EL1<63:0>;
22 else
23 UNDEFINED;

Write using name VBAR_EL12

The assembler syntax is:

MSR VBAR_EL12, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x18);
12 else
13 VBAR_EL1 = ZeroExtend(X[t]);
14 else
15 UNDEFINED;
16 elsif PSTATE.EL == EL3 then
17 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
18 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 VBAR_EL1 = ZeroExtend(X[t]);
22 else
23 UNDEFINED;

Read using name CVBAR_EL1

The assembler syntax is:

MRS <Ct>, CVBAR_EL1

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x2A);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x2A);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x2A);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return VBAR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x2A);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x2A);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 return VBAR_EL2;
35 else
36 return VBAR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x2A);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return VBAR_EL1;

Write using name CVBAR_EL1

The assembler syntax is:

MSR CVBAR_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x2A);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x2A);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x2A);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 VBAR_EL1 = C[t];
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x2A);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x2A);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 VBAR_EL2 = C[t];
35 else
36 VBAR_EL1 = C[t];
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x2A);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 VBAR_EL1 = C[t];

Read using name CVBAR_EL12

The assembler syntax is:

MRS <Ct>, CVBAR_EL12

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x2A);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x2A);
12 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 return VBAR_EL1;
18 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter 3. Register definitions
3.2. Alphabetical list of registers

19 UNDEFINED;
20 elsif PSTATE.EL == EL3 then
21 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 AArch64.SystemAccessTrap(EL3, 0x2A);
24 elsif CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 return VBAR_EL1;
28 else
29 UNDEFINED;

Write using name CVBAR_EL12

The assembler syntax is:

MSR CVBAR_EL12, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b101 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if HCR_EL2.E2H == '1' then
7 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
8 if TargetELForCapabilityExceptions() == EL2 then
9 AArch64.SystemAccessTrap(EL2, 0x2A);

10 else
11 AArch64.SystemAccessTrap(EL3, 0x2A);
12 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
13 AArch64.SystemAccessTrap(EL2, 0x29);
14 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
15 AArch64.SystemAccessTrap(EL3, 0x29);
16 else
17 VBAR_EL1 = C[t];
18 else
19 UNDEFINED;
20 elsif PSTATE.EL == EL3 then
21 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 AArch64.SystemAccessTrap(EL3, 0x2A);
24 elsif CPTR_EL3.EC == '0' then
25 AArch64.SystemAccessTrap(EL3, 0x29);
26 else
27 VBAR_EL1 = C[t];
28 else
29 UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.49 VBAR_EL2, Vector Base Address Register (EL2)

The VBAR_EL2 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL2.

Attributes

VBAR_EL2 is a 129-bit register.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 System register VBAR_EL2[31:0] is architecturally mapped to AArch32 System register
HVBAR[31:0].

Field descriptions

The VBAR_EL2 bit assignments are:

When Morello is implemented and Capability access at EL2 is not trapped:

128128

Capability
Vector Base
Address

Capability Vector Base Address

127 96

Capability Vector Base Address

95 64

Capability Vector Base Address

63 32

Capability Vector Base Address

31 0

Bits [128:0]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

Bits [10:0] are treated as 0 for the purpose of calculating the exception vector address.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter 3. Register definitions
3.2. Alphabetical list of registers

When Morello is implemented and Capability access at EL2 is trapped:

128128

RES0

RES0

127 96

RES0

95 64

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0

Bits [128:64]

Reserved, RES0.

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

When Morello is not implemented:

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• If tagged addresses are not being used, bits [63:48] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL2 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using a mnemonic ending in _EL2
or _EL1 is not guaranteed to be ordered with respect to accesses using a mnemonic with the other ending.

Read using name VBAR_EL2

The assembler syntax is:

MRS <Xt>, VBAR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 return VBAR_EL2<63:0>;
13 elsif PSTATE.EL == EL3 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 return VBAR_EL2<63:0>;

Write using name VBAR_EL2

The assembler syntax is:

MSR VBAR_EL2, <Xt>

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 VBAR_EL2 = ZeroExtend(X[t]);
13 elsif PSTATE.EL == EL3 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 VBAR_EL2 = ZeroExtend(X[t]);

Read using name VBAR_EL1

The assembler syntax is:

MRS <Xt>, VBAR_EL1

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 return VBAR_EL1<63:0>;
13 elsif PSTATE.EL == EL2 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 if TargetELForCapabilityExceptions() == EL2 then
16 AArch64.SystemAccessTrap(EL2, 0x18);
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 elsif HCR_EL2.E2H == '1' then
20 return VBAR_EL2<63:0>;
21 else
22 return VBAR_EL1<63:0>;
23 elsif PSTATE.EL == EL3 then
24 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
25 AArch64.SystemAccessTrap(EL3, 0x18);
26 else
27 return VBAR_EL1<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter 3. Register definitions
3.2. Alphabetical list of registers

Write using name VBAR_EL1

The assembler syntax is:

MSR VBAR_EL1, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x18);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x18);
11 else
12 VBAR_EL1 = ZeroExtend(X[t]);
13 elsif PSTATE.EL == EL2 then
14 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
15 if TargetELForCapabilityExceptions() == EL2 then
16 AArch64.SystemAccessTrap(EL2, 0x18);
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 elsif HCR_EL2.E2H == '1' then
20 VBAR_EL2 = ZeroExtend(X[t]);
21 else
22 VBAR_EL1 = ZeroExtend(X[t]);
23 elsif PSTATE.EL == EL3 then
24 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
25 AArch64.SystemAccessTrap(EL3, 0x18);
26 else
27 VBAR_EL1 = ZeroExtend(X[t]);

Read using name CVBAR_EL2

The assembler syntax is:

MRS <Ct>, CVBAR_EL2

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter 3. Register definitions
3.2. Alphabetical list of registers

8 AArch64.SystemAccessTrap(EL2, 0x2A);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x2A);
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 return VBAR_EL2;
19 elsif PSTATE.EL == EL3 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x2A);
22 elsif CPTR_EL3.EC == '0' then
23 AArch64.SystemAccessTrap(EL3, 0x29);
24 else
25 return VBAR_EL2;

Write using name CVBAR_EL2

The assembler syntax is:

MSR CVBAR_EL2, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b100 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
7 if TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x2A);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x2A);
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x29);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
16 AArch64.SystemAccessTrap(EL3, 0x29);
17 else
18 VBAR_EL2 = C[t];
19 elsif PSTATE.EL == EL3 then
20 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
21 AArch64.SystemAccessTrap(EL3, 0x2A);
22 elsif CPTR_EL3.EC == '0' then
23 AArch64.SystemAccessTrap(EL3, 0x29);
24 else
25 VBAR_EL2 = C[t];

Read using name CVBAR_EL1

The assembler syntax is:

MRS <Ct>, CVBAR_EL1

The encoding for this is in the System instruction encoding space:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter 3. Register definitions
3.2. Alphabetical list of registers

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x2A);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x2A);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x2A);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 return VBAR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x2A);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x2A);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 return VBAR_EL2;
35 else
36 return VBAR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x2A);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 return VBAR_EL1;

Write using name CVBAR_EL1

The assembler syntax is:

MSR CVBAR_EL1, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b000 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

Chapter 3. Register definitions
3.2. Alphabetical list of registers

5 if TargetELForCapabilityExceptions() == EL1 then
6 AArch64.SystemAccessTrap(EL1, 0x2A);
7 elsif TargetELForCapabilityExceptions() == EL2 then
8 AArch64.SystemAccessTrap(EL2, 0x2A);
9 else

10 AArch64.SystemAccessTrap(EL3, 0x2A);
11 elsif CPACR_EL1.CEN == 'x0' then
12 AArch64.SystemAccessTrap(EL1, 0x29);
13 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TC == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x29);
15 elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
16 AArch64.SystemAccessTrap(EL2, 0x29);
17 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
18 AArch64.SystemAccessTrap(EL3, 0x29);
19 else
20 VBAR_EL1 = C[t];
21 elsif PSTATE.EL == EL2 then
22 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
23 if TargetELForCapabilityExceptions() == EL2 then
24 AArch64.SystemAccessTrap(EL2, 0x2A);
25 else
26 AArch64.SystemAccessTrap(EL3, 0x2A);
27 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x29);
29 elsif HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x29);
31 elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.EC == '0' then
32 AArch64.SystemAccessTrap(EL3, 0x29);
33 elsif HCR_EL2.E2H == '1' then
34 VBAR_EL2 = C[t];
35 else
36 VBAR_EL1 = C[t];
37 elsif PSTATE.EL == EL3 then
38 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
39 AArch64.SystemAccessTrap(EL3, 0x2A);
40 elsif CPTR_EL3.EC == '0' then
41 AArch64.SystemAccessTrap(EL3, 0x29);
42 else
43 VBAR_EL1 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

442

Chapter 3. Register definitions
3.2. Alphabetical list of registers

3.2.50 VBAR_EL3, Vector Base Address Register (EL3)

The VBAR_EL3 characteristics are:

Purpose

Holds the vector base address for any exception that is taken to EL3.

Attributes

VBAR_EL3 is a 129-bit register.

Configuration

This register is present only when HaveEL(EL3). Otherwise, direct accesses to VBAR_EL3 are
UNDEFINED.

Field descriptions

The VBAR_EL3 bit assignments are:

When Morello is implemented and Capability access at EL3 is not trapped:

128128

Capability
Vector Base
Address

Capability Vector Base Address

127 96

Capability Vector Base Address

95 64

Capability Vector Base Address

63 32

Capability Vector Base Address

31 0

Bits [128:0]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

Bits [10:0] are treated as 0 for the purpose of calculating the exception vector address.

This field resets to an architecturally UNKNOWN value.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

443

Chapter 3. Register definitions
3.2. Alphabetical list of registers

When Morello is implemented and Capability access at EL3 is trapped:

128128

RES0

RES0

127 96

RES0

95 64

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0

Bits [128:64]

Reserved, RES0.

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

When Morello is not implemented:

Vector Base Address

63 32

Vector Base Address

31 11

RES0

10 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL3.

If the implementation does not support xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

444

Chapter 3. Register definitions
3.2. Alphabetical list of registers

• If tagged addresses are not being used, bits [63:48] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

If the implementation supports xARMv8.2-LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL3 must be the same or else the use of the vector
address will result in a recursive exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL3 must be the same or else the use of the
vector address will result in a recursive exception.

This field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL3

Read using name VBAR_EL3

The assembler syntax is:

MRS <Xt>, VBAR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 return VBAR_EL3<63:0>;

Write using name VBAR_EL3

The assembler syntax is:

MSR VBAR_EL3, <Xt>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

445

Chapter 3. Register definitions
3.2. Alphabetical list of registers

2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 VBAR_EL3 = ZeroExtend(X[t]);

Read using name CVBAR_EL3

The assembler syntax is:

MRS <Ct>, CVBAR_EL3

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x2A);

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 return VBAR_EL3;

Write using name CVBAR_EL3

The assembler syntax is:

MSR CVBAR_EL3, <Ct>

The encoding for this is in the System instruction encoding space:

op0 op1 CRn CRm op2

0b11 0b110 0b1100 0b0000 0b000

Accessibility:
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if IsFeatureImplemented("Morello") && !CapIsSystemAccessEnabled() && !Halted() then
9 AArch64.SystemAccessTrap(EL3, 0x2A);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

446

Chapter 3. Register definitions
3.2. Alphabetical list of registers

10 elsif CPTR_EL3.EC == '0' then
11 AArch64.SystemAccessTrap(EL3, 0x29);
12 else
13 VBAR_EL3 = C[t];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

447

Chapter 4
Instruction definitions

4.1 The instruction sets

IJTQND This chapter describes the instructions available in the A64 and C64 instruction sets in the Morello architecture.

IXJGLX This chapter contains:

• Instructions that are new in the Morello architecture.

• Instructions that are modified by the Morello architecture. Most of these instructions are changed by the
addition of capability memory relocation checks.

Instructions that are not described in this chapter are not modified by the Morello architecture, and have the same
behavior as described in the Arm® Architecture Reference Manual, Armv8-A.

An instruction is available in both A64 and C64, unless specified in the description. When reading these descriptions,
the text at the start of each page provides a simple description of the instruction behavior. These descriptions are
not updated to account for the differences in C64, but the rules of the specification and operation pseudocode cover
these in detail.

The descriptions also include cross-references shown in italics. These are references to sections in the Arm®

Architecture Reference Manual, Armv8-A, unless otherwise specified.

The assembler syntax indicates how the syntax differs in A64 and C64, for example:

ADR <Xd>, <label> //(PSTATE.C64 == '0')

ADR <Cd>, <label> //(PSTATE.C64 == '1')

The A64 syntax is described by the PSTATE.C64 == ‘0’ line, and the C64 syntax is described by the PSTATE.C64
== ‘1’ line.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

448

Chapter 4. Instruction definitions
4.1. The instruction sets

Unless otherwise stated, when the syntax does not include discrimination, the syntax applies in both A64 and C64.

The Operation pseudocode shows the A64 and C64 behavior by switching on the value of IsInC64().

INZHVM The letter C denotes a capability general-purpose register holding a capability.

CZR can be used in some instructions to represent a Capability where bits[128:0] are 0.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

449

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2 Modified base instructions

4.2.1 ADR

Form PCC-relative address adds an immediate value to the PCC value to form a PCC-relative address, and writes
the result to the destination register.

0

31

immlo

30 29

1 0 0 0 0

28 24

P

23

immhi

22 5

Rd

4 0

op

ADR <Xd>, <label> // (PSTATE.C64 == '0')

ADR <Cd>, <label> // (PSTATE.C64 == '1')

1 integer d = UInt(Rd);
2 bits(64) imm = SignExtend(P:immhi:immlo, 64);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated, in the range +/-1MB, encoded in
"P:immhi:immlo".

Operation
1 if IsInC64() then
2 Capability addr = PCC[];
3
4 C[d] = CapAdd(addr,imm);
5 else
6 bits (64) addr;
7 if CCTLR[].PCCBO == '1' then
8 addr = CapGetOffset(PCC[]);
9 else

10 addr = CapGetValue(PCC[]);
11
12 X[d] = addr + imm;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

450

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.2 ADRP

Form PCC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits to the PCC value
with the bottom 12 bits masked out to form a PCC-relative address and writes the result to the destination register.
This description only applies in A64.

1

31

immlo

30 29

1 0 0 0 0

28 24

P

23

immhi

22 5

Rd

4 0

op

ADRP <Xd>, <label>

1 integer d = UInt(Rd);
2 bits(64) imm;
3
4 if IsInC64() then
5 if P == '1' then
6 imm = SignExtend(immhi:immlo:Zeros(12), 64);
7 else
8 imm = ZeroExtend(immhi:immlo:Zeros(12), 64);
9 else

10 imm = SignExtend(P:immhi:immlo:Zeros(12), 64);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated, in the range +/-4GB,
encoded in "P:immhi:immlo".

Operation
1 if IsInC64() then
2 Capability addr;
3 if P == '0' then
4 if CCTLR[].ADRDPB == '1' then
5 addr = C[28];
6 else
7 addr = DDC[];
8 else
9 addr = PCC[];

10
11 bits(64) newvalue = CapGetValue(addr) AND NOT(ZeroExtend(Ones(12),64));
12 bits(64) offset = newvalue - CapGetValue(addr) + imm;
13
14 Capability result = CapAdd(addr,offset);
15
16 if CapIsSealed(addr) then
17 result = CapWithTagClear(result);
18
19 C[d] = result;
20 else
21 bits(64) addr;
22 if CCTLR[].PCCBO == '1' then
23 addr = CapGetOffset(PCC[]);
24 else
25 addr = CapGetValue(PCC[]);
26
27 addr<11:0> = Zeros(12);
28
29 X[d] = addr + imm;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

451

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.3 BL

Branch with Link branches to a PC-relative offset, setting the register X30 to PC+4. It provides a hint that this is a
subroutine call.

1

31

0 0 1 0 1

30 26

imm26

25 0

op

BL <label>

1 BranchType branch_type = if op == '1' then BranchType_DIRCALL else BranchType_DIR;
2 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler Symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this
instruction, in the range +/-128MB, is encoded as "imm26" times 4.

Operation
1 if branch_type == BranchType_DIRCALL then
2 if IsInC64() then
3 if CCTLR[].SBL == '1' then
4 C[30] = CapSetObjectType(CapAdd(PCC[], 5), CAP_SEAL_TYPE_RB);
5 else
6 C[30] = CapAdd(PCC[], 5);
7 elsif CCTLR[].PCCBO == '1' then
8 X[30] = PC[] + 4 - CapGetBase(PCC[]);
9 else

10 X[30] = PC[] + 4;
11
12 BranchToOffset(offset, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

452

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.4 BLR

Branch with Link to Register calls a subroutine at an address in a register, setting register X30 to PC+4.

1 1 0 1 0 1 1

31 25

0

24

0

23

0 1

22 21

1 1 1 1 1

20 16

0 0 0 0

15 12

0

11

0

10

Rn

9 5

0 0 0 0 0

4 0

Z op A M Rm

BLR <Xn>

1 integer n = UInt(Rn);
2 BranchType branch_type;
3
4 case op of
5 when '00' branch_type = BranchType_INDIR;
6 when '01' branch_type = BranchType_INDCALL;
7 when '10' branch_type = BranchType_RET;
8 otherwise UNDEFINED;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to,
encoded in the "Rn" field.

Operation
1 Capability target;
2 if CCTLR[].PCCBO == '1' then
3 target = CapSetOffset(PCC[], X[n]);
4 else
5 target = CapSetValue(PCC[], X[n]);
6
7 if branch_type == BranchType_INDCALL then
8 if IsInC64() then
9 if CCTLR[].SBL == '1' then

10 C[30] = CapSetObjectType(CapAdd(PCC[], 5), CAP_SEAL_TYPE_RB);
11 else
12 C[30] = CapAdd(PCC[], 5);
13 elsif CCTLR[].PCCBO == '1' then
14 X[30] = PC[] + 4 - CapGetBase(PCC[]);
15 else
16 X[30] = PC[] + 4;
17
18 BranchToCapability(target,branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

453

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.5 BR

Branch to Register branches unconditionally to an address in a register, with a hint that this is not a subroutine
return.

1 1 0 1 0 1 1

31 25

0

24

0

23

0 0

22 21

1 1 1 1 1

20 16

0 0 0 0

15 12

0

11

0

10

Rn

9 5

0 0 0 0 0

4 0

Z op A M Rm

BR <Xn>

1 integer n = UInt(Rn);
2 BranchType branch_type;
3
4 case op of
5 when '00' branch_type = BranchType_INDIR;
6 when '01' branch_type = BranchType_INDCALL;
7 when '10' branch_type = BranchType_RET;
8 otherwise UNDEFINED;

Assembler Symbols

<Xn> Is the 64-bit name of the general-purpose register holding the address to be branched to,
encoded in the "Rn" field.

Operation
1 Capability target;
2 if CCTLR[].PCCBO == '1' then
3 target = CapSetOffset(PCC[], X[n]);
4 else
5 target = CapSetValue(PCC[], X[n]);
6
7 if branch_type == BranchType_INDCALL then
8 if IsInC64() then
9 if CCTLR[].SBL == '1' then

10 C[30] = CapSetObjectType(CapAdd(PCC[], 5), CAP_SEAL_TYPE_RB);
11 else
12 C[30] = CapAdd(PCC[], 5);
13 elsif CCTLR[].PCCBO == '1' then
14 X[30] = PC[] + 4 - CapGetBase(PCC[]);
15 else
16 X[30] = PC[] + 4;
17
18 BranchToCapability(target,branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

454

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.6 CAS, CASA, CASAL, CASL

Compare and Swap word or doubleword in memory reads a 32-bit word or 64-bit doubleword from memory, and
compares it against the value held in a first register. If the comparison is equal, the value in a second register is
written to memory. If the write is performed, the read and write occur atomically such that no other modification
of the memory location can take place between the read and write.

• CASA and CASAL load from memory with acquire semantics.

• CASL and CASAL store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>,
or <Xs>, is restored to the value held in the register before the instruction was executed.

No offset
(FEAT_LSE)

1 x

31 30

0 0 1 0 0 0

29 24

1

23

L

22

1

21

Rs

20 16

o0

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

size

32-bit CAS (size == 10 && L == 0 && o0 == 0)
CAS <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CAS <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

32-bit CASA (size == 10 && L == 1 && o0 == 0)
CASA <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASA <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

32-bit CASAL (size == 10 && L == 1 && o0 == 1)
CASAL <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASAL <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

32-bit CASL (size == 10 && L == 0 && o0 == 1)
CASL <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASL <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CAS (size == 11 && L == 0 && o0 == 0)
CAS <Xs>, <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CAS <Xs>, <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CASA (size == 11 && L == 1 && o0 == 0)
CASA <Xs>, <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASA <Xs>, <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CASAL (size == 11 && L == 1 && o0 == 1)
CASAL <Xs>, <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

455

Chapter 4. Instruction definitions
4.2. Modified base instructions

CASAL <Xs>, <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CASL (size == 11 && L == 0 && o0 == 1)

CASL <Xs>, <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASL <Xs>, <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer n = UInt(Rn);
4 integer t = UInt(Rt);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the
"Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the
"Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be compared and loaded, encoded in the
"Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be conditionally stored, encoded in the
"Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) comparevalue;
2 bits(datasize) newvalue;
3 bits(datasize) data;
4
5 comparevalue = X[s];
6 newvalue = X[t];
7
8 VirtualAddress base = BaseReg[n];
9 data = MemAtomicCompareAndSwap(base, comparevalue, newvalue, ldacctype, stacctype);

10
11 X[s] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

456

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.7 CASB, CASAB, CASALB, CASLB

Compare and Swap byte in memory reads an 8-bit byte from memory, and compares it against the value held
in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take
place between the read and write.

• CASAB and CASALB load from memory with acquire semantics.

• CASLB and CASALB store to memory with release semantics.

• CASB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset
(FEAT_LSE)

0 0

31 30

0 0 1 0 0 0

29 24

1

23

L

22

1

21

Rs

20 16

o0

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

size

CASAB (L == 1 && o0 == 0)

CASAB <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASAB <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

CASALB (L == 1 && o0 == 1)

CASALB <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASALB <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

CASB (L == 0 && o0 == 0)

CASB <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASB <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

CASLB (L == 0 && o0 == 1)

CASLB <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASLB <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer n = UInt(Rn);
4 integer t = UInt(Rt);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the
"Rs" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

457

Chapter 4. Instruction definitions
4.2. Modified base instructions

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the
"Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) comparevalue;
2 bits(datasize) newvalue;
3 bits(datasize) data;
4
5 comparevalue = X[s];
6 newvalue = X[t];
7
8 VirtualAddress base = BaseReg[n];
9 data = MemAtomicCompareAndSwap(base, comparevalue, newvalue, ldacctype, stacctype);

10
11 X[s] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

458

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.8 CASH, CASAH, CASALH, CASLH

Compare and Swap halfword in memory reads a 16-bit halfword from memory, and compares it against the value
held in a first register. If the comparison is equal, the value in a second register is written to memory. If the write is
performed, the read and write occur atomically such that no other modification of the memory location can take
place between the read and write.

• CASAH and CASALH load from memory with acquire semantics.

• CASLH and CASALH store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the register which is compared and loaded, that is <Ws>, is
restored to the values held in the register before the instruction was executed.

No offset
(FEAT_LSE)

0 1

31 30

0 0 1 0 0 0

29 24

1

23

L

22

1

21

Rs

20 16

o0

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

size

CASAH (L == 1 && o0 == 0)

CASAH <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASAH <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

CASALH (L == 1 && o0 == 1)

CASALH <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASALH <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

CASH (L == 0 && o0 == 0)

CASH <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASH <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

CASLH (L == 0 && o0 == 1)

CASLH <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASLH <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer n = UInt(Rn);
4 integer t = UInt(Rt);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be compared and loaded, encoded in the
"Rs" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

459

Chapter 4. Instruction definitions
4.2. Modified base instructions

<Wt> Is the 32-bit name of the general-purpose register to be conditionally stored, encoded in the
"Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) comparevalue;
2 bits(datasize) newvalue;
3 bits(datasize) data;
4
5 comparevalue = X[s];
6 newvalue = X[t];
7
8 VirtualAddress base = BaseReg[n];
9 data = MemAtomicCompareAndSwap(base, comparevalue, newvalue, ldacctype, stacctype);

10
11 X[s] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

460

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.9 CASP, CASPA, CASPAL, CASPL

Compare and Swap Pair of words or doublewords in memory reads a pair of 32-bit words or 64-bit doublewords
from memory, and compares them against the values held in the first pair of registers. If the comparison is equal,
the values in the second pair of registers are written to memory. If the writes are performed, the reads and writes
occur atomically such that no other modification of the memory location can take place between the reads and
writes.

• CASPA and CASPAL load from memory with acquire semantics.

• CASPL and CASPAL store to memory with release semantics.

• CAS has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

The architecture permits that the data read clears any exclusive monitors associated with that location, even if the
compare subsequently fails.

If the instruction generates a synchronous Data Abort, the registers which are compared and loaded, that is <Ws>
and <W(s+1)>, or <Xs> and <X(s+1)>, are restored to the values held in the registers before the instruction
was executed.

No offset
(FEAT_LSE)

0

31

sz

30

0 0 1 0 0 0

29 24

0

23

L

22

1

21

Rs

20 16

o0

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

Rt2

32-bit CASP (sz == 0 && L == 0 && o0 == 0)

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASP <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

32-bit CASPA (sz == 0 && L == 1 && o0 == 0)

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASPA <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

32-bit CASPAL (sz == 0 && L == 1 && o0 == 1)

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASPAL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

32-bit CASPL (sz == 0 && L == 0 && o0 == 1)

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASPL <Ws>, <W(s+1)>, <Wt>, <W(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CASP (sz == 1 && L == 0 && o0 == 0)

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASP <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CASPA (sz == 1 && L == 1 && o0 == 0)

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASPA <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

461

Chapter 4. Instruction definitions
4.2. Modified base instructions

64-bit CASPAL (sz == 1 && L == 1 && o0 == 1)
CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASPAL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit CASPL (sz == 1 && L == 0 && o0 == 1)
CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

CASPL <Xs>, <X(s+1)>, <Xt>, <X(t+1)>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2 if Rs<0> == '1' then UNDEFINED;
3 if Rt<0> == '1' then UNDEFINED;
4
5 integer n = UInt(Rn);
6 integer t = UInt(Rt);
7 integer s = UInt(Rs);
8
9 integer datasize = 32 << UInt(sz);

10 integer regsize = datasize;
11 AccType ldacctype = if L == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
12 AccType stacctype = if o0 == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the first general-purpose register to be compared and loaded, encoded
in the "Rs" field. <Ws> must be an even-numbered register.

<W(s+1)> Is the 32-bit name of the second general-purpose register to be compared and loaded.

<Wt> Is the 32-bit name of the first general-purpose register to be conditionally stored, encoded in
the "Rt" field. <Wt> must be an even-numbered register.

<W(t+1)> Is the 32-bit name of the second general-purpose register to be conditionally stored.

<Xs> Is the 64-bit name of the first general-purpose register to be compared and loaded, encoded
in the "Rs" field. <Xs> must be an even-numbered register.

<X(s+1)> Is the 64-bit name of the second general-purpose register to be compared and loaded.

<Xt> Is the 64-bit name of the first general-purpose register to be conditionally stored, encoded in
the "Rt" field. <Xt> must be an even-numbered register.

<X(t+1)> Is the 64-bit name of the second general-purpose register to be conditionally stored.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(2*datasize) comparevalue;
2 bits(2*datasize) newvalue;
3 bits(2*datasize) data;
4
5 bits(datasize) s1 = X[s];
6 bits(datasize) s2 = X[s+1];
7 bits(datasize) t1 = X[t];
8 bits(datasize) t2 = X[t+1];
9 comparevalue = if BigEndian() then s1:s2 else s2:s1;

10 newvalue = if BigEndian() then t1:t2 else t2:t1;
11
12 VirtualAddress base = BaseReg[n];
13 data = MemAtomicCompareAndSwap(base, comparevalue, newvalue, ldacctype, stacctype);
14
15 if BigEndian() then
16 X[s] = ZeroExtend(data<2*datasize-1:datasize>, regsize);
17 X[s+1] = ZeroExtend(data<datasize-1:0>, regsize);
18 else
19 X[s] = ZeroExtend(data<datasize-1:0>, regsize);
20 X[s+1] = ZeroExtend(data<2*datasize-1:datasize>, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

462

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.10 DC

Data Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 1

20 19

op1

18 16

0 1 1 1

15 12

CRm

11 8

op2

7 5

Rt

4 0

L CRn

DC <dc_op>, <Xt> // (PSTATE.C64 == '0' or when <dc_op> does not take a VA)

DC <dc_op>, <Ct> // (PSTATE.C64 == '1' when <dc_op> takes a VA)

is equivalent to
SYS#<op1>, C7, <Cm>, #<op2>, <Xt>

and is the preferred disassembly when SysOp(op1,’0111’,CRm,op2) == Sys_DC.

Assembler Symbols

<dc_op> Is a DC instruction name, as listed for the DC system instruction group, encoded
in"op1:CRm:op2":

op1 CRm op2 <dc_op> Architectural Feature
000 0110 001 IVAC -
000 0110 010 ISW -
000 1010 010 CSW -
000 1110 010 CISW -
011 0100 001 ZVA -
011 1010 001 CVAC -
011 1011 001 CVAU -
011 1100 001 CVAP FEAT_DPB
011 1101 001 CVADP FEAT_DPB2
011 1110 001 CIVAC -

<Ct> Is the source capability register, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name ’Cm’, with ’m’ in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the general-purpose source register, encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

463

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.11 ERET

Exception Return using the ELR and SPSR for the current Exception level. When executed, the PE restores
PSTATE from the SPSR, and branches to the address held in the ELR.

The PE checks the SPSR for the current Exception level for an illegal return event. See Illegal return events from
AArch64 state.

ERET is UNDEFINED at EL0.

1 1 0 1 0 1 1

31 25

0

24

1 0 0

23 21

1 1 1 1 1

20 16

0 0 0 0

15 12

0

11

0

10

1 1 1 1 1

9 5

0 0 0 0 0

4 0

A M Rn op4

ERET

1 if PSTATE.EL == EL0 then UNDEFINED;

Operation
1 Capability target;
2 if IsAccessToCapabilitiesEnabledAtEL(PSTATE.EL) then
3 target = CELR[];
4 else
5 target = CapSetValue(PCC[], ELR[]);
6
7 AArch64.ExceptionReturnToCapability(target, SPSR[]);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

464

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.12 IC

Instruction Cache operation. For more information, see op0==0b01, cache maintenance, TLB maintenance, and
address translation instructions.

This is an alias of SYS. This means:

• The encodings in this description are named to match the encodings of SYS.

• The description of SYS gives the operational pseudocode for this instruction.

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 1

20 19

op1

18 16

0 1 1 1

15 12

CRm

11 8

op2

7 5

Rt

4 0

L CRn

IC <ic_op>{, <Xt>} // (PSTATE.C64 == '0' or when <ic_op> does not take a VA)

IC <ic_op>{, <Ct>} // (PSTATE.C64 == '1' when <ic_op> takes a VA)

is equivalent to
SYS#<op1>, C7, <Cm>, #<op2>{, <Xt>}

and is the preferred disassembly when SysOp(op1,’0111’,CRm,op2) == Sys_IC.

Assembler Symbols

<ic_op> Is an IC instruction name, as listed for the IC system instruction pages, encoded
in"op1:CRm:op2":

op1 CRm op2 <ic_op>
000 0001 000 IALLUIS
000 0101 000 IALLU
011 0101 001 IVAU

<Ct> Is the optional source capability register, defaulting to ’11111’, encoded in the "Rt" field.

<op1> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op1" field.

<Cm> Is a name ’Cm’, with ’m’ in the range 0 to 15, encoded in the "CRm" field.

<op2> Is a 3-bit unsigned immediate, in the range 0 to 7, encoded in the "op2" field.

<Xt> Is the 64-bit name of the optional general-purpose source register, defaulting to ’11111’,
encoded in the "Rt" field.

Operation

The description of SYS gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

465

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.13 LDADD, LDADDA, LDADDAL, LDADDL

Atomic add on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from memory,
adds the value held in a register to it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDADDA and LDADDAL load from memory with acquire
semantics.

• LDADDL and LDADDAL store to memory with release semantics.

• LDADD has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STADD, STADDL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDADD (size == 10 && A == 0 && R == 0)
LDADD <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADD <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDADDA (size == 10 && A == 1 && R == 0)
LDADDA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDADDAL (size == 10 && A == 1 && R == 1)
LDADDAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDADDL (size == 10 && A == 0 && R == 1)
LDADDL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDADD (size == 11 && A == 0 && R == 0)
LDADD <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADD <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDADDA (size == 11 && A == 1 && R == 0)
LDADDA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDADDAL (size == 11 && A == 1 && R == 1)
LDADDAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDADDL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

466

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDADDL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STADD, STADDL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

467

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.14 LDADDB, LDADDAB, LDADDALB, LDADDLB

Atomic add on byte in memory atomically loads an 8-bit byte from memory, adds the value held in a register to
it, and stores the result back to memory. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, LDADDAB and LDADDALB load from memory with acquire semantics.

• LDADDLB and LDADDALB store to memory with release semantics.

• LDADDB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STADDB, STADDLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDADDAB (A == 1 && R == 0)

LDADDAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDADDALB (A == 1 && R == 1)

LDADDALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDADDB (A == 0 && R == 0)

LDADDB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDADDLB (A == 0 && R == 1)

LDADDLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

468

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STADDB, STADDLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

469

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.15 LDADDH, LDADDAH, LDADDALH, LDADDLH

Atomic add on halfword in memory atomically loads a 16-bit halfword from memory, adds the value held in a
register to it, and stores the result back to memory. The value initially loaded from memory is returned in the
destination register.

• If the destination register is not WZR, LDADDAH and LDADDALH load from memory with acquire semantics.

• LDADDLH and LDADDALH store to memory with release semantics.

• LDADDH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STADDH, STADDLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDADDAH (A == 1 && R == 0)

LDADDAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDADDALH (A == 1 && R == 1)

LDADDALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDADDH (A == 0 && R == 0)

LDADDH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDADDLH (A == 0 && R == 1)

LDADDLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDADDLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

470

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STADDH, STADDLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

471

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.16 LDAPR

Load-Acquire RCpc Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword
from the derived address in memory, and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

1

23

0

22

1

21

(1)(1)(1)(1)(1)

20 16

1

15

1 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size Rs

32-bit (size == 10)

LDAPR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAPR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDAPR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAPR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer s = UInt(Rs); // ignored by all loads and store-release
4
5 AccType acctype = AccType_ORDERED;
6 integer elsize = 8 << UInt(size);
7 integer regsize = if elsize == 64 then 64 else 32;
8 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6 VACheckAddress(base, address, dbytes, CAP_PERM_LOAD, acctype);
7
8 data = Mem[address, dbytes, acctype];
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

472

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.17 LDAPRB

Load-Acquire RCpc Register Byte derives an address from a base register value, loads a byte from the derived
address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1

23

0

22

1

21

(1)(1)(1)(1)(1)

20 16

1

15

1 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size Rs

LDAPRB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAPRB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer s = UInt(Rs); // ignored by all loads and store-release
4
5 AccType acctype = AccType_ORDERED;
6 integer elsize = 8 << UInt(size);
7 integer regsize = if elsize == 64 then 64 else 32;
8 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6 VACheckAddress(base, address, dbytes, CAP_PERM_LOAD, acctype);
7
8 data = Mem[address, dbytes, acctype];
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

473

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.18 LDAPRH

Load-Acquire RCpc Register Halfword derives an address from a base register value, loads a halfword from the
derived address in memory, zero-extends it and writes it to a register.

The instruction has memory ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release,
except that:

• There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction.

• The reading of a value written by a Store-Release by a Load-AcquirePC instruction by the same observer
does not make the write of the Store-Release globally observed.

This difference in memory ordering is not described in the pseudocode.

For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LRCPC)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1

23

0

22

1

21

(1)(1)(1)(1)(1)

20 16

1

15

1 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size Rs

LDAPRH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAPRH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer s = UInt(Rs); // ignored by all loads and store-release
4
5 AccType acctype = AccType_ORDERED;
6 integer elsize = 8 << UInt(size);
7 integer regsize = if elsize == 64 then 64 else 32;
8 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6 VACheckAddress(base, address, dbytes, CAP_PERM_LOAD, acctype);
7
8 data = Mem[address, dbytes, acctype];
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

474

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.19 LDAR

Load-Acquire Register derives an address from a base register value, loads a 32-bit word or 64-bit doubleword
from memory, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

1 x

31 30

0 0 1 0 0 0

29 24

1

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

32-bit (size == 10)

LDAR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDAR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

475

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.20 LDARB

Load-Acquire Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The instruction also has memory ordering semantics as described in Load-Acquire,
Store-Release. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

0 0

31 30

0 0 1 0 0 0

29 24

1

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDARB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDARB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

476

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.21 LDARH

Load-Acquire Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it, and writes it to a register. The instruction also has memory ordering semantics as described in
Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

0 1

31 30

0 0 1 0 0 0

29 24

1

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDARH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDARH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

477

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.22 LDAXP

Load-Acquire Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or
two 64-bit doublewords from memory, and writes them to two registers. A 32-bit pair requires the address to be
doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to
be quadword aligned and is single-copy atomic for each doubleword at doubleword granularity. The PE marks
the physical address being accessed as an exclusive access. This exclusive access mark is checked by Store
Exclusive instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics
as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing
modes.

1

31

sz

30

0 0 1 0 0 0

29 24

0

23

1

22

1

21

(1)(1)(1)(1)(1)

20 16

1

15

Rt2

14 10

Rn

9 5

Rt

4 0

L Rs o0

32-bit (sz == 0)

LDAXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAXP <Wt1>, <Wt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (sz == 1)

LDAXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAXP <Xt1>, <Xt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = TRUE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 32 << UInt(sz);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDAXP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

478

Chapter 4. Instruction definitions
4.2. Modified base instructions

5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

479

Chapter 4. Instruction definitions
4.2. Modified base instructions

87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

480

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.23 LDAXR

Load-Acquire Exclusive Register derives an address from a base register value, loads a 32-bit word or 64-bit
doubleword from memory, and writes it to a register. The memory access is atomic. The PE marks the physical
address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing
modes.

1 x

31 30

0 0 1 0 0 0

29 24

0

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

32-bit (size == 10)
LDAXR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAXR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)
LDAXR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAXR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

481

Chapter 4. Instruction definitions
4.2. Modified base instructions

23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

482

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.24 LDAXRB

Load-Acquire Exclusive Register Byte derives an address from a base register value, loads a byte from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address
being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions.
See Synchronization and semaphores. The instruction also has memory ordering semantics as described in
Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

0 0

31 30

0 0 1 0 0 0

29 24

0

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDAXRB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAXRB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

483

Chapter 4. Instruction definitions
4.2. Modified base instructions

33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

484

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.25 LDAXRH

Load-Acquire Exclusive Register Halfword derives an address from a base register value, loads a halfword
from memory, zero-extends it and writes it to a register. The memory access is atomic. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. The instruction also has memory ordering semantics as
described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing
modes.

0 1

31 30

0 0 1 0 0 0

29 24

0

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDAXRH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDAXRH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

485

Chapter 4. Instruction definitions
4.2. Modified base instructions

32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

486

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.26 LDCLR, LDCLRA, LDCLRAL, LDCLRL

Atomic bit clear on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise AND with the complement of the value held in a register on it, and stores the result
back to memory. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDCLRA and LDCLRAL load from memory with acquire
semantics.

• LDCLRL and LDCLRAL store to memory with release semantics.

• LDCLR has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STCLR, STCLRL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 0 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDCLR (size == 10 && A == 0 && R == 0)
LDCLR <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLR <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDCLRA (size == 10 && A == 1 && R == 0)
LDCLRA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDCLRAL (size == 10 && A == 1 && R == 1)
LDCLRAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDCLRL (size == 10 && A == 0 && R == 1)
LDCLRL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDCLR (size == 11 && A == 0 && R == 0)
LDCLR <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLR <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDCLRA (size == 11 && A == 1 && R == 0)
LDCLRA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDCLRAL (size == 11 && A == 1 && R == 1)
LDCLRAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDCLRL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

487

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDCLRL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STCLR, STCLRL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

488

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.27 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB

Atomic bit clear on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise AND with the
complement of the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAB and LDCLRALB load from memory with acquire semantics.

• LDCLRLB and LDCLRALB store to memory with release semantics.

• LDCLRB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STCLRB, STCLRLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 0 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDCLRAB (A == 1 && R == 0)

LDCLRAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDCLRALB (A == 1 && R == 1)

LDCLRALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDCLRB (A == 0 && R == 0)

LDCLRB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDCLRLB (A == 0 && R == 1)

LDCLRLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

489

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STCLRB, STCLRLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

490

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.28 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH

Atomic bit clear on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise
AND with the complement of the value held in a register on it, and stores the result back to memory. The value
initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDCLRAH and LDCLRALH load from memory with acquire semantics.

• LDCLRLH and LDCLRALH store to memory with release semantics.

• LDCLRH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STCLRH, STCLRLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 0 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDCLRAH (A == 1 && R == 0)

LDCLRAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDCLRALH (A == 1 && R == 1)

LDCLRALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDCLRH (A == 0 && R == 0)

LDCLRH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDCLRLH (A == 0 && R == 1)

LDCLRLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCLRLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

491

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STCLRH, STCLRLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

492

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.29 LDEOR, LDEORA, LDEORAL, LDEORL

Atomic exclusive OR on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs an exclusive OR with the value held in a register on it, and stores the result back to memory.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDEORA and LDEORAL load from memory with acquire
semantics.

• LDEORL and LDEORAL store to memory with release semantics.

• LDEOR has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STEOR, STEORL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 1 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDEOR (size == 10 && A == 0 && R == 0)
LDEOR <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEOR <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDEORA (size == 10 && A == 1 && R == 0)
LDEORA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDEORAL (size == 10 && A == 1 && R == 1)
LDEORAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDEORL (size == 10 && A == 0 && R == 1)
LDEORL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDEOR (size == 11 && A == 0 && R == 0)
LDEOR <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEOR <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDEORA (size == 11 && A == 1 && R == 0)
LDEORA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDEORAL (size == 11 && A == 1 && R == 1)
LDEORAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDEORL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

493

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDEORL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STEOR, STEORL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

494

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.30 LDEORB, LDEORAB, LDEORALB, LDEORLB

Atomic exclusive OR on byte in memory atomically loads an 8-bit byte from memory, performs an exclusive
OR with the value held in a register on it, and stores the result back to memory. The value initially loaded from
memory is returned in the destination register.

• If the destination register is not WZR, LDEORAB and LDEORALB load from memory with acquire semantics.

• LDEORLB and LDEORALB store to memory with release semantics.

• LDEORB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STEORB, STEORLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 1 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDEORAB (A == 1 && R == 0)

LDEORAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDEORALB (A == 1 && R == 1)

LDEORALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDEORB (A == 0 && R == 0)

LDEORB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDEORLB (A == 0 && R == 1)

LDEORLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

495

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STEORB, STEORLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

496

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.31 LDEORH, LDEORAH, LDEORALH, LDEORLH

Atomic exclusive OR on halfword in memory atomically loads a 16-bit halfword from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory. The value initially loaded
from memory is returned in the destination register.

• If the destination register is not WZR, LDEORAH and LDEORALH load from memory with acquire semantics.

• LDEORLH and LDEORALH store to memory with release semantics.

• LDEORH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STEORH, STEORLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 1 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDEORAH (A == 1 && R == 0)

LDEORAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDEORALH (A == 1 && R == 1)

LDEORALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDEORH (A == 0 && R == 0)

LDEORH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDEORLH (A == 0 && R == 1)

LDEORLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDEORLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

497

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STEORH, STEORLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

498

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.32 LDLAR

Load LOAcquire Register loads a 32-bit word or 64-bit doubleword from memory, and writes it to a register.
The instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For
information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset
(FEAT_LOR)

1 x

31 30

0 0 1 0 0 0

29 24

1

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

32-bit (size == 10)

LDLAR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDLAR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDLAR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDLAR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

499

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.33 LDLARB

Load LOAcquire Register Byte loads a byte from memory, zero-extends it and writes it to a register. The instruction
also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about
memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset
(FEAT_LOR)

0 0

31 30

0 0 1 0 0 0

29 24

1

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDLARB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDLARB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

500

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.34 LDLARH

Load LOAcquire Register Halfword loads a halfword from memory, zero-extends it, and writes it to a register.
The instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For
information about memory accesses, see Load/Store addressing modes.

For this instruction, if the destination is WZR/ZXR, it is impossible for software to observe the presence of the
acquire semantic other than its effect on the arrival at endpoints.

No offset
(FEAT_LOR)

0 1

31 30

0 0 1 0 0 0

29 24

1

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDLARH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDLARH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

501

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.35 LDNP

Load Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, loads two 32-bit words or two 64-bit doublewords from memory, and writes them to two registers.

For information about memory accesses, see Load/Store addressing modes. For information about Non-temporal
pair instructions, see Load/Store Non-temporal pair.

x 0

31 30

1 0 1

29 27

0

26

0 0 0

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

LDNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDNP <Wt1>, <Wt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDNP <Xt1>, <Xt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDNP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_STREAM;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if opc<0> == '1' then UNDEFINED;
7 integer scale = 2 + UInt(opc<1>);
8 integer datasize = 8 << scale;
9 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

502

Chapter 4. Instruction definitions
4.2. Modified base instructions

Operation
1 bits(datasize) data1;
2 bits(datasize) data2;
3 constant integer dbytes = datasize DIV 8;
4 boolean rt_unknown = FALSE;
5
6 if memop == MemOp_LOAD && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 VirtualAddress base = BaseReg[n];
15 bits(64) address = VAddress(base);
16 if ! postindex then
17 address = address + offset;
18
19 case memop of
20 when MemOp_STORE
21 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
22 if rt_unknown && t == n then
23 data1 = bits(datasize) UNKNOWN;
24 else
25 data1 = X[t];
26 if rt_unknown && t2 == n then
27 data2 = bits(datasize) UNKNOWN;
28 else
29 data2 = X[t2];
30 Mem[address + 0 , dbytes, acctype] = data1;
31 Mem[address + dbytes, dbytes, acctype] = data2;
32
33 when MemOp_LOAD
34 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
35 data1 = Mem[address + 0 , dbytes, acctype];
36 data2 = Mem[address + dbytes, dbytes, acctype];
37 if rt_unknown then
38 data1 = bits(datasize) UNKNOWN;
39 data2 = bits(datasize) UNKNOWN;
40 X[t] = data1;
41 X[t2] = data2;
42
43 if wback then
44 base = VAAdd(base,offset);
45
46 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

503

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.36 LDP

Load Pair of Registers calculates an address from a base register value and an immediate offset, loads two 32-bit
words or two 64-bit doublewords from memory, and writes them to two registers. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

x 0

31 30

1 0 1

29 27

0

26

0 0 1

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDP <Wt1>, <Wt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDP <Xt1>, <Xt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;

Pre-index

x 0

31 30

1 0 1

29 27

0

26

0 1 1

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDP <Wt1>, <Wt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDP <Xt1>, <Xt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;

Signed offset

x 0

31 30

1 0 1

29 27

0

26

0 1 0

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

LDP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDP <Wt1>, <Wt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDP <Xt1>, <Xt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

504

Chapter 4. Instruction definitions
4.2. Modified base instructions

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
7 boolean signed = (opc<0> != '0');
8 integer scale = 2 + UInt(opc<1>);
9 integer datasize = 8 << scale;

10 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 bits(datasize) data1;
2 bits(datasize) data2;
3 constant integer dbytes = datasize DIV 8;
4 boolean rt_unknown = FALSE;
5
6 boolean wb_unknown = FALSE;
7
8 if memop == MemOp_LOAD && wback && (t == n || t2 == n) && n != 31 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);

10 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
13 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 if memop == MemOp_STORE && wback && (t == n || t2 == n) && n != 31 then
18 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
19 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
20 case c of
21 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
22 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
23 when Constraint_UNDEF UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

505

Chapter 4. Instruction definitions
4.2. Modified base instructions

24 when Constraint_NOP EndOfInstruction();
25
26 if memop == MemOp_LOAD && t == t2 then
27 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
28 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
29 case c of
30 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
31 when Constraint_UNDEF UNDEFINED;
32 when Constraint_NOP EndOfInstruction();
33
34 VirtualAddress base = BaseReg[n];
35 bits(64) address = VAddress(base);
36 if ! postindex then
37 address = address + offset;
38
39 case memop of
40 when MemOp_STORE
41 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
42 if rt_unknown && t == n then
43 data1 = bits(datasize) UNKNOWN;
44 else
45 data1 = X[t];
46 if rt_unknown && t2 == n then
47 data2 = bits(datasize) UNKNOWN;
48 else
49 data2 = X[t2];
50 Mem[address + 0 , dbytes, acctype] = data1;
51 Mem[address + dbytes, dbytes, acctype] = data2;
52
53 when MemOp_LOAD
54 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
55 data1 = Mem[address + 0 , dbytes, acctype];
56 data2 = Mem[address + dbytes, dbytes, acctype];
57 if rt_unknown then
58 data1 = bits(datasize) UNKNOWN;
59 data2 = bits(datasize) UNKNOWN;
60 if signed then
61 X[t] = SignExtend(data1, 64);
62 X[t2] = SignExtend(data2, 64);
63 else
64 X[t] = data1;
65 X[t2] = data2;
66
67 if wback then
68 if wb_unknown then
69 base = VirtualAddress UNKNOWN;
70 else
71 base = VAAdd(base,offset);
72
73 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

506

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.37 LDPSW

Load Pair of Registers Signed Word calculates an address from a base register value and an immediate offset,
loads two 32-bit words from memory, sign-extends them, and writes them to two registers. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

0 1

31 30

1 0 1

29 27

0

26

0 0 1

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

LDPSW <Xt1>, <Xt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDPSW <Xt1>, <Xt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;

Pre-index

0 1

31 30

1 0 1

29 27

0

26

0 1 1

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

LDPSW <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDPSW <Xt1>, <Xt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;

Signed offset

0 1

31 30

1 0 1

29 27

0

26

0 1 0

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

LDPSW <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDPSW <Xt1>, <Xt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDPSW.

Assembler Symbols

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

507

Chapter 4. Instruction definitions
4.2. Modified base instructions

<imm> For the post-index and pre-index variant: is the signed immediate byte offset, a multiple of 4
in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the signed offset variant: is the optional signed immediate byte offset, a multiple of 4 in
the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
7 boolean signed = (opc<0> != '0');
8 integer scale = 2 + UInt(opc<1>);
9 integer datasize = 8 << scale;

10 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 bits(datasize) data1;
2 bits(datasize) data2;
3 constant integer dbytes = datasize DIV 8;
4 boolean rt_unknown = FALSE;
5
6 boolean wb_unknown = FALSE;
7
8 if memop == MemOp_LOAD && wback && (t == n || t2 == n) && n != 31 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);

10 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
13 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 if memop == MemOp_STORE && wback && (t == n || t2 == n) && n != 31 then
18 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
19 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
20 case c of
21 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
22 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
23 when Constraint_UNDEF UNDEFINED;
24 when Constraint_NOP EndOfInstruction();
25
26 if memop == MemOp_LOAD && t == t2 then
27 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
28 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
29 case c of
30 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
31 when Constraint_UNDEF UNDEFINED;
32 when Constraint_NOP EndOfInstruction();
33
34 VirtualAddress base = BaseReg[n];
35 bits(64) address = VAddress(base);
36 if ! postindex then
37 address = address + offset;
38
39 case memop of
40 when MemOp_STORE
41 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
42 if rt_unknown && t == n then
43 data1 = bits(datasize) UNKNOWN;
44 else
45 data1 = X[t];
46 if rt_unknown && t2 == n then
47 data2 = bits(datasize) UNKNOWN;
48 else
49 data2 = X[t2];
50 Mem[address + 0 , dbytes, acctype] = data1;
51 Mem[address + dbytes, dbytes, acctype] = data2;
52
53 when MemOp_LOAD
54 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
55 data1 = Mem[address + 0 , dbytes, acctype];
56 data2 = Mem[address + dbytes, dbytes, acctype];
57 if rt_unknown then
58 data1 = bits(datasize) UNKNOWN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

508

Chapter 4. Instruction definitions
4.2. Modified base instructions

59 data2 = bits(datasize) UNKNOWN;
60 if signed then
61 X[t] = SignExtend(data1, 64);
62 X[t2] = SignExtend(data2, 64);
63 else
64 X[t] = data1;
65 X[t2] = data2;
66
67 if wback then
68 if wb_unknown then
69 base = VirtualAddress UNKNOWN;
70 else
71 base = VAAdd(base,offset);
72
73 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

509

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.38 LDR (immediate)

Load Register (immediate) loads a word or doubleword from memory and writes it to a register. The address that
is used for the load is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/Store addressing modes. The Unsigned offset variant scales the immediate offset value by the
size of the value accessed before adding it to the base register value.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <Xt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <Xt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

1 x

31 30

1 1 1

29 27

0

26

0 1

25 24

0 1

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

LDR <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDR <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDR <Xt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

510

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDR <Xt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDR (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

511

Chapter 4. Instruction definitions
4.2. Modified base instructions

18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

512

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.39 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. For information about memory accesses, see Load/Store addressing modes.

0 x

31 30

0 1 1

29 27

0

26

0 0

25 24

imm19

23 5

Rt

4 0

opc

32-bit (opc == 00)

LDR <Wt>, <label>

64-bit (opc == 01)

LDR <Xt>, <label>

1 integer t = UInt(Rt);
2 MemOp memop = MemOp_LOAD;
3 boolean signed = FALSE;
4 integer size;
5 bits(64) offset;
6
7 case opc of
8 when '00'
9 size = 4;

10 when '01'
11 size = 8;
12 when '10'
13 size = 4;
14 signed = TRUE;
15 when '11'
16 memop = MemOp_PREFETCH;
17
18 offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation
1 VirtualAddress base = VAFromCapability(PCC);
2 bits(64) address = VAddress(base) + offset;
3
4 bits(size*8) data;
5
6 case memop of
7 when MemOp_LOAD
8 VACheckAddress(base, address, size, CAP_PERM_LOAD, AccType_NORMAL);
9 data = Mem[address, size, AccType_NORMAL];

10 if signed then
11 X[t] = SignExtend(data, 64);
12 else
13 X[t] = data;
14
15 when MemOp_PREFETCH
16 Prefetch(address, t<4:0>);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

513

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.40 LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can optionally be shifted and extended. For
information about memory accesses, see Load/Store addressing modes.

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)
LDR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDR <Wt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

64-bit (size == 11)
LDR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDR <Xt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

514

Chapter 4. Instruction definitions
4.2. Modified base instructions

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

515

Chapter 4. Instruction definitions
4.2. Modified base instructions

53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

516

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.41 LDRB (immediate)

Load Register Byte (immediate) loads a byte from memory, zero-extends it, and writes the result to a register. The
address that is used for the load is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

LDRB <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRB <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

LDRB <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRB <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

0 0

31 30

1 1 1

29 27

0

26

0 1

25 24

0 1

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

LDRB <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRB <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

517

Chapter 4. Instruction definitions
4.2. Modified base instructions

encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and
encoded in the "imm12" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

518

Chapter 4. Instruction definitions
4.2. Modified base instructions

46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

519

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.42 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads
a byte from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

Extended register (option != 011)
LDRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '0')

LDRB <Wt>, [<Cn|CSP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '1')

Shifted register (option == 011)
LDRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '0')

LDRB <Wt>, [<Cn|CSP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend specifier, encoded in"option":
option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

520

Chapter 4. Instruction definitions
4.2. Modified base instructions

16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

521

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.43 LDRH (immediate)

Load Register Halfword (immediate) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset. For
information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

LDRH <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRH <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

LDRH <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRH <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

0 1

31 30

1 1 1

29 27

0

26

0 1

25 24

0 1

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

LDRH <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRH <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

522

Chapter 4. Instruction definitions
4.2. Modified base instructions

encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting
to 0 and encoded in the "imm12" field as <pimm>/2.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

523

Chapter 4. Instruction definitions
4.2. Modified base instructions

46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

524

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.44 LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value,
loads a halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses,
see Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

LDRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDRH <Wt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors.

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to
be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #1

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

525

Chapter 4. Instruction definitions
4.2. Modified base instructions

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

526

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.45 LDRSB (immediate)

Load Register Signed Byte (immediate) loads a byte from memory, sign-extends it to either 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)
LDRSB <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRSB <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

64-bit (opc == 10)
LDRSB <Xt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRSB <Xt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)
LDRSB <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRSB <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

64-bit (opc == 10)
LDRSB <Xt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRSB <Xt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

0 0

31 30

1 1 1

29 27

0

26

0 1

25 24

1 x

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)
LDRSB <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRSB <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)
LDRSB <Xt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRSB <Xt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

527

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDRSB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and
encoded in the "imm12" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

528

Chapter 4. Instruction definitions
4.2. Modified base instructions

24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

529

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.46 LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit with extended register offset (opc == 11 && option != 011)
LDRSB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '0')

LDRSB <Wt>, [<Cn|CSP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '1')

32-bit with shifted register offset (opc == 11 && option == 011)
LDRSB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '0')

LDRSB <Wt>, [<Cn|CSP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '1')

64-bit with extended register offset (opc == 10 && option != 011)
LDRSB <Xt>, [<Xn|SP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '0')

LDRSB <Xt>, [<Cn|CSP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '1')

64-bit with shifted register offset (opc == 10 && option == 011)
LDRSB <Xt>, [<Xn|SP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '0')

LDRSB <Xt>, [<Cn|CSP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend specifier, encoded in"option":
option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

530

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

531

Chapter 4. Instruction definitions
4.2. Modified base instructions

54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

532

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.47 LDRSH (immediate)

Load Register Signed Halfword (immediate) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRSH <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

64-bit (opc == 10)
LDRSH <Xt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRSH <Xt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRSH <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

64-bit (opc == 10)
LDRSH <Xt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRSH <Xt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

0 1

31 30

1 1 1

29 27

0

26

0 1

25 24

1 x

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)
LDRSH <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRSH <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)
LDRSH <Xt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRSH <Xt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

533

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDRSH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting
to 0 and encoded in the "imm12" field as <pimm>/2.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

534

Chapter 4. Instruction definitions
4.2. Modified base instructions

24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

535

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.48 LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it, and writes it to a register. For information about memory
accesses, see Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)

LDRSH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDRSH <Wt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDRSH <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDRSH <Xt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to
be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #1

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

536

Chapter 4. Instruction definitions
4.2. Modified base instructions

4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

537

Chapter 4. Instruction definitions
4.2. Modified base instructions

57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

538

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.49 LDRSW (immediate)

Load Register Signed Word (immediate) loads a word from memory, sign-extends it to 64 bits, and writes the
result to a register. The address that is used for the load is calculated from a base register and an immediate offset.
For information about memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

1 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

LDRSW <Xt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDRSW <Xt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

1 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

LDRSW <Xt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDRSW <Xt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

1 0

31 30

1 1 1

29 27

0

26

0 1

25 24

1 0

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

LDRSW <Xt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDRSW <Xt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDRSW (immediate).

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

539

Chapter 4. Instruction definitions
4.2. Modified base instructions

encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 4 in the range 0 to 16380,
defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

540

Chapter 4. Instruction definitions
4.2. Modified base instructions

46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

541

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.50 LDRSW (literal)

Load Register Signed Word (literal) calculates an address from the PC value and an immediate offset, loads a
word from memory, and writes it to a register. For information about memory accesses, see Load/Store addressing
modes.

1 0

31 30

0 1 1

29 27

0

26

0 0

25 24

imm19

23 5

Rt

4 0

opc

LDRSW <Xt>, <label>

1 integer t = UInt(Rt);
2 MemOp memop = MemOp_LOAD;
3 boolean signed = FALSE;
4 integer size;
5 bits(64) offset;
6
7 case opc of
8 when '00'
9 size = 4;

10 when '01'
11 size = 8;
12 when '10'
13 size = 4;
14 signed = TRUE;
15 when '11'
16 memop = MemOp_PREFETCH;
17
18 offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation
1 VirtualAddress base = VAFromCapability(PCC);
2 bits(64) address = VAddress(base) + offset;
3
4 bits(size*8) data;
5
6 case memop of
7 when MemOp_LOAD
8 VACheckAddress(base, address, size, CAP_PERM_LOAD, AccType_NORMAL);
9 data = Mem[address, size, AccType_NORMAL];

10 if signed then
11 X[t] = SignExtend(data, 64);
12 else
13 X[t] = data;
14
15 when MemOp_PREFETCH
16 Prefetch(address, t<4:0>);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

542

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.51 LDRSW (register)

Load Register Signed Word (register) calculates an address from a base register value and an offset register value,
loads a word from memory, sign-extends it to form a 64-bit value, and writes it to a register. The offset register
value can be shifted left by 0 or 2 bits. For information about memory accesses, see Load/Store addressing modes.

1 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

LDRSW <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDRSW <Xt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to
be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #2

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

543

Chapter 4. Instruction definitions
4.2. Modified base instructions

13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

544

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.52 LDSET, LDSETA, LDSETAL, LDSETL

Atomic bit set on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from
memory, performs a bitwise OR with the value held in a register on it, and stores the result back to memory. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSETA and LDSETAL load from memory with acquire
semantics.

• LDSETL and LDSETAL store to memory with release semantics.

• LDSET has no memory ordering requirements.

For more information about memory ordering semantics see Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This instruction is used by the alias STSET, STSETL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 1 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDSET (size == 10 && A == 0 && R == 0)
LDSET <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSET <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSETA (size == 10 && A == 1 && R == 0)
LDSETA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSETAL (size == 10 && A == 1 && R == 1)
LDSETAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSETL (size == 10 && A == 0 && R == 1)
LDSETL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSET (size == 11 && A == 0 && R == 0)
LDSET <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSET <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSETA (size == 11 && A == 1 && R == 0)
LDSETA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSETAL (size == 11 && A == 1 && R == 1)
LDSETAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSETL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

545

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDSETL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSET, STSETL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

546

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.53 LDSETB, LDSETAB, LDSETALB, LDSETLB

Atomic bit set on byte in memory atomically loads an 8-bit byte from memory, performs a bitwise OR with the
value held in a register on it, and stores the result back to memory. The value initially loaded from memory is
returned in the destination register.

• If the destination register is not WZR, LDSETAB and LDSETALB load from memory with acquire semantics.

• LDSETLB and LDSETALB store to memory with release semantics.

• LDSETB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSETB, STSETLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 1 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDSETAB (A == 1 && R == 0)

LDSETAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSETALB (A == 1 && R == 1)

LDSETALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSETB (A == 0 && R == 0)

LDSETB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSETLB (A == 0 && R == 1)

LDSETLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

547

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSETB, STSETLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

548

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.54 LDSETH, LDSETAH, LDSETALH, LDSETLH

Atomic bit set on halfword in memory atomically loads a 16-bit halfword from memory, performs a bitwise OR
with the value held in a register on it, and stores the result back to memory. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not WZR, LDSETAH and LDSETALH load from memory with acquire semantics.

• LDSETLH and LDSETALH store to memory with release semantics.

• LDSETH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSETH, STSETLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

0 1 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDSETAH (A == 1 && R == 0)

LDSETAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSETALH (A == 1 && R == 1)

LDSETALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSETH (A == 0 && R == 0)

LDSETH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSETLH (A == 0 && R == 1)

LDSETLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSETLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

549

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSETH, STSETLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

550

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.55 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL

Atomic signed maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMAXA and LDSMAXAL load from memory with acquire
semantics.

• LDSMAXL and LDSMAXAL store to memory with release semantics.

• LDSMAX has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSMAX, STSMAXL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDSMAX (size == 10 && A == 0 && R == 0)
LDSMAX <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAX <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSMAXA (size == 10 && A == 1 && R == 0)
LDSMAXA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSMAXAL (size == 10 && A == 1 && R == 1)
LDSMAXAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSMAXL (size == 10 && A == 0 && R == 1)
LDSMAXL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMAX (size == 11 && A == 0 && R == 0)
LDSMAX <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAX <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMAXA (size == 11 && A == 1 && R == 0)
LDSMAXA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMAXAL (size == 11 && A == 1 && R == 1)
LDSMAXAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMAXL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

551

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDSMAXL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSMAX, STSMAXL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

552

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.56 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB

Atomic signed maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the larger value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAB and LDSMAXALB load from memory with acquire semantics.

• LDSMAXLB and LDSMAXALB store to memory with release semantics.

• LDSMAXB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSMAXB, STSMAXLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDSMAXAB (A == 1 && R == 0)

LDSMAXAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMAXALB (A == 1 && R == 1)

LDSMAXALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMAXB (A == 0 && R == 0)

LDSMAXB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMAXLB (A == 0 && R == 1)

LDSMAXLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

553

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSMAXB, STSMAXLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

554

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.57 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH

Atomic signed maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMAXAH and LDSMAXALH load from memory with acquire semantics.

• LDSMAXLH and LDSMAXALH store to memory with release semantics.

• LDSMAXH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSMAXH, STSMAXLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDSMAXAH (A == 1 && R == 0)

LDSMAXAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMAXALH (A == 1 && R == 1)

LDSMAXALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMAXH (A == 0 && R == 0)

LDSMAXH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMAXLH (A == 0 && R == 1)

LDSMAXLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMAXLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

555

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSMAXH, STSMAXLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

556

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.58 LDSMIN, LDSMINA, LDSMINAL, LDSMINL

Atomic signed minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as signed numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDSMINA and LDSMINAL load from memory with acquire
semantics.

• LDSMINL and LDSMINAL store to memory with release semantics.

• LDSMIN has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSMIN, STSMINL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 0 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDSMIN (size == 10 && A == 0 && R == 0)
LDSMIN <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMIN <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSMINA (size == 10 && A == 1 && R == 0)
LDSMINA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSMINAL (size == 10 && A == 1 && R == 1)
LDSMINAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDSMINL (size == 10 && A == 0 && R == 1)
LDSMINL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMIN (size == 11 && A == 0 && R == 0)
LDSMIN <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMIN <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMINA (size == 11 && A == 1 && R == 0)
LDSMINA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMINAL (size == 11 && A == 1 && R == 1)
LDSMINAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDSMINL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

557

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDSMINL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSMIN, STSMINL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

558

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.59 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB

Atomic signed minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against the
value held in a register, and stores the smaller value back to memory, treating the values as signed numbers. The
value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAB and LDSMINALB load from memory with acquire semantics.

• LDSMINLB and LDSMINALB store to memory with release semantics.

• LDSMINB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSMINB, STSMINLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 0 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDSMINAB (A == 1 && R == 0)

LDSMINAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMINALB (A == 1 && R == 1)

LDSMINALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMINB (A == 0 && R == 0)

LDSMINB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMINLB (A == 0 && R == 1)

LDSMINLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

559

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSMINB, STSMINLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

560

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.60 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH

Atomic signed minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDSMINAH and LDSMINALH load from memory with acquire semantics.

• LDSMINLH and LDSMINALH store to memory with release semantics.

• LDSMINH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STSMINH, STSMINLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 0 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDSMINAH (A == 1 && R == 0)

LDSMINAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMINALH (A == 1 && R == 1)

LDSMINALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMINH (A == 0 && R == 0)

LDSMINH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDSMINLH (A == 0 && R == 1)

LDSMINLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDSMINLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

561

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STSMINH, STSMINLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

562

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.61 LDTR

Load Register (unprivileged) loads a word or doubleword from memory, and writes it to a register. The address
that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

LDTR <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTR <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDTR <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTR <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

563

Chapter 4. Instruction definitions
4.2. Modified base instructions

19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;
29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

564

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.62 LDTRB

Load Register Byte (unprivileged) loads a byte from memory, zero-extends it, and writes the result to a register.
The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

LDTRB <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRB <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

565

Chapter 4. Instruction definitions
4.2. Modified base instructions

29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

566

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.63 LDTRH

Load Register Halfword (unprivileged) loads a halfword from memory, zero-extends it, and writes the result to a
register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

LDTRH <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRH <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

567

Chapter 4. Instruction definitions
4.2. Modified base instructions

29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

568

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.64 LDTRSB

Load Register Signed Byte (unprivileged) loads a byte from memory, sign-extends it to 32 bits or 64 bits, and writes
the result to a register. The address that is used for the load is calculated from a base register and an immediate
offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)

LDTRSB <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRSB <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDTRSB <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRSB <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

569

Chapter 4. Instruction definitions
4.2. Modified base instructions

18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;
29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

570

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.65 LDTRSH

Load Register Signed Halfword (unprivileged) loads a halfword from memory, sign-extends it to 32 bits or 64 bits,
and writes the result to a register. The address that is used for the load is calculated from a base register and an
immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)

LDTRSH <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRSH <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDTRSH <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRSH <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

571

Chapter 4. Instruction definitions
4.2. Modified base instructions

18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;
29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

572

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.66 LDTRSW

Load Register Signed Word (unprivileged) loads a word from memory, sign-extends it to 64 bits, and writes the
result to a register. The address that is used for the load is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

1 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

LDTRSW <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDTRSW <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

573

Chapter 4. Instruction definitions
4.2. Modified base instructions

29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

574

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.67 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL

Atomic unsigned maximum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the larger value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMAXA and LDUMAXAL load from memory with acquire
semantics.

• LDUMAXL and LDUMAXAL store to memory with release semantics.

• LDUMAX has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STUMAX, STUMAXL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 1 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDUMAX (size == 10 && A == 0 && R == 0)
LDUMAX <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAX <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDUMAXA (size == 10 && A == 1 && R == 0)
LDUMAXA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDUMAXAL (size == 10 && A == 1 && R == 1)
LDUMAXAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDUMAXL (size == 10 && A == 0 && R == 1)
LDUMAXL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMAX (size == 11 && A == 0 && R == 0)
LDUMAX <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAX <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMAXA (size == 11 && A == 1 && R == 0)
LDUMAXA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMAXAL (size == 11 && A == 1 && R == 1)
LDUMAXAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMAXL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

575

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDUMAXL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMAX, STUMAXL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

576

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.68 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB

Atomic unsigned maximum on byte in memory atomically loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the larger value back to memory, treating the values as unsigned numbers.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAB and LDUMAXALB load from memory with acquire semantics.

• LDUMAXLB and LDUMAXALB store to memory with release semantics.

• LDUMAXB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STUMAXB, STUMAXLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 1 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDUMAXAB (A == 1 && R == 0)

LDUMAXAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMAXALB (A == 1 && R == 1)

LDUMAXALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMAXB (A == 0 && R == 0)

LDUMAXB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMAXLB (A == 0 && R == 1)

LDUMAXLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

577

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMAXB, STUMAXLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

578

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.69 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH

Atomic unsigned maximum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the larger value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMAXAH and LDUMAXALH load from memory with acquire semantics.

• LDUMAXLH and LDUMAXALH store to memory with release semantics.

• LDUMAXH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STUMAXH, STUMAXLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 1 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDUMAXAH (A == 1 && R == 0)

LDUMAXAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMAXALH (A == 1 && R == 1)

LDUMAXALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMAXH (A == 0 && R == 0)

LDUMAXH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMAXLH (A == 0 && R == 1)

LDUMAXLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMAXLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

579

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMAXH, STUMAXLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

580

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.70 LDUMIN, LDUMINA, LDUMINAL, LDUMINL

Atomic unsigned minimum on word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword
from memory, compares it against the value held in a register, and stores the smaller value back to memory, treating
the values as unsigned numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not one of WZR or XZR, LDUMINA and LDUMINAL load from memory with acquire
semantics.

• LDUMINL and LDUMINAL store to memory with release semantics.

• LDUMIN has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STUMIN, STUMINL.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 1 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit LDUMIN (size == 10 && A == 0 && R == 0)
LDUMIN <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMIN <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDUMINA (size == 10 && A == 1 && R == 0)
LDUMINA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDUMINAL (size == 10 && A == 1 && R == 1)
LDUMINAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit LDUMINL (size == 10 && A == 0 && R == 1)
LDUMINL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMIN (size == 11 && A == 0 && R == 0)
LDUMIN <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMIN <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMINA (size == 11 && A == 1 && R == 0)
LDUMINA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMINAL (size == 11 && A == 1 && R == 1)
LDUMINAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit LDUMINL (size == 11 && A == 0 && R == 1)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

581

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDUMINL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMIN, STUMINL A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

582

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.71 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB

Atomic unsigned minimum on byte in memory atomically loads an 8-bit byte from memory, compares it against
the value held in a register, and stores the smaller value back to memory, treating the values as unsigned numbers.
The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAB and LDUMINALB load from memory with acquire semantics.

• LDUMINLB and LDUMINALB store to memory with release semantics.

• LDUMINB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STUMINB, STUMINLB.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 1 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDUMINAB (A == 1 && R == 0)

LDUMINAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMINALB (A == 1 && R == 1)

LDUMINALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMINB (A == 0 && R == 0)

LDUMINB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMINLB (A == 0 && R == 1)

LDUMINLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

583

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMINB, STUMINLB A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

584

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.72 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH

Atomic unsigned minimum on halfword in memory atomically loads a 16-bit halfword from memory, compares it
against the value held in a register, and stores the smaller value back to memory, treating the values as unsigned
numbers. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, LDUMINAH and LDUMINALH load from memory with acquire semantics.

• LDUMINLH and LDUMINALH store to memory with release semantics.

• LDUMINH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This instruction is used by the alias STUMINH, STUMINLH.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

0

15

1 1 1

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDUMINAH (A == 1 && R == 0)

LDUMINAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMINALH (A == 1 && R == 1)

LDUMINALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMINH (A == 0 && R == 0)

LDUMINH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

LDUMINLH (A == 0 && R == 1)

LDUMINLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDUMINLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
11 MemAtomicOp op;
12 case opc of
13 when '000' op = MemAtomicOp_ADD;
14 when '001' op = MemAtomicOp_BIC;
15 when '010' op = MemAtomicOp_EOR;
16 when '011' op = MemAtomicOp_ORR;
17 when '100' op = MemAtomicOp_SMAX;
18 when '101' op = MemAtomicOp_SMIN;
19 when '110' op = MemAtomicOp_UMAX;
20 when '111' op = MemAtomicOp_UMIN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

585

Chapter 4. Instruction definitions
4.2. Modified base instructions

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Alias Conditions

Alias Is preferred when

STUMINH, STUMINLH A == ’0’ && Rt == ’11111’

Operation
1 bits(64) address;
2 bits(datasize) value;
3 bits(datasize) data;
4
5 value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, op, value, ldacctype, stacctype);
9

10 if t != 31 then
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

586

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.73 LDUR

Load Register (unscaled) calculates an address from a base register and an immediate offset, loads a 32-bit word
or 64-bit doubleword from memory, zero-extends it, and writes it to a register. For information about memory
accesses, see Load/Store addressing modes.

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

LDUR <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDUR <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

587

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

588

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.74 LDURB

Load Register Byte (unscaled) calculates an address from a base register and an immediate offset, loads a byte
from memory, zero-extends it, and writes it to a register. For information about memory accesses, see Load/Store
addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDURB <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURB <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

589

Chapter 4. Instruction definitions
4.2. Modified base instructions

12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

590

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.75 LDURH

Load Register Halfword (unscaled) calculates an address from a base register and an immediate offset, loads a
halfword from memory, zero-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 1

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDURH <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURH <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

591

Chapter 4. Instruction definitions
4.2. Modified base instructions

12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

592

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.76 LDURSB

Load Register Signed Byte (unscaled) calculates an address from a base register and an immediate offset, loads a
signed byte from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)

LDURSB <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURSB <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDURSB <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURSB <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

593

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

594

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.77 LDURSH

Load Register Signed Halfword (unscaled) calculates an address from a base register and an immediate offset,
loads a signed halfword from memory, sign-extends it, and writes it to a register. For information about memory
accesses, see Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 x

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (opc == 11)

LDURSH <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURSH <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

LDURSH <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURSH <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

595

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

596

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.78 LDURSW

Load Register Signed Word (unscaled) calculates an address from a base register and an immediate offset, loads a
signed word from memory, sign-extends it, and writes it to a register. For information about memory accesses, see
Load/Store addressing modes.

1 0

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

LDURSW <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDURSW <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

597

Chapter 4. Instruction definitions
4.2. Modified base instructions

12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

598

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.79 LDXP

Load Exclusive Pair of Registers derives an address from a base register value, loads two 32-bit words or two
64-bit doublewords from memory, and writes them to two registers. A 32-bit pair requires the address to be
doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the address to be
quadword aligned and is single-copy atomic for each doubleword at doubleword granularity. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. For information about memory accesses, see Load/Store
addressing modes.

1

31

sz

30

0 0 1 0 0 0

29 24

0

23

1

22

1

21

(1)(1)(1)(1)(1)

20 16

0

15

Rt2

14 10

Rn

9 5

Rt

4 0

L Rs o0

32-bit (sz == 0)
LDXP <Wt1>, <Wt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDXP <Wt1>, <Wt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (sz == 1)
LDXP <Xt1>, <Xt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDXP <Xt1>, <Xt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = TRUE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 32 << UInt(sz);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDXP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

599

Chapter 4. Instruction definitions
4.2. Modified base instructions

7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

600

Chapter 4. Instruction definitions
4.2. Modified base instructions

89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

601

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.80 LDXR

Load Exclusive Register derives an address from a base register value, loads a 32-bit word or a 64-bit doubleword
from memory, and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses, see Load/Store addressing modes.

1 x

31 30

0 0 1 0 0 0

29 24

0

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

32-bit (size == 10)

LDXR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDXR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

LDXR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDXR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

602

Chapter 4. Instruction definitions
4.2. Modified base instructions

25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

603

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.81 LDXRB

Load Exclusive Register Byte derives an address from a base register value, loads a byte from memory, zero-extends
it and writes it to a register. The memory access is atomic. The PE marks the physical address being accessed as
an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization
and semaphores. For information about memory accesses, see Load/Store addressing modes.

0 0

31 30

0 0 1 0 0 0

29 24

0

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDXRB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDXRB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

604

Chapter 4. Instruction definitions
4.2. Modified base instructions

35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

605

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.82 LDXRH

Load Exclusive Register Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it and writes it to a register. The memory access is atomic. The PE marks the physical address being
accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See
Synchronization and semaphores. For information about memory accesses, see Load/Store addressing modes.

0 1

31 30

0 0 1 0 0 0

29 24

0

23

1

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

LDXRH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

LDXRH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

606

Chapter 4. Instruction definitions
4.2. Modified base instructions

35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

607

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.83 PRFM (immediate)

Prefetch Memory (immediate) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

1 1

31 30

1 1 1

29 27

0

26

0 1

25 24

1 0

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

PRFM (<prfop>|#<imm5>), [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

PRFM (<prfop>|#<imm5>), [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>. <type> is one of:

PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI

Preload instructions, encoded in the "Rt<4:3>" field as
0b01.

PST

Prefetch for store, encoded in the "Rt<4:3>" field as
0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
<policy> is one of:

KEEP

Retained or temporal prefetch, allocated in the cache
normally. Encoded in the "Rt<0>" field as 0.

STRM

Streaming or non-temporal prefetch, for data that is used
only once. Encoded in the "Rt<0>" field as 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

608

Chapter 4. Instruction definitions
4.2. Modified base instructions

For more information on these prefetch operations, see Prefetch memory. For other encodings
of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt"
field. This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 8 in the range 0 to 32760,
defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

609

Chapter 4. Instruction definitions
4.2. Modified base instructions

34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

610

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.84 PRFM (literal)

Prefetch Memory (literal) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

1 1

31 30

0 1 1

29 27

0

26

0 0

25 24

imm19

23 5

Rt

4 0

opc

PRFM (<prfop>|#<imm5>), <label>

1 integer t = UInt(Rt);
2 MemOp memop = MemOp_LOAD;
3 boolean signed = FALSE;
4 integer size;
5 bits(64) offset;
6
7 case opc of
8 when '00'
9 size = 4;

10 when '01'
11 size = 8;
12 when '10'
13 size = 4;
14 signed = TRUE;
15 when '11'
16 memop = MemOp_PREFETCH;
17
18 offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>. <type> is one of:

PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI

Preload instructions, encoded in the "Rt<4:3>" field as
0b01.

PST

Prefetch for store, encoded in the "Rt<4:3>" field as
0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
<policy> is one of:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

611

Chapter 4. Instruction definitions
4.2. Modified base instructions

KEEP

Retained or temporal prefetch, allocated in the cache
normally. Encoded in the "Rt<0>" field as 0.

STRM

Streaming or non-temporal prefetch, for data that is used
only once. Encoded in the "Rt<0>" field as 1.

For more information on these prefetch operations, see Prefetch memory. For other encodings
of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt"
field. This syntax is only for encodings that are not accessible using <prfop>.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation
1 VirtualAddress base = VAFromCapability(PCC);
2 bits(64) address = VAddress(base) + offset;
3
4 bits(size*8) data;
5
6 case memop of
7 when MemOp_LOAD
8 VACheckAddress(base, address, size, CAP_PERM_LOAD, AccType_NORMAL);
9 data = Mem[address, size, AccType_NORMAL];

10 if signed then
11 X[t] = SignExtend(data, 64);
12 else
13 X[t] = data;
14
15 when MemOp_PREFETCH
16 Prefetch(address, t<4:0>);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

612

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.85 PRFM (register)

Prefetch Memory (register) signals the memory system that data memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory accesses when they do occur, such as preloading the cache line containing the specified address into
one or more caches.

The effect of an PRFM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

1 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

PRFM (<prfop>|#<imm5>), [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

PRFM (<prfop>|#<imm5>), [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>. <type> is one of:

PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI

Preload instructions, encoded in the "Rt<4:3>" field as
0b01.

PST

Prefetch for store, encoded in the "Rt<4:3>" field as
0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
<policy> is one of:

KEEP

Retained or temporal prefetch, allocated in the cache
normally. Encoded in the "Rt<0>" field as 0.

STRM

Streaming or non-temporal prefetch, for data that is used
only once. Encoded in the "Rt<0>" field as 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

613

Chapter 4. Instruction definitions
4.2. Modified base instructions

For more information on these prefetch operations, see Prefetch memory. For other encodings
of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt"
field. This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to
be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #3

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

614

Chapter 4. Instruction definitions
4.2. Modified base instructions

9 if memop == MemOp_LOAD && wback && n == t && n != 31 then
10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

615

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.86 PRFUM

Prefetch Memory (unscaled offset) signals the memory system that data memory accesses from a specified address
are likely to occur in the near future. The memory system can respond by taking actions that are expected to speed
up the memory accesses when they do occur, such as preloading the cache line containing the specified address
into one or more caches.

The effect of an PRFUM instruction is IMPLEMENTATION DEFINED. For more information, see Prefetch memory.

For information about memory accesses, see Load/Store addressing modes.

1 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

PRFUM (<prfop>|#<imm5>), [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

PRFUM (<prfop>|#<imm5>), [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<prfop> Is the prefetch operation, defined as <type><target><policy>. <type> is one of:

PLD

Prefetch for load, encoded in the "Rt<4:3>" field as 0b00.

PLI

Preload instructions, encoded in the "Rt<4:3>" field as
0b01.

PST

Prefetch for store, encoded in the "Rt<4:3>" field as
0b10.

<target> is one of:

L1

Level 1 cache, encoded in the "Rt<2:1>" field as 0b00.

L2

Level 2 cache, encoded in the "Rt<2:1>" field as 0b01.

L3

Level 3 cache, encoded in the "Rt<2:1>" field as 0b10.
<policy> is one of:

KEEP

Retained or temporal prefetch, allocated in the cache
normally. Encoded in the "Rt<0>" field as 0.

STRM

Streaming or non-temporal prefetch, for data that is used
only once. Encoded in the "Rt<0>" field as 1.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

616

Chapter 4. Instruction definitions
4.2. Modified base instructions

For more information on these prefetch operations, see Prefetch memory. For other encodings
of the "Rt" field, use <imm5>.

<imm5> Is the prefetch operation encoding as an immediate, in the range 0 to 31, encoded in the "Rt"
field. This syntax is only for encodings that are not accessible using <prfop>.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

617

Chapter 4. Instruction definitions
4.2. Modified base instructions

34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

618

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.87 RET

Return from subroutine branches unconditionally to an address in a register, with a hint that this is a subroutine
return.

1 1 0 1 0 1 1

31 25

0

24

0

23

1 0

22 21

1 1 1 1 1

20 16

0 0 0 0

15 12

0

11

0

10

Rn

9 5

0 0 0 0 0

4 0

Z op A M Rm

RET {<Xn>}

1 integer n = UInt(Rn);
2 BranchType branch_type;
3
4 case op of
5 when '00' branch_type = BranchType_INDIR;
6 when '01' branch_type = BranchType_INDCALL;
7 when '10' branch_type = BranchType_RET;
8 otherwise UNDEFINED;

Assembler Symbols

<Xn> Is the optional name of the general-purpose register holding the address to be branched to,
defaulting to X30 in A64, encoded in the "Rn" field. On disassembly, the <Xn> argument
may be omitted if it is X30 and the ISA is A64.

Operation
1 Capability target;
2 if CCTLR[].PCCBO == '1' then
3 target = CapSetOffset(PCC[], X[n]);
4 else
5 target = CapSetValue(PCC[], X[n]);
6
7 if branch_type == BranchType_INDCALL then
8 if IsInC64() then
9 if CCTLR[].SBL == '1' then

10 C[30] = CapSetObjectType(CapAdd(PCC[], 5), CAP_SEAL_TYPE_RB);
11 else
12 C[30] = CapAdd(PCC[], 5);
13 elsif CCTLR[].PCCBO == '1' then
14 X[30] = PC[] + 4 - CapGetBase(PCC[]);
15 else
16 X[30] = PC[] + 4;
17
18 BranchToCapability(target,branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

619

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.88 STADD, STADDL

Atomic add on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit doubleword
from memory, adds the value held in a register to it, and stores the result back to memory.

• STADD has no memory ordering semantics.

• STADDL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDADD, LDADDA, LDADDAL, LDADDL. This means:

• The encodings in this description are named to match the encodings of LDADD, LDADDA, LDADDAL,
LDADDL.

• The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 0 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDADD alias (size == 10 && R == 0)

STADD <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADD <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADD<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDADDL alias (size == 10 && R == 1)

STADDL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADDL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADDL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDADD alias (size == 11 && R == 0)

STADD <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADD <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADD<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDADDL alias (size == 11 && R == 1)

STADDL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADDL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

620

Chapter 4. Instruction definitions
4.2. Modified base instructions

LDADDL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDADD, LDADDA, LDADDAL, LDADDL gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

621

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.89 STADDB, STADDLB

Atomic add on byte in memory, without return, atomically loads an 8-bit byte from memory, adds the value held in
a register to it, and stores the result back to memory.

• STADDB has no memory ordering semantics.

• STADDLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDADDB, LDADDAB, LDADDALB, LDADDLB. This means:

• The encodings in this description are named to match the encodings of LDADDB, LDADDAB, LDADDALB,
LDADDLB.

• The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 0 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STADDB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADDB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADDB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STADDLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADDLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADDLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDADDB, LDADDAB, LDADDALB, LDADDLB gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

622

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.90 STADDH, STADDLH

Atomic add on halfword in memory, without return, atomically loads a 16-bit halfword from memory, adds the
value held in a register to it, and stores the result back to memory.

• STADDH has no memory ordering semantics.

• STADDLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDADDH, LDADDAH, LDADDALH, LDADDLH. This means:

• The encodings in this description are named to match the encodings of LDADDH, LDADDAH, LDADDALH,
LDADDLH.

• The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 0 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STADDH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADDH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADDH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STADDLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STADDLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDADDLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDADDH, LDADDAH, LDADDALH, LDADDLH gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

623

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.91 STCLR, STCLRL

Atomic bit clear on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise AND with the complement of the value held in a register on it, and
stores the result back to memory.

• STCLR has no memory ordering semantics.

• STCLRL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDCLR, LDCLRA, LDCLRAL, LDCLRL. This means:

• The encodings in this description are named to match the encodings of LDCLR, LDCLRA, LDCLRAL,
LDCLRL.

• The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 0 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDCLR alias (size == 10 && R == 0)

STCLR <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLR <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLR<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDCLRL alias (size == 10 && R == 1)

STCLRL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLRL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLRL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDCLR alias (size == 11 && R == 0)

STCLR <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLR <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLR<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDCLRL alias (size == 11 && R == 1)

STCLRL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLRL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

624

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDCLRL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDCLR, LDCLRA, LDCLRAL, LDCLRL gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

625

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.92 STCLRB, STCLRLB

Atomic bit clear on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a
bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRB has no memory ordering semantics.

• STCLRLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB. This means:

• The encodings in this description are named to match the encodings of LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB.

• The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 0 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STCLRB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLRB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLRB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STCLRLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLRLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLRLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

626

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.93 STCLRH, STCLRLH

Atomic bit clear on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise AND with the complement of the value held in a register on it, and stores the result back to memory.

• STCLRH has no memory ordering semantics.

• STCLRLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH. This means:

• The encodings in this description are named to match the encodings of LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH.

• The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 0 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STCLRH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLRH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLRH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STCLRLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCLRLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDCLRLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

627

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.94 STEOR, STEORL

Atomic exclusive OR on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs an exclusive OR with the value held in a register on it, and stores the result
back to memory.

• STEOR has no memory ordering semantics.

• STEORL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDEOR, LDEORA, LDEORAL, LDEORL. This means:

• The encodings in this description are named to match the encodings of LDEOR, LDEORA, LDEORAL,
LDEORL.

• The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 1 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDEOR alias (size == 10 && R == 0)

STEOR <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEOR <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEOR<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDEORL alias (size == 10 && R == 1)

STEORL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEORL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEORL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDEOR alias (size == 11 && R == 0)

STEOR <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEOR <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEOR<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDEORL alias (size == 11 && R == 1)

STEORL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEORL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

628

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDEORL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDEOR, LDEORA, LDEORAL, LDEORL gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

629

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.95 STEORB, STEORLB

Atomic exclusive OR on byte in memory, without return, atomically loads an 8-bit byte from memory, performs an
exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORB has no memory ordering semantics.

• STEORLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDEORB, LDEORAB, LDEORALB, LDEORLB. This means:

• The encodings in this description are named to match the encodings of LDEORB, LDEORAB, LDEORALB,
LDEORLB.

• The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 1 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STEORB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEORB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEORB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STEORLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEORLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEORLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDEORB, LDEORAB, LDEORALB, LDEORLB gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

630

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.96 STEORH, STEORLH

Atomic exclusive OR on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
performs an exclusive OR with the value held in a register on it, and stores the result back to memory.

• STEORH has no memory ordering semantics.

• STEORLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDEORH, LDEORAH, LDEORALH, LDEORLH. This means:

• The encodings in this description are named to match the encodings of LDEORH, LDEORAH, LDEORALH,
LDEORLH.

• The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 1 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STEORH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEORH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEORH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STEORLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STEORLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDEORLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDEORH, LDEORAH, LDEORALH, LDEORLH gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

631

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.97 STLLR

Store LORelease Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register.
The instruction also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For
information about memory accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

1 x

31 30

0 0 1 0 0 0

29 24

1

23

0

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

32-bit (size == 10)

STLLR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLLR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STLLR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLLR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

632

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.98 STLLRB

Store LORelease Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about memory
accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

0 0

31 30

0 0 1 0 0 0

29 24

1

23

0

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

STLLRB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLLRB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

633

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.99 STLLRH

Store LORelease Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in Load LOAcquire, Store LORelease. For information about
memory accesses, see Load/Store addressing modes.

No offset
(FEAT_LOR)

0 1

31 30

0 0 1 0 0 0

29 24

1

23

0

22

0

21

(1)(1)(1)(1)(1)

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

STLLRH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLLRH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

634

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.100 STLR

Store-Release Register stores a 32-bit word or a 64-bit doubleword to a memory location, from a register. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information
about memory accesses, see Load/Store addressing modes.

1 x

31 30

0 0 1 0 0 0

29 24

1

23

0

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

32-bit (size == 10)

STLR <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLR <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STLR <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLR <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

635

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.101 STLRB

Store-Release Register Byte stores a byte from a 32-bit register to a memory location. The instruction also has
memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses,
see Load/Store addressing modes.

0 0

31 30

0 0 1 0 0 0

29 24

1

23

0

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

STLRB <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLRB <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

636

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.102 STLRH

Store-Release Register Halfword stores a halfword from a 32-bit register to a memory location. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory
accesses, see Load/Store addressing modes.

0 1

31 30

0 0 1 0 0 0

29 24

1

23

0

22

0

21

(1)(1)(1)(1)(1)

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L Rs o0 Rt2

STLRH <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLRH <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '0' then AccType_LIMITEDORDERED else AccType_ORDERED;
7 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
8 integer elsize = 8 << UInt(size);
9 integer regsize = if elsize == 64 then 64 else 32;

10 integer datasize = elsize;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3
4 VirtualAddress base = BaseReg[n];
5 bits(64) address = VAddress(base);
6
7 case memop of
8 when MemOp_STORE
9 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);

10 data = X[t];
11 Mem[address, dbytes, acctype] = data;
12
13 when MemOp_LOAD
14 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
15 data = Mem[address, dbytes, acctype];
16 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

637

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.103 STLXP

Store-Release Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords to a memory location
if the PE has exclusive access to the memory address, from two registers, and returns a status value of 0 if the store
was successful, or of 1 if no store was performed. See Synchronization and semaphores. A 32-bit pair requires the
address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the
address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update of
the 128-bit memory location being updated. The instruction also has memory ordering semantics as described in
Load-Acquire, Store-Release. For information about memory accesses, see Load/Store addressing modes.

1

31

sz

30

0 0 1 0 0 0

29 24

0

23

0

22

1

21

Rs

20 16

1

15

Rt2

14 10

Rn

9 5

Rt

4 0

L o0

32-bit (sz == 0)

STLXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLXP <Ws>, <Wt1>, <Wt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (sz == 1)

STLXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLXP <Ws>, <Xt1>, <Xt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = TRUE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 32 << UInt(sz);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STLXP.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

638

Chapter 4. Instruction definitions
4.2. Modified base instructions

field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data
Abort exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

639

Chapter 4. Instruction definitions
4.2. Modified base instructions

53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

640

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.104 STLXR

Store-Release Exclusive Register stores a 32-bit word or a 64-bit doubleword to memory if the PE has exclusive
access to the memory address, from two registers, and returns a status value of 0 if the store was successful, or of 1
if no store was performed. See Synchronization and semaphores. The memory access is atomic. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory
accesses, see Load/Store addressing modes.

1 x

31 30

0 0 1 0 0 0

29 24

0

23

0

22

0

21

Rs

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L o0 Rt2

32-bit (size == 10)

STLXR <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLXR <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STLXR <Ws>, <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLXR <Ws>, <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STLXR.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

641

Chapter 4. Instruction definitions
4.2. Modified base instructions

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data
Abort exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

642

Chapter 4. Instruction definitions
4.2. Modified base instructions

67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

643

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.105 STLXRB

Store-Release Exclusive Register Byte stores a byte from a 32-bit register to memory if the PE has exclusive access
to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores. The memory access is atomic. The instruction also has memory ordering
semantics as described in Load-Acquire, Store-Release. For information about memory accesses, see Load/Store
addressing modes.

0 0

31 30

0 0 1 0 0 0

29 24

0

23

0

22

0

21

Rs

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L o0 Rt2

STLXRB <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLXRB <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STLXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

644

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

645

Chapter 4. Instruction definitions
4.2. Modified base instructions

83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

646

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.106 STLXRH

Store-Release Exclusive Register Halfword stores a halfword from a 32-bit register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no
store was performed. See Synchronization and semaphores. The memory access is atomic. The instruction also has
memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory accesses,
see Load/Store addressing modes.

0 1

31 30

0 0 1 0 0 0

29 24

0

23

0

22

0

21

Rs

20 16

1

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L o0 Rt2

STLXRH <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STLXRH <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STLXRH.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

647

Chapter 4. Instruction definitions
4.2. Modified base instructions

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

648

Chapter 4. Instruction definitions
4.2. Modified base instructions

78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

649

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.107 STNP

Store Pair of Registers, with non-temporal hint, calculates an address from a base register value and an immediate
offset, and stores two 32-bit words or two 64-bit doublewords to the calculated address, from two registers. For
information about memory accesses, see Load/Store addressing modes. For information about Non-temporal pair
instructions, see Load/Store Non-temporal pair.

x 0

31 30

1 0 1

29 27

0

26

0 0 0

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

STNP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STNP <Wt1>, <Wt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

STNP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STNP <Xt1>, <Xt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_STREAM;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if opc<0> == '1' then UNDEFINED;
7 integer scale = 2 + UInt(opc<1>);
8 integer datasize = 8 << scale;
9 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

650

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(datasize) data1;
2 bits(datasize) data2;
3 constant integer dbytes = datasize DIV 8;
4 boolean rt_unknown = FALSE;
5
6 if memop == MemOp_LOAD && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 VirtualAddress base = BaseReg[n];
15 bits(64) address = VAddress(base);
16 if ! postindex then
17 address = address + offset;
18
19 case memop of
20 when MemOp_STORE
21 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
22 if rt_unknown && t == n then
23 data1 = bits(datasize) UNKNOWN;
24 else
25 data1 = X[t];
26 if rt_unknown && t2 == n then
27 data2 = bits(datasize) UNKNOWN;
28 else
29 data2 = X[t2];
30 Mem[address + 0 , dbytes, acctype] = data1;
31 Mem[address + dbytes, dbytes, acctype] = data2;
32
33 when MemOp_LOAD
34 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
35 data1 = Mem[address + 0 , dbytes, acctype];
36 data2 = Mem[address + dbytes, dbytes, acctype];
37 if rt_unknown then
38 data1 = bits(datasize) UNKNOWN;
39 data2 = bits(datasize) UNKNOWN;
40 X[t] = data1;
41 X[t2] = data2;
42
43 if wback then
44 base = VAAdd(base,offset);
45
46 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

651

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.108 STP

Store Pair of Registers calculates an address from a base register value and an immediate offset, and stores two
32-bit words or two 64-bit doublewords to the calculated address, from two registers. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

x 0

31 30

1 0 1

29 27

0

26

0 0 1

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STP <Wt1>, <Wt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STP <Xt1>, <Xt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;

Pre-index

x 0

31 30

1 0 1

29 27

0

26

0 1 1

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STP <Wt1>, <Wt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STP <Xt1>, <Xt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;

Signed offset

x 0

31 30

1 0 1

29 27

0

26

0 1 0

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc L

32-bit (opc == 00)

STP <Wt1>, <Wt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STP <Wt1>, <Wt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 10)

STP <Xt1>, <Xt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STP <Xt1>, <Xt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

652

Chapter 4. Instruction definitions
4.2. Modified base instructions

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STP.

Assembler Symbols

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if L:opc<0> == '01' || opc == '11' then UNDEFINED;
7 boolean signed = (opc<0> != '0');
8 integer scale = 2 + UInt(opc<1>);
9 integer datasize = 8 << scale;

10 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 bits(datasize) data1;
2 bits(datasize) data2;
3 constant integer dbytes = datasize DIV 8;
4 boolean rt_unknown = FALSE;
5
6 boolean wb_unknown = FALSE;
7
8 if memop == MemOp_LOAD && wback && (t == n || t2 == n) && n != 31 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);

10 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
13 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 if memop == MemOp_STORE && wback && (t == n || t2 == n) && n != 31 then
18 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
19 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
20 case c of
21 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
22 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
23 when Constraint_UNDEF UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

653

Chapter 4. Instruction definitions
4.2. Modified base instructions

24 when Constraint_NOP EndOfInstruction();
25
26 if memop == MemOp_LOAD && t == t2 then
27 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
28 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
29 case c of
30 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
31 when Constraint_UNDEF UNDEFINED;
32 when Constraint_NOP EndOfInstruction();
33
34 VirtualAddress base = BaseReg[n];
35 bits(64) address = VAddress(base);
36 if ! postindex then
37 address = address + offset;
38
39 case memop of
40 when MemOp_STORE
41 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
42 if rt_unknown && t == n then
43 data1 = bits(datasize) UNKNOWN;
44 else
45 data1 = X[t];
46 if rt_unknown && t2 == n then
47 data2 = bits(datasize) UNKNOWN;
48 else
49 data2 = X[t2];
50 Mem[address + 0 , dbytes, acctype] = data1;
51 Mem[address + dbytes, dbytes, acctype] = data2;
52
53 when MemOp_LOAD
54 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
55 data1 = Mem[address + 0 , dbytes, acctype];
56 data2 = Mem[address + dbytes, dbytes, acctype];
57 if rt_unknown then
58 data1 = bits(datasize) UNKNOWN;
59 data2 = bits(datasize) UNKNOWN;
60 if signed then
61 X[t] = SignExtend(data1, 64);
62 X[t2] = SignExtend(data2, 64);
63 else
64 X[t] = data1;
65 X[t2] = data2;
66
67 if wback then
68 if wb_unknown then
69 base = VirtualAddress UNKNOWN;
70 else
71 base = VAAdd(base,offset);
72
73 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

654

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.109 STR (immediate)

Store Register (immediate) stores a word or a doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset. For information about memory accesses, see
Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)
STR <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

64-bit (size == 11)
STR <Xt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <Xt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)
STR <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

64-bit (size == 11)
STR <Xt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <Xt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

1 x

31 30

1 1 1

29 27

0

26

0 1

25 24

0 0

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)
STR <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

64-bit (size == 11)
STR <Xt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <Xt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

655

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

656

Chapter 4. Instruction definitions
4.2. Modified base instructions

24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

657

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.110 STR (register)

Store Register (register) calculates an address from a base register value and an offset register value, and stores
a 32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

STR <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STR <Wt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STR <Xt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STR <Xt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

658

Chapter 4. Instruction definitions
4.2. Modified base instructions

Where it is permitted to be optional, it defaults to #0. It is encoded in"S":
S <amount>
0 #0
1 #3

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

659

Chapter 4. Instruction definitions
4.2. Modified base instructions

45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

660

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.111 STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that
is used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

STRB <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STRB <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

STRB <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STRB <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

0 0

31 30

1 1 1

29 27

0

26

0 1

25 24

0 0

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

STRB <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STRB <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STRB (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

661

Chapter 4. Instruction definitions
4.2. Modified base instructions

encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and
encoded in the "imm12" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

662

Chapter 4. Instruction definitions
4.2. Modified base instructions

46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

663

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.112 STRB (register)

Store Register Byte (register) calculates an address from a base register value and an offset register value, and stores
a byte from a 32-bit register to the calculated address. For information about memory accesses, see Load/Store
addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

Extended register (option != 011)

STRB <Wt>, [<Xn|SP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '0')

STRB <Wt>, [<Cn|CSP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '1')

Shifted register (option == 011)

STRB <Wt>, [<Xn|SP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '0')

STRB <Wt>, [<Cn|CSP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend specifier, encoded in"option":
option <extend>
010 UXTW
110 SXTW
111 SXTX

<amount> Is the index shift amount, it must be #0, encoded in "S" as 0 if omitted, or as 1 if present.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

664

Chapter 4. Instruction definitions
4.2. Modified base instructions

12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

665

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.113 STRH (immediate)

Store Register Halfword (immediate) stores the least significant halfword of a 32-bit register to memory. The
address that is used for the store is calculated from a base register and an immediate offset. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size opc

STRH <Wt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STRH <Wt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Pre-index

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size opc

STRH <Wt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STRH <Wt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

0 1

31 30

1 1 1

29 27

0

26

0 1

25 24

0 0

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size opc

STRH <Wt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STRH <Wt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STRH (immediate).

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

666

Chapter 4. Instruction definitions
4.2. Modified base instructions

encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, a multiple of 2 in the range 0 to 8190, defaulting
to 0 and encoded in the "imm12" field as <pimm>/2.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 UNDEFINED;
16 else
17 // sign-extending load
18 memop = MemOp_LOAD;
19 if size == '10' && opc<0> == '1' then UNDEFINED;
20 regsize = if opc<0> == '1' then 32 else 64;
21 signed = TRUE;
22
23 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

667

Chapter 4. Instruction definitions
4.2. Modified base instructions

46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

668

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.114 STRH (register)

Store Register Halfword (register) calculates an address from a base register value and an offset register value, and
stores a halfword from a 32-bit register to the calculated address. For information about memory accesses, see
Load/Store addressing modes.

The instruction uses an offset addressing mode, that calculates the address used for the memory access from a base
register value and an offset register value. The offset can be optionally shifted and extended.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

STRH <Wt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STRH <Wt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 if option<1> == '0' then UNDEFINED; // sub-word index
5 ExtendType extend_type = DecodeRegExtend(option);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> Is the index extend/shift specifier, defaulting to LSL, and which must be omitted for the LSL
option when <amount> is omitted. encoded in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> Is the index shift amount, optional only when <extend> is not LSL. Where it is permitted to
be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #1

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_NORMAL;
5 MemOp memop;
6 boolean signed;
7 integer regsize;
8
9 if opc<1> == '0' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

669

Chapter 4. Instruction definitions
4.2. Modified base instructions

10 // store or zero-extending load
11 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
12 regsize = if size == '11' then 64 else 32;
13 signed = FALSE;
14 else
15 if size == '11' then
16 memop = MemOp_PREFETCH;
17 if opc<0> == '1' then UNDEFINED;
18 else
19 // sign-extending load
20 memop = MemOp_LOAD;
21 if size == '10' && opc<0> == '1' then UNDEFINED;
22 regsize = if opc<0> == '1' then 32 else 64;
23 signed = TRUE;
24
25 integer datasize = 8 << scale;

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 bits(64) address;
4 bits(datasize) data;
5
6 boolean wb_unknown = FALSE;
7 boolean rt_unknown = FALSE;
8
9 if memop == MemOp_LOAD && wback && n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 if memop == MemOp_STORE && wback && n == t && n != 31 then
19 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
20 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
21 case c of
22 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
23 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
24 when Constraint_UNDEF UNDEFINED;
25 when Constraint_NOP EndOfInstruction();
26
27 VirtualAddress base;
28
29 base = BaseReg[n, memop == MemOp_PREFETCH];
30 address = VAddress(base);
31
32 if ! postindex then
33 address = address + offset;
34
35 case memop of
36 when MemOp_STORE
37 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
38 if rt_unknown then
39 data = bits(datasize) UNKNOWN;
40 else
41 data = X[t];
42 Mem[address, datasize DIV 8, acctype] = data;
43
44 when MemOp_LOAD
45 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
46 data = Mem[address, datasize DIV 8, acctype];
47 if signed then
48 X[t] = SignExtend(data, regsize);
49 else
50 X[t] = ZeroExtend(data, regsize);
51
52 when MemOp_PREFETCH
53 address = VAddress(base);
54 Prefetch(address, t<4:0>);
55
56 if wback then
57 if wb_unknown then
58 base = VirtualAddress UNKNOWN;
59 else
60 base = VAAdd(base,offset);
61
62 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

670

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.115 STSET, STSETL

Atomic bit set on word or doubleword in memory, without return, atomically loads a 32-bit word or 64-bit
doubleword from memory, performs a bitwise OR with the value held in a register on it, and stores the result back
to memory.

• STSET has no memory ordering semantics.

• STSETL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSET, LDSETA, LDSETAL, LDSETL. This means:

• The encodings in this description are named to match the encodings of LDSET, LDSETA, LDSETAL,
LDSETL.

• The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 1 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDSET alias (size == 10 && R == 0)

STSET <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSET <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSET<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDSETL alias (size == 10 && R == 1)

STSETL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSETL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSETL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDSET alias (size == 11 && R == 0)

STSET <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSET <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSET<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDSETL alias (size == 11 && R == 1)

STSETL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSETL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

671

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDSETL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSET, LDSETA, LDSETAL, LDSETL gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

672

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.116 STSETB, STSETLB

Atomic bit set on byte in memory, without return, atomically loads an 8-bit byte from memory, performs a bitwise
OR with the value held in a register on it, and stores the result back to memory.

• STSETB has no memory ordering semantics.

• STSETLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSETB, LDSETAB, LDSETALB, LDSETLB. This means:

• The encodings in this description are named to match the encodings of LDSETB, LDSETAB, LDSETALB,
LDSETLB.

• The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 1 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STSETB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSETB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSETB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STSETLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSETLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSETLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSETB, LDSETAB, LDSETALB, LDSETLB gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

673

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.117 STSETH, STSETLH

Atomic bit set on halfword in memory, without return, atomically loads a 16-bit halfword from memory, performs
a bitwise OR with the value held in a register on it, and stores the result back to memory.

• STSETH has no memory ordering semantics.

• STSETLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSETH, LDSETAH, LDSETALH, LDSETLH. This means:

• The encodings in this description are named to match the encodings of LDSETH, LDSETAH, LDSETALH,
LDSETLH.

• The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

0 1 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STSETH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSETH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSETH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STSETLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSETLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSETLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSETH, LDSETAH, LDSETALH, LDSETLH gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

674

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.118 STSMAX, STSMAXL

Atomic signed maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as signed numbers.

• STSMAX has no memory ordering semantics.

• STSMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL. This means:

• The encodings in this description are named to match the encodings of LDSMAX, LDSMAXA, LDSMAXAL,
LDSMAXL.

• The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 0 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDSMAX alias (size == 10 && R == 0)

STSMAX <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAX <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAX<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDSMAXL alias (size == 10 && R == 1)

STSMAXL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAXL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAXL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDSMAX alias (size == 11 && R == 0)

STSMAX <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAX <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAX<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDSMAXL alias (size == 11 && R == 1)

STSMAXL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAXL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

675

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDSMAXL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

676

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.119 STSMAXB, STSMAXLB

Atomic signed maximum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the larger value back to memory, treating the values as signed
numbers.

• STSMAXB has no memory ordering semantics.

• STSMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB. This means:

• The encodings in this description are named to match the encodings of LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB.

• The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational
pseudocode for this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 0 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STSMAXB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAXB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAXB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STSMAXLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAXLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAXLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB gives the operational pseudocode
for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

677

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.120 STSMAXH, STSMAXLH

Atomic signed maximum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
signed numbers.

• STSMAXH has no memory ordering semantics.

• STSMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH. This means:

• The encodings in this description are named to match the encodings of LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH.

• The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational
pseudocode for this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 0 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STSMAXH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAXH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAXH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STSMAXLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMAXLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMAXLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH gives the operational pseudocode
for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

678

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.121 STSMIN, STSMINL

Atomic signed minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as signed numbers.

• STSMIN has no memory ordering semantics.

• STSMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSMIN, LDSMINA, LDSMINAL, LDSMINL. This means:

• The encodings in this description are named to match the encodings of LDSMIN, LDSMINA, LDSMINAL,
LDSMINL.

• The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 0 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDSMIN alias (size == 10 && R == 0)

STSMIN <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMIN <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMIN<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDSMINL alias (size == 10 && R == 1)

STSMINL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMINL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMINL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDSMIN alias (size == 11 && R == 0)

STSMIN <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMIN <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMIN<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDSMINL alias (size == 11 && R == 1)

STSMINL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMINL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

679

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDSMINL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSMIN, LDSMINA, LDSMINAL, LDSMINL gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

680

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.122 STSMINB, STSMINLB

Atomic signed minimum on byte in memory, without return, atomically loads an 8-bit byte from memory, compares
it against the value held in a register, and stores the smaller value back to memory, treating the values as signed
numbers.

• STSMINB has no memory ordering semantics.

• STSMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB. This means:

• The encodings in this description are named to match the encodings of LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB.

• The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode
for this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 0 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STSMINB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMINB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMINB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STSMINLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMINLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMINLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB gives the operational pseudocode for
this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

681

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.123 STSMINH, STSMINLH

Atomic signed minimum on halfword in memory, without return, atomically loads a 16-bit halfword from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
signed numbers.

• STSMINH has no memory ordering semantics.

• STSMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH. This means:

• The encodings in this description are named to match the encodings of LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH.

• The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode
for this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 0 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STSMINH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMINH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMINH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STSMINLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STSMINLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDSMINLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH gives the operational pseudocode for
this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

682

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.124 STTR

Store Register (unprivileged) stores a word or doubleword from a register to memory. The address that is used for
the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

STTR <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STTR <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STTR <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STTR <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

683

Chapter 4. Instruction definitions
4.2. Modified base instructions

19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;
29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

684

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.125 STTRB

Store Register Byte (unprivileged) stores a byte from a 32-bit register to memory. The address that is used for the
store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

STTRB <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STTRB <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

685

Chapter 4. Instruction definitions
4.2. Modified base instructions

29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

686

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.126 STTRH

Store Register Halfword (unprivileged) stores a halfword from a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset.

Memory accesses made by the instruction behave as if the instruction was executed at EL0 if the Effective value of
PSTATE.UAO is 0 and either:

• The instruction is executed at EL1.

• The instruction is executed at EL2 when the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed. For information about memory accesses, see Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size opc

STTRH <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STTRH <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3
4 unpriv_at_el1 = PSTATE.EL == EL1;
5 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
6
7 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
8 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then
9 acctype = AccType_UNPRIV;

10 else
11 acctype = AccType_NORMAL;
12
13 MemOp memop;
14 boolean signed;
15 integer regsize;
16
17 if opc<1> == '0' then
18 // store or zero-extending load
19 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
20 regsize = if size == '11' then 64 else 32;
21 signed = FALSE;
22 else
23 if size == '11' then
24 UNDEFINED;
25 else
26 // sign-extending load
27 memop = MemOp_LOAD;
28 if size == '10' && opc<0> == '1' then UNDEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

687

Chapter 4. Instruction definitions
4.2. Modified base instructions

29 regsize = if opc<0> == '1' then 32 else 64;
30 signed = TRUE;
31
32 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

688

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.127 STUMAX, STUMAXL

Atomic unsigned maximum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the larger value back
to memory, treating the values as unsigned numbers.

• STUMAX has no memory ordering semantics.

• STUMAXL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL. This means:

• The encodings in this description are named to match the encodings of LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL.

• The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode
for this instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 1 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDUMAX alias (size == 10 && R == 0)

STUMAX <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAX <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAX<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDUMAXL alias (size == 10 && R == 1)

STUMAXL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAXL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAXL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDUMAX alias (size == 11 && R == 0)

STUMAX <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAX <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAX<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDUMAXL alias (size == 11 && R == 1)

STUMAXL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAXL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

689

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDUMAXL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

690

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.128 STUMAXB, STUMAXLB

Atomic unsigned maximum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the larger value back to memory, treating the values as
unsigned numbers.

• STUMAXB has no memory ordering semantics.

• STUMAXLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB. This means:

• The encodings in this description are named to match the encodings of LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB.

• The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational
pseudocode for this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 1 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STUMAXB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAXB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAXB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STUMAXLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAXLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAXLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB gives the operational pseudocode
for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

691

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.129 STUMAXH, STUMAXLH

Atomic unsigned maximum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the larger value back to memory, treating the
values as unsigned numbers.

• STUMAXH has no memory ordering semantics.

• STUMAXLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses see Load/Store addressing modes.

This is an alias of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH. This means:

• The encodings in this description are named to match the encodings of LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH.

• The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational
pseudocode for this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 1 0

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STUMAXH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAXH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAXH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STUMAXLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMAXLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMAXLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH gives the operational pseudocode
for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

692

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.130 STUMIN, STUMINL

Atomic unsigned minimum on word or doubleword in memory, without return, atomically loads a 32-bit word or
64-bit doubleword from memory, compares it against the value held in a register, and stores the smaller value back
to memory, treating the values as unsigned numbers.

• STUMIN has no memory ordering semantics.

• STUMINL stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDUMIN, LDUMINA, LDUMINAL, LDUMINL. This means:

• The encodings in this description are named to match the encodings of LDUMIN, LDUMINA, LDUMINAL,
LDUMINL.

• The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for
this instruction.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 1 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

32-bit LDUMIN alias (size == 10 && R == 0)

STUMIN <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMIN <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMIN<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

32-bit LDUMINL alias (size == 10 && R == 1)

STUMINL <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMINL <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMINL<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDUMIN alias (size == 11 && R == 0)

STUMIN <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMIN <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMIN<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

64-bit LDUMINL alias (size == 11 && R == 1)

STUMINL <Xs>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMINL <Xs>, [<Cn|CSP>] // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

693

Chapter 4. Instruction definitions
4.2. Modified base instructions

is equivalent to
LDUMINL<Xs>, XZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xs> Is the 64-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDUMIN, LDUMINA, LDUMINAL, LDUMINL gives the operational pseudocode for this
instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

694

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.131 STUMINB, STUMINLB

Atomic unsigned minimum on byte in memory, without return, atomically loads an 8-bit byte from memory,
compares it against the value held in a register, and stores the smaller value back to memory, treating the values as
unsigned numbers.

• STUMINB has no memory ordering semantics.

• STUMINLB stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB. This means:

• The encodings in this description are named to match the encodings of LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB.

• The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode
for this instruction.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 1 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STUMINB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMINB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMINB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STUMINLB <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMINLB <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMINLB<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB gives the operational pseudocode for
this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

695

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.132 STUMINH, STUMINLH

Atomic unsigned minimum on halfword in memory, without return, atomically loads a 16-bit halfword from
memory, compares it against the value held in a register, and stores the smaller value back to memory, treating the
values as unsigned numbers.

• STUMINH has no memory ordering semantics.

• STUMINLH stores to memory with release semantics, as described in Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

This is an alias of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH. This means:

• The encodings in this description are named to match the encodings of LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH.

• The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode
for this instruction.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0

23

R

22

1

21

Rs

20 16

0

15

1 1 1

14 12

0 0

11 10

Rn

9 5

1 1 1 1 1

4 0

size A opc Rt

No memory ordering (R == 0)

STUMINH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMINH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMINH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Release (R == 1)

STUMINLH <Ws>, [<Xn|SP>] // (PSTATE.C64 == '0')

STUMINLH <Ws>, [<Cn|CSP>] // (PSTATE.C64 == '1')

is equivalent to
LDUMINLH<Ws>, WZR, <Addressing_Mode>

and is always the preferred disassembly.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register holding the data value to be operated on
with the contents of the memory location, encoded in the "Rs" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

The description of LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH gives the operational pseudocode for
this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

696

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.133 STUR

Store Register (unscaled) calculates an address from a base register value and an immediate offset, and stores
a 32-bit word or a 64-bit doubleword to the calculated address, from a register. For information about memory
accesses, see Load/Store addressing modes.

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

32-bit (size == 10)

STUR <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STUR <Xt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <Xt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

697

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

698

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.134 STURB

Store Register Byte (unscaled) calculates an address from a base register value and an immediate offset, and stores
a byte to the calculated address, from a 32-bit register. For information about memory accesses, see Load/Store
addressing modes.

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

STURB <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STURB <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

699

Chapter 4. Instruction definitions
4.2. Modified base instructions

12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

700

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.135 STURH

Store Register Halfword (unscaled) calculates an address from a base register value and an immediate offset, and
stores a halfword to the calculated address, from a 32-bit register. For information about memory accesses, see
Load/Store addressing modes.

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

0 0

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size opc

STURH <Wt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STURH <Wt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(size);
4 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_NORMAL;
4 MemOp memop;
5 boolean signed;
6 integer regsize;
7
8 if opc<1> == '0' then
9 // store or zero-extending load

10 memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
11 regsize = if size == '11' then 64 else 32;
12 signed = FALSE;
13 else
14 if size == '11' then
15 memop = MemOp_PREFETCH;
16 if opc<0> == '1' then UNDEFINED;
17 else
18 // sign-extending load
19 memop = MemOp_LOAD;
20 if size == '10' && opc<0> == '1' then UNDEFINED;
21 regsize = if opc<0> == '1' then 32 else 64;
22 signed = TRUE;
23
24 integer datasize = 8 << scale;

Operation
1 bits(64) address;
2 bits(datasize) data;
3
4 boolean wb_unknown = FALSE;
5 boolean rt_unknown = FALSE;
6
7 if memop == MemOp_LOAD && wback && n == t && n != 31 then
8 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
9 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};

10 case c of
11 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

701

Chapter 4. Instruction definitions
4.2. Modified base instructions

12 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 if memop == MemOp_STORE && wback && n == t && n != 31 then
17 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);
18 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
21 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 VirtualAddress base;
26
27 base = BaseReg[n, memop == MemOp_PREFETCH];
28 address = VAddress(base);
29
30 if ! postindex then
31 address = address + offset;
32
33 case memop of
34 when MemOp_STORE
35 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
36 if rt_unknown then
37 data = bits(datasize) UNKNOWN;
38 else
39 data = X[t];
40 Mem[address, datasize DIV 8, acctype] = data;
41
42 when MemOp_LOAD
43 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
44 data = Mem[address, datasize DIV 8, acctype];
45 if signed then
46 X[t] = SignExtend(data, regsize);
47 else
48 X[t] = ZeroExtend(data, regsize);
49
50 when MemOp_PREFETCH
51 address = VAddress(base);
52 Prefetch(address, t<4:0>);
53
54 if wback then
55 if wb_unknown then
56 base = VirtualAddress UNKNOWN;
57 else
58 base = VAAdd(base,offset);
59
60 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

702

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.136 STXP

Store Exclusive Pair of registers stores two 32-bit words or two 64-bit doublewords from two registers to a memory
location if the PE has exclusive access to the memory address, and returns a status value of 0 if the store was
successful, or of 1 if no store was performed. See Synchronization and semaphores. A 32-bit pair requires the
address to be doubleword aligned and is single-copy atomic at doubleword granularity. A 64-bit pair requires the
address to be quadword aligned and, if the Store-Exclusive succeeds, it causes a single-copy atomic update of
the 128-bit memory location being updated. For information about memory accesses, see Load/Store addressing
modes.

1

31

sz

30

0 0 1 0 0 0

29 24

0

23

0

22

1

21

Rs

20 16

0

15

Rt2

14 10

Rn

9 5

Rt

4 0

L o0

32-bit (sz == 0)

STXP <Ws>, <Wt1>, <Wt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STXP <Ws>, <Wt1>, <Wt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (sz == 1)

STXP <Ws>, <Xt1>, <Xt2>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STXP <Ws>, <Xt1>, <Xt2>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = TRUE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 32 << UInt(sz);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STXP.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Xt1> Is the 64-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Xt2> Is the 64-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Wt1> Is the 32-bit name of the first general-purpose register to be transferred, encoded in the "Rt"
field.

<Wt2> Is the 32-bit name of the second general-purpose register to be transferred, encoded in the
"Rt2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

703

Chapter 4. Instruction definitions
4.2. Modified base instructions

field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data
Abort exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

704

Chapter 4. Instruction definitions
4.2. Modified base instructions

53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

705

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.137 STXR

Store Exclusive Register stores a 32-bit word or a 64-bit doubleword from a register to memory if the PE has
exclusive access to the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store
was performed. See Synchronization and semaphores. For information about memory accesses, see Load/Store
addressing modes.

1 x

31 30

0 0 1 0 0 0

29 24

0

23

0

22

0

21

Rs

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L o0 Rt2

32-bit (size == 10)

STXR <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STXR <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

64-bit (size == 11)

STXR <Ws>, <Xt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STXR <Ws>, <Xt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STXR.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

706

Chapter 4. Instruction definitions
4.2. Modified base instructions

Accessing an address that is not aligned to the size of the data being accessed causes an Alignment fault Data
Abort exception to be generated, subject to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

707

Chapter 4. Instruction definitions
4.2. Modified base instructions

69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

708

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.138 STXRB

Store Exclusive Register Byte stores a byte from a register to memory if the PE has exclusive access to the
memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed. See
Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/Store addressing modes.

0 0

31 30

0 0 1 0 0 0

29 24

0

23

0

22

0

21

Rs

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L o0 Rt2

STXRB <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STXRB <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly STXRB.

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

709

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;
81 X[t2] = data<elsize-1:0>;
82 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

710

Chapter 4. Instruction definitions
4.2. Modified base instructions

83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

711

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.139 STXRH

Store Exclusive Register Halfword stores a halfword from a register to memory if the PE has exclusive access to
the memory address, and returns a status value of 0 if the store was successful, or of 1 if no store was performed.
See Synchronization and semaphores. The memory access is atomic.

For information about memory accesses, see Load/Store addressing modes.

0 1

31 30

0 0 1 0 0 0

29 24

0

23

0

22

0

21

Rs

20 16

0

15

(1)(1)(1)(1)(1)

14 10

Rn

9 5

Rt

4 0

size L o0 Rt2

STXRH <Ws>, <Wt>, [<Xn|SP>{,#0}] // (PSTATE.C64 == '0')

STXRH <Ws>, <Wt>, [<Cn|CSP>{,#0}] // (PSTATE.C64 == '1')

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2); // ignored by load/store single register
4 integer s = UInt(Rs); // ignored by all loads and store-release
5
6 AccType acctype = if o0 == '1' then AccType_ORDEREDATOMIC else AccType_ATOMIC;
7 boolean pair = FALSE;
8 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
9 integer elsize = 8 << UInt(size);

10 integer regsize = if elsize == 64 then 64 else 32;
11 integer datasize = if pair then elsize * 2 else elsize;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field. The value returned is:

0

If the operation updates memory.

1

If the operation fails to update memory.

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Aborts and alignment

If a synchronous Data Abort exception is generated by the execution of this instruction:

• Memory is not updated.

• <Ws> is not updated.

A non halfword-aligned memory address causes an Alignment fault Data Abort exception to be generated, subject
to the following rules:

• If AArch64.ExclusiveMonitorsPass() returns TRUE, the exception is generated.

• Otherwise, it is IMPLEMENTATION DEFINED whether the exception is generated.

If AArch64.ExclusiveMonitorsPass() returns FALSE and the memory address, if accessed, would generate a
synchronous Data Abort exception, it is IMPLEMENTATION DEFINED whether the exception is generated.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

712

Chapter 4. Instruction definitions
4.2. Modified base instructions

Operation
1 bits(datasize) data;
2 constant integer dbytes = datasize DIV 8;
3 boolean rt_unknown = FALSE;
4 boolean rn_unknown = FALSE;
5
6 if memop == MemOp_LOAD && pair && t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 if memop == MemOp_STORE then
15 if s == t || (pair && s == t2) then
16 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
17 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
18 case c of
19 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
20 when Constraint_NONE rt_unknown = FALSE; // store original value
21 when Constraint_UNDEF UNDEFINED;
22 when Constraint_NOP EndOfInstruction();
23 if s == n && n != 31 then
24 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
25 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
26 case c of
27 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
28 when Constraint_NONE rn_unknown = FALSE; // address is original base
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 VirtualAddress base;
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37
38 bits(64) address = VAddress(base);
39
40 case memop of
41 when MemOp_STORE
42 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
43 if rt_unknown then
44 data = bits(datasize) UNKNOWN;
45 elsif pair then
46 bits(datasize DIV 2) el1 = X[t];
47 bits(datasize DIV 2) el2 = X[t2];
48 data = if BigEndian() then el1 : el2 else el2 : el1;
49 else
50 data = X[t];
51
52 bit status = '1';
53 // Check whether the Exclusives monitors are set to include the
54 // physical memory locations corresponding to virtual address
55 // range [address, address+dbytes-1].
56 if AArch64.ExclusiveMonitorsPass(address, dbytes) then
57 // This atomic write will be rejected if it does not refer
58 // to the same physical locations after address translation.
59 Mem[address, dbytes, acctype] = data;
60 status = ExclusiveMonitorsStatus();
61 X[s] = ZeroExtend(status, 32);
62
63 when MemOp_LOAD
64 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
65 // Tell the Exclusives monitors to record a sequence of one or more atomic
66 // memory reads from virtual address range [address, address+dbytes-1].
67 // The Exclusives monitor will only be set if all the reads are from the
68 // same dbytes-aligned physical address, to allow for the possibility of
69 // an atomicity break if the translation is changed between reads.
70 AArch64.SetExclusiveMonitors(address, dbytes);
71
72 if pair then
73 if rt_unknown then
74 // ConstrainedUNPREDICTABLE case
75 X[t] = bits(datasize) UNKNOWN; // In this case t = t2
76 elsif elsize == 32 then
77 // 32-bit load exclusive pair (atomic)
78 data = Mem[address, dbytes, acctype];
79 if BigEndian() then
80 X[t] = data<datasize-1:elsize>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

713

Chapter 4. Instruction definitions
4.2. Modified base instructions

81 X[t2] = data<elsize-1:0>;
82 else
83 X[t] = data<elsize-1:0>;
84 X[t2] = data<datasize-1:elsize>;
85 else // elsize == 64
86 // 64-bit load exclusive pair (not atomic),
87 // but must be 128-bit aligned
88 if address != Align(address, dbytes) then
89 iswrite = FALSE;
90 secondstage = FALSE;
91 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
92 X[t] = Mem[address + 0, 8, acctype];
93 X[t2] = Mem[address + 8, 8, acctype];
94 else
95 data = Mem[address, dbytes, acctype];
96 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

714

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.140 SWP, SWPA, SWPAL, SWPL

Swap word or doubleword in memory atomically loads a 32-bit word or 64-bit doubleword from a memory location,
and stores the value held in a register back to the same memory location. The value initially loaded from memory
is returned in the destination register.

• If the destination register is not one of WZR or XZR, SWPA and SWPAL load from memory with acquire
semantics.

• SWPL and SWPAL store to memory with release semantics.

• SWP has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LSE)

1 x

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

1

15

0 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size

32-bit SWP (size == 10 && A == 0 && R == 0)

SWP <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWP <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit SWPA (size == 10 && A == 1 && R == 0)

SWPA <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPA <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit SWPAL (size == 10 && A == 1 && R == 1)

SWPAL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPAL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit SWPL (size == 10 && A == 0 && R == 1)

SWPL <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPL <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit SWP (size == 11 && A == 0 && R == 0)

SWP <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWP <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit SWPA (size == 11 && A == 1 && R == 0)

SWPA <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPA <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit SWPAL (size == 11 && A == 1 && R == 1)

SWPAL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPAL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit SWPL (size == 11 && A == 0 && R == 1)

SWPL <Xs>, <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

715

Chapter 4. Instruction definitions
4.2. Modified base instructions

SWPL <Xs>, <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xs> Is the 64-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Xt> Is the 64-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation
1 bits(64) address;
2 bits(datasize) data;
3 bits(datasize) store_value;
4
5 store_value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
9

10 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

716

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.141 SWPB, SWPAB, SWPALB, SWPLB

Swap byte in memory atomically loads an 8-bit byte from a memory location, and stores the value held in a register
back to the same memory location. The value initially loaded from memory is returned in the destination register.

• If the destination register is not WZR, SWPAB and SWPALB load from memory with acquire semantics.

• SWPLB and SWPALB store to memory with release semantics.

• SWPB has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LSE)

0 0

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

1

15

0 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size

SWPAB (A == 1 && R == 0)

SWPAB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPAB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

SWPALB (A == 1 && R == 1)

SWPALB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPALB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

SWPB (A == 0 && R == 0)

SWPB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

SWPLB (A == 0 && R == 1)

SWPLB <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPLB <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

717

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(64) address;
2 bits(datasize) data;
3 bits(datasize) store_value;
4
5 store_value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
9

10 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

718

Chapter 4. Instruction definitions
4.2. Modified base instructions

4.2.142 SWPH, SWPAH, SWPALH, SWPLH

Swap halfword in memory atomically loads a 16-bit halfword from a memory location, and stores the value held in
a register back to the same memory location. The value initially loaded from memory is returned in the destination
register.

• If the destination register is not WZR, SWPAH and SWPALH load from memory with acquire semantics.

• SWPLH and SWPALH store to memory with release semantics.

• SWPH has no memory ordering requirements.

For more information about memory ordering semantics, see Load-Acquire, Store-Release.

For information about memory accesses, see Load/Store addressing modes.

Integer
(FEAT_LSE)

0 1

31 30

1 1 1

29 27

0

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

1

15

0 0 0

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size

SWPAH (A == 1 && R == 0)
SWPAH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPAH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

SWPALH (A == 1 && R == 1)
SWPALH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPALH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

SWPH (A == 0 && R == 0)
SWPH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

SWPLH (A == 0 && R == 1)
SWPLH <Ws>, <Wt>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPLH <Ws>, <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 if !HaveAtomicExt() then UNDEFINED;
2
3 integer t = UInt(Rt);
4 integer n = UInt(Rn);
5 integer s = UInt(Rs);
6
7 integer datasize = 8 << UInt(size);
8 integer regsize = if datasize == 64 then 64 else 32;
9 AccType ldacctype = if A == '1' && Rt != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

10 AccType stacctype = if R == '1' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register to be stored, encoded in the "Rs" field.

<Wt> Is the 32-bit name of the general-purpose register to be loaded, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

Operation

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

719

Chapter 4. Instruction definitions
4.2. Modified base instructions

1 bits(64) address;
2 bits(datasize) data;
3 bits(datasize) store_value;
4
5 store_value = X[s];
6
7 VirtualAddress base = BaseReg[n];
8 data = MemAtomic(base, MemAtomicOp_SWP, store_value, ldacctype, stacctype);
9

10 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

720

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3 Modified SIMD&FP instructions

4.3.1 LD1 (multiple structures)

Load multiple single-element structures to one, two, three, or four registers. This instruction loads multiple
single-element structures from memory and writes the result to one, two, three, or four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

1

22

0 0 0 0 0 0

21 16

x x 1 x

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

One register (opcode == 0111)

LD1 { <Vt>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

Two registers (opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

Three registers (opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

Four registers (opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

1

22

0

21

Rm

20 16

x x 1 x

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

One register, immediate offset (Rm == 11111 && opcode == 0111)

LD1 { <Vt>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

One register, register offset (Rm != 11111 && opcode == 0111)

LD1 { <Vt>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

Two registers, immediate offset (Rm == 11111 && opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

721

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

LD1 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Two registers, register offset (Rm != 11111 && opcode == 1010)

LD1 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

Three registers, immediate offset (Rm == 11111 && opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Three registers, register offset (Rm != 11111 && opcode == 0110)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

Four registers, immediate offset (Rm == 11111 && opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Four registers, register offset (Rm != 11111 && opcode == 0010)

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

722

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #8
1 #16

For the two registers, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #16
1 #32

For the three registers, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #24
1 #48

For the four registers, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

723

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

724

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.2 LD1 (single structure)

Load one single-element structure to one lane of one register. This instruction loads a single-element structure
from memory and writes the result to the specified lane of the SIMD&FP register without affecting the other bits
of the register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

0

21

0 0 0 0 0

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD1 { <Vt>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

0

21

Rm

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>], #1 // (PSTATE.C64 == '0')

LD1 { <Vt>.B }[<index>], [<Cn|CSP>], #1 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 000)

LD1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>], #2 // (PSTATE.C64 == '0')

LD1 { <Vt>.H }[<index>], [<Cn|CSP>], #2 // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

725

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

LD1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')

LD1 { <Vt>.S }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

LD1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')

LD1 { <Vt>.D }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

LD1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1 { <Vt>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

726

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

727

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.3 LD1R

Load one single-element structure and Replicate to all lanes (of one register). This instruction loads a single-element
structure from memory and replicates the structure to all the lanes of the SIMD&FP register.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

0

21

0 0 0 0 0

20 16

1 1 0

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

LD1R { <Vt>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD1R { <Vt>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

0

21

Rm

20 16

1 1 0

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

Immediate offset (Rm == 11111)

LD1R { <Vt>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD1R { <Vt>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

LD1R { <Vt>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD1R { <Vt>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

728

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"size":
size <imm>
00 #1
01 #2
10 #4
11 #8

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

729

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

730

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.4 LD2 (multiple structures)

Load multiple 2-element structures to two registers. This instruction loads multiple 2-element structures from
memory and writes the result to the two SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

1

22

0 0 0 0 0 0

21 16

1 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

LD2 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD2 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

1

22

0

21

Rm

20 16

1 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

Immediate offset (Rm == 11111)
LD2 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD2 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)
LD2 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD2 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

731

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

modulo 32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"Q":
Q <imm>
0 #16
1 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

732

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.5 LD2 (single structure)

Load single 2-element structure to one lane of two registers. This instruction loads a 2-element structure from
memory and writes the result to the corresponding elements of the two SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

1

21

0 0 0 0 0

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

1

21

Rm

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2 // (PSTATE.C64 == '0')

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>], #2 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 000)

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

733

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16 // (PSTATE.C64 == '0')

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>], #16 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

734

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

735

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.6 LD2R

Load single 2-element structure and Replicate to all lanes of two registers. This instruction loads a 2-element
structure from memory and replicates the structure to all the lanes of the two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

1

21

0 0 0 0 0

20 16

1 1 0

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

LD2R { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD2R { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

1

21

Rm

20 16

1 1 0

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

Immediate offset (Rm == 11111)

LD2R { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD2R { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

LD2R { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD2R { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

736

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"size":
size <imm>
00 #2
01 #4
10 #8
11 #16

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

737

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

738

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.7 LD3 (multiple structures)

Load multiple 3-element structures to three registers. This instruction loads multiple 3-element structures from
memory and writes the result to the three SIMD&FP registers, with de-interleaving.

The following figure shows an example of the operation of de-interleaving of a LD3.16 (multiple 3-element
structures) instruction:.

A[0].x

A[0].y

A[0].z

A[1].x

A[1].y

A[1].z

A[2].x

A[2].y

A[2].z

A[3].x

A[3].y

A[3].z

Memory

Z3 Z2 Z1 Z0 D2

Y3 Y1 D1

X3 X2 X1 D0

Y2 Y0

X0

Registers

A is a packed array of
3-element structures.
Each element is a 16-bit
halfword.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

1

22

0 0 0 0 0 0

21 16

0 1 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

1

22

0

21

Rm

20 16

0 1 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

Immediate offset (Rm == 11111)

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

739

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"Q":
Q <imm>
0 #24
1 #48

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

740

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

741

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.8 LD3 (single structure)

Load single 3-element structure to one lane of three registers). This instruction loads a 3-element structure from
memory and writes the result to the corresponding elements of the three SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

0

21

0 0 0 0 0

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 101 && size == 00)

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 101 && S == 0 && size == 01)

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

0

21

Rm

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3 // (PSTATE.C64 == '0')

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Cn|CSP>], #3 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 001)

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6 // (PSTATE.C64 == '0')

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Cn|CSP>], #6 // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

742

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)
LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)
LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12 // (PSTATE.C64 == '0')

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Cn|CSP>], #12 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)
LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)
LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24 // (PSTATE.C64 == '0')

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Cn|CSP>], #24 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)
LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

743

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

744

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.9 LD3R

Load single 3-element structure and Replicate to all lanes of three registers. This instruction loads a 3-element
structure from memory and replicates the structure to all the lanes of the three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

0

21

0 0 0 0 0

20 16

1 1 1

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

0

21

Rm

20 16

1 1 1

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

Immediate offset (Rm == 11111)

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD3R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

745

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"size":
size <imm>
00 #3
01 #6
10 #12
11 #24

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

746

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

747

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.10 LD4 (multiple structures)

Load multiple 4-element structures to four registers. This instruction loads multiple 4-element structures from
memory and writes the result to the four SIMD&FP registers, with de-interleaving.

For an example of de-interleaving, see LD3 (multiple structures).

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

1

22

0 0 0 0 0 0

21 16

0 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

1

22

0

21

Rm

20 16

0 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

Immediate offset (Rm == 11111)
LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)
LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

748

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"Q":
Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

749

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

750

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.11 LD4 (single structure)

Load single 4-element structure to one lane of four registers. This instruction loads a 4-element structure from
memory and writes the result to the corresponding elements of the four SIMD&FP registers without affecting the
other bits of the registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

1

21

0 0 0 0 0

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

1

21

Rm

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 001)

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

751

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16 // (PSTATE.C64 == '0')

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Cn|CSP>], #16 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32 // (PSTATE.C64 == '0')

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Cn|CSP>], #32 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

752

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

753

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.12 LD4R

Load single 4-element structure and Replicate to all lanes of four registers. This instruction loads a 4-element
structure from memory and replicates the structure to all the lanes of the four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

1

22

1

21

0 0 0 0 0

20 16

1 1 1

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

1

22

1

21

Rm

20 16

1 1 1

15 13

0

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S

Immediate offset (Rm == 11111)

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

LD4R { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

754

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"size":
size <imm>
00 #4
01 #8
10 #16
11 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

755

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

756

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.13 LDNP (SIMD&FP)

Load Pair of SIMD&FP registers, with Non-temporal hint. This instruction loads a pair of SIMD&FP registers
from memory, issuing a hint to the memory system that the access is non-temporal. The address that is used for the
load is calculated from a base register value and an optional immediate offset.

For information about non-temporal pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

opc

31 30

1 0 1

29 27

1

26

0 0 0

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

32-bit (opc == 00)

LDNP <St1>, <St2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDNP <St1>, <St2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 01)

LDNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDNP <Dt1>, <Dt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

128-bit (opc == 10)

LDNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDNP <Qt1>, <Qt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDNP (SIMD&FP).

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

757

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the
range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_VECSTREAM;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if opc == '11' then UNDEFINED;
7 integer scale = 2 + UInt(opc);
8 integer datasize = 8 << scale;
9 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(datasize) data1;
4 bits(datasize) data2;
5 constant integer dbytes = datasize DIV 8;
6 boolean rt_unknown = FALSE;
7
8 if memop == MemOp_LOAD && t == t2 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);

10 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 VirtualAddress base = BaseReg[n];
17 bits(64) address = VAddress(base);
18 if ! postindex then
19 address = address + offset;
20
21 case memop of
22 when MemOp_STORE
23 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
24 data1 = V[t];
25 data2 = V[t2];
26 Mem[address + 0 , dbytes, acctype] = data1;
27 Mem[address + dbytes, dbytes, acctype] = data2;
28
29 when MemOp_LOAD
30 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
31 data1 = Mem[address + 0 , dbytes, acctype];
32 data2 = Mem[address + dbytes, dbytes, acctype];
33 if rt_unknown then
34 data1 = bits(datasize) UNKNOWN;
35 data2 = bits(datasize) UNKNOWN;
36 V[t] = data1;
37 V[t2] = data2;
38
39 if wback then
40 base = VAAdd(base,offset);
41
42 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

758

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.14 LDP (SIMD&FP)

Load Pair of SIMD&FP registers. This instruction loads a pair of SIMD&FP registers from memory. The address
that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

opc

31 30

1 0 1

29 27

1

26

0 0 1

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDP <St1>, <St2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDP <Dt1>, <Dt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDP <Qt1>, <Qt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;

Pre-index

opc

31 30

1 0 1

29 27

1

26

0 1 1

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDP <St1>, <St2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDP <Dt1>, <Dt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDP <Qt1>, <Qt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;

Signed offset

opc

31 30

1 0 1

29 27

1

26

0 1 0

25 23

1

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

759

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

32-bit (opc == 00)

LDP <St1>, <St2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDP <St1>, <St2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 01)

LDP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDP <Dt1>, <Dt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

128-bit (opc == 10)

LDP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDP <Qt1>, <Qt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Architectural Con-
straints on UNPREDICTABLE behaviors, and particularly LDP (SIMD&FP).

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset,
a multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as
<imm>/16.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

760

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_VEC;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if opc == '11' then UNDEFINED;
7 integer scale = 2 + UInt(opc);
8 integer datasize = 8 << scale;
9 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(datasize) data1;
4 bits(datasize) data2;
5 constant integer dbytes = datasize DIV 8;
6 boolean rt_unknown = FALSE;
7
8 if memop == MemOp_LOAD && t == t2 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);

10 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 VirtualAddress base = BaseReg[n];
17 bits(64) address = VAddress(base);
18 if ! postindex then
19 address = address + offset;
20
21 case memop of
22 when MemOp_STORE
23 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
24 data1 = V[t];
25 data2 = V[t2];
26 Mem[address + 0 , dbytes, acctype] = data1;
27 Mem[address + dbytes, dbytes, acctype] = data2;
28
29 when MemOp_LOAD
30 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
31 data1 = Mem[address + 0 , dbytes, acctype];
32 data2 = Mem[address + dbytes, dbytes, acctype];
33 if rt_unknown then
34 data1 = bits(datasize) UNKNOWN;
35 data2 = bits(datasize) UNKNOWN;
36 V[t] = data1;
37 V[t2] = data2;
38
39 if wback then
40 base = VAAdd(base,offset);
41
42 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

761

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.15 LDR (immediate, SIMD&FP)

Load SIMD&FP Register (immediate offset). This instruction loads an element from memory, and writes the result
as a scalar to the SIMD&FP register. The address that is used for the load is calculated from a base register value,
a signed immediate offset, and an optional offset that is a multiple of the element size.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 1

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <Bt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <Ht>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <St>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <Dt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

LDR <Qt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = SignExtend(imm9, 64);

Pre-index

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 1

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <Bt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <Ht>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

762

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <St>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <Dt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

LDR <Qt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

size

31 30

1 1 1

29 27

1

26

0 1

25 24

x 1

23 22

imm12

21 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 01)

LDR <Bt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDR <Bt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 01)

LDR <Ht>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDR <Ht>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

32-bit (size == 10 && opc == 01)

LDR <St>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDR <St>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 01)

LDR <Dt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDR <Dt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 11)

LDR <Qt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

LDR <Qt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

763

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the
range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the
range 0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_VEC;
4 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
5 integer datasize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2 bits(64) address;
3 bits(datasize) data;
4
5 VirtualAddress base;
6
7 base = BaseReg[n];
8 address = VAddress(base);
9

10 if ! postindex then
11 address = address + offset;
12
13 case memop of
14 when MemOp_STORE
15 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
16 data = V[t];
17 Mem[address, datasize DIV 8, acctype] = data;
18
19 when MemOp_LOAD
20 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
21 data = Mem[address, datasize DIV 8, acctype];
22 V[t] = data;
23
24 if wback then
25 base = VAAdd(base,offset);
26
27 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

764

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.16 LDR (literal, SIMD&FP)

Load SIMD&FP Register (PC-relative literal). This instruction loads a SIMD&FP register from memory. The
address that is used for the load is calculated from the PC value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

opc

31 30

0 1 1

29 27

1

26

0 0

25 24

imm19

23 5

Rt

4 0

32-bit (opc == 00)

LDR <St>, <label>

64-bit (opc == 01)

LDR <Dt>, <label>

128-bit (opc == 10)

LDR <Qt>, <label>

1 integer t = UInt(Rt);
2 integer size;
3 bits(64) offset;
4
5 case opc of
6 when '00'
7 size = 4;
8 when '01'
9 size = 8;

10 when '10'
11 size = 16;
12 when '11'
13 UNDEFINED;
14
15 offset = SignExtend(imm19:'00', 64);

Assembler Symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be loaded, encoded in the "Rt" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, is encoded as "imm19" times 4.

Operation
1 VirtualAddress base = VAFromCapability(PCC);
2 bits(64) address = VAddress(base) + offset;
3
4 bits(size*8) data;
5
6 CheckFPAdvSIMDEnabled64();
7
8 VACheckAddress(base, address, size, CAP_PERM_LOAD, AccType_VEC);
9

10 data = Mem[address, size, AccType_VEC];
11 V[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

765

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.17 LDR (register, SIMD&FP)

Load SIMD&FP Register (register offset). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from a base register value and an offset register value. The offset can be
optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 1

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

opc

8-fsreg,LDR-8-fsreg (size == 00 && opc == 01 && option != 011)
LDR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '0')

LDR <Bt>, [<Cn|CSP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '1')

8-fsreg,LDR-8-fsreg (size == 00 && opc == 01 && option == 011)
LDR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '0')

LDR <Bt>, [<Cn|CSP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '1')

16-fsreg,LDR-16-fsreg (size == 01 && opc == 01)
LDR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDR <Ht>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

32-fsreg,LDR-32-fsreg (size == 10 && opc == 01)
LDR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDR <St>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

64-fsreg,LDR-64-fsreg (size == 11 && opc == 01)
LDR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDR <Dt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

128-fsreg,LDR-128-fsreg (size == 00 && opc == 11)
LDR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

LDR <Qt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 if option<1> == '0' then UNDEFINED; // sub-word index
6 ExtendType extend_type = DecodeRegExtend(option);
7 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

766

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in"option":
option <extend>
010 UXTW
110 SXTW
111 SXTX

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting
to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded
in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted,
or as 1 if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #3

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #4

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_VEC;
5 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
6 integer datasize = 8 << scale;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

767

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 CheckFPAdvSIMDEnabled64();
4 bits(64) address;
5 bits(datasize) data;
6
7 VirtualAddress base;
8
9 base = BaseReg[n];

10 address = VAddress(base);
11
12 if ! postindex then
13 address = address + offset;
14
15 case memop of
16 when MemOp_STORE
17 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
18 data = V[t];
19 Mem[address, datasize DIV 8, acctype] = data;
20
21 when MemOp_LOAD
22 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
23 data = Mem[address, datasize DIV 8, acctype];
24 V[t] = data;
25
26 if wback then
27 base = VAAdd(base,offset);
28
29 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

768

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.18 LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled offset). This instruction loads a SIMD&FP register from memory. The address
that is used for the load is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 1

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 01)
LDUR <Bt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <Bt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 01)
LDUR <Ht>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <Ht>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

32-bit (size == 10 && opc == 01)
LDUR <St>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <St>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 01)
LDUR <Dt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <Dt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 11)
LDUR <Qt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

LDUR <Qt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

769

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_VEC;
4 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
5 integer datasize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2 bits(64) address;
3 bits(datasize) data;
4
5 VirtualAddress base;
6
7 base = BaseReg[n];
8 address = VAddress(base);
9

10 if ! postindex then
11 address = address + offset;
12
13 case memop of
14 when MemOp_STORE
15 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
16 data = V[t];
17 Mem[address, datasize DIV 8, acctype] = data;
18
19 when MemOp_LOAD
20 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
21 data = Mem[address, datasize DIV 8, acctype];
22 V[t] = data;
23
24 if wback then
25 base = VAAdd(base,offset);
26
27 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

770

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.19 ST1 (multiple structures)

Store multiple single-element structures from one, two, three, or four registers. This instruction stores elements to
memory from one, two, three, or four SIMD&FP registers, without interleaving. Every element of each register is
stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

0

22

0 0 0 0 0 0

21 16

x x 1 x

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

One register (opcode == 0111)

ST1 { <Vt>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

Two registers (opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

Three registers (opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

Four registers (opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

0

22

0

21

Rm

20 16

x x 1 x

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

One register, immediate offset (Rm == 11111 && opcode == 0111)

ST1 { <Vt>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

One register, register offset (Rm != 11111 && opcode == 0111)

ST1 { <Vt>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

Two registers, immediate offset (Rm == 11111 && opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

771

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

Two registers, register offset (Rm != 11111 && opcode == 1010)

ST1 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

Three registers, immediate offset (Rm == 11111 && opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Three registers, register offset (Rm != 11111 && opcode == 0110)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

Four registers, immediate offset (Rm == 11111 && opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Four registers, register offset (Rm != 11111 && opcode == 0010)

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 1D
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the one register, immediate offset variant: is the post-index immediate offset, encoded

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

772

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

in"Q":
Q <imm>
0 #8
1 #16

For the two registers, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #16
1 #32

For the three registers, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #24
1 #48

For the four registers, immediate offset variant: is the post-index immediate offset, encoded
in"Q":

Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

773

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

774

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.20 ST1 (single structure)

Store a single-element structure from one lane of one register. This instruction stores the specified element of a
SIMD&FP register to memory.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

0

22

0

21

0 0 0 0 0

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 000)
ST1 { <Vt>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 010 && size == x0)
ST1 { <Vt>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 100 && size == 00)
ST1 { <Vt>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 100 && S == 0 && size == 01)
ST1 { <Vt>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST1 { <Vt>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

0

22

0

21

Rm

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 000)
ST1 { <Vt>.B }[<index>], [<Xn|SP>], #1 // (PSTATE.C64 == '0')

ST1 { <Vt>.B }[<index>], [<Cn|CSP>], #1 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 000)
ST1 { <Vt>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)
ST1 { <Vt>.H }[<index>], [<Xn|SP>], #2 // (PSTATE.C64 == '0')

ST1 { <Vt>.H }[<index>], [<Cn|CSP>], #2 // (PSTATE.C64 == '1')

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

775

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

ST1 { <Vt>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)
ST1 { <Vt>.S }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')

ST1 { <Vt>.S }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)
ST1 { <Vt>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)
ST1 { <Vt>.D }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')

ST1 { <Vt>.D }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)
ST1 { <Vt>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST1 { <Vt>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

776

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

777

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.21 ST2 (multiple structures)

Store multiple 2-element structures from two registers. This instruction stores multiple 2-element structures from
two SIMD&FP registers to memory, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

0

22

0 0 0 0 0 0

21 16

1 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

ST2 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST2 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

0

22

0

21

Rm

20 16

1 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

Immediate offset (Rm == 11111)

ST2 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST2 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

ST2 { <Vt>.<T>, <Vt2>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST2 { <Vt>.<T>, <Vt2>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

778

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"Q":
Q <imm>
0 #16
1 #32

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

779

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.22 ST2 (single structure)

Store single 2-element structure from one lane of two registers. This instruction stores a 2-element structure to
memory from corresponding elements of two SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

0

22

1

21

0 0 0 0 0

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 000)
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 010 && size == x0)
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 100 && size == 00)
ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 100 && S == 0 && size == 01)
ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

0

22

1

21

Rm

20 16

x x 0

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 000)
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], #2 // (PSTATE.C64 == '0')

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>], #2 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 000)
ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST2 { <Vt>.B, <Vt2>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 010 && size == x0)
ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')

16-bit, register offset (Rm != 11111 && opcode == 010 && size == x0)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

780

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST2 { <Vt>.H, <Vt2>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 100 && size == 00)

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST2 { <Vt>.S, <Vt2>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], #16 // (PSTATE.C64 == '0')

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>], #16 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 100 && S == 0 && size == 01)

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST2 { <Vt>.D, <Vt2>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

781

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

782

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.23 ST3 (multiple structures)

Store multiple 3-element structures from three registers. This instruction stores multiple 3-element structures to
memory from three SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

0

22

0 0 0 0 0 0

21 16

0 1 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

0

22

0

21

Rm

20 16

0 1 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

Immediate offset (Rm == 11111)

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST3 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

783

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"Q":
Q <imm>
0 #24
1 #48

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then
31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

784

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.24 ST3 (single structure)

Store single 3-element structure from one lane of three registers. This instruction stores a 3-element structure to
memory from corresponding elements of three SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

0

22

0

21

0 0 0 0 0

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 001)
ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 011 && size == x0)
ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 101 && size == 00)
ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 101 && S == 0 && size == 01)
ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

0

22

0

21

Rm

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 001)
ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], #3 // (PSTATE.C64 == '0')

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Cn|CSP>], #3 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 001)
ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST3 { <Vt>.B, <Vt2>.B, <Vt3>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)
ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], #6 // (PSTATE.C64 == '0')

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Cn|CSP>], #6 // (PSTATE.C64 == '1')

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

785

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST3 { <Vt>.H, <Vt2>.H, <Vt3>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], #12 // (PSTATE.C64 == '0')

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Cn|CSP>], #12 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST3 { <Vt>.S, <Vt2>.S, <Vt3>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], #24 // (PSTATE.C64 == '0')

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Cn|CSP>], #24 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST3 { <Vt>.D, <Vt2>.D, <Vt3>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

786

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

9 if L == '0' || S == '1' then UNDEFINED;
10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

787

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.25 ST4 (multiple structures)

Store multiple 4-element structures from four registers. This instruction stores multiple 4-element structures to
memory from four SIMD&FP registers, with interleaving. Every element of each register is stored.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 0 0

29 23

0

22

0 0 0 0 0 0

21 16

0 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>] // (PSTATE.C64 == '0')

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 0 1

29 23

0

22

0

21

Rm

20 16

0 0 0 0

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode

Immediate offset (Rm == 11111)

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <imm> // (PSTATE.C64 == '0')

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <imm> // (PSTATE.C64 == '1')

Register offset (Rm != 11111)

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST4 { <Vt>.<T>, <Vt2>.<T>, <Vt3>.<T>, <Vt4>.<T>}, [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<T> Is an arrangement specifier, encoded in"size:Q":
size Q <T>
00 0 8B
00 1 16B
01 0 4H
01 1 8H
10 0 2S
10 1 4S
11 0 RESERVED
11 1 2D

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

788

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> Is the post-index immediate offset, encoded in"Q":
Q <imm>
0 #32
1 #64

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode
1 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
2 integer datasize = if Q == '1' then 128 else 64;
3 integer esize = 8 << UInt(size);
4 integer elements = datasize DIV esize;
5
6 integer rpt; // number of iterations
7 integer selem; // structure elements
8
9 case opcode of

10 when '0000' rpt = 1; selem = 4; // LD/ST4 (4 registers)
11 when '0010' rpt = 4; selem = 1; // LD/ST1 (4 registers)
12 when '0100' rpt = 1; selem = 3; // LD/ST3 (3 registers)
13 when '0110' rpt = 3; selem = 1; // LD/ST1 (3 registers)
14 when '0111' rpt = 1; selem = 1; // LD/ST1 (1 register)
15 when '1000' rpt = 1; selem = 2; // LD/ST2 (2 registers)
16 when '1010' rpt = 2; selem = 1; // LD/ST1 (2 registers)
17 otherwise UNDEFINED;
18
19 // .1D format only permitted with LD1 & ST1
20 if size:Q == '110' && selem != 1 then UNDEFINED;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(datasize) rval;
6 integer tt;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if memop == MemOp_LOAD then
12 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, rpt * elements * selem * ebytes, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 for r = 0 to rpt-1
18 for e = 0 to elements-1
19 tt = (t + r) MOD 32;
20 for s = 0 to selem-1
21 rval = V[tt];
22 if memop == MemOp_LOAD then
23 Elem[rval, e, esize] = Mem[address + offs, ebytes, AccType_VEC];
24 V[tt] = rval;
25 else // memop == MemOp_STORE
26 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, e, esize];
27 offs = offs + ebytes;
28 tt = (tt + 1) MOD 32;
29
30 if wback then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

789

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

31 if m != 31 then
32 offs = X[m];
33 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

790

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.26 ST4 (single structure)

Store single 4-element structure from one lane of four registers. This instruction stores a 4-element structure to
memory from corresponding elements of four SIMD&FP registers.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 2 classes: No offset and Post-index

No offset

0

31

Q

30

0 0 1 1 0 1 0

29 23

0

22

1

21

0 0 0 0 0

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit (opcode == 001)
ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

16-bit (opcode == 011 && size == x0)
ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

32-bit (opcode == 101 && size == 00)
ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

64-bit (opcode == 101 && S == 0 && size == 01)
ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>] // (PSTATE.C64 == '0')

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = integer UNKNOWN;
4 boolean wback = FALSE;

Post-index

0

31

Q

30

0 0 1 1 0 1 1

29 23

0

22

1

21

Rm

20 16

x x 1

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode

8-bit, immediate offset (Rm == 11111 && opcode == 001)
ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], #4 // (PSTATE.C64 == '0')

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Cn|CSP>], #4 // (PSTATE.C64 == '1')

8-bit, register offset (Rm != 11111 && opcode == 001)
ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST4 { <Vt>.B, <Vt2>.B, <Vt3>.B, <Vt4>.B }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

16-bit, immediate offset (Rm == 11111 && opcode == 011 && size == x0)
ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], #8 // (PSTATE.C64 == '0')

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Cn|CSP>], #8 // (PSTATE.C64 == '1')

16-bit, register offset (Rm != 11111 && opcode == 011 && size == x0)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

791

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST4 { <Vt>.H, <Vt2>.H, <Vt3>.H, <Vt4>.H }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

32-bit, immediate offset (Rm == 11111 && opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], #16 // (PSTATE.C64 == '0')

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Cn|CSP>], #16 // (PSTATE.C64 == '1')

32-bit, register offset (Rm != 11111 && opcode == 101 && size == 00)

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST4 { <Vt>.S, <Vt2>.S, <Vt3>.S, <Vt4>.S }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

64-bit, immediate offset (Rm == 11111 && opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], #32 // (PSTATE.C64 == '0')

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Cn|CSP>], #32 // (PSTATE.C64 == '1')

64-bit, register offset (Rm != 11111 && opcode == 101 && S == 0 && size == 01)

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Xn|SP>], <Xm> // (PSTATE.C64 == '0')

ST4 { <Vt>.D, <Vt2>.D, <Vt3>.D, <Vt4>.D }[<index>], [<Cn|CSP>], <Xm> // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 boolean wback = TRUE;

Assembler Symbols

<Vt> Is the name of the first or only SIMD&FP register to be transferred, encoded in the "Rt" field.

<Vt2> Is the name of the second SIMD&FP register to be transferred, encoded as "Rt" plus 1
modulo 32.

<Vt3> Is the name of the third SIMD&FP register to be transferred, encoded as "Rt" plus 2 modulo
32.

<Vt4> Is the name of the fourth SIMD&FP register to be transferred, encoded as "Rt" plus 3 modulo
32.

<index> For the 8-bit variant: is the element index, encoded in "Q:S:size".

For the 16-bit variant: is the element index, encoded in "Q:S:size<1>".

For the 32-bit variant: is the element index, encoded in "Q:S".

For the 64-bit variant: is the element index, encoded in "Q".

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Xm> Is the 64-bit name of the general-purpose post-index register, excluding XZR, encoded in the
"Rm" field.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

792

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

1 integer scale = UInt(opcode<2:1>);
2 integer selem = UInt(opcode<0>:R) + 1;
3 boolean replicate = FALSE;
4 integer index;
5
6 case scale of
7 when 3
8 // load and replicate
9 if L == '0' || S == '1' then UNDEFINED;

10 scale = UInt(size);
11 replicate = TRUE;
12 when 0
13 index = UInt(Q:S:size); // B[0-15]
14 when 1
15 if size<0> == '1' then UNDEFINED;
16 index = UInt(Q:S:size<1>); // H[0-7]
17 when 2
18 if size<1> == '1' then UNDEFINED;
19 if size<0> == '0' then
20 index = UInt(Q:S); // S[0-3]
21 else
22 if S == '1' then UNDEFINED;
23 index = UInt(Q); // D[0-1]
24 scale = 3;
25
26 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
27 integer datasize = if Q == '1' then 128 else 64;
28 integer esize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(64) address;
4 bits(64) offs;
5 bits(128) rval;
6 bits(esize) element;
7 constant integer ebytes = esize DIV 8;
8
9 VirtualAddress base = BaseReg[n];

10 address = VAddress(base);
11 if replicate || memop == MemOp_LOAD then
12 VACheckAddress(base, address, ebytes * selem, CAP_PERM_LOAD, AccType_VEC);
13 else
14 VACheckAddress(base, address, ebytes * selem, CAP_PERM_STORE, AccType_VEC);
15
16 offs = Zeros();
17 if replicate then
18 // load and replicate to all elements
19 for s = 0 to selem-1
20 element = Mem[address + offs, ebytes, AccType_VEC];
21 // replicate to fill 128- or 64-bit register
22 V[t] = Replicate(element, datasize DIV esize);
23 offs = offs + ebytes;
24 t = (t + 1) MOD 32;
25 else
26 // load/store one element per register
27 for s = 0 to selem-1
28 rval = V[t];
29 if memop == MemOp_LOAD then
30 // insert into one lane of 128-bit register
31 Elem[rval, index, esize] = Mem[address + offs, ebytes, AccType_VEC];
32 V[t] = rval;
33 else // memop == MemOp_STORE
34 // extract from one lane of 128-bit register
35 Mem[address + offs, ebytes, AccType_VEC] = Elem[rval, index, esize];
36 offs = offs + ebytes;
37 t = (t + 1) MOD 32;
38
39 if wback then
40 if m != 31 then
41 offs = X[m];
42 BaseReg[n] = VAAdd(base, offs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

793

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.27 STNP (SIMD&FP)

Store Pair of SIMD&FP registers, with Non-temporal hint. This instruction stores a pair of SIMD&FP registers to
memory, issuing a hint to the memory system that the access is non-temporal. The address used for the store is
calculated from an address from a base register value and an immediate offset. For information about non-temporal
pair instructions, see Load/Store SIMD and Floating-point Non-temporal pair.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

opc

31 30

1 0 1

29 27

1

26

0 0 0

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

32-bit (opc == 00)
STNP <St1>, <St2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STNP <St1>, <St2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 01)
STNP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STNP <Dt1>, <Dt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

128-bit (opc == 10)
STNP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STNP <Qt1>, <Qt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit variant: is the optional signed immediate byte offset, a multiple of 4 in the
range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit variant: is the optional signed immediate byte offset, a multiple of 8 in the
range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit variant: is the optional signed immediate byte offset, a multiple of 16 in the
range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as <imm>/16.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

794

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);
4 AccType acctype = AccType_VECSTREAM;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if opc == '11' then UNDEFINED;
7 integer scale = 2 + UInt(opc);
8 integer datasize = 8 << scale;
9 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(datasize) data1;
4 bits(datasize) data2;
5 constant integer dbytes = datasize DIV 8;
6 boolean rt_unknown = FALSE;
7
8 if memop == MemOp_LOAD && t == t2 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);

10 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 VirtualAddress base = BaseReg[n];
17 bits(64) address = VAddress(base);
18 if ! postindex then
19 address = address + offset;
20
21 case memop of
22 when MemOp_STORE
23 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
24 data1 = V[t];
25 data2 = V[t2];
26 Mem[address + 0 , dbytes, acctype] = data1;
27 Mem[address + dbytes, dbytes, acctype] = data2;
28
29 when MemOp_LOAD
30 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
31 data1 = Mem[address + 0 , dbytes, acctype];
32 data2 = Mem[address + dbytes, dbytes, acctype];
33 if rt_unknown then
34 data1 = bits(datasize) UNKNOWN;
35 data2 = bits(datasize) UNKNOWN;
36 V[t] = data1;
37 V[t2] = data2;
38
39 if wback then
40 base = VAAdd(base,offset);
41
42 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

795

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.28 STP (SIMD&FP)

Store Pair of SIMD&FP registers. This instruction stores a pair of SIMD&FP registers to memory. The address
used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Signed offset

Post-index

opc

31 30

1 0 1

29 27

1

26

0 0 1

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STP <St1>, <St2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STP <Dt1>, <Dt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STP <Qt1>, <Qt2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;

Pre-index

opc

31 30

1 0 1

29 27

1

26

0 1 1

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STP <St1>, <St2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STP <Dt1>, <Dt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STP <Qt1>, <Qt2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;

Signed offset

opc

31 30

1 0 1

29 27

1

26

0 1 0

25 23

0

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

L

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

796

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

32-bit (opc == 00)

STP <St1>, <St2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STP <St1>, <St2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

64-bit (opc == 01)

STP <Dt1>, <Dt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STP <Dt1>, <Dt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

128-bit (opc == 10)

STP <Qt1>, <Qt2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STP <Qt1>, <Qt2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;

Assembler Symbols

<Dt1> Is the 64-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt2> Is the 64-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Qt1> Is the 128-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt2> Is the 128-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<St1> Is the 32-bit name of the first SIMD&FP register to be transferred, encoded in the "Rt" field.

<St2> Is the 32-bit name of the second SIMD&FP register to be transferred, encoded in the "Rt2"
field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<imm> For the 32-bit post-index and 32-bit pre-index variant: is the signed immediate byte offset, a
multiple of 4 in the range -256 to 252, encoded in the "imm7" field as <imm>/4.

For the 32-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 4 in the range -256 to 252, defaulting to 0 and encoded in the "imm7" field as <imm>/4.

For the 64-bit post-index and 64-bit pre-index variant: is the signed immediate byte offset, a
multiple of 8 in the range -512 to 504, encoded in the "imm7" field as <imm>/8.

For the 64-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 8 in the range -512 to 504, defaulting to 0 and encoded in the "imm7" field as <imm>/8.

For the 128-bit post-index and 128-bit pre-index variant: is the signed immediate byte offset,
a multiple of 16 in the range -1024 to 1008, encoded in the "imm7" field as <imm>/16.

For the 128-bit signed offset variant: is the optional signed immediate byte offset, a multiple
of 16 in the range -1024 to 1008, defaulting to 0 and encoded in the "imm7" field as
<imm>/16.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer t2 = UInt(Rt2);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

797

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4 AccType acctype = AccType_VEC;
5 MemOp memop = if L == '1' then MemOp_LOAD else MemOp_STORE;
6 if opc == '11' then UNDEFINED;
7 integer scale = 2 + UInt(opc);
8 integer datasize = 8 << scale;
9 bits(64) offset = LSL(SignExtend(imm7, 64), scale);

Operation
1 CheckFPAdvSIMDEnabled64();
2
3 bits(datasize) data1;
4 bits(datasize) data2;
5 constant integer dbytes = datasize DIV 8;
6 boolean rt_unknown = FALSE;
7
8 if memop == MemOp_LOAD && t == t2 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);

10 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
13 when Constraint_UNDEF UNDEFINED;
14 when Constraint_NOP EndOfInstruction();
15
16 VirtualAddress base = BaseReg[n];
17 bits(64) address = VAddress(base);
18 if ! postindex then
19 address = address + offset;
20
21 case memop of
22 when MemOp_STORE
23 VACheckAddress(base, address, dbytes * 2, CAP_PERM_STORE, acctype);
24 data1 = V[t];
25 data2 = V[t2];
26 Mem[address + 0 , dbytes, acctype] = data1;
27 Mem[address + dbytes, dbytes, acctype] = data2;
28
29 when MemOp_LOAD
30 VACheckAddress(base, address, dbytes * 2, CAP_PERM_LOAD, acctype);
31 data1 = Mem[address + 0 , dbytes, acctype];
32 data2 = Mem[address + dbytes, dbytes, acctype];
33 if rt_unknown then
34 data1 = bits(datasize) UNKNOWN;
35 data2 = bits(datasize) UNKNOWN;
36 V[t] = data1;
37 V[t2] = data2;
38
39 if wback then
40 base = VAAdd(base,offset);
41
42 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

798

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.29 STR (immediate, SIMD&FP)

Store SIMD&FP register (immediate offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

It has encodings from 3 classes: Post-index , Pre-index and Unsigned offset

Post-index

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 0

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <Bt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <Ht>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <St>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <Dt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>], #<simm> // (PSTATE.C64 == '0')

STR <Qt>, [<Cn|CSP>], #<simm> // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = TRUE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = SignExtend(imm9, 64);

Pre-index

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 0

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <Bt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <Ht>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

799

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <St>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <Dt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>, #<simm>]! // (PSTATE.C64 == '0')

STR <Qt>, [<Cn|CSP>, #<simm>]! // (PSTATE.C64 == '1')

1 boolean wback = TRUE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

size

31 30

1 1 1

29 27

1

26

0 1

25 24

x 0

23 22

imm12

21 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 00)

STR <Bt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <Bt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 00)

STR <Ht>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <Ht>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

32-bit (size == 10 && opc == 00)

STR <St>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <St>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 00)

STR <Dt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <Dt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 10)

STR <Qt>, [<Xn|SP>{, #<pimm>}] // (PSTATE.C64 == '0')

STR <Qt>, [<Cn|CSP>{, #<pimm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = LSL(ZeroExtend(imm12, 64), scale);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

800

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> For the 8-bit variant: is the optional positive immediate byte offset, in the range 0 to 4095,
defaulting to 0 and encoded in the "imm12" field.

For the 16-bit variant: is the optional positive immediate byte offset, a multiple of 2 in the
range 0 to 8190, defaulting to 0 and encoded in the "imm12" field as <pimm>/2.

For the 32-bit variant: is the optional positive immediate byte offset, a multiple of 4 in the
range 0 to 16380, defaulting to 0 and encoded in the "imm12" field as <pimm>/4.

For the 64-bit variant: is the optional positive immediate byte offset, a multiple of 8 in the
range 0 to 32760, defaulting to 0 and encoded in the "imm12" field as <pimm>/8.

For the 128-bit variant: is the optional positive immediate byte offset, a multiple of 16 in the
range 0 to 65520, defaulting to 0 and encoded in the "imm12" field as <pimm>/16.

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_VEC;
4 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
5 integer datasize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2 bits(64) address;
3 bits(datasize) data;
4
5 VirtualAddress base;
6
7 base = BaseReg[n];
8 address = VAddress(base);
9

10 if ! postindex then
11 address = address + offset;
12
13 case memop of
14 when MemOp_STORE
15 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
16 data = V[t];
17 Mem[address, datasize DIV 8, acctype] = data;
18
19 when MemOp_LOAD
20 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
21 data = Mem[address, datasize DIV 8, acctype];
22 V[t] = data;
23
24 if wback then
25 base = VAAdd(base,offset);
26
27 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

801

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.30 STR (register, SIMD&FP)

Store SIMD&FP register (register offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an offset register value. The offset can
be optionally shifted and extended.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 0

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

opc

8-fsreg,STR-8-fsreg (size == 00 && opc == 00 && option != 011)
STR <Bt>, [<Xn|SP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '0')

STR <Bt>, [<Cn|CSP>, (<Wm>|<Xm>), <extend>{<amount>}] // (PSTATE.C64 == '1')

8-fsreg,STR-8-fsreg (size == 00 && opc == 00 && option == 011)
STR <Bt>, [<Xn|SP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '0')

STR <Bt>, [<Cn|CSP>, <Xm>{, LSL <amount>}] // (PSTATE.C64 == '1')

16-fsreg,STR-16-fsreg (size == 01 && opc == 00)
STR <Ht>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STR <Ht>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

32-fsreg,STR-32-fsreg (size == 10 && opc == 00)
STR <St>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STR <St>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

64-fsreg,STR-64-fsreg (size == 11 && opc == 00)
STR <Dt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STR <Dt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

128-fsreg,STR-128-fsreg (size == 00 && opc == 10)
STR <Qt>, [<Xn|SP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '0')

STR <Qt>, [<Cn|CSP>, (<Wm>|<Xm>){, <extend>{<amount>}}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 if option<1> == '0' then UNDEFINED; // sub-word index
6 ExtendType extend_type = DecodeRegExtend(option);
7 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

802

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<Wm> When option<0> is set to 0, is the 32-bit name of the general-purpose index register, encoded
in the "Rm" field.

<Xm> When option<0> is set to 1, is the 64-bit name of the general-purpose index register, encoded
in the "Rm" field.

<extend> For the 8-bit variant: is the index extend specifier, encoded in"option":
option <extend>
010 UXTW
110 SXTW
111 SXTX

For the 128-bit, 16-bit, 32-bit and 64-bit variant: is the index extend/shift specifier, defaulting
to LSL, and which must be omitted for the LSL option when <amount> is omitted. encoded
in"option":

option <extend>
010 UXTW
011 LSL
110 SXTW
111 SXTX

<amount> For the 8-bit variant: is the index shift amount, it must be #0, encoded in "S" as 0 if omitted,
or as 1 if present.

For the 16-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #1

For the 32-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #2

For the 64-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #3

For the 128-bit variant: is the index shift amount, optional only when <extend> is not LSL.
Where it is permitted to be optional, it defaults to #0. It is encoded in"S":

S <amount>
0 #0
1 #4

Shared Decode
1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 integer m = UInt(Rm);
4 AccType acctype = AccType_VEC;
5 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
6 integer datasize = 8 << scale;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

803

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

Operation
1 bits(64) offset = ExtendReg(m, extend_type, shift);
2
3 CheckFPAdvSIMDEnabled64();
4 bits(64) address;
5 bits(datasize) data;
6
7 VirtualAddress base;
8
9 base = BaseReg[n];

10 address = VAddress(base);
11
12 if ! postindex then
13 address = address + offset;
14
15 case memop of
16 when MemOp_STORE
17 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
18 data = V[t];
19 Mem[address, datasize DIV 8, acctype] = data;
20
21 when MemOp_LOAD
22 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
23 data = Mem[address, datasize DIV 8, acctype];
24 V[t] = data;
25
26 if wback then
27 base = VAAdd(base,offset);
28
29 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

804

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

4.3.31 STUR (SIMD&FP)

Store SIMD&FP register (unscaled offset). This instruction stores a single SIMD&FP register to memory. The
address that is used for the store is calculated from a base register value and an optional immediate offset.

Depending on the settings in the CPACR_EL1, CPTR_EL2, and CPTR_EL3 registers, and the current Security
state and Exception level, an attempt to execute the instruction might be trapped.

size

31 30

1 1 1

29 27

1

26

0 0

25 24

x 0

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

opc

8-bit (size == 00 && opc == 00)
STUR <Bt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <Bt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

16-bit (size == 01 && opc == 00)
STUR <Ht>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <Ht>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

32-bit (size == 10 && opc == 00)
STUR <St>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <St>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

64-bit (size == 11 && opc == 00)
STUR <Dt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <Dt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

128-bit (size == 00 && opc == 10)
STUR <Qt>, [<Xn|SP>{, #<simm>}] // (PSTATE.C64 == '0')

STUR <Qt>, [<Cn|CSP>{, #<simm>}] // (PSTATE.C64 == '1')

1 boolean wback = FALSE;
2 boolean postindex = FALSE;
3 integer scale = UInt(opc<1>:size);
4 if scale > 4 then UNDEFINED;
5 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the name of the capability register or capability stack pointer holding the base address,
encoded in the "Rn" field.

<simm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0 and
encoded in the "imm9" field.

Shared Decode

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

805

Chapter 4. Instruction definitions
4.3. Modified SIMD&FP instructions

1 integer n = UInt(Rn);
2 integer t = UInt(Rt);
3 AccType acctype = AccType_VEC;
4 MemOp memop = if opc<0> == '1' then MemOp_LOAD else MemOp_STORE;
5 integer datasize = 8 << scale;

Operation
1 CheckFPAdvSIMDEnabled64();
2 bits(64) address;
3 bits(datasize) data;
4
5 VirtualAddress base;
6
7 base = BaseReg[n];
8 address = VAddress(base);
9

10 if ! postindex then
11 address = address + offset;
12
13 case memop of
14 when MemOp_STORE
15 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_STORE, acctype);
16 data = V[t];
17 Mem[address, datasize DIV 8, acctype] = data;
18
19 when MemOp_LOAD
20 VACheckAddress(base, address, datasize DIV 8, CAP_PERM_LOAD, acctype);
21 data = Mem[address, datasize DIV 8, acctype];
22 V[t] = data;
23
24 if wback then
25 base = VAAdd(base,offset);
26
27 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

806

Chapter 4. Instruction definitions
4.4. New instructions

4.4 New instructions

4.4.1 ADD (extended register)

Add (extended register) adds a Capability register value field and a sign or zero-extended register value, followed
by an optional left shift amount, and writes the result to the destination Capability register value field. The
argument that is extended from the <Rm> register can be a byte, halfword, word, or doubleword. If the result is
not representable the destination Capability register tag is cleared. If the source capability is sealed, the Capability
Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 0 1

31 21

Rm

20 16

option

15 13

imm3

12 10

Cn

9 5

Cd

4 0

ADD <Cd|CSP>, <Cn|CSP>, <Xm>{, <extend>#<amount>}

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);
4 ExtendType extend_type = DecodeRegExtend(option);
5 integer shift = UInt(imm3);
6 if shift > 4 then UNDEFINED;

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"option":
option <extend>
000 UXTB
001 UXTH
010 UXTW
011 UXTX
100 SXTB
101 SXTH
110 SXTW
111 SXTX

<amount> Is the optional unsigned immediate operand, in the range 0 to 4, defaulting to 0, encoded in
the "imm3" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) operand2 = ExtendReg(m, extend_type, shift);
5 Capability result = CapAdd(operand1, operand2);
6
7 if CapIsSealed(operand1) then
8 result = CapWithTagClear(result);
9

10 if d == 31 then
11 CSP[] = result;
12 else
13 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

807

Chapter 4. Instruction definitions
4.4. New instructions

4.4.2 ADD (immediate)

Add (immediate) copies a capability from the source Capability register to the destination Capability register with
an optionally shifted immediate value added to the value field. If the result is not representable the destination
Capability register tag is cleared. If the source capability is sealed, the Capability Tag written to the destination
Capability register is cleared.

0 0 0 0 0 0 1 0

31 24

0

23

sh

22

imm12

21 10

Cn

9 5

Cd

4 0

A

ADD <Cd|CSP>, <Cn|CSP>, #<imm>{, LSL <amount>}

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 bits(64) imm;
4
5 case sh of
6 when '0' imm = ZeroExtend(imm12, 64);
7 when '1' imm = ZeroExtend(imm12 : Zeros(12), 64);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 4095, encoded in the "imm12" field.

<amount> Is the index shift amount, encoded in"sh":
sh <amount>
0 #0
1 #12

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 integer operand2 = UInt(imm);
5
6 Capability result = CapAdd(operand1, operand2);
7
8 if CapIsSealed(operand1) then
9 result = CapWithTagClear(result);

10
11 if d == 31 then
12 CSP[] = result;
13 else
14 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

808

Chapter 4. Instruction definitions
4.4. New instructions

4.4.3 ADRDP

Form DDC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits to the DDC value
with the bottom 12 bits masked out to form a DCC-relative address and writes the result to the destination register.
This description only applies in C64.

1

31

immlo

30 29

1 0 0 0 0

28 24

0

23

immhi

22 5

Rd

4 0

op P

ADRDP <Cd>, <label>

1 integer d = UInt(Rd);
2 bits(64) imm;
3
4 if IsInC64() then
5 if P == '1' then
6 imm = SignExtend(immhi:immlo:Zeros(12), 64);
7 else
8 imm = ZeroExtend(immhi:immlo:Zeros(12), 64);
9 else

10 imm = SignExtend(P:immhi:immlo:Zeros(12), 64);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated, in the range +/-2GB,
encoded in "immhi:immlo".

Operation
1 if IsInC64() then
2 Capability addr;
3 if P == '0' then
4 if CCTLR[].ADRDPB == '1' then
5 addr = C[28];
6 else
7 addr = DDC[];
8 else
9 addr = PCC[];

10
11 bits(64) newvalue = CapGetValue(addr) AND NOT(ZeroExtend(Ones(12),64));
12 bits(64) offset = newvalue - CapGetValue(addr) + imm;
13
14 Capability result = CapAdd(addr,offset);
15
16 if CapIsSealed(addr) then
17 result = CapWithTagClear(result);
18
19 C[d] = result;
20 else
21 bits(64) addr;
22 if CCTLR[].PCCBO == '1' then
23 addr = CapGetOffset(PCC[]);
24 else
25 addr = CapGetValue(PCC[]);
26
27 addr<11:0> = Zeros(12);
28
29 X[d] = addr + imm;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

809

Chapter 4. Instruction definitions
4.4. New instructions

4.4.4 ADRP

Form PCC-relative address to 4KB page adds an immediate value that is shifted left by 12 bits to the PCC value
with the bottom 12 bits masked out to form a PCC-relative address and writes the result to the destination register.
This description only applies in C64.

1

31

immlo

30 29

1 0 0 0 0

28 24

1

23

immhi

22 5

Rd

4 0

op P

ADRP <Cd>, <label>

1 integer d = UInt(Rd);
2 bits(64) imm;
3
4 if IsInC64() then
5 if P == '1' then
6 imm = SignExtend(immhi:immlo:Zeros(12), 64);
7 else
8 imm = ZeroExtend(immhi:immlo:Zeros(12), 64);
9 else

10 imm = SignExtend(P:immhi:immlo:Zeros(12), 64);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Rd" field.

<label> Is the program label whose 4KB page address is to be calculated, in the range +/-2GB,
encoded in "immhi:immlo".

Operation
1 if IsInC64() then
2 Capability addr;
3 if P == '0' then
4 if CCTLR[].ADRDPB == '1' then
5 addr = C[28];
6 else
7 addr = DDC[];
8 else
9 addr = PCC[];

10
11 bits(64) newvalue = CapGetValue(addr) AND NOT(ZeroExtend(Ones(12),64));
12 bits(64) offset = newvalue - CapGetValue(addr) + imm;
13
14 Capability result = CapAdd(addr,offset);
15
16 if CapIsSealed(addr) then
17 result = CapWithTagClear(result);
18
19 C[d] = result;
20 else
21 bits(64) addr;
22 if CCTLR[].PCCBO == '1' then
23 addr = CapGetOffset(PCC[]);
24 else
25 addr = CapGetValue(PCC[]);
26
27 addr<11:0> = Zeros(12);
28
29 X[d] = addr + imm;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

810

Chapter 4. Instruction definitions
4.4. New instructions

4.4.5 ALIGND

Align Down rounds the value field of the source Capability register down to a two to the power of the immediate
value boundary and writes the result to the destination Capability register. If the result is not representable the
destination Capability register tag is cleared. If the source capability is sealed, the Capability Tag written to the
destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

imm6

20 15

0

14

0 1 1 0

13 10

Cn

9 5

Cd

4 0

U

ALIGND <Cd|CSP>, <Cn|CSP>, #<imm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer align = UInt(imm6);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 63, encoded in the "imm6" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 bits(64) newvalue = CapGetValue(operand) AND NOT(ZeroExtend(Ones(align),64));
6 Capability result = CapSetValue(operand, newvalue);
7
8 if CapIsSealed(operand) then
9 result = CapWithTagClear(result);

10
11 if d == 31 then
12 CSP[] = result;
13 else
14 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

811

Chapter 4. Instruction definitions
4.4. New instructions

4.4.6 ALIGNU

Align Up rounds the value field of the source Capability register up to a two to the power of the immediate value
boundary and writes the result to the destination Capability register. If the result is not representable the destination
Capability register tag is cleared. If the source capability is sealed, the Capability Tag written to the destination
Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

imm6

20 15

1

14

0 1 1 0

13 10

Cn

9 5

Cd

4 0

U

ALIGNU <Cd|CSP>, <Cn|CSP>, #<imm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer align = UInt(imm6);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 63, encoded in the "imm6" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 bits(65) m = ZeroExtend(Ones(align),65);
6 bits(65) newvalue = (ZeroExtend(CapGetValue(operand),65) + m) AND NOT(m);
7 Capability result = CapSetValue(operand, newvalue<63:0>);
8
9 if CapIsSealed(operand) then

10 result = CapWithTagClear(result);
11
12 if d == 31 then
13 CSP[] = result;
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

812

Chapter 4. Instruction definitions
4.4. New instructions

4.4.7 BICFLGS (immediate)

Bitwise Bit Clear (immediate) on flags field performs a bitwise AND of the flags field of a capability and the
complement of an immediate value and writes the result to the flags field of the destination Capability register. If
the source capability is sealed, the Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 1

31 21

imm8

20 13

0 0

12 11

0

10

Cn

9 5

Cd

4 0

BICFLGS <Cd|CSP>, <Cn|CSP>, #<imm>

1 integer n = UInt(Cn);
2 integer d = UInt(Cd);
3 bits(8) mask = imm8;

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 bits(64) oldvalue = CapGetValue(operand);
6 bits(8) newflags = oldvalue<63:56> AND NOT mask;
7 bits(64) newvalue = newflags : oldvalue<55:0>;
8
9 Capability result = CapSetFlags(operand,newvalue);

10
11 if CapIsSealed(operand) then
12 result = CapWithTagClear(result);
13
14 if d == 31 then
15 CSP[] = result;
16 else
17 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

813

Chapter 4. Instruction definitions
4.4. New instructions

4.4.8 BICFLGS (register)

Bitwise Bit Clear on flags field performs a bitwise AND of the flags field of a capability and the complement of
bits 63 to 56 of a register value and writes the result to the flags field of the destination Capability register. If the
source capability is sealed, the Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0 0

15 14

1 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

BICFLGS <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) mask = X[m];
5
6 bits(64) oldvalue = CapGetValue(operand);
7 bits(8) newflags = oldvalue<63:56> AND NOT mask<63:56>;
8 bits(64) newvalue = newflags : oldvalue<55:0>;
9

10 Capability result = CapSetFlags(operand,newvalue);
11
12 if CapIsSealed(operand) then
13 result = CapWithTagClear(result);
14
15 if d == 31 then
16 CSP[] = result;
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

814

Chapter 4. Instruction definitions
4.4. New instructions

4.4.9 BLR (indirect)

Branch with Link to capability Register calls a subroutine at an address in the source register, setting C30 to
PCC+4.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

1

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

BLR <Cn>

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_INDCALL;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2 Capability target = C[n];
3
4 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
5 target = CapWithTagClear(target);
6
7 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
8 target = CapUnseal(target);
9

10 integer linkoffset = 4;
11 Capability link;
12
13 if IsInC64() then
14 linkoffset = linkoffset + 1;
15
16 link = CapAdd(PCC[], linkoffset);
17
18 if CCTLR[].SBL == '1' then
19 link = CapSetObjectType(link, CAP_SEAL_TYPE_RB);
20
21 C[30] = link;
22 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

815

Chapter 4. Instruction definitions
4.4. New instructions

4.4.10 BLR (memory indirect)

Unseal load, branch and link loads a capability and an offset, derives, unseals, and branches to the destination
Capability register, setting C30 to PCC+4.

1 1

31 30

0 0 0 0 1 0 1 1 0 1

29 20

imm7

19 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0

1

1

0

BLR [<Cn|CSP>, #<imm>]

1 integer n = UInt(Cn);
2 bits(64) offset = SignExtend(imm7:'0000',64);
3 BranchType branch_type = BranchType_INDCALL;

Assembler Symbols

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Cn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability base;
4 Capability target;
5
6 if n == 31 then
7 CheckSPAlignment();
8 base = CSP[];
9 else

10 base = C[n];
11
12 integer linkoffset = 4;
13 Capability link;
14
15 if IsInC64() then
16 linkoffset = linkoffset + 1;
17
18 link = CapAdd(PCC[], linkoffset);
19
20 if CCTLR[].SBL == '1' then
21 link = CapSetObjectType(link, CAP_SEAL_TYPE_RB);
22
23 // When C29 is used, the unsealed capability is written back to C29.
24 if n == 29 then
25 if CapIsTagSet(base) && CapIsSealed(base) &&
26 CapGetObjectType(base) == CAP_SEAL_TYPE_LB then
27 base = CapUnseal(base);
28
29 VirtualAddress vabase = VAFromCapability(base);
30 bits(64) addr = VAddress(vabase) + offset;
31
32 VACheckAddress(vabase,addr,CAPABILITY_DBYTES,CAP_PERM_LOAD,AccType_NORMAL);
33 target = MemC[addr,AccType_NORMAL];
34 target = CapSquashPostLoadCap(target,vabase);
35
36 C[29] = base;
37 C[30] = link;
38 else
39 boolean wb_unknown = FALSE;
40
41 if n == 30 then
42 Constraint c = ConstrainUnpredictable(Unpredictable_LINKBASEOVERLAPLD);
43 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
44 case c of
45 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
46 when Constraint_UNDEF UNDEFINED;
47 when Constraint_NOP EndOfInstruction();
48
49 VirtualAddress vabase = VAFromCapability(base);
50 bits(64) addr = VAddress(vabase) + offset;
51
52 VACheckAddress(vabase,addr,CAPABILITY_DBYTES,CAP_PERM_LOAD,AccType_NORMAL);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

816

Chapter 4. Instruction definitions
4.4. New instructions

53 target = MemC[addr,AccType_NORMAL];
54 target = CapSquashPostLoadCap(target,vabase);
55
56 if wb_unknown then
57 C[30] = Capability UNKNOWN;
58 else
59 C[30] = link;
60
61 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
62 target = CapWithTagClear(target);
63
64 if CapIsTagSet(target) && CapIsSealed(target) &&
65 CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
66 target = CapUnseal(target);
67
68 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

817

Chapter 4. Instruction definitions
4.4. New instructions

4.4.11 BLRR

Branch with Link to capability Register with possible switch to Restricted calls a subroutine at an address in the
source register, setting C30 to PCC+4. The PE may switch to Restricted based on the Executive permission in
PCC.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

1

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 1

1 0

opc<1> opc<0>

BLRR <Cn>

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_INDCALL;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

Operation
1 if IsInRestricted() then
2 UndefinedFault();
3
4 CheckCapabilitiesEnabled();
5
6 Capability target = C[n];
7
8 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
9 target = CapUnseal(target);

10 else
11 if CCTLR[].SBL == '1' then
12 target = CapWithTagClear(target);
13
14 integer linkoffset = 4;
15 Capability link;
16
17 if IsInC64() then
18 linkoffset = linkoffset + 1;
19
20 link = CapAdd(PCC[], linkoffset);
21
22 if CCTLR[].SBL == '1' then
23 link = CapSetObjectType(link, CAP_SEAL_TYPE_RB);
24
25 C[30] = link;
26 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

818

Chapter 4. Instruction definitions
4.4. New instructions

4.4.12 BLRS (capability)

Branch with Link to sealed capability calls a subroutine at an address in the source register, sealing and setting
C30 to PCC+4.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

1

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 0

1 0

opc<1> opc<0>

BLRS <Cn>

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_INDCALL;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2 Capability target = C[n];
3
4 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
5 target = CapWithTagClear(target);
6
7 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
8 target = CapUnseal(target);
9 else

10 if CCTLR[].SBL == '1' then
11 target = CapWithTagClear(target);
12
13 integer linkoffset = 4;
14 Capability link;
15
16 if IsInC64() then
17 linkoffset = linkoffset + 1;
18
19 link = CapAdd(PCC[], linkoffset);
20
21 if CCTLR[].SBL == '1' then
22 link = CapSetObjectType(link, CAP_SEAL_TYPE_RB);
23
24 C[30] = link;
25 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

819

Chapter 4. Instruction definitions
4.4. New instructions

4.4.13 BLRS (pair of capabilities)

Branch with Link to sealed capability Register with possible switch to Restricted calls a subroutine at an address in
the source register, sealing and setting C30 to PCC+4. The PE may switch to Restricted based on the Executive
permission in PCC.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

0

14

1

13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

BLRS C29, <Cn>, <Cm>

1 integer n = UInt(Cn);
2 integer m = UInt(Cm);
3 BranchType branch_type = BranchType_INDCALL;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability sealed_target = C[n];
4 Capability sealed_data = C[m];
5
6 if !IsInRestricted() && !CapCheckPermissions(sealed_target, CAP_PERM_EXECUTIVE) then
7 sealed_target = CapWithTagClear(sealed_target);
8
9 Capability target;

10 if CapIsTagSet(sealed_target) && CapIsTagSet(sealed_data)
11 && CapIsSealed(sealed_target) && CapIsSealed(sealed_data)
12 && UInt(CapGetObjectType(sealed_target)) > CAP_MAX_FIXED_SEAL_TYPE
13 && CapGetObjectType(sealed_target) == CapGetObjectType(sealed_data)
14 && CapCheckPermissions(sealed_target, CAP_PERM_BRANCH_SEALED_PAIR)
15 && CapCheckPermissions(sealed_data, CAP_PERM_BRANCH_SEALED_PAIR)
16 && CapCheckPermissions(sealed_target, CAP_PERM_EXECUTE)
17 && !CapCheckPermissions(sealed_data, CAP_PERM_EXECUTE) then
18
19 target = CapUnseal(sealed_target);
20 C[29] = CapUnseal(sealed_data);
21 else
22 target = CapWithTagClear(sealed_target);
23 C[29] = sealed_data;
24
25 integer linkoffset = 4;
26 Capability link;
27
28 if IsInC64() then
29 linkoffset = linkoffset + 1;
30
31 link = CapAdd(PCC[], linkoffset);
32
33 if CCTLR[].SBL == '1' then
34 link = CapSetObjectType(link, CAP_SEAL_TYPE_RB);
35
36 C[30] = link;
37 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

820

Chapter 4. Instruction definitions
4.4. New instructions

4.4.14 BR (indirect)

Branch to capability Register branches unconditionally to an address in a Capability register, with a hint that this is
not a subroutine return.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

BR <Cn>

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_INDIR;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2 Capability target = C[n];
3
4 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
5 target = CapWithTagClear(target);
6
7 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
8 target = CapUnseal(target);
9

10 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

821

Chapter 4. Instruction definitions
4.4. New instructions

4.4.15 BR (memory indirect)

Unseal load and branch loads a capability and an offset, derives, unseals, and branches to the destination Capability
register.

1 1

31 30

0 0 0 0 1 0 1 1 0 1

29 20

imm7

19 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0

1

0

0

BR [<Cn|CSP>, #<imm>]

1 integer n = UInt(Cn);
2 bits(64) offset = SignExtend(imm7:'0000',64);
3 BranchType branch_type = BranchType_INDIR;

Assembler Symbols

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Cn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability base;
4 Capability target;
5
6 if n == 31 then
7 CheckSPAlignment();
8 base = CSP[];
9 else

10 base = C[n];
11
12 // When C29 is used, the unsealed capability is written back to C29.
13 if n == 29 then
14 if CapIsTagSet(base) && CapIsSealed(base) &&
15 CapGetObjectType(base) == CAP_SEAL_TYPE_LB then
16 base = CapUnseal(base);
17
18 VirtualAddress vabase = VAFromCapability(base);
19 bits(64) addr = VAddress(vabase) + offset;
20
21 VACheckAddress(vabase,addr,CAPABILITY_DBYTES,CAP_PERM_LOAD,AccType_NORMAL);
22 target = MemC[addr,AccType_NORMAL];
23 target = CapSquashPostLoadCap(target,vabase);
24
25 C[29] = base;
26 else
27
28 VirtualAddress vabase = VAFromCapability(base);
29 bits(64) addr = VAddress(vabase) + offset;
30
31 VACheckAddress(vabase,addr,CAPABILITY_DBYTES,CAP_PERM_LOAD,AccType_NORMAL);
32 target = MemC[addr,AccType_NORMAL];
33 target = CapSquashPostLoadCap(target,vabase);
34
35 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
36 target = CapWithTagClear(target);
37
38 if CapIsTagSet(target) && CapIsSealed(target) &&
39 CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
40 target = CapUnseal(target);
41
42 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

822

Chapter 4. Instruction definitions
4.4. New instructions

4.4.16 BRR

Branch to capability Register with possible switch to Restricted branches unconditionally to an address in the
source register, with a hint that this is not a subroutine return. The PE may switch to Restricted based on the
Executive permission in PCC.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 1

1 0

opc<1> opc<0>

BRR <Cn>

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_INDIR;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

Operation
1 if IsInRestricted() then
2 UndefinedFault();
3
4 CheckCapabilitiesEnabled();
5
6 Capability target = C[n];
7
8 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
9 target = CapUnseal(target);

10 else
11 if CCTLR[].SBL == '1' then
12 target = CapWithTagClear(target);
13
14 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

823

Chapter 4. Instruction definitions
4.4. New instructions

4.4.17 BRS (capability)

Branch to sealed capability unseals and branches to an address in the source Capability register.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 0

1 0

opc<1> opc<0>

BRS <Cn>

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_INDIR;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2 Capability target = C[n];
3
4 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
5 target = CapWithTagClear(target);
6
7 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
8 target = CapUnseal(target);
9 else

10 if CCTLR[].SBL == '1' then
11 target = CapWithTagClear(target);
12
13 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

824

Chapter 4. Instruction definitions
4.4. New instructions

4.4.18 BRS (pair of capabilities)

Branch to sealed capability pair checks the capabilities have the correct properties to be used as a sealed pair,
unseals the source Capability registers, branches to an address in the first Capability register and writes the second
Capability register to C29.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

0

14

0

13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

BRS C29, <Cn>, <Cm>

1 integer n = UInt(Cn);
2 integer m = UInt(Cm);
3 BranchType branch_type = BranchType_INDIR;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability sealed_target = C[n];
4 Capability sealed_data = C[m];
5
6 if !IsInRestricted() && !CapCheckPermissions(sealed_target, CAP_PERM_EXECUTIVE) then
7 sealed_target = CapWithTagClear(sealed_target);
8
9 Capability target;

10 if CapIsTagSet(sealed_target) && CapIsTagSet(sealed_data)
11 && CapIsSealed(sealed_target) && CapIsSealed(sealed_data)
12 && UInt(CapGetObjectType(sealed_target)) > CAP_MAX_FIXED_SEAL_TYPE
13 && CapGetObjectType(sealed_target) == CapGetObjectType(sealed_data)
14 && CapCheckPermissions(sealed_target, CAP_PERM_BRANCH_SEALED_PAIR)
15 && CapCheckPermissions(sealed_data, CAP_PERM_BRANCH_SEALED_PAIR)
16 && CapCheckPermissions(sealed_target, CAP_PERM_EXECUTE)
17 && !CapCheckPermissions(sealed_data, CAP_PERM_EXECUTE) then
18
19 target = CapUnseal(sealed_target);
20 C[29] = CapUnseal(sealed_data);
21 else
22 target = CapWithTagClear(sealed_target);
23 C[29] = sealed_data;
24
25 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

825

Chapter 4. Instruction definitions
4.4. New instructions

4.4.19 BUILD

Build capability from untagged and possibly sealed bit pattern interprets and treats an untagged and possibly sealed
bit pattern as a capability, checks this capability against a testing capability and based on the result, writes the built
capability to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0

15

0

14

0

13

0 0 1

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

BUILD <Cd|CSP>, <Cn|CSP>, <Cm|CSP>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the first source register or stack pointer, encoded in the "Cn" field.

<Cm|CSP> Is the capability name of the second source register or stack pointer, encoded in the "Cm"
field.

Operation
1 CheckCapabilitiesEnabled();
2 Capability data = if n == 31 then CSP[] else C[n];
3 Capability key = if m == 31 then CSP[] else C[m];
4 Capability result;
5
6 boolean dataWasSealed = CapIsSealed(data);
7
8 if dataWasSealed then
9 data = CapUnseal(data);

10
11 if !CapIsTagSet(key) || CapIsSealed(key) ||
12 !CapIsSubSetOf(data,key) || CapIsBaseAboveLimit(data) then
13 if dataWasSealed then
14 result = CapWithTagClear(data);
15 else
16 result = data;
17 else
18 result = CapWithTagSet(data);
19
20 if d == 31 then
21 CSP[] = result;
22 else
23 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

826

Chapter 4. Instruction definitions
4.4. New instructions

4.4.20 BX

Branch Exchange sets PCC to PCC+4 and switches to C64 or A64 depending on the value of PSTATE.C64.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

1

14

1

13

1 0 0

12 10

1 1 1 1 1

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

BX #4

1 BranchType branch_type = BranchType_DIR;

Operation
1 CheckCapabilitiesEnabled();
2
3 integer offset = 4;
4 if !IsInC64() then
5 offset = offset + 1;
6 Capability target = CapAdd(PCC[], offset);
7
8 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

827

Chapter 4. Instruction definitions
4.4. New instructions

4.4.21 CAS

Compare and Swap capabilities in memory determines the base register to be used, derives an address from the base
register, atomically loads a Capability register from the calculated address in memory, and performs a comparison
between this first Capability register with a second Capability register. If the result of the comparison is equal, the
second Capability register is atomically stored to the calculated address in memory.

1 0 1 0 0 0 1 0

31 24

1

23

0

22

1

21

Cs

20 16

0

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L R

CAS <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

CAS <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 AccType ldacctype = AccType_ATOMICRW;
2 AccType stacctype = AccType_ATOMICRW;
3
4 integer t = UInt(Ct);
5 integer s = UInt(Cs);
6 integer n = UInt(Rn);

Assembler Symbols

<Cs> Is the capability name of the register to be compared and loaded, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be conditionally stored, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability comparecap;
5 Capability newcap;
6 Capability data;
7
8 comparecap = C[s];
9 newcap = C[t];

10 base = BaseReg[n];
11 bits(64) addr = VAddress(base);
12 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);
13 bits(64) cap_required = CAP_PERM_STORE;
14 if CapIsTagSet(newcap) then
15 cap_required = cap_required OR CAP_PERM_STORE_CAP;
16 if CapIsLocal(newcap) then
17 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
18 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
19
20 // Both the original VirtualAddress and 64 bit address are passed in
21 // order to be able to squash permissions and tags correctly.
22 C[s] = MemAtomicCompareAndSwapC(base,addr,comparecap,newcap,ldacctype,stacctype);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

828

Chapter 4. Instruction definitions
4.4. New instructions

4.4.22 CASA

Compare and Swap capabilities in memory with acquire determines the base register to be used, derives an address
from the base register, atomically loads a Capability register from the calculated address in memory, and performs
a comparison between this first Capability register with a second Capability register. If the result of the comparison
is equal, the second Capability register is atomically stored to the calculated address in memory. This instruction
loads from memory with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release.

1 0 1 0 0 0 1 0

31 24

1

23

1

22

1

21

Cs

20 16

0

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L R

CASA <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

CASA <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 AccType ldacctype = AccType_ORDEREDATOMICRW;
2 AccType stacctype = AccType_ATOMICRW;
3
4 integer t = UInt(Ct);
5 integer s = UInt(Cs);
6 integer n = UInt(Rn);

Assembler Symbols

<Cs> Is the capability name of the register to be compared and loaded, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be conditionally stored, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability comparecap;
5 Capability newcap;
6 Capability data;
7
8 comparecap = C[s];
9 newcap = C[t];

10 base = BaseReg[n];
11 bits(64) addr = VAddress(base);
12 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);
13 bits(64) cap_required = CAP_PERM_STORE;
14 if CapIsTagSet(newcap) then
15 cap_required = cap_required OR CAP_PERM_STORE_CAP;
16 if CapIsLocal(newcap) then
17 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
18 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
19
20 // Both the original VirtualAddress and 64 bit address are passed in
21 // order to be able to squash permissions and tags correctly.
22 C[s] = MemAtomicCompareAndSwapC(base,addr,comparecap,newcap,ldacctype,stacctype);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

829

Chapter 4. Instruction definitions
4.4. New instructions

4.4.23 CASAL

Compare and Swap capabilities in memory with acquire and release determines the base register to be used, derives
an address from the base register, atomically loads a Capability register from the calculated address in memory,
and performs a comparison between this first Capability register with a second Capability register. If the result of
the comparison is equal, the second Capability register is atomically stored to the calculated address in memory.
This instruction loads from memory with acquire semantics as described in Load-Acquire, Load-AcquirePC, and
Store-Release. This instruction stores to memory with release semantics.

1 0 1 0 0 0 1 0

31 24

1

23

1

22

1

21

Cs

20 16

1

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L R

CASAL <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

CASAL <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 AccType ldacctype = AccType_ORDEREDATOMICRW;
2 AccType stacctype = AccType_ORDEREDATOMICRW;
3
4 integer t = UInt(Ct);
5 integer s = UInt(Cs);
6 integer n = UInt(Rn);

Assembler Symbols

<Cs> Is the capability name of the register to be compared and loaded, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be conditionally stored, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability comparecap;
5 Capability newcap;
6 Capability data;
7
8 comparecap = C[s];
9 newcap = C[t];

10 base = BaseReg[n];
11 bits(64) addr = VAddress(base);
12 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);
13 bits(64) cap_required = CAP_PERM_STORE;
14 if CapIsTagSet(newcap) then
15 cap_required = cap_required OR CAP_PERM_STORE_CAP;
16 if CapIsLocal(newcap) then
17 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
18 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
19
20 // Both the original VirtualAddress and 64 bit address are passed in
21 // order to be able to squash permissions and tags correctly.
22 C[s] = MemAtomicCompareAndSwapC(base,addr,comparecap,newcap,ldacctype,stacctype);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

830

Chapter 4. Instruction definitions
4.4. New instructions

4.4.24 CASL

Compare and Swap capabilities in memory with release determines the base register to be used, derives an address
from the base register, atomically loads a Capability register from the calculated address in memory, and performs
a comparison between this first Capability register with a second Capability register. If the result of the comparison
is equal, the second Capability register is atomically stored to the calculated address in memory. This instruction
stores to memory with release semantics.

1 0 1 0 0 0 1 0

31 24

1

23

0

22

1

21

Cs

20 16

1

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L R

CASL <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

CASL <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 AccType ldacctype = AccType_ATOMICRW;
2 AccType stacctype = AccType_ORDEREDATOMICRW;
3
4 integer t = UInt(Ct);
5 integer s = UInt(Cs);
6 integer n = UInt(Rn);

Assembler Symbols

<Cs> Is the capability name of the register to be compared and loaded, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be conditionally stored, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability comparecap;
5 Capability newcap;
6 Capability data;
7
8 comparecap = C[s];
9 newcap = C[t];

10 base = BaseReg[n];
11 bits(64) addr = VAddress(base);
12 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);
13 bits(64) cap_required = CAP_PERM_STORE;
14 if CapIsTagSet(newcap) then
15 cap_required = cap_required OR CAP_PERM_STORE_CAP;
16 if CapIsLocal(newcap) then
17 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
18 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
19
20 // Both the original VirtualAddress and 64 bit address are passed in
21 // order to be able to squash permissions and tags correctly.
22 C[s] = MemAtomicCompareAndSwapC(base,addr,comparecap,newcap,ldacctype,stacctype);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

831

Chapter 4. Instruction definitions
4.4. New instructions

4.4.25 CFHI

Copy From High copies bits 127 to 64 of the source Capability register to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0

31 15

1

14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<1> opc<0>

CFHI <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 result = operand<127:64>;
7
8 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

832

Chapter 4. Instruction definitions
4.4. New instructions

4.4.26 CHKEQ

Check for bit equality of two capabilities, setting flags checks if two capabilities are equal. The instruction updates
the condition flags based on the result.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

0

14

1

13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 1

1 0

opc<1> opc<0>

CHKEQ <Cn|CSP>, <Cm>

1 integer n = UInt(Cn);
2 integer m = UInt(Cm);

Assembler Symbols

<Cn|CSP> Is the capability name of the first source register or stack pointer, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability operand2 = C[m];
5
6 if operand1 == operand2 then
7 PSTATE.<N,Z,C,V> = '0100';
8 else
9 PSTATE.<N,Z,C,V> = '0000';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

833

Chapter 4. Instruction definitions
4.4. New instructions

4.4.27 CHKSLD

Check if capability is sealed, setting flags checks if the source Capability register is sealed. The instruction updates
the condition flags based on the result.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 1

1 0

opc<1> opc<0>

CHKSLD <Cn|CSP>

1 integer n = UInt(Cn);

Assembler Symbols

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 if CapIsSealed(operand) then
6 PSTATE.<N,Z,C,V> = '0001';
7 else
8 PSTATE.<N,Z,C,V> = '0000';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

834

Chapter 4. Instruction definitions
4.4. New instructions

4.4.28 CHKSS

Check Subset, setting flags checks if a capability is a subset of a testing capability. The instruction updates the
condition flags based on the result.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

0

14

0

13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 1

1 0

opc<1> opc<0>

CHKSS <Cn|CSP>, <Cm|CSP>

1 integer n = UInt(Cn);
2 integer m = UInt(Cm);

Assembler Symbols

<Cn|CSP> Is the capability name of the first source register or stack pointer, encoded in the "Cn" field.

<Cm|CSP> Is the capability name of the second source register or stack pointer, encoded in the "Cm"
field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability testingcap = if m == 31 then CSP[] else C[m];
5
6 if CapIsSubSetOf(operand1,testingcap) &&
7 CapGetTag(operand1) == CapGetTag(testingcap) then
8 PSTATE.<N,Z,C,V> = '1000';
9 else

10 PSTATE.<N,Z,C,V> = '0000';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

835

Chapter 4. Instruction definitions
4.4. New instructions

4.4.29 CHKSSU

Check Subset, setting flags and conditionally unseal checks if a capability is a subset of a testing capability. If the
capability is a valid sealed capability, and the testing capability is a valid unsealed capability, the operation unseals
the capability and writes it to the destination Capability register. The instruction updates the condition flags based
on the result.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

1 0

15 14

0 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

CHKSSU <Cd>, <Cn|CSP>, <Cm|CSP>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the first source register or stack pointer, encoded in the "Cn" field.

<Cm|CSP> Is the capability name of the second source register or stack pointer, encoded in the "Cm"
field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability testingcap = if m == 31 then CSP[] else C[m];
5 Capability result = operand1;
6
7 if CapIsSubSetOf(operand1,testingcap) &&
8 CapGetTag(operand1) == CapGetTag(testingcap) then
9 if CapIsTagSet(testingcap) && !CapIsSealed(testingcap) &&

10 CapIsTagSet(operand1) && CapIsSealed(operand1) then
11 result = CapUnseal(operand1);
12
13 PSTATE.<N,Z,C,V> = '1000';
14 else
15 PSTATE.<N,Z,C,V> = '0000';
16
17 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

836

Chapter 4. Instruction definitions
4.4. New instructions

4.4.30 CHKTGD

Check if capability has its tag bit set, setting flags checks if the Capability Tag of the source Capability register is
set. The instruction updates the condition flags based on the result.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

0

14

1

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 1

1 0

opc<1> opc<0>

CHKTGD <Cn|CSP>

1 integer n = UInt(Cn);

Assembler Symbols

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 if CapIsTagSet(operand) then
6 PSTATE.<N,Z,C,V> = '0010';
7 else
8 PSTATE.<N,Z,C,V> = '0000';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

837

Chapter 4. Instruction definitions
4.4. New instructions

4.4.31 CLRPERM (immediate)

Clear capability permissions (immediate) clears the Capability Permissions of the source capability based on an
immediate value and writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0

31 16

perm

15 13

1 0 0

12 10

Cn

9 5

Cd

4 0

CLRPERM <Cd|CSP>, <Cn|CSP>, <perm>

1 integer n = UInt(Cn);
2 integer d = UInt(Cd);
3 bits(3) imm = perm;

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<perm> Is the perm specifier, encoded in"perm":
perm <perm>
000 #0
001 X
010 W
011 WX
100 R
101 RX
110 RW
111 RWX

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability data = if n == 31 then CSP[] else C[n];
4 Capability result;
5
6 bits(64) clr_perms = Zeros(64);
7 if imm<0> == '1' then
8 clr_perms = clr_perms OR CAP_PERM_EXECUTE;
9 if imm<1> == '1' then

10 clr_perms = clr_perms OR CAP_PERM_STORE;
11 if imm<2> == '1' then
12 clr_perms = clr_perms OR CAP_PERM_LOAD;
13
14 result = CapClearPerms(data, clr_perms);
15
16 if CapIsSealed(data) then
17 result = CapWithTagClear(result);
18
19 if d == 31 then
20 CSP[] = result;
21 else
22 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

838

Chapter 4. Instruction definitions
4.4. New instructions

4.4.32 CLRPERM (register)

Clear capability Permissions (scalar) clears the Capability Permissions of the source capability using a mask and
writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

1 0

15 14

1

13

0 0 0

12 10

Cn

9 5

Cd

4 0

CLRPERM <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability data = if n == 31 then CSP[] else C[n];
4 bits(64) mask = X[m];
5 Capability result;
6
7 result = CapClearPerms(data, mask);
8
9 if CapIsSealed(data) then

10 result = CapWithTagClear(result);
11
12 if d == 31 then
13 CSP[] = result;
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

839

Chapter 4. Instruction definitions
4.4. New instructions

4.4.33 CLRTAG

Clear capability Tag clears the Capability Tag of the source capability and writes the result to the destination
Capability register

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1

31 15

0

14

0

13

1 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

CLRTAG <Cd|CSP>, <Cn|CSP>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 Capability result = CapWithTagClear(operand);
5
6 if d == 31 then
7 CSP[] = result;
8 else
9 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

840

Chapter 4. Instruction definitions
4.4. New instructions

4.4.34 CMP

Compare capabilities if the Capability Tag of the first source Capability register is not the same as the Capability
Tag of the second source Capability register subtracts the Capability Tag of the first source Capability register
from the Capability Tag of the second source Capability register and discards the result otherwise subtracts the
Value field of the first source Capability register from the Value field of the second source Capability register and
discards the result. The instruction updates the condition flags based on the result.

This is an alias of SUBS. This means:

• The encodings in this description are named to match the encodings of SUBS.

• The description of SUBS gives the operational pseudocode for this instruction.

1 1 0 0 0 0 1 0 1 1 1

31 21

Cm

20 16

1 0 0 1 1 0

15 10

Cn

9 5

Rd

4 0

CMP <Cn>, <Cm>

is equivalent to
SUBSXZR, <Cn>, <Cm>

and is always the preferred disassembly.

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation

The description of SUBS gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

841

Chapter 4. Instruction definitions
4.4. New instructions

4.4.35 CPY

Copy Capability register copies a capability from the source Capability register to the destination Capability
register.

This instruction is used by the alias MOV.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1

31 15

1

14

0

13

1 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

CPY <Cd|CSP>, <Cn|CSP>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability result = if n == 31 then CSP[] else C[n];
4 if d == 31 then
5 CSP[] = result;
6 else
7 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

842

Chapter 4. Instruction definitions
4.4. New instructions

4.4.36 CPYTYPE

Set capability value to the Capability ObjectType of another capability writes the ObjectType from the second
capability to the Capability Value of the first capability and writes the result to the destination Capability register.
If the first capability is sealed, the destination Capability Tag is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0

15

0

14

1

13

0 0 1

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

CPYTYPE <Cd>, <Cn>, <Cm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability key = C[n];
4 Capability data = C[m];
5 Capability result;
6
7 if CapIsSealed(data) then
8 result = CapSetValue(key, CapGetObjectType(data));
9 else

10 result = CapSetValue(key, CAP_NO_SEALING);
11
12 if CapIsSealed(key) then
13 C[d] = CapWithTagClear(result);
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

843

Chapter 4. Instruction definitions
4.4. New instructions

4.4.37 CPYVALUE

Set capability value to Capability Value of another capability writes the Capability Value from the second capability
to the Capability Value of the first capability and writes the result to the destination Capability register. If the first
capability is sealed, the destination Capability Tag is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0

15

1

14

1

13

0 0 1

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

CPYVALUE <Cd>, <Cn>, <Cm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = C[n];
4 Capability operand2 = C[m];
5 Capability result;
6
7 result = CapSetValue(operand1,CapGetValue(operand2));
8
9 if CapIsSealed(operand1) then

10 C[d] = CapWithTagClear(result);
11 else
12 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

844

Chapter 4. Instruction definitions
4.4. New instructions

4.4.38 CSEAL

Conditionally Seal capability seals a capability using a sealing capability if the ObjectType extracted from the
Value field of the sealing capability allows this operation. This is intended to be used with BUILD.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0

15

1

14

0

13

0 0 1

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

CSEAL <Cd|CSP>, <Cn|CSP>, <Cm|CSP>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the first source register or stack pointer, encoded in the "Cn" field.

<Cm|CSP> Is the capability name of the second source register or stack pointer, encoded in the "Cm"
field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability sealingcap = if m == 31 then CSP[] else C[m];
5
6 bits(64) otype = CapGetValue(sealingcap);
7 Capability result = operand1;
8
9 if otype == CAP_NO_SEALING then

10 PSTATE.<N,Z,C,V> = '0001';
11 elsif CapIsTagSet(operand1) && CapIsTagSet(sealingcap) &&
12 !CapIsSealed(operand1) && !CapIsSealed(sealingcap) &&
13 CapCheckPermissions(sealingcap, CAP_PERM_SEAL) &&
14 CapIsInBounds(sealingcap) &&
15 UInt(otype) <= CAP_MAX_OBJECT_TYPE then
16
17 result = CapSetObjectType(operand1,otype);
18 PSTATE.<N,Z,C,V> = '0001';
19 else
20 PSTATE.<N,Z,C,V> = '0000';
21
22 if d == 31 then
23 CSP[] = result;
24 else
25 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

845

Chapter 4. Instruction definitions
4.4. New instructions

4.4.39 CSEL

Conditional Select writes, in the destination capability register, the value of the first source capability register if the
condition is TRUE, and otherwise writes the value of the second source capability register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

cond

15 12

1 1

11 10

Cn

9 5

Cd

4 0

CSEL <Cd>, <Cn>, <Cm>, <cond>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

<cond> Is one of the standard conditions, encoded in"cond":
cond <cond>
0000 EQ
0001 NE
0010 CS
0011 CC
0100 MI
0101 PL
0110 VS
0111 VC
1000 HI
1001 LS
1010 GE
1011 LT
1100 GT
1101 LE
1110 AL
1111 NV

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability result;
4 if ConditionHolds(cond) then
5 result = C[n];
6 else
7 result = C[m];
8 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

846

Chapter 4. Instruction definitions
4.4. New instructions

4.4.40 CTHI

Copy To High copies the source register to bits 127 to 64 of the destination Capability register and clears the
Capability Tag of the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

1 1

15 14

1 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

CTHI <Cd|CSP>, <Cn>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability result = C[n];
4
5 result<127:64> = X[m];
6
7 if d == 31 then
8 CSP[] = CapWithTagClear(result);
9 else

10 C[d] = CapWithTagClear(result);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

847

Chapter 4. Instruction definitions
4.4. New instructions

4.4.41 CVT (to capability)

Convert pointer to capability offset from a capability derives the Capability Value from the source 64-bit register
and Capability register, and writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 1

31 21

Rm

20 16

0

15

0

14

0 1 1 0

13 10

Cn

9 5

Cd

4 0

CVT <Cd>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) operand2 = X[m];
5 Capability result;
6
7 if CCTLR[].DDCBO == '1' then
8 result = CapSetOffset(operand1,operand2);
9 else

10 result = CapSetValue(operand1,operand2);
11
12 if CapIsSealed(operand1) then
13 C[d] = CapWithTagClear(result);
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

848

Chapter 4. Instruction definitions
4.4. New instructions

4.4.42 CVT (to pointer)

Convert capability to pointer, setting flags derives an address from the source Capability registers and writes the
result to the destination register. The instruction updates the condition flags based on the result.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

1 1 0 0 0 0

15 10

Cn

9 5

Rd

4 0

CVT <Xd>, <Cn|CSP>, <Cm>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the first source register or stack pointer, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability operand2 = C[m];
5 bits(64) result;
6
7 if CapIsTagSet(operand1) then
8 if CCTLR[].DDCBO == '1' then
9 result = CapGetValue(operand1) - CapGetBase(operand2);

10 else
11 result = CapGetValue(operand1);
12
13 if result == 0 then
14 PSTATE.<N,Z,C,V> = '0110';
15 else
16 PSTATE.<N,Z,C,V> = '0010';
17 else
18 result = Zeros(64);
19 PSTATE.<N,Z,C,V> = '0000';
20
21 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

849

Chapter 4. Instruction definitions
4.4. New instructions

4.4.43 CVTD (to capability)

Convert pointer to capability offset from DDC derives a Capability Value from a 64-bit register and DDC, and
writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1

31 15

0

14

0

13

1 0 0

12 10

Rn

9 5

Cd

4 0

opc<1> opc<0>

CVTD <Cd>, <Xn>

1 integer d = UInt(Cd);
2 integer n = UInt(Rn);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Xn> Is the 64-bit name of the source general-purpose register, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = DDC[];
4 bits(64) operand2 = X[n];
5 Capability result;
6
7 if CCTLR[].DDCBO == '1' then
8 result = CapSetOffset(operand1,operand2);
9 else

10 result = CapSetValue(operand1,operand2);
11
12 if CapIsSealed(operand1) then
13 C[d] = CapWithTagClear(result);
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

850

Chapter 4. Instruction definitions
4.4. New instructions

4.4.44 CVTD (to pointer)

Convert capability to pointer offset from DDC, setting flags derives an address from the source Capability register
and DDC, and writes the result to the destination register. The instruction updates the condition flags based on the
result.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0

31 15

0

14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<1> opc<0>

CVTD <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability operand2 = DDC[];
5 bits(64) result;
6
7 if CapIsTagSet(operand1) then
8 if CCTLR[].DDCBO == '1' then
9 result = CapGetValue(operand1) - CapGetBase(operand2);

10 else
11 result = CapGetValue(operand1);
12
13 if result == 0 then
14 PSTATE.<N,Z,C,V> = '0110';
15 else
16 PSTATE.<N,Z,C,V> = '0010';
17 else
18 result = Zeros(64);
19 PSTATE.<N,Z,C,V> = '0000';
20
21 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

851

Chapter 4. Instruction definitions
4.4. New instructions

4.4.45 CVTDZ

Convert pointer to capability offset from DDC, with null capability from zero semantics derives a Capability Value
from a 64-bit register and DDC, and writes the result to the destination Capability register. This instruction sets the
destination Capability register to zero based on the result.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1

31 15

1

14

0

13

1 0 0

12 10

Rn

9 5

Cd

4 0

opc<1> opc<0>

CVTDZ <Cd>, <Xn>

1 integer d = UInt(Cd);
2 integer n = UInt(Rn);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Xn> Is the 64-bit name of the source general-purpose register, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = DDC[];
4 bits(64) operand2 = X[n];
5 Capability result;
6
7 if operand2 == 0 then
8 result = CapNull();
9 else

10 if CCTLR[].DDCBO == '1' then
11 result = CapSetOffset(operand1,operand2);
12 else
13 result = CapSetValue(operand1,operand2);
14
15 if CapIsSealed(operand1) then
16 C[d] = CapWithTagClear(result);
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

852

Chapter 4. Instruction definitions
4.4. New instructions

4.4.46 CVTP (to capability)

Convert pointer to capability offset from PCC derives a Capability Value from a 64-bit register and PCC, and
writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1

31 15

0

14

1

13

1 0 0

12 10

Rn

9 5

Cd

4 0

opc<1> opc<0>

CVTP <Cd>, <Xn>

1 integer d = UInt(Cd);
2 integer n = UInt(Rn);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Xn> Is the 64-bit name of the source general-purpose register, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = PCC[];
4 bits(64) operand2 = X[n];
5 Capability result;
6
7 if CCTLR[].PCCBO == '1' then
8 result = CapSetOffset(operand1,operand2);
9 else

10 result = CapSetValue(operand1,operand2);
11
12 if CapIsSealed(operand1) then
13 C[d] = CapWithTagClear(result);
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

853

Chapter 4. Instruction definitions
4.4. New instructions

4.4.47 CVTP (to pointer)

Convert capability to pointer offset from PCC, setting flags derives an address from the source Capability register
and PCC, and writes the result to the destination register. The instruction updates the condition flags based on the
result.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0

31 15

0

14

1

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<1> opc<0>

CVTP <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 Capability operand2 = PCC[];
5 bits(64) result;
6
7 if CapIsTagSet(operand1) then
8 if CCTLR[].PCCBO == '1' then
9 result = CapGetValue(operand1) - CapGetBase(operand2);

10 else
11 result = CapGetValue(operand1);
12
13 if result == 0 then
14 PSTATE.<N,Z,C,V> = '0110';
15 else
16 PSTATE.<N,Z,C,V> = '0010';
17 else
18 result = Zeros(64);
19 PSTATE.<N,Z,C,V> = '0000';
20
21 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

854

Chapter 4. Instruction definitions
4.4. New instructions

4.4.48 CVTPZ

Convert pointer to capability offset from PCC, with null capability from zero semantics derives a Capability Value
from a 64-bit register and PCC, and writes the result to the destination Capability register. This instruction sets the
destination Capability register to zero based on the result.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1

31 15

1

14

1

13

1 0 0

12 10

Rn

9 5

Cd

4 0

opc<1> opc<0>

CVTPZ <Cd>, <Xn>

1 integer d = UInt(Cd);
2 integer n = UInt(Rn);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Xn> Is the 64-bit name of the source general-purpose register, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = PCC[];
4 bits(64) operand2 = X[n];
5 Capability result;
6
7 if operand2 == 0 then
8 result = CapNull();
9 else

10 if CCTLR[].PCCBO == '1' then
11 result = CapSetOffset(operand1,operand2);
12 else
13 result = CapSetValue(operand1,operand2);
14
15 if CapIsSealed(operand1) then
16 C[d] = CapWithTagClear(result);
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

855

Chapter 4. Instruction definitions
4.4. New instructions

4.4.49 CVTZ

Convert pointer to capability offset from a capability, with null capability from zero semantics derives the Capability
Value from the source 64-bit register and Capability register, and writes the result to the destination Capability
register. This instruction sets the destination Capability register to zero based on the result.

1 1 0 0 0 0 1 0 1 1 1

31 21

Rm

20 16

0

15

1

14

0 1 1 0

13 10

Cn

9 5

Cd

4 0

CVTZ <Cd>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) operand2 = X[m];
5 Capability result;
6
7 if operand2 == 0 then
8 result = CapNull();
9 else

10 if CCTLR[].DDCBO == '1' then
11 result = CapSetOffset(operand1,operand2);
12 else
13 result = CapSetValue(operand1,operand2);
14
15 if CapIsSealed(operand1) then
16 C[d] = CapWithTagClear(result);
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

856

Chapter 4. Instruction definitions
4.4. New instructions

4.4.50 EORFLGS (immediate)

Bitwise Exclusive OR (immediate) on flags field performs a bitwise XOR of the flags field of a capability and an
immediate value and writes the result to the flags field of the destination Capability register. If the source capability
is sealed, the Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 1

31 21

imm8

20 13

1 0

12 11

0

10

Cn

9 5

Cd

4 0

EORFLGS <Cd|CSP>, <Cn|CSP>, #<imm>

1 integer n = UInt(Cn);
2 integer d = UInt(Cd);
3 bits(8) mask = imm8;

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 bits(64) oldvalue = CapGetValue(operand);
6 bits(8) newflags = oldvalue<63:56> EOR mask;
7 bits(64) newvalue = newflags : oldvalue<55:0>;
8
9 Capability result = CapSetFlags(operand,newvalue);

10
11 if CapIsSealed(operand) then
12 result = CapWithTagClear(result);
13
14 if d == 31 then
15 CSP[] = result;
16 else
17 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

857

Chapter 4. Instruction definitions
4.4. New instructions

4.4.51 EORFLGS (register)

Bitwise Exclusive OR (register) on flags field performs a bitwise XOR of the flags field of a capability and bits 63
to 56 of a register value and writes the result to the flags field of the destination Capability register. If the source
capability is sealed, the Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

1 0

15 14

1 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

EORFLGS <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) mask = X[m];
5
6 bits(64) oldvalue = CapGetValue(operand);
7 bits(8) newflags = oldvalue<63:56> EOR mask<63:56>;
8 bits(64) newvalue = newflags : oldvalue<55:0>;
9

10 Capability result = CapSetFlags(operand,newvalue);
11
12 if CapIsSealed(operand) then
13 result = CapWithTagClear(result);
14
15 if d == 31 then
16 CSP[] = result;
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

858

Chapter 4. Instruction definitions
4.4. New instructions

4.4.52 GCBASE

Get the Base field of a capability calculates the base field of a capability and writes it to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

0 0

15 14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCBASE <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(CAP_BOUND_NUM_BITS) result;
5
6 (result, - , -) = CapGetBounds(operand);
7
8 X[d] = result<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

859

Chapter 4. Instruction definitions
4.4. New instructions

4.4.53 GCFLGS

Get the Flags field of a capability gets the Flags field of a capability and writes the result to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0

31 15

0

14

1

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<1> opc<0>

GCFLGS <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) value = CapGetValue(operand);
5 bits(64) result = value<63:56>:Zeros(56);
6
7 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

860

Chapter 4. Instruction definitions
4.4. New instructions

4.4.54 GCLEN

Get the Length of a capability calculates the length of a capability from the limit and the base of that capability
and writes the result to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

0 0

15 14

1

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCLEN <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 bits(65) length = CapGetLength(operand);
7 if length<64> == '1' then
8 result = Ones(64);
9 else

10 result = length<63:0>;
11
12 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

861

Chapter 4. Instruction definitions
4.4. New instructions

4.4.55 GCLIM

Get the Limit of a capability calculates the limit of a capability and writes the result to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0

31 15

0

14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<1> opc<0>

GCLIM <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5 bits(CAP_BOUND_NUM_BITS) limit;
6
7 (- , limit , -) = CapGetBounds(operand);
8 if limit<64> == '1' then
9 result = Ones(64);

10 else
11 result = limit<63:0>;
12
13 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

862

Chapter 4. Instruction definitions
4.4. New instructions

4.4.56 GCOFF

Get the offset of a capability calculates the Offset of a capability from the Value field and the base of that capability
and writes the result to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

0 1

15 14

1

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCOFF <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 result = CapGetOffset(operand);
7
8 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

863

Chapter 4. Instruction definitions
4.4. New instructions

4.4.57 GCPERM

Get the Permissions field of a capability gets the Permissions field of a capability and writes the result to the
destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

1 1

15 14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCPERM <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 result = ZeroExtend(CapGetPermissions(operand),64);
7
8 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

864

Chapter 4. Instruction definitions
4.4. New instructions

4.4.58 GCSEAL

Get the sealed status of a capability writes zero to the the destination register if the ObjectType field of the source
Capability register is zero and writes one otherwise.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

1 0

15 14

1

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCSEAL <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 if CapIsSealed(operand) then
7 result = 1<63:0>;
8 else
9 result = 0<63:0>;

10
11 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

865

Chapter 4. Instruction definitions
4.4. New instructions

4.4.59 GCTAG

Get the Tag field of a capability gets the Tag field of the source Capability register and writes the result to the
destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

1 0

15 14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCTAG <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 if CapIsTagSet(operand) then
7 result = 1<63:0>;
8 else
9 result = 0<63:0>;

10
11 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

866

Chapter 4. Instruction definitions
4.4. New instructions

4.4.60 GCTYPE

Get the ObjectType field of a capability gets the ObjectType field of a capability and writes the result to the
destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

1 1

15 14

1

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCTYPE <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 result = CapGetObjectType(operand);
7
8 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

867

Chapter 4. Instruction definitions
4.4. New instructions

4.4.61 GCVALUE

Get the Value field of a capability gets the range of the Value field of a capability and writes the result to the
destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

0 1

15 14

0

13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc<2:1> opc<0>

GCVALUE <Xd>, <Cn|CSP>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) result;
5
6 result = CapGetValue(operand);
7
8 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

868

Chapter 4. Instruction definitions
4.4. New instructions

4.4.62 LDAPR

Load-Acquire RCpc capability determines the base register to be used, derives an address from the base register,
loads a capability from memory, and writes it to the destination Capability register. The instruction has memory
ordering semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release, except that:

* There is no ordering requirement, separate from the requirements of a Load-AcquirePC or a Store-Release,
created by having a Store-Release followed by a Load-AcquirePC instruction. * The reading of a value written by a
Store-Release by a Load-AcquirePC instruction by the same observer does not make the write of the Store-Release
globally observed.

This difference in memory ordering is not described in the pseudocode. For information about memory accesses,
see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

1

21

1 1 1 1

20 17

1

16

1 1 0 0 0 0

15 10

Rn

9 5

Ct

4 0

LDAPR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDAPR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4
5 base = BaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
8 Capability data = MemC[addr, acctype];
9 data = CapSquashPostLoadCap(data, base);

10
11 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

869

Chapter 4. Instruction definitions
4.4. New instructions

4.4.63 LDAR (capability, alternate base)

Load-Acquire capability via alternate base determines the base register to be used, derives an address from the
base register, loads a capability from memory, and writes it to the destination Capability register. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. This instruction loads
from memory with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For
information about memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

1

22

0

21

1 1 1 1

20 17

1

16

0

15

1 1 1 1

14 11

1

10

Rn

9 5

Ct

4 0

L

LDAR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '0')

LDAR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4
5 base = AltBaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
8 Capability data = MemC[addr, acctype];
9 data = CapSquashPostLoadCap(data, base);

10
11 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

870

Chapter 4. Instruction definitions
4.4. New instructions

4.4.64 LDAR (capability, normal base)

Load-Acquire capability determines the base register to be used, derives an address from the base register, loads a
capability from memory, and writes it to the destination Capability register. This instruction loads from memory
with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about
memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

1

22

0

21

1 1 1 1

20 17

1

16

1

15

1 1 1 1

14 11

1

10

Rn

9 5

Ct

4 0

L

LDAR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDAR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4
5 base = BaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
8 Capability data = MemC[addr, acctype];
9 data = CapSquashPostLoadCap(data, base);

10
11 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

871

Chapter 4. Instruction definitions
4.4. New instructions

4.4.65 LDAR (integer)

Load-Acquire Register via alternate base determines the base register to be used, derives an address from the base
register and an offset register, loads a register from memory, zero-extends it, and writes the result to the destination
register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register
is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register.
This instruction loads from memory with acquire semantics as described in Load-Acquire, Load-AcquirePC, and
Store-Release. For information about memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

1

22

1

21

1 1 1 1

20 17

1

16

1

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

L

LDAR <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '0')

LDAR <Wt>, [<Xn|SP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 datasize=32;
4 regsize=32;
5 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress address;
4
5 base = AltBaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, acctype);
8 bits(datasize) data = Mem[addr, datasize DIV 8, acctype];
9

10 X[t] = ZeroExtend(data,regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

872

Chapter 4. Instruction definitions
4.4. New instructions

4.4.66 LDARB

Load-Acquire Register Byte via alternate base determines the base register to be used, derives an address from the
base register and an offset register, loads a byte from memory, zero-extends it, and writes the result to the destination
register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register
is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register.
This instruction loads from memory with acquire semantics as described in Load-Acquire, Load-AcquirePC, and
Store-Release. For information about memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

1

22

1

21

1 1 1 1

20 17

1

16

0

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

L

LDARB <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '0')

LDARB <Wt>, [<Xn|SP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 datasize=8;
4 regsize=32;
5 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress address;
4
5 base = AltBaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, acctype);
8 bits(datasize) data = Mem[addr, datasize DIV 8, acctype];
9

10 X[t] = ZeroExtend(data,regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

873

Chapter 4. Instruction definitions
4.4. New instructions

4.4.67 LDAXP

Load-Acquire Exclusive Pair of capabilities determines the base register to be used, derives an address from the
base register, loads two capabilities from memory, and writes the result to two Capability registers. A 256-bit pair
requires the address to be 256-bit aligned. The PE marks the physical address being accessed as an exclusive access.
This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores. The
instruction also has memory ordering semantics as described in Load-Acquire, Store-Release. For information
about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

1

22

1

21

1 1 1 1 1

20 16

1

15

Ct2

14 10

Rn

9 5

Ct

4 0

L

LDAXP <Ct>, <Ct2>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDAXP <Ct>, <Ct2>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_ORDEREDATOMIC;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 boolean rt_unknown = FALSE;
5
6 if t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 base = BaseReg[n];
15 bits(64) addr = VAddress(base);
16 VACheckAddress(base, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, acctype);
17
18 AArch64.SetExclusiveMonitors(addr, CAPABILITY_DBYTES*2);
19
20 if addr != Align(addr, CAPABILITY_DBYTES*2) then
21 boolean iswrite = FALSE;
22 boolean secondstage = FALSE;
23 AArch64.Abort(addr, AArch64.AlignmentFault(acctype, iswrite, secondstage));
24
25 Capability data1 = MemC[addr, acctype];
26 Capability data2 = MemC[addr + CAPABILITY_DBYTES, acctype];
27
28 if rt_unknown then
29 C[t] = Capability UNKNOWN;
30 C[t2] = Capability UNKNOWN;
31 else
32 C[t] = CapSquashPostLoadCap(data1, base);
33 C[t2] = CapSquashPostLoadCap(data2, base);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

874

Chapter 4. Instruction definitions
4.4. New instructions

4.4.68 LDAXR

Load-Acquire Exclusive capability determines the base register to be used, derives an address from the base
register, loads two capabilities from memory, and writes the result to two Capability registers. The memory
access is atomic. The PE marks the physical address being accessed as an exclusive access. This exclusive access
mark is checked by Store Exclusive instructions. See Synchronization and semaphores. See Synchronization and
semaphores. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For information about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

1

22

0

21

1 1 1 1 1

20 16

1

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L

LDAXR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDAXR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ORDEREDATOMIC;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4
5 base = BaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
8
9 AArch64.SetExclusiveMonitors(addr, CAPABILITY_DBYTES);

10
11 Capability data = MemC[addr, acctype];
12 data = CapSquashPostLoadCap(data, base);
13
14 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

875

Chapter 4. Instruction definitions
4.4. New instructions

4.4.69 LDCT

Load capability tags loads 4 Capability Tags from memory and writes them to the destination register.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1

31 15

0

14

1

13

1 0 0

12 10

Rn

9 5

Rt

4 0

opc<1> opc<0>

LDCT <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDCT <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = BaseReg[n];
4 integer count = 4;
5
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, CAPABILITY_DBYTES*count, CAP_PERM_LOAD, AccType_NORMAL);
8 bits(64) data = Zeros(64);
9

10 if addr != Align(addr, CAPABILITY_DBYTES*count) then
11 boolean iswrite = FALSE;
12 boolean secondstage = FALSE;
13 AArch64.Abort(addr, AArch64.AlignmentFault(AccType_NORMAL, iswrite, secondstage));
14
15 for i = 0 to count-1
16 bits(1) tag = AArch64.CapabilityTag(addr, AccType_NORMAL);
17 data<i> = tag;
18 addr = addr + CAPABILITY_DBYTES;
19
20 if !VACheckPerm(base, CAP_PERM_LOAD_CAP) then
21 data = Zeros(64);
22
23 X[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

876

Chapter 4. Instruction definitions
4.4. New instructions

4.4.70 LDNP

Load Pair of capabilities, with non-temporal hint determines the base register to be used, derives an address from
the base register and an immediate offset, loads two capabilities from memory, and writes them to two Capability
registers. The address to use is derived from a base register value in A64 or capability base register in C64 and a
immediate offset scaled by 16. For information about Non-temporal pair instructions, see Load/Store Non-temporal
pair. For information about memory accesses, see Load/Store addressing modes.

0 1 1 0 0 0 1 0 0

31 23

1

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

LDNP <Ct>, <Ct2>, [<Xn|SP>, #<imm>] // (PSTATE.C64 == '0')

LDNP <Ct>, <Ct2>, [<Cn|CSP>, #<imm>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_STREAM;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 boolean rt_unknown = FALSE;
5
6 if t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 base = BaseReg[n];
15 bits(64) addr = VAddress(base) + offset;
16 VACheckAddress(base, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, acctype);
17 Capability data1 = MemC[addr, acctype];
18 Capability data2 = MemC[addr + CAPABILITY_DBYTES, acctype];
19
20 if rt_unknown then
21 C[t] = Capability UNKNOWN;
22 C[t2] = Capability UNKNOWN;
23 else
24 C[t] = CapSquashPostLoadCap(data1, base);
25 C[t2] = CapSquashPostLoadCap(data2, base);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

877

Chapter 4. Instruction definitions
4.4. New instructions

4.4.71 LDP (post-indexed)

Load Pair of capabilities (immediate post-index) calculates an address from the source Capability register and an
immediate offset, loads two capabilities from memory, and writes them to two Capability registers. For information
about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 1

31 23

1

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

LDP <Ct>, <Ct2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDP <Ct>, <Ct2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_NORMAL;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 boolean rt_unknown = FALSE;
5
6 if t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 boolean wback = TRUE;
15 boolean wb_unknown = FALSE;
16 if (t == n || t2 == n) && n != 31 then
17 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
18 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
21 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 base = BaseReg[n];
26 bits(64) addr = VAddress(base);
27 VACheckAddress(base, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, acctype);
28 Capability data1 = MemC[addr, acctype];
29 Capability data2 = MemC[addr + CAPABILITY_DBYTES, acctype];
30
31 if rt_unknown then
32 C[t] = Capability UNKNOWN;
33 C[t2] = Capability UNKNOWN;
34 else
35 C[t] = CapSquashPostLoadCap(data1, base);
36 C[t2] = CapSquashPostLoadCap(data2, base);
37

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

878

Chapter 4. Instruction definitions
4.4. New instructions

38 if wback then
39 if wb_unknown then
40 base = VirtualAddress UNKNOWN;
41 else
42 base = VAAdd(base,offset);
43 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

879

Chapter 4. Instruction definitions
4.4. New instructions

4.4.72 LDP (pre-indexed)

Load Pair of capabilities (immediate pre-index) calculates an address from the source Capability register and an
immediate offset, loads two capabilities from memory, and writes them to two Capability registers. For information
about memory accesses, see Load/Store addressing modes.

0 1 1 0 0 0 1 0 1

31 23

1

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

LDP <Ct>, <Ct2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDP <Ct>, <Ct2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_NORMAL;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 boolean rt_unknown = FALSE;
5
6 if t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 boolean wback = TRUE;
15 boolean wb_unknown = FALSE;
16 if (t == n || t2 == n) && n != 31 then
17 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
18 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
21 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 base = BaseReg[n];
26 bits(64) addr = VAddress(base) + offset;
27 VACheckAddress(base, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, acctype);
28 Capability data1 = MemC[addr, acctype];
29 Capability data2 = MemC[addr + CAPABILITY_DBYTES, acctype];
30
31 if rt_unknown then
32 C[t] = Capability UNKNOWN;
33 C[t2] = Capability UNKNOWN;
34 else
35 C[t] = CapSquashPostLoadCap(data1, base);
36 C[t2] = CapSquashPostLoadCap(data2, base);
37

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

880

Chapter 4. Instruction definitions
4.4. New instructions

38 if wback then
39 if wb_unknown then
40 base = VirtualAddress UNKNOWN;
41 else
42 base = VAAdd(base,offset);
43 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

881

Chapter 4. Instruction definitions
4.4. New instructions

4.4.73 LDP (signed offset)

Load Pair of capabilities (signed offset) calculates an address from the source Capability register and an immediate
offset, loads two capabilities from memory, and writes them to two Capability registers. For information about
memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 1

31 23

1

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

LDP <Ct>, <Ct2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDP <Ct>, <Ct2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_NORMAL;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008,
defaulting to 0, encoded in the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 boolean rt_unknown = FALSE;
5
6 if t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 base = BaseReg[n];
15 bits(64) addr = VAddress(base) + offset;
16 VACheckAddress(base, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, acctype);
17 Capability data1 = MemC[addr, acctype];
18 Capability data2 = MemC[addr + CAPABILITY_DBYTES, acctype];
19
20 if rt_unknown then
21 C[t] = Capability UNKNOWN;
22 C[t2] = Capability UNKNOWN;
23 else
24 C[t] = CapSquashPostLoadCap(data1, base);
25 C[t2] = CapSquashPostLoadCap(data2, base);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

882

Chapter 4. Instruction definitions
4.4. New instructions

4.4.74 LDPBLR

Load Pair of capabilities and Branch with Link calculates an address from the source Capability register, loads
from memory two capabilities, a target capability and a data capability. The instruction writes the data capability
to the destination Capability register and branches to the target capability, setting C30 to PCC+4.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0

31 15

0

14

1

13

1 0 0

12 10

Cn

9 5

Ct

4 0

opc<1> opc<0>

LDPBLR <Ct>, [<Cn|CSP>]

1 integer t = UInt(Ct);
2 integer n = UInt(Cn);
3 BranchType branch_type = BranchType_INDCALL;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability base;
4 Capability data;
5 Capability target;
6 if n == 31 then
7 CheckSPAlignment();
8 base = CSP[];
9 else

10 base = C[n];
11
12 boolean wb_unknown = FALSE;
13 integer linkoffset = 4;
14 Capability link;
15
16 if IsInC64() then
17 linkoffset = linkoffset + 1;
18
19 link = CapAdd(PCC[], linkoffset);
20
21 if CCTLR[].SBL == '1' then
22 link = CapSetObjectType(link, CAP_SEAL_TYPE_RB);
23
24 if t == 30 then
25 Constraint c = ConstrainUnpredictable(Unpredictable_LINKTRANSFEROVERLAPLD);
26 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
27 case c of
28 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
29 when Constraint_UNDEF UNDEFINED;
30 when Constraint_NOP EndOfInstruction();
31
32 if t == 29 then
33 if CapIsTagSet(base) && CapIsSealed(base) &&
34 CapGetObjectType(base) == CAP_SEAL_TYPE_LPB then
35 base = CapUnseal(base);
36
37 VirtualAddress vabase = VAFromCapability(base);
38 bits(64) addr = VAddress(vabase);
39 VACheckAddress(vabase, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, AccType_NORMAL);
40
41 data = MemC[addr, AccType_NORMAL];
42 target = MemC[addr + CAPABILITY_DBYTES, AccType_NORMAL];
43 data = CapSquashPostLoadCap(data, vabase);
44 target = CapSquashPostLoadCap(target, vabase);
45
46 C[30] = link;
47 C[29] = data;
48 else
49 VirtualAddress vabase = VAFromCapability(base);
50 bits(64) addr = VAddress(vabase);
51 VACheckAddress(vabase, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, AccType_NORMAL);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

883

Chapter 4. Instruction definitions
4.4. New instructions

52
53 data = MemC[addr, AccType_NORMAL];
54 target = MemC[addr + CAPABILITY_DBYTES, AccType_NORMAL];
55 data = CapSquashPostLoadCap(data, vabase);
56 target = CapSquashPostLoadCap(target, vabase);
57
58 if wb_unknown then
59 C[30] = Capability UNKNOWN;
60 C[t] = Capability UNKNOWN;
61 else
62 C[30] = link;
63 C[t] = data;
64
65 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
66 target = CapWithTagClear(target);
67
68 if CapIsTagSet(target) && CapIsSealed(target) &&
69 CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
70 target = CapUnseal(target);
71
72 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

884

Chapter 4. Instruction definitions
4.4. New instructions

4.4.75 LDPBR

Load Pair of capabilities and Branch calculates an address from the source Capability register, loads from memory
two capabilities, a target capability and a data capability. The instruction writes the data capability to the destination
Capability register and branches to the target capability.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0

31 15

0

14

0

13

1 0 0

12 10

Cn

9 5

Ct

4 0

opc<1> opc<0>

LDPBR <Ct>, [<Cn|CSP>]

1 integer t = UInt(Ct);
2 integer n = UInt(Cn);
3 BranchType branch_type = BranchType_INDIR;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability base;
4 Capability data;
5 Capability target;
6 if n == 31 then
7 CheckSPAlignment();
8 base = CSP[];
9 else

10 base = C[n];
11
12 if t == 29 then
13 if CapIsTagSet(base) && CapIsSealed(base) &&
14 CapGetObjectType(base) == CAP_SEAL_TYPE_LPB then
15 base = CapUnseal(base);
16
17 VirtualAddress vabase = VAFromCapability(base);
18 bits(64) addr = VAddress(vabase);
19 VACheckAddress(vabase, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, AccType_NORMAL);
20
21 data = MemC[addr, AccType_NORMAL];
22 target = MemC[addr + CAPABILITY_DBYTES, AccType_NORMAL];
23 data = CapSquashPostLoadCap(data, vabase);
24 target = CapSquashPostLoadCap(target, vabase);
25
26 C[29] = data;
27 else
28 VirtualAddress vabase = VAFromCapability(base);
29 bits(64) addr = VAddress(vabase);
30 VACheckAddress(vabase, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, AccType_NORMAL);
31
32 data = MemC[addr, AccType_NORMAL];
33 target = MemC[addr + CAPABILITY_DBYTES, AccType_NORMAL];
34 data = CapSquashPostLoadCap(data, vabase);
35 target = CapSquashPostLoadCap(target, vabase);
36
37 C[t] = data;
38
39 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
40 target = CapWithTagClear(target);
41
42 if CapIsTagSet(target) && CapIsSealed(target) &&
43 CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
44 target = CapUnseal(target);
45
46 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

885

Chapter 4. Instruction definitions
4.4. New instructions

4.4.76 LDR (literal)

Load capability (literal) calculates an address from the PCC value and an immediate offset, loads a capability from
memory, and writes it to a Capability register. For information about memory accesses, see Load/Store addressing
modes.

1 0 0 0 0 0 1 0 0 0

31 22

imm17

21 5

Ct

4 0

LDR <Ct>, <label>

1 integer t = UInt(Ct);
2 bits(64) offset = SignExtend(imm17:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<label> Is the program label from which the data is to be loaded. Its offset from the address of this
instruction, in the range +/-1MB, encoded in the "imm17" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = VAFromCapability(PCC);
4 bits(64) address = Align(VAddress(base) + offset, CAPABILITY_DBYTES);
5 Capability data;
6
7 VACheckAddress(base, address, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);
8
9 data = MemC[address, AccType_NORMAL];

10 data = CapSquashPostLoadCap(data, base);
11 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

886

Chapter 4. Instruction definitions
4.4. New instructions

4.4.77 LDR (post-indexed)

Load capability (immediate post-indexed) loads a capability from memory and writes it to a Capability register.
The address to use is derived from a base register value in A64 or capability base register in C64 and a immediate
offset scaled by 16. For information about memory accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

LDR <Ct>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

LDR <Ct>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -4096 to 4080, encoded in
the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 boolean wback = TRUE;
8 boolean wb_unknown = FALSE;
9 if n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 base = BaseReg[n];
19 bits(64) addr = VAddress(base);
20
21 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
22 data = MemC[addr, acctype];
23 data = CapSquashPostLoadCap(data, base);
24 C[t] = data;
25
26 if wback then
27 if wb_unknown then
28 base = VirtualAddress UNKNOWN;
29 else
30 base = VAAdd(base,offset);
31 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

887

Chapter 4. Instruction definitions
4.4. New instructions

4.4.78 LDR (pre-indexed)

Load capability (immediate pre-indexed) loads a capability from memory and writes it to a Capability register.
The address to use is derived from a base register value in A64 or capability base register in C64 and a immediate
offset scaled by 16. For information about memory accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

LDR <Ct>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

LDR <Ct>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -4096 to 4080, encoded in
the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 boolean wback = TRUE;
8 boolean wb_unknown = FALSE;
9 if n == t && n != 31 then

10 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPLD);
11 assert c IN {Constraint_WBSUPPRESS, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_WBSUPPRESS wback = FALSE; // writeback is suppressed
14 when Constraint_UNKNOWN wb_unknown = TRUE; // writeback is UNKNOWN
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17
18 base = BaseReg[n];
19 bits(64) addr = VAddress(base) + offset;
20
21 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
22 data = MemC[addr, acctype];
23 data = CapSquashPostLoadCap(data, base);
24 C[t] = data;
25
26 if wback then
27 if wb_unknown then
28 base = VirtualAddress UNKNOWN;
29 else
30 base = VAAdd(base,offset);
31 BaseReg[n] = base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

888

Chapter 4. Instruction definitions
4.4. New instructions

4.4.79 LDR (register offset, capability, alternate base)

Load capability (register) via alternate base determines the base register to be used, derives an address from the
base register and an offset register, loads a capability from memory, and writes it to the destination Capability
register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register
is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register.
The offset register can optionally be shifted and extended. For information about memory accesses, see Load/Store
addressing modes.

1 1 0 0 0 0 1 0 1 1 1

31 21

Rm

20 16 15

1

14

sz

13

S

12

1

11

1

10

Rn

9 5

Ct

4 0

sign L

LDR <Ct>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDR <Ct>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = LOG2_CAPABILITY_DBYTES;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #4

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 Capability data;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);
9 data = MemC[addr, AccType_NORMAL];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

889

Chapter 4. Instruction definitions
4.4. New instructions

10 data = CapSquashPostLoadCap(data, base);
11 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

890

Chapter 4. Instruction definitions
4.4. New instructions

4.4.80 LDR (register offset, capability, normal base)

Load capability (register) determines the base register to be used, derives an address from the base register and
an offset register, loads a capability from memory, and writes it to the destination Capability register. The offset
register can optionally be shifted and extended. For information about memory accesses, see Load/Store addressing
modes.

1 0 1 0 0 0 1 0

31 24

0

23

1

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

1 0

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0> sign

LDR <Ct>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDR <Ct>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = LOG2_CAPABILITY_DBYTES;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #4

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = BaseReg[n];
5 Capability data;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);
9 data = MemC[addr, AccType_NORMAL];

10 data = CapSquashPostLoadCap(data, base);
11 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

891

Chapter 4. Instruction definitions
4.4. New instructions

4.4.81 LDR (register offset, integer)

Load Register (register) via alternate base determines the base register to be used, derives an address from the
base register and an offset register, loads a word from memory, and writes the result to the destination register.
The offset register can optionally be shifted and extended. The base register used by this operation depends on
PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the
base register is a capability general-purpose register. For information about memory accesses, see Load/Store
addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 0 0 0 0 0 1 0 1

31 23

1

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

0 1

11 10

Rn

9 5

Rt

4 0

L sign opc

LDR <Xt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDR <Xt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 3;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 64;

Word

1 0 0 0 0 0 1 0 1

31 23

1

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

0 0

11 10

Rn

9 5

Rt

4 0

L sign opc

LDR <Wt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDR <Wt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 2;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

892

Chapter 4. Instruction definitions
4.4. New instructions

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> For the doubleword variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #3

For the word variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #2

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, AccType_NORMAL);
9 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];

10
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

893

Chapter 4. Instruction definitions
4.4. New instructions

4.4.82 LDR (register offset, SIMD&FP)

Load SIMD&FP Register (register) via alternate base determines the base register to be used, derives an address
from the base register and an offset register, loads a SIMD&FP register from memory, and writes the result to
the destination SIMD&FP register. The offset register can optionally be shifted and extended. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

1 0 0 0 0 0 1 0 1

31 23

1

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

1 1

11 10

Rn

9 5

Rt

4 0

L sign opc

LDR <St>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDR <St>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 2;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

64-bit

1 0 0 0 0 0 1 0 1

31 23

1

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

L sign opc

LDR <Dt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDR <Dt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 3;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

894

Chapter 4. Instruction definitions
4.4. New instructions

sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> For the 32-bit variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #2

For the 64-bit variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #3

Operation
1 CheckCapabilitiesEnabled();
2 CheckFPAdvSIMDEnabled64();
3
4 bits(64) offset = ExtendReg(m, extend_type, shift);
5 VirtualAddress base = AltBaseReg[n];
6 integer datasize = 8 << scale;
7
8 bits(64) addr = VAddress(base) + offset;
9 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, AccType_NORMAL);

10 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
11
12 V[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

895

Chapter 4. Instruction definitions
4.4. New instructions

4.4.83 LDR (unsigned offset, capability, alternate base)

Load capability (unsigned offset) via alternate base determines the base register to be used, derives an address from
the base register and an immediate offset, loads a capability from memory, and writes the result to the destination
Capability register. For information about memory accesses, see Load/Store addressing modes. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register.

1 0 0 0 0 0 1 0 0 1

31 22

1

21

imm9

20 12

0 0

11 10

Rn

9 5

Ct

4 0

L op

LDR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 16 in the range 0 to 8176,
defaulting to 0, encoded in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);
7 Capability data = MemC[addr, AccType_NORMAL];
8 data = CapSquashPostLoadCap(data, base);
9

10 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

896

Chapter 4. Instruction definitions
4.4. New instructions

4.4.84 LDR (unsigned offset, capability, normal base)

Load capability (unsigned offset) determines the base register to be used, derives an address from the base register
and an immediate offset, loads a capability from memory, and writes the result to the destination Capability register.
For information about memory accesses, see Load/Store addressing modes.

1 1 0 0 0 0 1 0 0

31 23

1

22

imm12

21 10

Rn

9 5

Ct

4 0

L

LDR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm12:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 16 in the range 0 to 65520,
defaulting to 0, encoded in the "imm12" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 base = BaseReg[n];
8 bits(64) addr = VAddress(base) + offset;
9

10 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
11 data = MemC[addr, acctype];
12 data = CapSquashPostLoadCap(data, base);
13 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

897

Chapter 4. Instruction definitions
4.4. New instructions

4.4.85 LDR (unsigned offset, integer)

Load Register (unsigned offset) via alternate base determines the base register to be used, derives an address from
the base register and an immediate offset, loads a 32-bit word or 64-bit doubleword from memory, zero-extends it,
and writes the result to the destination register. The base register used by this operation depends on PSTATE.C64:
if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is
a capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 0 0 0 0 0 1 0 0 1

31 22

1

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

L op

LDR <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDR <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9:'000', 64);
4 datasize = 64;
5 regsize = 64;

Word

1 0 0 0 0 0 1 0 0 1

31 22

1

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

L op

LDR <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDR <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9:'00', 64);
4 datasize = 32;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> For the doubleword variant: is the optional unsigned immediate byte offset, a multiple of 8
in the range 0 to 4088, defaulting to 0, encoded in the "imm9" field.

For the word variant: is the optional unsigned immediate byte offset, a multiple of 4 in the
range 0 to 2044, defaulting to 0, encoded in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

898

Chapter 4. Instruction definitions
4.4. New instructions

6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

899

Chapter 4. Instruction definitions
4.4. New instructions

4.4.86 LDRB (register offset)

Load Register Byte (register) via alternate base determines the base register to be used, derives an address from
the base register and an offset register, loads a byte from memory, zero-extends it, and writes the result to the
destination register. The offset register can optionally be shifted and extended. The base register used by this
operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register;
if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about memory
accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 1

31 23

1

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

0 0

11 10

Rn

9 5

Rt

4 0

L sign opc

LDRB <Wt>, [<Cn|CSP>, <R><m>, <extend>] // (PSTATE.C64 == '0')

LDRB <Wt>, [<Xn|SP>, <R><m>, <extend>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 0;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, AccType_NORMAL);
9 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];

10
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

900

Chapter 4. Instruction definitions
4.4. New instructions

4.4.87 LDRB (unsigned offset)

Load Register Byte (unsigned offset) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, loads a byte from memory, zero-extends it, and writes the result
to the destination register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64
is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability
general-purpose register. For information about memory accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 0 1

31 22

1

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

L op

LDRB <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDRB <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9, 64);
4 datasize = 8;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 511, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

901

Chapter 4. Instruction definitions
4.4. New instructions

4.4.88 LDRH

Load Register Halfword (register) via alternate base determines the base register to be used, derives an address
from the base register and an offset register, loads a halfword from memory, zero-extends it, and writes the result
to the destination register. The offset register can optionally be shifted and extended. The base register used by this
operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register;
if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about memory
accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 1

31 23

1

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

1 1

11 10

Rn

9 5

Rt

4 0

L sign opc

LDRH <Wt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDRH <Wt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 1;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #1

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, AccType_NORMAL);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

902

Chapter 4. Instruction definitions
4.4. New instructions

9 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
10
11 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

903

Chapter 4. Instruction definitions
4.4. New instructions

4.4.89 LDRSB

Load Register Signed Byte (register) via alternate base determines the base register to be used, derives an address
from the base register and an offset register, loads a byte from memory, sign-extends it, and writes the result to
the destination register. The offset register can optionally be shifted and extended. The base register used by this
operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register;
if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about memory
accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 0 0 0 0 0 1 0 1

31 23

0

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

0 1

11 10

Rn

9 5

Rt

4 0

L sign opc

LDRSB <Xt>, [<Cn|CSP>, <R><m>, <extend>] // (PSTATE.C64 == '0')

LDRSB <Xt>, [<Xn|SP>, <R><m>, <extend>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 0;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 64;

Word

1 0 0 0 0 0 1 0 1

31 23

1

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

0 1

11 10

Rn

9 5

Rt

4 0

L sign opc

LDRSB <Wt>, [<Cn|CSP>, <R><m>, <extend>] // (PSTATE.C64 == '0')

LDRSB <Wt>, [<Xn|SP>, <R><m>, <extend>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 0;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

904

Chapter 4. Instruction definitions
4.4. New instructions

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, AccType_NORMAL);
9 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];

10
11 X[t] = SignExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

905

Chapter 4. Instruction definitions
4.4. New instructions

4.4.90 LDRSH

Load Register Signed Halfword (register) via alternate base determines the base register to be used, derives an
address from the base register and an offset register, loads a halfword from memory, sign-extends it, and writes
the result to the destination register. The offset register can optionally be shifted and extended. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about
memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 0 0 0 0 0 1 0 1

31 23

0

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

L sign opc

LDRSH <Xt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDRSH <Xt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 1;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 64;

Word

1 0 0 0 0 0 1 0 1

31 23

1

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

L sign opc

LDRSH <Wt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

LDRSH <Wt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 1;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

906

Chapter 4. Instruction definitions
4.4. New instructions

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #1

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_LOAD, AccType_NORMAL);
9 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];

10
11 X[t] = SignExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

907

Chapter 4. Instruction definitions
4.4. New instructions

4.4.91 LDTR

Load capability (unprivileged) determines the base register to be used, derives an address from the base register
and an immediate offset, loads a capability from memory, and writes the result to the destination Capability
register. For information about memory accesses, see Load/Store addressing modes. Memory accesses made by
the instruction behave as if the instruction was executed at EL0 if the Effective value of PSTATE.UAO is 0 and
either:

* The instruction is executed at EL1. * The instruction is executed at EL2 when the Effective value of both
HCR_EL2.E2H and HCR_EL2.TGE are 1.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed.

In all cases the memory access operates with the capability restrictions as determined by the Exception level at
which the instruction is executed.

1 0 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

LDTR <Ct>, [<Xn|SP>, #<imm>] // (PSTATE.C64 == '0')

LDTR <Ct>, [<Cn|CSP>, #<imm>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -4096 to 4080, encoded in
the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 unpriv_at_el1 = PSTATE.EL == EL1;
6 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
7
8 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
9 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

10 acctype = AccType_UNPRIV;
11 else
12 acctype = AccType_NORMAL;
13
14 base = BaseReg[n];
15 bits(64) addr = VAddress(base) + offset;
16
17 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
18 data = MemC[addr, acctype];
19 data = CapSquashPostLoadCap(data, base);
20 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

908

Chapter 4. Instruction definitions
4.4. New instructions

4.4.92 LDUR (capability, alternate base)

Load capability (unscaled) via alternate base determines the base register to be used, derives an address from the
base register and an immediate offset, loads a capability from memory, and writes the result to the destination
Capability register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base
register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose
register. For information about memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

1

23

1

22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Ct

4 0

op1<1> V
op1<0>

op2

LDUR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, AccType_NORMAL);
7 Capability data = MemC[addr, AccType_NORMAL];
8 data = CapSquashPostLoadCap(data, base);
9

10 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

909

Chapter 4. Instruction definitions
4.4. New instructions

4.4.93 LDUR (capability, normal base)

Load capability (unscaled) determines the base register to be used, derives an address from the base register and an
immediate offset, loads a capability from memory, and writes the result to the destination Capability register. For
information about memory accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

LDUR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 base = BaseReg[n];
8 bits(64) addr = VAddress(base) + offset;
9

10 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
11 data = MemC[addr, acctype];
12 data = CapSquashPostLoadCap(data, base);
13 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

910

Chapter 4. Instruction definitions
4.4. New instructions

4.4.94 LDUR (integer)

Load Register (unscaled) via alternate base determines the base register to be used, derives an address from the
base register and an immediate offset, loads a 32-bit word or 64-bit doubleword from memory, zero-extends it, and
writes the result to the destination register. The base register used by this operation depends on PSTATE.C64: if
PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a
capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 1 1 0 0 0 1 0

31 24

1

23

1

22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDUR <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 64;
5 regsize = 64;

Word

1 1 1 0 0 0 1 0

31 24

1

23

0

22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDUR <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 32;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

911

Chapter 4. Instruction definitions
4.4. New instructions

4.4.95 LDUR (SIMD&FP)

Load SIMD&FP Register (unscaled) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, loads a SIMD&FP register from memory, and writes the result
to the destination SIMD&FP register. The base register used by this operation depends on PSTATE.C64: if
PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a
capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit

1 1 1 0 0 0 1 0

31 24

0

23

0

22

1

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDUR <Bt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Bt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 8;

16-bit

1 1 1 0 0 0 1 0

31 24

0

23

1

22

1

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDUR <Ht>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Ht>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 16;

32-bit

1 1 1 0 0 0 1 0

31 24

1

23

0

22

1

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDUR <St>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <St>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 32;

64-bit

1 1 1 0 0 0 1 0

31 24

1

23

1

22

1

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

912

Chapter 4. Instruction definitions
4.4. New instructions

LDUR <Dt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Dt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 64;

128-bit

1 1 1 0 0 0 1 0

31 24

0

23

0

22

1

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDUR <Qt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDUR <Qt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 128;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2 CheckFPAdvSIMDEnabled64();
3
4 VirtualAddress base = AltBaseReg[n];
5 bits(64) addr = VAddress(base) + offset;
6
7 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
8 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
9

10 V[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

913

Chapter 4. Instruction definitions
4.4. New instructions

4.4.96 LDURB

Load Register Byte (unscaled) via alternate base determines the base register to be used, derives an address from
the base register and an immediate offset, loads a byte from memory, zero-extends it, and writes the result to
the destination register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is
1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability
general-purpose register. For information about memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURB <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURB <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 8;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

914

Chapter 4. Instruction definitions
4.4. New instructions

4.4.97 LDURH

Load Register Halfword (unscaled) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, loads a halfword from memory, zero-extends it, and writes the
result to the destination register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64
is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability
general-purpose register. For information about memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURH <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURH <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 16;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = ZeroExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

915

Chapter 4. Instruction definitions
4.4. New instructions

4.4.98 LDURSB

Load Register Signed Byte (unscaled) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset,loads a byte from memory, sign-extends it, and writes the result
to the destination register. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64
is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability
general-purpose register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 1 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURSB <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURSB <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 8;
5 regsize = 64;

Word

1 1 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURSB <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURSB <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 8;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = SignExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

916

Chapter 4. Instruction definitions
4.4. New instructions

4.4.99 LDURSH

Load Register Signed Halfword (unscaled) via alternate base determines the base register to be used, derives
an address from the base register and an immediate offset, loads a halfword from memory, sign-extends it, and
writes the result to the destination register. The base register used by this operation depends on PSTATE.C64: if
PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a
capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 1 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURSH <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURSH <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 16;
5 regsize = 64;

Word

1 1 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURSH <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURSH <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 16;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = SignExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

917

Chapter 4. Instruction definitions
4.4. New instructions

4.4.100 LDURSW

Load Register Signed Word (unscaled) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, loads a word from memory, sign-extends it to form a 64-bit value,
and writes the result to the destination register. The base register used by this operation depends on PSTATE.C64:
if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is
a capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

1

23

0

22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

LDURSW <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

LDURSW <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 32;
5 regsize = 64;

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8 , CAP_PERM_LOAD, AccType_NORMAL);
7 bits(datasize) data = Mem[addr, datasize DIV 8, AccType_NORMAL];
8
9 X[t] = SignExtend(data, regsize);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

918

Chapter 4. Instruction definitions
4.4. New instructions

4.4.101 LDXP

Load Exclusive Pair of capabilities determines the base register to be used, derives an address from the base register,
loads two capabilities from memory, and writes the result to two Capability registers. A 256-bit pair requires the
address to be 256-bit aligned. The PE marks the physical address being accessed as an exclusive access. This
exclusive access mark is checked by Store Exclusive instructions. See Synchronization and semaphores. For
information about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

1

22

1

21

1 1 1 1 1

20 16

0

15

Ct2

14 10

Rn

9 5

Ct

4 0

L

LDXP <Ct>, <Ct2>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDXP <Ct>, <Ct2>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_ATOMIC;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 boolean rt_unknown = FALSE;
5
6 if t == t2 then
7 Constraint c = ConstrainUnpredictable(Unpredictable_LDPOVERLAP);
8 assert c IN {Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
9 case c of

10 when Constraint_UNKNOWN rt_unknown = TRUE; // result is UNKNOWN
11 when Constraint_UNDEF UNDEFINED;
12 when Constraint_NOP EndOfInstruction();
13
14 base = BaseReg[n];
15 bits(64) addr = VAddress(base);
16 VACheckAddress(base, addr, CAPABILITY_DBYTES*2, CAP_PERM_LOAD, acctype);
17
18 AArch64.SetExclusiveMonitors(addr, CAPABILITY_DBYTES*2);
19
20 if addr != Align(addr, CAPABILITY_DBYTES*2) then
21 boolean iswrite = FALSE;
22 boolean secondstage = FALSE;
23 AArch64.Abort(addr, AArch64.AlignmentFault(acctype, iswrite, secondstage));
24
25 Capability data1 = MemC[addr, acctype];
26 Capability data2 = MemC[addr + CAPABILITY_DBYTES, acctype];
27
28 if rt_unknown then
29 C[t] = Capability UNKNOWN;
30 C[t2] = Capability UNKNOWN;
31 else
32 C[t] = CapSquashPostLoadCap(data1, base);
33 C[t2] = CapSquashPostLoadCap(data2, base);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

919

Chapter 4. Instruction definitions
4.4. New instructions

4.4.102 LDXR

Load Exclusive capability determines the base register to be used, derives an address from the base register,
loads a capability from memory, and writes the result to the destination Capability register. The PE marks the
physical address being accessed as an exclusive access. This exclusive access mark is checked by Store Exclusive
instructions. See Synchronization and semaphores. For information about memory accesses, see Load/Store
addressing modes.

0 0 1 0 0 0 1 0 0

31 23

1

22

0

21

1 1 1 1 1

20 16

0

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L

LDXR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

LDXR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ATOMIC;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4
5 base = BaseReg[n];
6 bits(64) addr = VAddress(base);
7 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, acctype);
8
9 AArch64.SetExclusiveMonitors(addr, CAPABILITY_DBYTES);

10
11 Capability data = MemC[addr, acctype];
12 data = CapSquashPostLoadCap(data, base);
13
14 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

920

Chapter 4. Instruction definitions
4.4. New instructions

4.4.103 MOV

Move between registers

This is an alias of CPY. This means:

• The encodings in this description are named to match the encodings of CPY.

• The description of CPY gives the operational pseudocode for this instruction.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1

31 15

1

14

0

13

1 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

MOV <Cd|CSP>, <Cn|CSP>

is equivalent to
CPY<Cd|CSP>, <Cn|CSP>

and is always the preferred disassembly.

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

Operation

The description of CPY gives the operational pseudocode for this instruction.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

921

Chapter 4. Instruction definitions
4.4. New instructions

4.4.104 MRS

Move System Register to Capability register allows the PE to read a capability from an AArch64 System register
into the destination Capability register

1 1 0 0 0 0 1 0 1 0 0

31 21

1

20

o0

19

op1

18 16

CRn

15 12

CRm

11 8

op2

7 5

Ct

4 0

L

MRS <Ct>, (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>)

1 integer sys_op0 = 2 + UInt(o0);
2 integer sys_op1 = UInt(op1);
3 integer sys_crn = UInt(CRn);
4 integer sys_crm = UInt(CRm);
5 integer sys_op2 = UInt(op2);
6 integer t = UInt(Ct);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<op0> Is the op0 specifier, encoded in"o0":
o0 <op0>
0 2
1 3

<op1> Is the unsigned immediate operand, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is the name Cn, with n in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is the name Cm, with m in the range 0 to 15, encoded in the "CRm" field.

<op2> Is the unsigned immediate operand, in the range 0 to 7, encoded in the "op2" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 C[t] = AArch64.CapSysRegRead(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

922

Chapter 4. Instruction definitions
4.4. New instructions

4.4.105 MSR

Move Capability register to System Register allows the PE to write a capability to an AArch64 System register
from a capability general-purpose register.

1 1 0 0 0 0 1 0 1 0 0

31 21

0

20

o0

19

op1

18 16

CRn

15 12

CRm

11 8

op2

7 5

Ct

4 0

L

MSR (<systemreg>|S<op0>_<op1>_<Cn>_<Cm>_<op2>), <Ct>

1 integer sys_op0 = 2 + UInt(o0);
2 integer sys_op1 = UInt(op1);
3 integer sys_crn = UInt(CRn);
4 integer sys_crm = UInt(CRm);
5 integer sys_op2 = UInt(op2);
6 integer t = UInt(Ct);

Assembler Symbols

<op0> Is the op0 specifier, encoded in"o0":
o0 <op0>
0 2
1 3

<op1> Is the unsigned immediate operand, in the range 0 to 7, encoded in the "op1" field.

<Cn> Is the name Cn, with n in the range 0 to 15, encoded in the "CRn" field.

<Cm> Is the name Cm, with m in the range 0 to 15, encoded in the "CRm" field.

<op2> Is the unsigned immediate operand, in the range 0 to 7, encoded in the "op2" field.

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 AArch64.CapSysRegWrite(sys_op0, sys_op1, sys_crn, sys_crm, sys_op2, C[t]);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

923

Chapter 4. Instruction definitions
4.4. New instructions

4.4.106 ORRFLGS (immediate)

Bitwise OR (immediate) on flags field performs a bitwise OR of the flags field of a capability and an immediate
value and writes the result to the flags field of the destination Capability register. If the source capability is sealed,
the Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 1

31 21

imm8

20 13

0 1

12 11

0

10

Cn

9 5

Cd

4 0

ORRFLGS <Cd|CSP>, <Cn|CSP>, #<imm>

1 integer n = UInt(Cn);
2 integer d = UInt(Cd);
3 bits(8) mask = imm8;

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 255, encoded in the "imm8" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 bits(64) oldvalue = CapGetValue(operand);
6 bits(8) newflags = oldvalue<63:56> OR mask;
7 bits(64) newvalue = newflags : oldvalue<55:0>;
8
9 Capability result = CapSetFlags(operand,newvalue);

10
11 if CapIsSealed(operand) then
12 result = CapWithTagClear(result);
13
14 if d == 31 then
15 CSP[] = result;
16 else
17 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

924

Chapter 4. Instruction definitions
4.4. New instructions

4.4.107 ORRFLGS (register)

Bitwise OR on flags field performs a bitwise OR of the flags field of a capability and bits 63 to 56 of a register
value and writes the result to the flags field of the destination Capability register. If the source capability is sealed,
the Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0 1

15 14

1 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

ORRFLGS <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4 bits(64) mask = X[m];
5
6 bits(64) oldvalue = CapGetValue(operand);
7 bits(8) newflags = oldvalue<63:56> OR mask<63:56>;
8 bits(64) newvalue = newflags : oldvalue<55:0>;
9

10 Capability result = CapSetFlags(operand,newvalue);
11
12 if CapIsSealed(operand) then
13 result = CapWithTagClear(result);
14
15 if d == 31 then
16 CSP[] = result;
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

925

Chapter 4. Instruction definitions
4.4. New instructions

4.4.108 RET

Return from subroutine branches unconditionally to an address in the source Capability register, with a hint that
this is a subroutine return.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

1

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

RET { <Cn>}

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_RET;

Assembler Symbols

<Cn> Is the optional capability name of the first source register, defaulting to C30 in C64, encoded
in the "Cn" field. To avoid confusion with RET {<Xn>} disassemblers should not omit
<Cn>.

Operation
1 CheckCapabilitiesEnabled();
2 Capability target = C[n];
3
4 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
5 target = CapWithTagClear(target);
6
7 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
8 target = CapUnseal(target);
9

10 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

926

Chapter 4. Instruction definitions
4.4. New instructions

4.4.109 RETR

Return from subroutine with possible switch to Restricted branches unconditionally to an address in the source
Capability register, with a hint that this is a subroutine return. The PE may switch to Restricted based on the
Executive permission in PCC.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

1

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 1

1 0

opc<1> opc<0>

RETR { <Cn>}

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_RET;

Assembler Symbols

<Cn> Is the optional capability name of the first source register, defaulting to C30 encoded in the
"Cn" field.

Operation
1 if IsInRestricted() then
2 UndefinedFault();
3
4 CheckCapabilitiesEnabled();
5
6 Capability target = C[n];
7
8 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
9 target = CapUnseal(target);

10 else
11 if CCTLR[].SBL == '1' then
12 target = CapWithTagClear(target);
13
14 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

927

Chapter 4. Instruction definitions
4.4. New instructions

4.4.110 RETS (capability)

Return to sealed capability unseals and branches to an address in the source Capability register with a hint that this
is a return.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

1

14

0

13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 0

1 0

opc<1> opc<0>

RETS { <Cn>}

1 integer n = UInt(Cn);
2 BranchType branch_type = BranchType_RET;

Assembler Symbols

<Cn> Is the optional capability name of the first source register, defaulting to C30 encoded in the
"Cn" field.

Operation
1 CheckCapabilitiesEnabled();
2 Capability target = C[n];
3
4 if !IsInRestricted() && !CapCheckPermissions(target, CAP_PERM_EXECUTIVE) then
5 target = CapWithTagClear(target);
6
7 if CapIsTagSet(target) && CapIsSealed(target) && CapGetObjectType(target) == CAP_SEAL_TYPE_RB then
8 target = CapUnseal(target);
9 else

10 if CCTLR[].SBL == '1' then
11 target = CapWithTagClear(target);
12
13 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

928

Chapter 4. Instruction definitions
4.4. New instructions

4.4.111 RETS (pair of capabilities)

Return to sealed capability pair checks the capabilities have the correct properties to be used as a sealed pair,
unseals the source Capability registers, branches to an address in the first Capability register and writes the second
Capability register to C29, with a hint that this is a return.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

1

14

0

13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc<1> opc<0>

RETS C29, <Cn>, <Cm>

1 integer n = UInt(Cn);
2 integer m = UInt(Cm);
3 BranchType branch_type = BranchType_RET;

Assembler Symbols

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability sealed_target = C[n];
4 Capability sealed_data = C[m];
5
6 if !IsInRestricted() && !CapCheckPermissions(sealed_target, CAP_PERM_EXECUTIVE) then
7 sealed_target = CapWithTagClear(sealed_target);
8
9 Capability target;

10 if CapIsTagSet(sealed_target) && CapIsTagSet(sealed_data)
11 && CapIsSealed(sealed_target) && CapIsSealed(sealed_data)
12 && UInt(CapGetObjectType(sealed_target)) > CAP_MAX_FIXED_SEAL_TYPE
13 && CapGetObjectType(sealed_target) == CapGetObjectType(sealed_data)
14 && CapCheckPermissions(sealed_target, CAP_PERM_BRANCH_SEALED_PAIR)
15 && CapCheckPermissions(sealed_data, CAP_PERM_BRANCH_SEALED_PAIR)
16 && CapCheckPermissions(sealed_target, CAP_PERM_EXECUTE)
17 && !CapCheckPermissions(sealed_data, CAP_PERM_EXECUTE) then
18
19 target = CapUnseal(sealed_target);
20 C[29] = CapUnseal(sealed_data);
21 else
22 target = CapWithTagClear(sealed_target);
23 C[29] = sealed_data;
24
25 BranchXToCapability(target, branch_type);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

929

Chapter 4. Instruction definitions
4.4. New instructions

4.4.112 RRLEN

Round Representable Length generates a length, writing it to the destination register. Together with a Capability
Value masked as per RRMASK, the length can be used with SCBNDSE to set representable bounds.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0

31 15

0

14

0

13

1 0 0

12 10

Rn

9 5

Rd

4 0

opc<1> opc<0>

RRLEN <Xd>, <Xn>

1 integer d = UInt(Rd);
2 integer n = UInt(Rn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the source general-purpose register, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) request = X[n];
4
5 bits(64) mask = CapGetRepresentableMask(request);
6
7 X[d] = (request + NOT(mask)) AND mask;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

930

Chapter 4. Instruction definitions
4.4. New instructions

4.4.113 RRMASK

Round Representable Mask generates a mask, writing it to the destination register. Together with a length obtained
from RRLEN, the mask can be used on a Capablity Value to set representable bounds with SCBNDSE.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0

31 15

0

14

1

13

1 0 0

12 10

Rn

9 5

Rd

4 0

opc<1> opc<0>

RRMASK <Xd>, <Xn>

1 integer d = UInt(Rd);
2 integer n = UInt(Rn);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the source general-purpose register, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) request = X[n];
4
5 bits(64) mask = CapGetRepresentableMask(request);
6
7 X[d] = mask;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

931

Chapter 4. Instruction definitions
4.4. New instructions

4.4.114 SCBNDS (immediate)

Set Bounds (immediate) derives Capability Bounds using the source Capability register and a length from an
immediate offset and writes the result to the destination Capability register. If the source capability is sealed, the
Capability Tag written to the destination Capability register is cleared

It has encodings from 2 classes: Scaled and Unscaled

Scaled

1 1 0 0 0 0 1 0 1 1 0

31 21

imm6

20 15

1

14

1 1 1 0

13 10

Cn

9 5

Cd

4 0

S

SCBNDS <Cd|CSP>, <Cn|CSP>, #<imm>, LSL #4

1 integer n = UInt(Cn);
2 integer d = UInt(Cd);
3 bits(65) length = if S == '1' then ZeroExtend(imm6:'0000',65) else ZeroExtend(imm6,65);

Unscaled

1 1 0 0 0 0 1 0 1 1 0

31 21

imm6

20 15

0

14

1 1 1 0

13 10

Cn

9 5

Cd

4 0

S

SCBNDS <Cd|CSP>, <Cn|CSP>, #<imm>

1 integer n = UInt(Cn);
2 integer d = UInt(Cd);
3 bits(65) length = if S == '1' then ZeroExtend(imm6:'0000',65) else ZeroExtend(imm6,65);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 63, encoded in the "imm6" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand = if n == 31 then CSP[] else C[n];
4
5 Capability result = CapSetBounds(operand, length, TRUE);
6
7 if CapIsSealed(operand) then
8 result = CapWithTagClear(result);
9

10 if d == 31 then
11 CSP[] = result;
12 else
13 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

932

Chapter 4. Instruction definitions
4.4. New instructions

4.4.115 SCBNDS (register)

Set Bounds derives Capability Bounds using the source Capability register and a length from a 64-bit register and
writes the result to the destination Capability register. If the source capability is sealed, the Capability Tag written
to the destination Capability register is cleared

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0

15

0

14

0

13

0 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

SCBNDS <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) xm = X[m];
5 bits(65) length = ZeroExtend(xm,65);
6
7 Capability result = CapSetBounds(operand1, length, FALSE);
8
9 if CapIsSealed(operand1) then

10 result = CapWithTagClear(result);
11
12 if d == 31 then
13 CSP[] = result;
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

933

Chapter 4. Instruction definitions
4.4. New instructions

4.4.116 SCBNDSE

Set Bounds Exact derives Capability Bounds using the source Capability register and a length from a 64-bit register
and writes the result to the destination Capability register. If the bounds cannot be set exactly, this instruction
clears the Capability Tag. If the source capability is sealed, the Capability Tag written to the destination Capability
register is cleared

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0

15

0

14

1

13

0 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

SCBNDSE <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) xm = X[m];
5 bits(65) length = ZeroExtend(xm,65);
6
7 Capability result = CapSetBounds(operand1, length, TRUE);
8
9 if CapIsSealed(operand1) then

10 result = CapWithTagClear(result);
11
12 if d == 31 then
13 CSP[] = result;
14 else
15 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

934

Chapter 4. Instruction definitions
4.4. New instructions

4.4.117 SCFLGS

Set the Flags field of a capability writes the source Capability register to the destination Capability register with
the Flags field set to a value based on a 64-bit general-purpose register. If the source capability is sealed, the
Capability Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

1 1 1 0 0 0

15 10

Cn

9 5

Cd

4 0

SCFLGS <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) newflags = X[m];
5
6 bits(64) oldvalue = CapGetValue(operand1);
7 bits(64) newvalue = newflags<63:56>: oldvalue<55:0>;
8
9 Capability result = CapSetFlags(operand1,newvalue);

10
11 if CapIsSealed(operand1) then
12 result = CapWithTagClear(result);
13
14 if d == 31 then
15 CSP[] = result;
16 else
17 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

935

Chapter 4. Instruction definitions
4.4. New instructions

4.4.118 SCOFF

Set the offset field of a capability writes the source Capability register to the destination Capability register with
the offset set to a value based on a 64-bit general-purpose register. If the source capability is sealed, the Capability
Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0

15

1

14

1

13

0 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

SCOFF <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) newoffset = X[m];
5 Capability result;
6
7 result = CapSetOffset(operand1,newoffset);
8 if CapIsSealed(operand1) then
9 result = CapWithTagClear(result);

10
11 if d == 31 then
12 CSP[] = result;
13 else
14 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

936

Chapter 4. Instruction definitions
4.4. New instructions

4.4.119 SCTAG

Set the Capability Tag field writes the source Capability register to the destination Capability register with the Tag
field set to a value based on a 64-bit general-purpose register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

1 0

15 14

0

13

0 0 0

12 10

Cn

9 5

Cd

4 0

SCTAG <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3
4 CheckCapabilitiesEnabled();
5
6 Capability operand1 = if n == 31 then CSP[] else C[n];
7 bits(64) newtag = X[m];
8 Capability result;
9

10 if newtag<0> == '1' && CapIsSystemAccessEnabled() && !IsTagSettingDisabled() then
11 result = CapWithTagSet(operand1);
12 else
13 result = CapWithTagClear(operand1);
14
15 if d == 31 then
16 CSP[] = result;
17 else
18 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

937

Chapter 4. Instruction definitions
4.4. New instructions

4.4.120 SCVALUE

Set value field of a capability writes the source Capability register to the destination Capability register with the
Value field set to a value based on a 64-bit general-purpose register. If the source capability is sealed, the Capability
Tag written to the destination Capability register is cleared.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0

15

1

14

0

13

0 0 0

12 10

Cn

9 5

Cd

4 0

opc<1> opc<0>

SCVALUE <Cd|CSP>, <Cn|CSP>, <Xm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Rm);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<Xm> Is the 64-bit name of the source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 bits(64) newvalue = X[m];
5 Capability result;
6
7 result = CapSetValue(operand1,newvalue);
8 if CapIsSealed(operand1) then
9 result = CapWithTagClear(result);

10
11 if d == 31 then
12 CSP[] = result;
13 else
14 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

938

Chapter 4. Instruction definitions
4.4. New instructions

4.4.121 SEAL (capability)

Seal capability seals a capability with a sealing capability, by setting the ObjectType of the capability to the
Capability Value of the sealing capability, and writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0 0

15 14

0 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

SEAL <Cd>, <Cn>, <Cm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2 bits(64) otype = CapGetValue(C[m]);
3 Capability c = CapSetObjectType(C[n], otype);
4
5 if CapIsTagSet(C[n]) && CapIsTagSet(C[m]) &&
6 !CapIsSealed(C[n]) && !CapIsSealed(C[m]) &&
7 CapCheckPermissions(C[m], CAP_PERM_SEAL) &&
8 CapIsInBounds(C[m]) &&
9 UInt(otype) <= CAP_MAX_OBJECT_TYPE then

10
11 C[d] = c;
12 else
13 C[d] = CapWithTagClear(c);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

939

Chapter 4. Instruction definitions
4.4. New instructions

4.4.122 SEAL (immediate)

Seal capability (immediate) seals a capability by setting the ObjectType of that capability to nonzero, and writes
the result to the destination Capability register. An operand of rb seals for use with a register based branch, lpb for
a load pair and branch and lb for a load and branch.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 0

31 15

form

14 13

1 0 0

12 10

Cn

9 5

Cd

4 0

SEAL <Cd>, <Cn>, <form>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 bits(64) f = ZeroExtend(form,64);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<form> Is the form specifier, encoded in"form":
form <form>
00 RESERVED
01 rb
10 lpb
11 lb

Operation
1 if f == 0 then
2 UNDEFINED;
3
4 CheckCapabilitiesEnabled();
5
6 Capability c = CapSetObjectType(C[n], f);
7
8 if CapIsTagSet(C[n]) && !CapIsSealed(C[n]) then
9 C[d] = c;

10 else
11 C[d] = CapWithTagClear(c);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

940

Chapter 4. Instruction definitions
4.4. New instructions

4.4.123 STCT

Store capability tags stores four Capability Tags to memory. The address that is used for the store is calculated
from a base register.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1

31 15

0

14

0

13

1 0 0

12 10

Rn

9 5

Rt

4 0

opc<1> opc<0>

STCT <Xt>, [<Xn|SP>] // (PSTATE.C64 == '0')

STCT <Xt>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3
4 CheckCapabilitiesEnabled();
5
6 VirtualAddress base = BaseReg[n];
7 integer count = 4;
8 boolean willabort = FALSE;
9 boolean iswrite;

10 boolean secondstage;
11 bits(64) data = X[t];
12
13 bits(64) addr = VAddress(base);
14
15 if addr != Align(addr, CAPABILITY_DBYTES*count) then
16 iswrite = TRUE;
17 secondstage = FALSE;
18 willabort = TRUE;
19
20 for i = 0 to count-1
21 bits(1) tag;
22 if CapIsSystemAccessEnabled() && !IsTagSettingDisabled() then
23 tag = data<i>;
24 else
25 tag = '0';
26
27 bits(64) cap_required = CAP_PERM_STORE;
28 if tag == '1' then
29 cap_required = cap_required OR CAP_PERM_STORE_CAP;
30
31 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, AccType_NORMAL);
32
33 if willabort == TRUE then
34 AArch64.Abort(addr, AArch64.AlignmentFault(AccType_NORMAL, iswrite, secondstage));
35
36 AArch64.CapabilityTag[addr, AccType_NORMAL] = tag;
37 addr = addr + CAPABILITY_DBYTES;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

941

Chapter 4. Instruction definitions
4.4. New instructions

4.4.124 STLR (capability, alternate base)

Store-Release capability via alternate base determines the base register to be used, derives an address from
the base register, and stores a capability to the calculated address in memory. The base register used by this
operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if
PSTATE.C64 is 0, the base register is a capability general-purpose register. This instruction loads from memory
with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about
memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

0

22

0

21

1 1 1 1

20 17

1

16

0

15

1 1 1 1

14 11

1

10

Rn

9 5

Ct

4 0

L

STLR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '0')

STLR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5
6 base = AltBaseReg[n];
7 data = C[t];
8 bits(64) cap_required = CAP_PERM_STORE;
9 if CapIsTagSet(data) then

10 cap_required = cap_required OR CAP_PERM_STORE_CAP;
11 if CapIsLocal(data) then
12 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
13 bits(64) addr = VAddress(base);
14 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
15
16 MemC[addr, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

942

Chapter 4. Instruction definitions
4.4. New instructions

4.4.125 STLR (capability, normal base)

Store-Release capability determines the base register to be used, derives an address from the base register, and
stores a capability to the calculated address in memory. This instruction loads from memory with acquire semantics
as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about memory accesses, see
Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

0

22

0

21

1 1 1 1

20 17

1

16

1

15

1 1 1 1

14 11

1

10

Rn

9 5

Ct

4 0

L

STLR <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

STLR <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5
6 base = BaseReg[n];
7 data = C[t];
8 bits(64) cap_required = CAP_PERM_STORE;
9 if CapIsTagSet(data) then

10 cap_required = cap_required OR CAP_PERM_STORE_CAP;
11 if CapIsLocal(data) then
12 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
13 bits(64) addr = VAddress(base);
14 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
15
16 MemC[addr, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

943

Chapter 4. Instruction definitions
4.4. New instructions

4.4.126 STLR (integer)

Store-Release Register via alternate base determines the base register to be used, derives an address from the base
register and an offset register, and stores a register to the calculated address in memory. The base register used by
this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register;
if PSTATE.C64 is 0, the base register is a capability general-purpose register. This instruction loads from memory
with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about
memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

0

22

1

21

1 1 1 1

20 17

1

16

1

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

L

STLR <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '0')

STLR <Wt>, [<Xn|SP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 datasize=32;
4 regsize=32;
5 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress address;
4 bits(datasize) data;
5
6 base = AltBaseReg[n];
7 data = X[t];
8 bits(64) addr = VAddress(base);
9 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, acctype);

10
11 Mem[addr, datasize DIV 8, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

944

Chapter 4. Instruction definitions
4.4. New instructions

4.4.127 STLRB

Store-Release Register Byte via alternate base determines the base register to be used, derives an address from the
base register and an offset register, and stores a byte to the calculated address in memory. The base register used by
this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register;
if PSTATE.C64 is 0, the base register is a capability general-purpose register. This instruction loads from memory
with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release. For information about
memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 0

31 23

0

22

1

21

1 1 1 1

20 17

1

16

0

15

1 1 1 1 1

14 10

Rn

9 5

Rt

4 0

L

STLRB <Wt>, [<Cn|CSP>] // (PSTATE.C64 == '0')

STLRB <Wt>, [<Xn|SP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 datasize=8;
4 regsize=32;
5 AccType acctype = AccType_ORDERED;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress address;
4 bits(datasize) data;
5
6 base = AltBaseReg[n];
7 data = X[t];
8 bits(64) addr = VAddress(base);
9 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, acctype);

10
11 Mem[addr, datasize DIV 8, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

945

Chapter 4. Instruction definitions
4.4. New instructions

4.4.128 STLXP

Store-Release Exclusive Pair of capabilities determines the base register to be used, derives an address from the
base register, and stores two capabilities to the calculated address in memory. A 256-bit pair requires the address
to be 256-bit aligned. The PE marks the physical address being accessed as an exclusive access. This exclusive
access mark is checked by Store Exclusive instructions. See Synchronization and semaphores. The instruction
also has memory ordering semantics as described in Load-Acquire, Store-Release. For information about memory
accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

0

22

1

21

Rs

20 16

1

15

Ct2

14 10

Rn

9 5

Ct

4 0

L

STLXP <Ws>, <Ct>, <Ct2>, [<Xn|SP>] // (PSTATE.C64 == '0')

STLXP <Ws>, <Ct>, <Ct2>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 integer s = UInt(Rs);
5 AccType acctype = AccType_ORDEREDATOMIC;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field.

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data1;
5 Capability data2;
6 boolean rt_unknown = FALSE;
7 boolean rn_unknown = FALSE;
8
9 if s == t || s == t2 then

10 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
11 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
14 when Constraint_NONE rt_unknown = FALSE; // store original value
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17 if s == n && n != 31 then
18 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
19 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
20 case c of
21 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
22 when Constraint_NONE rn_unknown = FALSE; // address is original base
23 when Constraint_UNDEF UNDEFINED;
24 when Constraint_NOP EndOfInstruction();
25
26 if rt_unknown then
27 data1 = Capability UNKNOWN;
28 data2 = Capability UNKNOWN;
29 else
30 data1 = C[t];
31 data2 = C[t2];
32

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

946

Chapter 4. Instruction definitions
4.4. New instructions

33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;
35 else
36 base = BaseReg[n];
37 bits(64) cap_required1 = CAP_PERM_STORE;
38 bits(64) cap_required2 = CAP_PERM_STORE;
39
40 if CapIsTagSet(data1) then
41 cap_required1 = cap_required1 OR CAP_PERM_STORE_CAP;
42 if CapIsLocal(data1) then
43 cap_required1 = cap_required1 OR CAP_PERM_STORE_LOCAL;
44
45 if CapIsTagSet(data2) then
46 cap_required2 = cap_required2 OR CAP_PERM_STORE_CAP;
47 if CapIsLocal(data2) then
48 cap_required2 = cap_required2 OR CAP_PERM_STORE_LOCAL;
49
50 bits(64) addr = VAddress(base);
51 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required1, acctype);
52 VACheckAddress(base, addr + CAPABILITY_DBYTES<63:0>, CAPABILITY_DBYTES, cap_required2, acctype);
53
54 bit status = '1';
55 if AArch64.ExclusiveMonitorsPass(addr, CAPABILITY_DBYTES*2) then
56 MemCP(addr, acctype, data1, data2);
57 status = ExclusiveMonitorsStatus();
58 X[s] = ZeroExtend(status, 32);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

947

Chapter 4. Instruction definitions
4.4. New instructions

4.4.129 STLXR

Store-Release Exclusive capability determines the base register to be used, derives an address from the base register,
and stores a capability to the calculated address in memory. The PE marks the physical address being accessed as
an exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization
and semaphores. The instruction also has memory ordering semantics as described in Load-Acquire, Store-Release.
For information about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

0

22

0

21

Rs

20 16

1

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L

STLXR <Ws>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

STLXR <Ws>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 integer s = UInt(Rs);
4 AccType acctype = AccType_ORDEREDATOMIC;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field.

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5
6 boolean rt_unknown = FALSE;
7 boolean rn_unknown = FALSE;
8 if s == t then
9 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);

10 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
13 when Constraint_NONE rt_unknown = FALSE; // store original value
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16 if s == n && n != 31 then
17 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
18 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
21 when Constraint_NONE rn_unknown = FALSE; // address is original base
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 if rn_unknown then
26 base = VirtualAddress UNKNOWN;
27 else
28 base = BaseReg[n];
29
30 if rt_unknown then
31 data = Capability UNKNOWN;
32 else
33 data = C[t];
34 bits(64) cap_required = CAP_PERM_STORE;
35 if CapIsTagSet(data) then
36 cap_required = cap_required OR CAP_PERM_STORE_CAP;
37 if CapIsLocal(data) then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

948

Chapter 4. Instruction definitions
4.4. New instructions

38 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
39 bits(64) addr = VAddress(base);
40 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
41
42 bit status = '1';
43 if AArch64.ExclusiveMonitorsPass(addr, CAPABILITY_DBYTES) then
44 MemC[addr, acctype] = data;
45 status = ExclusiveMonitorsStatus();
46 X[s] = ZeroExtend(status, 32);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

949

Chapter 4. Instruction definitions
4.4. New instructions

4.4.130 STNP

Store Pair of capabilities, with non-temporal hint determines the base register to be used, derives an address from
the base register and an immediate offset, and stores two capabilities to memory from two Capability registers.
The address to use is derived from a base register value in A64 or capability base register in C64 and a immediate
offset scaled by 16. For information about Non-temporal pair instructions, see Load/Store Non-temporal pair. For
information about memory accesses, see Load/Store addressing modes.

0 1 1 0 0 0 1 0 0

31 23

0

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

STNP <Ct>, <Ct2>, [<Xn|SP>, #<imm>] // (PSTATE.C64 == '0')

STNP <Ct>, <Ct2>, [<Cn|CSP>, #<imm>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_STREAM;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data1;
5 Capability data2;
6
7 base = BaseReg[n];
8 bits(64) addr1 = VAddress(base) + offset;
9 bits(64) addr2 = addr1 + CAPABILITY_DBYTES<63:0>;

10
11 data1 = C[t];
12 data2 = C[t2];
13
14 bits(64) cap_required1 = CAP_PERM_STORE;
15 bits(64) cap_required2 = CAP_PERM_STORE;
16
17 if CapIsTagSet(data1) then
18 cap_required1 = cap_required1 OR CAP_PERM_STORE_CAP;
19 if CapIsLocal(data1) then
20 cap_required1 = cap_required1 OR CAP_PERM_STORE_LOCAL;
21
22 if CapIsTagSet(data2) then
23 cap_required2 = cap_required2 OR CAP_PERM_STORE_CAP;
24 if CapIsLocal(data2) then
25 cap_required2 = cap_required2 OR CAP_PERM_STORE_LOCAL;
26
27 VACheckAddress(base, addr1, CAPABILITY_DBYTES, cap_required1, acctype);
28 MemC[addr1, acctype] = data1;
29 VACheckAddress(base, addr2, CAPABILITY_DBYTES, cap_required2, acctype);
30 MemC[addr2, acctype] = data2;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

950

Chapter 4. Instruction definitions
4.4. New instructions

4.4.131 STP (post-indexed)

Store Pair of capabilities (immediate post-index) determines the base register to be used, derives an address from
the base register, and stores two capabilities to memory from two Capability registers. The address to use is derived
from a base register value in A64 or capability base register in C64 and a immediate offset scaled by 16. For
information about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 1

31 23

0

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

STP <Ct>, <Ct2>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STP <Ct>, <Ct2>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_NORMAL;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data1;
5 Capability data2;
6
7 boolean rt_unknown = FALSE;
8 if (t == n || t2 == n) && n != 31 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);

10 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
13 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 base = BaseReg[n];
18 bits(64) addr1 = VAddress(base);
19 bits(64) addr2 = addr1 + CAPABILITY_DBYTES<63:0>;
20
21 if rt_unknown && t == n then
22 data1 = Capability UNKNOWN;
23 else
24 data1 = C[t];
25
26 if rt_unknown && t2 == n then
27 data2 = Capability UNKNOWN;
28 else
29 data2 = C[t2];
30
31 bits(64) cap_required1 = CAP_PERM_STORE;
32 bits(64) cap_required2 = CAP_PERM_STORE;
33
34 if CapIsTagSet(data1) then
35 cap_required1 = cap_required1 OR CAP_PERM_STORE_CAP;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

951

Chapter 4. Instruction definitions
4.4. New instructions

36 if CapIsLocal(data1) then
37 cap_required1 = cap_required1 OR CAP_PERM_STORE_LOCAL;
38
39 if CapIsTagSet(data2) then
40 cap_required2 = cap_required2 OR CAP_PERM_STORE_CAP;
41 if CapIsLocal(data2) then
42 cap_required2 = cap_required2 OR CAP_PERM_STORE_LOCAL;
43
44 VACheckAddress(base, addr1, CAPABILITY_DBYTES, cap_required1, acctype);
45 MemC[addr1, acctype] = data1;
46 VACheckAddress(base, addr2, CAPABILITY_DBYTES, cap_required2, acctype);
47 MemC[addr2, acctype] = data2;
48
49 BaseReg[n] = VAAdd(base, offset);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

952

Chapter 4. Instruction definitions
4.4. New instructions

4.4.132 STP (pre-indexed)

Store Pair of capabilities (immediate pre-index) determines the base register to be used, derives an address from the
base register, and stores two capabilities to memory from two Capability registers. The address to use is derived
from a base register value in A64 or capability base register in C64 and a immediate offset scaled by 16. For
information about memory accesses, see Load/Store addressing modes.

0 1 1 0 0 0 1 0 1

31 23

0

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

STP <Ct>, <Ct2>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STP <Ct>, <Ct2>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_NORMAL;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -1024 to 1008, encoded in
the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data1;
5 Capability data2;
6
7 boolean rt_unknown = FALSE;
8 if (t == n || t2 == n) && n != 31 then
9 Constraint c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);

10 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_NONE rt_unknown = FALSE; // value stored is pre-writeback
13 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 base = BaseReg[n];
18 bits(64) addr1 = VAddress(base) + offset;
19 bits(64) addr2 = addr1 + CAPABILITY_DBYTES<63:0>;
20
21 if rt_unknown && t == n then
22 data1 = Capability UNKNOWN;
23 else
24 data1 = C[t];
25
26 if rt_unknown && t2 == n then
27 data2 = Capability UNKNOWN;
28 else
29 data2 = C[t2];
30
31 bits(64) cap_required1 = CAP_PERM_STORE;
32 bits(64) cap_required2 = CAP_PERM_STORE;
33
34 if CapIsTagSet(data1) then
35 cap_required1 = cap_required1 OR CAP_PERM_STORE_CAP;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

953

Chapter 4. Instruction definitions
4.4. New instructions

36 if CapIsLocal(data1) then
37 cap_required1 = cap_required1 OR CAP_PERM_STORE_LOCAL;
38
39 if CapIsTagSet(data2) then
40 cap_required2 = cap_required2 OR CAP_PERM_STORE_CAP;
41 if CapIsLocal(data2) then
42 cap_required2 = cap_required2 OR CAP_PERM_STORE_LOCAL;
43
44 VACheckAddress(base, addr1, CAPABILITY_DBYTES, cap_required1, acctype);
45 MemC[addr1, acctype] = data1;
46 VACheckAddress(base, addr2, CAPABILITY_DBYTES, cap_required2, acctype);
47 MemC[addr2, acctype] = data2;
48
49 BaseReg[n] = VAAdd(base, offset);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

954

Chapter 4. Instruction definitions
4.4. New instructions

4.4.133 STP (signed offset)

Store Pair of capabilities (signed offset) determines the base register to be used, derives an address from the base
register, and stores two capabilities to memory from two Capability registers. The address to use is derived from a
base register value in A64 or capability base register in C64 and a immediate offset scaled by 16. For information
about memory accesses, see Load/Store addressing modes.

0 1 0 0 0 0 1 0 1

31 23

0

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L

STP <Ct>, <Ct2>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STP <Ct>, <Ct2>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 AccType acctype = AccType_NORMAL;
5 bits(64) offset = SignExtend(imm7:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, a multiple of 16 in the range -1024 to 1008,
defaulting to 0, encoded in the "imm7" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data1;
5 Capability data2;
6
7 base = BaseReg[n];
8 bits(64) addr1 = VAddress(base) + offset;
9 bits(64) addr2 = addr1 + CAPABILITY_DBYTES<63:0>;

10
11 data1 = C[t];
12 data2 = C[t2];
13
14 bits(64) cap_required1 = CAP_PERM_STORE;
15 bits(64) cap_required2 = CAP_PERM_STORE;
16
17 if CapIsTagSet(data1) then
18 cap_required1 = cap_required1 OR CAP_PERM_STORE_CAP;
19 if CapIsLocal(data1) then
20 cap_required1 = cap_required1 OR CAP_PERM_STORE_LOCAL;
21
22 if CapIsTagSet(data2) then
23 cap_required2 = cap_required2 OR CAP_PERM_STORE_CAP;
24 if CapIsLocal(data2) then
25 cap_required2 = cap_required2 OR CAP_PERM_STORE_LOCAL;
26
27 VACheckAddress(base, addr1, CAPABILITY_DBYTES, cap_required1, acctype);
28 MemC[addr1, acctype] = data1;
29 VACheckAddress(base, addr2, CAPABILITY_DBYTES, cap_required2, acctype);
30 MemC[addr2, acctype] = data2;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

955

Chapter 4. Instruction definitions
4.4. New instructions

4.4.134 STR (post-indexed)

Store capability (immediate post-indexed) determines the base register to be used, derives an address from the base
register, and stores a capability to memory from a Capability register. The address to use is derived from a base
register value in A64 or capability base register in C64 and a immediate offset scaled by 16. For information about
memory accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

STR <Ct>, [<Xn|SP>], #<imm> // (PSTATE.C64 == '0')

STR <Ct>, [<Cn|CSP>], #<imm> // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -4096 to 4080, encoded in
the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 boolean rt_unknown = FALSE;
8 if n == t && n != 31 then
9 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);

10 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
13 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 base = BaseReg[n];
18 bits(64) addr = VAddress(base);
19 if rt_unknown then
20 data = Capability UNKNOWN;
21 else
22 data = C[t];
23 bits(64) cap_required = CAP_PERM_STORE;
24
25 if CapIsTagSet(data) then
26 cap_required = cap_required OR CAP_PERM_STORE_CAP;
27 if CapIsLocal(data) then
28 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
29 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
30 MemC[addr, acctype] = data;
31
32 BaseReg[n] = VAAdd(base,offset);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

956

Chapter 4. Instruction definitions
4.4. New instructions

4.4.135 STR (pre-indexed)

Store capability (immediate pre-index) determines the base register to be used, derives an address from the base
register, and stores a capability to memory from a Capability register. The address to use is derived from a base
register value in A64 or capability base register in C64 and a immediate offset scaled by 16. For information about
memory accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

STR <Ct>, [<Xn|SP>, #<imm>]! // (PSTATE.C64 == '0')

STR <Ct>, [<Cn|CSP>, #<imm>]! // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -4096 to 4080, encoded in
the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 boolean rt_unknown = FALSE;
8 if n == t && n != 31 then
9 c = ConstrainUnpredictable(Unpredictable_WBOVERLAPST);

10 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
13 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16
17 base = BaseReg[n];
18 bits(64) addr = VAddress(base) + offset;
19 if rt_unknown then
20 data = Capability UNKNOWN;
21 else
22 data = C[t];
23 bits(64) cap_required = CAP_PERM_STORE;
24
25 if CapIsTagSet(data) then
26 cap_required = cap_required OR CAP_PERM_STORE_CAP;
27 if CapIsLocal(data) then
28 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
29 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
30 MemC[addr, acctype] = data;
31
32 BaseReg[n] = VAAdd(base,offset);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

957

Chapter 4. Instruction definitions
4.4. New instructions

4.4.136 STR (register offset, capability, alternate base)

Store capability (register) via alternate base determines the base register to be used, derives an address from the
base register and an offset register, and stores a capability to the calculated address in memory. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. The offset register can
optionally be shifted and extended. For information about memory accesses, see Load/Store addressing modes.

1 1 0 0 0 0 1 0 1 1 1

31 21

Rm

20 16 15

1

14

sz

13

S

12

0

11

1

10

Rn

9 5

Ct

4 0

sign L

STR <Ct>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STR <Ct>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = LOG2_CAPABILITY_DBYTES;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #4

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 Capability data;
6
7 data = C[t];
8 bits(64) cap_required = CAP_PERM_STORE;
9 if CapIsTagSet(data) then

10 cap_required = cap_required OR CAP_PERM_STORE_CAP;
11 if CapIsLocal(data) then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

958

Chapter 4. Instruction definitions
4.4. New instructions

12 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
13 bits(64) addr = VAddress(base) + offset;
14 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, AccType_NORMAL);
15 MemC[addr, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

959

Chapter 4. Instruction definitions
4.4. New instructions

4.4.137 STR (register offset, capability, normal base)

Store capability (register) determines the base register to be used, derives an address from the base register and an
offset register, and stores a capability to the calculated address in memory. The offset register can optionally be
shifted and extended. For information about memory accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

1 0

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0> sign

STR <Ct>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STR <Ct>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = LOG2_CAPABILITY_DBYTES;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #4

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = BaseReg[n];
5 Capability data;
6
7 data = C[t];
8 bits(64) cap_required = CAP_PERM_STORE;
9 if CapIsTagSet(data) then

10 cap_required = cap_required OR CAP_PERM_STORE_CAP;
11 if CapIsLocal(data) then
12 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
13 bits(64) addr = VAddress(base) + offset;
14 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, AccType_NORMAL);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

960

Chapter 4. Instruction definitions
4.4. New instructions

15 MemC[addr, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

961

Chapter 4. Instruction definitions
4.4. New instructions

4.4.138 STR (register offset, integer)

Store Register (register) via alternate base determines the base register to be used, derives an address from the
base register and an offset register, and stores a word to the calculated address in memory. The offset register
can optionally be shifted and extended. The base register used by this operation depends on PSTATE.C64: if
PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a
capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 0 0 0 0 0 1 0 1

31 23

0

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

0 1

11 10

Rn

9 5

Rt

4 0

L sign opc

STR <Xt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STR <Xt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 3;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 64;

Word

1 0 0 0 0 0 1 0 1

31 23

0

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

0 0

11 10

Rn

9 5

Rt

4 0

L sign opc

STR <Wt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STR <Wt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 2;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

962

Chapter 4. Instruction definitions
4.4. New instructions

sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> For the doubleword variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #3

For the word variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #2

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
9 bits(datasize) data = X[t];

10 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

963

Chapter 4. Instruction definitions
4.4. New instructions

4.4.139 STR (register offset, SIMD&FP)

Store SIMD&FP Register (register) via alternate base determines the base register to be used, derives an address
from the base register and an offset register, and stores a SIMD&FP register to the calculated address in memory.
The offset register can optionally be shifted and extended. The base register used by this operation depends on
PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the
base register is a capability general-purpose register. For information about memory accesses, see Load/Store
addressing modes.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit

1 0 0 0 0 0 1 0 1

31 23

0

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

1 1

11 10

Rn

9 5

Rt

4 0

L sign opc

STR <St>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STR <St>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 2;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

64-bit

1 0 0 0 0 0 1 0 1

31 23

0

22

1

21

Rm

20 16 15

1

14

sz

13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

L sign opc

STR <Dt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STR <Dt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 3;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;

Assembler Symbols

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

964

Chapter 4. Instruction definitions
4.4. New instructions

sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> For the 32-bit variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #2

For the 64-bit variant: is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #3

Operation
1 CheckCapabilitiesEnabled();
2 CheckFPAdvSIMDEnabled64();
3
4 bits(64) offset = ExtendReg(m, extend_type, shift);
5 VirtualAddress base = AltBaseReg[n];
6 integer datasize = 8 << scale;
7
8 bits(64) addr = VAddress(base) + offset;
9 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);

10 bits(datasize) data = V[t];
11 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

965

Chapter 4. Instruction definitions
4.4. New instructions

4.4.140 STR (unsigned offset, capability, alternate base)

Store capability (unsigned offset) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, and stores a capability to the calculated address in memory. The
base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit
general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For
information about memory accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 0 1

31 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Ct

4 0

L op

STR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 16 in the range 0 to 8176,
defaulting to 0, encoded in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 Capability data = C[t];
7 bits(64) cap_required = CAP_PERM_STORE;
8 if CapIsTagSet(data) then
9 cap_required = cap_required OR CAP_PERM_STORE_CAP;

10 if CapIsLocal(data) then
11 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
12 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, AccType_NORMAL);
13 MemC[addr, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

966

Chapter 4. Instruction definitions
4.4. New instructions

4.4.141 STR (unsigned offset, capability, normal base)

Store capability (unsigned offset) stores a capability to memory from a Capability register. The address to use is
derived from a base register value in A64 or capability base register in C64 and a immediate offset scaled by 16.
For information about memory accesses, see Load/Store addressing modes.

1 1 0 0 0 0 1 0 0

31 23

0

22

imm12

21 10

Rn

9 5

Ct

4 0

L

STR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm12:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, a multiple of 16 in the range 0 to 65520,
defaulting to 0, encoded in the "imm12" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 base = BaseReg[n];
8 bits(64) addr = VAddress(base) + offset;
9 data = C[t];

10 bits(64) cap_required = CAP_PERM_STORE;
11
12 if CapIsTagSet(data) then
13 cap_required = cap_required OR CAP_PERM_STORE_CAP;
14 if CapIsLocal(data) then
15 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
16 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
17 MemC[addr, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

967

Chapter 4. Instruction definitions
4.4. New instructions

4.4.142 STR (unsigned offset, integer)

Store Register (unsigned offset) via alternate base determines the base register to be used, derives an address from
the base register and an immediate offset, and stores a 32-bit word or 64-bit doubleword to the calculated address
in memory. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base
register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose
register. For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 0 0 0 0 0 1 0 0 1

31 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

L op

STR <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STR <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9:'000', 64);
4 datasize = 64;
5 regsize = 64;

Word

1 0 0 0 0 0 1 0 0 1

31 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

L op

STR <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STR <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9:'00', 64);
4 datasize = 32;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> For the doubleword variant: is the optional unsigned immediate byte offset, a multiple of 8
in the range 0 to 4088, defaulting to 0, encoded in the "imm9" field.

For the word variant: is the optional unsigned immediate byte offset, a multiple of 4 in the
range 0 to 2044, defaulting to 0, encoded in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

968

Chapter 4. Instruction definitions
4.4. New instructions

6 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
7 bits(datasize) data = X[t];
8 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

969

Chapter 4. Instruction definitions
4.4. New instructions

4.4.143 STRB (register offset)

Store Register Byte (register) via alternate base determines the base register to be used, derives an address from
the base register and an offset register, and stores a byte to the calculated address in memory. The offset register
can optionally be shifted and extended. The base register used by this operation depends on PSTATE.C64: if
PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a
capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 1

31 23

0

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

0 0

11 10

Rn

9 5

Rt

4 0

L sign opc

STRB <Wt>, [<Cn|CSP>, <R><m>, <extend>] // (PSTATE.C64 == '0')

STRB <Wt>, [<Xn|SP>, <R><m>, <extend>] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 0;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
9 bits(datasize) data = X[t];

10 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

970

Chapter 4. Instruction definitions
4.4. New instructions

4.4.144 STRB (unsigned offset)

Store Register Byte (unsigned offset) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, and stores a byte to the calculated address in memory. The
base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit
general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For
information about memory accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 0 1

31 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

L op

STRB <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STRB <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = ZeroExtend(imm9, 64);
4 datasize = 8;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional unsigned immediate byte offset, in the range 0 to 511, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
7 bits(datasize) data = X[t];
8 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

971

Chapter 4. Instruction definitions
4.4. New instructions

4.4.145 STRH

Store Register Halfword (register) via alternate base determines the base register to be used, derives an address
from the base register and an offset register, and stores a halfword to the calculated address in memory. The offset
register can optionally be shifted and extended. The base register used by this operation depends on PSTATE.C64:
if PSTATE.C64 is 1, the base register is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is
a capability general-purpose register. For information about memory accesses, see Load/Store addressing modes.

1 0 0 0 0 0 1 0 1

31 23

0

22

0

21

Rm

20 16 15

1

14

sz

13

S

12

1 1

11 10

Rn

9 5

Rt

4 0

L sign opc

STRH <Wt>, [<Cn|CSP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '0')

STRH <Wt>, [<Xn|SP>, <R><m>{, <extend><amount>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer scale = 1;
5 ExtendType extend_type = DecodeRegExtend(sign:'1':sz);
6 integer shift = if S == '1' then scale else 0;
7 integer regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<R> Is a width specifier, encoded in"sz":
sz <R>
0 W
1 X

<m> Is the number [0-30] of the source general-purpose register or the name ZR (31), encoded in
the "Rm" field.

<extend> Is the index extend and shift specifier, encoded in"sign:sz":
sign sz <extend>
0 0 UXTW
0 1 LSL
1 0 SXTW
1 1 SXTX

<amount> Is the index shift amount, encoded in"S":
S <amount>
0 [absent]
1 #1

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) offset = ExtendReg(m, extend_type, shift);
4 VirtualAddress base = AltBaseReg[n];
5 integer datasize = 8 << scale;
6
7 bits(64) addr = VAddress(base) + offset;
8 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
9 bits(datasize) data = X[t];

10 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

972

Chapter 4. Instruction definitions
4.4. New instructions

4.4.146 STTR

Store capability (unprivileged) determines the base register to be used, derives an address from the base register and
an immediate offset, and stores a capability to the calculated address in memory. For information about memory
accesses, see Load/Store addressing modes. Memory accesses made by the instruction behave as if the instruction
was executed at EL0 if the Effective value of PSTATE.UAO is 0 and either:

* The instruction is executed at EL1. * The instruction is executed at EL2 when the Effective value of both
HCR_EL2.E2H and HCR_EL2.TGE are 1.

Otherwise, the memory access operates with the restrictions determined by the Exception level at which the
instruction is executed.

In all cases the memory access operates with the capability restrictions as determined by the Exception level at
which the instruction is executed.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

STTR <Ct>, [<Xn|SP>, #<imm>] // (PSTATE.C64 == '0')

STTR <Ct>, [<Cn|CSP>, #<imm>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9:'0000', 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the signed immediate byte offset, a multiple of 16 in the range -4096 to 4080, encoded in
the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 unpriv_at_el1 = PSTATE.EL == EL1;
6 unpriv_at_el2 = PSTATE.EL == EL2 && HaveVirtHostExt() && HCR_EL2.<E2H,TGE> == '11';
7
8 user_access_override = HaveUAOExt() && PSTATE.UAO == '1';
9 if !user_access_override && (unpriv_at_el1 || unpriv_at_el2) then

10 acctype = AccType_UNPRIV;
11 else
12 acctype = AccType_NORMAL;
13
14 base = BaseReg[n];
15 bits(64) addr = VAddress(base) + offset;
16 data = C[t];
17 bits(64) cap_required = CAP_PERM_STORE;
18
19 if CapIsTagSet(data) then
20 cap_required = cap_required OR CAP_PERM_STORE_CAP;
21 if CapIsLocal(data) then
22 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
23 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
24 MemC[addr, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

973

Chapter 4. Instruction definitions
4.4. New instructions

4.4.147 STUR (capability, alternate base)

Store capability (unscaled) via alternate base determines the base register to be used, derives an address from the
base register and an immediate offset, and stores a capability to the calculated address in memory. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about
memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

1

23

0

22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Ct

4 0

op1<1> V
op1<0>

op2

STUR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 Capability data = C[t];
7 bits(64) cap_required = CAP_PERM_STORE;
8 if CapIsTagSet(data) then
9 cap_required = cap_required OR CAP_PERM_STORE_CAP;

10 if CapIsLocal(data) then
11 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
12 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, AccType_NORMAL);
13 MemC[addr, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

974

Chapter 4. Instruction definitions
4.4. New instructions

4.4.148 STUR (capability, normal base)

Store capability (unscaled) determines the base register to be used, derives an address from the base register and
an immediate offset, and stores a capability to the calculated address in memory. For information about memory
accesses, see Load/Store addressing modes.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Ct

4 0

opc<1> opc<0>

STUR <Ct>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Ct>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);

Assembler Symbols

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5 acctype = AccType_NORMAL;
6
7 base = BaseReg[n];
8 bits(64) addr = VAddress(base) + offset;
9 data = C[t];

10 bits(64) cap_required = CAP_PERM_STORE;
11
12 if CapIsTagSet(data) then
13 cap_required = cap_required OR CAP_PERM_STORE_CAP;
14 if CapIsLocal(data) then
15 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
16 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
17 MemC[addr, acctype] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

975

Chapter 4. Instruction definitions
4.4. New instructions

4.4.149 STUR (integer)

Store Register (unscaled) via alternate base determines the base register to be used, derives an address from the
base register and an immediate offset, and stores a 32-bit word or 64-bit doubleword to the calculated address in
memory. The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register
is a 64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register.
For information about memory accesses, see Load/Store addressing modes.

It has encodings from 2 classes: Doubleword and Word

Doubleword

1 1 1 0 0 0 1 0

31 24

1

23

1

22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STUR <Xt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Xt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 64;
5 regsize = 64;

Word

1 1 1 0 0 0 1 0

31 24

1

23

0

22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STUR <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 32;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
7 bits(datasize) data = X[t];
8 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

976

Chapter 4. Instruction definitions
4.4. New instructions

4.4.150 STUR (SIMD&FP)

Store SIMD&FP Register (unscaled) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, and stores a SIMD&FP register to the calculated address in memory.
The base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a
64-bit general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For
information about memory accesses, see Load/Store addressing modes.

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit

1 1 1 0 0 0 1 0

31 24

0

23

0

22

1

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STUR <Bt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Bt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 8;

16-bit

1 1 1 0 0 0 1 0

31 24

0

23

1

22

1

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STUR <Ht>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Ht>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 16;

32-bit

1 1 1 0 0 0 1 0

31 24

1

23

0

22

1

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STUR <St>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <St>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 32;

64-bit

1 1 1 0 0 0 1 0

31 24

1

23

1

22

1

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

977

Chapter 4. Instruction definitions
4.4. New instructions

STUR <Dt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Dt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 64;

128-bit

1 1 1 0 0 0 1 0

31 24

0

23

0

22

1

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STUR <Qt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STUR <Qt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 128;

Assembler Symbols

<Bt> Is the 8-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Dt> Is the 64-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Ht> Is the 16-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Qt> Is the 128-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<St> Is the 32-bit name of the SIMD&FP register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2 CheckFPAdvSIMDEnabled64();
3
4 VirtualAddress base = AltBaseReg[n];
5 bits(64) addr = VAddress(base) + offset;
6
7 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
8 bits(datasize) data = V[t];
9 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

978

Chapter 4. Instruction definitions
4.4. New instructions

4.4.151 STURB

Store Register Byte (unscaled) via alternate base determines the base register to be used, derives an address from
the base register and an immediate offset, and stores a byte to the calculated address in memory. The base register
used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit general-purpose
register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For information about
memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

0

23

0

22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STURB <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STURB <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 8;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
7 bits(datasize) data = X[t];
8 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

979

Chapter 4. Instruction definitions
4.4. New instructions

4.4.152 STURH

Store Register Halfword (unscaled) via alternate base determines the base register to be used, derives an address
from the base register and an immediate offset, and stores a halfword to the calculated address in memory. The
base register used by this operation depends on PSTATE.C64: if PSTATE.C64 is 1, the base register is a 64-bit
general-purpose register; if PSTATE.C64 is 0, the base register is a capability general-purpose register. For
information about memory accesses, see Load/Store addressing modes.

1 1 1 0 0 0 1 0

31 24

0

23

1

22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

op1<1> V
op1<0>

op2

STURH <Wt>, [<Cn|CSP>{, #<imm>}] // (PSTATE.C64 == '0')

STURH <Wt>, [<Xn|SP>{, #<imm>}] // (PSTATE.C64 == '1')

1 integer t = UInt(Rt);
2 integer n = UInt(Rn);
3 bits(64) offset = SignExtend(imm9, 64);
4 datasize = 16;
5 regsize = 32;

Assembler Symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

<imm> Is the optional signed immediate byte offset, in the range -256 to 255, defaulting to 0, encoded
in the "imm9" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = AltBaseReg[n];
4 bits(64) addr = VAddress(base) + offset;
5
6 VACheckAddress(base, addr, datasize DIV 8, CAP_PERM_STORE, AccType_NORMAL);
7 bits(datasize) data = X[t];
8 Mem[addr, datasize DIV 8, AccType_NORMAL] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

980

Chapter 4. Instruction definitions
4.4. New instructions

4.4.153 STXP

Store Exclusive Pair of capabilities determines the base register to be used, derives an address from the base
register, and stores two capabilities to the calculated address in memory. A 256-bit pair requires the address to be
256-bit aligned. The PE marks the physical address being accessed as an exclusive access. This exclusive access
mark is checked by Store Exclusive instructions. See Synchronization and semaphores. For information about
memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

0

22

1

21

Rs

20 16

0

15

Ct2

14 10

Rn

9 5

Ct

4 0

L

STXP <Ws>, <Ct>, <Ct2>, [<Xn|SP>] // (PSTATE.C64 == '0')

STXP <Ws>, <Ct>, <Ct2>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer t2 = UInt(Ct2);
3 integer n = UInt(Rn);
4 integer s = UInt(Rs);
5 AccType acctype = AccType_ATOMIC;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field.

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Ct2> Is the capability name of the second transfer register, encoded in the "Ct2" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data1;
5 Capability data2;
6 boolean rt_unknown = FALSE;
7 boolean rn_unknown = FALSE;
8
9 if s == t || s == t2 then

10 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);
11 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
12 case c of
13 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
14 when Constraint_NONE rt_unknown = FALSE; // store original value
15 when Constraint_UNDEF UNDEFINED;
16 when Constraint_NOP EndOfInstruction();
17 if s == n && n != 31 then
18 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
19 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
20 case c of
21 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
22 when Constraint_NONE rn_unknown = FALSE; // address is original base
23 when Constraint_UNDEF UNDEFINED;
24 when Constraint_NOP EndOfInstruction();
25
26 if rt_unknown then
27 data1 = Capability UNKNOWN;
28 data2 = Capability UNKNOWN;
29 else
30 data1 = C[t];
31 data2 = C[t2];
32
33 if rn_unknown then
34 base = VirtualAddress UNKNOWN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

981

Chapter 4. Instruction definitions
4.4. New instructions

35 else
36 base = BaseReg[n];
37 bits(64) cap_required1 = CAP_PERM_STORE;
38 bits(64) cap_required2 = CAP_PERM_STORE;
39
40 if CapIsTagSet(data1) then
41 cap_required1 = cap_required1 OR CAP_PERM_STORE_CAP;
42 if CapIsLocal(data1) then
43 cap_required1 = cap_required1 OR CAP_PERM_STORE_LOCAL;
44
45 if CapIsTagSet(data2) then
46 cap_required2 = cap_required2 OR CAP_PERM_STORE_CAP;
47 if CapIsLocal(data2) then
48 cap_required2 = cap_required2 OR CAP_PERM_STORE_LOCAL;
49
50 bits(64) addr = VAddress(base);
51 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required1, acctype);
52 VACheckAddress(base, addr + CAPABILITY_DBYTES<63:0>, CAPABILITY_DBYTES, cap_required2, acctype);
53
54 bit status = '1';
55 if AArch64.ExclusiveMonitorsPass(addr, CAPABILITY_DBYTES*2) then
56 MemCP(addr, acctype, data1, data2);
57 status = ExclusiveMonitorsStatus();
58 X[s] = ZeroExtend(status, 32);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

982

Chapter 4. Instruction definitions
4.4. New instructions

4.4.154 STXR

Store Exclusive capability determines the base register to be used, derives an address from the base register, and
stores a capability to the calculated address in memory. The PE marks the physical address being accessed as an
exclusive access. This exclusive access mark is checked by Store Exclusive instructions. See Synchronization and
semaphores. For information about memory accesses, see Load/Store addressing modes.

0 0 1 0 0 0 1 0 0

31 23

0

22

0

21

Rs

20 16

0

15

1 1 1 1 1

14 10

Rn

9 5

Ct

4 0

L

STXR <Ws>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

STXR <Ws>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer n = UInt(Rn);
3 integer s = UInt(Rs);
4 AccType acctype = AccType_ATOMIC;

Assembler Symbols

<Ws> Is the 32-bit name of the general-purpose register into which the status result of the store
exclusive is written, encoded in the "Rs" field.

<Ct> Is the capability name of the transfer register, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base;
4 Capability data;
5
6 boolean rt_unknown = FALSE;
7 boolean rn_unknown = FALSE;
8 if s == t then
9 Constraint c = ConstrainUnpredictable(Unpredictable_DATAOVERLAP);

10 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
11 case c of
12 when Constraint_UNKNOWN rt_unknown = TRUE; // store UNKNOWN value
13 when Constraint_NONE rt_unknown = FALSE; // store original value
14 when Constraint_UNDEF UNDEFINED;
15 when Constraint_NOP EndOfInstruction();
16 if s == n && n != 31 then
17 Constraint c = ConstrainUnpredictable(Unpredictable_BASEOVERLAP);
18 assert c IN {Constraint_UNKNOWN, Constraint_NONE, Constraint_UNDEF, Constraint_NOP};
19 case c of
20 when Constraint_UNKNOWN rn_unknown = TRUE; // address is UNKNOWN
21 when Constraint_NONE rn_unknown = FALSE; // address is original base
22 when Constraint_UNDEF UNDEFINED;
23 when Constraint_NOP EndOfInstruction();
24
25 if rn_unknown then
26 base = VirtualAddress UNKNOWN;
27 else
28 base = BaseReg[n];
29
30 if rt_unknown then
31 data = Capability UNKNOWN;
32 else
33 data = C[t];
34 bits(64) cap_required = CAP_PERM_STORE;
35 if CapIsTagSet(data) then
36 cap_required = cap_required OR CAP_PERM_STORE_CAP;
37 if CapIsLocal(data) then
38 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

983

Chapter 4. Instruction definitions
4.4. New instructions

39 bits(64) addr = VAddress(base);
40 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, acctype);
41
42 bit status = '1';
43 if AArch64.ExclusiveMonitorsPass(addr, CAPABILITY_DBYTES) then
44 MemC[addr, acctype] = data;
45 status = ExclusiveMonitorsStatus();
46 X[s] = ZeroExtend(status, 32);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

984

Chapter 4. Instruction definitions
4.4. New instructions

4.4.155 SUB

Subtract (immediate) copies a capability from the source Capability register to the destination Capability register
with an optionally shifted immediate value subtracted from the value field. If the result is not representable the
destination Capability register tag is cleared. If the source capability is sealed, the Capability Tag written to the
destination Capability register is cleared.

0 0 0 0 0 0 1 0

31 24

1

23

sh

22

imm12

21 10

Cn

9 5

Cd

4 0

A

SUB <Cd|CSP>, <Cn|CSP>, #<imm>{, LSL <amount>}

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 bits(64) imm;
4
5 case sh of
6 when '0' imm = ZeroExtend(imm12, 64);
7 when '1' imm = ZeroExtend(imm12 : Zeros(12), 64);

Assembler Symbols

<Cd|CSP> Is the capability name of the destination register or stack pointer, encoded in the "Cd" field.

<Cn|CSP> Is the capability name of the source register or stack pointer, encoded in the "Cn" field.

<imm> Is the unsigned immediate operand, in the range 0 to 4095, encoded in the "imm12" field.

<amount> Is the index shift amount, encoded in"sh":
sh <amount>
0 #0
1 #12

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = if n == 31 then CSP[] else C[n];
4 integer operand2 = UInt(imm);
5
6 Capability result = CapAdd(operand1, -operand2);
7
8 if CapIsSealed(operand1) then
9 result = CapWithTagClear(result);

10
11 if d == 31 then
12 CSP[] = result;
13 else
14 C[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

985

Chapter 4. Instruction definitions
4.4. New instructions

4.4.156 SUBS

Subtract, setting flags if the Capability Tag of the first source Capability register is not the same as the Capability
Tag of the second source Capability register subtracts the Capability Tag of the first source Capability register from
the Capability Tag of the second source Capability register and writes the result to the destination 64-bit register
otherwise subtracts the Value field of the first source Capability register from the Value field of the second source
Capability register and writes the result to the destination 64-bit register. The instruction updates the condition
flags based on the result.

This instruction is used by the alias CMP.

1 1 0 0 0 0 1 0 1 1 1

31 21

Cm

20 16

1 0 0 1 1 0

15 10

Cn

9 5

Rd

4 0

SUBS <Xd>, <Cn>, <Cm>

1 integer d = UInt(Rd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 Capability operand1 = C[n];
4 Capability operand2 = C[m];
5
6 boolean tag1 = CapIsTagSet(operand1);
7 boolean tag2 = CapIsTagSet(operand2);
8 bits(64) result;
9 bits(4) nzcv;

10
11 if tag1 != tag2 then
12 bits(2) interim;
13 bits(2) tvalue1 = if tag1 then '01' else '00';
14 bits(2) tvalue2 = if tag2 then '01' else '00';
15 (interim, nzcv) = AddWithCarry(tvalue1, NOT(tvalue2), '1');
16 result = ZeroExtend(interim,64);
17 else
18 bits(64) value1 = CapGetValue(operand1);
19 bits(64) value2 = CapGetValue(operand2);
20 (result, nzcv) = AddWithCarry(value1, NOT(value2), '1');
21
22 PSTATE.<N,Z,C,V> = nzcv;
23 X[d] = result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

986

Chapter 4. Instruction definitions
4.4. New instructions

4.4.157 SWP

Swap capabilities in memory determines the base register to be used, derives an address from the base register,
atomically loads a Capability register from the calculated address in memory, and atomically stores another
Capability register back to the same calculated address. The Capability register initially loaded from the calculated
address in memory is returned to the destination Capability register.

1 0 1 0 0 0 1 0

31 24

0

23

0

22

1

21

Cs

20 16

1 0 0 0 0 0

15 10

Rn

9 5

Ct

4 0

A R

SWP <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWP <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer s = UInt(Cs);
3 integer n = UInt(Rn);
4 AccType ldacctype = AccType_ATOMICRW;
5 AccType stacctype = AccType_ATOMICRW;

Assembler Symbols

<Cs> Is the capability name of the register to be stored, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be loaded, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = BaseReg[n];
4 Capability data;
5 Capability store_data;
6
7 bits(64) addr = VAddress(base);
8 store_data = C[s];
9 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);

10 bits(64) cap_required = CAP_PERM_STORE;
11 if CapIsTagSet(store_data) then
12 cap_required = cap_required OR CAP_PERM_STORE_CAP;
13 if CapIsLocal(store_data) then
14 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
15 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
16
17 data = MemAtomicC(addr, MemAtomicOp_SWP, store_data, ldacctype, stacctype);
18 data = CapSquashPostLoadCap(data, base);
19
20 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

987

Chapter 4. Instruction definitions
4.4. New instructions

4.4.158 SWPA

Swap capabilities in memory with acquire determines the base register to be used, derives an address from the
base register, atomically loads a Capability register from the calculated address in memory, and atomically stores
another Capability register back to the same calculated address. The Capability register initially loaded from the
calculated address in memory is returned to the destination Capability register. This instruction loads from memory
with acquire semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release.

1 0 1 0 0 0 1 0

31 24

1

23

0

22

1

21

Cs

20 16

1 0 0 0 0 0

15 10

Rn

9 5

Ct

4 0

A R

SWPA <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPA <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer s = UInt(Cs);
3 integer n = UInt(Rn);
4 AccType ldacctype = if Ct != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
5 AccType stacctype = AccType_ATOMICRW;

Assembler Symbols

<Cs> Is the capability name of the register to be stored, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be loaded, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = BaseReg[n];
4 Capability data;
5 Capability store_data;
6
7 bits(64) addr = VAddress(base);
8 store_data = C[s];
9 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);

10 bits(64) cap_required = CAP_PERM_STORE;
11 if CapIsTagSet(store_data) then
12 cap_required = cap_required OR CAP_PERM_STORE_CAP;
13 if CapIsLocal(store_data) then
14 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
15 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
16
17 data = MemAtomicC(addr, MemAtomicOp_SWP, store_data, ldacctype, stacctype);
18 data = CapSquashPostLoadCap(data, base);
19
20 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

988

Chapter 4. Instruction definitions
4.4. New instructions

4.4.159 SWPAL

Swap capabilities in memory with acquire and release determines the base register to be used, derives an address
from the base register, atomically loads a Capability register from the calculated address in memory, and atomically
stores another Capability register back to the same calculated address. The Capability register initially loaded from
the calculated address in memory is returned to the destination Capability register. This instruction loads from
memory with acquire and release semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release.

1 0 1 0 0 0 1 0

31 24

1

23

1

22

1

21

Cs

20 16

1 0 0 0 0 0

15 10

Rn

9 5

Ct

4 0

A R

SWPAL <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPAL <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer s = UInt(Cs);
3 integer n = UInt(Rn);
4 AccType ldacctype = if Ct != '11111' then AccType_ORDEREDATOMICRW else AccType_ATOMICRW;
5 AccType stacctype = AccType_ORDEREDATOMICRW;

Assembler Symbols

<Cs> Is the capability name of the register to be stored, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be loaded, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = BaseReg[n];
4 Capability data;
5 Capability store_data;
6
7 bits(64) addr = VAddress(base);
8 store_data = C[s];
9 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);

10 bits(64) cap_required = CAP_PERM_STORE;
11 if CapIsTagSet(store_data) then
12 cap_required = cap_required OR CAP_PERM_STORE_CAP;
13 if CapIsLocal(store_data) then
14 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
15 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
16
17 data = MemAtomicC(addr, MemAtomicOp_SWP, store_data, ldacctype, stacctype);
18 data = CapSquashPostLoadCap(data, base);
19
20 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

989

Chapter 4. Instruction definitions
4.4. New instructions

4.4.160 SWPL

Swap capabilities in memory with release determines the base register to be used, derives an address from the
base register. atomically loads a Capability register from the calculated address in memory, and atomically stores
another Capability register back to the same calculated address. The Capability register initially loaded from the
calculated address in memory is returned to the destination Capability register. This instruction loads from memory
with release semantics as described in Load-Acquire, Load-AcquirePC, and Store-Release.

1 0 1 0 0 0 1 0

31 24

0

23

1

22

1

21

Cs

20 16

1 0 0 0 0 0

15 10

Rn

9 5

Ct

4 0

A R

SWPL <Cs>, <Ct>, [<Xn|SP>] // (PSTATE.C64 == '0')

SWPL <Cs>, <Ct>, [<Cn|CSP>] // (PSTATE.C64 == '1')

1 integer t = UInt(Ct);
2 integer s = UInt(Cs);
3 integer n = UInt(Rn);
4 AccType ldacctype = AccType_ATOMICRW;
5 AccType stacctype = AccType_ORDEREDATOMICRW;

Assembler Symbols

<Cs> Is the capability name of the register to be stored, encoded in the "Cs" field.

<Ct> Is the capability name of the register to be loaded, encoded in the "Ct" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Cn|CSP> Is the capability name of the base register or stack pointer, encoded in the "Rn" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 VirtualAddress base = BaseReg[n];
4 Capability data;
5 Capability store_data;
6
7 bits(64) addr = VAddress(base);
8 store_data = C[s];
9 VACheckAddress(base, addr, CAPABILITY_DBYTES, CAP_PERM_LOAD, ldacctype);

10 bits(64) cap_required = CAP_PERM_STORE;
11 if CapIsTagSet(store_data) then
12 cap_required = cap_required OR CAP_PERM_STORE_CAP;
13 if CapIsLocal(store_data) then
14 cap_required = cap_required OR CAP_PERM_STORE_LOCAL;
15 VACheckAddress(base, addr, CAPABILITY_DBYTES, cap_required, stacctype);
16
17 data = MemAtomicC(addr, MemAtomicOp_SWP, store_data, ldacctype, stacctype);
18 data = CapSquashPostLoadCap(data, base);
19
20 C[t] = data;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

990

Chapter 4. Instruction definitions
4.4. New instructions

4.4.161 UNSEAL

Unseal Capability unseals a capability with an unsealing capability, by checking the ObjectType of the capability
against the Capability Value of the unsealing capability, and writes the result to the destination Capability register.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0 1

15 14

0 0 1 0

13 10

Cn

9 5

Cd

4 0

opc

UNSEAL <Cd>, <Cn>, <Cm>

1 integer d = UInt(Cd);
2 integer n = UInt(Cn);
3 integer m = UInt(Cm);

Assembler Symbols

<Cd> Is the capability name of the destination register, encoded in the "Cd" field.

<Cn> Is the capability name of the first source register, encoded in the "Cn" field.

<Cm> Is the capability name of the second source register, encoded in the "Cm" field.

Operation
1 CheckCapabilitiesEnabled();
2
3 bits(64) value = CapGetValue(C[m]);
4 bits(64) otype = CapGetObjectType(C[n]);
5
6 Capability c = CapUnseal(C[n]);
7
8 if !CapCheckPermissions(C[m], CAP_PERM_GLOBAL) then
9 c = CapClearPerms(c, CAP_PERM_GLOBAL);

10
11 if CapIsTagSet(C[n]) && CapIsTagSet(C[m]) &&
12 CapIsSealed(C[n]) && !CapIsSealed(C[m]) &&
13 CapCheckPermissions(C[m], CAP_PERM_UNSEAL) &&
14 CapIsInBounds(C[m]) &&
15 otype == value then
16
17 C[d] = c;
18 else
19 C[d] = CapWithTagClear(c);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

991

Chapter 4. Instruction definitions
4.5. Index by encoding

4.5 Index by encoding

Top-level encodings for A64

31 29

op0

28 24 23 0

op0 Instruction details

0000x Reserved

00010 Morello encodings

00011 UNALLOCATED

001xx UNALLOCATED

100xx Data Processing – Immediate

101xx Branches, Exception Generating and
System instructions

x1x0x Loads and Stores

x101x Data Processing – Register

x111x Data Processing – Scalar
Floating-Point and Advanced SIMD

Reserved

These instructions are under the top-level.

op0

31 29

0 0 0 0

28 25

op1

24 16 15 0

op0 op1 Instruction details

000 000000000 UDF

000 0001xxxxx UNALLOCATED

!= 000 UNALLOCATED

Morello encodings

These instructions are under the top-level.

op0

31 29

0 0 0 1 0

28 24

op1

23 21 20 16

op2

15 14 13

op3

12 10 9 0

op0 op1 op2 op3 Instruction details

000 Morello add/subtract capability

001 morello_load_store_misc_1

010 morello_load_store_misc_2

011 morello_load_store_misc_3

100 00x LDR (literal)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

992

Chapter 4. Instruction definitions
4.5. Index by encoding

op0 op1 op2 op3 Instruction details

100 01x Morello load/store unsigned offset via
alternate base

100 1xx Morello load/store register via
alternate base

101 morello_load_store_misc_4

110 0xx Morello load/store unsigned offset

110 100 Morello get/set system register

110 101 ADD (extended register)

110 11x morello_misc

111 Morello load/store unscaled immediate
via alternate base

Morello add/subtract capability

These instructions are under Morello encodings.

0 0 0 0 0 0 1 0

31 24

A

23

sh

22

imm12

21 10

Cn

9 5

Cd

4 0

A Instruction Details

0 ADD (immediate)

1 SUB

morello_load_store_misc_1

These instructions are under Morello encodings.

0 0 1 0 0 0 1 0

31 24

op0

23 22 0

op0 Instruction details

0 Morello load/ exclusive

1 Morello load/store pair postindex

Morello load/ exclusive

These instructions are under morello_load_store_misc_1.

0 0 1 0 0 0 1 0 0

31 23

L

22

op

21

Rs

20 16

o2

15

Ct2

14 10

Rn

9 5

Ct

4 0

L op Rs o2 Ct2 Instruction Details

0 0 0 11111 STXR

0 0 1 11111 STLXR

0 1 0 STXP

0 1 1 STLXP

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

993

Chapter 4. Instruction definitions
4.5. Index by encoding

L op Rs o2 Ct2 Instruction Details

1 0 11111 0 11111 LDXR

1 0 11111 1 11111 LDAXR

1 1 11111 0 LDXP

1 1 11111 1 LDAXP

Morello load/store pair postindex

These instructions are under morello_load_store_misc_1.

0 0 1 0 0 0 1 0 1

31 23

L

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L Instruction Details

0 STP (post-indexed)

1 LDP (post-indexed)

morello_load_store_misc_2

These instructions are under Morello encodings.

0 1 0 0 0 0 1 0

31 24

op0

23 22

op1

21 20 16

op2

15 14 0

op0 op1 op2 Instruction details

0 0 0 Morello load/store acquire/release
capability via alternate base

0 0 1 Morello load/store acquire/release

0 1 Morello load/store acquire/release via
alternate base

1 Morello load/store pair

Morello load/store acquire/release capability via alternate base

These instructions are under morello_load_store_misc_2.

0 1 0 0 0 0 1 0 0

31 23

L

22

0

21

Rs

20 16

0

15

Ct2

14 10

Rn

9 5

Ct

4 0

L Rs Ct2 Instruction Details

0 11111 11111 STLR (capability, alternate base)

1 11111 11111 LDAR (capability, alternate base)

Morello load/store acquire/release

These instructions are under morello_load_store_misc_2.

0 1 0 0 0 0 1 0 0

31 23

L

22

0

21

Rs

20 16

1

15

Ct2

14 10

Rn

9 5

Ct

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

994

Chapter 4. Instruction definitions
4.5. Index by encoding

L Rs Ct2 Instruction Details

0 11111 11111 STLR (capability, normal base)

1 11111 11111 LDAR (capability, normal base)

Morello load/store acquire/release via alternate base

These instructions are under morello_load_store_misc_2.

0 1 0 0 0 0 1 0 0

31 23

L

22

1

21

Rs

20 16

op

15

Rt2

14 10

Rn

9 5

Rt

4 0

L Rs op Rt2 Instruction Details

0 11111 0 11111 STLRB

0 11111 1 11111 STLR (integer)

1 11111 0 11111 LDARB

1 11111 1 11111 LDAR (integer)

Morello load/store pair

These instructions are under morello_load_store_misc_2.

0 1 0 0 0 0 1 0 1

31 23

L

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L Instruction Details

0 STP (signed offset)

1 LDP (signed offset)

morello_load_store_misc_3

These instructions are under Morello encodings.

0 1 1 0 0 0 1 0

31 24

op0

23 22 0

op0 Instruction details

0 Morello load/store pair non-temporal

1 Morello load/store pair preindex

Morello load/store pair non-temporal

These instructions are under morello_load_store_misc_3.

0 1 1 0 0 0 1 0 0

31 23

L

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L Instruction Details

0 STNP

1 LDNP

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

995

Chapter 4. Instruction definitions
4.5. Index by encoding

Morello load/store pair preindex

These instructions are under morello_load_store_misc_3.

0 1 1 0 0 0 1 0 1

31 23

L

22

imm7

21 15

Ct2

14 10

Rn

9 5

Ct

4 0

L Instruction Details

0 STP (pre-indexed)

1 LDP (pre-indexed)

Morello load/store unsigned offset via alternate base

These instructions are under Morello encodings.

1 0 0 0 0 0 1 0 0 1

31 22

L

21

imm9

20 12

op

11 10

Rn

9 5

Rt

4 0

L op Instruction Details

0 00 STR (unsigned offset, capability,
alternate base)

0 01 STRB (unsigned offset)

0 10 STR (unsigned offset, integer) — word

0 11 STR (unsigned offset, integer) —
doubleword

1 00 LDR (unsigned offset, capability,
alternate base)

1 01 LDRB (unsigned offset)

1 10 LDR (unsigned offset, integer) —
word

1 11 LDR (unsigned offset, integer) —
doubleword

Morello load/store register via alternate base

These instructions are under Morello encodings.

1 0 0 0 0 0 1 0 1

31 23

L

22

op

21

Rm

20 16

A

15

1

14

B

13

S

12

opc

11 10

Rn

9 5

Rt

4 0

L op opc Instruction Details

0 0 00 STRB (register offset)

0 0 01 LDRSB — doubleword

0 0 10 LDRSH — doubleword

0 0 11 STRH

0 1 00 STR (register offset, integer) — word

0 1 01 STR (register offset, integer) —
doubleword

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

996

Chapter 4. Instruction definitions
4.5. Index by encoding

L op opc Instruction Details

0 1 10 STR (register offset, SIMD&FP) —
64-bit

0 1 11 STR (register offset, SIMD&FP) —
32-bit

1 0 00 LDRB (register offset)

1 0 01 LDRSB — word

1 0 10 LDRSH — word

1 0 11 LDRH

1 1 00 LDR (register offset, integer) — word

1 1 01 LDR (register offset, integer) —
doubleword

1 1 10 LDR (register offset, SIMD&FP) —
64-bit

1 1 11 LDR (register offset, SIMD&FP) —
32-bit

morello_load_store_misc_4

These instructions are under Morello encodings.

1 0 1 0 0 0 1 0

31 24 23 22

op0

21 20 16

op1

15 10 9 0

op0 op1 Instruction details

0 xxxx00 Morello load/store unscaled immediate

0 xxxx01 Morello load/store immediate
postindex

0 xxxx10 Morello load/store immediate
translated

0 xxxx11 Morello load/store immediate preindex

1 100000 Morello swap

1 110000 LDAPR

1 x11111 Morello compare and swap

1 x1xx10 Morello load/store register

Morello load/store unscaled immediate

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Ct

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

997

Chapter 4. Instruction definitions
4.5. Index by encoding

opc Instruction Details

00 STUR (capability, normal base)

01 LDUR (capability, normal base)

Morello load/store immediate postindex

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Ct

4 0

opc Instruction Details

00 STR (post-indexed)

01 LDR (post-indexed)

Morello load/store immediate translated

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Ct

4 0

opc Instruction Details

00 STTR

01 LDTR

Morello load/store immediate preindex

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Ct

4 0

opc Instruction Details

00 STR (pre-indexed)

01 LDR (pre-indexed)

Morello swap

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

1

21

Cs

20 16

1 0 0 0 0 0

15 10

opc2

9 0

opc Instruction Details

00 SWP

01 SWPL

10 SWPA

11 SWPAL

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

998

Chapter 4. Instruction definitions
4.5. Index by encoding

Morello compare and swap

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

1

21

opc2

20 15

1 1 1 1 1

14 10

opc3

9 0

opc opc2 Instruction Details

10 xxxxx0 CAS

10 xxxxx1 CASL

11 xxxxx0 CASA

11 xxxxx1 CASAL

Morello load/store register

These instructions are under morello_load_store_misc_4.

1 0 1 0 0 0 1 0

31 24

opc

23 22

1

21

Rm

20 16

A

15

1

14

B

13

S

12

1 0

11 10

Rn

9 5

Ct

4 0

opc Instruction Details

00 STR (register offset, capability, normal
base)

01 LDR (register offset, capability,
normal base)

Morello load/store unsigned offset

These instructions are under Morello encodings.

1 1 0 0 0 0 1 0 0

31 23

L

22

imm12

21 10

Rn

9 5

Ct

4 0

L Instruction Details

0 STR (unsigned offset, capability,
normal base)

1 LDR (unsigned offset, capability,
normal base)

Morello get/set system register

These instructions are under Morello encodings.

1 1 0 0 0 0 1 0 1 0 0

31 21

L

20

o0

19

op1

18 16

CRn

15 12

CRm

11 8

op2

7 5

Ct

4 0

L Instruction Details

0 MSR

1 MRS

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

999

Chapter 4. Instruction definitions
4.5. Index by encoding

morello_misc

These instructions are under Morello encodings.

1 1 0 0 0 0 1 0 1 1

31 22

op0

21 13

op1

12 11

op2

10 9 5

op3

4 0

op0 op1 op2 op3 Instruction details

000000xxx 10 0 Morello get field 1

0000010xx 10 0 Morello get field 2

0000011xx 10 0 Morello miscellaneous capability 0

0000100xx 10 0 00000 Morello branch

0000100xx 10 0 00001 Morello checks

0000100xx 10 0 00010 Morello branch sealed direct

0000100xx 10 0 00011 Morello branch restricted

0000110xx 10 0 SEAL (immediate)

0001000xx 10 0 Morello load pair and branch

0001001xx 10 0 Morello load/store tags

0001010xx 10 0 Morello convert to pointer

0001011xx 10 0 Morello convert to capability with
implicit operand

000110xxx 10 0 CLRPERM (immediate)

0001110xx 10 0 Morello 1 src 1 dest

01xxxxxxx 10 0 0000x Morello branch sealed indirect

0xxxxx0xx 00 0 Morello set field 1

0xxxxx0xx 00 1 Morello miscellaneous capability 1

0xxxxx10x 00 0 Morello set field 2

0xxxxx110 00 0 CVT (to pointer)

0xxxxx111 00 0 SCFLGS

0xxxxx1xx 00 1 00000 Morello branch to sealed

0xxxxx1xx 00 1 00001 Morello 2 src cap

0xxxxxxx0 01 0 Morello miscellaneous capability 2

0xxxxxxx0 11 0 Morello alignment

0xxxxxxx1 01 0 Morello bitwise

0xxxxxxx1 11 0 Morello immediate bounds

0xxxxxxxx x1 1 CSEL

1xxxxx0x0 11 0 Morello convert to capability

1xxxxx100 11 0 SUBS

1xxxxxx1x 1 Morello load/store capability via
alternate base

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1000

Chapter 4. Instruction definitions
4.5. Index by encoding

op0 op1 op2 op3 Instruction details

1xxxxxxxx != 11 0 Morello logical immediate

Morello get field 1

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0

31 16

opc

15 13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc Instruction Details

000 GCBASE

001 GCLEN

010 GCVALUE

011 GCOFF

100 GCTAG

101 GCSEAL

110 GCPERM

111 GCTYPE

Morello get field 2

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0

31 15

opc

14 13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc Instruction Details

00 GCLIM

01 GCFLGS

10 CFHI

Morello miscellaneous capability 0

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1

31 15

opc

14 13

1 0 0

12 10

Cn

9 5

Cd

4 0

opc Instruction Details

00 CLRTAG

10 CPY

Morello branch

These instructions are under morello_misc.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1001

Chapter 4. Instruction definitions
4.5. Index by encoding

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

opc

14 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc Cn Instruction Details

00 BR (indirect)

01 BLR (indirect)

10 RET

11 11111 BX

Morello checks

These instructions are under morello_misc.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

opc

14 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0 1

1 0

opc Instruction Details

00 CHKSLD

01 CHKTGD

Morello branch sealed direct

These instructions are under morello_misc.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

opc

14 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 0

1 0

opc Instruction Details

00 BRS (capability)

01 BLRS (capability)

10 RETS (capability)

Morello branch restricted

These instructions are under morello_misc.

1 1

31 30

0 0 0 0 1 0 1 1 0 0

29 20

0 0 1 0 0

19 15

opc

14 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

1 1

1 0

opc Instruction Details

00 BRR

01 BLRR

10 RETR

Morello load pair and branch

These instructions are under morello_misc.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1002

Chapter 4. Instruction definitions
4.5. Index by encoding

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0

31 15

opc

14 13

1 0 0

12 10

Cn

9 5

Ct

4 0

opc Instruction Details

00 LDPBR

01 LDPBLR

Morello load/store tags

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1

31 15

opc

14 13

1 0 0

12 10

Cn

9 5

Ct

4 0

opc Instruction Details

00 STCT

01 LDCT

Morello convert to pointer

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0

31 15

opc

14 13

1 0 0

12 10

Cn

9 5

Rd

4 0

opc Instruction Details

00 CVTD (to pointer)

01 CVTP (to pointer)

Morello convert to capability with implicit operand

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1

31 15

opc

14 13

1 0 0

12 10

Rn

9 5

Cd

4 0

opc Instruction Details

00 CVTD (to capability)

01 CVTP (to capability)

10 CVTDZ

11 CVTPZ

Morello 1 src 1 dest

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0

31 15

opc

14 13

1 0 0

12 10

Rn

9 5

Rd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1003

Chapter 4. Instruction definitions
4.5. Index by encoding

opc Instruction Details

00 RRLEN

01 RRMASK

Morello branch sealed indirect

These instructions are under morello_misc.

1 1

31 30

0 0 0 0 1 0 1 1 0 1

29 20

imm7

19 13

1 0 0

12 10

Cn

9 5

0

4

0

3

0

2

0

1

op

0

op Instruction Details

0 BR (memory indirect)

1 BLR (memory indirect)

Morello set field 1

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

0

15

opc

14 13

0 0 0

12 10

Cn

9 5

Cd

4 0

opc Instruction Details

00 SCBNDS (register)

01 SCBNDSE

10 SCVALUE

11 SCOFF

Morello miscellaneous capability 1

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

0

15

opc

14 13

0 0 1

12 10

Cn

9 5

Cd

4 0

opc Instruction Details

00 BUILD

01 CPYTYPE

10 CSEAL

11 CPYVALUE

Morello set field 2

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

1 0

15 14

op

13

0 0 0

12 10

Cn

9 5

Cd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1004

Chapter 4. Instruction definitions
4.5. Index by encoding

op Instruction Details

0 SCTAG

1 CLRPERM (register)

Morello branch to sealed

These instructions are under morello_misc.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

opc

14 13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 0

1 0

opc Instruction Details

00 BRS (pair of capabilities)

01 BLRS (pair of capabilities)

10 RETS (pair of capabilities)

Morello 2 src cap

These instructions are under morello_misc.

1 1

31 30

0 0 0 0 1 0 1 1 0

29 21

Cm

20 16

1

15

opc

14 13

0 0 1

12 10

Cn

9 5

0

4

0

3

0

2

0 1

1 0

opc Instruction Details

00 CHKSS

01 CHKEQ

Morello miscellaneous capability 2

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

Cm

20 16

opc

15 14

0 0 1 0

13 10

Cn

9 5

Cd

4 0

opc Instruction Details

00 SEAL (capability)

01 UNSEAL

10 CHKSSU

Morello alignment

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

imm6

20 15

U

14

0 1 1 0

13 10

Cn

9 5

Cd

4 0

U Instruction Details

0 ALIGND

1 ALIGNU

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1005

Chapter 4. Instruction definitions
4.5. Index by encoding

Morello bitwise

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

Rm

20 16

opc

15 14

1 0 1 0

13 10

Cn

9 5

Cd

4 0

opc Instruction Details

00 BICFLGS (register)

01 ORRFLGS (register)

10 EORFLGS (register)

11 CTHI

Morello immediate bounds

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 0

31 21

imm6

20 15

S

14

1 1 1 0

13 10

Cn

9 5

Cd

4 0

S Instruction Details

0 SCBNDS (immediate) — Unscaled

1 SCBNDS (immediate) — Scaled

Morello convert to capability

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 1

31 21

Rm

20 16

0

15

op

14

0 1 1 0

13 10

Cn

9 5

Cd

4 0

op Instruction Details

0 CVT (to capability)

1 CVTZ

Morello load/store capability via alternate base

These instructions are under morello_misc.

1 1 0 0 0 0 1 0 1 1 1

31 21

Rm

20 16

A

15

1

14

B

13

S

12

L

11

1

10

Rn

9 5

Ct

4 0

L Instruction Details

0 STR (register offset, capability,
alternate base)

1 LDR (register offset, capability,
alternate base)

Morello logical immediate

These instructions are under morello_misc.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1006

Chapter 4. Instruction definitions
4.5. Index by encoding

1 1 0 0 0 0 1 0 1 1 1

31 21

imm8

20 13

!= 11

12 11

0

10

Cn

9 5

Cd

4 0

opc

The following constraints also apply to this encoding: opc != 11 && opc != 11

opc Instruction Details

00 BICFLGS (immediate)

01 ORRFLGS (immediate)

10 EORFLGS (immediate)

Morello load/store unscaled immediate via alternate base

These instructions are under Morello encodings.

1 1 1 0 0 0 1 0

31 24

op1

23 22

V

21

imm9

20 12

op2

11 10

Rn

9 5

Rd

4 0

op1 V op2 Instruction Details

00 0 00 STURB

00 0 01 LDURB

00 0 10 LDURSB — doubleword

00 0 11 LDURSB — word

00 1 00 STUR (SIMD&FP) — 8-bit

00 1 01 LDUR (SIMD&FP) — 8-bit

00 1 10 STUR (SIMD&FP) — 128-bit

00 1 11 LDUR (SIMD&FP) — 128-bit

01 0 00 STURH

01 0 01 LDURH

01 0 10 LDURSH — doubleword

01 0 11 LDURSH — word

01 1 00 STUR (SIMD&FP) — 16-bit

01 1 01 LDUR (SIMD&FP) — 16-bit

10 0 00 STUR (integer) — word

10 0 01 LDUR (integer) — word

10 0 10 LDURSW

10 0 11 STUR (capability, alternate base)

10 1 00 STUR (SIMD&FP) — 32-bit

10 1 01 LDUR (SIMD&FP) — 32-bit

11 0 00 STUR (integer) — doubleword

11 0 01 LDUR (integer) — doubleword

11 0 11 LDUR (capability, alternate base)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1007

Chapter 4. Instruction definitions
4.5. Index by encoding

op1 V op2 Instruction Details

11 1 00 STUR (SIMD&FP) — 64-bit

11 1 01 LDUR (SIMD&FP) — 64-bit

Data Processing – Immediate

These instructions are under the top-level.

31 29

1 0 0

28 26

op0

25 23 22 0

op0 Instruction details

00x aarch64_adr

010 Add/subtract (immediate)

011 Add/subtract (immediate, with tags)

100 Logical (immediate)

101 Move wide (immediate)

110 Bitfield

111 Extract

aarch64_adr

These instructions are under Data Processing – Immediate.

op

31

immlo

30 29

1 0 0 0 0

28 24

P

23

immhi

22 5

Rd

4 0

op P Instruction Details

0 ADR

1 ADRP

1 0 ADRDP

1 1 ADRP

Add/subtract (immediate)

These instructions are under Data Processing – Immediate.

sf

31

op

30

S

29

1 0 0 0 1 0

28 23

sh

22

imm12

21 10

Rn

9 5

Rd

4 0

sf op S Instruction Details

0 0 0 ADD (immediate) — 32-bit

0 0 1 ADDS (immediate) — 32-bit

0 1 0 SUB (immediate) — 32-bit

0 1 1 SUBS (immediate) — 32-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1008

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op S Instruction Details

1 0 0 ADD (immediate) — 64-bit

1 0 1 ADDS (immediate) — 64-bit

1 1 0 SUB (immediate) — 64-bit

1 1 1 SUBS (immediate) — 64-bit

Add/subtract (immediate, with tags)

These instructions are under Data Processing – Immediate.

sf

31

op

30

S

29

1 0 0 0 1 1

28 23

o2

22

uimm6

21 16

op3

15 14

uimm4

13 10

Rn

9 5

Rd

4 0

sf S o2 Instruction Details

1 UNALLOCATED

0 0 UNALLOCATED

1 1 0 UNALLOCATED

Logical (immediate)

These instructions are under Data Processing – Immediate.

sf

31

opc

30 29

1 0 0 1 0 0

28 23

N

22

immr

21 16

imms

15 10

Rn

9 5

Rd

4 0

sf opc N Instruction Details

0 1 UNALLOCATED

0 00 0 AND (immediate) — 32-bit

0 01 0 ORR (immediate) — 32-bit

0 10 0 EOR (immediate) — 32-bit

0 11 0 ANDS (immediate) — 32-bit

1 00 AND (immediate) — 64-bit

1 01 ORR (immediate) — 64-bit

1 10 EOR (immediate) — 64-bit

1 11 ANDS (immediate) — 64-bit

Move wide (immediate)

These instructions are under Data Processing – Immediate.

sf

31

opc

30 29

1 0 0 1 0 1

28 23

hw

22 21

imm16

20 5

Rd

4 0

sf opc hw Instruction Details

01 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1009

Chapter 4. Instruction definitions
4.5. Index by encoding

sf opc hw Instruction Details

0 1x UNALLOCATED

0 00 0x MOVN — 32-bit

0 10 0x MOVZ — 32-bit

0 11 0x MOVK — 32-bit

1 00 MOVN — 64-bit

1 10 MOVZ — 64-bit

1 11 MOVK — 64-bit

Bitfield

These instructions are under Data Processing – Immediate.

sf

31

opc

30 29

1 0 0 1 1 0

28 23

N

22

immr

21 16

imms

15 10

Rn

9 5

Rd

4 0

sf opc N Instruction Details

11 UNALLOCATED

0 1 UNALLOCATED

0 00 0 SBFM — 32-bit

0 01 0 BFM — 32-bit

0 10 0 UBFM — 32-bit

1 0 UNALLOCATED

1 00 1 SBFM — 64-bit

1 01 1 BFM — 64-bit

1 10 1 UBFM — 64-bit

Extract

These instructions are under Data Processing – Immediate.

sf

31

op21

30 29

1 0 0 1 1 1

28 23

N

22

o0

21

Rm

20 16

imms

15 10

Rn

9 5

Rd

4 0

sf op21 N o0 imms Instruction Details

x1 UNALLOCATED

00 1 UNALLOCATED

1x UNALLOCATED

0 1xxxxx UNALLOCATED

0 1 UNALLOCATED

0 00 0 0 0xxxxx EXTR — 32-bit

1 0 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1010

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op21 N o0 imms Instruction Details

1 00 1 0 EXTR — 64-bit

Branches, Exception Generating and System instructions

These instructions are under the top-level.

op0

31 29

1 0 1

28 26

op1

25 12 11 5

op2

4 0

op0 op1 op2 Instruction details

010 0xxxxxxxxxxxxx Conditional branch (immediate)

010 1xxxxxxxxxxxxx UNALLOCATED

110 00xxxxxxxxxxxx Exception generation

110 010000000x000x UNALLOCATED

110 010000000x001x UNALLOCATED

110 0100000010000x UNALLOCATED

110 0100000010001x UNALLOCATED

110 01000000110000 UNALLOCATED

110 01000000110010 11111 Hints

110 01000000110010 != 11111 UNALLOCATED

110 01000000110011 Barriers

110 01000001xx000x UNALLOCATED

110 01000001xx001x UNALLOCATED

110 0100000xxx0100 PSTATE

110 0100000xxx0101 UNALLOCATED

110 0100000xxx011x UNALLOCATED

110 0100000xxx1xxx UNALLOCATED

110 0100x01xxxxxxx System instructions

110 0100x1xxxxxxxx System register move

110 0101xxxxxxxxxx UNALLOCATED

110 011xxxxxxxxxxx UNALLOCATED

110 1xxxxxxxxxxxxx Unconditional branch (register)

x00 Unconditional branch (immediate)

x01 0xxxxxxxxxxxxx Compare and branch (immediate)

x01 1xxxxxxxxxxxxx Test and branch (immediate)

x11 UNALLOCATED

Conditional branch (immediate)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1011

Chapter 4. Instruction definitions
4.5. Index by encoding

These instructions are under Branches, Exception Generating and System instructions.

0 1 0 1 0 1 0

31 25

o1

24

imm19

23 5

o0

4

cond

3 0

o1 o0 Instruction Details

0 0 B.cond

0 1 UNALLOCATED

1 UNALLOCATED

Exception generation

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 0 0

31 24

opc

23 21

imm16

20 5

op2

4 2

LL

1 0

opc op2 LL Instruction Details

001 UNALLOCATED

01x UNALLOCATED

1xx UNALLOCATED

000 000 00 UNALLOCATED

000 000 01 SVC

000 000 10 HVC

000 000 11 SMC

001 000 x1 UNALLOCATED

001 000 00 BRK

001 000 1x UNALLOCATED

010 000 x1 UNALLOCATED

010 000 00 HLT

010 000 1x UNALLOCATED

011 000 01 UNALLOCATED

011 000 1x UNALLOCATED

100 000 UNALLOCATED

101 000 00 UNALLOCATED

101 000 01 DCPS1

101 000 10 DCPS2

101 000 11 DCPS3

110 000 UNALLOCATED

111 000 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1012

Chapter 4. Instruction definitions
4.5. Index by encoding

Hints

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0

31 12

CRm

11 8

op2

7 5

1 1 1 1 1

4 0

CRm op2 Instruction Details Feature

HINT -

0000 000 NOP -

0000 001 YIELD -

0000 010 WFE -

0000 011 WFI -

0000 100 SEV -

0000 101 SEVL -

0010 000 ESB FEAT_RAS

0010 001 PSB CSYNC FEAT_SPE

0010 100 CSDB -

Barriers

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1

31 12

CRm

11 8

op2

7 5

Rt

4 0

CRm op2 Rt Instruction Details

000 UNALLOCATED

001 != 11111 UNALLOCATED

010 11111 CLREX

101 11111 DMB

110 11111 ISB

111 != 11111 UNALLOCATED

111 11111 SB

!= 0x00 100 11111 DSB

0000 100 11111 SSBB

0001 011 UNALLOCATED

001x 011 UNALLOCATED

01xx 011 UNALLOCATED

0100 100 11111 PSSBB

1xxx 011 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1013

Chapter 4. Instruction definitions
4.5. Index by encoding

PSTATE

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 0 1 0 0 0 0 0

31 19

op1

18 16

0 1 0 0

15 12

CRm

11 8

op2

7 5

Rt

4 0

Rt Instruction Details

!= 11111 UNALLOCATED

11111 MSR (immediate)

System instructions

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 0 1 0 0

31 22

L

21

0 1

20 19

op1

18 16

CRn

15 12

CRm

11 8

op2

7 5

Rt

4 0

L Instruction Details

0 SYS

1 SYSL

System register move

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 0 1 0 0

31 22

L

21

1

20

o0

19

op1

18 16

CRn

15 12

CRm

11 8

op2

7 5

Rt

4 0

L Instruction Details

0 MSR (register)

1 MRS

Unconditional branch (register)

These instructions are under Branches, Exception Generating and System instructions.

1 1 0 1 0 1 1

31 25

opc

24 21

op2

20 16

op3

15 10

Rn

9 5

op4

4 0

opc op2 op3 Rn op4 Instruction Details

!= 11111 UNALLOCATED

0000 11111 000000 != 00000 UNALLOCATED

0000 11111 000000 00000 BR

0000 11111 000001 UNALLOCATED

0000 11111 000010 != 11111 UNALLOCATED

0000 11111 000011 != 11111 UNALLOCATED

0000 11111 0001xx UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1014

Chapter 4. Instruction definitions
4.5. Index by encoding

opc op2 op3 Rn op4 Instruction Details

0000 11111 001xxx UNALLOCATED

0000 11111 01xxxx UNALLOCATED

0000 11111 1xxxxx UNALLOCATED

0001 11111 000000 != 00000 UNALLOCATED

0001 11111 000000 00000 BLR

0001 11111 000001 UNALLOCATED

0001 11111 000010 != 11111 UNALLOCATED

0001 11111 000011 != 11111 UNALLOCATED

0001 11111 0001xx UNALLOCATED

0001 11111 001xxx UNALLOCATED

0001 11111 01xxxx UNALLOCATED

0001 11111 1xxxxx UNALLOCATED

0010 11111 000000 != 00000 UNALLOCATED

0010 11111 000000 00000 RET

0010 11111 000001 UNALLOCATED

0010 11111 000010 != 11111 != 11111 UNALLOCATED

0010 11111 000011 != 11111 != 11111 UNALLOCATED

0010 11111 0001xx UNALLOCATED

0010 11111 001xxx UNALLOCATED

0010 11111 01xxxx UNALLOCATED

0010 11111 1xxxxx UNALLOCATED

0011 11111 UNALLOCATED

0100 11111 000000 != 11111 != 00000 UNALLOCATED

0100 11111 000000 != 11111 00000 UNALLOCATED

0100 11111 000000 11111 != 00000 UNALLOCATED

0100 11111 000000 11111 00000 ERET

0100 11111 000001 UNALLOCATED

0100 11111 000010 != 11111 != 11111 UNALLOCATED

0100 11111 000010 != 11111 11111 UNALLOCATED

0100 11111 000010 11111 != 11111 UNALLOCATED

0100 11111 000011 != 11111 != 11111 UNALLOCATED

0100 11111 000011 != 11111 11111 UNALLOCATED

0100 11111 000011 11111 != 11111 UNALLOCATED

0100 11111 0001xx UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1015

Chapter 4. Instruction definitions
4.5. Index by encoding

opc op2 op3 Rn op4 Instruction Details

0100 11111 001xxx UNALLOCATED

0100 11111 01xxxx UNALLOCATED

0100 11111 1xxxxx UNALLOCATED

0101 11111 != 000000 UNALLOCATED

0101 11111 000000 != 11111 != 00000 UNALLOCATED

0101 11111 000000 != 11111 00000 UNALLOCATED

0101 11111 000000 11111 != 00000 UNALLOCATED

0101 11111 000000 11111 00000 DRPS

011x 11111 UNALLOCATED

1000 11111 00000x UNALLOCATED

1000 11111 0001xx UNALLOCATED

1000 11111 001xxx UNALLOCATED

1000 11111 01xxxx UNALLOCATED

1000 11111 1xxxxx UNALLOCATED

1001 11111 00000x UNALLOCATED

1001 11111 0001xx UNALLOCATED

1001 11111 001xxx UNALLOCATED

1001 11111 01xxxx UNALLOCATED

1001 11111 1xxxxx UNALLOCATED

101x 11111 UNALLOCATED

11xx 11111 UNALLOCATED

Unconditional branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

op

31

0 0 1 0 1

30 26

imm26

25 0

op Instruction Details

0 B

1 BL

Compare and branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

sf

31

0 1 1 0 1 0

30 25

op

24

imm19

23 5

Rt

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1016

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op Instruction Details

0 0 CBZ — 32-bit

0 1 CBNZ — 32-bit

1 0 CBZ — 64-bit

1 1 CBNZ — 64-bit

Test and branch (immediate)

These instructions are under Branches, Exception Generating and System instructions.

b5

31

0 1 1 0 1 1

30 25

op

24

b40

23 19

imm14

18 5

Rt

4 0

op Instruction Details

0 TBZ

1 TBNZ

Loads and Stores

These instructions are under the top-level.

op0

31 28

1

27

op1

26

0

25

op2

24 23 22

op3

21 16 15 12

op4

11 10 9 0

op0 op1 op2 op3 op4 Instruction details

0x00 1 00 000000 Advanced SIMD load/store multiple
structures

0x00 1 01 0xxxxx Advanced SIMD load/store multiple
structures (post-indexed)

0x00 1 0x 1xxxxx UNALLOCATED

0x00 1 10 x00000 Advanced SIMD load/store single
structure

0x00 1 11 Advanced SIMD load/store single
structure (post-indexed)

0x00 1 x0 x1xxxx UNALLOCATED

0x00 1 x0 xx1xxx UNALLOCATED

0x00 1 x0 xxx1xx UNALLOCATED

0x00 1 x0 xxxx1x UNALLOCATED

0x00 1 x0 xxxxx1 UNALLOCATED

0x01 0 1x 1xxxxx UNALLOCATED

1001 0 1x 1xxxxx UNALLOCATED

1x00 1 UNALLOCATED

xx00 0 0x Load/store exclusive

xx00 0 1x UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1017

Chapter 4. Instruction definitions
4.5. Index by encoding

op0 op1 op2 op3 op4 Instruction details

xx01 0 1x 0xxxxx 00 UNALLOCATED

xx01 1 1x 0xxxxx 00 UNALLOCATED

xx01 0x Load register (literal)

xx10 00 Load/store no-allocate pair (offset)

xx10 01 Load/store register pair (post-indexed)

xx10 10 Load/store register pair (offset)

xx10 11 Load/store register pair (pre-indexed)

xx11 0x 0xxxxx 00 Load/store register (unscaled
immediate)

xx11 0x 0xxxxx 01 Load/store register (immediate
post-indexed)

xx11 0x 0xxxxx 10 Load/store register (unprivileged)

xx11 0x 0xxxxx 11 Load/store register (immediate
pre-indexed)

xx11 0x 1xxxxx 00 Atomic memory operations

xx11 0x 1xxxxx 10 Load/store register (register offset)

xx11 0x 1xxxxx x1 Load/store register (pac)

xx11 1x Load/store register (unsigned
immediate)

Advanced SIMD load/store multiple structures

These instructions are under Loads and Stores.

0

31

Q

30

0 0 1 1 0 0 0

29 23

L

22

0 0 0 0 0 0

21 16

opcode

15 12

size

11 10

Rn

9 5

Rt

4 0

L opcode Instruction Details

0 0000 ST4 (multiple structures)

0 0001 UNALLOCATED

0 0010 ST1 (multiple structures) — four
registers

0 0011 UNALLOCATED

0 0100 ST3 (multiple structures)

0 0101 UNALLOCATED

0 0110 ST1 (multiple structures) — three
registers

0 0111 ST1 (multiple structures) — one
register

0 1000 ST2 (multiple structures)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1018

Chapter 4. Instruction definitions
4.5. Index by encoding

L opcode Instruction Details

0 1001 UNALLOCATED

0 1010 ST1 (multiple structures) — two
registers

0 1011 UNALLOCATED

0 11xx UNALLOCATED

1 0000 LD4 (multiple structures)

1 0001 UNALLOCATED

1 0010 LD1 (multiple structures) — four
registers

1 0011 UNALLOCATED

1 0100 LD3 (multiple structures)

1 0101 UNALLOCATED

1 0110 LD1 (multiple structures) — three
registers

1 0111 LD1 (multiple structures) — one
register

1 1000 LD2 (multiple structures)

1 1001 UNALLOCATED

1 1010 LD1 (multiple structures) — two
registers

1 1011 UNALLOCATED

1 11xx UNALLOCATED

Advanced SIMD load/store multiple structures (post-indexed)

These instructions are under Loads and Stores.

0

31

Q

30

0 0 1 1 0 0 1

29 23

L

22

0

21

Rm

20 16

opcode

15 12

size

11 10

Rn

9 5

Rt

4 0

L Rm opcode Instruction Details

0 0001 UNALLOCATED

0 0011 UNALLOCATED

0 0101 UNALLOCATED

0 1001 UNALLOCATED

0 1011 UNALLOCATED

0 11xx UNALLOCATED

0 != 11111 0000 ST4 (multiple structures) — register
offset

0 != 11111 0010 ST1 (multiple structures) — four
registers, register offset

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1019

Chapter 4. Instruction definitions
4.5. Index by encoding

L Rm opcode Instruction Details

0 != 11111 0100 ST3 (multiple structures) — register
offset

0 != 11111 0110 ST1 (multiple structures) — three
registers, register offset

0 != 11111 0111 ST1 (multiple structures) — one
register, register offset

0 != 11111 1000 ST2 (multiple structures) — register
offset

0 != 11111 1010 ST1 (multiple structures) — two
registers, register offset

0 11111 0000 ST4 (multiple structures) —
immediate offset

0 11111 0010 ST1 (multiple structures) — four
registers, immediate offset

0 11111 0100 ST3 (multiple structures) —
immediate offset

0 11111 0110 ST1 (multiple structures) — three
registers, immediate offset

0 11111 0111 ST1 (multiple structures) — one
register, immediate offset

0 11111 1000 ST2 (multiple structures) —
immediate offset

0 11111 1010 ST1 (multiple structures) — two
registers, immediate offset

1 0001 UNALLOCATED

1 0011 UNALLOCATED

1 0101 UNALLOCATED

1 1001 UNALLOCATED

1 1011 UNALLOCATED

1 11xx UNALLOCATED

1 != 11111 0000 LD4 (multiple structures) — register
offset

1 != 11111 0010 LD1 (multiple structures) — four
registers, register offset

1 != 11111 0100 LD3 (multiple structures) — register
offset

1 != 11111 0110 LD1 (multiple structures) — three
registers, register offset

1 != 11111 0111 LD1 (multiple structures) — one
register, register offset

1 != 11111 1000 LD2 (multiple structures) — register
offset

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1020

Chapter 4. Instruction definitions
4.5. Index by encoding

L Rm opcode Instruction Details

1 != 11111 1010 LD1 (multiple structures) — two
registers, register offset

1 11111 0000 LD4 (multiple structures) —
immediate offset

1 11111 0010 LD1 (multiple structures) — four
registers, immediate offset

1 11111 0100 LD3 (multiple structures) —
immediate offset

1 11111 0110 LD1 (multiple structures) — three
registers, immediate offset

1 11111 0111 LD1 (multiple structures) — one
register, immediate offset

1 11111 1000 LD2 (multiple structures) —
immediate offset

1 11111 1010 LD1 (multiple structures) — two
registers, immediate offset

Advanced SIMD load/store single structure

These instructions are under Loads and Stores.

0

31

Q

30

0 0 1 1 0 1 0

29 23

L

22

R

21

0 0 0 0 0

20 16

opcode

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R opcode S size Instruction Details

0 11x UNALLOCATED

0 0 000 ST1 (single structure) — 8-bit

0 0 001 ST3 (single structure) — 8-bit

0 0 010 x0 ST1 (single structure) — 16-bit

0 0 010 x1 UNALLOCATED

0 0 011 x0 ST3 (single structure) — 16-bit

0 0 011 x1 UNALLOCATED

0 0 100 00 ST1 (single structure) — 32-bit

0 0 100 1x UNALLOCATED

0 0 100 0 01 ST1 (single structure) — 64-bit

0 0 100 1 01 UNALLOCATED

0 0 101 00 ST3 (single structure) — 32-bit

0 0 101 10 UNALLOCATED

0 0 101 0 01 ST3 (single structure) — 64-bit

0 0 101 0 11 UNALLOCATED

0 0 101 1 x1 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1021

Chapter 4. Instruction definitions
4.5. Index by encoding

L R opcode S size Instruction Details

0 1 000 ST2 (single structure) — 8-bit

0 1 001 ST4 (single structure) — 8-bit

0 1 010 x0 ST2 (single structure) — 16-bit

0 1 010 x1 UNALLOCATED

0 1 011 x0 ST4 (single structure) — 16-bit

0 1 011 x1 UNALLOCATED

0 1 100 00 ST2 (single structure) — 32-bit

0 1 100 10 UNALLOCATED

0 1 100 0 01 ST2 (single structure) — 64-bit

0 1 100 0 11 UNALLOCATED

0 1 100 1 x1 UNALLOCATED

0 1 101 00 ST4 (single structure) — 32-bit

0 1 101 10 UNALLOCATED

0 1 101 0 01 ST4 (single structure) — 64-bit

0 1 101 0 11 UNALLOCATED

0 1 101 1 x1 UNALLOCATED

1 0 000 LD1 (single structure) — 8-bit

1 0 001 LD3 (single structure) — 8-bit

1 0 010 x0 LD1 (single structure) — 16-bit

1 0 010 x1 UNALLOCATED

1 0 011 x0 LD3 (single structure) — 16-bit

1 0 011 x1 UNALLOCATED

1 0 100 00 LD1 (single structure) — 32-bit

1 0 100 1x UNALLOCATED

1 0 100 0 01 LD1 (single structure) — 64-bit

1 0 100 1 01 UNALLOCATED

1 0 101 00 LD3 (single structure) — 32-bit

1 0 101 10 UNALLOCATED

1 0 101 0 01 LD3 (single structure) — 64-bit

1 0 101 0 11 UNALLOCATED

1 0 101 1 x1 UNALLOCATED

1 0 110 0 LD1R

1 0 110 1 UNALLOCATED

1 0 111 0 LD3R

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1022

Chapter 4. Instruction definitions
4.5. Index by encoding

L R opcode S size Instruction Details

1 0 111 1 UNALLOCATED

1 1 000 LD2 (single structure) — 8-bit

1 1 001 LD4 (single structure) — 8-bit

1 1 010 x0 LD2 (single structure) — 16-bit

1 1 010 x1 UNALLOCATED

1 1 011 x0 LD4 (single structure) — 16-bit

1 1 011 x1 UNALLOCATED

1 1 100 00 LD2 (single structure) — 32-bit

1 1 100 10 UNALLOCATED

1 1 100 0 01 LD2 (single structure) — 64-bit

1 1 100 0 11 UNALLOCATED

1 1 100 1 x1 UNALLOCATED

1 1 101 00 LD4 (single structure) — 32-bit

1 1 101 10 UNALLOCATED

1 1 101 0 01 LD4 (single structure) — 64-bit

1 1 101 0 11 UNALLOCATED

1 1 101 1 x1 UNALLOCATED

1 1 110 0 LD2R

1 1 110 1 UNALLOCATED

1 1 111 0 LD4R

1 1 111 1 UNALLOCATED

Advanced SIMD load/store single structure (post-indexed)

These instructions are under Loads and Stores.

0

31

Q

30

0 0 1 1 0 1 1

29 23

L

22

R

21

Rm

20 16

opcode

15 13

S

12

size

11 10

Rn

9 5

Rt

4 0

L R Rm opcode S size Instruction Details

0 11x UNALLOCATED

0 0 010 x1 UNALLOCATED

0 0 011 x1 UNALLOCATED

0 0 100 1x UNALLOCATED

0 0 100 1 01 UNALLOCATED

0 0 101 10 UNALLOCATED

0 0 101 0 11 UNALLOCATED

0 0 101 1 x1 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1023

Chapter 4. Instruction definitions
4.5. Index by encoding

L R Rm opcode S size Instruction Details

0 0 != 11111 000 ST1 (single structure) — 8-bit, register
offset

0 0 != 11111 001 ST3 (single structure) — 8-bit, register
offset

0 0 != 11111 010 x0 ST1 (single structure) — 16-bit,
register offset

0 0 != 11111 011 x0 ST3 (single structure) — 16-bit,
register offset

0 0 != 11111 100 00 ST1 (single structure) — 32-bit,
register offset

0 0 != 11111 100 0 01 ST1 (single structure) — 64-bit,
register offset

0 0 != 11111 101 00 ST3 (single structure) — 32-bit,
register offset

0 0 != 11111 101 0 01 ST3 (single structure) — 64-bit,
register offset

0 0 11111 000 ST1 (single structure) — 8-bit,
immediate offset

0 0 11111 001 ST3 (single structure) — 8-bit,
immediate offset

0 0 11111 010 x0 ST1 (single structure) — 16-bit,
immediate offset

0 0 11111 011 x0 ST3 (single structure) — 16-bit,
immediate offset

0 0 11111 100 00 ST1 (single structure) — 32-bit,
immediate offset

0 0 11111 100 0 01 ST1 (single structure) — 64-bit,
immediate offset

0 0 11111 101 00 ST3 (single structure) — 32-bit,
immediate offset

0 0 11111 101 0 01 ST3 (single structure) — 64-bit,
immediate offset

0 1 010 x1 UNALLOCATED

0 1 011 x1 UNALLOCATED

0 1 100 10 UNALLOCATED

0 1 100 0 11 UNALLOCATED

0 1 100 1 x1 UNALLOCATED

0 1 101 10 UNALLOCATED

0 1 101 0 11 UNALLOCATED

0 1 101 1 x1 UNALLOCATED

0 1 != 11111 000 ST2 (single structure) — 8-bit, register
offset

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1024

Chapter 4. Instruction definitions
4.5. Index by encoding

L R Rm opcode S size Instruction Details

0 1 != 11111 001 ST4 (single structure) — 8-bit, register
offset

0 1 != 11111 010 x0 ST2 (single structure) — 16-bit,
register offset

0 1 != 11111 011 x0 ST4 (single structure) — 16-bit,
register offset

0 1 != 11111 100 00 ST2 (single structure) — 32-bit,
register offset

0 1 != 11111 100 0 01 ST2 (single structure) — 64-bit,
register offset

0 1 != 11111 101 00 ST4 (single structure) — 32-bit,
register offset

0 1 != 11111 101 0 01 ST4 (single structure) — 64-bit,
register offset

0 1 11111 000 ST2 (single structure) — 8-bit,
immediate offset

0 1 11111 001 ST4 (single structure) — 8-bit,
immediate offset

0 1 11111 010 x0 ST2 (single structure) — 16-bit,
immediate offset

0 1 11111 011 x0 ST4 (single structure) — 16-bit,
immediate offset

0 1 11111 100 00 ST2 (single structure) — 32-bit,
immediate offset

0 1 11111 100 0 01 ST2 (single structure) — 64-bit,
immediate offset

0 1 11111 101 00 ST4 (single structure) — 32-bit,
immediate offset

0 1 11111 101 0 01 ST4 (single structure) — 64-bit,
immediate offset

1 0 010 x1 UNALLOCATED

1 0 011 x1 UNALLOCATED

1 0 100 1x UNALLOCATED

1 0 100 1 01 UNALLOCATED

1 0 101 10 UNALLOCATED

1 0 101 0 11 UNALLOCATED

1 0 101 1 x1 UNALLOCATED

1 0 110 1 UNALLOCATED

1 0 111 1 UNALLOCATED

1 0 != 11111 000 LD1 (single structure) — 8-bit, register
offset

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1025

Chapter 4. Instruction definitions
4.5. Index by encoding

L R Rm opcode S size Instruction Details

1 0 != 11111 001 LD3 (single structure) — 8-bit, register
offset

1 0 != 11111 010 x0 LD1 (single structure) — 16-bit,
register offset

1 0 != 11111 011 x0 LD3 (single structure) — 16-bit,
register offset

1 0 != 11111 100 00 LD1 (single structure) — 32-bit,
register offset

1 0 != 11111 100 0 01 LD1 (single structure) — 64-bit,
register offset

1 0 != 11111 101 00 LD3 (single structure) — 32-bit,
register offset

1 0 != 11111 101 0 01 LD3 (single structure) — 64-bit,
register offset

1 0 != 11111 110 0 LD1R — register offset

1 0 != 11111 111 0 LD3R — register offset

1 0 11111 000 LD1 (single structure) — 8-bit,
immediate offset

1 0 11111 001 LD3 (single structure) — 8-bit,
immediate offset

1 0 11111 010 x0 LD1 (single structure) — 16-bit,
immediate offset

1 0 11111 011 x0 LD3 (single structure) — 16-bit,
immediate offset

1 0 11111 100 00 LD1 (single structure) — 32-bit,
immediate offset

1 0 11111 100 0 01 LD1 (single structure) — 64-bit,
immediate offset

1 0 11111 101 00 LD3 (single structure) — 32-bit,
immediate offset

1 0 11111 101 0 01 LD3 (single structure) — 64-bit,
immediate offset

1 0 11111 110 0 LD1R — immediate offset

1 0 11111 111 0 LD3R — immediate offset

1 1 010 x1 UNALLOCATED

1 1 011 x1 UNALLOCATED

1 1 100 10 UNALLOCATED

1 1 100 0 11 UNALLOCATED

1 1 100 1 x1 UNALLOCATED

1 1 101 10 UNALLOCATED

1 1 101 0 11 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1026

Chapter 4. Instruction definitions
4.5. Index by encoding

L R Rm opcode S size Instruction Details

1 1 101 1 x1 UNALLOCATED

1 1 110 1 UNALLOCATED

1 1 111 1 UNALLOCATED

1 1 != 11111 000 LD2 (single structure) — 8-bit, register
offset

1 1 != 11111 001 LD4 (single structure) — 8-bit, register
offset

1 1 != 11111 010 x0 LD2 (single structure) — 16-bit,
register offset

1 1 != 11111 011 x0 LD4 (single structure) — 16-bit,
register offset

1 1 != 11111 100 00 LD2 (single structure) — 32-bit,
register offset

1 1 != 11111 100 0 01 LD2 (single structure) — 64-bit,
register offset

1 1 != 11111 101 00 LD4 (single structure) — 32-bit,
register offset

1 1 != 11111 101 0 01 LD4 (single structure) — 64-bit,
register offset

1 1 != 11111 110 0 LD2R — register offset

1 1 != 11111 111 0 LD4R — register offset

1 1 11111 000 LD2 (single structure) — 8-bit,
immediate offset

1 1 11111 001 LD4 (single structure) — 8-bit,
immediate offset

1 1 11111 010 x0 LD2 (single structure) — 16-bit,
immediate offset

1 1 11111 011 x0 LD4 (single structure) — 16-bit,
immediate offset

1 1 11111 100 00 LD2 (single structure) — 32-bit,
immediate offset

1 1 11111 100 0 01 LD2 (single structure) — 64-bit,
immediate offset

1 1 11111 101 00 LD4 (single structure) — 32-bit,
immediate offset

1 1 11111 101 0 01 LD4 (single structure) — 64-bit,
immediate offset

1 1 11111 110 0 LD2R — immediate offset

1 1 11111 111 0 LD4R — immediate offset

Load/store exclusive

These instructions are under Loads and Stores.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1027

Chapter 4. Instruction definitions
4.5. Index by encoding

size

31 30

0 0 1 0 0 0

29 24

o2

23

L

22

o1

21

Rs

20 16

o0

15

Rt2

14 10

Rn

9 5

Rt

4 0

size o2 L o1 o0 Rt2 Instruction Details Feature

1 1 != 11111 UNALLOCATED -

0x 0 1 != 11111 UNALLOCATED -

00 0 0 0 0 STXRB -

00 0 0 0 1 STLXRB -

00 0 0 1 0 11111 CASP, CASPA, CASPAL, CASPL —
32-bit CASP

FEAT_LSE

00 0 0 1 1 11111 CASP, CASPA, CASPAL, CASPL —
32-bit CASPL

FEAT_LSE

00 0 1 0 0 LDXRB -

00 0 1 0 1 LDAXRB -

00 0 1 1 0 11111 CASP, CASPA, CASPAL, CASPL —
32-bit CASPA

FEAT_LSE

00 0 1 1 1 11111 CASP, CASPA, CASPAL, CASPL —
32-bit CASPAL

FEAT_LSE

00 1 0 0 0 STLLRB FEAT_LOR

00 1 0 0 1 STLRB -

00 1 0 1 0 11111 CASB, CASAB, CASALB, CASLB —
CASB

FEAT_LSE

00 1 0 1 1 11111 CASB, CASAB, CASALB, CASLB —
CASLB

FEAT_LSE

00 1 1 0 0 LDLARB FEAT_LOR

00 1 1 0 1 LDARB -

00 1 1 1 0 11111 CASB, CASAB, CASALB, CASLB —
CASAB

FEAT_LSE

00 1 1 1 1 11111 CASB, CASAB, CASALB, CASLB —
CASALB

FEAT_LSE

01 0 0 0 0 STXRH -

01 0 0 0 1 STLXRH -

01 0 0 1 0 11111 CASP, CASPA, CASPAL, CASPL —
64-bit CASP

FEAT_LSE

01 0 0 1 1 11111 CASP, CASPA, CASPAL, CASPL —
64-bit CASPL

FEAT_LSE

01 0 1 0 0 LDXRH -

01 0 1 0 1 LDAXRH -

01 0 1 1 0 11111 CASP, CASPA, CASPAL, CASPL —
64-bit CASPA

FEAT_LSE

01 0 1 1 1 11111 CASP, CASPA, CASPAL, CASPL —
64-bit CASPAL

FEAT_LSE

01 1 0 0 0 STLLRH FEAT_LOR

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1028

Chapter 4. Instruction definitions
4.5. Index by encoding

size o2 L o1 o0 Rt2 Instruction Details Feature

01 1 0 0 1 STLRH -

01 1 0 1 0 11111 CASH, CASAH, CASALH, CASLH
— CASH

FEAT_LSE

01 1 0 1 1 11111 CASH, CASAH, CASALH, CASLH
— CASLH

FEAT_LSE

01 1 1 0 0 LDLARH FEAT_LOR

01 1 1 0 1 LDARH -

01 1 1 1 0 11111 CASH, CASAH, CASALH, CASLH
— CASAH

FEAT_LSE

01 1 1 1 1 11111 CASH, CASAH, CASALH, CASLH
— CASALH

FEAT_LSE

10 0 0 0 0 STXR — 32-bit -

10 0 0 0 1 STLXR — 32-bit -

10 0 0 1 0 STXP — 32-bit -

10 0 0 1 1 STLXP — 32-bit -

10 0 1 0 0 LDXR — 32-bit -

10 0 1 0 1 LDAXR — 32-bit -

10 0 1 1 0 LDXP — 32-bit -

10 0 1 1 1 LDAXP — 32-bit -

10 1 0 0 0 STLLR — 32-bit FEAT_LOR

10 1 0 0 1 STLR — 32-bit -

10 1 0 1 0 11111 CAS, CASA, CASAL, CASL —
32-bit CAS

FEAT_LSE

10 1 0 1 1 11111 CAS, CASA, CASAL, CASL —
32-bit CASL

FEAT_LSE

10 1 1 0 0 LDLAR — 32-bit FEAT_LOR

10 1 1 0 1 LDAR — 32-bit -

10 1 1 1 0 11111 CAS, CASA, CASAL, CASL —
32-bit CASA

FEAT_LSE

10 1 1 1 1 11111 CAS, CASA, CASAL, CASL —
32-bit CASAL

FEAT_LSE

11 0 0 0 0 STXR — 64-bit -

11 0 0 0 1 STLXR — 64-bit -

11 0 0 1 0 STXP — 64-bit -

11 0 0 1 1 STLXP — 64-bit -

11 0 1 0 0 LDXR — 64-bit -

11 0 1 0 1 LDAXR — 64-bit -

11 0 1 1 0 LDXP — 64-bit -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1029

Chapter 4. Instruction definitions
4.5. Index by encoding

size o2 L o1 o0 Rt2 Instruction Details Feature

11 0 1 1 1 LDAXP — 64-bit -

11 1 0 0 0 STLLR — 64-bit FEAT_LOR

11 1 0 0 1 STLR — 64-bit -

11 1 0 1 0 11111 CAS, CASA, CASAL, CASL —
64-bit CAS

FEAT_LSE

11 1 0 1 1 11111 CAS, CASA, CASAL, CASL —
64-bit CASL

FEAT_LSE

11 1 1 0 0 LDLAR — 64-bit FEAT_LOR

11 1 1 0 1 LDAR — 64-bit -

11 1 1 1 0 11111 CAS, CASA, CASAL, CASL —
64-bit CASA

FEAT_LSE

11 1 1 1 1 11111 CAS, CASA, CASAL, CASL —
64-bit CASAL

FEAT_LSE

Load register (literal)

These instructions are under Loads and Stores.

opc

31 30

0 1 1

29 27

V

26

0 0

25 24

imm19

23 5

Rt

4 0

opc V Instruction Details

00 0 LDR (literal) — 32-bit

00 1 LDR (literal, SIMD&FP) — 32-bit

01 0 LDR (literal) — 64-bit

01 1 LDR (literal, SIMD&FP) — 64-bit

10 0 LDRSW (literal)

10 1 LDR (literal, SIMD&FP) — 128-bit

11 0 PRFM (literal)

11 1 UNALLOCATED

Load/store no-allocate pair (offset)

These instructions are under Loads and Stores.

opc

31 30

1 0 1

29 27

V

26

0 0 0

25 23

L

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc V L Instruction Details

00 0 0 STNP — 32-bit

00 0 1 LDNP — 32-bit

00 1 0 STNP (SIMD&FP) — 32-bit

00 1 1 LDNP (SIMD&FP) — 32-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1030

Chapter 4. Instruction definitions
4.5. Index by encoding

opc V L Instruction Details

01 0 UNALLOCATED

01 1 0 STNP (SIMD&FP) — 64-bit

01 1 1 LDNP (SIMD&FP) — 64-bit

10 0 0 STNP — 64-bit

10 0 1 LDNP — 64-bit

10 1 0 STNP (SIMD&FP) — 128-bit

10 1 1 LDNP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register pair (post-indexed)

These instructions are under Loads and Stores.

opc

31 30

1 0 1

29 27

V

26

0 0 1

25 23

L

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc V L Instruction Details

00 0 0 STP — 32-bit

00 0 1 LDP — 32-bit

00 1 0 STP (SIMD&FP) — 32-bit

00 1 1 LDP (SIMD&FP) — 32-bit

01 0 1 LDPSW

01 1 0 STP (SIMD&FP) — 64-bit

01 1 1 LDP (SIMD&FP) — 64-bit

10 0 0 STP — 64-bit

10 0 1 LDP — 64-bit

10 1 0 STP (SIMD&FP) — 128-bit

10 1 1 LDP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register pair (offset)

These instructions are under Loads and Stores.

opc

31 30

1 0 1

29 27

V

26

0 1 0

25 23

L

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc V L Instruction Details

00 0 0 STP — 32-bit

00 0 1 LDP — 32-bit

00 1 0 STP (SIMD&FP) — 32-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1031

Chapter 4. Instruction definitions
4.5. Index by encoding

opc V L Instruction Details

00 1 1 LDP (SIMD&FP) — 32-bit

01 0 1 LDPSW

01 1 0 STP (SIMD&FP) — 64-bit

01 1 1 LDP (SIMD&FP) — 64-bit

10 0 0 STP — 64-bit

10 0 1 LDP — 64-bit

10 1 0 STP (SIMD&FP) — 128-bit

10 1 1 LDP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register pair (pre-indexed)

These instructions are under Loads and Stores.

opc

31 30

1 0 1

29 27

V

26

0 1 1

25 23

L

22

imm7

21 15

Rt2

14 10

Rn

9 5

Rt

4 0

opc V L Instruction Details

00 0 0 STP — 32-bit

00 0 1 LDP — 32-bit

00 1 0 STP (SIMD&FP) — 32-bit

00 1 1 LDP (SIMD&FP) — 32-bit

01 0 1 LDPSW

01 1 0 STP (SIMD&FP) — 64-bit

01 1 1 LDP (SIMD&FP) — 64-bit

10 0 0 STP — 64-bit

10 0 1 LDP — 64-bit

10 1 0 STP (SIMD&FP) — 128-bit

10 1 1 LDP (SIMD&FP) — 128-bit

11 UNALLOCATED

Load/store register (unscaled immediate)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

opc

23 22

0

21

imm9

20 12

0 0

11 10

Rn

9 5

Rt

4 0

size V opc Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STURB

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1032

Chapter 4. Instruction definitions
4.5. Index by encoding

size V opc Instruction Details

00 0 01 LDURB

00 0 10 LDURSB — 64-bit

00 0 11 LDURSB — 32-bit

00 1 00 STUR (SIMD&FP) — 8-bit

00 1 01 LDUR (SIMD&FP) — 8-bit

00 1 10 STUR (SIMD&FP) — 128-bit

00 1 11 LDUR (SIMD&FP) — 128-bit

01 0 00 STURH

01 0 01 LDURH

01 0 10 LDURSH — 64-bit

01 0 11 LDURSH — 32-bit

01 1 00 STUR (SIMD&FP) — 16-bit

01 1 01 LDUR (SIMD&FP) — 16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STUR — 32-bit

10 0 01 LDUR — 32-bit

10 0 10 LDURSW

10 1 00 STUR (SIMD&FP) — 32-bit

10 1 01 LDUR (SIMD&FP) — 32-bit

11 0 00 STUR — 64-bit

11 0 01 LDUR — 64-bit

11 0 10 PRFUM

11 1 00 STUR (SIMD&FP) — 64-bit

11 1 01 LDUR (SIMD&FP) — 64-bit

Load/store register (immediate post-indexed)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

opc

23 22

0

21

imm9

20 12

0 1

11 10

Rn

9 5

Rt

4 0

size V opc Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) — 64-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1033

Chapter 4. Instruction definitions
4.5. Index by encoding

size V opc Instruction Details

00 0 11 LDRSB (immediate) — 32-bit

00 1 00 STR (immediate, SIMD&FP) — 8-bit

00 1 01 LDR (immediate, SIMD&FP) — 8-bit

00 1 10 STR (immediate, SIMD&FP) —
128-bit

00 1 11 LDR (immediate, SIMD&FP) —
128-bit

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) — 64-bit

01 0 11 LDRSH (immediate) — 32-bit

01 1 00 STR (immediate, SIMD&FP) —
16-bit

01 1 01 LDR (immediate, SIMD&FP) —
16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (immediate) — 32-bit

10 0 01 LDR (immediate) — 32-bit

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) —
32-bit

10 1 01 LDR (immediate, SIMD&FP) —
32-bit

11 0 00 STR (immediate) — 64-bit

11 0 01 LDR (immediate) — 64-bit

11 0 10 UNALLOCATED

11 1 00 STR (immediate, SIMD&FP) —
64-bit

11 1 01 LDR (immediate, SIMD&FP) —
64-bit

Load/store register (unprivileged)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

opc

23 22

0

21

imm9

20 12

1 0

11 10

Rn

9 5

Rt

4 0

size V opc Instruction Details

1 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1034

Chapter 4. Instruction definitions
4.5. Index by encoding

size V opc Instruction Details

00 0 00 STTRB

00 0 01 LDTRB

00 0 10 LDTRSB — 64-bit

00 0 11 LDTRSB — 32-bit

01 0 00 STTRH

01 0 01 LDTRH

01 0 10 LDTRSH — 64-bit

01 0 11 LDTRSH — 32-bit

1x 0 11 UNALLOCATED

10 0 00 STTR — 32-bit

10 0 01 LDTR — 32-bit

10 0 10 LDTRSW

11 0 00 STTR — 64-bit

11 0 01 LDTR — 64-bit

11 0 10 UNALLOCATED

Load/store register (immediate pre-indexed)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

opc

23 22

0

21

imm9

20 12

1 1

11 10

Rn

9 5

Rt

4 0

size V opc Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) — 64-bit

00 0 11 LDRSB (immediate) — 32-bit

00 1 00 STR (immediate, SIMD&FP) — 8-bit

00 1 01 LDR (immediate, SIMD&FP) — 8-bit

00 1 10 STR (immediate, SIMD&FP) —
128-bit

00 1 11 LDR (immediate, SIMD&FP) —
128-bit

01 0 00 STRH (immediate)

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) — 64-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1035

Chapter 4. Instruction definitions
4.5. Index by encoding

size V opc Instruction Details

01 0 11 LDRSH (immediate) — 32-bit

01 1 00 STR (immediate, SIMD&FP) —
16-bit

01 1 01 LDR (immediate, SIMD&FP) —
16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (immediate) — 32-bit

10 0 01 LDR (immediate) — 32-bit

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) —
32-bit

10 1 01 LDR (immediate, SIMD&FP) —
32-bit

11 0 00 STR (immediate) — 64-bit

11 0 01 LDR (immediate) — 64-bit

11 0 10 UNALLOCATED

11 1 00 STR (immediate, SIMD&FP) —
64-bit

11 1 01 LDR (immediate, SIMD&FP) —
64-bit

Atomic memory operations

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

A

23

R

22

1

21

Rs

20 16

o3

15

opc

14 12

0 0

11 10

Rn

9 5

Rt

4 0

size V A R o3 opc Instruction Details Feature

0 1 11x UNALLOCATED -

0 0 1 100 UNALLOCATED -

0 0 1 1 001 UNALLOCATED -

0 0 1 1 010 UNALLOCATED -

0 0 1 1 011 UNALLOCATED -

0 0 1 1 101 UNALLOCATED -

0 1 0 1 001 UNALLOCATED -

0 1 0 1 010 UNALLOCATED -

0 1 0 1 011 UNALLOCATED -

0 1 0 1 101 UNALLOCATED -

0 1 1 1 001 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1036

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

0 1 1 1 010 UNALLOCATED -

0 1 1 1 011 UNALLOCATED -

0 1 1 1 100 UNALLOCATED -

0 1 1 1 101 UNALLOCATED -

1 UNALLOCATED -

00 0 0 0 0 000 LDADDB, LDADDAB, LDADDALB,
LDADDLB — LDADDB

FEAT_LSE

00 0 0 0 0 001 LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB — LDCLRB

FEAT_LSE

00 0 0 0 0 010 LDEORB, LDEORAB, LDEORALB,
LDEORLB — LDEORB

FEAT_LSE

00 0 0 0 0 011 LDSETB, LDSETAB, LDSETALB,
LDSETLB — LDSETB

FEAT_LSE

00 0 0 0 0 100 LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB —
LDSMAXB

FEAT_LSE

00 0 0 0 0 101 LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB —
LDSMINB

FEAT_LSE

00 0 0 0 0 110 LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB
— LDUMAXB

FEAT_LSE

00 0 0 0 0 111 LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB —
LDUMINB

FEAT_LSE

00 0 0 0 1 000 SWPB, SWPAB, SWPALB, SWPLB
— SWPB

FEAT_LSE

00 0 0 0 1 001 UNALLOCATED -

00 0 0 0 1 010 UNALLOCATED -

00 0 0 0 1 011 UNALLOCATED -

00 0 0 0 1 101 UNALLOCATED -

00 0 0 1 0 000 LDADDB, LDADDAB, LDADDALB,
LDADDLB — LDADDLB

FEAT_LSE

00 0 0 1 0 001 LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB — LDCLRLB

FEAT_LSE

00 0 0 1 0 010 LDEORB, LDEORAB, LDEORALB,
LDEORLB — LDEORLB

FEAT_LSE

00 0 0 1 0 011 LDSETB, LDSETAB, LDSETALB,
LDSETLB — LDSETLB

FEAT_LSE

00 0 0 1 0 100 LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB —
LDSMAXLB

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1037

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

00 0 0 1 0 101 LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB —
LDSMINLB

FEAT_LSE

00 0 0 1 0 110 LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB
— LDUMAXLB

FEAT_LSE

00 0 0 1 0 111 LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB —
LDUMINLB

FEAT_LSE

00 0 0 1 1 000 SWPB, SWPAB, SWPALB, SWPLB
— SWPLB

FEAT_LSE

00 0 1 0 0 000 LDADDB, LDADDAB, LDADDALB,
LDADDLB — LDADDAB

FEAT_LSE

00 0 1 0 0 001 LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB — LDCLRAB

FEAT_LSE

00 0 1 0 0 010 LDEORB, LDEORAB, LDEORALB,
LDEORLB — LDEORAB

FEAT_LSE

00 0 1 0 0 011 LDSETB, LDSETAB, LDSETALB,
LDSETLB — LDSETAB

FEAT_LSE

00 0 1 0 0 100 LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB —
LDSMAXAB

FEAT_LSE

00 0 1 0 0 101 LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB —
LDSMINAB

FEAT_LSE

00 0 1 0 0 110 LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB
— LDUMAXAB

FEAT_LSE

00 0 1 0 0 111 LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB —
LDUMINAB

FEAT_LSE

00 0 1 0 1 000 SWPB, SWPAB, SWPALB, SWPLB
— SWPAB

FEAT_LSE

00 0 1 0 1 100 LDAPRB FEAT_LRCPC

00 0 1 1 0 000 LDADDB, LDADDAB, LDADDALB,
LDADDLB — LDADDALB

FEAT_LSE

00 0 1 1 0 001 LDCLRB, LDCLRAB, LDCLRALB,
LDCLRLB — LDCLRALB

FEAT_LSE

00 0 1 1 0 010 LDEORB, LDEORAB, LDEORALB,
LDEORLB — LDEORALB

FEAT_LSE

00 0 1 1 0 011 LDSETB, LDSETAB, LDSETALB,
LDSETLB — LDSETALB

FEAT_LSE

00 0 1 1 0 100 LDSMAXB, LDSMAXAB,
LDSMAXALB, LDSMAXLB —
LDSMAXALB

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1038

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

00 0 1 1 0 101 LDSMINB, LDSMINAB,
LDSMINALB, LDSMINLB —
LDSMINALB

FEAT_LSE

00 0 1 1 0 110 LDUMAXB, LDUMAXAB,
LDUMAXALB, LDUMAXLB
— LDUMAXALB

FEAT_LSE

00 0 1 1 0 111 LDUMINB, LDUMINAB,
LDUMINALB, LDUMINLB —
LDUMINALB

FEAT_LSE

00 0 1 1 1 000 SWPB, SWPAB, SWPALB, SWPLB
— SWPALB

FEAT_LSE

01 0 0 0 0 000 LDADDH, LDADDAH,
LDADDALH, LDADDLH —
LDADDH

FEAT_LSE

01 0 0 0 0 001 LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH — LDCLRH

FEAT_LSE

01 0 0 0 0 010 LDEORH, LDEORAH, LDEORALH,
LDEORLH — LDEORH

FEAT_LSE

01 0 0 0 0 011 LDSETH, LDSETAH, LDSETALH,
LDSETLH — LDSETH

FEAT_LSE

01 0 0 0 0 100 LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH —
LDSMAXH

FEAT_LSE

01 0 0 0 0 101 LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH —
LDSMINH

FEAT_LSE

01 0 0 0 0 110 LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH
— LDUMAXH

FEAT_LSE

01 0 0 0 0 111 LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH —
LDUMINH

FEAT_LSE

01 0 0 0 1 000 SWPH, SWPAH, SWPALH, SWPLH
— SWPH

FEAT_LSE

01 0 0 0 1 001 UNALLOCATED -

01 0 0 0 1 010 UNALLOCATED -

01 0 0 0 1 011 UNALLOCATED -

01 0 0 0 1 101 UNALLOCATED -

01 0 0 1 0 000 LDADDH, LDADDAH,
LDADDALH, LDADDLH —
LDADDLH

FEAT_LSE

01 0 0 1 0 001 LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH — LDCLRLH

FEAT_LSE

01 0 0 1 0 010 LDEORH, LDEORAH, LDEORALH,
LDEORLH — LDEORLH

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1039

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

01 0 0 1 0 011 LDSETH, LDSETAH, LDSETALH,
LDSETLH — LDSETLH

FEAT_LSE

01 0 0 1 0 100 LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH —
LDSMAXLH

FEAT_LSE

01 0 0 1 0 101 LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH —
LDSMINLH

FEAT_LSE

01 0 0 1 0 110 LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH
— LDUMAXLH

FEAT_LSE

01 0 0 1 0 111 LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH —
LDUMINLH

FEAT_LSE

01 0 0 1 1 000 SWPH, SWPAH, SWPALH, SWPLH
— SWPLH

FEAT_LSE

01 0 1 0 0 000 LDADDH, LDADDAH,
LDADDALH, LDADDLH —
LDADDAH

FEAT_LSE

01 0 1 0 0 001 LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH — LDCLRAH

FEAT_LSE

01 0 1 0 0 010 LDEORH, LDEORAH, LDEORALH,
LDEORLH — LDEORAH

FEAT_LSE

01 0 1 0 0 011 LDSETH, LDSETAH, LDSETALH,
LDSETLH — LDSETAH

FEAT_LSE

01 0 1 0 0 100 LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH —
LDSMAXAH

FEAT_LSE

01 0 1 0 0 101 LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH —
LDSMINAH

FEAT_LSE

01 0 1 0 0 110 LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH
— LDUMAXAH

FEAT_LSE

01 0 1 0 0 111 LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH —
LDUMINAH

FEAT_LSE

01 0 1 0 1 000 SWPH, SWPAH, SWPALH, SWPLH
— SWPAH

FEAT_LSE

01 0 1 0 1 100 LDAPRH FEAT_LRCPC

01 0 1 1 0 000 LDADDH, LDADDAH,
LDADDALH, LDADDLH —
LDADDALH

FEAT_LSE

01 0 1 1 0 001 LDCLRH, LDCLRAH, LDCLRALH,
LDCLRLH — LDCLRALH

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1040

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

01 0 1 1 0 010 LDEORH, LDEORAH, LDEORALH,
LDEORLH — LDEORALH

FEAT_LSE

01 0 1 1 0 011 LDSETH, LDSETAH, LDSETALH,
LDSETLH — LDSETALH

FEAT_LSE

01 0 1 1 0 100 LDSMAXH, LDSMAXAH,
LDSMAXALH, LDSMAXLH —
LDSMAXALH

FEAT_LSE

01 0 1 1 0 101 LDSMINH, LDSMINAH,
LDSMINALH, LDSMINLH —
LDSMINALH

FEAT_LSE

01 0 1 1 0 110 LDUMAXH, LDUMAXAH,
LDUMAXALH, LDUMAXLH
— LDUMAXALH

FEAT_LSE

01 0 1 1 0 111 LDUMINH, LDUMINAH,
LDUMINALH, LDUMINLH —
LDUMINALH

FEAT_LSE

01 0 1 1 1 000 SWPH, SWPAH, SWPALH, SWPLH
— SWPALH

FEAT_LSE

10 0 0 0 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 32-bit LDADD

FEAT_LSE

10 0 0 0 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 32-bit LDCLR

FEAT_LSE

10 0 0 0 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 32-bit LDEOR

FEAT_LSE

10 0 0 0 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 32-bit LDSET

FEAT_LSE

10 0 0 0 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 32-bit
LDSMAX

FEAT_LSE

10 0 0 0 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 32-bit LDSMIN

FEAT_LSE

10 0 0 0 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
32-bit LDUMAX

FEAT_LSE

10 0 0 0 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 32-bit LDUMIN

FEAT_LSE

10 0 0 0 1 000 SWP, SWPA, SWPAL, SWPL —
32-bit SWP

FEAT_LSE

10 0 0 0 1 001 UNALLOCATED -

10 0 0 0 1 010 UNALLOCATED -

10 0 0 0 1 011 UNALLOCATED -

10 0 0 0 1 101 UNALLOCATED -

10 0 0 1 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 32-bit LDADDL

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1041

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

10 0 0 1 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 32-bit LDCLRL

FEAT_LSE

10 0 0 1 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 32-bit LDEORL

FEAT_LSE

10 0 0 1 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 32-bit LDSETL

FEAT_LSE

10 0 0 1 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 32-bit
LDSMAXL

FEAT_LSE

10 0 0 1 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 32-bit LDSMINL

FEAT_LSE

10 0 0 1 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
32-bit LDUMAXL

FEAT_LSE

10 0 0 1 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 32-bit LDUMINL

FEAT_LSE

10 0 0 1 1 000 SWP, SWPA, SWPAL, SWPL —
32-bit SWPL

FEAT_LSE

10 0 1 0 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 32-bit LDADDA

FEAT_LSE

10 0 1 0 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 32-bit LDCLRA

FEAT_LSE

10 0 1 0 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 32-bit LDEORA

FEAT_LSE

10 0 1 0 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 32-bit LDSETA

FEAT_LSE

10 0 1 0 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 32-bit
LDSMAXA

FEAT_LSE

10 0 1 0 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 32-bit LDSMINA

FEAT_LSE

10 0 1 0 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
32-bit LDUMAXA

FEAT_LSE

10 0 1 0 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 32-bit LDUMINA

FEAT_LSE

10 0 1 0 1 000 SWP, SWPA, SWPAL, SWPL —
32-bit SWPA

FEAT_LSE

10 0 1 0 1 100 LDAPR — 32-bit FEAT_LRCPC

10 0 1 1 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 32-bit LDADDAL

FEAT_LSE

10 0 1 1 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 32-bit LDCLRAL

FEAT_LSE

10 0 1 1 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 32-bit LDEORAL

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1042

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

10 0 1 1 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 32-bit LDSETAL

FEAT_LSE

10 0 1 1 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 32-bit
LDSMAXAL

FEAT_LSE

10 0 1 1 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 32-bit LDSMINAL

FEAT_LSE

10 0 1 1 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
32-bit LDUMAXAL

FEAT_LSE

10 0 1 1 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 32-bit LDUMINAL

FEAT_LSE

10 0 1 1 1 000 SWP, SWPA, SWPAL, SWPL —
32-bit SWPAL

FEAT_LSE

11 0 0 0 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 64-bit LDADD

FEAT_LSE

11 0 0 0 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 64-bit LDCLR

FEAT_LSE

11 0 0 0 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 64-bit LDEOR

FEAT_LSE

11 0 0 0 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 64-bit LDSET

FEAT_LSE

11 0 0 0 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 64-bit
LDSMAX

FEAT_LSE

11 0 0 0 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 64-bit LDSMIN

FEAT_LSE

11 0 0 0 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
64-bit LDUMAX

FEAT_LSE

11 0 0 0 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 64-bit LDUMIN

FEAT_LSE

11 0 0 0 1 000 SWP, SWPA, SWPAL, SWPL —
64-bit SWP

FEAT_LSE

11 0 0 1 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 64-bit LDADDL

FEAT_LSE

11 0 0 1 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 64-bit LDCLRL

FEAT_LSE

11 0 0 1 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 64-bit LDEORL

FEAT_LSE

11 0 0 1 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 64-bit LDSETL

FEAT_LSE

11 0 0 1 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 64-bit
LDSMAXL

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1043

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

11 0 0 1 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 64-bit LDSMINL

FEAT_LSE

11 0 0 1 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
64-bit LDUMAXL

FEAT_LSE

11 0 0 1 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 64-bit LDUMINL

FEAT_LSE

11 0 0 1 1 000 SWP, SWPA, SWPAL, SWPL —
64-bit SWPL

FEAT_LSE

11 0 1 0 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 64-bit LDADDA

FEAT_LSE

11 0 1 0 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 64-bit LDCLRA

FEAT_LSE

11 0 1 0 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 64-bit LDEORA

FEAT_LSE

11 0 1 0 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 64-bit LDSETA

FEAT_LSE

11 0 1 0 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 64-bit
LDSMAXA

FEAT_LSE

11 0 1 0 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 64-bit LDSMINA

FEAT_LSE

11 0 1 0 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
64-bit LDUMAXA

FEAT_LSE

11 0 1 0 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 64-bit LDUMINA

FEAT_LSE

11 0 1 0 1 000 SWP, SWPA, SWPAL, SWPL —
64-bit SWPA

FEAT_LSE

11 0 1 0 1 100 LDAPR — 64-bit FEAT_LRCPC

11 0 1 1 0 000 LDADD, LDADDA, LDADDAL,
LDADDL — 64-bit LDADDAL

FEAT_LSE

11 0 1 1 0 001 LDCLR, LDCLRA, LDCLRAL,
LDCLRL — 64-bit LDCLRAL

FEAT_LSE

11 0 1 1 0 010 LDEOR, LDEORA, LDEORAL,
LDEORL — 64-bit LDEORAL

FEAT_LSE

11 0 1 1 0 011 LDSET, LDSETA, LDSETAL,
LDSETL — 64-bit LDSETAL

FEAT_LSE

11 0 1 1 0 100 LDSMAX, LDSMAXA,
LDSMAXAL, LDSMAXL — 64-bit
LDSMAXAL

FEAT_LSE

11 0 1 1 0 101 LDSMIN, LDSMINA, LDSMINAL,
LDSMINL — 64-bit LDSMINAL

FEAT_LSE

11 0 1 1 0 110 LDUMAX, LDUMAXA,
LDUMAXAL, LDUMAXL —
64-bit LDUMAXAL

FEAT_LSE

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1044

Chapter 4. Instruction definitions
4.5. Index by encoding

size V A R o3 opc Instruction Details Feature

11 0 1 1 0 111 LDUMIN, LDUMINA, LDUMINAL,
LDUMINL — 64-bit LDUMINAL

FEAT_LSE

11 0 1 1 1 000 SWP, SWPA, SWPAL, SWPL —
64-bit SWPAL

FEAT_LSE

Load/store register (register offset)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

opc

23 22

1

21

Rm

20 16

option

15 13

S

12

1 0

11 10

Rn

9 5

Rt

4 0

size V opc option Instruction Details

x1 1 1x UNALLOCATED

00 0 00 != 011 STRB (register) — extended register

00 0 00 011 STRB (register) — shifted register

00 0 01 != 011 LDRB (register) — extended register

00 0 01 011 LDRB (register) — shifted register

00 0 10 != 011 LDRSB (register) — 64-bit with
extended register offset

00 0 10 011 LDRSB (register) — 64-bit with
shifted register offset

00 0 11 != 011 LDRSB (register) — 32-bit with
extended register offset

00 0 11 011 LDRSB (register) — 32-bit with
shifted register offset

00 1 00 != 011 STR (register, SIMD&FP)

00 1 00 011 STR (register, SIMD&FP)

00 1 01 != 011 LDR (register, SIMD&FP)

00 1 01 011 LDR (register, SIMD&FP)

00 1 10 STR (register, SIMD&FP)

00 1 11 LDR (register, SIMD&FP)

01 0 00 STRH (register)

01 0 01 LDRH (register)

01 0 10 LDRSH (register) — 64-bit

01 0 11 LDRSH (register) — 32-bit

01 1 00 STR (register, SIMD&FP)

01 1 01 LDR (register, SIMD&FP)

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1045

Chapter 4. Instruction definitions
4.5. Index by encoding

size V opc option Instruction Details

10 0 00 STR (register) — 32-bit

10 0 01 LDR (register) — 32-bit

10 0 10 LDRSW (register)

10 1 00 STR (register, SIMD&FP)

10 1 01 LDR (register, SIMD&FP)

11 0 00 STR (register) — 64-bit

11 0 01 LDR (register) — 64-bit

11 0 10 PRFM (register)

11 1 00 STR (register, SIMD&FP)

11 1 01 LDR (register, SIMD&FP)

Load/store register (pac)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 0

25 24

M

23

S

22

1

21

imm9

20 12

W

11

1

10

Rn

9 5

Rt

4 0

size V Instruction Details

!= 11 UNALLOCATED

11 1 UNALLOCATED

Load/store register (unsigned immediate)

These instructions are under Loads and Stores.

size

31 30

1 1 1

29 27

V

26

0 1

25 24

opc

23 22

imm12

21 10

Rn

9 5

Rt

4 0

size V opc Instruction Details

x1 1 1x UNALLOCATED

00 0 00 STRB (immediate)

00 0 01 LDRB (immediate)

00 0 10 LDRSB (immediate) — 64-bit

00 0 11 LDRSB (immediate) — 32-bit

00 1 00 STR (immediate, SIMD&FP) — 8-bit

00 1 01 LDR (immediate, SIMD&FP) — 8-bit

00 1 10 STR (immediate, SIMD&FP) —
128-bit

00 1 11 LDR (immediate, SIMD&FP) —
128-bit

01 0 00 STRH (immediate)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1046

Chapter 4. Instruction definitions
4.5. Index by encoding

size V opc Instruction Details

01 0 01 LDRH (immediate)

01 0 10 LDRSH (immediate) — 64-bit

01 0 11 LDRSH (immediate) — 32-bit

01 1 00 STR (immediate, SIMD&FP) —
16-bit

01 1 01 LDR (immediate, SIMD&FP) —
16-bit

1x 0 11 UNALLOCATED

1x 1 1x UNALLOCATED

10 0 00 STR (immediate) — 32-bit

10 0 01 LDR (immediate) — 32-bit

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) —
32-bit

10 1 01 LDR (immediate, SIMD&FP) —
32-bit

11 0 00 STR (immediate) — 64-bit

11 0 01 LDR (immediate) — 64-bit

11 0 10 PRFM (immediate)

11 1 00 STR (immediate, SIMD&FP) —
64-bit

11 1 01 LDR (immediate, SIMD&FP) —
64-bit

Data Processing – Register

These instructions are under the top-level.

31

op0

30 29

op1

28

1 0 1

27 25

op2

24 21 20 16

op3

15 10 9 0

op0 op1 op2 op3 Instruction details

0 1 0110 Data-processing (2 source)

1 1 0110 Data-processing (1 source)

0 0xxx Logical (shifted register)

0 1xx0 Add/subtract (shifted register)

0 1xx1 Add/subtract (extended register)

1 0000 000000 Add/subtract (with carry)

1 0000 000011 UNALLOCATED

1 0000 0001xx UNALLOCATED

1 0000 001xxx UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1047

Chapter 4. Instruction definitions
4.5. Index by encoding

op0 op1 op2 op3 Instruction details

1 0000 x00001 Rotate right into flags

1 0000 xx0010 Evaluate into flags

1 0010 xxxx0x Conditional compare (register)

1 0010 xxxx1x Conditional compare (immediate)

1 0100 Conditional select

1 0xx1 UNALLOCATED

1 1xxx Data-processing (3 source)

Data-processing (2 source)

These instructions are under Data Processing – Register.

sf

31

0

30

S

29

1 1 0 1 0 1 1 0

28 21

Rm

20 16

opcode

15 10

Rn

9 5

Rd

4 0

sf S opcode Instruction Details

000001 UNALLOCATED

011xxx UNALLOCATED

1xxxxx UNALLOCATED

0 00011x UNALLOCATED

0 001101 UNALLOCATED

0 00111x UNALLOCATED

1 00001x UNALLOCATED

1 0001xx UNALLOCATED

1 001xxx UNALLOCATED

1 01xxxx UNALLOCATED

0 000000 UNALLOCATED

0 0 000010 UDIV — 32-bit

0 0 000011 SDIV — 32-bit

0 0 00010x UNALLOCATED

0 0 001000 LSLV — 32-bit

0 0 001001 LSRV — 32-bit

0 0 001010 ASRV — 32-bit

0 0 001011 RORV — 32-bit

0 0 001100 UNALLOCATED

0 0 010x11 UNALLOCATED

0 0 010000 CRC32B, CRC32H, CRC32W,
CRC32X — CRC32B

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1048

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S opcode Instruction Details

0 0 010001 CRC32B, CRC32H, CRC32W,
CRC32X — CRC32H

0 0 010010 CRC32B, CRC32H, CRC32W,
CRC32X — CRC32W

0 0 010100 CRC32CB, CRC32CH, CRC32CW,
CRC32CX — CRC32CB

0 0 010101 CRC32CB, CRC32CH, CRC32CW,
CRC32CX — CRC32CH

0 0 010110 CRC32CB, CRC32CH, CRC32CW,
CRC32CX — CRC32CW

1 0 000010 UDIV — 64-bit

1 0 000011 SDIV — 64-bit

1 0 001000 LSLV — 64-bit

1 0 001001 LSRV — 64-bit

1 0 001010 ASRV — 64-bit

1 0 001011 RORV — 64-bit

1 0 010xx0 UNALLOCATED

1 0 010x0x UNALLOCATED

1 0 010011 CRC32B, CRC32H, CRC32W,
CRC32X — CRC32X

1 0 010111 CRC32CB, CRC32CH, CRC32CW,
CRC32CX — CRC32CX

Data-processing (1 source)

These instructions are under Data Processing – Register.

sf

31

1

30

S

29

1 1 0 1 0 1 1 0

28 21

opcode2

20 16

opcode

15 10

Rn

9 5

Rd

4 0

sf S opcode2 opcode Instruction Details

1xxxxx UNALLOCATED

xxx1x UNALLOCATED

xx1xx UNALLOCATED

x1xxx UNALLOCATED

1xxxx UNALLOCATED

0 00000 00011x UNALLOCATED

0 00000 001xxx UNALLOCATED

0 00000 01xxxx UNALLOCATED

1 UNALLOCATED

0 00001 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1049

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S opcode2 opcode Instruction Details

0 0 00000 000000 RBIT — 32-bit

0 0 00000 000001 REV16 — 32-bit

0 0 00000 000010 REV — 32-bit

0 0 00000 000011 UNALLOCATED

0 0 00000 000100 CLZ — 32-bit

0 0 00000 000101 CLS — 32-bit

1 0 00000 000000 RBIT — 64-bit

1 0 00000 000001 REV16 — 64-bit

1 0 00000 000010 REV32

1 0 00000 000011 REV — 64-bit

1 0 00000 000100 CLZ — 64-bit

1 0 00000 000101 CLS — 64-bit

1 0 00001 01001x UNALLOCATED

1 0 00001 0101xx UNALLOCATED

1 0 00001 011xxx UNALLOCATED

Logical (shifted register)

These instructions are under Data Processing – Register.

sf

31

opc

30 29

0 1 0 1 0

28 24

shift

23 22

N

21

Rm

20 16

imm6

15 10

Rn

9 5

Rd

4 0

sf opc N imm6 Instruction Details

0 1xxxxx UNALLOCATED

0 00 0 AND (shifted register) — 32-bit

0 00 1 BIC (shifted register) — 32-bit

0 01 0 ORR (shifted register) — 32-bit

0 01 1 ORN (shifted register) — 32-bit

0 10 0 EOR (shifted register) — 32-bit

0 10 1 EON (shifted register) — 32-bit

0 11 0 ANDS (shifted register) — 32-bit

0 11 1 BICS (shifted register) — 32-bit

1 00 0 AND (shifted register) — 64-bit

1 00 1 BIC (shifted register) — 64-bit

1 01 0 ORR (shifted register) — 64-bit

1 01 1 ORN (shifted register) — 64-bit

1 10 0 EOR (shifted register) — 64-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1050

Chapter 4. Instruction definitions
4.5. Index by encoding

sf opc N imm6 Instruction Details

1 10 1 EON (shifted register) — 64-bit

1 11 0 ANDS (shifted register) — 64-bit

1 11 1 BICS (shifted register) — 64-bit

Add/subtract (shifted register)

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

0 1 0 1 1

28 24

shift

23 22

0

21

Rm

20 16

imm6

15 10

Rn

9 5

Rd

4 0

sf op S shift imm6 Instruction Details

11 UNALLOCATED

0 1xxxxx UNALLOCATED

0 0 0 ADD (shifted register) — 32-bit

0 0 1 ADDS (shifted register) — 32-bit

0 1 0 SUB (shifted register) — 32-bit

0 1 1 SUBS (shifted register) — 32-bit

1 0 0 ADD (shifted register) — 64-bit

1 0 1 ADDS (shifted register) — 64-bit

1 1 0 SUB (shifted register) — 64-bit

1 1 1 SUBS (shifted register) — 64-bit

Add/subtract (extended register)

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

0 1 0 1 1

28 24

opt

23 22

1

21

Rm

20 16

option

15 13

imm3

12 10

Rn

9 5

Rd

4 0

sf op S opt imm3 Instruction Details

1x1 UNALLOCATED

11x UNALLOCATED

x1 UNALLOCATED

1x UNALLOCATED

0 0 0 00 ADD (extended register) — 32-bit

0 0 1 00 ADDS (extended register) — 32-bit

0 1 0 00 SUB (extended register) — 32-bit

0 1 1 00 SUBS (extended register) — 32-bit

1 0 0 00 ADD (extended register) — 64-bit

1 0 1 00 ADDS (extended register) — 64-bit

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1051

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op S opt imm3 Instruction Details

1 1 0 00 SUB (extended register) — 64-bit

1 1 1 00 SUBS (extended register) — 64-bit

Add/subtract (with carry)

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

1 1 0 1 0 0 0 0

28 21

Rm

20 16

0 0 0 0 0 0

15 10

Rn

9 5

Rd

4 0

sf op S Instruction Details

0 0 0 ADC — 32-bit

0 0 1 ADCS — 32-bit

0 1 0 SBC — 32-bit

0 1 1 SBCS — 32-bit

1 0 0 ADC — 64-bit

1 0 1 ADCS — 64-bit

1 1 0 SBC — 64-bit

1 1 1 SBCS — 64-bit

Rotate right into flags

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

1 1 0 1 0 0 0 0

28 21

imm6

20 15

0 0 0 0 1

14 10

Rn

9 5

o2

4

mask

3 0

sf op S o2 Instruction Details

0 UNALLOCATED

1 0 0 UNALLOCATED

1 0 1 1 UNALLOCATED

1 1 UNALLOCATED

Evaluate into flags

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

1 1 0 1 0 0 0 0

28 21

opcode2

20 15

sz

14

0 0 1 0

13 10

Rn

9 5

o3

4

mask

3 0

sf op S opcode2 o3 mask Instruction Details

0 0 0 UNALLOCATED

0 0 1 != 000000 UNALLOCATED

0 0 1 000000 0 != 1101 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1052

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op S opcode2 o3 mask Instruction Details

0 0 1 000000 1 UNALLOCATED

0 1 UNALLOCATED

1 UNALLOCATED

Conditional compare (register)

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

1 1 0 1 0 0 1 0

28 21

Rm

20 16

cond

15 12

0

11

o2

10

Rn

9 5

o3

4

nzcv

3 0

sf op S o2 o3 Instruction Details

1 UNALLOCATED

1 UNALLOCATED

0 UNALLOCATED

0 0 1 0 0 CCMN (register) — 32-bit

0 1 1 0 0 CCMP (register) — 32-bit

1 0 1 0 0 CCMN (register) — 64-bit

1 1 1 0 0 CCMP (register) — 64-bit

Conditional compare (immediate)

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

1 1 0 1 0 0 1 0

28 21

imm5

20 16

cond

15 12

1

11

o2

10

Rn

9 5

o3

4

nzcv

3 0

sf op S o2 o3 Instruction Details

1 UNALLOCATED

1 UNALLOCATED

0 UNALLOCATED

0 0 1 0 0 CCMN (immediate) — 32-bit

0 1 1 0 0 CCMP (immediate) — 32-bit

1 0 1 0 0 CCMN (immediate) — 64-bit

1 1 1 0 0 CCMP (immediate) — 64-bit

Conditional select

These instructions are under Data Processing – Register.

sf

31

op

30

S

29

1 1 0 1 0 1 0 0

28 21

Rm

20 16

cond

15 12

op2

11 10

Rn

9 5

Rd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1053

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op S op2 Instruction Details

1x UNALLOCATED

1 UNALLOCATED

0 0 0 00 CSEL — 32-bit

0 0 0 01 CSINC — 32-bit

0 1 0 00 CSINV — 32-bit

0 1 0 01 CSNEG — 32-bit

1 0 0 00 CSEL — 64-bit

1 0 0 01 CSINC — 64-bit

1 1 0 00 CSINV — 64-bit

1 1 0 01 CSNEG — 64-bit

Data-processing (3 source)

These instructions are under Data Processing – Register.

sf

31

op54

30 29

1 1 0 1 1

28 24

op31

23 21

Rm

20 16

o0

15

Ra

14 10

Rn

9 5

Rd

4 0

sf op54 op31 o0 Instruction Details

00 010 1 UNALLOCATED

00 011 UNALLOCATED

00 100 UNALLOCATED

00 110 1 UNALLOCATED

00 111 UNALLOCATED

01 UNALLOCATED

1x UNALLOCATED

0 00 000 0 MADD — 32-bit

0 00 000 1 MSUB — 32-bit

0 00 001 0 UNALLOCATED

0 00 001 1 UNALLOCATED

0 00 010 0 UNALLOCATED

0 00 101 0 UNALLOCATED

0 00 101 1 UNALLOCATED

0 00 110 0 UNALLOCATED

1 00 000 0 MADD — 64-bit

1 00 000 1 MSUB — 64-bit

1 00 001 0 SMADDL

1 00 001 1 SMSUBL

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1054

Chapter 4. Instruction definitions
4.5. Index by encoding

sf op54 op31 o0 Instruction Details

1 00 010 0 SMULH

1 00 101 0 UMADDL

1 00 101 1 UMSUBL

1 00 110 0 UMULH

Data Processing – Scalar Floating-Point and Advanced SIMD

These instructions are under the top-level.

op0

31 28

1 1 1

27 25

op1

24 23

op2

22 19

op3

18 10 9 0

op0 op1 op2 op3 Instruction details Architecture version

0000 0x x101 00xxxxx10 UNALLOCATED -

0010 0x x101 00xxxxx10 UNALLOCATED -

0100 0x x101 00xxxxx10 Cryptographic AES -

0101 0x x0xx xxx0xxx00 Cryptographic three-register SHA -

0101 0x x0xx xxx0xxx10 UNALLOCATED -

0101 0x x101 00xxxxx10 Cryptographic two-register SHA -

0110 0x x101 00xxxxx10 UNALLOCATED -

0111 0x x0xx xxx0xxxx0 UNALLOCATED -

0111 0x x101 00xxxxx10 UNALLOCATED -

01x1 00 00xx xxx0xxxx1 Advanced SIMD scalar copy -

01x1 01 00xx xxx0xxxx1 UNALLOCATED -

01x1 0x 0111 00xxxxx10 UNALLOCATED -

01x1 0x 10xx xxx00xxx1 Advanced SIMD scalar three same
FP16

-

01x1 0x 10xx xxx01xxx1 UNALLOCATED -

01x1 0x 1111 00xxxxx10 Advanced SIMD scalar two-register
miscellaneous FP16

-

01x1 0x x0xx xxx1xxxx0 UNALLOCATED -

01x1 0x x0xx xxx1xxxx1 Advanced SIMD scalar three same
extra

-

01x1 0x x100 00xxxxx10 Advanced SIMD scalar two-register
miscellaneous

-

01x1 0x x110 00xxxxx10 Advanced SIMD scalar pairwise -

01x1 0x x1xx 1xxxxxx10 UNALLOCATED -

01x1 0x x1xx x1xxxxx10 UNALLOCATED -

01x1 0x x1xx xxxxxxx00 Advanced SIMD scalar three different -

01x1 0x x1xx xxxxxxxx1 Advanced SIMD scalar three same -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1055

Chapter 4. Instruction definitions
4.5. Index by encoding

op0 op1 op2 op3 Instruction details Architecture version

01x1 10 xxxxxxxx1 Advanced SIMD scalar shift by
immediate

-

01x1 11 xxxxxxxx1 UNALLOCATED -

01x1 1x xxxxxxxx0 Advanced SIMD scalar x indexed
element

-

0x00 0x x0xx xxx0xxx00 Advanced SIMD table lookup -

0x00 0x x0xx xxx0xxx10 Advanced SIMD permute -

0x10 0x x0xx xxx0xxxx0 Advanced SIMD extract -

0xx0 00 00xx xxx0xxxx1 Advanced SIMD copy -

0xx0 01 00xx xxx0xxxx1 UNALLOCATED -

0xx0 0x 0111 00xxxxx10 UNALLOCATED -

0xx0 0x 10xx xxx00xxx1 Advanced SIMD three same (FP16) -

0xx0 0x 10xx xxx01xxx1 UNALLOCATED -

0xx0 0x 1111 00xxxxx10 Advanced SIMD two-register
miscellaneous (FP16)

-

0xx0 0x x0xx xxx1xxxx0 UNALLOCATED -

0xx0 0x x0xx xxx1xxxx1 Advanced SIMD three-register
extension

-

0xx0 0x x100 00xxxxx10 Advanced SIMD two-register
miscellaneous

-

0xx0 0x x110 00xxxxx10 Advanced SIMD across lanes -

0xx0 0x x1xx 1xxxxxx10 UNALLOCATED -

0xx0 0x x1xx x1xxxxx10 UNALLOCATED -

0xx0 0x x1xx xxxxxxx00 Advanced SIMD three different -

0xx0 0x x1xx xxxxxxxx1 Advanced SIMD three same -

0xx0 10 0000 xxxxxxxx1 Advanced SIMD modified immediate -

0xx0 10 != 0000 xxxxxxxx1 Advanced SIMD shift by immediate -

0xx0 11 xxxxxxxx1 UNALLOCATED -

0xx0 1x xxxxxxxx0 Advanced SIMD vector x indexed
element

-

1100 00 10xx xxx10xxxx Cryptographic three-register, imm2 -

1100 00 11xx xxx1x00xx Cryptographic three-register SHA 512 -

1100 00 xxx0xxxxx Cryptographic four-register -

1100 01 00xx XAR FEAT_SHA3

1100 01 1000 0001000xx Cryptographic two-register SHA 512 -

11x1 UNALLOCATED -

1xx0 1x UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1056

Chapter 4. Instruction definitions
4.5. Index by encoding

op0 op1 op2 op3 Instruction details Architecture version

x0x1 0x x0xx Conversion between floating-point and
fixed-point

-

x0x1 0x x1xx xxx000000 Conversion between floating-point and
integer

-

x0x1 0x x1xx xxx100000 UNALLOCATED -

x0x1 0x x1xx xxxx10000 Floating-point data-processing (1
source)

-

x0x1 0x x1xx xxxxx1000 Floating-point compare -

x0x1 0x x1xx xxxxxx100 Floating-point immediate -

x0x1 0x x1xx xxxxxxx01 Floating-point conditional compare -

x0x1 0x x1xx xxxxxxx10 Floating-point data-processing (2
source)

-

x0x1 0x x1xx xxxxxxx11 Floating-point conditional select -

x0x1 1x Floating-point data-processing (3
source)

-

Cryptographic AES

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1 0 0 1 1 1 0

31 24

size

23 22

1 0 1 0 0

21 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

size opcode Instruction Details

x1xxx UNALLOCATED

000xx UNALLOCATED

1xxxx UNALLOCATED

x1 UNALLOCATED

00 00100 AESE

00 00101 AESD

00 00110 AESMC

00 00111 AESIMC

1x UNALLOCATED

Cryptographic three-register SHA

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1 0 1 1 1 1 0

31 24

size

23 22

0

21

Rm

20 16

0

15

opcode

14 12

0 0

11 10

Rn

9 5

Rd

4 0

size opcode Instruction Details

111 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1057

Chapter 4. Instruction definitions
4.5. Index by encoding

size opcode Instruction Details

x1 UNALLOCATED

00 000 SHA1C

00 001 SHA1P

00 010 SHA1M

00 011 SHA1SU0

00 100 SHA256H

00 101 SHA256H2

00 110 SHA256SU1

1x UNALLOCATED

Cryptographic two-register SHA

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1 0 1 1 1 1 0

31 24

size

23 22

1 0 1 0 0

21 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

size opcode Instruction Details

xx1xx UNALLOCATED

x1xxx UNALLOCATED

1xxxx UNALLOCATED

x1 UNALLOCATED

00 00000 SHA1H

00 00001 SHA1SU1

00 00010 SHA256SU0

00 00011 UNALLOCATED

1x UNALLOCATED

Advanced SIMD scalar copy

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

op

29

1 1 1 1 0 0 0 0

28 21

imm5

20 16

0

15

imm4

14 11

1

10

Rn

9 5

Rd

4 0

op imm4 Instruction Details

0 xxx1 UNALLOCATED

0 xx1x UNALLOCATED

0 x1xx UNALLOCATED

0 0000 DUP (element)

0 1xxx UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1058

Chapter 4. Instruction definitions
4.5. Index by encoding

op imm4 Instruction Details

1 UNALLOCATED

Advanced SIMD scalar three same FP16

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

a

23

1 0

22 21

Rm

20 16

0 0

15 14

opcode

13 11

1

10

Rn

9 5

Rd

4 0

U a opcode Instruction Details Feature

110 UNALLOCATED -

1 011 UNALLOCATED -

0 0 011 FMULX FEAT_FP16

0 0 100 FCMEQ (register) FEAT_FP16

0 0 101 UNALLOCATED -

0 0 111 FRECPS FEAT_FP16

0 1 100 UNALLOCATED -

0 1 101 UNALLOCATED -

0 1 111 FRSQRTS FEAT_FP16

1 0 011 UNALLOCATED -

1 0 100 FCMGE (register) FEAT_FP16

1 0 101 FACGE FEAT_FP16

1 0 111 UNALLOCATED -

1 1 010 FABD FEAT_FP16

1 1 100 FCMGT (register) FEAT_FP16

1 1 101 FACGT FEAT_FP16

1 1 111 UNALLOCATED -

Advanced SIMD scalar two-register miscellaneous FP16

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

a

23

1 1 1 1 0 0

22 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

U a opcode Instruction Details Feature

00xxx UNALLOCATED -

010xx UNALLOCATED -

10xxx UNALLOCATED -

1100x UNALLOCATED -

11110 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1059

Chapter 4. Instruction definitions
4.5. Index by encoding

U a opcode Instruction Details Feature

0 011xx UNALLOCATED -

0 11111 UNALLOCATED -

1 01111 UNALLOCATED -

1 11100 UNALLOCATED -

0 0 11010 FCVTNS (vector) FEAT_FP16

0 0 11011 FCVTMS (vector) FEAT_FP16

0 0 11100 FCVTAS (vector) FEAT_FP16

0 0 11101 SCVTF (vector, integer) FEAT_FP16

0 1 01100 FCMGT (zero) FEAT_FP16

0 1 01101 FCMEQ (zero) FEAT_FP16

0 1 01110 FCMLT (zero) FEAT_FP16

0 1 11010 FCVTPS (vector) FEAT_FP16

0 1 11011 FCVTZS (vector, integer) FEAT_FP16

0 1 11101 FRECPE FEAT_FP16

0 1 11111 FRECPX FEAT_FP16

1 0 11010 FCVTNU (vector) FEAT_FP16

1 0 11011 FCVTMU (vector) FEAT_FP16

1 0 11100 FCVTAU (vector) FEAT_FP16

1 0 11101 UCVTF (vector, integer) FEAT_FP16

1 1 01100 FCMGE (zero) FEAT_FP16

1 1 01101 FCMLE (zero) FEAT_FP16

1 1 01110 UNALLOCATED -

1 1 11010 FCVTPU (vector) FEAT_FP16

1 1 11011 FCVTZU (vector, integer) FEAT_FP16

1 1 11101 FRSQRTE FEAT_FP16

1 1 11111 UNALLOCATED -

Advanced SIMD scalar three same extra

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

size

23 22

0

21

Rm

20 16

1

15

opcode

14 11

1

10

Rn

9 5

Rd

4 0

U opcode Instruction Details Feature

001x UNALLOCATED -

01xx UNALLOCATED -

1xxx UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1060

Chapter 4. Instruction definitions
4.5. Index by encoding

U opcode Instruction Details Feature

0 0000 UNALLOCATED -

0 0001 UNALLOCATED -

1 0000 SQRDMLAH (vector) FEAT_RDM

1 0001 SQRDMLSH (vector) FEAT_RDM

Advanced SIMD scalar two-register miscellaneous

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

size

23 22

1 0 0 0 0

21 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

U size opcode Instruction Details

0000x UNALLOCATED

00010 UNALLOCATED

0010x UNALLOCATED

00110 UNALLOCATED

01111 UNALLOCATED

1000x UNALLOCATED

10011 UNALLOCATED

10101 UNALLOCATED

10111 UNALLOCATED

1100x UNALLOCATED

11110 UNALLOCATED

0x 011xx UNALLOCATED

0x 11111 UNALLOCATED

1x 10110 UNALLOCATED

1x 11100 UNALLOCATED

0 00011 SUQADD

0 00111 SQABS

0 01000 CMGT (zero)

0 01001 CMEQ (zero)

0 01010 CMLT (zero)

0 01011 ABS

0 10010 UNALLOCATED

0 10100 SQXTN, SQXTN2

0 0x 10110 UNALLOCATED

0 0x 11010 FCVTNS (vector)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1061

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details

0 0x 11011 FCVTMS (vector)

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)

0 1x 01100 FCMGT (zero)

0 1x 01101 FCMEQ (zero)

0 1x 01110 FCMLT (zero)

0 1x 11010 FCVTPS (vector)

0 1x 11011 FCVTZS (vector, integer)

0 1x 11101 FRECPE

0 1x 11111 FRECPX

1 00011 USQADD

1 00111 SQNEG

1 01000 CMGE (zero)

1 01001 CMLE (zero)

1 01010 UNALLOCATED

1 01011 NEG (vector)

1 10010 SQXTUN, SQXTUN2

1 10100 UQXTN, UQXTN2

1 0x 10110 FCVTXN, FCVTXN2

1 0x 11010 FCVTNU (vector)

1 0x 11011 FCVTMU (vector)

1 0x 11100 FCVTAU (vector)

1 0x 11101 UCVTF (vector, integer)

1 1x 01100 FCMGE (zero)

1 1x 01101 FCMLE (zero)

1 1x 01110 UNALLOCATED

1 1x 11010 FCVTPU (vector)

1 1x 11011 FCVTZU (vector, integer)

1 1x 11101 FRSQRTE

1 1x 11111 UNALLOCATED

Advanced SIMD scalar pairwise

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

size

23 22

1 1 0 0 0

21 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1062

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

00xxx UNALLOCATED -

010xx UNALLOCATED -

01110 UNALLOCATED -

10xxx UNALLOCATED -

1100x UNALLOCATED -

11010 UNALLOCATED -

111xx UNALLOCATED -

1x 01101 UNALLOCATED -

0 11011 ADDP (scalar) -

0 00 01100 FMAXNMP (scalar) — half-precision FEAT_FP16

0 00 01101 FADDP (scalar) — half-precision FEAT_FP16

0 00 01111 FMAXP (scalar) — half-precision FEAT_FP16

0 01 01100 UNALLOCATED -

0 01 01101 UNALLOCATED -

0 01 01111 UNALLOCATED -

0 10 01100 FMINNMP (scalar) — half-precision FEAT_FP16

0 10 01111 FMINP (scalar) — half-precision FEAT_FP16

0 11 01100 UNALLOCATED -

0 11 01111 UNALLOCATED -

1 11011 UNALLOCATED -

1 0x 01100 FMAXNMP (scalar) —
single-precision and double-precision

-

1 0x 01101 FADDP (scalar) — single-precision
and double-precision

-

1 0x 01111 FMAXP (scalar) — single-precision
and double-precision

-

1 1x 01100 FMINNMP (scalar) —
single-precision and double-precision

-

1 1x 01111 FMINP (scalar) — single-precision
and double-precision

-

Advanced SIMD scalar three different

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

size

23 22

1

21

Rm

20 16

opcode

15 12

0 0

11 10

Rn

9 5

Rd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1063

Chapter 4. Instruction definitions
4.5. Index by encoding

U opcode Instruction Details

00xx UNALLOCATED

01xx UNALLOCATED

1000 UNALLOCATED

1010 UNALLOCATED

1100 UNALLOCATED

111x UNALLOCATED

0 1001 SQDMLAL, SQDMLAL2 (vector)

0 1011 SQDMLSL, SQDMLSL2 (vector)

0 1101 SQDMULL, SQDMULL2 (vector)

1 1001 UNALLOCATED

1 1011 UNALLOCATED

1 1101 UNALLOCATED

Advanced SIMD scalar three same

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 0

28 24

size

23 22

1

21

Rm

20 16

opcode

15 11

1

10

Rn

9 5

Rd

4 0

U size opcode Instruction Details

00000 UNALLOCATED

0001x UNALLOCATED

00100 UNALLOCATED

011xx UNALLOCATED

1001x UNALLOCATED

1x 11011 UNALLOCATED

0 00001 SQADD

0 00101 SQSUB

0 00110 CMGT (register)

0 00111 CMGE (register)

0 01000 SSHL

0 01001 SQSHL (register)

0 01010 SRSHL

0 01011 SQRSHL

0 10000 ADD (vector)

0 10001 CMTST

0 10100 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1064

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details

0 10101 UNALLOCATED

0 10110 SQDMULH (vector)

0 10111 UNALLOCATED

0 0x 11000 UNALLOCATED

0 0x 11001 UNALLOCATED

0 0x 11010 UNALLOCATED

0 0x 11011 FMULX

0 0x 11100 FCMEQ (register)

0 0x 11101 UNALLOCATED

0 0x 11110 UNALLOCATED

0 0x 11111 FRECPS

0 1x 11000 UNALLOCATED

0 1x 11001 UNALLOCATED

0 1x 11010 UNALLOCATED

0 1x 11100 UNALLOCATED

0 1x 11101 UNALLOCATED

0 1x 11110 UNALLOCATED

0 1x 11111 FRSQRTS

1 00001 UQADD

1 00101 UQSUB

1 00110 CMHI (register)

1 00111 CMHS (register)

1 01000 USHL

1 01001 UQSHL (register)

1 01010 URSHL

1 01011 UQRSHL

1 10000 SUB (vector)

1 10001 CMEQ (register)

1 10100 UNALLOCATED

1 10101 UNALLOCATED

1 10110 SQRDMULH (vector)

1 10111 UNALLOCATED

1 0x 11000 UNALLOCATED

1 0x 11001 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1065

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details

1 0x 11010 UNALLOCATED

1 0x 11011 UNALLOCATED

1 0x 11100 FCMGE (register)

1 0x 11101 FACGE

1 0x 11110 UNALLOCATED

1 0x 11111 UNALLOCATED

1 1x 11000 UNALLOCATED

1 1x 11001 UNALLOCATED

1 1x 11010 FABD

1 1x 11100 FCMGT (register)

1 1x 11101 FACGT

1 1x 11110 UNALLOCATED

1 1x 11111 UNALLOCATED

Advanced SIMD scalar shift by immediate

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 1 0

28 23

immh

22 19

immb

18 16

opcode

15 11

1

10

Rn

9 5

Rd

4 0

U immh opcode Instruction Details

!= 0000 00001 UNALLOCATED

!= 0000 00011 UNALLOCATED

!= 0000 00101 UNALLOCATED

!= 0000 00111 UNALLOCATED

!= 0000 01001 UNALLOCATED

!= 0000 01011 UNALLOCATED

!= 0000 01101 UNALLOCATED

!= 0000 01111 UNALLOCATED

!= 0000 101xx UNALLOCATED

!= 0000 110xx UNALLOCATED

!= 0000 11101 UNALLOCATED

!= 0000 11110 UNALLOCATED

0000 UNALLOCATED

0 != 0000 00000 SSHR

0 != 0000 00010 SSRA

0 != 0000 00100 SRSHR

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1066

Chapter 4. Instruction definitions
4.5. Index by encoding

U immh opcode Instruction Details

0 != 0000 00110 SRSRA

0 != 0000 01000 UNALLOCATED

0 != 0000 01010 SHL

0 != 0000 01100 UNALLOCATED

0 != 0000 01110 SQSHL (immediate)

0 != 0000 10000 UNALLOCATED

0 != 0000 10001 UNALLOCATED

0 != 0000 10010 SQSHRN, SQSHRN2

0 != 0000 10011 SQRSHRN, SQRSHRN2

0 != 0000 11100 SCVTF (vector, fixed-point)

0 != 0000 11111 FCVTZS (vector, fixed-point)

1 != 0000 00000 USHR

1 != 0000 00010 USRA

1 != 0000 00100 URSHR

1 != 0000 00110 URSRA

1 != 0000 01000 SRI

1 != 0000 01010 SLI

1 != 0000 01100 SQSHLU

1 != 0000 01110 UQSHL (immediate)

1 != 0000 10000 SQSHRUN, SQSHRUN2

1 != 0000 10001 SQRSHRUN, SQRSHRUN2

1 != 0000 10010 UQSHRN, UQSHRN2

1 != 0000 10011 UQRSHRN, UQRSHRN2

1 != 0000 11100 UCVTF (vector, fixed-point)

1 != 0000 11111 FCVTZU (vector, fixed-point)

Advanced SIMD scalar x indexed element

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0 1

31 30

U

29

1 1 1 1 1

28 24

size

23 22

L

21

M

20

Rm

19 16

opcode

15 12

H

11

0

10

Rn

9 5

Rd

4 0

U size opcode Instruction Details Feature

0000 UNALLOCATED -

0010 UNALLOCATED -

0100 UNALLOCATED -

0110 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1067

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

1000 UNALLOCATED -

1010 UNALLOCATED -

1110 UNALLOCATED -

01 0001 UNALLOCATED -

01 0101 UNALLOCATED -

01 1001 UNALLOCATED -

0 0011 SQDMLAL, SQDMLAL2 (by
element)

-

0 0111 SQDMLSL, SQDMLSL2 (by element) -

0 1011 SQDMULL, SQDMULL2 (by
element)

-

0 1100 SQDMULH (by element) -

0 1101 SQRDMULH (by element) -

0 1111 UNALLOCATED -

0 00 0001 FMLA (by element) — half-precision FEAT_FP16

0 00 0101 FMLS (by element) — half-precision FEAT_FP16

0 00 1001 FMUL (by element) — half-precision FEAT_FP16

0 1x 0001 FMLA (by element) —
single-precision and double-precision

-

0 1x 0101 FMLS (by element) —
single-precision and double-precision

-

0 1x 1001 FMUL (by element) —
single-precision and double-precision

-

1 0011 UNALLOCATED -

1 0111 UNALLOCATED -

1 1011 UNALLOCATED -

1 1100 UNALLOCATED -

1 1101 SQRDMLAH (by element) FEAT_RDM

1 1111 SQRDMLSH (by element) FEAT_RDM

1 00 0001 UNALLOCATED -

1 00 0101 UNALLOCATED -

1 00 1001 FMULX (by element) —
half-precision

FEAT_FP16

1 1x 0001 UNALLOCATED -

1 1x 0101 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1068

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

1 1x 1001 FMULX (by element) —
single-precision and double-precision

-

Advanced SIMD table lookup

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

0 0 1 1 1 0

29 24

op2

23 22

0

21

Rm

20 16

0

15

len

14 13

op

12

0 0

11 10

Rn

9 5

Rd

4 0

op2 len op Instruction Details

x1 UNALLOCATED

00 00 0 TBL — single register table

00 00 1 TBX — single register table

00 01 0 TBL — two register table

00 01 1 TBX — two register table

00 10 0 TBL — three register table

00 10 1 TBX — three register table

00 11 0 TBL — four register table

00 11 1 TBX — four register table

1x UNALLOCATED

Advanced SIMD permute

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

0 0 1 1 1 0

29 24

size

23 22

0

21

Rm

20 16

0

15

opcode

14 12

1 0

11 10

Rn

9 5

Rd

4 0

opcode Instruction Details

000 UNALLOCATED

001 UZP1

010 TRN1

011 ZIP1

100 UNALLOCATED

101 UZP2

110 TRN2

111 ZIP2

Advanced SIMD extract

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1069

Chapter 4. Instruction definitions
4.5. Index by encoding

0

31

Q

30

1 0 1 1 1 0

29 24

op2

23 22

0

21

Rm

20 16

0

15

imm4

14 11

0

10

Rn

9 5

Rd

4 0

op2 Instruction Details

x1 UNALLOCATED

00 EXT

1x UNALLOCATED

Advanced SIMD copy

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

op

29

0 1 1 1 0 0 0 0

28 21

imm5

20 16

0

15

imm4

14 11

1

10

Rn

9 5

Rd

4 0

Q op imm5 imm4 Instruction Details

x0000 UNALLOCATED

0 0000 DUP (element)

0 0001 DUP (general)

0 0010 UNALLOCATED

0 0100 UNALLOCATED

0 0110 UNALLOCATED

0 1xxx UNALLOCATED

0 0 0011 UNALLOCATED

0 0 0101 SMOV

0 0 0111 UMOV

0 1 UNALLOCATED

1 0 0011 INS (general)

1 0 0101 SMOV

1 0 x1000 0111 UMOV

1 1 INS (element)

Advanced SIMD three same (FP16)

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

a

23

1 0

22 21

Rm

20 16

0 0

15 14

opcode

13 11

1

10

Rn

9 5

Rd

4 0

U a opcode Instruction Details Feature

0 0 000 FMAXNM (vector) FEAT_FP16

0 0 001 FMLA (vector) FEAT_FP16

0 0 010 FADD (vector) FEAT_FP16

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1070

Chapter 4. Instruction definitions
4.5. Index by encoding

U a opcode Instruction Details Feature

0 0 011 FMULX FEAT_FP16

0 0 100 FCMEQ (register) FEAT_FP16

0 0 101 UNALLOCATED -

0 0 110 FMAX (vector) FEAT_FP16

0 0 111 FRECPS FEAT_FP16

0 1 000 FMINNM (vector) FEAT_FP16

0 1 001 FMLS (vector) FEAT_FP16

0 1 010 FSUB (vector) FEAT_FP16

0 1 011 UNALLOCATED -

0 1 100 UNALLOCATED -

0 1 101 UNALLOCATED -

0 1 110 FMIN (vector) FEAT_FP16

0 1 111 FRSQRTS FEAT_FP16

1 0 000 FMAXNMP (vector) FEAT_FP16

1 0 001 UNALLOCATED -

1 0 010 FADDP (vector) FEAT_FP16

1 0 011 FMUL (vector) FEAT_FP16

1 0 100 FCMGE (register) FEAT_FP16

1 0 101 FACGE FEAT_FP16

1 0 110 FMAXP (vector) FEAT_FP16

1 0 111 FDIV (vector) FEAT_FP16

1 1 000 FMINNMP (vector) FEAT_FP16

1 1 001 UNALLOCATED -

1 1 010 FABD FEAT_FP16

1 1 011 UNALLOCATED -

1 1 100 FCMGT (register) FEAT_FP16

1 1 101 FACGT FEAT_FP16

1 1 110 FMINP (vector) FEAT_FP16

1 1 111 UNALLOCATED -

Advanced SIMD two-register miscellaneous (FP16)

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

a

23

1 1 1 1 0 0

22 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1071

Chapter 4. Instruction definitions
4.5. Index by encoding

U a opcode Instruction Details Feature

00xxx UNALLOCATED -

010xx UNALLOCATED -

10xxx UNALLOCATED -

11110 UNALLOCATED -

0 011xx UNALLOCATED -

0 11111 UNALLOCATED -

1 11100 UNALLOCATED -

0 0 11000 FRINTN (vector) FEAT_FP16

0 0 11001 FRINTM (vector) FEAT_FP16

0 0 11010 FCVTNS (vector) FEAT_FP16

0 0 11011 FCVTMS (vector) FEAT_FP16

0 0 11100 FCVTAS (vector) FEAT_FP16

0 0 11101 SCVTF (vector, integer) FEAT_FP16

0 1 01100 FCMGT (zero) FEAT_FP16

0 1 01101 FCMEQ (zero) FEAT_FP16

0 1 01110 FCMLT (zero) FEAT_FP16

0 1 01111 FABS (vector) FEAT_FP16

0 1 11000 FRINTP (vector) FEAT_FP16

0 1 11001 FRINTZ (vector) FEAT_FP16

0 1 11010 FCVTPS (vector) FEAT_FP16

0 1 11011 FCVTZS (vector, integer) FEAT_FP16

0 1 11101 FRECPE FEAT_FP16

0 1 11111 UNALLOCATED -

1 0 11000 FRINTA (vector) FEAT_FP16

1 0 11001 FRINTX (vector) FEAT_FP16

1 0 11010 FCVTNU (vector) FEAT_FP16

1 0 11011 FCVTMU (vector) FEAT_FP16

1 0 11100 FCVTAU (vector) FEAT_FP16

1 0 11101 UCVTF (vector, integer) FEAT_FP16

1 1 01100 FCMGE (zero) FEAT_FP16

1 1 01101 FCMLE (zero) FEAT_FP16

1 1 01110 UNALLOCATED -

1 1 01111 FNEG (vector) FEAT_FP16

1 1 11000 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1072

Chapter 4. Instruction definitions
4.5. Index by encoding

U a opcode Instruction Details Feature

1 1 11001 FRINTI (vector) FEAT_FP16

1 1 11010 FCVTPU (vector) FEAT_FP16

1 1 11011 FCVTZU (vector, integer) FEAT_FP16

1 1 11101 FRSQRTE FEAT_FP16

1 1 11111 FSQRT (vector) FEAT_FP16

Advanced SIMD three-register extension

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

size

23 22

0

21

Rm

20 16

1

15

opcode

14 11

1

10

Rn

9 5

Rd

4 0

Q U size opcode Instruction Details Feature

0x 0011 UNALLOCATED -

11 0011 UNALLOCATED -

0 0000 UNALLOCATED -

0 0001 UNALLOCATED -

0 0010 SDOT (vector) FEAT_DotProd

0 1xxx UNALLOCATED -

1 0000 SQRDMLAH (vector) FEAT_RDM

1 0001 SQRDMLSH (vector) FEAT_RDM

1 0010 UDOT (vector) FEAT_DotProd

1 00 1101 UNALLOCATED -

1 00 1111 UNALLOCATED -

1 1x 1101 UNALLOCATED -

1 10 0011 UNALLOCATED -

1 10 1111 UNALLOCATED -

0 01xx UNALLOCATED -

0 1 01 1101 UNALLOCATED -

1 0x 01xx UNALLOCATED -

1 1x 011x UNALLOCATED -

1 1 10 0101 UNALLOCATED -

Advanced SIMD two-register miscellaneous

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

size

23 22

1 0 0 0 0

21 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1073

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details

1000x UNALLOCATED

10101 UNALLOCATED

0x 011xx UNALLOCATED

1x 10111 UNALLOCATED

1x 11110 UNALLOCATED

11 10110 UNALLOCATED

0 00000 REV64

0 00001 REV16 (vector)

0 00010 SADDLP

0 00011 SUQADD

0 00100 CLS (vector)

0 00101 CNT

0 00110 SADALP

0 00111 SQABS

0 01000 CMGT (zero)

0 01001 CMEQ (zero)

0 01010 CMLT (zero)

0 01011 ABS

0 10010 XTN, XTN2

0 10011 UNALLOCATED

0 10100 SQXTN, SQXTN2

0 0x 10110 FCVTN, FCVTN2

0 0x 10111 FCVTL, FCVTL2

0 0x 11000 FRINTN (vector)

0 0x 11001 FRINTM (vector)

0 0x 11010 FCVTNS (vector)

0 0x 11011 FCVTMS (vector)

0 0x 11100 FCVTAS (vector)

0 0x 11101 SCVTF (vector, integer)

0 1x 01100 FCMGT (zero)

0 1x 01101 FCMEQ (zero)

0 1x 01110 FCMLT (zero)

0 1x 01111 FABS (vector)

0 1x 11000 FRINTP (vector)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1074

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details

0 1x 11001 FRINTZ (vector)

0 1x 11010 FCVTPS (vector)

0 1x 11011 FCVTZS (vector, integer)

0 1x 11100 URECPE

0 1x 11101 FRECPE

0 1x 11111 UNALLOCATED

1 00000 REV32 (vector)

1 00001 UNALLOCATED

1 00010 UADDLP

1 00011 USQADD

1 00100 CLZ (vector)

1 00110 UADALP

1 00111 SQNEG

1 01000 CMGE (zero)

1 01001 CMLE (zero)

1 01010 UNALLOCATED

1 01011 NEG (vector)

1 10010 SQXTUN, SQXTUN2

1 10011 SHLL, SHLL2

1 10100 UQXTN, UQXTN2

1 0x 10110 FCVTXN, FCVTXN2

1 0x 10111 UNALLOCATED

1 0x 11000 FRINTA (vector)

1 0x 11001 FRINTX (vector)

1 0x 11010 FCVTNU (vector)

1 0x 11011 FCVTMU (vector)

1 0x 11100 FCVTAU (vector)

1 0x 11101 UCVTF (vector, integer)

1 00 00101 NOT

1 01 00101 RBIT (vector)

1 1x 00101 UNALLOCATED

1 1x 01100 FCMGE (zero)

1 1x 01101 FCMLE (zero)

1 1x 01110 UNALLOCATED

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1075

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details

1 1x 01111 FNEG (vector)

1 1x 11000 UNALLOCATED

1 1x 11001 FRINTI (vector)

1 1x 11010 FCVTPU (vector)

1 1x 11011 FCVTZU (vector, integer)

1 1x 11100 URSQRTE

1 1x 11101 FRSQRTE

1 1x 11111 FSQRT (vector)

1 10 10110 UNALLOCATED

Advanced SIMD across lanes

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

size

23 22

1 1 0 0 0

21 17

opcode

16 12

1 0

11 10

Rn

9 5

Rd

4 0

U size opcode Instruction Details Feature

0000x UNALLOCATED -

00010 UNALLOCATED -

001xx UNALLOCATED -

0100x UNALLOCATED -

01011 UNALLOCATED -

01101 UNALLOCATED -

01110 UNALLOCATED -

10xxx UNALLOCATED -

1100x UNALLOCATED -

111xx UNALLOCATED -

0 00011 SADDLV -

0 01010 SMAXV -

0 11010 SMINV -

0 11011 ADDV -

0 00 01100 FMAXNMV — half-precision FEAT_FP16

0 00 01111 FMAXV — half-precision FEAT_FP16

0 01 01100 UNALLOCATED -

0 01 01111 UNALLOCATED -

0 10 01100 FMINNMV — half-precision FEAT_FP16

0 10 01111 FMINV — half-precision FEAT_FP16

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1076

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

0 11 01100 UNALLOCATED -

0 11 01111 UNALLOCATED -

1 00011 UADDLV -

1 01010 UMAXV -

1 11010 UMINV -

1 11011 UNALLOCATED -

1 0x 01100 FMAXNMV — single-precision and
double-precision

-

1 0x 01111 FMAXV — single-precision and
double-precision

-

1 1x 01100 FMINNMV — single-precision and
double-precision

-

1 1x 01111 FMINV — single-precision and
double-precision

-

Advanced SIMD three different

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

size

23 22

1

21

Rm

20 16

opcode

15 12

0 0

11 10

Rn

9 5

Rd

4 0

U opcode Instruction Details

1111 UNALLOCATED

0 0000 SADDL, SADDL2

0 0001 SADDW, SADDW2

0 0010 SSUBL, SSUBL2

0 0011 SSUBW, SSUBW2

0 0100 ADDHN, ADDHN2

0 0101 SABAL, SABAL2

0 0110 SUBHN, SUBHN2

0 0111 SABDL, SABDL2

0 1000 SMLAL, SMLAL2 (vector)

0 1001 SQDMLAL, SQDMLAL2 (vector)

0 1010 SMLSL, SMLSL2 (vector)

0 1011 SQDMLSL, SQDMLSL2 (vector)

0 1100 SMULL, SMULL2 (vector)

0 1101 SQDMULL, SQDMULL2 (vector)

0 1110 PMULL, PMULL2

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1077

Chapter 4. Instruction definitions
4.5. Index by encoding

U opcode Instruction Details

1 0000 UADDL, UADDL2

1 0001 UADDW, UADDW2

1 0010 USUBL, USUBL2

1 0011 USUBW, USUBW2

1 0100 RADDHN, RADDHN2

1 0101 UABAL, UABAL2

1 0110 RSUBHN, RSUBHN2

1 0111 UABDL, UABDL2

1 1000 UMLAL, UMLAL2 (vector)

1 1001 UNALLOCATED

1 1010 UMLSL, UMLSL2 (vector)

1 1011 UNALLOCATED

1 1100 UMULL, UMULL2 (vector)

1 1101 UNALLOCATED

1 1110 UNALLOCATED

Advanced SIMD three same

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 0

28 24

size

23 22

1

21

Rm

20 16

opcode

15 11

1

10

Rn

9 5

Rd

4 0

U size opcode Instruction Details Feature

0 00000 SHADD -

0 00001 SQADD -

0 00010 SRHADD -

0 00100 SHSUB -

0 00101 SQSUB -

0 00110 CMGT (register) -

0 00111 CMGE (register) -

0 01000 SSHL -

0 01001 SQSHL (register) -

0 01010 SRSHL -

0 01011 SQRSHL -

0 01100 SMAX -

0 01101 SMIN -

0 01110 SABD -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1078

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

0 01111 SABA -

0 10000 ADD (vector) -

0 10001 CMTST -

0 10010 MLA (vector) -

0 10011 MUL (vector) -

0 10100 SMAXP -

0 10101 SMINP -

0 10110 SQDMULH (vector) -

0 10111 ADDP (vector) -

0 0x 11000 FMAXNM (vector) -

0 0x 11001 FMLA (vector) -

0 0x 11010 FADD (vector) -

0 0x 11011 FMULX -

0 0x 11100 FCMEQ (register) -

0 0x 11110 FMAX (vector) -

0 0x 11111 FRECPS -

0 00 00011 AND (vector) -

0 00 11101 FMLAL, FMLAL2 (vector) —
FMLAL

FEAT_FHM

0 01 00011 BIC (vector, register) -

0 01 11101 UNALLOCATED -

0 1x 11000 FMINNM (vector) -

0 1x 11001 FMLS (vector) -

0 1x 11010 FSUB (vector) -

0 1x 11011 UNALLOCATED -

0 1x 11100 UNALLOCATED -

0 1x 11110 FMIN (vector) -

0 1x 11111 FRSQRTS -

0 10 00011 ORR (vector, register) -

0 10 11101 FMLSL, FMLSL2 (vector) — FMLSL FEAT_FHM

0 11 00011 ORN (vector) -

0 11 11101 UNALLOCATED -

1 00000 UHADD -

1 00001 UQADD -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1079

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

1 00010 URHADD -

1 00100 UHSUB -

1 00101 UQSUB -

1 00110 CMHI (register) -

1 00111 CMHS (register) -

1 01000 USHL -

1 01001 UQSHL (register) -

1 01010 URSHL -

1 01011 UQRSHL -

1 01100 UMAX -

1 01101 UMIN -

1 01110 UABD -

1 01111 UABA -

1 10000 SUB (vector) -

1 10001 CMEQ (register) -

1 10010 MLS (vector) -

1 10011 PMUL -

1 10100 UMAXP -

1 10101 UMINP -

1 10110 SQRDMULH (vector) -

1 10111 UNALLOCATED -

1 0x 11000 FMAXNMP (vector) -

1 0x 11010 FADDP (vector) -

1 0x 11011 FMUL (vector) -

1 0x 11100 FCMGE (register) -

1 0x 11101 FACGE -

1 0x 11110 FMAXP (vector) -

1 0x 11111 FDIV (vector) -

1 00 00011 EOR (vector) -

1 00 11001 FMLAL, FMLAL2 (vector) —
FMLAL2

FEAT_FHM

1 01 00011 BSL -

1 01 11001 UNALLOCATED -

1 1x 11000 FMINNMP (vector) -

1 1x 11010 FABD -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1080

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

1 1x 11011 UNALLOCATED -

1 1x 11100 FCMGT (register) -

1 1x 11101 FACGT -

1 1x 11110 FMINP (vector) -

1 1x 11111 UNALLOCATED -

1 10 00011 BIT -

1 10 11001 FMLSL, FMLSL2 (vector) —
FMLSL2

FEAT_FHM

1 11 00011 BIF -

1 11 11001 UNALLOCATED -

Advanced SIMD modified immediate

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

op

29

0 1 1 1 1 0 0 0 0 0

28 19

a

18

b

17

c

16

cmode

15 12

o2

11

1

10

d

9

e

8

f

7

g

6

h

5

Rd

4 0

Q op cmode o2 Instruction Details Feature

0 0xxx 1 UNALLOCATED -

0 0xx0 0 MOVI — 32-bit shifted immediate -

0 0xx1 0 ORR (vector, immediate) — 32-bit -

0 10xx 1 UNALLOCATED -

0 10x0 0 MOVI — 16-bit shifted immediate -

0 10x1 0 ORR (vector, immediate) — 16-bit -

0 110x 0 MOVI — 32-bit shifting ones -

0 110x 1 UNALLOCATED -

0 1110 0 MOVI — 8-bit -

0 1110 1 UNALLOCATED -

0 1111 0 FMOV (vector, immediate) —
single-precision

-

0 1111 1 FMOV (vector, immediate) —
half-precision

FEAT_FP16

1 1 UNALLOCATED -

1 0xx0 0 MVNI — 32-bit shifted immediate -

1 0xx1 0 BIC (vector, immediate) — 32-bit -

1 10x0 0 MVNI — 16-bit shifted immediate -

1 10x1 0 BIC (vector, immediate) — 16-bit -

1 110x 0 MVNI — 32-bit shifting ones -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1081

Chapter 4. Instruction definitions
4.5. Index by encoding

Q op cmode o2 Instruction Details Feature

0 1 1110 0 MOVI — 64-bit scalar -

0 1 1111 0 UNALLOCATED -

1 1 1110 0 MOVI — 64-bit vector -

1 1 1111 0 FMOV (vector, immediate) —
double-precision

-

Advanced SIMD shift by immediate

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 1 0

28 23

!= 0000

22 19

immb

18 16

opcode

15 11

1

10

Rn

9 5

Rd

4 0

immh

The following constraints also apply to this encoding: immh != 0000 && immh != 0000

U opcode Instruction Details

00001 UNALLOCATED

00011 UNALLOCATED

00101 UNALLOCATED

00111 UNALLOCATED

01001 UNALLOCATED

01011 UNALLOCATED

01101 UNALLOCATED

01111 UNALLOCATED

10101 UNALLOCATED

1011x UNALLOCATED

110xx UNALLOCATED

11101 UNALLOCATED

11110 UNALLOCATED

0 00000 SSHR

0 00010 SSRA

0 00100 SRSHR

0 00110 SRSRA

0 01000 UNALLOCATED

0 01010 SHL

0 01100 UNALLOCATED

0 01110 SQSHL (immediate)

0 10000 SHRN, SHRN2

0 10001 RSHRN, RSHRN2

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1082

Chapter 4. Instruction definitions
4.5. Index by encoding

U opcode Instruction Details

0 10010 SQSHRN, SQSHRN2

0 10011 SQRSHRN, SQRSHRN2

0 10100 SSHLL, SSHLL2

0 11100 SCVTF (vector, fixed-point)

0 11111 FCVTZS (vector, fixed-point)

1 00000 USHR

1 00010 USRA

1 00100 URSHR

1 00110 URSRA

1 01000 SRI

1 01010 SLI

1 01100 SQSHLU

1 01110 UQSHL (immediate)

1 10000 SQSHRUN, SQSHRUN2

1 10001 SQRSHRUN, SQRSHRUN2

1 10010 UQSHRN, UQSHRN2

1 10011 UQRSHRN, UQRSHRN2

1 10100 USHLL, USHLL2

1 11100 UCVTF (vector, fixed-point)

1 11111 FCVTZU (vector, fixed-point)

Advanced SIMD vector x indexed element

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

0

31

Q

30

U

29

0 1 1 1 1

28 24

size

23 22

L

21

M

20

Rm

19 16

opcode

15 12

H

11

0

10

Rn

9 5

Rd

4 0

U size opcode Instruction Details Feature

01 1001 UNALLOCATED -

0 0010 SMLAL, SMLAL2 (by element) -

0 0011 SQDMLAL, SQDMLAL2 (by
element)

-

0 0110 SMLSL, SMLSL2 (by element) -

0 0111 SQDMLSL, SQDMLSL2 (by element) -

0 1000 MUL (by element) -

0 1010 SMULL, SMULL2 (by element) -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1083

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

0 1011 SQDMULL, SQDMULL2 (by
element)

-

0 1100 SQDMULH (by element) -

0 1101 SQRDMULH (by element) -

0 1110 SDOT (by element) FEAT_DotProd

0 0x 0000 UNALLOCATED -

0 0x 0100 UNALLOCATED -

0 00 0001 FMLA (by element) — half-precision FEAT_FP16

0 00 0101 FMLS (by element) — half-precision FEAT_FP16

0 00 1001 FMUL (by element) — half-precision FEAT_FP16

0 01 0001 UNALLOCATED -

0 01 0101 UNALLOCATED -

0 1x 0001 FMLA (by element) —
single-precision and double-precision

-

0 1x 0101 FMLS (by element) —
single-precision and double-precision

-

0 1x 1001 FMUL (by element) —
single-precision and double-precision

-

0 10 0000 FMLAL, FMLAL2 (by element) —
FMLAL

FEAT_FHM

0 10 0100 FMLSL, FMLSL2 (by element) —
FMLSL

FEAT_FHM

0 11 0000 UNALLOCATED -

0 11 0100 UNALLOCATED -

1 0000 MLA (by element) -

1 0010 UMLAL, UMLAL2 (by element) -

1 0100 MLS (by element) -

1 0110 UMLSL, UMLSL2 (by element) -

1 1010 UMULL, UMULL2 (by element) -

1 1011 UNALLOCATED -

1 1101 SQRDMLAH (by element) FEAT_RDM

1 1110 UDOT (by element) FEAT_DotProd

1 1111 SQRDMLSH (by element) FEAT_RDM

1 0x 1000 UNALLOCATED -

1 0x 1100 UNALLOCATED -

1 00 0001 UNALLOCATED -

1 00 0011 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1084

Chapter 4. Instruction definitions
4.5. Index by encoding

U size opcode Instruction Details Feature

1 00 0101 UNALLOCATED -

1 00 0111 UNALLOCATED -

1 00 1001 FMULX (by element) —
half-precision

FEAT_FP16

1 1x 1001 FMULX (by element) —
single-precision and double-precision

-

1 10 1000 FMLAL, FMLAL2 (by element) —
FMLAL2

FEAT_FHM

1 10 1100 FMLSL, FMLSL2 (by element) —
FMLSL2

FEAT_FHM

1 11 0001 UNALLOCATED -

1 11 0011 UNALLOCATED -

1 11 0101 UNALLOCATED -

1 11 0111 UNALLOCATED -

1 11 1000 UNALLOCATED -

1 11 1100 UNALLOCATED -

Cryptographic three-register, imm2

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

1 1 0 0 1 1 1 0 0 1 0

31 21

Rm

20 16

1 0

15 14

imm2

13 12

opcode

11 10

Rn

9 5

Rd

4 0

opcode Instruction Details Feature

00 SM3TT1A FEAT_SM3

01 SM3TT1B FEAT_SM3

10 SM3TT2A FEAT_SM3

11 SM3TT2B FEAT_SM3

Cryptographic three-register SHA 512

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

1 1 0 0 1 1 1 0 0 1 1

31 21

Rm

20 16

1

15

O

14

0 0

13 12

opcode

11 10

Rn

9 5

Rd

4 0

O opcode Instruction Details Feature

0 00 SHA512H FEAT_SHA512

0 01 SHA512H2 FEAT_SHA512

0 10 SHA512SU1 FEAT_SHA512

0 11 RAX1 FEAT_SHA3

1 00 SM3PARTW1 FEAT_SM3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1085

Chapter 4. Instruction definitions
4.5. Index by encoding

O opcode Instruction Details Feature

1 01 SM3PARTW2 FEAT_SM3

1 10 SM4EKEY FEAT_SM4

1 11 UNALLOCATED -

Cryptographic four-register

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

1 1 0 0 1 1 1 0 0

31 23

Op0

22 21

Rm

20 16

0

15

Ra

14 10

Rn

9 5

Rd

4 0

Op0 Instruction Details Feature

00 EOR3 FEAT_SHA3

01 BCAX FEAT_SHA3

10 SM3SS1 FEAT_SM3

11 UNALLOCATED -

Cryptographic two-register SHA 512

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0

31 12

opcode

11 10

Rn

9 5

Rd

4 0

opcode Instruction Details Feature

00 SHA512SU0 FEAT_SHA512

01 SM4E FEAT_SM4

1x UNALLOCATED -

Conversion between floating-point and fixed-point

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

sf

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

0

21

rmode

20 19

opcode

18 16

scale

15 10

Rn

9 5

Rd

4 0

sf S ptype rmode opcode scale Instruction Details Feature

1xx UNALLOCATED -

x0 00x UNALLOCATED -

x1 01x UNALLOCATED -

0x 00x UNALLOCATED -

1x 01x UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1086

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S ptype rmode opcode scale Instruction Details Feature

0 0xxxxx UNALLOCATED -

0 0 00 00 010 SCVTF (scalar, fixed-point) — 32-bit
to single-precision

-

0 0 00 00 011 UCVTF (scalar, fixed-point) — 32-bit
to single-precision

-

0 0 00 11 000 FCVTZS (scalar, fixed-point) —
single-precision to 32-bit

-

0 0 00 11 001 FCVTZU (scalar, fixed-point) —
single-precision to 32-bit

-

0 0 01 00 010 SCVTF (scalar, fixed-point) — 32-bit
to double-precision

-

0 0 01 00 011 UCVTF (scalar, fixed-point) — 32-bit
to double-precision

-

0 0 01 11 000 FCVTZS (scalar, fixed-point) —
double-precision to 32-bit

-

0 0 01 11 001 FCVTZU (scalar, fixed-point) —
double-precision to 32-bit

-

0 0 11 00 010 SCVTF (scalar, fixed-point) — 32-bit
to half-precision

FEAT_FP16

0 0 11 00 011 UCVTF (scalar, fixed-point) — 32-bit
to half-precision

FEAT_FP16

0 0 11 11 000 FCVTZS (scalar, fixed-point) —
half-precision to 32-bit

FEAT_FP16

0 0 11 11 001 FCVTZU (scalar, fixed-point) —
half-precision to 32-bit

FEAT_FP16

1 0 00 00 010 SCVTF (scalar, fixed-point) — 64-bit
to single-precision

-

1 0 00 00 011 UCVTF (scalar, fixed-point) — 64-bit
to single-precision

-

1 0 00 11 000 FCVTZS (scalar, fixed-point) —
single-precision to 64-bit

-

1 0 00 11 001 FCVTZU (scalar, fixed-point) —
single-precision to 64-bit

-

1 0 01 00 010 SCVTF (scalar, fixed-point) — 64-bit
to double-precision

-

1 0 01 00 011 UCVTF (scalar, fixed-point) — 64-bit
to double-precision

-

1 0 01 11 000 FCVTZS (scalar, fixed-point) —
double-precision to 64-bit

-

1 0 01 11 001 FCVTZU (scalar, fixed-point) —
double-precision to 64-bit

-

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1087

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S ptype rmode opcode scale Instruction Details Feature

1 0 11 00 010 SCVTF (scalar, fixed-point) — 64-bit
to half-precision

FEAT_FP16

1 0 11 00 011 UCVTF (scalar, fixed-point) — 64-bit
to half-precision

FEAT_FP16

1 0 11 11 000 FCVTZS (scalar, fixed-point) —
half-precision to 64-bit

FEAT_FP16

1 0 11 11 001 FCVTZU (scalar, fixed-point) —
half-precision to 64-bit

FEAT_FP16

Conversion between floating-point and integer

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

sf

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

rmode

20 19

opcode

18 16

0 0 0 0 0 0

15 10

Rn

9 5

Rd

4 0

sf S ptype rmode opcode Instruction Details Feature

x1 01x UNALLOCATED -

x1 10x UNALLOCATED -

1x 01x UNALLOCATED -

1x 10x UNALLOCATED -

0 10 0xx UNALLOCATED -

0 10 10x UNALLOCATED -

1 UNALLOCATED -

0 0 00 x1 11x UNALLOCATED -

0 0 00 00 000 FCVTNS (scalar) — single-precision
to 32-bit

-

0 0 00 00 001 FCVTNU (scalar) — single-precision
to 32-bit

-

0 0 00 00 010 SCVTF (scalar, integer) — 32-bit to
single-precision

-

0 0 00 00 011 UCVTF (scalar, integer) — 32-bit to
single-precision

-

0 0 00 00 100 FCVTAS (scalar) — single-precision
to 32-bit

-

0 0 00 00 101 FCVTAU (scalar) — single-precision
to 32-bit

-

0 0 00 00 110 FMOV (general) — single-precision to
32-bit

-

0 0 00 00 111 FMOV (general) — 32-bit to
single-precision

-

0 0 00 01 000 FCVTPS (scalar) — single-precision
to 32-bit

-

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1088

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S ptype rmode opcode Instruction Details Feature

0 0 00 01 001 FCVTPU (scalar) — single-precision
to 32-bit

-

0 0 00 1x 11x UNALLOCATED -

0 0 00 10 000 FCVTMS (scalar) — single-precision
to 32-bit

-

0 0 00 10 001 FCVTMU (scalar) — single-precision
to 32-bit

-

0 0 00 11 000 FCVTZS (scalar, integer) —
single-precision to 32-bit

-

0 0 00 11 001 FCVTZU (scalar, integer) —
single-precision to 32-bit

-

0 0 01 0x 11x UNALLOCATED -

0 0 01 00 000 FCVTNS (scalar) — double-precision
to 32-bit

-

0 0 01 00 001 FCVTNU (scalar) — double-precision
to 32-bit

-

0 0 01 00 010 SCVTF (scalar, integer) — 32-bit to
double-precision

-

0 0 01 00 011 UCVTF (scalar, integer) — 32-bit to
double-precision

-

0 0 01 00 100 FCVTAS (scalar) — double-precision
to 32-bit

-

0 0 01 00 101 FCVTAU (scalar) — double-precision
to 32-bit

-

0 0 01 01 000 FCVTPS (scalar) — double-precision
to 32-bit

-

0 0 01 01 001 FCVTPU (scalar) — double-precision
to 32-bit

-

0 0 01 10 000 FCVTMS (scalar) — double-precision
to 32-bit

-

0 0 01 10 001 FCVTMU (scalar) — double-precision
to 32-bit

-

0 0 01 10 11x UNALLOCATED -

0 0 01 11 000 FCVTZS (scalar, integer) —
double-precision to 32-bit

-

0 0 01 11 001 FCVTZU (scalar, integer) —
double-precision to 32-bit

-

0 0 01 11 111 UNALLOCATED -

0 0 10 11x UNALLOCATED -

0 0 11 00 000 FCVTNS (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 00 001 FCVTNU (scalar) — half-precision to
32-bit

FEAT_FP16

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1089

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S ptype rmode opcode Instruction Details Feature

0 0 11 00 010 SCVTF (scalar, integer) — 32-bit to
half-precision

FEAT_FP16

0 0 11 00 011 UCVTF (scalar, integer) — 32-bit to
half-precision

FEAT_FP16

0 0 11 00 100 FCVTAS (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 00 101 FCVTAU (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 00 110 FMOV (general) — half-precision to
32-bit

FEAT_FP16

0 0 11 00 111 FMOV (general) — 32-bit to
half-precision

FEAT_FP16

0 0 11 01 000 FCVTPS (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 01 001 FCVTPU (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 10 000 FCVTMS (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 10 001 FCVTMU (scalar) — half-precision to
32-bit

FEAT_FP16

0 0 11 11 000 FCVTZS (scalar, integer) —
half-precision to 32-bit

FEAT_FP16

0 0 11 11 001 FCVTZU (scalar, integer) —
half-precision to 32-bit

FEAT_FP16

1 0 00 11x UNALLOCATED -

1 0 00 00 000 FCVTNS (scalar) — single-precision
to 64-bit

-

1 0 00 00 001 FCVTNU (scalar) — single-precision
to 64-bit

-

1 0 00 00 010 SCVTF (scalar, integer) — 64-bit to
single-precision

-

1 0 00 00 011 UCVTF (scalar, integer) — 64-bit to
single-precision

-

1 0 00 00 100 FCVTAS (scalar) — single-precision
to 64-bit

-

1 0 00 00 101 FCVTAU (scalar) — single-precision
to 64-bit

-

1 0 00 01 000 FCVTPS (scalar) — single-precision
to 64-bit

-

1 0 00 01 001 FCVTPU (scalar) — single-precision
to 64-bit

-

1 0 00 10 000 FCVTMS (scalar) — single-precision
to 64-bit

-

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1090

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S ptype rmode opcode Instruction Details Feature

1 0 00 10 001 FCVTMU (scalar) — single-precision
to 64-bit

-

1 0 00 11 000 FCVTZS (scalar, integer) —
single-precision to 64-bit

-

1 0 00 11 001 FCVTZU (scalar, integer) —
single-precision to 64-bit

-

1 0 01 x1 11x UNALLOCATED -

1 0 01 00 000 FCVTNS (scalar) — double-precision
to 64-bit

-

1 0 01 00 001 FCVTNU (scalar) — double-precision
to 64-bit

-

1 0 01 00 010 SCVTF (scalar, integer) — 64-bit to
double-precision

-

1 0 01 00 011 UCVTF (scalar, integer) — 64-bit to
double-precision

-

1 0 01 00 100 FCVTAS (scalar) — double-precision
to 64-bit

-

1 0 01 00 101 FCVTAU (scalar) — double-precision
to 64-bit

-

1 0 01 00 110 FMOV (general) — double-precision
to 64-bit

-

1 0 01 00 111 FMOV (general) — 64-bit to
double-precision

-

1 0 01 01 000 FCVTPS (scalar) — double-precision
to 64-bit

-

1 0 01 01 001 FCVTPU (scalar) — double-precision
to 64-bit

-

1 0 01 1x 11x UNALLOCATED -

1 0 01 10 000 FCVTMS (scalar) — double-precision
to 64-bit

-

1 0 01 10 001 FCVTMU (scalar) — double-precision
to 64-bit

-

1 0 01 11 000 FCVTZS (scalar, integer) —
double-precision to 64-bit

-

1 0 01 11 001 FCVTZU (scalar, integer) —
double-precision to 64-bit

-

1 0 10 x0 11x UNALLOCATED -

1 0 10 01 110 FMOV (general) — top half of 128-bit
to 64-bit

-

1 0 10 01 111 FMOV (general) — 64-bit to top half
of 128-bit

-

1 0 10 1x 11x UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1091

Chapter 4. Instruction definitions
4.5. Index by encoding

sf S ptype rmode opcode Instruction Details Feature

1 0 11 00 000 FCVTNS (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 00 001 FCVTNU (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 00 010 SCVTF (scalar, integer) — 64-bit to
half-precision

FEAT_FP16

1 0 11 00 011 UCVTF (scalar, integer) — 64-bit to
half-precision

FEAT_FP16

1 0 11 00 100 FCVTAS (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 00 101 FCVTAU (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 00 110 FMOV (general) — half-precision to
64-bit

FEAT_FP16

1 0 11 00 111 FMOV (general) — 64-bit to
half-precision

FEAT_FP16

1 0 11 01 000 FCVTPS (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 01 001 FCVTPU (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 10 000 FCVTMS (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 10 001 FCVTMU (scalar) — half-precision to
64-bit

FEAT_FP16

1 0 11 11 000 FCVTZS (scalar, integer) —
half-precision to 64-bit

FEAT_FP16

1 0 11 11 001 FCVTZU (scalar, integer) —
half-precision to 64-bit

FEAT_FP16

Floating-point data-processing (1 source)

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

opcode

20 15

1 0 0 0 0

14 10

Rn

9 5

Rd

4 0

M S ptype opcode Instruction Details Feature

1xxxxx UNALLOCATED -

1 UNALLOCATED -

0 0 00 000000 FMOV (register) — single-precision -

0 0 00 000001 FABS (scalar) — single-precision -

0 0 00 000010 FNEG (scalar) — single-precision -

0 0 00 000011 FSQRT (scalar) — single-precision -

0 0 00 000100 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1092

Chapter 4. Instruction definitions
4.5. Index by encoding

M S ptype opcode Instruction Details Feature

0 0 00 000101 FCVT — single-precision to
double-precision

-

0 0 00 000110 UNALLOCATED -

0 0 00 000111 FCVT — single-precision to
half-precision

-

0 0 00 001000 FRINTN (scalar) — single-precision -

0 0 00 001001 FRINTP (scalar) — single-precision -

0 0 00 001010 FRINTM (scalar) — single-precision -

0 0 00 001011 FRINTZ (scalar) — single-precision -

0 0 00 001100 FRINTA (scalar) — single-precision -

0 0 00 001101 UNALLOCATED -

0 0 00 001110 FRINTX (scalar) — single-precision -

0 0 00 001111 FRINTI (scalar) — single-precision -

0 0 00 0101xx UNALLOCATED -

0 0 00 011xxx UNALLOCATED -

0 0 01 000000 FMOV (register) — double-precision -

0 0 01 000001 FABS (scalar) — double-precision -

0 0 01 000010 FNEG (scalar) — double-precision -

0 0 01 000011 FSQRT (scalar) — double-precision -

0 0 01 000100 FCVT — double-precision to
single-precision

-

0 0 01 000101 UNALLOCATED -

0 0 01 000111 FCVT — double-precision to
half-precision

-

0 0 01 001000 FRINTN (scalar) — double-precision -

0 0 01 001001 FRINTP (scalar) — double-precision -

0 0 01 001010 FRINTM (scalar) — double-precision -

0 0 01 001011 FRINTZ (scalar) — double-precision -

0 0 01 001100 FRINTA (scalar) — double-precision -

0 0 01 001101 UNALLOCATED -

0 0 01 001110 FRINTX (scalar) — double-precision -

0 0 01 001111 FRINTI (scalar) — double-precision -

0 0 01 0101xx UNALLOCATED -

0 0 01 011xxx UNALLOCATED -

0 0 10 0xxxxx UNALLOCATED -

0 0 11 000000 FMOV (register) — half-precision FEAT_FP16

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1093

Chapter 4. Instruction definitions
4.5. Index by encoding

M S ptype opcode Instruction Details Feature

0 0 11 000001 FABS (scalar) — half-precision FEAT_FP16

0 0 11 000010 FNEG (scalar) — half-precision FEAT_FP16

0 0 11 000011 FSQRT (scalar) — half-precision FEAT_FP16

0 0 11 000100 FCVT — half-precision to
single-precision

-

0 0 11 000101 FCVT — half-precision to
double-precision

-

0 0 11 00011x UNALLOCATED -

0 0 11 001000 FRINTN (scalar) — half-precision FEAT_FP16

0 0 11 001001 FRINTP (scalar) — half-precision FEAT_FP16

0 0 11 001010 FRINTM (scalar) — half-precision FEAT_FP16

0 0 11 001011 FRINTZ (scalar) — half-precision FEAT_FP16

0 0 11 001100 FRINTA (scalar) — half-precision FEAT_FP16

0 0 11 001101 UNALLOCATED -

0 0 11 001110 FRINTX (scalar) — half-precision FEAT_FP16

0 0 11 001111 FRINTI (scalar) — half-precision FEAT_FP16

0 0 11 01xxxx UNALLOCATED -

1 UNALLOCATED -

Floating-point compare

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

Rm

20 16

op

15 14

1 0 0 0

13 10

Rn

9 5

opcode2

4 0

M S ptype op opcode2 Instruction Details Feature

xxxx1 UNALLOCATED -

xxx1x UNALLOCATED -

xx1xx UNALLOCATED -

x1 UNALLOCATED -

1x UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 00 00000 FCMP -

0 0 00 00 01000 FCMP -

0 0 00 00 10000 FCMPE -

0 0 00 00 11000 FCMPE -

0 0 01 00 00000 FCMP -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1094

Chapter 4. Instruction definitions
4.5. Index by encoding

M S ptype op opcode2 Instruction Details Feature

0 0 01 00 01000 FCMP -

0 0 01 00 10000 FCMPE -

0 0 01 00 11000 FCMPE -

0 0 11 00 00000 FCMP FEAT_FP16

0 0 11 00 01000 FCMP FEAT_FP16

0 0 11 00 10000 FCMPE FEAT_FP16

0 0 11 00 11000 FCMPE FEAT_FP16

1 UNALLOCATED -

Floating-point immediate

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

imm8

20 13

1 0 0

12 10

imm5

9 5

Rd

4 0

M S ptype imm5 Instruction Details Feature

xxxx1 UNALLOCATED -

xxx1x UNALLOCATED -

xx1xx UNALLOCATED -

x1xxx UNALLOCATED -

1xxxx UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 00000 FMOV (scalar, immediate) —
single-precision

-

0 0 01 00000 FMOV (scalar, immediate) —
double-precision

-

0 0 11 00000 FMOV (scalar, immediate) —
half-precision

FEAT_FP16

1 UNALLOCATED -

Floating-point conditional compare

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

Rm

20 16

cond

15 12

0 1

11 10

Rn

9 5

op

4

nzcv

3 0

M S ptype op Instruction Details Feature

10 UNALLOCATED -

1 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1095

Chapter 4. Instruction definitions
4.5. Index by encoding

M S ptype op Instruction Details Feature

0 0 00 0 FCCMP — single-precision -

0 0 00 1 FCCMPE — single-precision -

0 0 01 0 FCCMP — double-precision -

0 0 01 1 FCCMPE — double-precision -

0 0 11 0 FCCMP — half-precision FEAT_FP16

0 0 11 1 FCCMPE — half-precision FEAT_FP16

1 UNALLOCATED -

Floating-point data-processing (2 source)

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

Rm

20 16

opcode

15 12

1 0

11 10

Rn

9 5

Rd

4 0

M S ptype opcode Instruction Details Feature

1xx1 UNALLOCATED -

1x1x UNALLOCATED -

11xx UNALLOCATED -

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 0000 FMUL (scalar) — single-precision -

0 0 00 0001 FDIV (scalar) — single-precision -

0 0 00 0010 FADD (scalar) — single-precision -

0 0 00 0011 FSUB (scalar) — single-precision -

0 0 00 0100 FMAX (scalar) — single-precision -

0 0 00 0101 FMIN (scalar) — single-precision -

0 0 00 0110 FMAXNM (scalar) — single-precision -

0 0 00 0111 FMINNM (scalar) — single-precision -

0 0 00 1000 FNMUL (scalar) — single-precision -

0 0 01 0000 FMUL (scalar) — double-precision -

0 0 01 0001 FDIV (scalar) — double-precision -

0 0 01 0010 FADD (scalar) — double-precision -

0 0 01 0011 FSUB (scalar) — double-precision -

0 0 01 0100 FMAX (scalar) — double-precision -

0 0 01 0101 FMIN (scalar) — double-precision -

0 0 01 0110 FMAXNM (scalar) —
double-precision

-

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1096

Chapter 4. Instruction definitions
4.5. Index by encoding

M S ptype opcode Instruction Details Feature

0 0 01 0111 FMINNM (scalar) — double-precision -

0 0 01 1000 FNMUL (scalar) — double-precision -

0 0 11 0000 FMUL (scalar) — half-precision FEAT_FP16

0 0 11 0001 FDIV (scalar) — half-precision FEAT_FP16

0 0 11 0010 FADD (scalar) — half-precision FEAT_FP16

0 0 11 0011 FSUB (scalar) — half-precision FEAT_FP16

0 0 11 0100 FMAX (scalar) — half-precision FEAT_FP16

0 0 11 0101 FMIN (scalar) — half-precision FEAT_FP16

0 0 11 0110 FMAXNM (scalar) — half-precision FEAT_FP16

0 0 11 0111 FMINNM (scalar) — half-precision FEAT_FP16

0 0 11 1000 FNMUL (scalar) — half-precision FEAT_FP16

1 UNALLOCATED -

Floating-point conditional select

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 0

28 24

ptype

23 22

1

21

Rm

20 16

cond

15 12

1 1

11 10

Rn

9 5

Rd

4 0

M S ptype Instruction Details Feature

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 FCSEL — single-precision -

0 0 01 FCSEL — double-precision -

0 0 11 FCSEL — half-precision FEAT_FP16

1 UNALLOCATED -

Floating-point data-processing (3 source)

These instructions are under Data Processing – Scalar Floating-Point and Advanced SIMD.

M

31

0

30

S

29

1 1 1 1 1

28 24

ptype

23 22

o1

21

Rm

20 16

o0

15

Ra

14 10

Rn

9 5

Rd

4 0

M S ptype o1 o0 Instruction Details Feature

10 UNALLOCATED -

1 UNALLOCATED -

0 0 00 0 0 FMADD — single-precision -

0 0 00 0 1 FMSUB — single-precision -

0 0 00 1 0 FNMADD — single-precision -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1097

Chapter 4. Instruction definitions
4.5. Index by encoding

M S ptype o1 o0 Instruction Details Feature

0 0 00 1 1 FNMSUB — single-precision -

0 0 01 0 0 FMADD — double-precision -

0 0 01 0 1 FMSUB — double-precision -

0 0 01 1 0 FNMADD — double-precision -

0 0 01 1 1 FNMSUB — double-precision -

0 0 11 0 0 FMADD — half-precision FEAT_FP16

0 0 11 0 1 FMSUB — half-precision FEAT_FP16

0 0 11 1 0 FNMADD — half-precision FEAT_FP16

0 0 11 1 1 FNMSUB — half-precision FEAT_FP16

1 UNALLOCATED -

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1098

Chapter 5
Pseudocode definitions

This chapter contains pseudocode that describes many features of the Morello architecture.

See also:

• Appendix K13, Arm Pseudocode Definition, Arm® Architecture Reference Manual, Armv8-A: additional
information for understanding the Arm pseudocode.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1099

Chapter 5. Pseudocode definitions
5.1. aarch64/debug/breakpoint/AArch64.BreakpointMatch

5.1 aarch64/debug/breakpoint/AArch64.BreakpointMatch

1 // AArch64.BreakpointMatch()
2 // =========================
3 // Breakpoint matching in an AArch64 translation regime.
4
5 boolean AArch64.BreakpointMatch(integer n, bits(64) vaddress, integer size)
6 assert !ELUsingAArch32(S1TranslationRegime());
7 assert n <= UInt(ID_AA64DFR0_EL1.BRPs);
8
9 enabled = DBGBCR_EL1[n].E == '1';

10 ispriv = PSTATE.EL != EL0;
11 linked = DBGBCR_EL1[n].BT == '0x01';
12 isbreakpnt = TRUE;
13 linked_to = FALSE;
14
15 state_match = AArch64.StateMatch(DBGBCR_EL1[n].SSC, DBGBCR_EL1[n].HMC, DBGBCR_EL1[n].PMC,
16 linked, DBGBCR_EL1[n].LBN, isbreakpnt, ispriv);
17 value_match = AArch64.BreakpointValueMatch(n, vaddress, linked_to);
18
19 if HaveAnyAArch32() && size == 4 then // Check second halfword
20 // If the breakpoint address and BAS of an Address breakpoint match the address of the
21 // second halfword of an instruction, but not the address of the first halfword, it is
22 // CONSTRAINED UNPREDICTABLE whether or not this breakpoint generates a Breakpoint debug
23 // event.
24 match_i = AArch64.BreakpointValueMatch(n, vaddress + 2, linked_to);
25 if !value_match && match_i then
26 value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
27
28 if vaddress<1> == '1' && DBGBCR_EL1[n].BAS == '1111' then
29 // The above notwithstanding, if DBGBCR_EL1[n].BAS == '1111', then it is CONSTRAINED
30 // UNPREDICTABLE whether or not a Breakpoint debug event is generated for an instruction
31 // at the address DBGBVR_EL1[n]+2.
32 if value_match then value_match = ConstrainUnpredictableBool(Unpredictable_BPMATCHHALF);
33
34 match = value_match && state_match && enabled;
35
36 return match;

5.2 aarch64/debug/breakpoint/AArch64.BreakpointValueMatch

1 // AArch64.BreakpointValueMatch()
2 // ==============================
3
4 boolean AArch64.BreakpointValueMatch(integer n, bits(64) vaddress, boolean linked_to)
5
6 // "n" is the identity of the breakpoint unit to match against.
7 // "vaddress" is the current instruction address, ignored if linked_to is TRUE and for Context
8 // matching breakpoints.
9 // "linked_to" is TRUE if this is a call from StateMatch for linking.

10
11 // If a non-existent breakpoint then it is CONSTRAINED UNPREDICTABLE whether this gives
12 // no match or the breakpoint is mapped to another UNKNOWN implemented breakpoint.
13 if n > UInt(ID_AA64DFR0_EL1.BRPs) then
14 (c, n) = ConstrainUnpredictableInteger(0, UInt(ID_AA64DFR0_EL1.BRPs), Unpredictable_BPNOTIMPL);
15 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
16 if c == Constraint_DISABLED then return FALSE;
17
18 // If this breakpoint is not enabled, it cannot generate a match. (This could also happen on a
19 // call from StateMatch for linking).
20 if DBGBCR_EL1[n].E == '0' then return FALSE;
21
22 context_aware = (n >= UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));
23
24 // If BT is set to a reserved type, behaves either as disabled or as a not-reserved type.
25 dbgtype = DBGBCR_EL1[n].BT;
26
27 if ((dbgtype IN {'011x','11xx'} && !HaveVirtHostExt()) || // Context matching
28 dbgtype == '010x' || // Reserved
29 (dbgtype != '0x0x' && !context_aware) || // Context matching
30 (dbgtype == '1xxx' && !HaveEL(EL2))) then // EL2 extension
31 (c, dbgtype) = ConstrainUnpredictableBits(Unpredictable_RESBPTYPE);
32 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
33 if c == Constraint_DISABLED then return FALSE;
34 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value
35
36 // Determine what to compare against.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1100

Chapter 5. Pseudocode definitions
5.3. aarch64/debug/breakpoint/AArch64.StateMatch

37 match_addr = (dbgtype == '0x0x');
38 match_vmid = (dbgtype == '10xx');
39 match_cid = (dbgtype == '001x');
40 match_cid1 = (dbgtype IN { '101x', 'x11x'});
41 match_cid2 = (dbgtype == '11xx');
42 linked = (dbgtype == 'xxx1');
43
44 // If this is a call from StateMatch, return FALSE if the breakpoint is not programmed for a
45 // VMID and/or context ID match, of if not context-aware. The above assertions mean that the
46 // code can just test for match_addr == TRUE to confirm all these things.
47 if linked_to && (!linked || match_addr) then return FALSE;
48
49 // If called from BreakpointMatch return FALSE for Linked context ID and/or VMID matches.
50 if !linked_to && linked && !match_addr then return FALSE;
51
52 // Do the comparison.
53 if match_addr then
54 byte = UInt(vaddress<1:0>);
55 if HaveAnyAArch32() then
56 // T32 instructions can be executed at EL0 in an AArch64 translation regime.
57 assert byte IN {0,2}; // "vaddress" is halfword aligned
58 byte_select_match = (DBGBCR_EL1[n].BAS<byte> == '1');
59 else
60 assert byte == 0; // "vaddress" is word aligned
61 byte_select_match = TRUE; // DBGBCR_EL1[n].BAS<byte> is RES1
62 top = AddrTop(vaddress, PSTATE.EL);
63 BVR_match = vaddress<top:2> == DBGBVR_EL1[n]<top:2> && byte_select_match;
64 elsif match_cid then
65 if IsInHost() then
66 BVR_match = (CONTEXTIDR_EL2 == DBGBVR_EL1[n]<31:0>);
67 else
68 BVR_match = (PSTATE.EL IN {EL0, EL1} && CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
69 elsif match_cid1 then
70 BVR_match = (PSTATE.EL IN {EL0, EL1} && !IsInHost() && CONTEXTIDR_EL1 == DBGBVR_EL1[n]<31:0>);
71 if match_vmid then
72 if !Have16bitVMID() || VTCR_EL2.VS == '0' then
73 vmid = ZeroExtend(VTTBR_EL2.VMID<7:0>, 16);
74 bvr_vmid = ZeroExtend(DBGBVR_EL1[n]<39:32>, 16);
75 else
76 vmid = VTTBR_EL2.VMID;
77 bvr_vmid = DBGBVR_EL1[n]<47:32>;
78 BXVR_match = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
79 !IsInHost() &&
80 vmid == bvr_vmid);
81 elsif match_cid2 then
82 BXVR_match = (!IsSecure() && HaveVirtHostExt() &&
83 DBGBVR_EL1[n]<63:32> == CONTEXTIDR_EL2);
84
85 bvr_match_valid = (match_addr || match_cid || match_cid1);
86 bxvr_match_valid = (match_vmid || match_cid2);
87
88 match = (!bxvr_match_valid || BXVR_match) && (!bvr_match_valid || BVR_match);
89
90 return match;

5.3 aarch64/debug/breakpoint/AArch64.StateMatch

1 // AArch64.StateMatch()
2 // ====================
3 // Determine whether a breakpoint or watchpoint is enabled in the current mode and state.
4
5 boolean AArch64.StateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean linked, bits(4) LBN,
6 boolean isbreakpnt, boolean ispriv)
7 // "SSC", "HMC", "PxC" are the control fields from the DBGBCR[n] or DBGWCR[n] register.
8 // "linked" is TRUE if this is a linked breakpoint/watchpoint type.
9 // "LBN" is the linked breakpoint number from the DBGBCR[n] or DBGWCR[n] register.

10 // "isbreakpnt" is TRUE for breakpoints, FALSE for watchpoints.
11 // "ispriv" is valid for watchpoints, and selects between privileged and unprivileged accesses.
12
13 // If parameters are set to a reserved type, behaves as either disabled or a defined type
14 (c, SSC, HMC, PxC) = CheckValidStateMatch(SSC, HMC, PxC, isbreakpnt);
15 if c == Constraint_DISABLED then return FALSE;
16 // Otherwise the HMC,SSC,PxC values are either valid or the values returned by
17 // CheckValidStateMatch are valid.
18
19 EL3_match = HaveEL(EL3) && HMC == '1' && SSC<0> == '0';
20 EL2_match = HaveEL(EL2) && ((HMC == '1' && (SSC:PxC != '1000')) || SSC == '11');
21 EL1_match = PxC<0> == '1';
22 EL0_match = PxC<1> == '1';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1101

Chapter 5. Pseudocode definitions
5.4. aarch64/debug/enables/AArch64.GenerateDebugExceptions

23
24 if !ispriv && !isbreakpnt then
25 priv_match = EL0_match;
26 else
27 case PSTATE.EL of
28 when EL3 priv_match = EL3_match;
29 when EL2 priv_match = EL2_match;
30 when EL1 priv_match = EL1_match;
31 when EL0 priv_match = EL0_match;
32
33 case SSC of
34 when '00' security_state_match = TRUE; // Both
35 when '01' security_state_match = !IsSecure(); // Non-secure only
36 when '10' security_state_match = IsSecure(); // Secure only
37 when '11' security_state_match = (HMC == '1' || IsSecure()); // HMC=1 -> Both, 0 -> Secure only
38
39 if linked then
40 // "LBN" must be an enabled context-aware breakpoint unit. If it is not context-aware then
41 // it is CONSTRAINED UNPREDICTABLE whether this gives no match, or LBN is mapped to some
42 // UNKNOWN breakpoint that is context-aware.
43 lbn = UInt(LBN);
44 first_ctx_cmp = (UInt(ID_AA64DFR0_EL1.BRPs) - UInt(ID_AA64DFR0_EL1.CTX_CMPs));
45 last_ctx_cmp = UInt(ID_AA64DFR0_EL1.BRPs);
46 if (lbn < first_ctx_cmp || lbn > last_ctx_cmp) then
47 (c, lbn) = ConstrainUnpredictableInteger(first_ctx_cmp, last_ctx_cmp,

↪→Unpredictable_BPNOTCTXCMP);
48 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
49 case c of
50 when Constraint_DISABLED return FALSE; // Disabled
51 when Constraint_NONE linked = FALSE; // No linking
52 // Otherwise ConstrainUnpredictableInteger returned a context-aware breakpoint
53
54 if linked then
55 vaddress = bits(64) UNKNOWN;
56 linked_to = TRUE;
57 linked_match = AArch64.BreakpointValueMatch(lbn, vaddress, linked_to);
58
59 return priv_match && security_state_match && (!linked || linked_match);

5.4 aarch64/debug/enables/AArch64.GenerateDebugExceptions

1 // AArch64.GenerateDebugExceptions()
2 // =================================
3
4 boolean AArch64.GenerateDebugExceptions()
5 return AArch64.GenerateDebugExceptionsFrom(PSTATE.EL, IsSecure(), PSTATE.D);

5.5 aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom

1 // AArch64.GenerateDebugExceptionsFrom()
2 // =====================================
3
4 boolean AArch64.GenerateDebugExceptionsFrom(bits(2) from, boolean secure, bit mask)
5
6 if OSLSR_EL1.OSLK == '1' || DoubleLockStatus() || Halted() then
7 return FALSE;
8
9 route_to_el2 = HaveEL(EL2) && !secure && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');

10 target = (if route_to_el2 then EL2 else EL1);
11
12 enabled = !HaveEL(EL3) || !secure || MDCR_EL3.SDD == '0';
13
14 if from == target then
15 enabled = enabled && MDSCR_EL1.KDE == '1' && mask == '0';
16 else
17 enabled = enabled && UInt(target) > UInt(from);
18
19 return enabled;

5.6 aarch64/debug/pmu/AArch64.CheckForPMUOverflow

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1102

Chapter 5. Pseudocode definitions
5.7. aarch64/debug/pmu/AArch64.CountEvents

1 // AArch64.CheckForPMUOverflow()
2 // =============================
3 // Signal Performance Monitors overflow IRQ and CTI overflow events
4
5 boolean AArch64.CheckForPMUOverflow()
6
7 pmuirq = PMCR_EL0.E == '1' && PMINTENSET_EL1<31> == '1' && PMOVSSET_EL0<31> == '1';
8 for n = 0 to UInt(PMCR_EL0.N) - 1
9 if HaveEL(EL2) then

10 E = (if n < UInt(MDCR_EL2.HPMN) then PMCR_EL0.E else MDCR_EL2.HPME);
11 else
12 E = PMCR_EL0.E;
13 if E == '1' && PMINTENSET_EL1<n> == '1' && PMOVSSET_EL0<n> == '1' then pmuirq = TRUE;
14
15 SetInterruptRequestLevel(InterruptID_PMUIRQ, if pmuirq then HIGH else LOW);
16
17 CTI_SetEventLevel(CrossTriggerIn_PMUOverflow, if pmuirq then HIGH else LOW);
18
19 // The request remains set until the condition is cleared. (For example, an interrupt handler
20 // or cross-triggered event handler clears the overflow status flag by writing to PMOVSCLR_EL0.)
21
22 return pmuirq;

5.7 aarch64/debug/pmu/AArch64.CountEvents

1 // AArch64.CountEvents()
2 // =====================
3 // Return TRUE if counter "n" should count its event. For the cycle counter, n == 31.
4
5 boolean AArch64.CountEvents(integer n)
6 assert n == 31 || n < UInt(PMCR_EL0.N);
7
8 // Event counting is disabled in Debug state
9 debug = Halted();

10
11 // In Non-secure state, some counters are reserved for EL2
12 if HaveEL(EL2) then
13 E = if n < UInt(MDCR_EL2.HPMN) || n == 31 then PMCR_EL0.E else MDCR_EL2.HPME;
14 else
15 E = PMCR_EL0.E;
16 enabled = E == '1' && PMCNTENSET_EL0<n> == '1';
17
18 // Event counting in Secure state is prohibited unless any one of:
19 // * EL3 is not implemented
20 // * EL3 is using AArch64 and MDCR_EL3.SPME == 1
21 prohibited = HaveEL(EL3) && IsSecure() && MDCR_EL3.SPME == '0';
22
23 // Event counting at EL2 is prohibited if all of:
24 // * The HPMD Extension is implemented
25 // * Executing at EL2
26 // * PMNx is not reserved for EL2
27 // * MDCR_EL2.HPMD == 1
28 if !prohibited && HaveEL(EL2) && HaveHPMDExt() && PSTATE.EL == EL2 && (n < UInt(MDCR_EL2.HPMN) || n ==

↪→31) then
29 prohibited = (MDCR_EL2.HPMD == '1');
30
31 // The IMPLEMENTATION DEFINED authentication interface might override software controls
32 if prohibited && !HaveNoSecurePMUDisableOverride() then
33 prohibited = !ExternalSecureNoninvasiveDebugEnabled();
34 // For the cycle counter, PMCR_EL0.DP enables counting when otherwise prohibited
35 if prohibited && n == 31 then prohibited = (PMCR_EL0.DP == '1');
36
37 // Event counting can be filtered by the {P, U, NSK, NSU, NSH, M} bits
38 filter = if n == 31 then PMCCFILTR_EL0[31:0] else PMEVTYPER_EL0[n]<31:0>;
39
40 P = filter<31>;
41 U = filter<30>;
42 NSK = if HaveEL(EL3) then filter<29> else '0';
43 NSU = if HaveEL(EL3) then filter<28> else '0';
44 NSH = if HaveEL(EL2) then filter<27> else '0';
45 M = if HaveEL(EL3) then filter<26> else '0';
46
47 case PSTATE.EL of
48 when EL0 filtered = if IsSecure() then U == '1' else U != NSU;
49 when EL1 filtered = if IsSecure() then P == '1' else P != NSK;
50 when EL2 filtered = (NSH == '0');
51 when EL3 filtered = (M != P);
52
53 return !debug && enabled && !prohibited && !filtered;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1103

Chapter 5. Pseudocode definitions
5.8. aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess

5.8 aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess

1 // CheckProfilingBufferAccess()
2 // ============================
3
4 SysRegAccess CheckProfilingBufferAccess()
5 if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then
6 return SysRegAccess_UNDEFINED;
7
8 if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.E2PB<0> != '1' then
9 return SysRegAccess_TrapToEL2;

10
11 if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
12 return SysRegAccess_TrapToEL3;
13
14 return SysRegAccess_OK;

5.9 aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess

1 // CheckStatisticalProfilingAccess()
2 // =================================
3
4 SysRegAccess CheckStatisticalProfilingAccess()
5 if !HaveStatisticalProfiling() || PSTATE.EL == EL0 || UsingAArch32() then
6 return SysRegAccess_UNDEFINED;
7
8 if PSTATE.EL == EL1 && EL2Enabled() && MDCR_EL2.TPMS == '1' then
9 return SysRegAccess_TrapToEL2;

10
11 if HaveEL(EL3) && PSTATE.EL != EL3 && MDCR_EL3.NSPB != SCR_EL3.NS:'1' then
12 return SysRegAccess_TrapToEL3;
13
14 return SysRegAccess_OK;

5.10 aarch64/debug/statisticalprofiling/CollectContextIDR1

1 // CollectContextIDR1()
2 // ====================
3
4 boolean CollectContextIDR1()
5 if !StatisticalProfilingEnabled() then return FALSE;
6 if PSTATE.EL == EL2 then return FALSE;
7 if EL2Enabled() && HCR_EL2.TGE == '1' then return FALSE;
8 return PMSCR_EL1.CX == '1';

5.11 aarch64/debug/statisticalprofiling/CollectContextIDR2

1 // CollectContextIDR2()
2 // ====================
3
4 boolean CollectContextIDR2()
5 if !StatisticalProfilingEnabled() then return FALSE;
6 if EL2Enabled() then return FALSE;
7 return PMSCR_EL2.CX == '1';

5.12 aarch64/debug/statisticalprofiling/CollectPhysicalAddress

1 // CollectPhysicalAddress()
2 // ========================
3
4 boolean CollectPhysicalAddress()
5 if !StatisticalProfilingEnabled() then return FALSE;
6 (secure, el) = ProfilingBufferOwner();
7 if !secure && HaveEL(EL2) then
8 return PMSCR_EL2.PA == '1' && (el == EL2 || PMSCR_EL1.PA == '1');
9 else

10 return PMSCR_EL1.PA == '1';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1104

Chapter 5. Pseudocode definitions
5.13. aarch64/debug/statisticalprofiling/CollectRecord

5.13 aarch64/debug/statisticalprofiling/CollectRecord

1 // CollectRecord()
2 // ===============
3
4 boolean CollectRecord(bits(64) events, integer total_latency, OpType optype)
5 assert StatisticalProfilingEnabled();
6
7 // Filtering by event
8 if PMSFCR_EL1.FE == '1' && !IsZero(PMSEVFR_EL1) then
9 bits(64) mask = 0xFFFF0000FF00F0AA<63:0>; // Bits [63:48,31:24,15:12,7,5,3,1]

10 if HaveStatisticalProfiling() then
11 mask<11> = '1'; // Alignment flag
12 e = events AND mask;
13 m = PMSEVFR_EL1 AND mask;
14 if !IsZero(NOT(e) AND m) then return FALSE;
15
16 // Filtering by type
17 if PMSFCR_EL1.FT == '1' && !IsZero(PMSFCR_EL1.<B,LD,ST>) then
18 case optype of
19 when OpType_Branch
20 if PMSFCR_EL1.B == '0' then return FALSE;
21 when OpType_Load
22 if PMSFCR_EL1.LD == '0' then return FALSE;
23 when OpType_Store
24 if PMSFCR_EL1.ST == '0' then return FALSE;
25 when OpType_LoadAtomic
26 if PMSFCR_EL1.<LD,ST> == '00' then return FALSE;
27 otherwise
28 return FALSE;
29
30 // Filtering by latency
31 if PMSFCR_EL1.FL == '1' && !IsZero(PMSLATFR_EL1.MINLAT) then
32 if total_latency < UInt(PMSLATFR_EL1.MINLAT) then
33 return FALSE;
34
35 // Check for UNPREDICTABLE cases
36 if ((PMSFCR_EL1.FE == '1' && !IsZero(PMSEVFR_EL1)) ||
37 (PMSFCR_EL1.FT == '1' && !IsZero(PMSFCR_EL1.<B,LD,ST>)) ||
38 (PMSFCR_EL1.FL == '1' && !IsZero(PMSLATFR_EL1.MINLAT))) then
39 return ConstrainUnpredictableBool(Unpredictable_BADPMSFCR);
40
41 return TRUE;

5.14 aarch64/debug/statisticalprofiling/CollectTimeStamp

1 // CollectTimeStamp()
2 // ==================
3
4 TimeStamp CollectTimeStamp()
5 if !StatisticalProfilingEnabled() then return TimeStamp_None;
6 (secure, el) = ProfilingBufferOwner();
7 if el == EL2 then
8 if PMSCR_EL2.TS == '0' then return TimeStamp_None;
9 else

10 if PMSCR_EL1.TS == '0' then return TimeStamp_None;
11 if EL2Enabled() then
12 pct = PMSCR_EL2.PCT == '01' && (el == EL2 || PMSCR_EL1.PCT == '01');
13 else
14 pct = PMSCR_EL1.PCT == '01';
15 return (if pct then TimeStamp_Physical else TimeStamp_Virtual);

5.15 aarch64/debug/statisticalprofiling/OpType

1 enumeration OpType {
2 OpType_Load, // Any memory-read operation other than atomics, compare-and-swap, and swap
3 OpType_Store, // Any memory-write operation, including atomics without return
4 OpType_LoadAtomic, // Atomics with return, compare-and-swap and swap
5 OpType_Branch, // Software write to the PC
6 OpType_Other // Any other class of operation
7 };

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1105

Chapter 5. Pseudocode definitions
5.16. aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

5.16 aarch64/debug/statisticalprofiling/ProfilingBufferEnabled

1 // ProfilingBufferEnabled()
2 // ========================
3
4 boolean ProfilingBufferEnabled()
5 if !HaveStatisticalProfiling() then return FALSE;
6 (secure, el) = ProfilingBufferOwner();
7 non_secure_bit = if secure then '0' else '1';
8 return (!ELUsingAArch32(el) && non_secure_bit == SCR_EL3.NS &&
9 PMBLIMITR_EL1.E == '1' && PMBSR_EL1.S == '0');

5.17 aarch64/debug/statisticalprofiling/ProfilingBufferOwner

1 // ProfilingBufferOwner()
2 // ======================
3
4 (boolean, bits(2)) ProfilingBufferOwner()
5 secure = if HaveEL(EL3) then (MDCR_EL3.NSPB<1> == '0') else IsSecure();
6 el = if !secure && HaveEL(EL2) && MDCR_EL2.E2PB == '00' then EL2 else EL1;
7 return (secure, el);

5.18 aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier

1 // Barrier to ensure that all existing profiling data has been formatted, and profiling buffer
2 // addresses have been translated such that writes to the profiling buffer have been initiated.
3 // A following DSB completes when writes to the profiling buffer have completed.
4 ProfilingSynchronizationBarrier();

5.19 aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled

1 // StatisticalProfilingEnabled()
2 // =============================
3
4 boolean StatisticalProfilingEnabled()
5 if !HaveStatisticalProfiling() || UsingAArch32() || !ProfilingBufferEnabled() then
6 return FALSE;
7
8 in_host = EL2Enabled() && HCR_EL2.TGE == '1';
9 (secure, el) = ProfilingBufferOwner();

10 if UInt(el) < UInt(PSTATE.EL) || secure != IsSecure() || (in_host && el == EL1) then
11 return FALSE;
12
13 case PSTATE.EL of
14 when EL3 Unreachable();
15 when EL2 spe_bit = PMSCR_EL2.E2SPE;
16 when EL1 spe_bit = PMSCR_EL1.E1SPE;
17 when EL0 spe_bit = (if in_host then PMSCR_EL2.E0HSPE else PMSCR_EL1.E0SPE);
18
19 return spe_bit == '1';

5.20 aarch64/debug/statisticalprofiling/SysRegAccess

1 enumeration SysRegAccess { SysRegAccess_OK,
2 SysRegAccess_UNDEFINED,
3 SysRegAccess_TrapToEL1,
4 SysRegAccess_TrapToEL2,
5 SysRegAccess_TrapToEL3 };

5.21 aarch64/debug/statisticalprofiling/TimeStamp

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1106

Chapter 5. Pseudocode definitions
5.22. aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

1 enumeration TimeStamp {
2 TimeStamp_None, // No timestamp
3 TimeStamp_CoreSight, // CoreSight time (IMPLEMENTATION DEFINED)
4 TimeStamp_Virtual, // Physical counter value minus CNTVOFF_EL2
5 TimeStamp_Physical }; // Physical counter value with no offset

5.22 aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState

1 // AArch64.TakeExceptionInDebugState()
2 // ===================================
3 // Take an exception in Debug state to an Exception Level using AArch64.
4
5 AArch64.TakeExceptionInDebugState(bits(2) target_el, ExceptionRecord exception)
6 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
7
8 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
9 // SCTLR[].IESB might be ignored in Debug state.

10 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
11 sync_errors = FALSE;
12
13 SynchronizeContext();
14
15 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
16 from_32 = UsingAArch32();
17 if from_32 then AArch64.MaybeZeroRegisterUppers();
18
19 AArch64.ReportException(exception, target_el);
20
21 PSTATE.EL = target_el;
22 PSTATE.nRW = '0';
23 PSTATE.SP = '1';
24
25 SPSR[] = bits(32) UNKNOWN;
26
27 if IsAccessToCapabilitiesEnabledAtEL(PSTATE.EL) then
28 CELR[] = CapSetValue(PCC, bits(64) UNKNOWN);
29 else
30 ELR[] = bits(64) UNKNOWN;
31
32 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if UNKNOWN.
33 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
34 PSTATE.IL = '0';
35 if from_32 then // Coming from AArch32
36 PSTATE.IT = '00000000';
37 PSTATE.T = '0'; // PSTATE.J is RES0
38 if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
39 SCTLR[].SPAN == '0') then
40 PSTATE.PAN = '1';
41 if HaveUAOExt() then PSTATE.UAO = '0';
42 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;
43
44 DSPSR_EL0 = bits(32) UNKNOWN;
45 CDLR_EL0 = Capability UNKNOWN;
46
47 EDSCR.ERR = '1';
48 UpdateEDSCRFields(); // Update EDSCR processor state flags.
49
50 if sync_errors then
51 SynchronizeErrors();
52
53 EndOfInstruction();

5.23 aarch64/debug/watchpoint/AArch64.WatchpointByteMatch

1 // AArch64.WatchpointByteMatch()
2 // =============================
3
4 boolean AArch64.WatchpointByteMatch(integer n, bits(64) vaddress)
5
6 el = PSTATE.EL;
7 top = AddrTop(vaddress, el);
8 bottom = if DBGWVR_EL1[n]<2> == '1' then 2 else 3; // Word or doubleword
9 byte_select_match = (DBGWCR_EL1[n].BAS<UInt(vaddress<bottom-1:0>)> != '0');

10 mask = UInt(DBGWCR_EL1[n].MASK);
11

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1107

Chapter 5. Pseudocode definitions
5.24. aarch64/debug/watchpoint/AArch64.WatchpointMatch

12 // If DBGWCR_EL1[n].MASK is non-zero value and DBGWCR_EL1[n].BAS is not set to '11111111', or
13 // DBGWCR_EL1[n].BAS specifies a non-contiguous set of bytes behavior is CONSTRAINED
14 // UNPREDICTABLE.
15 if mask > 0 && !IsOnes(DBGWCR_EL1[n].BAS) then
16 byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPMASKANDBAS);
17 else
18 LSB = (DBGWCR_EL1[n].BAS AND NOT(DBGWCR_EL1[n].BAS - 1)); MSB = (DBGWCR_EL1[n].BAS + LSB);
19 if !IsZero(MSB AND (MSB - 1)) then // Not contiguous
20 byte_select_match = ConstrainUnpredictableBool(Unpredictable_WPBASCONTIGUOUS);
21 bottom = 3; // For the whole doubleword
22
23 // If the address mask is set to a reserved value, the behavior is CONSTRAINED UNPREDICTABLE.
24 if mask > 0 && mask <= 2 then
25 (c, mask) = ConstrainUnpredictableInteger(3, 31, Unpredictable_RESWPMASK);
26 assert c IN {Constraint_DISABLED, Constraint_NONE, Constraint_UNKNOWN};
27 case c of
28 when Constraint_DISABLED return FALSE; // Disabled
29 when Constraint_NONE mask = 0; // No masking
30 // Otherwise the value returned by ConstrainUnpredictableInteger is a not-reserved value
31
32 if mask > bottom then
33 WVR_match = (vaddress<top:mask> == DBGWVR_EL1[n]<top:mask>);
34 // If masked bits of DBGWVR_EL1[n] are not zero, the behavior is CONSTRAINED UNPREDICTABLE.
35 if WVR_match && !IsZero(DBGWVR_EL1[n]<mask-1:bottom>) then
36 WVR_match = ConstrainUnpredictableBool(Unpredictable_WPMASKEDBITS);
37 else
38 WVR_match = vaddress<top:bottom> == DBGWVR_EL1[n]<top:bottom>;
39
40 return WVR_match && byte_select_match;

5.24 aarch64/debug/watchpoint/AArch64.WatchpointMatch

1 // AArch64.WatchpointMatch()
2 // =========================
3 // Watchpoint matching in an AArch64 translation regime.
4
5 boolean AArch64.WatchpointMatch(integer n, bits(64) vaddress, integer size, boolean ispriv,
6 boolean iswrite)
7 assert !ELUsingAArch32(S1TranslationRegime());
8 assert n <= UInt(ID_AA64DFR0_EL1.WRPs);
9

10 // "ispriv" is FALSE for LDTR/STTR instructions executed at EL1 and all
11 // load/stores at EL0, TRUE for all other load/stores. "iswrite" is TRUE for stores, FALSE for
12 // loads.
13 enabled = DBGWCR_EL1[n].E == '1';
14 linked = DBGWCR_EL1[n].WT == '1';
15 isbreakpnt = FALSE;
16
17 state_match = AArch64.StateMatch(DBGWCR_EL1[n].SSC, DBGWCR_EL1[n].HMC, DBGWCR_EL1[n].PAC,
18 linked, DBGWCR_EL1[n].LBN, isbreakpnt, ispriv);
19
20 ls_match = (DBGWCR_EL1[n].LSC<(if iswrite then 1 else 0)> == '1');
21
22 value_match = FALSE;
23 for byte = 0 to size - 1
24 value_match = value_match || AArch64.WatchpointByteMatch(n, vaddress + byte);
25
26 return value_match && state_match && ls_match && enabled;

5.25 aarch64/exceptions/aborts/AArch64.Abort

1 // AArch64.Abort()
2 // ===============
3 // Abort and Debug exception handling in an AArch64 translation regime.
4
5 AArch64.Abort(bits(64) vaddress, FaultRecord fault)
6
7 if IsDebugException(fault) then
8 if fault.acctype == AccType_IFETCH then
9 AArch64.BreakpointException(fault);

10 else
11 AArch64.WatchpointException(vaddress, fault);
12 elsif fault.acctype == AccType_IFETCH then
13 AArch64.InstructionAbort(vaddress, fault);
14 else
15 AArch64.DataAbort(vaddress, fault);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1108

Chapter 5. Pseudocode definitions
5.26. aarch64/exceptions/aborts/AArch64.AbortSyndrome

5.26 aarch64/exceptions/aborts/AArch64.AbortSyndrome

1 // AArch64.AbortSyndrome()
2 // =======================
3 // Creates an exception syndrome record for Abort and Watchpoint exceptions
4 // from an AArch64 translation regime.
5
6 ExceptionRecord AArch64.AbortSyndrome(Exception exceptype, FaultRecord fault, bits(64) vaddress)
7 exception = ExceptionSyndrome(exceptype);
8
9 d_side = exceptype IN {Exception_DataAbort, Exception_Watchpoint};

10
11 exception.syndrome = AArch64.FaultSyndrome(d_side, fault);
12 exception.vaddress = ZeroExtend(vaddress);
13 if IPAValid(fault) then
14 exception.ipavalid = TRUE;
15 exception.ipaddress = fault.ipaddress;
16 else
17 exception.ipavalid = FALSE;
18
19 return exception;

5.27 aarch64/exceptions/aborts/AArch64.CheckPCAlignment

1 // AArch64.CheckPCAlignment()
2 // ==========================
3
4 AArch64.CheckPCAlignment()
5
6 bits(64) pc = ThisInstrAddr();
7 if pc<1:0> != '00' then
8 AArch64.PCAlignmentFault();

5.28 aarch64/exceptions/aborts/AArch64.DataAbort

1 // AArch64.DataAbort()
2 // ===================
3
4 AArch64.DataAbort(bits(64) vaddress, FaultRecord fault)
5
6 bits(2) cap_target_el;
7 if fault.statuscode IN {Fault_CapTag, Fault_CapSeal, Fault_CapPerm, Fault_CapBounds} then
8 cap_target_el = TargetELForCapabilityExceptions();
9 else

10 cap_target_el = EL0;
11 route_to_el3 = (HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault)) || (cap_target_el == EL3);
12 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() && (HCR_EL2.TGE == '1' ||
13 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault)) ||
14 (cap_target_el == EL2) ||
15 IsSecondStage(fault)));
16
17 bits(64) preferred_exception_return = ThisInstrAddr();
18 vect_offset = 0x0;
19 exception = AArch64.AbortSyndrome(Exception_DataAbort, fault, vaddress);
20 if PSTATE.EL == EL3 || route_to_el3 then
21 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
22 elsif PSTATE.EL == EL2 || route_to_el2 then
23 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
24 else
25 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.29 aarch64/exceptions/aborts/AArch64.InstructionAbort

1 // AArch64.InstructionAbort()
2 // ==========================
3
4 AArch64.InstructionAbort(bits(64) vaddress, FaultRecord fault)
5 bits(2) cap_target_el;
6 if fault.statuscode IN {Fault_CapTag, Fault_CapSeal, Fault_CapPerm, Fault_CapBounds} then
7 cap_target_el = TargetELForCapabilityExceptions();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1109

Chapter 5. Pseudocode definitions
5.30. aarch64/exceptions/aborts/AArch64.PCAlignmentFault

8 else
9 cap_target_el = EL0;

10 route_to_el3 = (HaveEL(EL3) && SCR_EL3.EA == '1' && IsExternalAbort(fault)) || (cap_target_el == EL3);
11 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
12 (HCR_EL2.TGE == '1' || IsSecondStage(fault) ||
13 (HaveRASExt() && HCR_EL2.TEA == '1' && IsExternalAbort(fault))));
14
15 bits(64) preferred_exception_return = ThisInstrAddr();
16 vect_offset = 0x0;
17
18 exception = AArch64.AbortSyndrome(Exception_InstructionAbort, fault, vaddress);
19
20 if PSTATE.EL == EL3 || route_to_el3 then
21 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
22 elsif PSTATE.EL == EL2 || route_to_el2 then
23 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
24 else
25 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.30 aarch64/exceptions/aborts/AArch64.PCAlignmentFault

1 // AArch64.PCAlignmentFault()
2 // ==========================
3 // Called on unaligned program counter in AArch64 state.
4
5 AArch64.PCAlignmentFault()
6
7 bits(64) preferred_exception_return = ThisInstrAddr();
8 vect_offset = 0x0;
9

10 exception = ExceptionSyndrome(Exception_PCAlignment);
11 exception.vaddress = ThisInstrAddr();
12
13 if UInt(PSTATE.EL) > UInt(EL1) then
14 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
15 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
16 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
17 else
18 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.31 aarch64/exceptions/aborts/AArch64.SPAlignmentFault

1 // AArch64.SPAlignmentFault()
2 // ==========================
3 // Called on an unaligned stack pointer in AArch64 state.
4
5 AArch64.SPAlignmentFault()
6
7 bits(64) preferred_exception_return = ThisInstrAddr();
8 vect_offset = 0x0;
9

10 exception = ExceptionSyndrome(Exception_SPAlignment);
11
12 if UInt(PSTATE.EL) > UInt(EL1) then
13 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
14 elsif EL2Enabled() && HCR_EL2.TGE == '1' then
15 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
16 else
17 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.32 aarch64/exceptions/aborts/CapabilityFault

1 // CapabilityFault()
2 // =================
3 // Generate a FaultRecord for a capability fault
4
5 FaultRecord CapabilityFault(Fault faulttype, AccType acctype, boolean iswrite)
6 ipaddress = bits(48) UNKNOWN;
7 level = integer UNKNOWN;
8 extflag = bit UNKNOWN;
9 secondstage = FALSE;

10 s2fs1walk = FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1110

Chapter 5. Pseudocode definitions
5.33. aarch64/exceptions/aborts/CheckCapability

11 extflag = bit UNKNOWN;
12 boolean ns = FALSE;
13 errortype = bits(2) UNKNOWN;
14 return AArch64.CreateFaultRecord(faulttype, ipaddress, level, acctype, iswrite,
15 extflag, errortype, secondstage, s2fs1walk);

5.33 aarch64/exceptions/aborts/CheckCapability

1 // CheckCapability()
2 // =================
3 // Check whether a capability is valid for accessing a given range of memory
4 // with a required set of permissions. If not generate an appropriate fault
5
6 bits(64) CheckCapability(Capability c, bits(64) address, integer size, bits(64) requested_perms, AccType

↪→acctype)
7
8 // The below replicates and condenses the logic used in address translation
9 // to recover the address as used for translation for input to bounds checks.

10 el = AArch64.AccessUsesEL(acctype);
11 msbit = AddrTop(address, el);
12 s1_enabled = AArch64.IsStageOneEnabled(acctype);
13 bits(64) addressforbounds = address;
14
15 if msbit != 63 then
16 if s1_enabled then
17 if (PSTATE.EL IN {EL0, EL1} || ELIsInHost(el)) && address<msbit> == '1' then
18 addressforbounds = SignExtend(address<msbit:0>);
19 else
20 addressforbounds = ZeroExtend(address<msbit:0>);
21 else
22 addressforbounds = ZeroExtend(address<msbit:0>);
23
24 Fault fault_type = Fault_None;
25 if CapIsTagClear(c) then
26 fault_type = Fault_CapTag;
27 elsif CapIsSealed(c) then
28 fault_type = Fault_CapSeal;
29 elsif !CapCheckPermissions(c, requested_perms) then
30 fault_type = Fault_CapPerm;
31 elsif ((requested_perms AND CAP_PERM_EXECUTE) != CAP_PERM_NONE) && !CapIsExecutePermitted(c) then
32 fault_type = Fault_CapPerm;
33 elsif !CapIsRangeInBounds(c, addressforbounds, size<64:0>) then
34 fault_type = Fault_CapBounds;
35
36 if fault_type != Fault_None then
37 boolean is_store = CapPermsInclude(requested_perms, CAP_PERM_STORE);
38 FaultRecord fault = CapabilityFault(fault_type, acctype, is_store);
39 AArch64.Abort(address, fault);
40
41 return address;

5.34 aarch64/exceptions/aborts/CheckPCCCapability

1 // CheckPCCCapability()
2 // ====================
3 // Check whether the current PCC is valid for instruction fetch and if not
4 // generate an appropriate fault
5
6 bits(64) CheckPCCCapability()
7 return CheckCapability(PCC, CapGetValue(PCC), 4, CAP_PERM_EXECUTE, AccType_IFETCH);

5.35 aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException

1 // AArch64.TakePhysicalFIQException()
2 // ==================================
3
4 AArch64.TakePhysicalFIQException()
5
6 route_to_el3 = HaveEL(EL3) && SCR_EL3.FIQ == '1';
7 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
8 (HCR_EL2.TGE == '1' || HCR_EL2.FMO == '1'));
9 bits(64) preferred_exception_return = ThisInstrAddr();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1111

Chapter 5. Pseudocode definitions
5.36. aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException

10 vect_offset = 0x100;
11 exception = ExceptionSyndrome(Exception_FIQ);
12
13 if route_to_el3 then
14 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
15 elsif PSTATE.EL == EL2 || route_to_el2 then
16 assert PSTATE.EL != EL3;
17 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
18 else
19 assert PSTATE.EL IN {EL0, EL1};
20 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.36 aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException

1 // AArch64.TakePhysicalIRQException()
2 // ==================================
3 // Take an enabled physical IRQ exception.
4
5 AArch64.TakePhysicalIRQException()
6
7 route_to_el3 = HaveEL(EL3) && SCR_EL3.IRQ == '1';
8 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
9 (HCR_EL2.TGE == '1' || HCR_EL2.IMO == '1'));

10 bits(64) preferred_exception_return = ThisInstrAddr();
11 vect_offset = 0x80;
12
13 exception = ExceptionSyndrome(Exception_IRQ);
14
15 if route_to_el3 then
16 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
17 elsif PSTATE.EL == EL2 || route_to_el2 then
18 assert PSTATE.EL != EL3;
19 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
20 else
21 assert PSTATE.EL IN {EL0, EL1};
22 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.37 aarch64/exceptions/asynch/AArch64.TakePhysicalSErrorException

1 // AArch64.TakePhysicalSErrorException()
2 // =====================================
3
4 AArch64.TakePhysicalSErrorException(boolean impdef_syndrome, bits(24) syndrome)
5
6 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';
7 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
8 (HCR_EL2.TGE == '1' || (!IsInHost() && HCR_EL2.AMO == '1')));
9 bits(64) preferred_exception_return = ThisInstrAddr();

10 vect_offset = 0x180;
11
12 exception = ExceptionSyndrome(Exception_SError);
13 exception.syndrome<24> = if impdef_syndrome then '1' else '0';
14 exception.syndrome<23:0> = syndrome;
15
16 ClearPendingPhysicalSError();
17
18 if PSTATE.EL == EL3 || route_to_el3 then
19 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
20 elsif PSTATE.EL == EL2 || route_to_el2 then
21 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
22 else
23 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.38 aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException

1 // AArch64.TakeVirtualFIQException()
2 // =================================
3
4 AArch64.TakeVirtualFIQException()
5 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
6 assert HCR_EL2.TGE == '0' && HCR_EL2.FMO == '1'; // Virtual IRQ enabled if TGE==0 and FMO==1
7

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1112

Chapter 5. Pseudocode definitions
5.39. aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException

8 bits(64) preferred_exception_return = ThisInstrAddr();
9 vect_offset = 0x100;

10
11 exception = ExceptionSyndrome(Exception_FIQ);
12
13 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.39 aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException

1 // AArch64.TakeVirtualIRQException()
2 // =================================
3
4 AArch64.TakeVirtualIRQException()
5 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
6 assert HCR_EL2.TGE == '0' && HCR_EL2.IMO == '1'; // Virtual IRQ enabled if TGE==0 and IMO==1
7
8 bits(64) preferred_exception_return = ThisInstrAddr();
9 vect_offset = 0x80;

10
11 exception = ExceptionSyndrome(Exception_IRQ);
12
13 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.40 aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException

1 // AArch64.TakeVirtualSErrorException()
2 // ====================================
3
4 AArch64.TakeVirtualSErrorException(boolean impdef_syndrome, bits(24) syndrome)
5
6 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
7 assert HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1'; // Virtual SError enabled if TGE==0 and AMO==1
8
9 bits(64) preferred_exception_return = ThisInstrAddr();

10 vect_offset = 0x180;
11
12 exception = ExceptionSyndrome(Exception_SError);
13 if HaveRASExt() then
14 exception.syndrome<24> = VSESR_EL2.IDS;
15 exception.syndrome<23:0> = VSESR_EL2.ISS;
16 else
17 exception.syndrome<24> = if impdef_syndrome then '1' else '0';
18 if impdef_syndrome then exception.syndrome<23:0> = syndrome;
19
20 ClearPendingVirtualSError();
21 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.41 aarch64/exceptions/debug/AArch64.BreakpointException

1 // AArch64.BreakpointException()
2 // =============================
3
4 AArch64.BreakpointException(FaultRecord fault)
5 assert PSTATE.EL != EL3;
6
7 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
8 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));
9

10 bits(64) preferred_exception_return = ThisInstrAddr();
11 vect_offset = 0x0;
12
13 vaddress = bits(64) UNKNOWN;
14 exception = AArch64.AbortSyndrome(Exception_Breakpoint, fault, vaddress);
15
16 if PSTATE.EL == EL2 || route_to_el2 then
17 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
18 else
19 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1113

Chapter 5. Pseudocode definitions
5.42. aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

5.42 aarch64/exceptions/debug/AArch64.SoftwareBreakpoint

1 // AArch64.SoftwareBreakpoint()
2 // ============================
3
4 AArch64.SoftwareBreakpoint(bits(16) immediate)
5
6 route_to_el2 = (PSTATE.EL IN {EL0, EL1} &&
7 EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));
8
9 bits(64) preferred_exception_return = ThisInstrAddr();

10 vect_offset = 0x0;
11
12 exception = ExceptionSyndrome(Exception_SoftwareBreakpoint);
13 exception.syndrome<15:0> = immediate;
14
15 if UInt(PSTATE.EL) > UInt(EL1) then
16 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
17 elsif route_to_el2 then
18 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
19 else
20 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.43 aarch64/exceptions/debug/AArch64.SoftwareStepException

1 // AArch64.SoftwareStepException()
2 // ===============================
3
4 AArch64.SoftwareStepException()
5 assert PSTATE.EL != EL3;
6
7 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
8 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));
9

10 bits(64) preferred_exception_return = ThisInstrAddr();
11 vect_offset = 0x0;
12
13 exception = ExceptionSyndrome(Exception_SoftwareStep);
14 if SoftwareStep_DidNotStep() then
15 exception.syndrome<24> = '0';
16 else
17 exception.syndrome<24> = '1';
18 exception.syndrome<6> = if SoftwareStep_SteppedEX() then '1' else '0';
19
20 if PSTATE.EL == EL2 || route_to_el2 then
21 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
22 else
23 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.44 aarch64/exceptions/debug/AArch64.VectorCatchException

1 // AArch64.VectorCatchException()
2 // ==============================
3 // Vector Catch taken from EL0 or EL1 to EL2. This can only be called when debug exceptions are
4 // being routed to EL2, as Vector Catch is a legacy debug event.
5
6 AArch64.VectorCatchException(FaultRecord fault)
7 assert PSTATE.EL != EL2;
8 assert EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1');
9

10 bits(64) preferred_exception_return = ThisInstrAddr();
11 vect_offset = 0x0;
12
13 vaddress = bits(64) UNKNOWN;
14 exception = AArch64.AbortSyndrome(Exception_VectorCatch, fault, vaddress);
15
16 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

5.45 aarch64/exceptions/debug/AArch64.WatchpointException

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1114

Chapter 5. Pseudocode definitions
5.46. aarch64/exceptions/exceptions/AArch64.ExceptionClass

1 // AArch64.WatchpointException()
2 // =============================
3
4 AArch64.WatchpointException(bits(64) vaddress, FaultRecord fault)
5 assert PSTATE.EL != EL3;
6
7 route_to_el2 = (PSTATE.EL IN {EL0, EL1} && EL2Enabled() &&
8 (HCR_EL2.TGE == '1' || MDCR_EL2.TDE == '1'));
9

10 bits(64) preferred_exception_return = ThisInstrAddr();
11 vect_offset = 0x0;
12
13 exception = AArch64.AbortSyndrome(Exception_Watchpoint, fault, vaddress);
14
15 if PSTATE.EL == EL2 || route_to_el2 then
16 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
17 else
18 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.46 aarch64/exceptions/exceptions/AArch64.ExceptionClass

1 // AArch64.ExceptionClass()
2 // ========================
3 // Returns the Exception Class and Instruction Length fields to be reported in ESR
4
5 (integer,bit) AArch64.ExceptionClass(Exception exceptype, bits(2) target_el)
6
7 il = if ThisInstrLength() == 32 then '1' else '0';
8 from_32 = UsingAArch32();
9 assert from_32 || il == '1'; // AArch64 instructions always 32-bit

10
11 case exceptype of
12 when Exception_Uncategorized ec = 0x00; il = '1';
13 when Exception_WFxTrap ec = 0x01;
14 when Exception_CP15RTTrap ec = 0x03; assert from_32;
15 when Exception_CP15RRTTrap ec = 0x04; assert from_32;
16 when Exception_CP14RTTrap ec = 0x05; assert from_32;
17 when Exception_CP14DTTrap ec = 0x06; assert from_32;
18 when Exception_AdvSIMDFPAccessTrap ec = 0x07;
19 when Exception_FPIDTrap ec = 0x08;
20 when Exception_CP14RRTTrap ec = 0x0C; assert from_32;
21 when Exception_IllegalState ec = 0x0E; il = '1';
22 when Exception_SupervisorCall ec = 0x11;
23 when Exception_HypervisorCall ec = 0x12;
24 when Exception_MonitorCall ec = 0x13;
25 when Exception_SystemRegisterTrap ec = 0x18; assert !from_32;
26 when Exception_InstructionAbort ec = 0x20; il = '1';
27 when Exception_PCAlignment ec = 0x22; il = '1';
28 when Exception_DataAbort ec = 0x24;
29 when Exception_SPAlignment ec = 0x26; il = '1'; assert !from_32;
30 when Exception_FPTrappedException ec = 0x28;
31 when Exception_CapabilityAccess ec = 0x29;
32 when Exception_CapabilitySysRegTrap ec = 0x2A;
33 when Exception_SError ec = 0x2F; il = '1';
34 when Exception_Breakpoint ec = 0x30; il = '1';
35 when Exception_SoftwareStep ec = 0x32; il = '1';
36 when Exception_Watchpoint ec = 0x34; il = '1';
37 when Exception_SoftwareBreakpoint ec = 0x38;
38 when Exception_VectorCatch ec = 0x3A; il = '1'; assert from_32;
39 otherwise Unreachable();
40
41 if ec IN {0x20,0x24,0x30,0x32,0x34} && target_el == PSTATE.EL then
42 ec = ec + 1;
43
44 if ec IN {0x11,0x12,0x13,0x28,0x38} && !from_32 then
45 ec = ec + 4;
46
47 return (ec,il);

5.47 aarch64/exceptions/exceptions/AArch64.ReportException

1 // AArch64.ReportException()
2 // =========================
3 // Report syndrome information for exception taken to AArch64 state.
4

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1115

Chapter 5. Pseudocode definitions
5.48. aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

5 AArch64.ReportException(ExceptionRecord exception, bits(2) target_el)
6
7 Exception exceptype = exception.exceptype;
8
9 (ec,il) = AArch64.ExceptionClass(exceptype, target_el);

10 iss = exception.syndrome;
11
12 // IL is not valid for Data Abort exceptions without valid instruction syndrome information
13 if ec IN {0x24,0x25} && iss<24> == '0' then
14 il = '1';
15
16 ESR[target_el] = ec<5:0>:il:iss;
17
18 if exceptype IN {Exception_InstructionAbort, Exception_PCAlignment, Exception_DataAbort,
19 Exception_Watchpoint} then
20 FAR[target_el] = exception.vaddress;
21 else
22 FAR[target_el] = bits(64) UNKNOWN;
23
24 if target_el == EL2 then
25 if exception.ipavalid then
26 HPFAR_EL2<39:4> = exception.ipaddress<47:12>;
27 else
28 HPFAR_EL2<39:4> = bits(36) UNKNOWN;
29
30 return;

5.48 aarch64/exceptions/exceptions/AArch64.ResetControlRegisters

1 // Resets System registers and memory-mapped control registers that have architecturally-defined
2 // reset values to those values.
3 AArch64.ResetControlRegisters(boolean cold_reset);

5.49 aarch64/exceptions/exceptions/AArch64.TakeReset

1 // AArch64.TakeReset()
2 // ===================
3 // Reset into AArch64 state
4
5 AArch64.TakeReset(boolean cold_reset)
6 assert !HighestELUsingAArch32();
7
8 // Enter the highest implemented Exception level in AArch64 state
9 PSTATE.nRW = '0';

10 if HaveEL(EL3) then
11 PSTATE.EL = EL3;
12 elsif HaveEL(EL2) then
13 PSTATE.EL = EL2;
14 else
15 PSTATE.EL = EL1;
16
17 // Reset the system registers and other system components
18 AArch64.ResetControlRegisters(cold_reset);
19
20 // Reset all other PSTATE fields
21 PSTATE.SP = '1'; // Select stack pointer
22 PSTATE.<D,A,I,F> = '1111'; // All asynchronous exceptions masked
23 PSTATE.SS = '0'; // Clear software step bit
24 PSTATE.C64 = '0'; // Set default instruction set state
25 PSTATE.IL = '0'; // Clear Illegal Execution state bit
26
27 // All registers, bits and fields not reset by the above pseudocode or by the BranchTo() call
28 // below are UNKNOWN bitstrings after reset. In particular, the return information registers
29 // ELR_ELx and SPSR_ELx have UNKNOWN values, so that it
30 // is impossible to return from a reset in an architecturally defined way.
31 AArch64.ResetGeneralRegisters();
32 AArch64.ResetSIMDFPRegisters();
33 AArch64.ResetSpecialRegisters();
34 ResetExternalDebugRegisters(cold_reset);
35
36 bits(64) rv; // IMPLEMENTATION DEFINED reset vector
37
38 if HaveEL(EL3) then
39 rv = RVBAR_EL3;
40 elsif HaveEL(EL2) then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1116

Chapter 5. Pseudocode definitions
5.50. aarch64/exceptions/ieeefp/AArch64.FPTrappedException

41 rv = RVBAR_EL2;
42 else
43 rv = RVBAR_EL1;
44
45 // The reset vector must be correctly aligned
46 assert IsZero(rv<63:PAMax()>) && IsZero(rv<1:0>);
47
48 BranchTo(rv, BranchType_RESET);

5.50 aarch64/exceptions/ieeefp/AArch64.FPTrappedException

1 // AArch64.FPTrappedException()
2 // ============================
3
4 AArch64.FPTrappedException(boolean is_ase, integer element, bits(8) accumulated_exceptions)
5 exception = ExceptionSyndrome(Exception_FPTrappedException);
6 if is_ase then
7 if boolean IMPLEMENTATION_DEFINED "vector instructions set TFV to 1" then
8 exception.syndrome<23> = '1'; // TFV
9 else

10 exception.syndrome<23> = '0'; // TFV
11 else
12 exception.syndrome<23> = '1'; // TFV
13 exception.syndrome<10:8> = bits(3) UNKNOWN; // VECITR
14 if exception.syndrome<23> == '1' then
15 exception.syndrome<7,4:0> = accumulated_exceptions<7,4:0>; // IDF,IXF,UFF,OFF,DZF,IOF
16 else
17 exception.syndrome<7,4:0> = bits(6) UNKNOWN;
18
19 route_to_el2 = EL2Enabled() && HCR_EL2.TGE == '1';
20
21 bits(64) preferred_exception_return = ThisInstrAddr();
22 vect_offset = 0x0;
23
24 if UInt(PSTATE.EL) > UInt(EL1) then
25 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
26 elsif route_to_el2 then
27 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
28 else
29 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.51 aarch64/exceptions/syscalls/AArch64.CallHypervisor

1 // AArch64.CallHypervisor()
2 // ========================
3 // Performs a HVC call
4
5 AArch64.CallHypervisor(bits(16) immediate)
6 assert HaveEL(EL2);
7
8 SSAdvance();
9 bits(64) preferred_exception_return = NextInstrAddr();

10 vect_offset = 0x0;
11
12 exception = ExceptionSyndrome(Exception_HypervisorCall);
13 exception.syndrome<15:0> = immediate;
14
15 if PSTATE.EL == EL3 then
16 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);
17 else
18 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

5.52 aarch64/exceptions/syscalls/AArch64.CallSecureMonitor

1 // AArch64.CallSecureMonitor()
2 // ===========================
3
4 AArch64.CallSecureMonitor(bits(16) immediate)
5 assert HaveEL(EL3) && !ELUsingAArch32(EL3);
6 SSAdvance();
7 bits(64) preferred_exception_return = NextInstrAddr();
8 vect_offset = 0x0;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1117

Chapter 5. Pseudocode definitions
5.53. aarch64/exceptions/syscalls/AArch64.CallSupervisor

9
10 exception = ExceptionSyndrome(Exception_MonitorCall);
11 exception.syndrome<15:0> = immediate;
12
13 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

5.53 aarch64/exceptions/syscalls/AArch64.CallSupervisor

1 // AArch64.CallSupervisor()
2 // ========================
3 // Calls the Supervisor
4
5 AArch64.CallSupervisor(bits(16) immediate)
6
7 SSAdvance();
8 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
9

10 bits(64) preferred_exception_return = NextInstrAddr();
11 vect_offset = 0x0;
12
13 exception = ExceptionSyndrome(Exception_SupervisorCall);
14 exception.syndrome<15:0> = immediate;
15
16 if UInt(PSTATE.EL) > UInt(EL1) then
17 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
18 elsif route_to_el2 then
19 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
20 else
21 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.54 aarch64/exceptions/takeexception/AArch64.TakeException

1 // AArch64.TakeException()
2 // =======================
3 // Take an exception to an Exception Level using AArch64.
4
5 AArch64.TakeException(bits(2) target_el, ExceptionRecord exception,
6 bits(64) preferred_exception_return, integer vect_offset)
7 assert HaveEL(target_el) && !ELUsingAArch32(target_el) && UInt(target_el) >= UInt(PSTATE.EL);
8
9 sync_errors = HaveIESB() && SCTLR[].IESB == '1';

10 if sync_errors && InsertIESBBeforeException(target_el) then
11 SynchronizeErrors();
12 iesb_req = FALSE;
13 sync_errors = FALSE;
14 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
15
16 SynchronizeContext();
17
18 // If coming from AArch32 state, the top parts of the X[] registers might be set to zero
19 from_32 = UsingAArch32();
20 if from_32 then AArch64.MaybeZeroRegisterUppers();
21
22 if UInt(target_el) > UInt(PSTATE.EL) then
23 boolean lower_32;
24 if target_el == EL3 then
25 if EL2Enabled() then
26 lower_32 = ELUsingAArch32(EL2);
27 else
28 lower_32 = ELUsingAArch32(EL1);
29 elsif IsInHost() && PSTATE.EL == EL0 && target_el == EL2 then
30 lower_32 = ELUsingAArch32(EL0);
31 else
32 lower_32 = ELUsingAArch32(target_el - 1);
33 vect_offset = vect_offset + (if lower_32 then 0x600 else 0x400);
34
35 elsif PSTATE.SP == '1' && !IsInRestricted() then
36 vect_offset = vect_offset + 0x200;
37
38 spsr = GetPSRFromPSTATE();
39
40 if !(exception.exceptype IN {Exception_IRQ, Exception_FIQ}) then
41 AArch64.ReportException(exception, target_el);
42
43 PSTATE.EL = target_el;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1118

Chapter 5. Pseudocode definitions
5.55. aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

44 PSTATE.nRW = '0';
45 PSTATE.SP = '1';
46
47 SPSR[] = spsr;
48
49 if IsAccessToCapabilitiesEnabledAtEL(PSTATE.EL) then
50 CELR[] = CapSetValue(PCC, preferred_exception_return);
51 else
52 ELR[] = preferred_exception_return;
53
54 PSTATE.SS = '0';
55 PSTATE.<D,A,I,F> = '1111';
56 PSTATE.IL = '0';
57 if from_32 then // Coming from AArch32
58 PSTATE.IT = '00000000';
59 PSTATE.T = '0'; // PSTATE.J is RES0
60 if (HavePANExt() && (PSTATE.EL == EL1 || (PSTATE.EL == EL2 && ELIsInHost(EL0))) &&
61 SCTLR[].SPAN == '0') then
62 PSTATE.PAN = '1';
63 if HaveUAOExt() then PSTATE.UAO = '0';
64 if HaveSSBSExt() then PSTATE.SSBS = SCTLR[].DSSBS;
65
66 if IsAccessToCapabilitiesEnabledAtEL(PSTATE.EL) then
67 PSTATE.C64 = CCTLR[].C64E;
68 Capability c = CVBAR[];
69 bits(64) v = CapGetValue(c);
70 c = CapSetValue(c, v<63:11>:vect_offset<10:0>);
71 BranchToCapability(c, BranchType_EXCEPTION);
72 else
73 PSTATE.C64 = '0';
74 BranchTo(VBAR[]<63:11>:vect_offset<10:0>, BranchType_EXCEPTION);
75
76 if sync_errors then
77 SynchronizeErrors();
78 iesb_req = TRUE;
79 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
80
81 EndOfInstruction();

5.55 aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap

1 // AArch64.AArch32SystemAccessTrap()
2 // =================================
3 // Trapped AARCH32 system register access.
4
5 AArch64.AArch32SystemAccessTrap(bits(2) target_el, integer ec)
6 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);
7
8 bits(64) preferred_exception_return = ThisInstrAddr();
9 vect_offset = 0x0;

10
11 exception = AArch64.AArch32SystemAccessTrapSyndrome(ThisInstr(), ec);
12 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

5.56 aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome

1 // AArch64.AArch32SystemAccessTrapSyndrome()
2 // ===
3 // Returns the syndrome information for traps on AArch32 MCR, MCRR, MRC, MRRC, and VMRS, VMSR instructions,
4 // other than traps that are due to HCPTR or CPACR.
5
6 ExceptionRecord AArch64.AArch32SystemAccessTrapSyndrome(bits(32) instr, integer ec)
7 ExceptionRecord exception;
8
9 case ec of

10 when 0x0 exception = ExceptionSyndrome(Exception_Uncategorized);
11 when 0x3 exception = ExceptionSyndrome(Exception_CP15RTTrap);
12 when 0x4 exception = ExceptionSyndrome(Exception_CP15RRTTrap);
13 when 0x5 exception = ExceptionSyndrome(Exception_CP14RTTrap);
14 when 0x6 exception = ExceptionSyndrome(Exception_CP14DTTrap);
15 when 0x7 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
16 when 0x8 exception = ExceptionSyndrome(Exception_FPIDTrap);
17 when 0xC exception = ExceptionSyndrome(Exception_CP14RRTTrap);
18 otherwise Unreachable();
19

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1119

Chapter 5. Pseudocode definitions
5.57. aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

20 bits(20) iss = Zeros();
21
22 if exception.exceptype IN {Exception_FPIDTrap, Exception_CP14RTTrap, Exception_CP15RTTrap} then
23 // Trapped MRC/MCR, VMRS on FPSID
24 if exception.exceptype != Exception_FPIDTrap then // When trap is not for VMRS
25 iss<19:17> = instr<7:5>; // opc2
26 iss<16:14> = instr<23:21>; // opc1
27 iss<13:10> = instr<19:16>; // CRn
28 iss<4:1> = instr<3:0>; // CRm
29 else
30 iss<19:17> = '000';
31 iss<16:14> = '111';
32 iss<13:10> = instr<19:16>; // reg
33 iss<4:1> = '0000';
34
35 if instr<20> == '1' && instr<15:12> == '1111' then // MRC, Rt==15
36 iss<9:5> = '11111';
37 elsif instr<20> == '0' && instr<15:12> == '1111' then // MCR, Rt==15
38 iss<9:5> = bits(5) UNKNOWN;
39 else
40 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
41 elsif exception.exceptype IN {Exception_CP14RRTTrap, Exception_AdvSIMDFPAccessTrap,

↪→Exception_CP15RRTTrap} then
42 // Trapped MRRC/MCRR, VMRS/VMSR
43 iss<19:16> = instr<7:4>; // opc1
44 if instr<19:16> == '1111' then // Rt2==15
45 iss<14:10> = bits(5) UNKNOWN;
46 else
47 iss<14:10> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>;
48
49 if instr<15:12> == '1111' then // Rt==15
50 iss<9:5> = bits(5) UNKNOWN;
51 else
52 iss<9:5> = LookUpRIndex(UInt(instr<15:12>), PSTATE.M)<4:0>;
53 iss<4:1> = instr<3:0>; // CRm
54 elsif exception.exceptype == Exception_CP14DTTrap then
55 // Trapped LDC/STC
56 iss<19:12> = instr<7:0>; // imm8
57 iss<4> = instr<23>; // U
58 iss<2:1> = instr<24,21>; // P,W
59 if instr<19:16> == '1111' then // Rn==15, LDC(Literal addressing)/STC
60 iss<9:5> = bits(5) UNKNOWN;
61 iss<3> = '1';
62 elsif exception.exceptype == Exception_Uncategorized then
63 // Trapped for unknown reason
64 iss<9:5> = LookUpRIndex(UInt(instr<19:16>), PSTATE.M)<4:0>; // Rn
65 iss<3> = '0';
66
67 iss<0> = instr<20>; // Direction
68
69 exception.syndrome<24:20> = ConditionSyndrome();
70 exception.syndrome<19:0> = iss;
71
72 return exception;

5.57 aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap

1 // AArch64.AdvSIMDFPAccessTrap()
2 // =============================
3 // Trapped access to Advanced SIMD or FP registers due to CPACR[].
4
5 AArch64.AdvSIMDFPAccessTrap(bits(2) target_el)
6 bits(64) preferred_exception_return = ThisInstrAddr();
7 vect_offset = 0x0;
8
9 route_to_el2 = (target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1');

10
11 if route_to_el2 then
12 exception = ExceptionSyndrome(Exception_Uncategorized);
13 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
14 else
15 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
16 exception.syndrome<24:20> = ConditionSyndrome();
17 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
18
19 return;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1120

Chapter 5. Pseudocode definitions
5.58. aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

5.58 aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps

1 // AArch64.CheckCP15InstrCoarseTraps()
2 // ===================================
3 // Check for coarse-grained AArch32 CP15 traps in HSTR_EL2 and HCR_EL2.
4
5 boolean AArch64.CheckCP15InstrCoarseTraps(integer CRn, integer nreg, integer CRm)
6
7 // Check for coarse-grained Hyp traps
8 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
9 // Check for MCR, MRC, MCRR and MRRC disabled by HSTR_EL2<CRn/CRm>

10 major = if nreg == 1 then CRn else CRm;
11 if !IsInHost() && !(major IN {4,14}) && HSTR_EL2<major> == '1' then
12 return TRUE;
13
14 // Check for MRC and MCR disabled by HCR_EL2.TIDCP
15 if (HCR_EL2.TIDCP == '1' && nreg == 1 &&
16 ((CRn == 9 && CRm IN {0,1,2, 5,6,7,8 }) ||
17 (CRn == 10 && CRm IN {0,1, 4, 8 }) ||
18 (CRn == 11 && CRm IN {0,1,2,3,4,5,6,7,8,15}))) then
19 return TRUE;
20
21 return FALSE;

5.59 aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled

1 // AArch64.CheckFPAdvSIMDEnabled()
2 // ===============================
3 // Check against CPACR[]
4
5 AArch64.CheckFPAdvSIMDEnabled()
6 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
7 // Check if access disabled in CPACR_EL1
8 case CPACR[].FPEN of
9 when 'x0' disabled = TRUE;

10 when '01' disabled = PSTATE.EL == EL0;
11 when '11' disabled = FALSE;
12 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);
13
14 AArch64.CheckFPAdvSIMDTrap(); // Also check against CPTR_EL2 and CPTR_EL3

5.60 aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap

1 // AArch64.CheckFPAdvSIMDTrap()
2 // ============================
3 // Check against CPTR_EL2 and CPTR_EL3.
4
5 AArch64.CheckFPAdvSIMDTrap()
6
7 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
8 // Check if access disabled in CPTR_EL2
9 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then

10 case CPTR_EL2.FPEN of
11 when 'x0' disabled = !(PSTATE.EL == EL1 && HCR_EL2.TGE == '1');
12 when '01' disabled = (PSTATE.EL == EL0 && HCR_EL2.TGE == '1');
13 when '11' disabled = FALSE;
14 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
15 else
16 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);
17
18 if HaveEL(EL3) then
19 // Check if access disabled in CPTR_EL3
20 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);
21
22 return;

5.61 aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap

1 // AArch64.CheckForSMCUndefOrTrap()
2 // ================================

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1121

Chapter 5. Pseudocode definitions
5.62. aarch64/exceptions/traps/AArch64.CheckForWFxTrap

3 // Check for UNDEFINED or trap on SMC instruction
4
5 AArch64.CheckForSMCUndefOrTrap(bits(16) imm)
6 route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';
7 if !HaveEL(EL3) || PSTATE.EL == EL0 then
8 UNDEFINED;
9 route_to_el2 = PSTATE.EL == EL1 && EL2Enabled() && HCR_EL2.TSC == '1';

10 if route_to_el2 then
11 bits(64) preferred_exception_return = ThisInstrAddr();
12 vect_offset = 0x0;
13 exception = ExceptionSyndrome(Exception_MonitorCall);
14 exception.syndrome<15:0> = imm;
15 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);

5.62 aarch64/exceptions/traps/AArch64.CheckForWFxTrap

1 // AArch64.CheckForWFxTrap()
2 // =========================
3 // Check for trap on WFE or WFI instruction
4
5 AArch64.CheckForWFxTrap(bits(2) target_el, boolean is_wfe)
6 assert HaveEL(target_el);
7
8 case target_el of
9 when EL1 trap = (if is_wfe then SCTLR[].nTWE else SCTLR[].nTWI) == '0';

10 when EL2 trap = (if is_wfe then HCR_EL2.TWE else HCR_EL2.TWI) == '1';
11 when EL3 trap = (if is_wfe then SCR_EL3.TWE else SCR_EL3.TWI) == '1';
12 if trap then
13 AArch64.WFxTrap(target_el, is_wfe);

5.63 aarch64/exceptions/traps/AArch64.CheckIllegalState

1 // AArch64.CheckIllegalState()
2 // ===========================
3 // Check PSTATE.IL bit and generate Illegal Execution state exception if set.
4
5 AArch64.CheckIllegalState()
6 if PSTATE.IL == '1' then
7 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
8
9 bits(64) preferred_exception_return = ThisInstrAddr();

10 vect_offset = 0x0;
11
12 exception = ExceptionSyndrome(Exception_IllegalState);
13
14 if UInt(PSTATE.EL) > UInt(EL1) then
15 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
16 elsif route_to_el2 then
17 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
18 else
19 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.64 aarch64/exceptions/traps/AArch64.MonitorModeTrap

1 // AArch64.MonitorModeTrap()
2 // =========================
3 // Trapped use of Monitor mode features in a Secure EL1 AArch32 mode
4
5 AArch64.MonitorModeTrap()
6 bits(64) preferred_exception_return = ThisInstrAddr();
7 vect_offset = 0x0;
8
9 exception = ExceptionSyndrome(Exception_Uncategorized);

10
11 AArch64.TakeException(EL3, exception, preferred_exception_return, vect_offset);

5.65 aarch64/exceptions/traps/AArch64.SystemAccessTrap

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1122

Chapter 5. Pseudocode definitions
5.66. aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

1 // AArch64.SystemAccessTrap()
2 // ==========================
3 // Trapped access to AArch64 system register or system instruction.
4
5 AArch64.SystemAccessTrap(bits(2) target_el, integer ec)
6 assert HaveEL(target_el) && target_el != EL0 && UInt(target_el) >= UInt(PSTATE.EL);
7
8 bits(64) preferred_exception_return = ThisInstrAddr();
9 vect_offset = 0x0;

10
11 exception = AArch64.SystemAccessTrapSyndrome(ThisInstr(), ec);
12 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

5.66 aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome

1 // AArch64.SystemAccessTrapSyndrome()
2 // ==================================
3 // Returns the syndrome information for traps on AArch64 MSR/MRS instructions.
4
5 ExceptionRecord AArch64.SystemAccessTrapSyndrome(bits(32) instr, integer ec)
6 ExceptionRecord exception;
7 case ec of
8 when 0x0 // Trapped access due to unknown

↪→reason.
9 exception = ExceptionSyndrome(Exception_Uncategorized);

10 when 0x7 // Trapped access to SVE, Advance
↪→SIMD&FP system register.

11 exception = ExceptionSyndrome(Exception_AdvSIMDFPAccessTrap);
12 exception.syndrome<24:20> = ConditionSyndrome();
13 when 0x18 // Trapped access to system register

↪→or system instruction.
14 exception = ExceptionSyndrome(Exception_SystemRegisterTrap);
15 instr = ThisInstr();
16 exception.syndrome<21:20> = instr<20:19>; // Op0
17 exception.syndrome<19:17> = instr<7:5>; // Op2
18 exception.syndrome<16:14> = instr<18:16>; // Op1
19 exception.syndrome<13:10> = instr<15:12>; // CRn
20 exception.syndrome<9:5> = instr<4:0>; // Rt
21 exception.syndrome<4:1> = instr<11:8>; // CRm
22 exception.syndrome<0> = instr<21>; // Direction
23 when 0x29 // Trapped access to 64-bit System register which is part of

↪→Capability functionality
24 exception = ExceptionSyndrome(Exception_CapabilityAccess);
25 when 0x2a // Trapped access to Capability

↪→system register
26 exception = ExceptionSyndrome(Exception_CapabilitySysRegTrap);
27 instr = ThisInstr();
28 exception.syndrome<21:20> = '1':instr<19>; // Op0
29 exception.syndrome<19:17> = instr<7:5>; // Op2
30 exception.syndrome<16:14> = instr<18:16>; // Op1
31 exception.syndrome<13:10> = instr<15:12>; // CRn
32 exception.syndrome<9:5> = instr<4:0>; // Rt
33 exception.syndrome<4:1> = instr<11:8>; // CRm
34 exception.syndrome<0> = instr<20>; // Direction
35 otherwise
36 Unreachable();
37
38 return exception;

5.67 aarch64/exceptions/traps/AArch64.UndefinedFault

1 // AArch64.UndefinedFault()
2 // ========================
3
4 AArch64.UndefinedFault()
5
6 route_to_el2 = PSTATE.EL == EL0 && EL2Enabled() && HCR_EL2.TGE == '1';
7 bits(64) preferred_exception_return = ThisInstrAddr();
8 vect_offset = 0x0;
9

10 exception = ExceptionSyndrome(Exception_Uncategorized);
11
12 if UInt(PSTATE.EL) > UInt(EL1) then
13 AArch64.TakeException(PSTATE.EL, exception, preferred_exception_return, vect_offset);
14 elsif route_to_el2 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1123

Chapter 5. Pseudocode definitions
5.68. aarch64/exceptions/traps/AArch64.WFxTrap

15 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
16 else
17 AArch64.TakeException(EL1, exception, preferred_exception_return, vect_offset);

5.68 aarch64/exceptions/traps/AArch64.WFxTrap

1 // AArch64.WFxTrap()
2 // =================
3
4 AArch64.WFxTrap(bits(2) target_el, boolean is_wfe)
5 assert UInt(target_el) > UInt(PSTATE.EL);
6
7 bits(64) preferred_exception_return = ThisInstrAddr();
8 vect_offset = 0x0;
9

10 exception = ExceptionSyndrome(Exception_WFxTrap);
11 exception.syndrome<24:20> = ConditionSyndrome();
12 exception.syndrome<0> = if is_wfe then '1' else '0';
13
14 if target_el == EL1 && EL2Enabled() && HCR_EL2.TGE == '1' then
15 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
16 else
17 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

5.69 aarch64/exceptions/traps/CapabilityAccessTrap

1 // CapabilityAccessTrap()
2 // ======================
3 // Trapped access to Capabilities to CPACR_EL1 or CPTR_EL2 or CPTR_EL3.
4
5 CapabilityAccessTrap(bits(2) target_el)
6
7 bits(64) preferred_exception_return = ThisInstrAddr();
8 vect_offset = 0x0;
9

10 exception = ExceptionSyndrome(Exception_CapabilityAccess);
11 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);
12
13 return;

5.70 aarch64/exceptions/traps/CheckCapabilitiesEnabled

1 // CheckCapabilitiesEnabled()
2 // ==========================
3 // Check against CPACR_EL1, CPTR_EL2 and CPTR_EL3 and trap if not enabled.
4
5 CheckCapabilitiesEnabled()
6 if PSTATE.EL IN {EL0, EL1} then
7 case CPACR_EL1.CEN of
8 when 'x0' disabled = TRUE;
9 when '01' disabled = PSTATE.EL == EL0;

10 when '11' disabled = FALSE;
11
12 // Special case when CPACR_EL1.CEN does not cause traps
13 if HaveEL(EL2) && !IsSecure() && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' then
14 disabled = FALSE;
15
16 if disabled then
17 if HaveEL(EL2) && HCR_EL2.TGE == '1' then
18 CapabilityAccessTrap(EL2);
19 else
20 CapabilityAccessTrap(EL1);
21
22 // Also check against CPTR_EL2 and CPTR_EL3
23 if HaveEL(EL2) && !IsSecure() then
24 if HCR_EL2.E2H == '1' then
25 case CPTR_EL2.CEN of
26 when 'x0' disabled = (PSTATE.EL IN {EL0, EL1, EL2});
27 when '01' disabled = (PSTATE.EL == EL0 && HCR_EL2.TGE == '1');
28 when '11' disabled = FALSE;
29 if disabled then CapabilityAccessTrap(EL2);
30 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1124

Chapter 5. Pseudocode definitions
5.71. aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

31 if CPTR_EL2.TC == '1' then CapabilityAccessTrap(EL2);
32
33 if HaveEL(EL3) then
34 if CPTR_EL3.EC == '0' then CapabilityAccessTrap(EL3);
35
36 return;

5.71 aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64

1 // CheckFPAdvSIMDEnabled64()
2 // =========================
3 // AArch64 instruction wrapper
4
5 CheckFPAdvSIMDEnabled64()
6 AArch64.CheckFPAdvSIMDEnabled();

5.72 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL0

1 // IsAccessToCapabilitiesDisabledAtEL0()
2 // =====================================
3 // Check if access to capabilities is disabled at EL0
4
5 boolean IsAccessToCapabilitiesDisabledAtEL0()
6 if IsAccessToCapabilitiesDisabledAtEL1() then
7 return TRUE;
8 elsif !(HaveEL(EL2) && !IsSecure() && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1') && CPACR_EL1.CEN ==

↪→'01' then
9 return TRUE;

10 else
11 return HaveEL(EL2) && !IsSecure() && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' && CPTR_EL2.CEN ==

↪→'01';

5.73 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL1

1 // IsAccessToCapabilitiesDisabledAtEL1()
2 // =====================================
3 // Check if access to capabilities is disabled at EL1
4
5 boolean IsAccessToCapabilitiesDisabledAtEL1()
6 if IsAccessToCapabilitiesDisabledAtEL2() then
7 return TRUE;
8 else
9 return !(HaveEL(EL2) && !IsSecure() && HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1') && CPACR_EL1.CEN

↪→== 'x0';

5.74 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL2

1 // IsAccessToCapabilitiesDisabledAtEL2()
2 // =====================================
3 // Check if access to capabilities is disabled at EL2
4
5 boolean IsAccessToCapabilitiesDisabledAtEL2()
6 if IsAccessToCapabilitiesDisabledAtEL3() then
7 return TRUE;
8 elsif HaveEL(EL2) && !IsSecure() then
9 return (HCR_EL2.E2H == '1' && CPTR_EL2.CEN == 'x0') || (HCR_EL2.E2H == '0' && CPTR_EL2.TC == '1');

10 else
11 return FALSE;

5.75 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL3

1 // IsAccessToCapabilitiesDisabledAtEL3()
2 // =====================================
3 // Check if access to capabilities is disabled at EL3
4

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1125

Chapter 5. Pseudocode definitions
5.76. aarch64/exceptions/traps/IsAccessToCapabilitiesEnabledAtEL

5 boolean IsAccessToCapabilitiesDisabledAtEL3()
6 return HaveEL(EL3) && CPTR_EL3.EC == '0';

5.76 aarch64/exceptions/traps/IsAccessToCapabilitiesEnabledAtEL

1 // IsAccessToCapabilitiesEnabledAtEL()
2 // ===================================
3 // Check if access to capabilities is enabled at a particular EL
4
5 boolean IsAccessToCapabilitiesEnabledAtEL(bits(2) el)
6 case el of
7 when EL3 return !IsAccessToCapabilitiesDisabledAtEL3();
8 when EL2 return !IsAccessToCapabilitiesDisabledAtEL2();
9 when EL1 return !IsAccessToCapabilitiesDisabledAtEL1();

10 when EL0 return !IsAccessToCapabilitiesDisabledAtEL0();

5.77 aarch64/exceptions/traps/IsInC64

1 // IsInC64()
2 // =========
3 // Return whether the current instruction set is C64
4
5 boolean IsInC64()
6 return PSTATE.C64 == '1';

5.78 aarch64/exceptions/traps/IsTagSettingDisabled

1 // IsTagSettingDisabled()
2 // ======================
3 // Check if instructions that explicitly set capability tags are disabled
4
5 boolean IsTagSettingDisabled()
6
7 if PSTATE.EL == EL0 || PSTATE.EL == EL1 then
8 if (EL2Enabled() && !ELUsingAArch32(EL2) && CHCR_EL2.SETTAG == '1') then
9 return TRUE;

10 elsif (HaveEL(EL3) && !ELUsingAArch32(EL3) && CSCR_EL3.SETTAG == '1') then
11 return TRUE;
12 elsif PSTATE.EL == EL2 then
13 if HaveEL(EL3) && !ELUsingAArch32(EL3) && CSCR_EL3.SETTAG == '1' then
14 return TRUE;
15 return FALSE;

5.79 aarch64/exceptions/traps/TargetELForCapabilityExceptions

1 // TargetELForCapabilityExceptions()
2 // =================================
3 // Return the target exception level to which capability-related exceptions are routed
4
5 bits(2) TargetELForCapabilityExceptions()
6 bits(2) lowest_el;
7 if HighestEL() == EL1 || !IsAccessToCapabilitiesDisabledAtEL1() then
8 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
9 lowest_el = EL2;

10 else
11 lowest_el = EL1;
12 elsif HighestEL() == EL2 || (!IsAccessToCapabilitiesDisabledAtEL2() && EL2Enabled()) then
13 lowest_el = EL2;
14 else
15 lowest_el = EL3;
16
17 if UInt(lowest_el) < UInt(PSTATE.EL) then
18 return PSTATE.EL;
19 else
20 return lowest_el;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1126

Chapter 5. Pseudocode definitions
5.80. aarch64/functions/aborts/AArch64.CreateFaultRecord

5.80 aarch64/functions/aborts/AArch64.CreateFaultRecord

1 // AArch64.CreateFaultRecord()
2 // ===========================
3
4 FaultRecord AArch64.CreateFaultRecord(Fault statuscode, bits(48) ipaddress,
5 integer level, AccType acctype, boolean write, bit extflag,
6 bits(2) errortype, boolean secondstage, boolean s2fs1walk)
7
8 FaultRecord fault;
9 fault.statuscode = statuscode;

10 fault.domain = bits(4) UNKNOWN; // Not used from AArch64
11 fault.debugmoe = bits(4) UNKNOWN; // Not used from AArch64
12 fault.errortype = errortype;
13 fault.ipaddress = ipaddress;
14 fault.level = level;
15 fault.acctype = acctype;
16 fault.write = write;
17 fault.extflag = extflag;
18 fault.secondstage = secondstage;
19 fault.s2fs1walk = s2fs1walk;
20
21 return fault;

5.81 aarch64/functions/aborts/AArch64.FaultSyndrome

1 // AArch64.FaultSyndrome()
2 // =======================
3 // Creates an exception syndrome value for Abort and Watchpoint exceptions taken to
4 // an Exception Level using AArch64.
5
6 bits(25) AArch64.FaultSyndrome(boolean d_side, FaultRecord fault)
7 assert fault.statuscode != Fault_None;
8
9 bits(25) iss = Zeros();

10 if HaveRASExt() && IsExternalSyncAbort(fault) then iss<12:11> = fault.errortype; // SET
11 if d_side then
12 if IsSecondStage(fault) && !fault.s2fs1walk then iss<24:14> = LSInstructionSyndrome();
13 if fault.acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_IC, AccType_AT} then
14 iss<8> = '1'; iss<6> = '1';
15 else
16 iss<6> = if fault.write then '1' else '0';
17 if IsExternalAbort(fault) then iss<9> = fault.extflag;
18 iss<7> = if fault.s2fs1walk then '1' else '0';
19 iss<5:0> = EncodeLDFSC(fault.statuscode, fault.level);
20
21 return iss;

5.82 aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass

1 // AArch64.ExclusiveMonitorsPass()
2 // ===============================
3
4 // Return TRUE if the Exclusives monitors for the current PE include all of the addresses
5 // associated with the virtual address region of size bytes starting at address.
6 // The immediately following memory write must be to the same addresses.
7
8 boolean AArch64.ExclusiveMonitorsPass(bits(64) address, integer size)
9

10 // It is IMPLEMENTATION DEFINED whether the detection of memory aborts happens
11 // before or after the check on the local Exclusives monitor. As a result a failure
12 // of the local monitor can occur on some implementations even if the memory
13 // access would give an memory abort.
14
15 acctype = AccType_ATOMIC;
16 iswrite = TRUE;
17
18 aligned = (address == Align(address, size));
19 if !aligned then
20 secondstage = FALSE;
21 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
22
23 passed = AArch64.IsExclusiveVA(address, ProcessorID(), size);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1127

Chapter 5. Pseudocode definitions
5.83. aarch64/functions/exclusive/AArch64.IsExclusiveVA

24 if !passed then
25 return FALSE;
26 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
27
28 // Check for aborts or debug exceptions
29 if IsFault(memaddrdesc) then
30 AArch64.Abort(address, memaddrdesc.fault);
31
32 passed = IsExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
33 ClearExclusiveLocal(ProcessorID());
34
35 if passed then
36 if memaddrdesc.memattrs.shareable then
37 passed = IsExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
38
39 return passed;

5.83 aarch64/functions/exclusive/AArch64.IsExclusiveVA

1 // An optional IMPLEMENTATION DEFINED test for an exclusive access to a virtual
2 // address region of size bytes starting at address.
3 //
4 // It is permitted (but not required) for this function to return FALSE and
5 // cause a store exclusive to fail if the virtual address region is not
6 // totally included within the region recorded by MarkExclusiveVA().
7 //
8 // It is always safe to return TRUE which will check the physical address only.
9 boolean AArch64.IsExclusiveVA(bits(64) address, integer processorid, integer size);

5.84 aarch64/functions/exclusive/AArch64.MarkExclusiveVA

1 // Optionally record an exclusive access to the virtual address region of size bytes
2 // starting at address for processorid.
3 AArch64.MarkExclusiveVA(bits(64) address, integer processorid, integer size);

5.85 aarch64/functions/exclusive/AArch64.SetExclusiveMonitors

1 // AArch64.SetExclusiveMonitors()
2 // ==============================
3
4 // Sets the Exclusives monitors for the current PE to record the addresses associated
5 // with the virtual address region of size bytes starting at address.
6
7 AArch64.SetExclusiveMonitors(bits(64) address, integer size)
8
9 acctype = AccType_ATOMIC;

10 iswrite = FALSE;
11 aligned = (address == Align(address, size));
12 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, aligned, size);
13
14 // Check for aborts or debug exceptions
15 if IsFault(memaddrdesc) then
16 return;
17
18 if memaddrdesc.memattrs.shareable then
19 MarkExclusiveGlobal(memaddrdesc.paddress, ProcessorID(), size);
20
21 MarkExclusiveLocal(memaddrdesc.paddress, ProcessorID(), size);
22
23 AArch64.MarkExclusiveVA(address, ProcessorID(), size);

5.86 aarch64/functions/fusedrstep/FPRSqrtStepFused

1 // FPRSqrtStepFused()
2 // ==================
3
4 bits(N) FPRSqrtStepFused(bits(N) op1, bits(N) op2)
5 assert N IN {16, 32, 64};

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1128

Chapter 5. Pseudocode definitions
5.87. aarch64/functions/fusedrstep/FPRecipStepFused

6 bits(N) result;
7 op1 = FPNeg(op1);
8 (type1,sign1,value1) = FPUnpack(op1, FPCR);
9 (type2,sign2,value2) = FPUnpack(op2, FPCR);

10 (done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);
11 if !done then
12 inf1 = (type1 == FPType_Infinity);
13 inf2 = (type2 == FPType_Infinity);
14 zero1 = (type1 == FPType_Zero);
15 zero2 = (type2 == FPType_Zero);
16 if (inf1 && zero2) || (zero1 && inf2) then
17 result = FPOnePointFive('0');
18 elsif inf1 || inf2 then
19 result = FPInfinity(sign1 EOR sign2);
20 else
21 // Fully fused multiply-add and halve
22 result_value = (3.0 + (value1 * value2)) / 2.0;
23 if result_value == 0.0 then
24 // Sign of exact zero result depends on rounding mode
25 sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
26 result = FPZero(sign);
27 else
28 result = FPRound(result_value, FPCR);
29 return result;

5.87 aarch64/functions/fusedrstep/FPRecipStepFused

1 // FPRecipStepFused()
2 // ==================
3
4 bits(N) FPRecipStepFused(bits(N) op1, bits(N) op2)
5 assert N IN {16, 32, 64};
6 bits(N) result;
7 op1 = FPNeg(op1);
8 (type1,sign1,value1) = FPUnpack(op1, FPCR);
9 (type2,sign2,value2) = FPUnpack(op2, FPCR);

10 (done,result) = FPProcessNaNs(type1, type2, op1, op2, FPCR);
11 if !done then
12 inf1 = (type1 == FPType_Infinity);
13 inf2 = (type2 == FPType_Infinity);
14 zero1 = (type1 == FPType_Zero);
15 zero2 = (type2 == FPType_Zero);
16 if (inf1 && zero2) || (zero1 && inf2) then
17 result = FPTwo('0');
18 elsif inf1 || inf2 then
19 result = FPInfinity(sign1 EOR sign2);
20 else
21 // Fully fused multiply-add
22 result_value = 2.0 + (value1 * value2);
23 if result_value == 0.0 then
24 // Sign of exact zero result depends on rounding mode
25 sign = if FPRoundingMode(FPCR) == FPRounding_NEGINF then '1' else '0';
26 result = FPZero(sign);
27 else
28 result = FPRound(result_value, FPCR);
29 return result;

5.88 aarch64/functions/memory/AArch64.CheckAlignment

1 // AArch64.CheckAlignment()
2 // ========================
3
4 boolean AArch64.CheckAlignment(bits(64) address, integer alignment, AccType acctype,
5 boolean iswrite)
6
7 aligned = (address == Align(address, alignment));
8 atomic = acctype IN { AccType_ATOMIC, AccType_ATOMICRW, AccType_ORDEREDATOMIC,

↪→AccType_ORDEREDATOMICRW };
9 ordered = acctype IN { AccType_ORDERED, AccType_ORDEREDRW, AccType_LIMITEDORDERED,

↪→AccType_ORDEREDATOMIC, AccType_ORDEREDATOMICRW };
10 vector = acctype == AccType_VEC;
11 check = (atomic || ordered || SCTLR[].A == '1');
12
13 if check && !aligned then
14 secondstage = FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1129

Chapter 5. Pseudocode definitions
5.89. aarch64/functions/memory/AArch64.MemSingle

15 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
16
17 return aligned;

5.89 aarch64/functions/memory/AArch64.MemSingle

1 // AArch64.MemSingle[] - non-assignment (read) form
2 // ==
3 // Perform an atomic, little-endian read of 'size' bytes.
4
5 bits(size*8) AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned]
6 assert size IN {1, 2, 4, 8, 16};
7 assert address == Align(address, size);
8
9 AddressDescriptor memaddrdesc;

10 bits(size*8) value;
11 iswrite = FALSE;
12
13 // MMU or MPU
14 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
15 // Check for aborts or debug exceptions
16 if IsFault(memaddrdesc) then
17 AArch64.Abort(address, memaddrdesc.fault);
18
19 // Memory array access
20 accdesc = CreateAccessDescriptor(acctype);
21 value = _Mem[memaddrdesc, size, accdesc];
22 return value;
23
24 // AArch64.MemSingle[] - assignment (write) form
25 // ===
26 // Perform an atomic, little-endian write of 'size' bytes.
27
28 AArch64.MemSingle[bits(64) address, integer size, AccType acctype, boolean wasaligned] = bits(size*8) value
29 assert size IN {1, 2, 4, 8, 16};
30 assert address == Align(address, size);
31
32 AddressDescriptor memaddrdesc;
33 iswrite = TRUE;
34
35 // MMU or MPU
36 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
37
38 // Check for aborts or debug exceptions
39 if IsFault(memaddrdesc) then
40 AArch64.Abort(address, memaddrdesc.fault);
41
42 // Effect on exclusives
43 if memaddrdesc.memattrs.shareable then
44 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);
45
46 // Memory array access
47 accdesc = CreateAccessDescriptor(acctype);
48 _Mem[memaddrdesc, size, accdesc] = value;
49 return;

5.90 aarch64/functions/memory/AArch64.TaggedMemSingle

1 // AArch64.TaggedMemSingle[] - non-assignment (read) form
2 // ==
3 // Perform an atomic, little-endian read of 'size' bytes with capability tags.
4
5 (bits(size DIV 16), bits(size*8)) AArch64.TaggedMemSingle(bits(64) address, integer size, AccType acctype,

↪→boolean wasaligned)
6 assert size IN {16, 32};
7 assert address == Align(address, 16);
8
9 AddressDescriptor memaddrdesc;

10 bits(size*8) value;
11 bits(size DIV 16) tags;
12 iswrite = FALSE;
13
14 // MMU or MPU
15 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, size);
16

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1130

Chapter 5. Pseudocode definitions
5.91. aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

17 // Check for aborts or debug exceptions
18 if IsFault(memaddrdesc) then
19 AArch64.Abort(address, memaddrdesc.fault);
20
21 // Device memory locations marked as faulting loads of valid capabilities
22 // will fault and will not read the memory location.
23 if memaddrdesc.memattrs.memtype == MemType_Device then
24 CheckLoadTagsPermission(memaddrdesc, acctype);
25
26 accdesc = CreateAccessDescriptor(acctype);
27
28 // Memory array access
29 if memaddrdesc.memattrs.readtagzero then
30 value = _ReadMem(memaddrdesc, size, accdesc);
31 tags = Zeros(size DIV 16);
32 else
33 (tags, value) = _ReadTaggedMem(memaddrdesc, size, accdesc);
34
35 if tags != Zeros(size DIV 16) then
36 CheckLoadTagsPermission(memaddrdesc, acctype);
37
38 return (tags, value);
39
40 // AArch64.TaggedMemSingle[] - assignment (write) form
41 // ===
42 // Perform an atomic, little-endian write of 'size' bytes with capability tags.
43
44 AArch64.TaggedMemSingle(bits(64) address, integer size, AccType acctype, boolean wasaligned, bits(size DIV

↪→16) tags, bits(size*8) value)
45 assert size IN {16, 32};
46 assert address == Align(address, 16);
47
48 AddressDescriptor memaddrdesc;
49 iswrite = TRUE;
50
51 // MMU or MPU
52 boolean valid_cap = (tags != Zeros(size DIV 16));
53 memaddrdesc = AArch64.TranslateAddressWithTag(address, acctype, iswrite, wasaligned, size, valid_cap);
54
55 // Check for aborts or debug exceptions
56 if IsFault(memaddrdesc) then
57 AArch64.Abort(address, memaddrdesc.fault);
58
59 // Effect on exclusives
60 if memaddrdesc.memattrs.shareable then
61 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);
62
63 accdesc = CreateAccessDescriptor(acctype);
64
65 if tags != Zeros(size DIV 16) then
66 CheckStoreTagsPermission(memaddrdesc, acctype);
67
68 // Memory array access
69 _WriteTaggedMem(memaddrdesc, size, accdesc, tags, value);
70 return;

5.91 aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess

1 // AArch64.TranslateAddressForAtomicAccess()
2 // ===
3 // Performs an alignment check for atomic memory operations.
4 // Also translates 64-bit Virtual Address into Physical Address.
5
6 AddressDescriptor AArch64.TranslateAddressForAtomicAccess(bits(64) address, integer sizeinbits)
7 boolean iswrite = FALSE;
8 size = sizeinbits DIV 8;
9

10 assert size IN {1, 2, 4, 8, 16};
11
12 aligned = AArch64.CheckAlignment(address, size, AccType_ATOMICRW, iswrite);
13
14 // MMU or MPU lookup
15 memaddrdesc = AArch64.TranslateAddress(address, AccType_ATOMICRW, iswrite, aligned, size);
16
17 // Check for aborts or debug exceptions
18 if IsFault(memaddrdesc) then
19 AArch64.Abort(address, memaddrdesc.fault);
20
21 // Effect on exclusives

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1131

Chapter 5. Pseudocode definitions
5.92. aarch64/functions/memory/CapabilityTag

22 if memaddrdesc.memattrs.shareable then
23 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), size);
24
25 return memaddrdesc;

5.92 aarch64/functions/memory/CapabilityTag

1 // CapabilityTag() - non-assignment (read) form
2 // ==
3 // Reads a single capability tag from memory
4
5 bits(1) AArch64.CapabilityTag(bits(64) address, AccType acctype)
6
7 boolean iswrite = FALSE;
8 CheckCapabilityAlignment(address, acctype, iswrite);
9

10 AddressDescriptor memaddrdesc;
11
12 // MMU or MPU
13 boolean wasaligned = TRUE;
14 memaddrdesc = AArch64.TranslateAddress(address, acctype, iswrite, wasaligned, CAPABILITY_DBYTES DIV 8);
15
16 // Check for aborts or debug exceptions
17 if IsFault(memaddrdesc) then
18 AArch64.Abort(address, memaddrdesc.fault);
19
20 // Device memory locations marked as faulting loads of valid capabilities
21 // will fault and will not read the memory location.
22 if memaddrdesc.memattrs.memtype == MemType_Device then
23 CheckLoadTagsPermission(memaddrdesc, acctype);
24
25 accdesc = CreateAccessDescriptor(acctype);
26
27 bits(1) tag;
28 if memaddrdesc.memattrs.readtagzero then
29 tag = '0';
30 else
31 bits(48) paddress = memaddrdesc.paddress.address;
32
33 assert paddress == Align(paddress, CAPABILITY_DBYTES);
34 tag = _ReadTags(memaddrdesc, 1, accdesc);
35
36 if tag == '1' then
37 CheckLoadTagsPermission(memaddrdesc, acctype);
38
39 return tag;
40
41 // CapabilityTag() - assignment (write) form
42 // ===
43 // Writes a single capability tag from memory
44
45 AArch64.CapabilityTag[bits(64) address, AccType acctype] = bits(1) tag
46
47 boolean iswrite = TRUE;
48 CheckCapabilityAlignment(address, acctype, iswrite);
49
50 AddressDescriptor memaddrdesc;
51 boolean wasaligned = TRUE;
52
53 // MMU or MPU
54 boolean valid_cap = (tag == '1');
55 memaddrdesc = AArch64.TranslateAddressWithTag(address, acctype, iswrite, wasaligned,

↪→CAPABILITY_DBYTES, valid_cap);
56
57 // Check for aborts or debug exceptions
58 if IsFault(memaddrdesc) then
59 AArch64.Abort(address, memaddrdesc.fault);
60
61 // Effect on exclusives
62 if memaddrdesc.memattrs.shareable then
63 ClearExclusiveByAddress(memaddrdesc.paddress, ProcessorID(), CAPABILITY_DBYTES);
64
65 accdesc = CreateAccessDescriptor(acctype);
66
67 bits(48) paddress = memaddrdesc.paddress.address;
68
69 assert paddress == Align(paddress, CAPABILITY_DBYTES);
70
71 if tag == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1132

Chapter 5. Pseudocode definitions
5.93. aarch64/functions/memory/CheckSPAlignment

72 CheckStoreTagsPermission(memaddrdesc, acctype);
73
74 _WriteTags(memaddrdesc, 1, tag, accdesc);
75
76 return;

5.93 aarch64/functions/memory/CheckSPAlignment

1 // CheckSPAlignment()
2 // ==================
3 // Check correct stack pointer alignment for AArch64 state.
4
5 CheckSPAlignment()
6 bits(64) sp = SP[];
7 if PSTATE.EL == EL0 then
8 stack_align_check = (SCTLR[].SA0 != '0');
9 else

10 stack_align_check = (SCTLR[].SA != '0');
11
12 if stack_align_check && sp != Align(sp, 16) then
13 AArch64.SPAlignmentFault();
14
15 return;

5.94 aarch64/functions/memory/Mem

1 constant integer CAPABILITY_DBYTES = 16;
2 constant integer LOG2_CAPABILITY_DBYTES = 4;
3
4 // Mem[] - non-assignment (read) form
5 // ==================================
6 // Perform a read of 'size' bytes. The access byte order is reversed for a big-endian access.
7 // Instruction fetches would call AArch64.MemSingle directly.
8
9 bits(size*8) Mem[bits(64) address, integer size, AccType acctype]

10 assert size IN {1, 2, 4, 8, 16};
11 bits(size*8) value;
12 boolean iswrite = FALSE;
13
14 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
15 if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
16 atomic = aligned;
17 else
18 // 128-bit SIMD&FP loads are treated as a pair of 64-bit single-copy atomic accesses
19 // 64-bit aligned.
20 atomic = address == Align(address, 8);
21
22 if !atomic then
23 assert size > 1;
24 value<7:0> = AArch64.MemSingle[address, 1, acctype, aligned];
25
26 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
27 // access will generate an Alignment Fault, as to get this far means the first byte did
28 // not, so we must be changing to a new translation page.
29 if !aligned then
30 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
31 assert c IN {Constraint_FAULT, Constraint_NONE};
32 if c == Constraint_NONE then aligned = TRUE;
33
34 for i = 1 to size-1
35 value<8*i+7:8*i> = AArch64.MemSingle[address+i, 1, acctype, aligned];
36 elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
37 value<63:0> = AArch64.MemSingle[address, 8, acctype, aligned];
38 value<127:64> = AArch64.MemSingle[address+8, 8, acctype, aligned];
39 else
40 value = AArch64.MemSingle[address, size, acctype, aligned];
41
42 if BigEndian() then
43 value = BigEndianReverse(value);
44 return value;
45
46 // Mem[] - assignment (write) form
47 // ===============================
48 // Perform a write of 'size' bytes. The byte order is reversed for a big-endian access.
49

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1133

Chapter 5. Pseudocode definitions
5.94. aarch64/functions/memory/Mem

50 Mem[bits(64) address, integer size, AccType acctype] = bits(size*8) value
51 boolean iswrite = TRUE;
52
53 if BigEndian() then
54 value = BigEndianReverse(value);
55
56 aligned = AArch64.CheckAlignment(address, size, acctype, iswrite);
57 if size != 16 || !(acctype IN {AccType_VEC, AccType_VECSTREAM}) then
58 atomic = aligned;
59 else
60 // 128-bit SIMD&FP stores are treated as a pair of 64-bit single-copy atomic accesses
61 // 64-bit aligned.
62 atomic = address == Align(address, 8);
63
64 if !atomic then
65 assert size > 1;
66 AArch64.MemSingle[address, 1, acctype, aligned] = value<7:0>;
67
68 // For subsequent bytes it is CONSTRAINED UNPREDICTABLE whether an unaligned Device memory
69 // access will generate an Alignment Fault, as to get this far means the first byte did
70 // not, so we must be changing to a new translation page.
71 if !aligned then
72 c = ConstrainUnpredictable(Unpredictable_DEVPAGE2);
73 assert c IN {Constraint_FAULT, Constraint_NONE};
74 if c == Constraint_NONE then aligned = TRUE;
75
76 for i = 1 to size-1
77 AArch64.MemSingle[address+i, 1, acctype, aligned] = value<8*i+7:8*i>;
78 elsif size == 16 && acctype IN {AccType_VEC, AccType_VECSTREAM} then
79 AArch64.MemSingle[address, 8, acctype, aligned] = value<63:0>;
80 AArch64.MemSingle[address+8, 8, acctype, aligned] = value<127:64>;
81 else
82 AArch64.MemSingle[address, size, acctype, aligned] = value;
83 return;
84
85 CheckCapabilityAlignment(bits(64) address, AccType acctype, boolean iswrite)
86
87 if (address != Align(address, CAPABILITY_DBYTES)) then
88 secondstage = FALSE;
89 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
90
91 CheckCapabilityStorePairAlignment(bits(64) address, AccType acctype, boolean iswrite)
92
93 boolean atomic = (acctype == AccType_ATOMIC) || (acctype == AccType_ORDEREDATOMIC);
94 integer size = if atomic then CAPABILITY_DBYTES*2 else CAPABILITY_DBYTES;
95
96 if (address != Align(address, size)) then
97 secondstage = FALSE;
98 AArch64.Abort(address, AArch64.AlignmentFault(acctype, iswrite, secondstage));
99

100 Capability MemC[bits(64) address, AccType acctype]
101 boolean iswrite = FALSE;
102 bits(8*CAPABILITY_DBYTES) data;
103 bits(CAPABILITY_DBYTES DIV 16) tag;
104 Capability cap;
105
106 CheckCapabilityAlignment(address, acctype, iswrite);
107 (tag, data) = AArch64.TaggedMemSingle(address, CAPABILITY_DBYTES, acctype, TRUE);
108
109 cap = CapabilityFromData(CAPABILITY_DBITS, tag<0>, data<CAPABILITY_DBITS-1:0>);
110
111 return cap;
112
113 MemC[bits(64) address, AccType acctype] = Capability value
114 boolean iswrite = TRUE;
115 bits(CAPABILITY_DBITS) data;
116 bits(CAPABILITY_DBYTES DIV 16) tag;
117
118 (tag<0>, data) = DataFromCapability(CAPABILITY_DBITS, value);
119
120 CheckCapabilityAlignment(address, acctype, iswrite);
121 AArch64.TaggedMemSingle(address, CAPABILITY_DBYTES, acctype, TRUE, tag, data<CAPABILITY_DBYTES*8-1:0>);
122
123 // At the time of writing, array form doesn't support tuple assignment
124
125 (Capability, Capability) MemCP(bits(64) address, AccType acctype)
126 boolean iswrite = FALSE;
127 integer size = CAPABILITY_DBYTES*2;
128 bits(8*size) data;
129 bits(size DIV 16) tags;
130 Capability cap1;
131 Capability cap2;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1134

Chapter 5. Pseudocode definitions
5.95. aarch64/functions/memory/MemAtomic

132
133 CheckCapabilityAlignment(address, acctype, iswrite);
134 (tags, data) = AArch64.TaggedMemSingle(address, size, acctype, TRUE);
135
136 bits(CAPABILITY_DBITS) data1 = data<CAPABILITY_DBITS-1:0>;
137 bits(CAPABILITY_DBITS) data2 = data<(CAPABILITY_DBITS*2)-1:CAPABILITY_DBITS>;
138 cap1 = CapabilityFromData(CAPABILITY_DBITS, tags<0>, data1);
139 cap2 = CapabilityFromData(CAPABILITY_DBITS, tags<1>, data2);
140
141 return (cap1, cap2);
142
143 MemCP(bits(64) address, AccType acctype, Capability value1, Capability value2)
144 boolean iswrite = TRUE;
145 integer size = CAPABILITY_DBYTES*2;
146 bits(size DIV 16) tags;
147 bits(8*size) data;
148
149 (tags<0>, data<CAPABILITY_DBITS-1:0>) = DataFromCapability(CAPABILITY_DBITS,

↪→value1);
150 (tags<1>, data<(CAPABILITY_DBITS*2)-1:CAPABILITY_DBITS>) = DataFromCapability(CAPABILITY_DBITS,

↪→value2);
151
152 CheckCapabilityStorePairAlignment(address, acctype, iswrite);
153 AArch64.TaggedMemSingle(address, size, acctype, TRUE, tags, data);
154
155 constant integer CAPABILITY_DBITS = CAPABILITY_DBYTES * 8;

5.95 aarch64/functions/memory/MemAtomic

1 // MemAtomic()
2 // ===========
3 // Performs load and store memory operations for a given virtual address.
4
5 bits(size) MemAtomic(VirtualAddress base, MemAtomicOp op, bits(size) value, AccType ldacctype, AccType

↪→stacctype)
6 bits(64) address = VAddress(base);
7 VACheckAddress(base, address, size DIV 8, CAP_PERM_LOAD, ldacctype);
8 VACheckAddress(base, address, size DIV 8, CAP_PERM_STORE, stacctype);
9 bits(size) newvalue;

10 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
11 ldaccdesc = CreateAccessDescriptor(ldacctype);
12 staccdesc = CreateAccessDescriptor(stacctype);
13
14 // All observers in the shareability domain observe the
15 // following load and store atomically.
16 oldvalue = _Mem[memaddrdesc, size DIV 8, ldaccdesc];
17 if BigEndian() then
18 oldvalue = BigEndianReverse(oldvalue);
19
20 case op of
21 when MemAtomicOp_ADD newvalue = oldvalue + value;
22 when MemAtomicOp_BIC newvalue = oldvalue AND NOT(value);
23 when MemAtomicOp_EOR newvalue = oldvalue EOR value;
24 when MemAtomicOp_ORR newvalue = oldvalue OR value;
25 when MemAtomicOp_SMAX newvalue = if SInt(oldvalue) > SInt(value) then oldvalue else value;
26 when MemAtomicOp_SMIN newvalue = if SInt(oldvalue) > SInt(value) then value else oldvalue;
27 when MemAtomicOp_UMAX newvalue = if UInt(oldvalue) > UInt(value) then oldvalue else value;
28 when MemAtomicOp_UMIN newvalue = if UInt(oldvalue) > UInt(value) then value else oldvalue;
29 when MemAtomicOp_SWP newvalue = value;
30
31 if BigEndian() then
32 newvalue = BigEndianReverse(newvalue);
33 _Mem[memaddrdesc, size DIV 8, staccdesc] = newvalue;
34
35 // Load operations return the old (pre-operation) value
36 return oldvalue;

5.96 aarch64/functions/memory/MemAtomicC

1 // MemAtomicC()
2 // ============
3 // Performs load capability and store capability memory operations for a given virtual address.
4
5 Capability MemAtomicC(bits(64) address, MemAtomicOp op, Capability value, AccType ldacctype, AccType

↪→stacctype)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1135

Chapter 5. Pseudocode definitions
5.97. aarch64/functions/memory/MemAtomicCompareAndSwap

6
7 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, CAPABILITY_DBYTES*8);
8 ldaccdesc = CreateAccessDescriptor(ldacctype);
9 staccdesc = CreateAccessDescriptor(stacctype);

10
11 // All observers in the shareability domain observe the
12 // following load and store atomically.
13
14 // Check of SC
15 integer size = CAPABILITY_DBYTES;
16 // This is only used for Cap_SWP instruction in Morello
17 assert(op == MemAtomicOp_SWP);
18 bits(8*size) newdata;
19 bits(size DIV 16) newtag;
20 (newtag<0>, newdata) = DataFromCapability(8*size, value);
21 if newtag != Zeros(size DIV 16) then
22 CheckStoreTagsPermission(memaddrdesc, stacctype);
23
24 // Device memory locations marked as faulting loads of valid capabilities
25 // will fault and will not read the memory location.
26 if memaddrdesc.memattrs.memtype == MemType_Device then
27 CheckLoadTagsPermission(memaddrdesc, ldacctype);
28
29 // Memory array access
30 bits(8 * size) olddata;
31 bits(size DIV 16) oldtag;
32 if memaddrdesc.memattrs.readtagzero then
33 olddata = _ReadMem(memaddrdesc, size, ldaccdesc);
34 oldtag = Zeros(size DIV 16);
35 else
36 (oldtag, olddata) = _ReadTaggedMem(memaddrdesc, size, ldaccdesc);
37
38 // Check of LC
39 if oldtag != Zeros(size DIV 16) then
40 CheckLoadTagsPermission(memaddrdesc, ldacctype);
41
42 _WriteTaggedMem(memaddrdesc, size, staccdesc, newtag, newdata);
43
44 // Load operations return the old (pre-operation) capability value
45 return CapabilityFromData(CAPABILITY_DBITS, oldtag<0>, olddata<CAPABILITY_DBITS-1:0>);

5.97 aarch64/functions/memory/MemAtomicCompareAndSwap

1 // MemAtomicCompareAndSwap()
2 // =========================
3 // Compares the value stored at the passed-in memory address against the passed-in expected
4 // value. If the comparison is successful, the value at the passed-in memory address is swapped
5 // with the passed-in new_value.
6
7 bits(size) MemAtomicCompareAndSwap(VirtualAddress base, bits(size) expectedvalue,
8 bits(size) newvalue, AccType ldacctype, AccType stacctype)
9 bits(64) address = VAddress(base);

10 VACheckAddress(base, address, size DIV 8, CAP_PERM_LOAD, ldacctype);
11 VACheckAddress(base, address, size DIV 8, CAP_PERM_STORE, stacctype);
12 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, size);
13 ldaccdesc = CreateAccessDescriptor(ldacctype);
14 staccdesc = CreateAccessDescriptor(stacctype);
15
16 // All observers in the shareability domain observe the
17 // following load and store atomically.
18 oldvalue = _Mem[memaddrdesc, size DIV 8, ldaccdesc];
19 if BigEndian() then
20 oldvalue = BigEndianReverse(oldvalue);
21
22 if oldvalue == expectedvalue then
23 if BigEndian() then
24 newvalue = BigEndianReverse(newvalue);
25 _Mem[memaddrdesc, size DIV 8, staccdesc] = newvalue;
26 return oldvalue;

5.98 aarch64/functions/memory/MemAtomicCompareAndSwapC

1 // MemAtomicCompareAndSwapC()
2 // ==========================
3 // Compares the Capability stored at the passed-in memory address against the passed-in expected

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1136

Chapter 5. Pseudocode definitions
5.99. aarch64/functions/ras/AArch64.ESBOperation

4 // Capability. If the comparison is successful, the value at the passed-in memory address is swapped
5 // with the passed-in new_value.
6
7 Capability MemAtomicCompareAndSwapC(VirtualAddress vaddr, bits(64) address, Capability expectedcap,
8 Capability newcap, AccType ldacctype, AccType stacctype)
9 memaddrdesc = AArch64.TranslateAddressForAtomicAccess(address, CAPABILITY_DBYTES*8);

10 ldaccdesc = CreateAccessDescriptor(ldacctype);
11 staccdesc = CreateAccessDescriptor(stacctype);
12
13 // Check of SC
14 integer size = CAPABILITY_DBYTES;
15 bits(8*size) newdata;
16 bits(size DIV 16) newtag;
17 (newtag<0>, newdata) = DataFromCapability(8*size, newcap);
18 if newtag != Zeros(size DIV 16) then
19 CheckStoreTagsPermission(memaddrdesc, stacctype);
20
21 // Device memory locations marked as faulting loads of valid capabilities
22 // will fault and will not read the memory location.
23 if memaddrdesc.memattrs.memtype == MemType_Device then
24 CheckLoadTagsPermission(memaddrdesc, ldacctype);
25
26 // Memory array access
27 bits(8 * size) olddata;
28 bits(size DIV 16) oldtag;
29 if memaddrdesc.memattrs.readtagzero then
30 olddata = _ReadMem(memaddrdesc, size, ldaccdesc);
31 oldtag = Zeros(size DIV 16);
32 else
33 (oldtag, olddata) = _ReadTaggedMem(memaddrdesc, size, ldaccdesc);
34
35 // Check of LC
36 if oldtag != Zeros(size DIV 16) then
37 CheckLoadTagsPermission(memaddrdesc, ldacctype);
38
39 Capability oldcap = CapabilityFromData(CAPABILITY_DBITS, oldtag<0>, olddata<CAPABILITY_DBITS-1:0>);
40 oldcap = CapSquashPostLoadCap(oldcap, vaddr);
41
42 if CapIsEqual(oldcap,expectedcap) then
43 _WriteTaggedMem(memaddrdesc, size, staccdesc, newtag, newdata);
44
45 return oldcap;

5.99 aarch64/functions/ras/AArch64.ESBOperation

1 // AArch64.ESBOperation()
2 // ======================
3 // Perform the AArch64 ESB operation, either for ESB executed in AArch64 state, or for
4 // ESB in AArch32 state when SError interrupts are routed to an Exception level using
5 // AArch64
6
7 AArch64.ESBOperation()
8
9 route_to_el3 = HaveEL(EL3) && SCR_EL3.EA == '1';

10 route_to_el2 = (EL2Enabled() &&
11 (HCR_EL2.TGE == '1' || HCR_EL2.AMO == '1'));
12
13 target = if route_to_el3 then EL3 elsif route_to_el2 then EL2 else EL1;
14
15 if target == EL1 then
16 mask_active = PSTATE.EL IN {EL0, EL1};
17 elsif HaveVirtHostExt() && target == EL2 && HCR_EL2.<E2H,TGE> == '11' then
18 mask_active = PSTATE.EL IN {EL0, EL2};
19 else
20 mask_active = PSTATE.EL == target;
21
22 mask_set = PSTATE.A == '1';
23 intdis = Halted() || ExternalDebugInterruptsDisabled(target);
24 masked = (UInt(target) < UInt(PSTATE.EL)) || intdis || (mask_active && mask_set);
25
26 // Check for a masked Physical SError pending
27 if IsPhysicalSErrorPending() && masked then
28 implicit_esb = FALSE;
29 syndrome = AArch64.PhysicalSErrorSyndrome(implicit_esb);
30 DISR_EL1 = AArch64.ReportDeferredSError(syndrome)<31:0>;
31 ClearPendingPhysicalSError(); // Set ISR_EL1.A to 0
32
33 return;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1137

Chapter 5. Pseudocode definitions
5.100. aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

5.100 aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome

1 // Return the SError syndrome
2 bits(25) AArch64.PhysicalSErrorSyndrome(boolean implicit_esb);

5.101 aarch64/functions/ras/AArch64.ReportDeferredSError

1 // AArch64.ReportDeferredSError()
2 // ==============================
3 // Generate deferred SError syndrome
4
5 bits(64) AArch64.ReportDeferredSError(bits(25) syndrome)
6 bits(64) target;
7 target<31> = '1'; // A
8 target<24> = syndrome<24>; // IDS
9 target<23:0> = syndrome<23:0>; // ISS

10 return target;

5.102 aarch64/functions/ras/AArch64.vESBOperation

1 // AArch64.vESBOperation()
2 // =======================
3 // Perform the AArch64 ESB operation for virtual SError interrupts, either for ESB
4 // executed in AArch64 state, or for ESB in AArch32 state with EL2 using AArch64 state
5
6 AArch64.vESBOperation()
7 assert PSTATE.EL IN {EL0, EL1} && EL2Enabled();
8
9 // If physical SError interrupts are routed to EL2, and TGE is not set, then a virtual

10 // SError interrupt might be pending
11 vSEI_enabled = HCR_EL2.TGE == '0' && HCR_EL2.AMO == '1';
12 vSEI_pending = vSEI_enabled && HCR_EL2.VSE == '1';
13 vintdis = Halted() || ExternalDebugInterruptsDisabled(EL1);
14 vmasked = vintdis || PSTATE.A == '1';
15
16 // Check for a masked virtual SError pending
17 if vSEI_pending && vmasked then
18 VDISR_EL2 = AArch64.ReportDeferredSError(VSESR_EL2<24:0>)<31:0>;
19 HCR_EL2.VSE = '0'; // Clear pending virtual SError
20
21 return;

5.103 aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers

1 // AArch64.MaybeZeroRegisterUppers()
2 // =================================
3 // On taking an exception to AArch64 from AArch32, it is CONSTRAINED UNPREDICTABLE whether the top
4 // 32 bits of registers visible at any lower Exception level using AArch32 are set to zero.
5
6 AArch64.MaybeZeroRegisterUppers()
7 assert UsingAArch32(); // Always called from AArch32 state before entering AArch64 state
8
9 if PSTATE.EL == EL0 && !ELUsingAArch32(EL1) then

10 first = 0; last = 14; include_R15 = FALSE;
11 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() && !ELUsingAArch32(EL2) then
12 first = 0; last = 30; include_R15 = FALSE;
13 else
14 first = 0; last = 30; include_R15 = TRUE;
15
16 for n = first to last
17 if (n != 15 || include_R15) && ConstrainUnpredictableBool(Unpredictable_ZEROUPPER) then
18 _R[n]<63:32> = Zeros();
19
20 return;

5.104 aarch64/functions/registers/AArch64.ResetGeneralRegisters

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1138

Chapter 5. Pseudocode definitions
5.105. aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

1 // AArch64.ResetGeneralRegisters()
2 // ===============================
3
4 AArch64.ResetGeneralRegisters()
5
6 for i = 0 to 30
7 C[i] = CapNull();
8 return;

5.105 aarch64/functions/registers/AArch64.ResetSIMDFPRegisters

1 // AArch64.ResetSIMDFPRegisters()
2 // ==============================
3
4 AArch64.ResetSIMDFPRegisters()
5
6 for i = 0 to 31
7 V[i] = bits(128) UNKNOWN;
8
9 return;

5.106 aarch64/functions/registers/AArch64.ResetSpecialRegisters

1 // AArch64.ResetSpecialRegisters()
2 // ===============================
3
4 AArch64.ResetSpecialRegisters()
5
6 // AArch64 special registers
7 SP_EL0 = bits(129) UNKNOWN;
8 SP_EL1 = bits(129) UNKNOWN;
9 ELR_EL1 = bits(129) UNKNOWN;

10 SPSR_EL1 = bits(32) UNKNOWN;
11 if HaveEL(EL2) then
12 SP_EL2 = bits(129) UNKNOWN;
13 ELR_EL2 = bits(129) UNKNOWN;
14 SPSR_EL2 = bits(32) UNKNOWN;
15 if HaveEL(EL3) then
16 SP_EL3 = bits(129) UNKNOWN;
17 ELR_EL3 = bits(129) UNKNOWN;
18 SPSR_EL3 = bits(32) UNKNOWN;
19
20 // AArch32 special registers that are not architecturally mapped to AArch64 registers
21 if HaveAArch32EL(EL1) then
22 SPSR_fiq = bits(32) UNKNOWN;
23 SPSR_irq = bits(32) UNKNOWN;
24 SPSR_abt = bits(32) UNKNOWN;
25 SPSR_und = bits(32) UNKNOWN;
26
27 // External debug special registers
28 DSPSR_EL0 = bits(32) UNKNOWN;
29 CDLR_EL0 = bits(129) UNKNOWN;
30
31 return;

5.107 aarch64/functions/registers/AArch64.ResetSystemRegisters

1 AArch64.ResetSystemRegisters(boolean cold_reset);

5.108 aarch64/functions/registers/C

1 // C[] - assignment form
2 // =====================
3 // Write to capability register from a 129-bit value.
4
5 C[integer n] = Capability value
6 assert n >= 0 && n <= 31;
7 if n != 31 then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1139

Chapter 5. Pseudocode definitions
5.109. aarch64/functions/registers/CSP

8 _R[n] = ZeroExtend(value);
9 return;

10
11 // C[] - non-assignment form
12 // =========================
13 // Read from capabiltiy register with implicit slice of 129 bits.
14
15 Capability C[integer n]
16 assert n >= 0 && n <= 31;
17 if n != 31 then
18 return _R[n]<128:0>;
19 else
20 return CapNull();

5.109 aarch64/functions/registers/CSP

1 // CSP[] - assignment form
2 // =======================
3 // Write to stack pointer from a capability value.
4
5 CSP[] = Capability value
6 if IsInRestricted() then
7 RSP_EL0 = value;
8 elsif PSTATE.SP == '0' then
9 SP_EL0 = value;

10 else
11 case PSTATE.EL of
12 when EL0 SP_EL0 = value;
13 when EL1 SP_EL1 = value;
14 when EL2 SP_EL2 = value;
15 when EL3 SP_EL3 = value;
16 return;
17
18 // CSP[] - non-assignment form
19 // ===========================
20 // Read capability stack pointer
21
22 Capability CSP[]
23 if IsInRestricted() then
24 return RSP_EL0;
25 elsif PSTATE.SP == '0' then
26 return SP_EL0;
27 else
28 case PSTATE.EL of
29 when EL0 return SP_EL0;
30 when EL1 return SP_EL1;
31 when EL2 return SP_EL2;
32 when EL3 return SP_EL3;

5.110 aarch64/functions/registers/CapIsSystemAccessEnabled

1 // CapIsSystemAccessEnabled()
2 // ==========================
3 // Returns whether access to system resources is enabled
4
5 boolean CapIsSystemAccessEnabled()
6 if Halted() then
7 return TRUE;
8 else
9 return CapIsSystemAccessPermitted(PCC[]);

5.111 aarch64/functions/registers/Capability

1 type Capability;

5.112 aarch64/functions/registers/DDC

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1140

Chapter 5. Pseudocode definitions
5.113. aarch64/functions/registers/IsInRestricted

1 // DDC[] - assignment form
2 // =======================
3 // Write to default data capability
4
5 DDC[] = Capability value
6 DDC = value;
7 if IsInRestricted() then
8 RDDC_EL0 = value;
9 elsif PSTATE.SP == '0' then

10 DDC_EL0 = value;
11 else
12 case PSTATE.EL of
13 when EL0 DDC_EL0 = value;
14 when EL1 DDC_EL1 = value;
15 when EL2 DDC_EL2 = value;
16 when EL3 DDC_EL3 = value;
17
18 // DDC[] - non-assignment form
19 // ===========================
20 // Read default data capability
21
22 Capability DDC[]
23 if IsInRestricted() then
24 return RDDC_EL0;
25 elsif PSTATE.SP == '0' then
26 return DDC_EL0;
27 else
28 case PSTATE.EL of
29 when EL0 return DDC_EL0;
30 when EL1 return DDC_EL1;
31 when EL2 return DDC_EL2;
32 when EL3 return DDC_EL3;

5.113 aarch64/functions/registers/IsInRestricted

1 // IsInRestricted()
2 // ================
3 // Returns whether the PE is in Restricted state
4
5 boolean IsInRestricted()
6 if Halted() then
7 return FALSE;
8 else
9 return !CapIsExecutive(PCC[]);

5.114 aarch64/functions/registers/PC

1 // PC - non-assignment form
2 // ========================
3 // Read program counter.
4
5 bits(64) PC[]
6 return CapGetValue(PCC);
7
8 VirtualAddress BaseReg[integer n, boolean is_prefetch]
9 if !IsInC64() then

10 bits(64) address;
11 if n == 31 then
12 if !is_prefetch then
13 CheckSPAlignment();
14 address = SP[];
15 else
16 address = X[n];
17 return VAFromBits64(address);
18 else
19 Capability address;
20 if n == 31 then
21 if !is_prefetch then
22 CheckSPAlignment();
23 address = CSP[];
24 else
25 address = C[n];
26 return VAFromCapability(address);
27
28 VirtualAddress AltBaseReg[integer n, boolean is_prefetch]

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1141

Chapter 5. Pseudocode definitions
5.115. aarch64/functions/registers/PCC

29 if !IsInC64() then
30 Capability address;
31 if n == 31 then
32 if !is_prefetch then
33 CheckSPAlignment();
34 address = CSP[];
35 else
36 address = C[n];
37 return VAFromCapability(address);
38 else
39 bits(64) address;
40 if n == 31 then
41 if !is_prefetch then
42 CheckSPAlignment();
43 address = SP[];
44 else
45 address = X[n];
46 return VAFromBits64(address);
47
48 VirtualAddress BaseReg[integer n]
49 return BaseReg[n, FALSE];
50
51 VirtualAddress AltBaseReg[integer n]
52 return AltBaseReg[n, FALSE];
53
54 BaseReg[integer n] = VirtualAddress address
55 if !IsInC64() then
56 if n == 31 then
57 SP[] = VAToBits64(address);
58 else
59 X[n] = VAToBits64(address);
60 else
61 if n == 31 then
62 CSP[] = VAToCapability(address);
63 else
64 C[n] = VAToCapability(address);
65
66 AltBaseReg[integer n] = VirtualAddress address
67 if !IsInC64() then
68 if n == 31 then
69 CSP[] = VAToCapability(address);
70 else
71 C[n] = VAToCapability(address);
72 else
73 if n == 31 then
74 SP[] = VAToBits64(address);
75 else
76 X[n] = VAToBits64(address);

5.115 aarch64/functions/registers/PCC

1 // PCC[] - assignment form
2 // =======================
3 // Write to program counter capability
4
5 PCC[] = Capability value
6 PCC = ZeroExtend(value);
7
8 // PCC[] - non-assignment form
9 // ===========================

10 // Read program counter capability
11
12 Capability PCC[]
13 return PCC;

5.116 aarch64/functions/registers/SP

1 // SP[] - assignment form
2 // ======================
3 // Write to stack pointer from either a 32-bit or a 64-bit value.
4
5 SP[] = bits(width) value
6 assert width IN {32,64};
7 if IsInRestricted() then
8 RSP_EL0 = ZeroExtend(value);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1142

Chapter 5. Pseudocode definitions
5.117. aarch64/functions/registers/V

9 elsif PSTATE.SP == '0' then
10 SP_EL0 = ZeroExtend(value);
11 else
12 case PSTATE.EL of
13 when EL0 SP_EL0 = ZeroExtend(value);
14 when EL1 SP_EL1 = ZeroExtend(value);
15 when EL2 SP_EL2 = ZeroExtend(value);
16 when EL3 SP_EL3 = ZeroExtend(value);
17
18 return;
19
20 // SP[] - non-assignment form
21 // ==========================
22 // Read stack pointer with implicit slice of 8, 16, 32 or 64 bits.
23
24 bits(width) SP[]
25 assert width IN {8,16,32,64};
26 if IsInRestricted() then
27 return RSP_EL0<width-1:0>;
28 elsif PSTATE.SP == '0' then
29 return SP_EL0<width-1:0>;
30 else
31 case PSTATE.EL of
32 when EL0 return SP_EL0<width-1:0>;
33 when EL1 return SP_EL1<width-1:0>;
34 when EL2 return SP_EL2<width-1:0>;
35 when EL3 return SP_EL3<width-1:0>;

5.117 aarch64/functions/registers/V

1 // V[] - assignment form
2 // =====================
3 // Write to SIMD&FP register with implicit extension from
4 // 8, 16, 32, 64 or 128 bits.
5
6 V[integer n] = bits(width) value
7 assert n >= 0 && n <= 31;
8 assert width IN {8,16,32,64,128};
9 _V[n] = ZeroExtend(value);

10 return;
11
12 // V[] - non-assignment form
13 // =========================
14 // Read from SIMD&FP register with implicit slice of 8, 16
15 // 32, 64 or 128 bits.
16
17 bits(width) V[integer n]
18 assert n >= 0 && n <= 31;
19 assert width IN {8,16,32,64,128};
20 return _V[n]<width-1:0>;

5.118 aarch64/functions/registers/VirtualAddress

1 type VirtualAddress is (
2 VirtualAddressType vatype,
3 Capability base,
4 bits(64) offset,
5)

5.119 aarch64/functions/registers/VirtualAddressType

1 enumeration VirtualAddressType { VA_Bits64, VA_Capability };

5.120 aarch64/functions/registers/Vpart

1 // Vpart[] - non-assignment form
2 // =============================
3 // Reads a 128-bit SIMD&FP register in up to two parts:

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1143

Chapter 5. Pseudocode definitions
5.121. aarch64/functions/registers/X

4 // part 0 returns the bottom 8, 16, 32 or 64 bits of a value held in the register;
5 // part 1 returns the top half of the bottom 64 bits or the top half of the 128-bit
6 // value held in the register.
7
8 bits(width) Vpart[integer n, integer part]
9 assert n >= 0 && n <= 31;

10 assert part IN {0, 1};
11 if part == 0 then
12 assert width IN {8,16,32,64};
13 return _V[n]<width-1:0>;
14 else
15 assert width IN {32,64};
16 return _V[n]<(width * 2)-1:width>;
17
18 // Vpart[] - assignment form
19 // =========================
20 // Writes a 128-bit SIMD&FP register in up to two parts:
21 // part 0 zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
22 // part 1 inserts a 64-bit value into the top half of the register.
23
24 Vpart[integer n, integer part] = bits(width) value
25 assert n >= 0 && n <= 31;
26 assert part IN {0, 1};
27 if part == 0 then
28 assert width IN {8,16,32,64};
29 _V[n] = ZeroExtend(value);
30 else
31 assert width == 64;
32 _V[n]<(width * 2)-1:width> = value<width-1:0>;

5.121 aarch64/functions/registers/X

1 // X[] - assignment form
2 // =====================
3 // Write to general-purpose register from either a 32-bit or a 64-bit value.
4
5 X[integer n] = bits(width) value
6 assert n >= 0 && n <= 31;
7 assert width IN {32,64};
8 if n != 31 then
9 _R[n] = ZeroExtend(value);

10 return;
11
12 // X[] - non-assignment form
13 // =========================
14 // Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.
15
16 bits(width) X[integer n]
17 assert n >= 0 && n <= 31;
18 assert width IN {8,16,32,64};
19 if n != 31 then
20 return _R[n]<width-1:0>;
21 else
22 return Zeros(width);

5.122 aarch64/functions/sysregisters/CCTLR

1 // CCTLR[] - non-assignment form
2 // =============================
3
4 CCTLRType CCTLR[bits(2) el]
5 bits(32) r;
6 case el of
7 when EL0 r = CCTLR_EL0;
8 when EL1 r = CCTLR_EL1;
9 when EL2 r = CCTLR_EL2;

10 when EL3 r = CCTLR_EL3;
11 otherwise Unreachable();
12 return r;
13
14 // CCTLR[] - non-assignment form
15 // =============================
16
17 CCTLRType CCTLR[]
18 return CCTLR[PSTATE.EL];

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1144

Chapter 5. Pseudocode definitions
5.123. aarch64/functions/sysregisters/CELR

5.123 aarch64/functions/sysregisters/CELR

1 // CELR[] - non-assignment form
2 // ============================
3
4 Capability CELR[bits(2) el]
5 Capability r;
6 case el of
7 when EL1 r = ELR_EL1;
8 when EL2 r = ELR_EL2;
9 when EL3 r = ELR_EL3;

10 otherwise Unreachable();
11 return r;
12
13 // CELR[] - assignment form
14 // ========================
15
16 CELR[bits(2) el] = Capability value
17 case el of
18 when EL1 ELR_EL1 = value;
19 when EL2 ELR_EL2 = value;
20 when EL3 ELR_EL3 = value;
21 otherwise Unreachable();
22 return;
23
24 // CELR[] - non-assignment form
25 // ============================
26
27 Capability CELR[]
28 return CELR[PSTATE.EL];
29
30 // CELR[] - assignment form
31 // ========================
32
33 CELR[] = Capability value
34 CELR[PSTATE.EL] = value;
35 return;

5.124 aarch64/functions/sysregisters/CNTKCTL

1 // CNTKCTL[] - non-assignment form
2 // ===============================
3
4 CNTKCTLType CNTKCTL[]
5 bits(32) r;
6 if IsInHost() then
7 r = CNTHCTL_EL2;
8 return r;
9 r = CNTKCTL_EL1;

10 return r;

5.125 aarch64/functions/sysregisters/CNTKCTLType

1 type CNTKCTLType;

5.126 aarch64/functions/sysregisters/CPACR

1 // CPACR[] - non-assignment form
2 // =============================
3
4 CPACRType CPACR[]
5 bits(32) r;
6 if IsInHost() then
7 r = CPTR_EL2;
8 return r;
9 r = CPACR_EL1;

10 return r;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1145

Chapter 5. Pseudocode definitions
5.127. aarch64/functions/sysregisters/CPACRType

5.127 aarch64/functions/sysregisters/CPACRType

1 type CPACRType;

5.128 aarch64/functions/sysregisters/CVBAR

1 // CVBAR[] - non-assignment form
2 // =============================
3
4 Capability CVBAR[bits(2) regime]
5 Capability r;
6 case regime of
7 when EL1 r = VBAR_EL1;
8 when EL2 r = VBAR_EL2;
9 when EL3 r = VBAR_EL3;

10 otherwise Unreachable();
11 return r;
12
13 // CVBAR[] - non-assignment form
14 // =============================
15
16 Capability CVBAR[]
17 return CVBAR[PSTATE.EL];

5.129 aarch64/functions/sysregisters/ELR

1 // ELR[] - non-assignment form
2 // ===========================
3
4 bits(64) ELR[bits(2) el]
5 bits(64) r;
6 case el of
7 when EL1 r = ELR_EL1<63:0>;
8 when EL2 r = ELR_EL2<63:0>;
9 when EL3 r = ELR_EL3<63:0>;

10 otherwise Unreachable();
11 return r;
12
13 // ELR[] - non-assignment form
14 // ===========================
15
16 bits(64) ELR[]
17 assert PSTATE.EL != EL0;
18 return ELR[PSTATE.EL];
19
20 // ELR[] - assignment form
21 // =======================
22
23 ELR[bits(2) el] = bits(64) value
24 bits(64) r = value;
25 case el of
26 when EL1
27 ELR_EL1 = ZeroExtend(r);
28 when EL2
29 ELR_EL2 = ZeroExtend(r);
30 when EL3
31 ELR_EL3 = ZeroExtend(r);
32 otherwise Unreachable();
33 return;
34
35 // ELR[] - assignment form
36 // =======================
37
38 ELR[] = bits(64) value
39 assert PSTATE.EL != EL0;
40 ELR[PSTATE.EL] = value;
41 return;

5.130 aarch64/functions/sysregisters/ESR

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1146

Chapter 5. Pseudocode definitions
5.131. aarch64/functions/sysregisters/ESRType

1 type CCTLRType;
2
3 // ESR[] - non-assignment form
4 // ===========================
5
6 ESRType ESR[bits(2) regime]
7 bits(32) r;
8 case regime of
9 when EL1 r = ESR_EL1;

10 when EL2 r = ESR_EL2;
11 when EL3 r = ESR_EL3;
12 otherwise Unreachable();
13 return r;
14
15 // ESR[] - non-assignment form
16 // ===========================
17
18 ESRType ESR[]
19 return ESR[S1TranslationRegime()];
20
21 // ESR[] - assignment form
22 // =======================
23
24 ESR[bits(2) regime] = ESRType value
25 bits(32) r = value;
26 case regime of
27 when EL1 ESR_EL1 = r;
28 when EL2 ESR_EL2 = r;
29 when EL3 ESR_EL3 = r;
30 otherwise Unreachable();
31 return;
32
33 // ESR[] - assignment form
34 // =======================
35
36 ESR[] = ESRType value
37 ESR[S1TranslationRegime()] = value;

5.131 aarch64/functions/sysregisters/ESRType

1 type ESRType;

5.132 aarch64/functions/sysregisters/FAR

1 // FAR[] - non-assignment form
2 // ===========================
3
4 bits(64) FAR[bits(2) regime]
5 bits(64) r;
6 case regime of
7 when EL1 r = FAR_EL1;
8 when EL2 r = FAR_EL2;
9 when EL3 r = FAR_EL3;

10 otherwise Unreachable();
11 return r;
12
13 // FAR[] - non-assignment form
14 // ===========================
15
16 bits(64) FAR[]
17 return FAR[S1TranslationRegime()];
18
19 // FAR[] - assignment form
20 // =======================
21
22 FAR[bits(2) regime] = bits(64) value
23 bits(64) r = value;
24 case regime of
25 when EL1 FAR_EL1 = r;
26 when EL2 FAR_EL2 = r;
27 when EL3 FAR_EL3 = r;
28 otherwise Unreachable();
29 return;
30
31 // FAR[] - assignment form

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1147

Chapter 5. Pseudocode definitions
5.133. aarch64/functions/sysregisters/MAIR

32 // =======================
33
34 FAR[] = bits(64) value
35 FAR[S1TranslationRegime()] = value;
36 return;

5.133 aarch64/functions/sysregisters/MAIR

1 // MAIR[] - non-assignment form
2 // ============================
3
4 MAIRType MAIR[bits(2) regime]
5 bits(64) r;
6 case regime of
7 when EL1 r = MAIR_EL1;
8 when EL2 r = MAIR_EL2;
9 when EL3 r = MAIR_EL3;

10 otherwise Unreachable();
11 return r;
12
13 // MAIR[] - non-assignment form
14 // ============================
15
16 MAIRType MAIR[]
17 return MAIR[S1TranslationRegime()];

5.134 aarch64/functions/sysregisters/MAIRType

1 type MAIRType;

5.135 aarch64/functions/sysregisters/SCTLR

1 // SCTLR[] - non-assignment form
2 // =============================
3
4 SCTLRType SCTLR[bits(2) regime]
5 bits(64) r;
6 case regime of
7 when EL1 r = SCTLR_EL1;
8 when EL2 r = SCTLR_EL2;
9 when EL3 r = SCTLR_EL3;

10 otherwise Unreachable();
11 return r;
12
13 // SCTLR[] - non-assignment form
14 // =============================
15
16 SCTLRType SCTLR[]
17 return SCTLR[S1TranslationRegime()];

5.136 aarch64/functions/sysregisters/SCTLRType

1 type SCTLRType;

5.137 aarch64/functions/sysregisters/VBAR

1 // VBAR[] - non-assignment form
2 // ============================
3
4 bits(64) VBAR[bits(2) regime]
5 bits(64) r;
6 case regime of
7 when EL1 r = VBAR_EL1<63:0>;
8 when EL2 r = VBAR_EL2<63:0>;
9 when EL3 r = VBAR_EL3<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1148

Chapter 5. Pseudocode definitions
5.138. aarch64/functions/system/AArch64.CheckSystemAccess

10 otherwise Unreachable();
11 return r;
12
13 // VBAR[] - non-assignment form
14 // ============================
15
16 bits(64) VBAR[]
17 return VBAR[S1TranslationRegime()];

5.138 aarch64/functions/system/AArch64.CheckSystemAccess

1 // AArch64.CheckSystemAccess()
2 // ===========================
3 // Checks if an AArch64 MSR, MRS or SYS instruction is allowed from the current exception level and

↪→security state.
4 // Also checks for traps by TIDCP and NV access.
5
6 AArch64.CheckSystemAccess(bits(2) op0, bits(3) op1, bits(4) crn, bits(4) crm, bits(3) op2, bits(5) rt, bit

↪→read)
7 boolean unallocated = FALSE;
8 boolean need_secure = FALSE;
9 bits(2) min_EL;

10
11 // Check for traps by HCR_EL2.TIDCP
12 if PSTATE.EL IN {EL0, EL1} && EL2Enabled() && HCR_EL2.TIDCP == '1' && op0 == 'x1' && crn == '1x11' then
13 // At EL0, it is IMPLEMENTATION_DEFINED whether attempts to execute system
14 // register access instructions with reserved encodings are trapped to EL2 or UNDEFINED
15 rcs_el0_trap = boolean IMPLEMENTATION_DEFINED "Reserved Control Space EL0 Trapped";
16 if PSTATE.EL == EL1 || rcs_el0_trap then
17 AArch64.SystemAccessTrap(EL2, 0x18); // Exception_SystemRegisterTrap
18
19 // Check for unallocated encodings
20 case op1 of
21 when '00x', '010'
22 min_EL = EL1;
23 when '011'
24 min_EL = EL0;
25 when '100'
26 min_EL = EL2;
27 when '101'
28 if !HaveVirtHostExt() then UNDEFINED;
29 min_EL = EL2;
30 when '110'
31 min_EL = EL3;
32 when '111'
33 min_EL = EL1;
34 need_secure = TRUE;
35 // RSP_EL0 and RCSP_EL0 are available from EL0, and not Secure-only
36 if op0 == '11' && crn == '0100' && crm == '0001' && op2 == '011' then
37 min_EL = EL0;
38 need_secure = FALSE;
39
40 if UInt(PSTATE.EL) < UInt(min_EL) then
41 UNDEFINED;
42 elsif need_secure && !IsSecure() then
43 UNDEFINED;

5.139 aarch64/functions/system/AArch64.ExecutingATS1xPInstr

1 // AArch64.ExecutingATS1xPInstr()
2 // ==============================
3 // Return TRUE if current instruction is AT S1E1R/WP
4
5 boolean AArch64.ExecutingATS1xPInstr()
6 if !HavePrivATExt() then return FALSE;
7
8 instr = ThisInstr();
9 if instr<22+:10> == '1101010100' then

10 op1 = instr<16+:3>;
11 CRn = instr<12+:4>;
12 CRm = instr<8+:4>;
13 op2 = instr<5+:3>;
14 return op1 == '000' && CRn == '0111' && CRm == '1001' && op2 IN {'000','001'};
15 else
16 return FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1149

Chapter 5. Pseudocode definitions
5.140. aarch64/functions/system/AArch64.SysInstr

5.140 aarch64/functions/system/AArch64.SysInstr

1 // Execute a system instruction with write (source operand).
2 AArch64.SysInstr(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

5.141 aarch64/functions/system/AArch64.SysInstrInputIsCapability

1 // AArch64.SysInstrInputIsCapability()
2 // ===================================
3
4 // Does the specified system instruction take a capability as input?
5
6 boolean AArch64.SysInstrInputIsCapability(integer op0, integer op1, integer crn, integer crm, integer op2)
7
8 // This returns TRUE for the ZVA, IVAC, CVAC, CVAU, CVAP, CVADP, CIVAC operations for DC,
9 // and IC IVAU.

10 return (PSTATE.C64 == '1' &&
11 ((op0 == 1 && op1 == 0 && crn == 7 && crm == 6) ||
12 (op0 == 1 && op1 == 3 && crn == 7 && crm IN {4, 5, 10, 11, 12, 13, 14} && op2 == 1)));

5.142 aarch64/functions/system/AArch64.SysInstrWithCapability

1 // Execute a system instruction taking a source capability as input.
2 AArch64.SysInstrWithCapability(integer op0, integer op1, integer crn, integer crm, integer op2, Capability

↪→val);

5.143 aarch64/functions/system/AArch64.SysInstrWithResult

1 // Execute a system instruction with read (result operand).
2 // Returns the result of the instruction.
3 bits(64) AArch64.SysInstrWithResult(integer op0, integer op1, integer crn, integer crm, integer op2);

5.144 aarch64/functions/system/AArch64.SysRegRead

1 // Read from a system register and return the contents of the register.
2 bits(64) AArch64.SysRegRead(integer op0, integer op1, integer crn, integer crm, integer op2);

5.145 aarch64/functions/system/AArch64.SysRegWrite

1 // Write to a system register.
2 AArch64.SysRegWrite(integer op0, integer op1, integer crn, integer crm, integer op2, bits(64) val);

5.146 aarch64/functions/virtualaddress/VAAdd

1 // VAAdd()
2 // =======
3
4 VirtualAddress VAAdd(VirtualAddress v, bits(64) offset)
5 VirtualAddress r;
6 if VAIsCapability(v) then
7 r = VAFromCapability(CapAdd(VAToCapability(v), offset));
8 else
9 r = VAFromBits64(VAToBits64(v) + offset);

10
11 return r;

5.147 aarch64/functions/virtualaddress/VACheckAddress

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1150

Chapter 5. Pseudocode definitions
5.148. aarch64/functions/virtualaddress/VACheckPerm

1 // VACheckAddress()
2 // ================
3 // Check Virtual Address against a 64-bit address. If any capability checks
4 // fail then an appropriate fault will be generated
5
6 VACheckAddress(VirtualAddress base, bits(64) addr64, integer size, bits(64) requested_perms, AccType

↪→acctype)
7
8 Capability c;
9

10 if VAIsBits64(base) then
11 c = DDC[];
12 // Note: The effects of CCTLR_ELx.DDCBO are applied in VAddress
13 else
14 c = VAToCapability(base);
15
16 (-) = CheckCapability(c, addr64, size, requested_perms, acctype);

5.148 aarch64/functions/virtualaddress/VACheckPerm

1 // VACheckPerm()
2 // =============
3 // Check Virtual Address against a set of permissions.
4
5 boolean VACheckPerm(VirtualAddress base, bits(64) requested_perms)
6
7 Capability c;
8
9 if VAIsBits64(base) then

10 c = DDC[];
11 // Note: The effects of CCTLR_ELx.DDCBO are applied in VAddress
12 else
13 c = VAToCapability(base);
14
15 return CapCheckPermissions(c, requested_perms);

5.149 aarch64/functions/virtualaddress/VAFromBits64

1 // VAFromBits64()
2 // ==============
3 // Create a VirtualAddress from a 64-bit value
4
5 VirtualAddress VAFromBits64(bits(64) b)
6 VirtualAddress v;
7 v.vatype = VA_Bits64;
8 v.offset = b;
9

10 return v;

5.150 aarch64/functions/virtualaddress/VAFromCapability

1 // VAFromCapability()
2 // ==================
3 // Create a virtual address from a capability
4
5 VirtualAddress VAFromCapability(Capability c)
6 VirtualAddress v;
7
8 v.vatype = VA_Capability;
9 v.base = c;

10
11 return v;

5.151 aarch64/functions/virtualaddress/VAIsBits64

1 // VAIsBits64()
2 // ============
3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1151

Chapter 5. Pseudocode definitions
5.152. aarch64/functions/virtualaddress/VAIsCapability

4 boolean VAIsBits64(VirtualAddress v)
5 return v.vatype == VA_Bits64;

5.152 aarch64/functions/virtualaddress/VAIsCapability

1 // VAIsCapability()
2 // ================
3
4 boolean VAIsCapability(VirtualAddress v)
5 return v.vatype == VA_Capability;

5.153 aarch64/functions/virtualaddress/VAToBits64

1 // VAToBits64()
2 // ============
3
4 bits(64) VAToBits64(VirtualAddress v)
5 assert VAIsBits64(v);
6 return v.offset;

5.154 aarch64/functions/virtualaddress/VAToCapability

1 // VAToCapability()
2 // ================
3
4 Capability VAToCapability(VirtualAddress v)
5 assert VAIsCapability(v);
6 return v.base;

5.155 aarch64/functions/virtualaddress/VAddress

1 // VAddress()
2 // ==========
3 // Convert a VirtualAddress to a 64-bit address without checking for validity
4
5 bits(64) VAddress(VirtualAddress addr)
6
7 bits(64) addr64;
8
9 if VAIsBits64(addr) then

10 if CCTLR[].DDCBO == '1' then
11 addr64 = VAToBits64(addr) + CapGetBase(DDC[]);
12 else
13 addr64 = VAToBits64(addr);
14 else
15 Capability c = VAToCapability(addr);
16 addr64 = CapGetValue(c)<63:0>;
17
18 return addr64;

5.156 aarch64/instrs/branch/eret/AArch64.ExceptionReturn

1 // AArch64.ExceptionReturn()
2 // =========================
3
4 AArch64.ExceptionReturn(bits(64) new_pc, bits(32) spsr)
5
6 SynchronizeContext();
7
8 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
9 if sync_errors then

10 SynchronizeErrors();
11 iesb_req = TRUE;
12 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
13 // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1152

Chapter 5. Pseudocode definitions
5.157. aarch64/instrs/branch/eret/AArch64.ExceptionReturnToCapability

14 SetPSTATEFromPSR(spsr);
15 ClearExclusiveLocal(ProcessorID());
16 SendEventLocal();
17
18 if PSTATE.IL == '1' && spsr<4> == '1' && spsr<20> == '0' then
19 // If the exception return is illegal, PC[63:32,1:0] are UNKNOWN
20 new_pc<63:32> = bits(32) UNKNOWN;
21 new_pc<1:0> = bits(2) UNKNOWN;
22 elsif UsingAArch32() then // Return to AArch32
23 // ELR_ELx[1:0] or ELR_ELx[0] are treated as being 0, depending on the target instruction set state
24 if PSTATE.T == '1' then
25 new_pc<0> = '0'; // T32
26 else
27 new_pc<1:0> = '00'; // A32
28 else // Return to AArch64
29 // ELR_ELx[63:56] might include a tag
30 new_pc = AArch64.BranchAddr(new_pc);
31
32 if UsingAArch32() then
33 // 32 most significant bits are ignored.
34 BranchTo(new_pc<31:0>, BranchType_ERET);
35 else
36 BranchToAddr(new_pc, BranchType_ERET);

5.157 aarch64/instrs/branch/eret/AArch64.ExceptionReturnToCapability

1 // AArch64.ExceptionReturnToCapability()
2 // =====================================
3
4 AArch64.ExceptionReturnToCapability(Capability new_pcc, bits(32) spsr)
5
6 SynchronizeContext();
7
8 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
9 if sync_errors then

10 SynchronizeErrors();
11 iesb_req = TRUE;
12 TakeUnmaskedPhysicalSErrorInterrupts(iesb_req);
13 // Attempts to change to an illegal state will invoke the Illegal Execution state mechanism
14 SetPSTATEFromPSR(spsr);
15 ClearExclusiveLocal(ProcessorID());
16 SendEventLocal();
17
18 if !CapIsSystemAccessEnabled() then
19 new_pcc = CapWithTagClear(new_pcc);
20 if CapIsExponentOutOfRange(new_pcc) then
21 new_pcc = CapWithTagClear(new_pcc);
22 new_pcc = BranchAddr(new_pcc, PSTATE.EL);
23 BranchToCapability(new_pcc, BranchType_ERET);

5.158 aarch64/instrs/countop/CountOp

1 enumeration CountOp {CountOp_CLZ, CountOp_CLS, CountOp_CNT};

5.159 aarch64/instrs/extendreg/DecodeRegExtend

1 // DecodeRegExtend()
2 // =================
3 // Decode a register extension option
4
5 ExtendType DecodeRegExtend(bits(3) op)
6 case op of
7 when '000' return ExtendType_UXTB;
8 when '001' return ExtendType_UXTH;
9 when '010' return ExtendType_UXTW;

10 when '011' return ExtendType_UXTX;
11 when '100' return ExtendType_SXTB;
12 when '101' return ExtendType_SXTH;
13 when '110' return ExtendType_SXTW;
14 when '111' return ExtendType_SXTX;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1153

Chapter 5. Pseudocode definitions
5.160. aarch64/instrs/extendreg/ExtendReg

5.160 aarch64/instrs/extendreg/ExtendReg

1 // ExtendReg()
2 // ===========
3 // Perform a register extension and shift
4
5 bits(N) ExtendReg(integer reg, ExtendType exttype, integer shift)
6 assert shift >= 0 && shift <= 4;
7 bits(N) val = X[reg];
8 boolean unsigned;
9 integer len;

10
11 case exttype of
12 when ExtendType_SXTB unsigned = FALSE; len = 8;
13 when ExtendType_SXTH unsigned = FALSE; len = 16;
14 when ExtendType_SXTW unsigned = FALSE; len = 32;
15 when ExtendType_SXTX unsigned = FALSE; len = 64;
16 when ExtendType_UXTB unsigned = TRUE; len = 8;
17 when ExtendType_UXTH unsigned = TRUE; len = 16;
18 when ExtendType_UXTW unsigned = TRUE; len = 32;
19 when ExtendType_UXTX unsigned = TRUE; len = 64;
20
21 // Note the extended width of the intermediate value and
22 // that sign extension occurs from bit <len+shift-1>, not
23 // from bit <len-1>. This is equivalent to the instruction
24 // [SU]BFIZ Rtmp, Rreg, #shift, #len
25 // It may also be seen as a sign/zero extend followed by a shift:
26 // LSL(Extend(val<len-1:0>, N, unsigned), shift);
27
28 len = Min(len, N - shift);
29 return Extend(val<len-1:0> : Zeros(shift), N, unsigned);

5.161 aarch64/instrs/extendreg/ExtendType

1 enumeration ExtendType {ExtendType_SXTB, ExtendType_SXTH, ExtendType_SXTW, ExtendType_SXTX,
2 ExtendType_UXTB, ExtendType_UXTH, ExtendType_UXTW, ExtendType_UXTX};

5.162 aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp

1 enumeration FPMaxMinOp {FPMaxMinOp_MAX, FPMaxMinOp_MIN,
2 FPMaxMinOp_MAXNUM, FPMaxMinOp_MINNUM};

5.163 aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp

1 enumeration FPUnaryOp {FPUnaryOp_ABS, FPUnaryOp_MOV,
2 FPUnaryOp_NEG, FPUnaryOp_SQRT};

5.164 aarch64/instrs/float/convert/fpconvop/FPConvOp

1 enumeration FPConvOp {FPConvOp_CVT_FtoI, FPConvOp_CVT_ItoF,
2 FPConvOp_MOV_FtoI, FPConvOp_MOV_ItoF
3 };

5.165 aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred

1 // BFXPreferred()
2 // ==============
3 //
4 // Return TRUE if UBFX or SBFX is the preferred disassembly of a
5 // UBFM or SBFM bitfield instruction. Must exclude more specific
6 // aliases UBFIZ, SBFIZ, UXT[BH], SXT[BHW], LSL, LSR and ASR.
7
8 boolean BFXPreferred(bit sf, bit uns, bits(6) imms, bits(6) immr)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1154

Chapter 5. Pseudocode definitions
5.166. aarch64/instrs/integer/bitmasks/DecodeBitMasks

9 integer S = UInt(imms);
10 integer R = UInt(immr);
11
12 // must not match UBFIZ/SBFIX alias
13 if UInt(imms) < UInt(immr) then
14 return FALSE;
15
16 // must not match LSR/ASR/LSL alias (imms == 31 or 63)
17 if imms == sf:'11111' then
18 return FALSE;
19
20 // must not match UXTx/SXTx alias
21 if immr == '000000' then
22 // must not match 32-bit UXT[BH] or SXT[BH]
23 if sf == '0' && imms IN {'000111', '001111'} then
24 return FALSE;
25 // must not match 64-bit SXT[BHW]
26 if sf:uns == '10' && imms IN {'000111', '001111', '011111'} then
27 return FALSE;
28
29 // must be UBFX/SBFX alias
30 return TRUE;

5.166 aarch64/instrs/integer/bitmasks/DecodeBitMasks

1 // DecodeBitMasks()
2 // ================
3
4 // Decode AArch64 bitfield and logical immediate masks which use a similar encoding structure
5
6 (bits(M), bits(M)) DecodeBitMasks(bit immN, bits(6) imms, bits(6) immr, boolean immediate)
7 bits(64) tmask, wmask;
8 bits(6) tmask_and, wmask_and;
9 bits(6) tmask_or, wmask_or;

10 bits(6) levels;
11
12 // Compute log2 of element size
13 // 2^len must be in range [2, M]
14 len = HighestSetBit(immN:NOT(imms));
15 if len < 1 then UNDEFINED;
16 assert M >= (1 << len);
17
18 // Determine S, R and S - R parameters
19 levels = ZeroExtend(Ones(len), 6);
20
21 // For logical immediates an all-ones value of S is reserved
22 // since it would generate a useless all-ones result (many times)
23 if immediate && (imms AND levels) == levels then
24 UNDEFINED;
25
26 S = UInt(imms AND levels);
27 R = UInt(immr AND levels);
28 diff = S - R; // 6-bit subtract with borrow
29
30 // From a software perspective, the remaining code is equivalant to:
31 // esize = 1 << len;
32 // d = UInt(diff<len-1:0>);
33 // welem = ZeroExtend(Ones(S + 1), esize);
34 // telem = ZeroExtend(Ones(d + 1), esize);
35 // wmask = Replicate(ROR(welem, R));
36 // tmask = Replicate(telem);
37 // return (wmask, tmask);
38
39 // Compute "top mask"
40 tmask_and = diff<5:0> OR NOT(levels);
41 tmask_or = diff<5:0> AND levels;
42
43 tmask = Ones(64);
44 tmask = ((tmask
45 AND Replicate(Replicate(tmask_and<0>, 1) : Ones(1), 32))
46 OR Replicate(Zeros(1) : Replicate(tmask_or<0>, 1), 32));
47 // optimization of first step:
48 // tmask = Replicate(tmask_and<0> : '1', 32);
49 tmask = ((tmask
50 AND Replicate(Replicate(tmask_and<1>, 2) : Ones(2), 16))
51 OR Replicate(Zeros(2) : Replicate(tmask_or<1>, 2), 16));
52 tmask = ((tmask
53 AND Replicate(Replicate(tmask_and<2>, 4) : Ones(4), 8))
54 OR Replicate(Zeros(4) : Replicate(tmask_or<2>, 4), 8));

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1155

Chapter 5. Pseudocode definitions
5.167. aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

55 tmask = ((tmask
56 AND Replicate(Replicate(tmask_and<3>, 8) : Ones(8), 4))
57 OR Replicate(Zeros(8) : Replicate(tmask_or<3>, 8), 4));
58 tmask = ((tmask
59 AND Replicate(Replicate(tmask_and<4>, 16) : Ones(16), 2))
60 OR Replicate(Zeros(16) : Replicate(tmask_or<4>, 16), 2));
61 tmask = ((tmask
62 AND Replicate(Replicate(tmask_and<5>, 32) : Ones(32), 1))
63 OR Replicate(Zeros(32) : Replicate(tmask_or<5>, 32), 1));
64
65 // Compute "wraparound mask"
66 wmask_and = immr OR NOT(levels);
67 wmask_or = immr AND levels;
68
69 wmask = Zeros(64);
70 wmask = ((wmask
71 AND Replicate(Ones(1) : Replicate(wmask_and<0>, 1), 32))
72 OR Replicate(Replicate(wmask_or<0>, 1) : Zeros(1), 32));
73 // optimization of first step:
74 // wmask = Replicate(wmask_or<0> : '0', 32);
75 wmask = ((wmask
76 AND Replicate(Ones(2) : Replicate(wmask_and<1>, 2), 16))
77 OR Replicate(Replicate(wmask_or<1>, 2) : Zeros(2), 16));
78 wmask = ((wmask
79 AND Replicate(Ones(4) : Replicate(wmask_and<2>, 4), 8))
80 OR Replicate(Replicate(wmask_or<2>, 4) : Zeros(4), 8));
81 wmask = ((wmask
82 AND Replicate(Ones(8) : Replicate(wmask_and<3>, 8), 4))
83 OR Replicate(Replicate(wmask_or<3>, 8) : Zeros(8), 4));
84 wmask = ((wmask
85 AND Replicate(Ones(16) : Replicate(wmask_and<4>, 16), 2))
86 OR Replicate(Replicate(wmask_or<4>, 16) : Zeros(16), 2));
87 wmask = ((wmask
88 AND Replicate(Ones(32) : Replicate(wmask_and<5>, 32), 1))
89 OR Replicate(Replicate(wmask_or<5>, 32) : Zeros(32), 1));
90
91 if diff<6> != '0' then // borrow from S - R
92 wmask = wmask AND tmask;
93 else
94 wmask = wmask OR tmask;
95
96 return (wmask<M-1:0>, tmask<M-1:0>);

5.167 aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp

1 enumeration MoveWideOp {MoveWideOp_N, MoveWideOp_Z, MoveWideOp_K};

5.168 aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred

1 // MoveWidePreferred()
2 // ===================
3 //
4 // Return TRUE if a bitmask immediate encoding would generate an immediate
5 // value that could also be represented by a single MOVZ or MOVN instruction.
6 // Used as a condition for the preferred MOV<-ORR alias.
7
8 boolean MoveWidePreferred(bit sf, bit immN, bits(6) imms, bits(6) immr)
9 integer S = UInt(imms);

10 integer R = UInt(immr);
11 integer width = if sf == '1' then 64 else 32;
12
13 // element size must equal total immediate size
14 if sf == '1' && immN:imms != '1xxxxxx' then
15 return FALSE;
16 if sf == '0' && immN:imms != '00xxxxx' then
17 return FALSE;
18
19 // for MOVZ must contain no more than 16 ones
20 if S < 16 then
21 // ones must not span halfword boundary when rotated
22 return (-R MOD 16) <= (15 - S);
23
24 // for MOVN must contain no more than 16 zeros
25 if S >= width - 15 then
26 // zeros must not span halfword boundary when rotated

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1156

Chapter 5. Pseudocode definitions
5.169. aarch64/instrs/integer/shiftreg/DecodeShift

27 return (R MOD 16) <= (S - (width - 15));
28
29 return FALSE;

5.169 aarch64/instrs/integer/shiftreg/DecodeShift

1 // DecodeShift()
2 // =============
3 // Decode shift encodings
4
5 ShiftType DecodeShift(bits(2) op)
6 case op of
7 when '00' return ShiftType_LSL;
8 when '01' return ShiftType_LSR;
9 when '10' return ShiftType_ASR;

10 when '11' return ShiftType_ROR;

5.170 aarch64/instrs/integer/shiftreg/ShiftReg

1 // ShiftReg()
2 // ==========
3 // Perform shift of a register operand
4
5 bits(N) ShiftReg(integer reg, ShiftType shiftype, integer amount)
6 bits(N) result = X[reg];
7 case shiftype of
8 when ShiftType_LSL result = LSL(result, amount);
9 when ShiftType_LSR result = LSR(result, amount);

10 when ShiftType_ASR result = ASR(result, amount);
11 when ShiftType_ROR result = ROR(result, amount);
12 return result;

5.171 aarch64/instrs/integer/shiftreg/ShiftType

1 enumeration ShiftType {ShiftType_LSL, ShiftType_LSR, ShiftType_ASR, ShiftType_ROR};

5.172 aarch64/instrs/logicalop/LogicalOp

1 enumeration LogicalOp {LogicalOp_AND, LogicalOp_EOR, LogicalOp_ORR};

5.173 aarch64/instrs/memory/memop/MemAtomicOp

1 enumeration MemAtomicOp {MemAtomicOp_ADD,
2 MemAtomicOp_BIC,
3 MemAtomicOp_EOR,
4 MemAtomicOp_ORR,
5 MemAtomicOp_SMAX,
6 MemAtomicOp_SMIN,
7 MemAtomicOp_UMAX,
8 MemAtomicOp_UMIN,
9 MemAtomicOp_SWP};

5.174 aarch64/instrs/memory/memop/MemOp

1 enumeration MemOp {MemOp_LOAD, MemOp_STORE, MemOp_PREFETCH};

5.175 aarch64/instrs/memory/prefetch/Prefetch

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1157

Chapter 5. Pseudocode definitions
5.176. aarch64/instrs/system/barriers/barrierop/MemBarrierOp

1 // Prefetch()
2 // ==========
3
4 // Decode and execute the prefetch hint on ADDRESS specified by PRFOP
5
6 Prefetch(bits(64) address, bits(5) prfop)
7 PrefetchHint hint;
8 integer target;
9 boolean stream;

10
11 case prfop<4:3> of
12 when '00' hint = Prefetch_READ; // PLD: prefetch for load
13 when '01' hint = Prefetch_EXEC; // PLI: preload instructions
14 when '10' hint = Prefetch_WRITE; // PST: prepare for store
15 when '11' return; // unallocated hint
16 target = UInt(prfop<2:1>); // target cache level
17 stream = (prfop<0> != '0'); // streaming (non-temporal)
18 Hint_Prefetch(address, hint, target, stream);
19 return;

5.176 aarch64/instrs/system/barriers/barrierop/MemBarrierOp

1 enumeration MemBarrierOp { MemBarrierOp_DSB // Data Synchronization Barrier
2 , MemBarrierOp_DMB // Data Memory Barrier
3 , MemBarrierOp_ISB // Instruction Synchronization Barrier
4 , MemBarrierOp_SSBB // Speculative Synchronization Barrier to VA
5 , MemBarrierOp_PSSBB // Speculative Synchronization Barrier to PA
6 , MemBarrierOp_SB // Speculation Barrier
7 };

5.177 aarch64/instrs/system/hints/syshintop/SystemHintOp

1 enumeration SystemHintOp {
2 SystemHintOp_NOP,
3 SystemHintOp_YIELD,
4 SystemHintOp_WFE,
5 SystemHintOp_WFI,
6 SystemHintOp_SEV,
7 SystemHintOp_SEVL,
8 SystemHintOp_ESB,
9 SystemHintOp_PSB,

10 SystemHintOp_CSDB
11 };

5.178 aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField

1 enumeration PSTATEField {PSTATEField_DAIFSet, PSTATEField_DAIFClr,
2 PSTATEField_PAN, // Armv8.1
3 PSTATEField_UAO, // Armv8.2
4 PSTATEField_SSBS,
5 PSTATEField_SP
6 };

5.179 aarch64/instrs/system/sysops/sysop/SysOp

1 // SysOp()
2 // =======
3
4 SystemOp SysOp(bits(3) op1, bits(4) CRn, bits(4) CRm, bits(3) op2)
5 case op1:CRn:CRm:op2 of
6 when '000 0111 1000 000' return Sys_AT; // S1E1R
7 when '100 0111 1000 000' return Sys_AT; // S1E2R
8 when '110 0111 1000 000' return Sys_AT; // S1E3R
9 when '000 0111 1000 001' return Sys_AT; // S1E1W

10 when '100 0111 1000 001' return Sys_AT; // S1E2W
11 when '110 0111 1000 001' return Sys_AT; // S1E3W
12 when '000 0111 1000 010' return Sys_AT; // S1E0R
13 when '000 0111 1000 011' return Sys_AT; // S1E0W

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1158

Chapter 5. Pseudocode definitions
5.180. aarch64/instrs/system/sysops/sysop/SystemOp

14 when '100 0111 1000 100' return Sys_AT; // S12E1R
15 when '100 0111 1000 101' return Sys_AT; // S12E1W
16 when '100 0111 1000 110' return Sys_AT; // S12E0R
17 when '100 0111 1000 111' return Sys_AT; // S12E0W
18 when '011 0111 0100 001' return Sys_DC; // ZVA
19 when '000 0111 0110 001' return Sys_DC; // IVAC
20 when '000 0111 0110 010' return Sys_DC; // ISW
21 when '011 0111 1010 001' return Sys_DC; // CVAC
22 when '000 0111 1010 010' return Sys_DC; // CSW
23 when '011 0111 1011 001' return Sys_DC; // CVAU
24 when '011 0111 1110 001' return Sys_DC; // CIVAC
25 when '000 0111 1110 010' return Sys_DC; // CISW
26 when '011 0111 1101 001' return Sys_DC; // CVADP
27 when '000 0111 0001 000' return Sys_IC; // IALLUIS
28 when '000 0111 0101 000' return Sys_IC; // IALLU
29 when '011 0111 0101 001' return Sys_IC; // IVAU
30 when '100 1000 0000 001' return Sys_TLBI; // IPAS2E1IS
31 when '100 1000 0000 101' return Sys_TLBI; // IPAS2LE1IS
32 when '000 1000 0011 000' return Sys_TLBI; // VMALLE1IS
33 when '100 1000 0011 000' return Sys_TLBI; // ALLE2IS
34 when '110 1000 0011 000' return Sys_TLBI; // ALLE3IS
35 when '000 1000 0011 001' return Sys_TLBI; // VAE1IS
36 when '100 1000 0011 001' return Sys_TLBI; // VAE2IS
37 when '110 1000 0011 001' return Sys_TLBI; // VAE3IS
38 when '000 1000 0011 010' return Sys_TLBI; // ASIDE1IS
39 when '000 1000 0011 011' return Sys_TLBI; // VAAE1IS
40 when '100 1000 0011 100' return Sys_TLBI; // ALLE1IS
41 when '000 1000 0011 101' return Sys_TLBI; // VALE1IS
42 when '100 1000 0011 101' return Sys_TLBI; // VALE2IS
43 when '110 1000 0011 101' return Sys_TLBI; // VALE3IS
44 when '100 1000 0011 110' return Sys_TLBI; // VMALLS12E1IS
45 when '000 1000 0011 111' return Sys_TLBI; // VAALE1IS
46 when '100 1000 0100 001' return Sys_TLBI; // IPAS2E1
47 when '100 1000 0100 101' return Sys_TLBI; // IPAS2LE1
48 when '000 1000 0111 000' return Sys_TLBI; // VMALLE1
49 when '100 1000 0111 000' return Sys_TLBI; // ALLE2
50 when '110 1000 0111 000' return Sys_TLBI; // ALLE3
51 when '000 1000 0111 001' return Sys_TLBI; // VAE1
52 when '100 1000 0111 001' return Sys_TLBI; // VAE2
53 when '110 1000 0111 001' return Sys_TLBI; // VAE3
54 when '000 1000 0111 010' return Sys_TLBI; // ASIDE1
55 when '000 1000 0111 011' return Sys_TLBI; // VAAE1
56 when '100 1000 0111 100' return Sys_TLBI; // ALLE1
57 when '000 1000 0111 101' return Sys_TLBI; // VALE1
58 when '100 1000 0111 101' return Sys_TLBI; // VALE2
59 when '110 1000 0111 101' return Sys_TLBI; // VALE3
60 when '100 1000 0111 110' return Sys_TLBI; // VMALLS12E1
61 when '000 1000 0111 111' return Sys_TLBI; // VAALE1
62 return Sys_SYS;

5.180 aarch64/instrs/system/sysops/sysop/SystemOp

1 enumeration SystemOp {Sys_AT, Sys_DC, Sys_IC, Sys_TLBI, Sys_SYS};

5.181 aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-
eor/vbitop/VBitOp

1 enumeration VBitOp {VBitOp_VBIF, VBitOp_VBIT, VBitOp_VBSL, VBitOp_VEOR};

5.182 aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp

1 enumeration CompareOp {CompareOp_GT, CompareOp_GE, CompareOp_EQ,
2 CompareOp_LE, CompareOp_LT};

5.183 aarch64/instrs/vector/logical/immediateop/ImmediateOp

1 enumeration ImmediateOp {ImmediateOp_MOVI, ImmediateOp_MVNI,
2 ImmediateOp_ORR, ImmediateOp_BIC};

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1159

Chapter 5. Pseudocode definitions
5.184. aarch64/instrs/vector/reduce/reduceop/Reduce

5.184 aarch64/instrs/vector/reduce/reduceop/Reduce

1 // Reduce()
2 // ========
3
4 bits(esize) Reduce(ReduceOp op, bits(N) input, integer esize)
5 integer half;
6 bits(esize) hi;
7 bits(esize) lo;
8 bits(esize) result;
9

10 if N == esize then
11 return input<esize-1:0>;
12
13 half = N DIV 2;
14 hi = Reduce(op, input<N-1:half>, esize);
15 lo = Reduce(op, input<half-1:0>, esize);
16
17 case op of
18 when ReduceOp_FMINNUM
19 result = FPMinNum(lo, hi, FPCR);
20 when ReduceOp_FMAXNUM
21 result = FPMaxNum(lo, hi, FPCR);
22 when ReduceOp_FMIN
23 result = FPMin(lo, hi, FPCR);
24 when ReduceOp_FMAX
25 result = FPMax(lo, hi, FPCR);
26 when ReduceOp_FADD
27 result = FPAdd(lo, hi, FPCR);
28 when ReduceOp_ADD
29 result = lo + hi;
30
31 return result;

5.185 aarch64/instrs/vector/reduce/reduceop/ReduceOp

1 enumeration ReduceOp {ReduceOp_FMINNUM, ReduceOp_FMAXNUM,
2 ReduceOp_FMIN, ReduceOp_FMAX,
3 ReduceOp_FADD, ReduceOp_ADD};

5.186 aarch64/translation/attrs/AArch64.CombineS1S2Desc

1 // AArch64.CombineS1S2Desc()
2 // =========================
3 // Combines the address descriptors from stage 1 and stage 2
4
5 AddressDescriptor AArch64.CombineS1S2Desc(AddressDescriptor s1desc, AddressDescriptor s2desc)
6
7 AddressDescriptor result;
8
9 result.paddress = s2desc.paddress;

10
11 if IsFault(s1desc) || IsFault(s2desc) then
12 result = if IsFault(s1desc) then s1desc else s2desc;
13 else
14 result.fault = AArch64.NoFault();
15 if s2desc.memattrs.memtype == MemType_Device || s1desc.memattrs.memtype == MemType_Device then
16 result.memattrs.memtype = MemType_Device;
17 if s1desc.memattrs.memtype == MemType_Normal then
18 result.memattrs.device = s2desc.memattrs.device;
19 elsif s2desc.memattrs.memtype == MemType_Normal then
20 result.memattrs.device = s1desc.memattrs.device;
21 else // Both Device
22 result.memattrs.device = CombineS1S2Device(s1desc.memattrs.device,
23 s2desc.memattrs.device);
24 else // Both Normal
25 result.memattrs.memtype = MemType_Normal;
26 result.memattrs.device = DeviceType UNKNOWN;
27 result.memattrs.inner = CombineS1S2AttrHints(s1desc.memattrs.inner, s2desc.memattrs.inner);
28 result.memattrs.outer = CombineS1S2AttrHints(s1desc.memattrs.outer, s2desc.memattrs.outer);
29 result.memattrs.shareable = (s1desc.memattrs.shareable || s2desc.memattrs.shareable);
30 result.memattrs.outershareable = (s1desc.memattrs.outershareable ||
31 s2desc.memattrs.outershareable);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1160

Chapter 5. Pseudocode definitions
5.187. aarch64/translation/attrs/AArch64.InstructionDevice

32
33 result.memattrs = CombineS1S2LCSC(result.memattrs, s1desc.memattrs, s2desc.memattrs);
34
35 result.memattrs = CanonicalizeMemoryAttributes(result.memattrs);
36
37 return result;

5.187 aarch64/translation/attrs/AArch64.InstructionDevice

1 // AArch64.InstructionDevice()
2 // ===========================
3 // Instruction fetches from memory marked as Device but not execute-never might generate a
4 // Permission Fault but are otherwise treated as if from Normal Non-cacheable memory.
5
6 AddressDescriptor AArch64.InstructionDevice(AddressDescriptor addrdesc, bits(64) vaddress,
7 bits(48) ipaddress, integer level,
8 AccType acctype, boolean iswrite, boolean secondstage,
9 boolean s2fs1walk)

10
11 c = ConstrainUnpredictable(Unpredictable_INSTRDEVICE);
12 assert c IN {Constraint_NONE, Constraint_FAULT};
13
14 if c == Constraint_FAULT then
15 addrdesc.fault = AArch64.PermissionFault(ipaddress, level, acctype, iswrite,
16 secondstage, s2fs1walk);
17 else
18 addrdesc.memattrs.memtype = MemType_Normal;
19 addrdesc.memattrs.inner.attrs = MemAttr_NC;
20 addrdesc.memattrs.inner.hints = MemHint_No;
21 addrdesc.memattrs.outer = addrdesc.memattrs.inner;
22 addrdesc.memattrs = CanonicalizeMemoryAttributes(addrdesc.memattrs);
23
24 return addrdesc;

5.188 aarch64/translation/attrs/AArch64.S1AttrDecode

1 // AArch64.S1AttrDecode()
2 // ======================
3 // Converts the Stage 1 attribute fields, using the MAIR, to orthogonal
4 // attributes and hints.
5
6 MemoryAttributes AArch64.S1AttrDecode(bits(2) SH, bits(3) attr, AccType acctype)
7
8 MemoryAttributes memattrs;
9

10 mair = MAIR[];
11 index = 8 * UInt(attr);
12 attrfield = mair<index+7:index>;
13
14 if ((attrfield<7:4> != '0000' && attrfield<3:0> == '0000') ||
15 (attrfield<7:4> == '0000' && attrfield<3:0> != 'xx00')) then
16 // Reserved, maps to an allocated value
17 (-, attrfield) = ConstrainUnpredictableBits(Unpredictable_RESMAIR);
18
19 if attrfield<7:4> == '0000' then // Device
20 memattrs.memtype = MemType_Device;
21 case attrfield<3:0> of
22 when '0000' memattrs.device = DeviceType_nGnRnE;
23 when '0100' memattrs.device = DeviceType_nGnRE;
24 when '1000' memattrs.device = DeviceType_nGRE;
25 when '1100' memattrs.device = DeviceType_GRE;
26 otherwise Unreachable(); // Reserved, handled above
27
28 elsif attrfield<3:0> != '0000' then // Normal
29 memattrs.memtype = MemType_Normal;
30 memattrs.outer = LongConvertAttrsHints(attrfield<7:4>, acctype);
31 memattrs.inner = LongConvertAttrsHints(attrfield<3:0>, acctype);
32 memattrs.shareable = SH<1> == '1';
33 memattrs.outershareable = SH == '10';
34 else
35 Unreachable(); // Reserved, handled above
36
37 return CanonicalizeMemoryAttributes(memattrs);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1161

Chapter 5. Pseudocode definitions
5.189. aarch64/translation/attrs/AArch64.TranslateAddressS1Off

5.189 aarch64/translation/attrs/AArch64.TranslateAddressS1Off

1 // AArch64.TranslateAddressS1Off()
2 // ===============================
3 // Called for stage 1 translations when translation is disabled to supply a default translation.
4 // Note that there are additional constraints on instruction prefetching that are not described in
5 // this pseudocode.
6
7 TLBRecord AArch64.TranslateAddressS1Off(bits(64) vaddress, AccType acctype, boolean iswrite)
8 assert !ELUsingAArch32(S1TranslationRegime());
9

10 TLBRecord result;
11
12 Top = AddrTop(vaddress, PSTATE.EL);
13 if !IsZero(vaddress<Top:PAMax()>) then
14 level = 0;
15 ipaddress = bits(48) UNKNOWN;
16 secondstage = FALSE;
17 s2fs1walk = FALSE;
18 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
19 iswrite, secondstage, s2fs1walk);
20 return result;
21
22 default_cacheable = (HasS2Translation() && HCR_EL2.DC == '1');
23
24 if default_cacheable then
25 // Use default cacheable settings
26 result.addrdesc.memattrs.memtype = MemType_Normal;
27 result.addrdesc.memattrs.inner.attrs = MemAttr_WB; // Write-back
28 result.addrdesc.memattrs.inner.hints = MemHint_RWA;
29 result.addrdesc.memattrs.shareable = FALSE;
30 result.addrdesc.memattrs.outershareable = FALSE;
31 elsif acctype != AccType_IFETCH then
32 // Treat data as Device
33 result.addrdesc.memattrs.memtype = MemType_Device;
34 result.addrdesc.memattrs.device = DeviceType_nGnRnE;
35 result.addrdesc.memattrs.inner = MemAttrHints UNKNOWN;
36 else
37 // Instruction cacheability controlled by SCTLR_ELx.I
38 cacheable = SCTLR[].I == '1';
39 result.addrdesc.memattrs.memtype = MemType_Normal;
40 if cacheable then
41 result.addrdesc.memattrs.inner.attrs = MemAttr_WT;
42 result.addrdesc.memattrs.inner.hints = MemHint_RA;
43 else
44 result.addrdesc.memattrs.inner.attrs = MemAttr_NC;
45 result.addrdesc.memattrs.inner.hints = MemHint_No;
46 result.addrdesc.memattrs.shareable = TRUE;
47 result.addrdesc.memattrs.outershareable = TRUE;
48
49 result.addrdesc.memattrs.outer = result.addrdesc.memattrs.inner;
50 result.addrdesc.memattrs = CanonicalizeMemoryAttributes(result.addrdesc.memattrs);
51
52 // CDBM, LC and SC behavior is defined such that there is no
53 // zeroing of tags, no faults and no tracking of stores.
54 result.addrdesc.memattrs.readtagzero = FALSE;
55 result.addrdesc.memattrs.writetagfault = FALSE;
56 result.addrdesc.memattrs.readtagfault = FALSE;
57 result.addrdesc.memattrs.readtagfaulttgen = bit UNKNOWN;
58 result.addrdesc.memattrs.iss2writetagfault = FALSE;
59
60 result.perms.ap = bits(3) UNKNOWN;
61 result.perms.xn = '0';
62 result.perms.pxn = '0';
63
64 result.nG = bit UNKNOWN;
65 result.contiguous = boolean UNKNOWN;
66 result.domain = bits(4) UNKNOWN;
67 result.level = integer UNKNOWN;
68 result.blocksize = integer UNKNOWN;
69 result.addrdesc.paddress.address = vaddress<47:0>;
70 result.addrdesc.paddress.NS = if IsSecure() then '0' else '1';
71 result.addrdesc.fault = AArch64.NoFault();
72 return result;

5.190 aarch64/translation/checks/AArch64.AccessIsPrivileged

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1162

Chapter 5. Pseudocode definitions
5.191. aarch64/translation/checks/AArch64.AccessUsesEL

1 // AArch64.AccessIsPrivileged()
2 // ============================
3
4 boolean AArch64.AccessIsPrivileged(AccType acctype)
5
6 el = AArch64.AccessUsesEL(acctype);
7
8 if el == EL0 then
9 ispriv = FALSE;

10 elsif el == EL3 then
11 ispriv = TRUE;
12 elsif el == EL2 && (!IsInHost() || HCR_EL2.TGE == '0') then
13 ispriv = TRUE;
14 elsif HaveUAOExt() && PSTATE.UAO == '1' then
15 ispriv = TRUE;
16 else
17 ispriv = (acctype != AccType_UNPRIV);
18
19 return ispriv;

5.191 aarch64/translation/checks/AArch64.AccessUsesEL

1 // AArch64.AccessUsesEL()
2 // ======================
3 // Returns the Exception Level of the regime that will manage the translation for a given access type.
4
5 bits(2) AArch64.AccessUsesEL(AccType acctype)
6 if acctype == AccType_UNPRIV then
7 return EL0;
8 else
9 return PSTATE.EL;

5.192 aarch64/translation/checks/AArch64.CheckLoadTagsPermission

1 // AArch64.CheckLoadTagsPermission()
2 // =================================
3 // Function used for load tag checking
4
5 CheckLoadTagsPermission(AddressDescriptor desc, AccType acctype)
6 if desc.memattrs.readtagfault then
7 bit fault_tgen = desc.memattrs.readtagfaulttgen;
8 if EffectiveTGEN(desc.vaddress, PSTATE.EL) == fault_tgen then
9 secondstage = FALSE;

10 is_store = FALSE;
11 FaultRecord fault = AArch64.CapabilityPagePermissionFault(acctype, secondstage, is_store);
12 AArch64.Abort(desc.vaddress, fault);

5.193 aarch64/translation/checks/AArch64.CheckPermission

1 // AArch64.CheckPermission()
2 // =========================
3 // Function used for permission checking from AArch64 stage 1 translations
4
5 FaultRecord AArch64.CheckPermission(Permissions perms, bits(64) vaddress, integer level,
6 bit NS, AccType acctype, boolean iswrite)
7 assert !ELUsingAArch32(S1TranslationRegime());
8
9 wxn = SCTLR[].WXN == '1';

10
11 if (PSTATE.EL == EL0 ||
12 IsInHost() ||
13 PSTATE.EL == EL1) then
14 priv_r = TRUE;
15 priv_w = perms.ap<2> == '0';
16 user_r = perms.ap<1> == '1';
17 user_w = perms.ap<2:1> == '01';
18
19 ispriv = AArch64.AccessIsPrivileged(acctype);
20
21 pan = if HavePANExt() then PSTATE.PAN else '0';
22 is_ldst = !(acctype IN {AccType_DC, AccType_DC_UNPRIV, AccType_AT, AccType_IFETCH});
23 is_ats1xp = (acctype == AccType_AT && AArch64.ExecutingATS1xPInstr());

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1163

Chapter 5. Pseudocode definitions
5.194. aarch64/translation/checks/AArch64.CheckS2Permission

24 if pan == '1' && user_r && ispriv && (is_ldst || is_ats1xp) then
25 priv_r = FALSE;
26 priv_w = FALSE;
27
28 user_xn = perms.xn == '1' || (user_w && wxn);
29 priv_xn = perms.pxn == '1' || (priv_w && wxn) || user_w;
30
31 if ispriv then
32 (r, w, xn) = (priv_r, priv_w, priv_xn);
33 else
34 (r, w, xn) = (user_r, user_w, user_xn);
35 else
36 // Access from EL2 or EL3
37 r = TRUE;
38 w = perms.ap<2> == '0';
39 xn = perms.xn == '1' || (w && wxn);
40
41 // Restriction on Secure instruction fetch
42 if HaveEL(EL3) && IsSecure() && NS == '1' && SCR_EL3.SIF == '1' then
43 xn = TRUE;
44
45 if acctype == AccType_IFETCH then
46 fail = xn;
47 failedread = TRUE;
48 elsif acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW, AccType_ORDEREDATOMICRW } then
49 fail = !r || !w;
50 failedread = !r;
51 elsif iswrite then
52 fail = !w;
53 failedread = FALSE;
54 elsif acctype == AccType_DC && PSTATE.EL != EL0 then
55 // DC maintenance instructions operating by VA, cannot fault from stage 1 translation,
56 // other than DC IVAC, which requires write permission, and operations executed at EL0,
57 // which require read permission.
58 fail = FALSE;
59 else
60 fail = !r;
61 failedread = TRUE;
62
63 if fail then
64 secondstage = FALSE;
65 s2fs1walk = FALSE;
66 ipaddress = bits(48) UNKNOWN;
67 return AArch64.PermissionFault(ipaddress, level, acctype,
68 !failedread, secondstage, s2fs1walk);
69 else
70 return AArch64.NoFault();

5.194 aarch64/translation/checks/AArch64.CheckS2Permission

1 // AArch64.CheckS2Permission()
2 // ===========================
3 // Function used for permission checking from AArch64 stage 2 translations
4
5 FaultRecord AArch64.CheckS2Permission(Permissions perms, bits(64) vaddress, bits(48) ipaddress,
6 integer level, AccType acctype, boolean iswrite,
7 boolean s2fs1walk, boolean hwupdatewalk)
8
9 assert HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HasS2Translation();

10
11 r = perms.ap<1> == '1';
12 w = perms.ap<2> == '1';
13 if HaveExtendedExecuteNeverExt() then
14 case perms.xn:perms.xxn of
15 when '00' xn = FALSE;
16 when '01' xn = PSTATE.EL == EL1;
17 when '10' xn = TRUE;
18 when '11' xn = PSTATE.EL == EL0;
19 else
20 xn = perms.xn == '1';
21 // Stage 1 walk is checked as a read, regardless of the original type
22 if acctype == AccType_IFETCH && !s2fs1walk then
23 fail = xn;
24 failedread = TRUE;
25 elsif (acctype IN { AccType_ATOMICRW, AccType_ORDEREDRW, AccType_ORDEREDATOMICRW }) && !s2fs1walk then
26 fail = !r || !w;
27 failedread = !r;
28 elsif iswrite && !s2fs1walk then
29 fail = !w;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1164

Chapter 5. Pseudocode definitions
5.195. aarch64/translation/checks/AArch64.CheckStoreTagsPermission

30 failedread = FALSE;
31 elsif acctype == AccType_DC && PSTATE.EL != EL0 && !s2fs1walk then
32 // DC maintenance instructions operating by VA, with the exception of DC IVAC, do
33 // not generate Permission faults from stage 2 translation, other than when
34 // performing a stage 1 translation table walk.
35 fail = FALSE;
36 elsif hwupdatewalk then
37 fail = !w;
38 failedread = !iswrite;
39 else
40 fail = !r;
41 failedread = !iswrite;
42
43 if fail then
44 domain = bits(4) UNKNOWN;
45 secondstage = TRUE;
46 return AArch64.PermissionFault(ipaddress, level, acctype,
47 !failedread, secondstage, s2fs1walk);
48 else
49 return AArch64.NoFault();

5.195 aarch64/translation/checks/AArch64.CheckStoreTagsPermission

1 // AArch64.CheckStoreTagsPermission()
2 // ==================================
3 // Function used for store tag checking
4
5 CheckStoreTagsPermission(AddressDescriptor desc, AccType acctype)
6 if desc.memattrs.writetagfault then
7 is_store = TRUE;
8 FaultRecord fault = AArch64.CapabilityPagePermissionFault(acctype,

↪→desc.memattrs.iss2writetagfault, is_store);
9 AArch64.Abort(desc.vaddress, fault);

5.196 aarch64/translation/debug/AArch64.CheckBreakpoint

1 // AArch64.CheckBreakpoint()
2 // =========================
3 // Called before executing the instruction of length "size" bytes at "vaddress" in an AArch64
4 // translation regime, when either debug exceptions are enabled, or halting debug is enabled
5 // and halting is allowed.
6
7 FaultRecord AArch64.CheckBreakpoint(bits(64) vaddress, integer size)
8 assert !ELUsingAArch32(S1TranslationRegime());
9 assert (UsingAArch32() && size IN {2,4}) || size == 4;

10
11 match = FALSE;
12
13 for i = 0 to UInt(ID_AA64DFR0_EL1.BRPs)
14 match_i = AArch64.BreakpointMatch(i, vaddress, size);
15 match = match || match_i;
16
17 if match && HaltOnBreakpointOrWatchpoint() then
18 reason = DebugHalt_Breakpoint;
19 Halt(reason);
20 elsif match then
21 acctype = AccType_IFETCH;
22 iswrite = FALSE;
23 return AArch64.DebugFault(acctype, iswrite);
24 else
25 return AArch64.NoFault();

5.197 aarch64/translation/debug/AArch64.CheckDebug

1 // AArch64.CheckDebug()
2 // ====================
3 // Called on each access to check for a debug exception or entry to Debug state.
4
5 FaultRecord AArch64.CheckDebug(bits(64) vaddress, AccType acctype, boolean iswrite, integer size)
6
7 FaultRecord fault = AArch64.NoFault();
8

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1165

Chapter 5. Pseudocode definitions
5.198. aarch64/translation/debug/AArch64.CheckWatchpoint

9 d_side = (acctype != AccType_IFETCH);
10 generate_exception = AArch64.GenerateDebugExceptions() && MDSCR_EL1.MDE == '1';
11 halt = HaltOnBreakpointOrWatchpoint();
12
13 if generate_exception || halt then
14 if d_side then
15 fault = AArch64.CheckWatchpoint(vaddress, acctype, iswrite, size);
16 else
17 fault = AArch64.CheckBreakpoint(vaddress, size);
18
19 return fault;

5.198 aarch64/translation/debug/AArch64.CheckWatchpoint

1 // AArch64.CheckWatchpoint()
2 // =========================
3 // Called before accessing the memory location of "size" bytes at "address",
4 // when either debug exceptions are enabled for the access, or halting debug
5 // is enabled and halting is allowed.
6
7 FaultRecord AArch64.CheckWatchpoint(bits(64) vaddress, AccType acctype,
8 boolean iswrite, integer size)
9 assert !ELUsingAArch32(S1TranslationRegime());

10
11 match = FALSE;
12 ispriv = AArch64.AccessIsPrivileged(acctype);
13
14 for i = 0 to UInt(ID_AA64DFR0_EL1.WRPs)
15 match = match || AArch64.WatchpointMatch(i, vaddress, size, ispriv, iswrite);
16
17 if match && HaltOnBreakpointOrWatchpoint() then
18 reason = DebugHalt_Watchpoint;
19 Halt(reason);
20 elsif match then
21 return AArch64.DebugFault(acctype, iswrite);
22 else
23 return AArch64.NoFault();

5.199 aarch64/translation/faults/AArch64.AccessFlagFault

1 // AArch64.AccessFlagFault()
2 // =========================
3
4 FaultRecord AArch64.AccessFlagFault(bits(48) ipaddress, integer level,
5 AccType acctype, boolean iswrite, boolean secondstage,
6 boolean s2fs1walk)
7
8 extflag = bit UNKNOWN;
9 errortype = bits(2) UNKNOWN;

10 return AArch64.CreateFaultRecord(Fault_AccessFlag, ipaddress, level, acctype, iswrite,
11 extflag, errortype, secondstage, s2fs1walk);

5.200 aarch64/translation/faults/AArch64.AddressSizeFault

1 // AArch64.AddressSizeFault()
2 // ==========================
3
4 FaultRecord AArch64.AddressSizeFault(bits(48) ipaddress, integer level,
5 AccType acctype, boolean iswrite, boolean secondstage,
6 boolean s2fs1walk)
7
8 extflag = bit UNKNOWN;
9 errortype = bits(2) UNKNOWN;

10 return AArch64.CreateFaultRecord(Fault_AddressSize, ipaddress, level, acctype, iswrite,
11 extflag, errortype, secondstage, s2fs1walk);

5.201 aarch64/translation/faults/AArch64.AlignmentFault

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1166

Chapter 5. Pseudocode definitions
5.202. aarch64/translation/faults/AArch64.AsynchExternalAbort

1 // AArch64.AlignmentFault()
2 // ========================
3
4 FaultRecord AArch64.AlignmentFault(AccType acctype, boolean iswrite, boolean secondstage)
5
6 ipaddress = bits(48) UNKNOWN;
7 level = integer UNKNOWN;
8 extflag = bit UNKNOWN;
9 errortype = bits(2) UNKNOWN;

10 s2fs1walk = boolean UNKNOWN;
11
12 return AArch64.CreateFaultRecord(Fault_Alignment, ipaddress, level, acctype, iswrite,
13 extflag, errortype, secondstage, s2fs1walk);

5.202 aarch64/translation/faults/AArch64.AsynchExternalAbort

1 // AArch64.AsynchExternalAbort()
2 // =============================
3 // Wrapper function for asynchronous external aborts
4
5 FaultRecord AArch64.AsynchExternalAbort(boolean parity, bits(2) errortype, bit extflag)
6
7 faulttype = if parity then Fault_AsyncParity else Fault_AsyncExternal;
8 ipaddress = bits(48) UNKNOWN;
9 level = integer UNKNOWN;

10 acctype = AccType_NORMAL;
11 iswrite = boolean UNKNOWN;
12 secondstage = FALSE;
13 s2fs1walk = FALSE;
14
15 return AArch64.CreateFaultRecord(faulttype, ipaddress, level, acctype, iswrite, extflag,
16 errortype, secondstage, s2fs1walk);
17
18 FaultRecord AArch64.CapabilityPagePermissionFault(AccType acctype, boolean secondstage, boolean is_store)
19
20 ipaddress = bits(48) UNKNOWN;
21 errortype = bits(2) UNKNOWN;
22 level = integer UNKNOWN;
23 extflag = bit UNKNOWN;
24 s2fs1walk = FALSE;
25
26 return AArch64.CreateFaultRecord(Fault_CapPagePerm, ipaddress, level, acctype, is_store,
27 extflag, errortype, secondstage, s2fs1walk);

5.203 aarch64/translation/faults/AArch64.DebugFault

1 // AArch64.DebugFault()
2 // ====================
3
4 FaultRecord AArch64.DebugFault(AccType acctype, boolean iswrite)
5
6 ipaddress = bits(48) UNKNOWN;
7 errortype = bits(2) UNKNOWN;
8 level = integer UNKNOWN;
9 extflag = bit UNKNOWN;

10 secondstage = FALSE;
11 s2fs1walk = FALSE;
12
13 return AArch64.CreateFaultRecord(Fault_Debug, ipaddress, level, acctype, iswrite,
14 extflag, errortype, secondstage, s2fs1walk);

5.204 aarch64/translation/faults/AArch64.NoFault

1 // AArch64.NoFault()
2 // =================
3
4 FaultRecord AArch64.NoFault()
5
6 ipaddress = bits(48) UNKNOWN;
7 level = integer UNKNOWN;
8 acctype = AccType_NORMAL;
9 iswrite = boolean UNKNOWN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1167

Chapter 5. Pseudocode definitions
5.205. aarch64/translation/faults/AArch64.PermissionFault

10 extflag = bit UNKNOWN;
11 errortype = bits(2) UNKNOWN;
12 secondstage = FALSE;
13 s2fs1walk = FALSE;
14
15 return AArch64.CreateFaultRecord(Fault_None, ipaddress, level, acctype, iswrite,
16 extflag, errortype, secondstage, s2fs1walk);

5.205 aarch64/translation/faults/AArch64.PermissionFault

1 // AArch64.PermissionFault()
2 // =========================
3
4 FaultRecord AArch64.PermissionFault(bits(48) ipaddress, integer level,
5 AccType acctype, boolean iswrite, boolean secondstage,
6 boolean s2fs1walk)
7
8 extflag = bit UNKNOWN;
9 errortype = bits(2) UNKNOWN;

10 return AArch64.CreateFaultRecord(Fault_Permission, ipaddress, level, acctype, iswrite,
11 extflag, errortype, secondstage, s2fs1walk);

5.206 aarch64/translation/faults/AArch64.TranslationFault

1 // AArch64.TranslationFault()
2 // ==========================
3
4 FaultRecord AArch64.TranslationFault(bits(48) ipaddress, integer level,
5 AccType acctype, boolean iswrite, boolean secondstage,
6 boolean s2fs1walk)
7
8 extflag = bit UNKNOWN;
9 errortype = bits(2) UNKNOWN;

10 return AArch64.CreateFaultRecord(Fault_Translation, ipaddress, level, acctype, iswrite,
11 extflag, errortype, secondstage, s2fs1walk);

5.207 aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor

1 // AArch64.CheckAndUpdateDescriptor()
2 // ==================================
3 // Check and update translation table descriptor if hardware update is configured
4
5 FaultRecord AArch64.CheckAndUpdateDescriptor(DescriptorUpdate result, FaultRecord fault,
6 boolean secondstage, bits(64) vaddress, AccType acctype,
7 boolean iswrite, boolean s2fs1walk, boolean hwupdatewalk,

↪→boolean iswritevalidcap)
8
9 boolean hw_update_AF = FALSE;

10 boolean hw_update_AP = FALSE;
11 boolean hw_update_SC = FALSE;
12
13 // Check if access flag can be updated
14 // Address translation instructions are permitted to update AF but not required
15 if result.AF then
16 if fault.statuscode == Fault_None || ConstrainUnpredictable(Unpredictable_AFUPDATE) ==

↪→Constraint_TRUE then
17 hw_update_AF = TRUE;
18
19 write_perm_req = (iswrite || acctype IN {AccType_ATOMICRW,AccType_ORDEREDRW, AccType_ORDEREDATOMICRW

↪→}) && !s2fs1walk;
20 if result.AP && fault.statuscode == Fault_None then
21 hw_update_AP = (write_perm_req && !(acctype IN {AccType_AT, AccType_DC, AccType_DC_UNPRIV})) ||

↪→hwupdatewalk;
22
23 if result.SC && fault.statuscode == Fault_None && iswritevalidcap && write_perm_req then
24 hw_update_SC = TRUE;
25
26 if hw_update_AF || hw_update_AP || hw_update_SC then
27 if secondstage || !HasS2Translation() then
28 descaddr2 = result.descaddr;
29 else
30 hwupdatewalk = TRUE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1168

Chapter 5. Pseudocode definitions
5.208. aarch64/translation/translation/AArch64.FirstStageTranslate

31 descaddr2 = AArch64.SecondStageWalk(result.descaddr, vaddress, acctype, iswrite, 8,
↪→hwupdatewalk);

32 if IsFault(descaddr2) then
33 return descaddr2.fault;
34
35 accdesc = CreateAccessDescriptor(AccType_ATOMICRW);
36 desc = _Mem[descaddr2, 8, accdesc];
37 el = AArch64.AccessUsesEL(acctype);
38 case el of
39 when EL3
40 reversedescriptors = SCTLR_EL3.EE == '1';
41 when EL2
42 reversedescriptors = SCTLR_EL2.EE == '1';
43 otherwise
44 reversedescriptors = SCTLR_EL1.EE == '1';
45 if reversedescriptors then
46 desc = BigEndianReverse(desc);
47
48 if hw_update_AF then
49 desc<10> = '1';
50 if hw_update_AP then
51 desc<7> = (if secondstage then '1' else '0');
52 if hw_update_SC then
53 desc<60> = '1';
54
55 _Mem[descaddr2,8,accdesc] = if reversedescriptors then BigEndianReverse(desc) else desc;
56
57 return fault;

5.208 aarch64/translation/translation/AArch64.FirstStageTranslate

1 // AArch64.FirstStageTranslate()
2 // =============================
3 // Perform a stage 1 translation walk. The function used by Address Translation operations is
4 // similar except it uses the translation regime specified for the instruction.
5
6 AddressDescriptor AArch64.FirstStageTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
7 boolean wasaligned, integer size)
8 boolean iswritevalidcap = FALSE;
9 return AArch64.FirstStageTranslateWithTag(vaddress, acctype, iswrite, wasaligned, size,

↪→iswritevalidcap);

5.209 aarch64/translation/translation/AArch64.FirstStageTranslateWithTag

1 // AArch64.FirstStageTranslateWithTag()
2 // ====================================
3 // Perform a stage 1 translation walk.
4 // An additional argument specifies whether the translation is used for writing a valid capability.
5
6 AddressDescriptor AArch64.FirstStageTranslateWithTag(bits(64) vaddress, AccType acctype, boolean iswrite,
7 boolean wasaligned, integer size, boolean

↪→iswritevalidcap)
8
9 s1_enabled = AArch64.IsStageOneEnabled(acctype);

10 ipaddress = bits(48) UNKNOWN;
11 secondstage = FALSE;
12 s2fs1walk = FALSE;
13
14 if s1_enabled then // First stage enabled
15 S1 = AArch64.TranslationTableWalk(ipaddress, vaddress, acctype, iswrite, secondstage,
16 s2fs1walk, size);
17 permissioncheck = TRUE;
18 else
19 S1 = AArch64.TranslateAddressS1Off(vaddress, acctype, iswrite);
20 permissioncheck = FALSE;
21
22 // Check for unaligned data accesses to Device memory
23 if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
24 && !IsFault(S1.addrdesc) && S1.addrdesc.memattrs.memtype == MemType_Device then
25 S1.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);
26 if !IsFault(S1.addrdesc) && permissioncheck then
27 S1.addrdesc.fault = AArch64.CheckPermission(S1.perms, vaddress, S1.level,
28 S1.addrdesc.paddress.NS,
29 acctype, iswrite);
30

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1169

Chapter 5. Pseudocode definitions
5.210. aarch64/translation/translation/AArch64.FullTranslate

31 // Check for instruction fetches from Device memory not marked as execute-never. If there has
32 // not been a Permission Fault then the memory is not marked execute-never.
33 if (!IsFault(S1.addrdesc) && S1.addrdesc.memattrs.memtype == MemType_Device &&
34 acctype == AccType_IFETCH) then
35 S1.addrdesc = AArch64.InstructionDevice(S1.addrdesc, vaddress, ipaddress, S1.level,
36 acctype, iswrite,
37 secondstage, s2fs1walk);
38 // Check and update translation table descriptor if required
39 hwupdatewalk = FALSE;
40 s2fs1walk = FALSE;
41 S1.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S1.descupdate, S1.addrdesc.fault,
42 secondstage, vaddress, acctype,
43 iswrite, s2fs1walk, hwupdatewalk,

↪→iswritevalidcap);
44
45 return S1.addrdesc;

5.210 aarch64/translation/translation/AArch64.FullTranslate

1 // AArch64.FullTranslate()
2 // =======================
3 // Perform both stage 1 and stage 2 translation walks for the current translation regime. The
4 // function used by Address Translation operations is similar except it uses the translation
5 // regime specified for the instruction.
6
7 AddressDescriptor AArch64.FullTranslate(bits(64) vaddress, AccType acctype, boolean iswrite,
8 boolean wasaligned, integer size)
9 boolean iswritevalidcap = FALSE;

10 return AArch64.FullTranslateWithTag(vaddress, acctype, iswrite, wasaligned, size, iswritevalidcap);

5.211 aarch64/translation/translation/AArch64.FullTranslateWithTag

1 // AArch64.FullTranslateWithTag()
2 // ==============================
3 // Perform both stage 1 and stage 2 translation walks for the current translation regime.
4 // An additional argument specifies whether the translation is used for writing a valid capability.
5
6 AddressDescriptor AArch64.FullTranslateWithTag(bits(64) vaddress, AccType acctype, boolean iswrite,
7 boolean wasaligned, integer size, boolean iswritevalidcap)
8
9 // First Stage Translation

10 S1 = AArch64.FirstStageTranslateWithTag(vaddress, acctype, iswrite, wasaligned, size, iswritevalidcap);
11 if !IsFault(S1) && HasS2Translation() then
12 s2fs1walk = FALSE;
13 hwupdatewalk = FALSE;
14 // If the first stage of translation will fault a write of a valid capability
15 // the second stage of translation should not perform any hardware update due to
16 // a store of a valid capability.
17 if S1.memattrs.writetagfault then
18 iswritevalidcap = FALSE;
19 result = AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
20 size, hwupdatewalk, iswritevalidcap);
21 else
22 result = S1;
23
24 return result;

5.212 aarch64/translation/translation/AArch64.IsStageOneEnabled

1 // AArch64.IsStageOneEnabled()
2 // ===========================
3
4 boolean AArch64.IsStageOneEnabled(AccType acctype)
5
6 if HasS2Translation() then
7 s1_enabled = HCR_EL2.TGE == '0' && HCR_EL2.DC == '0' && SCTLR_EL1.M == '1';
8 else
9 s1_enabled = SCTLR[].M == '1';

10
11 return s1_enabled;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1170

Chapter 5. Pseudocode definitions
5.213. aarch64/translation/translation/AArch64.SecondStageTranslate

5.213 aarch64/translation/translation/AArch64.SecondStageTranslate

1 // AArch64.SecondStageTranslate()
2 // ==============================
3 // Perform a stage 2 translation walk. The function used by Address Translation operations is
4 // similar except it uses the translation regime specified for the instruction.
5
6 AddressDescriptor AArch64.SecondStageTranslate(AddressDescriptor S1, bits(64) vaddress,
7 AccType acctype, boolean iswrite, boolean wasaligned,
8 boolean s2fs1walk, integer size, boolean hwupdatewalk,

↪→boolean iswritevalidcap)
9 assert HasS2Translation();

10
11 s2_enabled = HCR_EL2.VM == '1' || HCR_EL2.DC == '1';
12 secondstage = TRUE;
13
14 if s2_enabled then // Second stage enabled
15 ipaddress = S1.paddress.address<47:0>;
16 S2 = AArch64.TranslationTableWalk(ipaddress, vaddress, acctype, iswrite, secondstage,
17 s2fs1walk, size);
18
19 // Check for unaligned data accesses to Device memory
20 if ((!wasaligned && acctype != AccType_IFETCH) || (acctype == AccType_DCZVA))
21 && S2.addrdesc.memattrs.memtype == MemType_Device && !IsFault(S2.addrdesc) then
22 S2.addrdesc.fault = AArch64.AlignmentFault(acctype, iswrite, secondstage);
23
24 // Check for permissions on Stage2 translations
25 if !IsFault(S2.addrdesc) then
26 S2.addrdesc.fault = AArch64.CheckS2Permission(S2.perms, vaddress, ipaddress, S2.level,
27 acctype, iswrite, s2fs1walk, hwupdatewalk);
28
29 // Check for instruction fetches from Device memory not marked as execute-never. As there
30 // has not been a Permission Fault then the memory is not marked execute-never.
31 if (!s2fs1walk && !IsFault(S2.addrdesc) && S2.addrdesc.memattrs.memtype == MemType_Device &&
32 acctype == AccType_IFETCH) then
33 S2.addrdesc = AArch64.InstructionDevice(S2.addrdesc, vaddress, ipaddress, S2.level,
34 acctype, iswrite,
35 secondstage, s2fs1walk);
36
37 // Check for protected table walk
38 if (s2fs1walk && !IsFault(S2.addrdesc) && HCR_EL2.PTW == '1' &&
39 S2.addrdesc.memattrs.memtype == MemType_Device) then
40 S2.addrdesc.fault = AArch64.PermissionFault(ipaddress, S2.level, acctype,
41 iswrite, secondstage, s2fs1walk);
42
43 // Check and update translation table descriptor if required
44 S2.addrdesc.fault = AArch64.CheckAndUpdateDescriptor(S2.descupdate, S2.addrdesc.fault,
45 secondstage, vaddress, acctype,
46 iswrite, s2fs1walk, hwupdatewalk,

↪→iswritevalidcap);
47 result = AArch64.CombineS1S2Desc(S1, S2.addrdesc);
48 else
49 result = S1;
50
51 return result;

5.214 aarch64/translation/translation/AArch64.SecondStageWalk

1 // AArch64.SecondStageWalk()
2 // =========================
3 // Perform a stage 2 translation on a stage 1 translation page table walk access.
4
5 AddressDescriptor AArch64.SecondStageWalk(AddressDescriptor S1, bits(64) vaddress, AccType acctype,
6 boolean iswrite, integer size, boolean hwupdatewalk)
7
8 assert HasS2Translation();
9

10 s2fs1walk = TRUE;
11 wasaligned = TRUE;
12 iswritevalidcap = FALSE;
13 return AArch64.SecondStageTranslate(S1, vaddress, acctype, iswrite, wasaligned, s2fs1walk,
14 size, hwupdatewalk, iswritevalidcap);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1171

Chapter 5. Pseudocode definitions
5.215. aarch64/translation/translation/AArch64.TranslateAddress

5.215 aarch64/translation/translation/AArch64.TranslateAddress

1 // AArch64.TranslateAddress()
2 // ==========================
3 // Main entry point for translating an address
4
5 AddressDescriptor AArch64.TranslateAddress(bits(64) vaddress, AccType acctype, boolean iswrite,
6 boolean wasaligned, integer size)
7 boolean iswritevalidcap = FALSE;
8 return AArch64.TranslateAddressWithTag(vaddress, acctype, iswrite, wasaligned, size, iswritevalidcap);

5.216 aarch64/translation/translation/AArch64.TranslateAddressWithTag

1 // AArch64.TranslateAddressWithTag()
2 // =================================
3 // Entry point for translating an address with an additional argument specifying if the translation
4 // is for writing a valid capability
5
6 AddressDescriptor AArch64.TranslateAddressWithTag(bits(64) vaddress, AccType acctype, boolean iswrite,
7 boolean wasaligned, integer size, boolean

↪→iswritevalidcap)
8 assert(iswrite || !iswritevalidcap);
9 result = AArch64.FullTranslateWithTag(vaddress, acctype, iswrite, wasaligned, size, iswritevalidcap);

10
11 if !(acctype IN {AccType_PTW, AccType_IC, AccType_AT}) && !IsFault(result) then
12 result.fault = AArch64.CheckDebug(vaddress, acctype, iswrite, size);
13
14 // Update virtual address for abort functions
15 result.vaddress = ZeroExtend(vaddress);
16
17 return result;

5.217 aarch64/translation/walk/AArch64.TranslationTableWalk

1 // AArch64.TranslationTableWalk()
2 // ==============================
3 // Returns a result of a translation table walk
4 //
5 // Implementations might cache information from memory in any number of non-coherent TLB
6 // caching structures, and so avoid memory accesses that have been expressed in this
7 // pseudocode. The use of such TLBs is not expressed in this pseudocode.
8
9 TLBRecord AArch64.TranslationTableWalk(bits(48) ipaddress, bits(64) vaddress,

10 AccType acctype, boolean iswrite, boolean secondstage,
11 boolean s2fs1walk, integer size)
12 if !secondstage then
13 assert !ELUsingAArch32(S1TranslationRegime());
14 else
15 assert HaveEL(EL2) && !IsSecure() && !ELUsingAArch32(EL2) && HasS2Translation();
16
17 TLBRecord result;
18 AddressDescriptor descaddr;
19 bits(64) baseregister;
20 bits(64) inputaddr; // Input Address is 'vaddress' for stage 1, 'ipaddress' for stage 2
21
22 descaddr.memattrs.memtype = MemType_Normal;
23
24 // Derived parameters for the page table walk:
25 // grainsize = Log2(Size of Table) - Size of Table is 4KB, 16KB or 64KB in AArch64
26 // stride = Log2(Address per Level) - Bits of address consumed at each level
27 // firstblocklevel = First level where a block entry is allowed
28 // ps = Physical Address size as encoded in TCR_EL1.IPS or TCR_ELx/VTCR_EL2.PS
29 // inputsize = Log2(Size of Input Address) - Input Address size in bits
30 // level = Level to start walk from
31 // This means that the number of levels after start level = 3-level
32
33 if !secondstage then
34 // First stage translation
35 inputaddr = ZeroExtend(vaddress);
36 el = AArch64.AccessUsesEL(acctype);
37 top = AddrTop(inputaddr, el);
38 if el == EL3 then
39 largegrain = TCR_EL3.TG0 == '01';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1172

Chapter 5. Pseudocode definitions
5.217. aarch64/translation/walk/AArch64.TranslationTableWalk

40 midgrain = TCR_EL3.TG0 == '10';
41 inputsize = 64 - UInt(TCR_EL3.T0SZ);
42 inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
43 inputsize_min = 64 - 39;
44 if inputsize < inputsize_min then
45 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
46 assert c IN {Constraint_FORCE, Constraint_FAULT};
47 if c == Constraint_FORCE then inputsize = inputsize_min;
48 ps = TCR_EL3.PS;
49 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsZero(inputaddr<top:inputsize>);
50 disabled = FALSE;
51 baseregister = TTBR0_EL3;
52 descaddr.memattrs = WalkAttrDecode(TCR_EL3.SH0, TCR_EL3.ORGN0, TCR_EL3.IRGN0, secondstage);
53 reversedescriptors = SCTLR_EL3.EE == '1';
54 lookupsecure = TRUE;
55 singlepriv = TRUE;
56 update_AF = HaveAccessFlagUpdateExt() && TCR_EL3.HA == '1';
57 update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL3.HD == '1';
58 hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL3.HPD == '1';
59 elsif ELIsInHost(el) then
60 if inputaddr<top> == '0' then
61 largegrain = TCR_EL2.TG0 == '01';
62 midgrain = TCR_EL2.TG0 == '10';
63 inputsize = 64 - UInt(TCR_EL2.T0SZ);
64 inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
65 inputsize_min = 64 - 39;
66 if inputsize < inputsize_min then
67 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
68 assert c IN {Constraint_FORCE, Constraint_FAULT};
69 if c == Constraint_FORCE then inputsize = inputsize_min;
70 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsZero(inputaddr<top:inputsize>);
71 disabled = TCR_EL2.EPD0 == '1';
72 baseregister = TTBR0_EL2;
73 descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0, secondstage);
74 hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD0 == '1';
75 else
76 inputsize = 64 - UInt(TCR_EL2.T1SZ);
77 largegrain = TCR_EL2.TG1 == '11'; // TG1 and TG0 encodings differ
78 midgrain = TCR_EL2.TG1 == '01';
79 inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
80 inputsize_min = 64 - 39;
81 if inputsize < inputsize_min then
82 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
83 assert c IN {Constraint_FORCE, Constraint_FAULT};
84 if c == Constraint_FORCE then inputsize = inputsize_min;
85 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsOnes(inputaddr<top:inputsize>);
86 disabled = TCR_EL2.EPD1 == '1';
87 baseregister = TTBR1_EL2;
88 descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH1, TCR_EL2.ORGN1, TCR_EL2.IRGN1, secondstage);
89 hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD1 == '1';
90 ps = TCR_EL2.IPS;
91 reversedescriptors = SCTLR_EL2.EE == '1';
92 lookupsecure = FALSE;
93 singlepriv = FALSE;
94 update_AF = HaveAccessFlagUpdateExt() && TCR_EL2.HA == '1';
95 update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL2.HD == '1';
96 elsif el == EL2 then
97 inputsize = 64 - UInt(TCR_EL2.T0SZ);
98 largegrain = TCR_EL2.TG0 == '01';
99 midgrain = TCR_EL2.TG0 == '10';

100 inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
101 inputsize_min = 64 - 39;
102 if inputsize < inputsize_min then
103 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
104 assert c IN {Constraint_FORCE, Constraint_FAULT};
105 if c == Constraint_FORCE then inputsize = inputsize_min;
106 ps = TCR_EL2.PS;
107 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsZero(inputaddr<top:inputsize>);
108 disabled = FALSE;
109 baseregister = TTBR0_EL2;
110 descaddr.memattrs = WalkAttrDecode(TCR_EL2.SH0, TCR_EL2.ORGN0, TCR_EL2.IRGN0, secondstage);
111 reversedescriptors = SCTLR_EL2.EE == '1';
112 lookupsecure = FALSE;
113 singlepriv = TRUE;
114 update_AF = HaveAccessFlagUpdateExt() && TCR_EL2.HA == '1';
115 update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL2.HD == '1';
116 hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL2.HPD == '1';
117 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1173

Chapter 5. Pseudocode definitions
5.217. aarch64/translation/walk/AArch64.TranslationTableWalk

118 if inputaddr<top> == '0' then
119 inputsize = 64 - UInt(TCR_EL1.T0SZ);
120 largegrain = TCR_EL1.TG0 == '01';
121 midgrain = TCR_EL1.TG0 == '10';
122 inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
123 inputsize_min = 64 - 39;
124 if inputsize < inputsize_min then
125 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
126 assert c IN {Constraint_FORCE, Constraint_FAULT};
127 if c == Constraint_FORCE then inputsize = inputsize_min;
128 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsZero(inputaddr<top:inputsize>);
129 disabled = TCR_EL1.EPD0 == '1';
130 baseregister = TTBR0_EL1;
131 descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH0, TCR_EL1.ORGN0, TCR_EL1.IRGN0, secondstage);
132 hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL1.HPD0 == '1';
133 else
134 inputsize = 64 - UInt(TCR_EL1.T1SZ);
135 largegrain = TCR_EL1.TG1 == '11'; // TG1 and TG0 encodings differ
136 midgrain = TCR_EL1.TG1 == '01';
137 inputsize_max = if Have52BitVAExt() && largegrain then 52 else 48;
138 inputsize_min = 64 - 39;
139 if inputsize < inputsize_min then
140 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
141 assert c IN {Constraint_FORCE, Constraint_FAULT};
142 if c == Constraint_FORCE then inputsize = inputsize_min;
143 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsOnes(inputaddr<top:inputsize>);
144 disabled = TCR_EL1.EPD1 == '1';
145 baseregister = TTBR1_EL1;
146 descaddr.memattrs = WalkAttrDecode(TCR_EL1.SH1, TCR_EL1.ORGN1, TCR_EL1.IRGN1, secondstage);
147 hierattrsdisabled = AArch64.HaveHPDExt() && TCR_EL1.HPD1 == '1';
148 ps = TCR_EL1.IPS;
149 reversedescriptors = SCTLR_EL1.EE == '1';
150 lookupsecure = IsSecure();
151 singlepriv = FALSE;
152 update_AF = HaveAccessFlagUpdateExt() && TCR_EL1.HA == '1';
153 update_AP = HaveDirtyBitModifierExt() && update_AF && TCR_EL1.HD == '1';
154 if largegrain then
155 grainsize = 16; // Log2(64KB page size)
156 firstblocklevel = 2; // Largest block is 512MB (2^29

↪→bytes)
157 elsif midgrain then
158 grainsize = 14; // Log2(16KB page size)
159 firstblocklevel = 2; // Largest block is 32MB (2^25

↪→bytes)
160 else // Small grain
161 grainsize = 12; // Log2(4KB page size)
162 firstblocklevel = 1; // Largest block is 1GB (2^30

↪→bytes)
163 stride = grainsize - 3; // Log2(page size / 8 bytes)
164 // The starting level is the number of strides needed to consume the input address
165 level = 4 - (1 + ((inputsize - grainsize - 1) DIV stride));
166
167 else
168 // Second stage translation
169 inputaddr = ZeroExtend(ipaddress);
170 inputsize = 64 - UInt(VTCR_EL2.T0SZ);
171 largegrain = VTCR_EL2.TG0 == '01';
172 midgrain = VTCR_EL2.TG0 == '10';
173
174 inputsize_max = 48;
175 if inputsize > inputsize_max then
176 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
177 assert c IN {Constraint_FORCE, Constraint_FAULT};
178 if c == Constraint_FORCE then inputsize = inputsize_max;
179 inputsize_min = 64 - 39;
180 if inputsize < inputsize_min then
181 c = ConstrainUnpredictable(Unpredictable_RESTnSZ);
182 assert c IN {Constraint_FORCE, Constraint_FAULT};
183 if c == Constraint_FORCE then inputsize = inputsize_min;
184 ps = VTCR_EL2.PS;
185 basefound = inputsize >= inputsize_min && inputsize <= inputsize_max &&

↪→IsZero(inputaddr<63:inputsize>);
186 disabled = FALSE;
187 descaddr.memattrs = WalkAttrDecode(VTCR_EL2.SH0, VTCR_EL2.ORGN0, VTCR_EL2.IRGN0, secondstage);
188 reversedescriptors = SCTLR_EL2.EE == '1';
189 singlepriv = TRUE;
190 update_AF = HaveAccessFlagUpdateExt() && VTCR_EL2.HA == '1';
191 update_AP = HaveDirtyBitModifierExt() && update_AF && VTCR_EL2.HD == '1';
192
193 lookupsecure = FALSE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1174

Chapter 5. Pseudocode definitions
5.217. aarch64/translation/walk/AArch64.TranslationTableWalk

194 baseregister = VTTBR_EL2;
195 startlevel = UInt(VTCR_EL2.SL0);
196 if largegrain then
197 grainsize = 16; // Log2(64KB page size)
198 level = 3 - startlevel;
199 firstblocklevel = 2; // Largest block is 512MB (2^29 bytes)
200 elsif midgrain then
201 grainsize = 14; // Log2(16KB page size)
202 level = 3 - startlevel;
203 firstblocklevel = 2; // Largest block is 32MB (2^25 bytes)
204 else // Small grain
205 grainsize = 12; // Log2(4KB page size)
206 level = 2 - startlevel;
207 firstblocklevel = 1; // Largest block is 1GB (2^30 bytes)
208 stride = grainsize - 3; // Log2(page size / 8 bytes)
209
210 // Limits on IPA controls based on implemented PA size. Level 0 is only
211 // supported by small grain translations
212 if largegrain then // 64KB pages
213 // Level 1 only supported if implemented PA size is greater than 2^42 bytes
214 if level == 0 || (level == 1 && PAMax() <= 42) then basefound = FALSE;
215 elsif midgrain then // 16KB pages
216 // Level 1 only supported if implemented PA size is greater than 2^40 bytes
217 if level == 0 || (level == 1 && PAMax() <= 40) then basefound = FALSE;
218 else // Small grain, 4KB pages
219 // Level 0 only supported if implemented PA size is greater than 2^42 bytes
220 if level < 0 || (level == 0 && PAMax() <= 42) then basefound = FALSE;
221
222 // If the inputsize exceeds the PAMax value, the behavior is CONSTRAINED UNPREDICTABLE
223 inputsizecheck = inputsize;
224 if inputsize > PAMax() && (!ELUsingAArch32(EL1) || inputsize > 40) then
225 case ConstrainUnpredictable(Unpredictable_LARGEIPA) of
226 when Constraint_FORCE
227 // Restrict the inputsize to the PAMax value
228 inputsize = PAMax();
229 inputsizecheck = PAMax();
230 when Constraint_FORCENOSLCHECK
231 // As FORCE, except use the configured inputsize in the size checks below
232 inputsize = PAMax();
233 when Constraint_FAULT
234 // Generate a translation fault
235 basefound = FALSE;
236 otherwise
237 Unreachable();
238
239 // Number of entries in the starting level table =
240 // (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))
241 startsizecheck = inputsizecheck - ((3 - level)*stride + grainsize); // Log2(Num of entries)
242
243 // Check for starting level table with fewer than 2 entries or longer than 16 pages.
244 // Lower bound check is: startsizecheck < Log2(2 entries)
245 // Upper bound check is: startsizecheck > Log2(pagesize/8*16)
246 if startsizecheck < 1 || startsizecheck > stride + 4 then basefound = FALSE;
247
248 if !basefound || disabled then
249 level = 0; // AArch32 reports this as a level 1 fault
250 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype, iswrite,
251 secondstage, s2fs1walk);
252 return result;
253
254 case ps of
255 when '000' outputsize = 32;
256 when '001' outputsize = 36;
257 when '010' outputsize = 40;
258 when '011' outputsize = 42;
259 when '100' outputsize = 44;
260 when '101' outputsize = 48;
261 otherwise outputsize = integer IMPLEMENTATION_DEFINED "Reserved Intermediate Physical Address

↪→size value";
262
263 if outputsize > PAMax() then outputsize = PAMax();
264
265 if outputsize < 48 && !IsZero(baseregister<47:outputsize>) then
266 level = 0;
267 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype, iswrite,
268 secondstage, s2fs1walk);
269 return result;
270
271 // Bottom bound of the Base address is:
272 // Log2(8 bytes per entry)+Log2(Number of entries in starting level table)
273 // Number of entries in starting level table =
274 // (Size of Input Address)/((Address per level)^(Num levels remaining)*(Size of Table))

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1175

Chapter 5. Pseudocode definitions
5.217. aarch64/translation/walk/AArch64.TranslationTableWalk

275 baselowerbound = 3 + inputsize - ((3-level)*stride + grainsize); // Log2(Num of entries*8)
276 baseaddress = baseregister<47:baselowerbound>:Zeros(baselowerbound);
277
278 ns_table = if lookupsecure then '0' else '1';
279 ap_table = '00';
280 xn_table = '0';
281 pxn_table = '0';
282
283 addrselecttop = inputsize - 1;
284
285 repeat
286 addrselectbottom = (3-level)*stride + grainsize;
287
288 bits(48) index = ZeroExtend(inputaddr<addrselecttop:addrselectbottom>:'000');
289 descaddr.paddress.address = baseaddress OR index;
290 descaddr.paddress.NS = ns_table;
291
292 // If there are two stages of translation, then the first stage table walk addresses
293 // are themselves subject to translation
294 if secondstage || !HasS2Translation() then
295 descaddr2 = descaddr;
296 else
297 hwupdatewalk = FALSE;
298 descaddr2 = AArch64.SecondStageWalk(descaddr, vaddress, acctype, iswrite, 8, hwupdatewalk);
299 // Check for a fault on the stage 2 walk
300 if IsFault(descaddr2) then
301 result.addrdesc.fault = descaddr2.fault;
302 return result;
303
304 // Update virtual address for abort functions
305 descaddr2.vaddress = ZeroExtend(vaddress);
306
307 accdesc = CreateAccessDescriptorPTW(acctype, secondstage, s2fs1walk, level);
308 desc = _Mem[descaddr2, 8, accdesc];
309
310 if reversedescriptors then desc = BigEndianReverse(desc);
311
312 if desc<0> == '0' || (desc<1:0> == '01' && level == 3) then
313 // Fault (00), Reserved (10), or Block (01) at level 3.
314 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
315 iswrite, secondstage, s2fs1walk);
316 return result;
317
318 // Valid Block, Page, or Table entry
319 if desc<1:0> == '01' || level == 3 then // Block (01) or Page (11)
320 blocktranslate = TRUE;
321 else // Table (11)
322 if outputsize != 48 && !IsZero(desc<47:outputsize>) then
323 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
324 iswrite, secondstage, s2fs1walk);
325 return result;
326
327 baseaddress = desc<47:grainsize>:Zeros(grainsize);
328 if !secondstage then
329 // Unpack the upper and lower table attributes
330 ns_table = ns_table OR desc<63>;
331 if !secondstage && !hierattrsdisabled then
332 ap_table<1> = ap_table<1> OR desc<62>; // read-only
333
334 xn_table = xn_table OR desc<60>;
335 // pxn_table and ap_table[0] apply in EL1&0 or EL2&0 translation regimes
336 if !singlepriv then
337 pxn_table = pxn_table OR desc<59>;
338 ap_table<0> = ap_table<0> OR desc<61>; // privileged
339
340 level = level + 1;
341 addrselecttop = addrselectbottom - 1;
342 blocktranslate = FALSE;
343 until blocktranslate;
344
345 // Check block size is supported at this level
346 if level < firstblocklevel then
347 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
348 iswrite, secondstage, s2fs1walk);
349 return result;
350
351 // Check for misprogramming of the contiguous bit
352 if largegrain then
353 num_ch_entries = 5;
354 elsif midgrain then
355 if level == 3 then
356 num_ch_entries = 7;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1176

Chapter 5. Pseudocode definitions
5.217. aarch64/translation/walk/AArch64.TranslationTableWalk

357 else num_ch_entries = 5;
358 else num_ch_entries = 4;
359
360 contiguousbitcheck = inputsize < (addrselectbottom + num_ch_entries);
361
362 if contiguousbitcheck && desc<52> == '1' then
363 if boolean IMPLEMENTATION_DEFINED "Translation fault on misprogrammed contiguous bit" then
364 result.addrdesc.fault = AArch64.TranslationFault(ipaddress, level, acctype,
365 iswrite, secondstage, s2fs1walk);
366 return result;
367
368 // Unpack the descriptor into address and upper and lower block attributes
369 outputaddress = desc<47:addrselectbottom>:inputaddr<addrselectbottom-1:0>;
370
371 // Check the output address is inside the supported range
372 if outputsize != 48 && !IsZero(desc<47:outputsize>) then
373 result.addrdesc.fault = AArch64.AddressSizeFault(ipaddress, level, acctype,
374 iswrite, secondstage, s2fs1walk);
375 return result;
376
377 // Check Access Flag
378 if desc<10> == '0' then
379 if !update_AF then
380 result.addrdesc.fault = AArch64.AccessFlagFault(ipaddress, level, acctype,
381 iswrite, secondstage, s2fs1walk);
382 return result;
383 else
384 result.descupdate.AF = TRUE;
385
386 if update_AP && desc<51> == '1' then
387 // If hw update of access permission field is configured consider AP[2] as '0' / S2AP[2] as '1'
388 if !secondstage && desc<7> == '1' then
389 desc<7> = '0';
390 result.descupdate.AP = TRUE;
391 elsif secondstage && desc<7> == '0' then
392 desc<7> = '1';
393 result.descupdate.AP = TRUE;
394 bits(4) ehwu = EffectiveHWU(PSTATE.EL, secondstage, vaddress<55>);
395 bit current_cdbm = ehwu<0> AND desc<59>;
396 bit current_sc = ehwu<1> AND desc<60>;
397 if current_cdbm == '1' && current_sc == '0' then
398 result.descupdate.SC = TRUE;
399 // Required descriptor if AF, AP[2]/S2AP[2] or SC needs update
400 result.descupdate.descaddr = descaddr;
401
402 xn = desc<54>; // Bit[54] of the block/page descriptor

↪→holds UXN
403 pxn = desc<53>; // Bit[53] of the block/page descriptor

↪→holds PXN
404 ap = desc<7:6>:'1'; // Bits[7:6] of the block/page descriptor

↪→hold AP[2:1]
405 contiguousbit = desc<52>;
406 nG = desc<11>;
407 sh = desc<9:8>;
408 memattr = desc<5:2>; // AttrIndx and NS bit in stage 1
409
410 result.domain = bits(4) UNKNOWN; // Domains not used
411 result.level = level;
412 result.blocksize = 2^((3-level)*stride + grainsize);
413
414 // Stage 1 translation regimes also inherit attributes from the tables
415 if !secondstage then
416 result.perms.xn = xn OR xn_table;
417 result.perms.ap<2> = ap<2> OR ap_table<1>; // Force read-only
418 // PXN, nG and AP[1] apply in EL1&0 or EL2&0 stage 1 translation regimes
419 if !singlepriv then
420 result.perms.ap<1> = ap<1> AND NOT(ap_table<0>); // Force privileged only
421 result.perms.pxn = pxn OR pxn_table;
422 // Pages from Non-secure tables are marked non-global in Secure EL1&0
423 if IsSecure() then
424 result.nG = nG OR ns_table;
425 else
426 result.nG = nG;
427 else
428 result.perms.ap<1> = '1';
429 result.perms.pxn = '0';
430 result.nG = '0';
431 result.perms.ap<0> = '1';
432 result.addrdesc.memattrs = AArch64.S1AttrDecode(sh, memattr<2:0>, acctype);
433 result.addrdesc.paddress.NS = memattr<3> OR ns_table;
434 else
435 result.perms.ap<2:1> = ap<2:1>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1177

Chapter 5. Pseudocode definitions
5.218. aarch64/translation/walk/EffectiveHWU

436 result.perms.ap<0> = '1';
437 result.perms.xn = xn;
438 if HaveExtendedExecuteNeverExt() then result.perms.xxn = desc<53>;
439 result.perms.pxn = '0';
440 result.nG = '0';
441 if s2fs1walk then
442 result.addrdesc.memattrs = S2AttrDecode(sh, memattr, AccType_PTW);
443 else
444 result.addrdesc.memattrs = S2AttrDecode(sh, memattr, acctype);
445 result.addrdesc.paddress.NS = '1';
446
447 // Read descriptor bits which control loads and stores of valid capabilities:
448 // LC 62:61, SC 60, CDBM 59
449 if secondstage then
450 result.addrdesc.memattrs.readtagzero = (ehwu<2> AND desc<61>) == '0';
451 result.addrdesc.memattrs.readtagfault = FALSE;
452 result.addrdesc.memattrs.readtagfaulttgen = '0';
453 else
454 result.addrdesc.memattrs.readtagzero = (ehwu<3:2> AND desc<62:61>) == '00';
455 result.addrdesc.memattrs.readtagfault = (ehwu<3> AND desc<62>) == '1';
456 result.addrdesc.memattrs.readtagfaulttgen = NOT (ehwu<2> AND desc<61>);
457 bit cdbm = ehwu<0> AND desc<59>;
458 boolean writetagfault = (cdbm == '0') && (ehwu<1> AND desc<60>) == '0';
459 result.addrdesc.memattrs.writetagfault = writetagfault;
460 result.addrdesc.memattrs.iss2writetagfault = secondstage && writetagfault;
461
462 result.addrdesc.paddress.address = outputaddress;
463 result.addrdesc.fault = AArch64.NoFault();
464 result.contiguous = contiguousbit == '1';
465 if HaveCommonNotPrivateTransExt() then result.CnP = baseregister<0>;
466
467 return result;

5.218 aarch64/translation/walk/EffectiveHWU

1 // EffectiveHWU()
2 // ==============
3 // Effective (V)TCR_ELx.HWU bits
4
5 bits(4) EffectiveHWU(bits(2) el, boolean secondstage, bit vaddr55)
6 if secondstage then
7 return VTCR_EL2.<HWU62,HWU61,HWU60,HWU59>;
8 else
9 regime = S1TranslationRegime(el);

10
11 case regime of
12 when EL1
13 if vaddr55 == '1' then
14 if TCR_EL1.HPD1 == '1' then
15 return TCR_EL1.<HWU162,HWU161,HWU160,HWU159>;
16 else
17 return Zeros(4);
18 elsif TCR_EL1.HPD0 == '1' then
19 return TCR_EL1.<HWU062,HWU061,HWU060,HWU059>;
20 else
21 return Zeros(4);
22 when EL2
23 if HaveVirtHostExt() && ELIsInHost(el) then
24 if vaddr55 == '1' then
25 if TCR_EL2.HPD1 == '1' then
26 return TCR_EL2.<HWU162,HWU161,HWU160,HWU159>;
27 else
28 return Zeros(4);
29 elsif TCR_EL2.HPD0 == '1' then
30 return TCR_EL2.<HWU062,HWU061,HWU060,HWU059>;
31 else
32 return Zeros(4);
33 else
34 if TCR_EL2.HPD == '1' then
35 return TCR_EL2.<HWU62,HWU61,HWU60,HWU59>;
36 else
37 return Zeros(4);
38 when EL3
39 if TCR_EL3.HPD == '1' then
40 return TCR_EL3.<HWU62,HWU61,HWU60,HWU59>;
41 else
42 return Zeros(4);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1178

Chapter 5. Pseudocode definitions
5.219. shared/debug/ClearStickyErrors/ClearStickyErrors

5.219 shared/debug/ClearStickyErrors/ClearStickyErrors

1 // ClearStickyErrors()
2 // ===================
3
4 ClearStickyErrors()
5 EDSCR.TXU = '0'; // Clear TX underrun flag
6 EDSCR.RXO = '0'; // Clear RX overrun flag
7
8 if Halted() then // in Debug state
9 EDSCR.ITO = '0'; // Clear ITR overrun flag

10
11 // If halted and the ITR is not empty then it is UNPREDICTABLE whether the EDSCR.ERR is cleared.
12 // The UNPREDICTABLE behavior also affects the instructions in flight, but this is not described
13 // in the pseudocode.
14 if Halted() && EDSCR.ITE == '0' && ConstrainUnpredictableBool(Unpredictable_CLEARERRITEZERO) then
15 return;
16 EDSCR.ERR = '0'; // Clear cumulative error flag
17
18 return;

5.220 shared/debug/DebugTarget/DebugTarget

1 // DebugTarget()
2 // =============
3 // Returns the debug exception target Exception level
4
5 bits(2) DebugTarget()
6 secure = IsSecure();
7 return DebugTargetFrom(secure);

5.221 shared/debug/DebugTarget/DebugTargetFrom

1 // DebugTargetFrom()
2 // =================
3
4 bits(2) DebugTargetFrom(boolean secure)
5 if HaveEL(EL2) && !secure then
6 route_to_el2 = (MDCR_EL2.TDE == '1' || HCR_EL2.TGE == '1');
7 else
8 route_to_el2 = FALSE;
9

10 if route_to_el2 then
11 target = EL2;
12 elsif HaveEL(EL3) && HighestELUsingAArch32() && secure then
13 target = EL3;
14 else
15 target = EL1;
16
17 return target;

5.222 shared/debug/DoubleLockStatus/DoubleLockStatus

1 // DoubleLockStatus()
2 // ==================
3 // Returns the state of the OS Double Lock.
4 // FALSE if OSDLR_EL1.DLK == 0 or DBGPRCR_EL1.CORENPDRQ == 1 or the PE is in Debug state.
5 // TRUE if OSDLR_EL1.DLK == 1 and DBGPRCR_EL1.CORENPDRQ == 0 and the PE is in Non-debug state.
6
7 boolean DoubleLockStatus()
8 if ELUsingAArch32(EL1) then
9 Unreachable();

10 else
11 return OSDLR_EL1.DLK == '1' && DBGPRCR_EL1.CORENPDRQ == '0' && !Halted();

5.223 shared/debug/authentication/AllowExternalDebugAccess

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1179

Chapter 5. Pseudocode definitions
5.224. shared/debug/authentication/AllowExternalPMUAccess

1 // AllowExternalDebugAccess()
2 // ==========================
3 // Returns TRUE if an external debug interface access to the External debug registers
4 // is allowed, FALSE otherwise.
5
6 boolean AllowExternalDebugAccess()
7 // The access may also be subject to OS Lock, power-down, etc.
8 if ExternalInvasiveDebugEnabled() then
9 if ExternalSecureInvasiveDebugEnabled() then

10 return TRUE;
11 elsif HaveEL(EL3) then
12 return MDCR_EL3.EDAD == '0';
13 else
14 return !IsSecure();
15 else
16 return FALSE;

5.224 shared/debug/authentication/AllowExternalPMUAccess

1 // AllowExternalPMUAccess()
2 // ========================
3 // Returns TRUE if an external debug interface access to the PMU registers is allowed, FALSE otherwise.
4
5 boolean AllowExternalPMUAccess()
6 // The access may also be subject to OS Lock, power-down, etc.
7 if ExternalNoninvasiveDebugEnabled() then
8 if ExternalSecureNoninvasiveDebugEnabled() then
9 return TRUE;

10 elsif HaveEL(EL3) then
11 return MDCR_EL3.EPMAD == '0';
12 else
13 return !IsSecure();
14 else
15 return FALSE;

5.225 shared/debug/authentication/Debug_authentication

1 signal DBGEN;
2 signal NIDEN;
3 signal SPIDEN;
4 signal SPNIDEN;

5.226 shared/debug/authentication/ExternalInvasiveDebugEnabled

1 // ExternalInvasiveDebugEnabled()
2 // ==============================
3 // The definition of this function is IMPLEMENTATION DEFINED.
4 // In the recommended interface, this function returns the state of the DBGEN signal.
5
6 boolean ExternalInvasiveDebugEnabled()
7 return DBGEN == HIGH;

5.227 shared/debug/authentication/ExternalNoninvasiveDebugAllowed

1 // ExternalNoninvasiveDebugAllowed()
2 // =================================
3 // Returns TRUE if Trace and PC Sample-based Profiling are allowed
4
5 boolean ExternalNoninvasiveDebugAllowed()
6 return (ExternalNoninvasiveDebugEnabled() &&
7 (!IsSecure() || ExternalSecureNoninvasiveDebugEnabled()));

5.228 shared/debug/authentication/ExternalNoninvasiveDebugEnabled

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1180

Chapter 5. Pseudocode definitions
5.229. shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

1 // ExternalNoninvasiveDebugEnabled()
2 // =================================
3 // The definition of this function is IMPLEMENTATION DEFINED.
4 // In the recommended interface, ExternalNoninvasiveDebugEnabled returns the state of the (DBGEN
5 // OR NIDEN) signal.
6
7 boolean ExternalNoninvasiveDebugEnabled()
8 return ExternalInvasiveDebugEnabled() || NIDEN == HIGH;

5.229 shared/debug/authentication/ExternalSecureInvasiveDebugEnabled

1 // ExternalSecureInvasiveDebugEnabled()
2 // ====================================
3 // The definition of this function is IMPLEMENTATION DEFINED.
4 // In the recommended interface, this function returns the state of the (DBGEN AND SPIDEN) signal.
5 // CoreSight allows asserting SPIDEN without also asserting DBGEN, but this is not recommended.
6
7 boolean ExternalSecureInvasiveDebugEnabled()
8 if !HaveEL(EL3) && !IsSecure() then return FALSE;
9 return ExternalInvasiveDebugEnabled() && SPIDEN == HIGH;

5.230 shared/debug/authentication/ExternalSecureNoninvasiveDebugEn-
abled

1 // ExternalSecureNoninvasiveDebugEnabled()
2 // =======================================
3 // The definition of this function is IMPLEMENTATION DEFINED.
4 // In the recommended interface, this function returns the state of the (DBGEN OR NIDEN) AND
5 // (SPIDEN OR SPNIDEN) signal.
6
7 boolean ExternalSecureNoninvasiveDebugEnabled()
8 if !HaveEL(EL3) && !IsSecure() then return FALSE;
9 return ExternalNoninvasiveDebugEnabled() && (SPIDEN == HIGH || SPNIDEN == HIGH);

5.231 shared/debug/authentication/IsCorePowered

1 // Returns TRUE if the Core power domain is powered on, FALSE otherwise.
2 boolean IsCorePowered();

5.232 shared/debug/breakpoint/CheckValidStateMatch

1 // CheckValidStateMatch()
2 // ======================
3 // Checks for an invalid state match that will generate Constrained Unpredictable behaviour, otherwise
4 // returns Constraint_NONE.
5
6 (Constraint, bits(2), bit, bits(2)) CheckValidStateMatch(bits(2) SSC, bit HMC, bits(2) PxC, boolean

↪→isbreakpnt)
7 boolean reserved = FALSE;
8
9 // Match 'Usr/Sys/Svc' only valid for AArch32 breakpoints

10 if (!isbreakpnt || !HaveAArch32EL(EL1)) && HMC:PxC == '000' && SSC != '11' then
11 reserved = TRUE;
12
13 // Both EL3 and EL2 are not implemented
14 if !HaveEL(EL3) && !HaveEL(EL2) && (HMC != '0' || SSC != '00') then
15 reserved = TRUE;
16
17 // EL3 is not implemented
18 if !HaveEL(EL3) && SSC IN {'01','10'} && HMC:SSC:PxC != '10100' then
19 reserved = TRUE;
20
21 // EL3 using AArch64 only
22 if (!HaveEL(EL3) || HighestELUsingAArch32()) && HMC:SSC:PxC == '11000' then
23 reserved = TRUE;
24
25 // EL2 is not implemented

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1181

Chapter 5. Pseudocode definitions
5.233. shared/debug/cti/CTI_SetEventLevel

26 if !HaveEL(EL2) && HMC:SSC:PxC == '11100' then
27 reserved = TRUE;
28
29 // Values that are not allocated in any architecture version
30 if (HMC:SSC:PxC) IN {'01110','100x0','10110','11x10'} then
31 reserved = TRUE;
32
33 if reserved then
34 // If parameters are set to a reserved type, behaves as either disabled or a defined type
35 (c, <HMC,SSC,PxC>) = ConstrainUnpredictableBits(Unpredictable_RESBPWPCTRL);
36 assert c IN {Constraint_DISABLED, Constraint_UNKNOWN};
37 if c == Constraint_DISABLED then
38 return (c, bits(2) UNKNOWN, bit UNKNOWN, bits(2) UNKNOWN);
39 // Otherwise the value returned by ConstrainUnpredictableBits must be a not-reserved value
40
41 return (Constraint_NONE, SSC, HMC, PxC);

5.233 shared/debug/cti/CTI_SetEventLevel

1 // Set a Cross Trigger multi-cycle input event trigger to the specified level.
2 CTI_SetEventLevel(CrossTriggerIn id, signal level);

5.234 shared/debug/cti/CTI_SignalEvent

1 // Signal a discrete event on a Cross Trigger input event trigger.
2 CTI_SignalEvent(CrossTriggerIn id);

5.235 shared/debug/cti/CrossTrigger

1 enumeration CrossTriggerOut {CrossTriggerOut_DebugRequest, CrossTriggerOut_RestartRequest,
2 CrossTriggerOut_IRQ, CrossTriggerOut_RSVD3,
3 CrossTriggerOut_TraceExtIn0, CrossTriggerOut_TraceExtIn1,
4 CrossTriggerOut_TraceExtIn2, CrossTriggerOut_TraceExtIn3};
5
6 enumeration CrossTriggerIn {CrossTriggerIn_CrossHalt, CrossTriggerIn_PMUOverflow,
7 CrossTriggerIn_RSVD2, CrossTriggerIn_RSVD3,
8 CrossTriggerIn_TraceExtOut0, CrossTriggerIn_TraceExtOut1,
9 CrossTriggerIn_TraceExtOut2, CrossTriggerIn_TraceExtOut3};

5.236 shared/debug/dccanditr/CDBGDTR_EL0

1 // CDBGDTR_EL0[] (write)
2 // =====================
3 // System register writes to CDBGDTR_EL0
4
5 CDBGDTR_EL0[] = bits(129) value
6 // For MSR CDBGDTR_EL0,<Ct>
7 if EDSCR.TXfull == '1' then
8 value = bits(129) UNKNOWN;
9 EDSCR2.DTRTAG = value<128>;

10 DBGDTR2B = value<127:96>;
11 DBGDTR2A = value<95:64>;
12 DTRRX = value<63:32>;
13 DTRTX = value<31:0>;
14
15 EDSCR.TXfull = '1';
16 return;
17
18 // CDBGDTR_EL0[] (read)
19 // ====================
20 // System register reads of CDBGDTR_EL0
21
22 bits(129) CDBGDTR_EL0[]
23 // For MRS <Ct>,CDBGDTR_EL0
24 bits(129) result;
25 if EDSCR.RXfull == '0' then
26 result = Capability UNKNOWN;
27 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1182

Chapter 5. Pseudocode definitions
5.237. shared/debug/dccanditr/CheckForDCCInterrupts

28 // NOTE: the word order is reversed on reads with regards to writes
29 result<63:32> = DTRTX;
30 result<31:0> = DTRRX;
31 result<95:64> = DBGDTR2A;
32 result<127:96> = DBGDTR2B;
33 result<128> = EDSCR2.DTRTAG;
34 EDSCR.RXfull = '0';
35 return result;

5.237 shared/debug/dccanditr/CheckForDCCInterrupts

1 // CheckForDCCInterrupts()
2 // =======================
3
4 CheckForDCCInterrupts()
5 commrx = (EDSCR.RXfull == '1');
6 commtx = (EDSCR.TXfull == '0');
7
8 // COMMRX and COMMTX support is optional and not recommended for new designs.
9 // SetInterruptRequestLevel(InterruptID_COMMRX, if commrx then HIGH else LOW);

10 // SetInterruptRequestLevel(InterruptID_COMMTX, if commtx then HIGH else LOW);
11
12 // The value to be driven onto the common COMMIRQ signal.
13 commirq = ((commrx && MDCCINT_EL1.RX == '1') ||
14 (commtx && MDCCINT_EL1.TX == '1'));
15 SetInterruptRequestLevel(InterruptID_COMMIRQ, if commirq then HIGH else LOW);
16
17 return;

5.238 shared/debug/dccanditr/DBGDTRRX_EL0

1 // DBGDTRRX_EL0[] (external write)
2 // ===============================
3 // Called on writes to debug register 0x08C.
4
5 DBGDTRRX_EL0[boolean memory_mapped] = bits(32) value
6
7 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
8 IMPLEMENTATION_DEFINED "generate error response";
9 return;

10
11 if EDSCR.ERR == '1' then return; // Error flag set: ignore write
12
13 // The Software lock is OPTIONAL.
14 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
15
16 if EDSCR.RXfull == '1' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0') then
17 EDSCR.RXO = '1'; EDSCR.ERR = '1'; // Overrun condition: ignore write
18 return;
19
20 EDSCR.RXfull = '1';
21 DTRRX = value;
22
23 if Halted() && EDSCR.MA == '1' then
24 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
25 ExecuteA64(0xD5330501<31:0>); // A64 "MRS X1,DBGDTRRX_EL0"
26 ExecuteA64(0xB8004401<31:0>); // A64 "STR W1,[X0],#4"
27 X[1] = bits(64) UNKNOWN;
28 // If the store aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
29 if EDSCR.ERR == '1' then
30 EDSCR.RXfull = bit UNKNOWN;
31 DBGDTRRX_EL0 = bits(32) UNKNOWN;
32 else
33 // "MRS X1,DBGDTRRX_EL0" calls DBGDTR_EL0[] (read) which clears RXfull.
34 assert EDSCR.RXfull == '0';
35
36 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
37 return;
38
39 // DBGDTRRX_EL0[] (external read)
40 // ==============================
41
42 bits(32) DBGDTRRX_EL0[boolean memory_mapped]
43 return DTRRX;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1183

Chapter 5. Pseudocode definitions
5.239. shared/debug/dccanditr/DBGDTRTX_EL0

5.239 shared/debug/dccanditr/DBGDTRTX_EL0

1 // DBGDTRTX_EL0[] (external read)
2 // ==============================
3 // Called on reads of debug register 0x080.
4
5 bits(32) DBGDTRTX_EL0[boolean memory_mapped]
6
7 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
8 IMPLEMENTATION_DEFINED "generate error response";
9 return bits(32) UNKNOWN;

10
11 underrun = EDSCR.TXfull == '0' || (Halted() && EDSCR.MA == '1' && EDSCR.ITE == '0');
12 value = if underrun then bits(32) UNKNOWN else DTRTX;
13
14 if EDSCR.ERR == '1' then return value; // Error flag set: no side-effects
15
16 // The Software lock is OPTIONAL.
17 if memory_mapped && EDLSR.SLK == '1' then // Software lock locked: no side-effects
18 return value;
19
20 if underrun then
21 EDSCR.TXU = '1'; EDSCR.ERR = '1'; // Underrun condition: block side-effects
22 return value; // Return UNKNOWN
23
24 EDSCR.TXfull = '0';
25 if Halted() && EDSCR.MA == '1' then
26 EDSCR.ITE = '0'; // See comments in EDITR[] (external write)
27
28 if !UsingAArch32() then
29 ExecuteA64(0xB8404401<31:0>); // A64 "LDR W1,[X0],#4"
30 else
31 ExecuteT32(0xF850<15:0> /*hw1*/, 0x1B04<15:0> /*hw2*/); // T32 "LDR R1,[R0],#4"
32 // If the load aborts, the Data Abort exception is taken and EDSCR.ERR is set to 1
33 if EDSCR.ERR == '1' then
34 EDSCR.TXfull = bit UNKNOWN;
35 DBGDTRTX_EL0 = bits(32) UNKNOWN;
36 else
37 if !UsingAArch32() then
38 ExecuteA64(0xD5130501<31:0>); // A64 "MSR DBGDTRTX_EL0,X1"
39 else
40 ExecuteT32(0xEE00<15:0> /*hw1*/, 0x1E15<15:0> /*hw2*/); // T32 "MSR DBGDTRTXint,R1"
41 // "MSR DBGDTRTX_EL0,X1" calls DBGDTR_EL0[] (write) which sets TXfull.
42 assert EDSCR.TXfull == '1';
43 X[1] = bits(64) UNKNOWN;
44 EDSCR.ITE = '1'; // See comments in EDITR[] (external write)
45
46 return value;
47
48 // DBGDTRTX_EL0[] (external write)
49 // ===============================
50
51 DBGDTRTX_EL0[boolean memory_mapped] = bits(32) value
52 // The Software lock is OPTIONAL.
53 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
54 DTRTX = value;
55 return;

5.240 shared/debug/dccanditr/DBGDTR_EL0

1 // DBGDTR_EL0[] (write)
2 // ====================
3 // System register writes to DBGDTR_EL0, DBGDTRTX_EL0 (AArch64) and DBGDTRTXint (AArch32)
4
5 DBGDTR_EL0[] = bits(N) value
6 // For MSR DBGDTRTX_EL0,<Rt> N=32, value=X[t]<31:0>, X[t]<63:32> is ignored
7 // For MSR DBGDTR_EL0,<Xt> N=64, value=X[t]<63:0>
8 assert N IN {32,64};
9 if EDSCR.TXfull == '1' then

10 value = bits(N) UNKNOWN;
11 // On a 64-bit write, implement a half-duplex channel
12 if N == 64 then DTRRX = value<63:32>;
13 DTRTX = value<31:0>; // 32-bit or 64-bit write
14 EDSCR.TXfull = '1';
15 return;
16
17 // DBGDTR_EL0[] (read)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1184

Chapter 5. Pseudocode definitions
5.241. shared/debug/dccanditr/DTR

18 // ===================
19 // System register reads of DBGDTR_EL0, DBGDTRRX_EL0 (AArch64) and DBGDTRRXint (AArch32)
20
21 bits(N) DBGDTR_EL0[]
22 // For MRS <Rt>,DBGDTRTX_EL0 N=32, X[t]=Zeros(32):result
23 // For MRS <Xt>,DBGDTR_EL0 N=64, X[t]=result
24 assert N IN {32,64};
25 bits(N) result;
26 if EDSCR.RXfull == '0' then
27 result = bits(N) UNKNOWN;
28 else
29 // On a 64-bit read, implement a half-duplex channel
30 // NOTE: the word order is reversed on reads with regards to writes
31 if N == 64 then result<63:32> = DTRTX;
32 result<31:0> = DTRRX;
33 EDSCR.RXfull = '0';
34 return result;

5.241 shared/debug/dccanditr/DTR

1 bits(32) DTRRX;
2 bits(32) DTRTX;

5.242 shared/debug/dccanditr/EDITR

1 // EDITR[] (external write)
2 // ========================
3 // Called on writes to debug register 0x084.
4
5 EDITR[boolean memory_mapped] = bits(32) value
6 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
7 IMPLEMENTATION_DEFINED "generate error response";
8 return;
9

10 if EDSCR.ERR == '1' then return; // Error flag set: ignore write
11
12 // The Software lock is OPTIONAL.
13 if memory_mapped && EDLSR.SLK == '1' then return; // Software lock locked: ignore write
14
15 if !Halted() then return; // Non-debug state: ignore write
16
17 if EDSCR.ITE == '0' || EDSCR.MA == '1' then
18 EDSCR.ITO = '1'; EDSCR.ERR = '1'; // Overrun condition: block write
19 return;
20
21 // ITE indicates whether the processor is ready to accept another instruction; the processor
22 // may support multiple outstanding instructions. Unlike the "InstrCompl" flag in [v7A] there
23 // is no indication that the pipeline is empty (all instructions have completed). In this
24 // pseudocode, the assumption is that only one instruction can be executed at a time,
25 // meaning ITE acts like "InstrCompl".
26 EDSCR.ITE = '0';
27
28 if !UsingAArch32() then
29 ExecuteA64(value);
30 else
31 ExecuteT32(value<15:0>/*hw1*/, value<31:16> /*hw2*/);
32
33 EDSCR.ITE = '1';
34
35 return;

5.243 shared/debug/halting/DCPSInstruction

1 // DCPSInstruction()
2 // =================
3 // Operation of the DCPS instruction in Debug state
4
5 DCPSInstruction(bits(2) target_el)
6
7 SynchronizeContext();
8
9 case target_el of

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1185

Chapter 5. Pseudocode definitions
5.244. shared/debug/halting/DRPSInstruction

10 when EL1
11 if PSTATE.EL == EL2 || (PSTATE.EL == EL3 && !UsingAArch32()) then handle_el = PSTATE.EL;
12 elsif EL2Enabled() && HCR_EL2.TGE == '1' then UNDEFINED;
13 else handle_el = EL1;
14
15 when EL2
16 if !HaveEL(EL2) then UNDEFINED;
17 elsif PSTATE.EL == EL3 && !UsingAArch32() then handle_el = EL3;
18 elsif IsSecure() then UNDEFINED;
19 else handle_el = EL2;
20 when EL3
21 if EDSCR.SDD == '1' || !HaveEL(EL3) then UNDEFINED;
22 handle_el = EL3;
23 otherwise
24 Unreachable();
25
26 from_secure = IsSecure();
27 PSTATE.nRW = '0'; PSTATE.SP = '1'; PSTATE.EL = handle_el;
28 if (HavePANExt() && ((handle_el == EL1 && SCTLR_EL1.SPAN == '0') ||
29 (handle_el == EL2 && HCR_EL2.E2H == '1' &&
30 HCR_EL2.TGE == '1' && SCTLR_EL2.SPAN == '0'))) then
31 PSTATE.PAN = '1';
32 ELR[] = bits(64) UNKNOWN; SPSR[] = bits(32) UNKNOWN; ESR[] = bits(32) UNKNOWN;
33 if !HaveCapabilitiesExt() then
34 DLR_EL0 = bits(64) UNKNOWN;
35 DSPSR_EL0 = bits(32) UNKNOWN;
36 if HaveUAOExt() then PSTATE.UAO = '0';
37 if HaveCapabilitiesExt() then PSTATE.C64 = CCTLR[].C64E;
38
39 UpdateEDSCRFields(); // Update EDSCR PE state flags
40 sync_errors = HaveIESB() && SCTLR[].IESB == '1';
41 // SCTLR[].IESB might be ignored in Debug state.
42 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
43 sync_errors = FALSE;
44 if sync_errors then
45 SynchronizeErrors();
46 return;

5.244 shared/debug/halting/DRPSInstruction

1 // DRPSInstruction()
2 // =================
3 // Operation of the A64 DRPS and T32 ERET instructions in Debug state
4
5 DRPSInstruction()
6
7 SynchronizeContext();
8
9 sync_errors = HaveIESB() && SCTLR[].IESB == '1';

10 // SCTLR[].IESB might be ignored in Debug state.
11 if !ConstrainUnpredictableBool(Unpredictable_IESBinDebug) then
12 sync_errors = FALSE;
13 if sync_errors then
14 SynchronizeErrors();
15
16 SetPSTATEFromPSR(SPSR[]);
17
18 // PSTATE.{N,Z,C,V,Q,GE,SS,D,A,I,F} are not observable and ignored in Debug state, so
19 // behave as if UNKNOWN.
20 if UsingAArch32() then
21 PSTATE.<N,Z,C,V,Q,GE,SS,A,I,F> = bits(13) UNKNOWN;
22 // In AArch32, all instructions are T32 and unconditional.
23 PSTATE.IT = '00000000'; PSTATE.T = '1'; // PSTATE.J is RES0
24 DLR = bits(32) UNKNOWN; DSPSR = bits(32) UNKNOWN;
25 else
26 PSTATE.<N,Z,C,V,SS,D,A,I,F> = bits(9) UNKNOWN;
27 if !HaveCapabilitiesExt() then
28 DLR_EL0 = bits(64) UNKNOWN;
29 DSPSR_EL0 = bits(32) UNKNOWN;
30
31 UpdateEDSCRFields(); // Update EDSCR PE state flags
32
33 return;

5.245 shared/debug/halting/DebugHalt

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1186

Chapter 5. Pseudocode definitions
5.246. shared/debug/halting/DisableITRAndResumeInstructionPrefetch

1 constant bits(6) DebugHalt_Breakpoint = '000111';
2 constant bits(6) DebugHalt_EDBGRQ = '010011';
3 constant bits(6) DebugHalt_Step_Normal = '011011';
4 constant bits(6) DebugHalt_Step_Exclusive = '011111';
5 constant bits(6) DebugHalt_OSUnlockCatch = '100011';
6 constant bits(6) DebugHalt_ResetCatch = '100111';
7 constant bits(6) DebugHalt_Watchpoint = '101011';
8 constant bits(6) DebugHalt_HaltInstruction = '101111';
9 constant bits(6) DebugHalt_SoftwareAccess = '110011';

10 constant bits(6) DebugHalt_ExceptionCatch = '110111';
11 constant bits(6) DebugHalt_Step_NoSyndrome = '111011';

5.246 shared/debug/halting/DisableITRAndResumeInstructionPrefetch

1 DisableITRAndResumeInstructionPrefetch();

5.247 shared/debug/halting/ExecuteA64

1 // Execute an A64 instruction in Debug state.
2 ExecuteA64(bits(32) instr);

5.248 shared/debug/halting/ExecuteT32

1 // Execute a T32 instruction in Debug state.
2 ExecuteT32(bits(16) hw1, bits(16) hw2);

5.249 shared/debug/halting/ExitDebugState

1 // ExitDebugState()
2 // ================
3
4 ExitDebugState()
5 assert Halted();
6 SynchronizeContext();
7
8 // Although EDSCR.STATUS signals that the PE is restarting, debuggers must use EDPRSR.SDR to
9 // detect that the PE has restarted.

10 EDSCR.STATUS = '000001'; // Signal restarting
11 EDESR<2:0> = '000'; // Clear any pending Halting debug events
12
13 bits(64) new_pc;
14 bits(32) spsr;
15
16 Capability new_pcc = CDLR_EL0;
17 spsr = DSPSR_EL0;
18 // If this is an illegal return, SetPSTATEFromPSR() will set PSTATE.IL.
19 SetPSTATEFromPSR(spsr); // Can update privileged bits, even at EL0
20
21 if UsingAArch32() then
22 if ConstrainUnpredictableBool(Unpredictable_RESTARTALIGNPC) then new_pc<0> = '0';
23 BranchTo(new_pc<31:0>, BranchType_DBGEXIT); // AArch32 branch
24 else
25 // If targeting AArch32 then possibly zero the 32 most significant bits of the target PC
26 if spsr<4> == '1' && ConstrainUnpredictableBool(Unpredictable_RESTARTZEROUPPERPC) then
27 new_pc<63:32> = Zeros();
28 BranchToCapability(new_pcc, BranchType_DBGEXIT);
29
30 (EDSCR.STATUS,EDPRSR.SDR) = ('000010','1'); // Atomically signal restarted
31 UpdateEDSCRFields(); // Stop signalling PE state
32 DisableITRAndResumeInstructionPrefetch();
33
34 return;

5.250 shared/debug/halting/Halt

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1187

Chapter 5. Pseudocode definitions
5.251. shared/debug/halting/HaltOnBreakpointOrWatchpoint

1 // Halt()
2 // ======
3
4 Halt(bits(6) reason)
5
6 CTI_SignalEvent(CrossTriggerIn_CrossHalt); // Trigger other cores to halt
7
8 bits(64) preferred_restart_address = ThisInstrAddr();
9 Capability preferred_restart_cap = PCC[];

10 spsr = GetPSRFromPSTATE();
11
12 if UsingAArch32() then
13 spsr<21> = PSTATE.SS; // Always save the SS bit
14
15 CDLR_EL0 = preferred_restart_cap;
16 DSPSR_EL0 = spsr;
17
18 EDSCR.ITE = '1';
19 EDSCR.ITO = '0';
20 if IsSecure() then
21 EDSCR.SDD = '0'; // If entered in Secure state, allow debug
22 elsif HaveEL(EL3) then
23 EDSCR.SDD = if ExternalSecureInvasiveDebugEnabled() then '0' else '1';
24 else
25 assert EDSCR.SDD == '1'; // Otherwise EDSCR.SDD is RES1
26 EDSCR.MA = '0';
27
28 // PSTATE.{SS,D,A,I,F} are not observable and ignored in Debug state, so behave as if
29 // UNKNOWN. PSTATE.{N,Z,C,V,Q,GE} are also not observable, but since these are not changed on
30 // exception entry, this function also leaves them unchanged. PSTATE.{E,M,nRW,EL,SP} are
31 // unchanged. PSTATE.IL is set to 0.
32 if UsingAArch32() then
33 PSTATE.<SS,A,I,F> = bits(4) UNKNOWN;
34 // In AArch32, all instructions are T32 and unconditional.
35 PSTATE.IT = '00000000';
36 PSTATE.T = '1'; // PSTATE.J is RES0
37 else
38 PSTATE.<SS,D,A,I,F> = bits(5) UNKNOWN;
39 PSTATE.IL = '0';
40
41 StopInstructionPrefetchAndEnableITR();
42 EDSCR.STATUS = reason; // Signal entered Debug state
43 UpdateEDSCRFields(); // Update EDSCR PE state flags.
44
45 return;

5.251 shared/debug/halting/HaltOnBreakpointOrWatchpoint

1 // HaltOnBreakpointOrWatchpoint()
2 // ==============================
3 // Returns TRUE if the Breakpoint and Watchpoint debug events should be considered for Debug
4 // state entry, FALSE if they should be considered for a debug exception.
5
6 boolean HaltOnBreakpointOrWatchpoint()
7 return HaltingAllowed() && EDSCR.HDE == '1' && OSLSR_EL1.OSLK == '0';

5.252 shared/debug/halting/Halted

1 // Halted()
2 // ========
3
4 boolean Halted()
5 return !(EDSCR.STATUS IN {'000001', '000010'}); // Halted

5.253 shared/debug/halting/HaltingAllowed

1 // HaltingAllowed()
2 // ================
3 // Returns TRUE if halting is currently allowed, FALSE if halting is prohibited.
4
5 boolean HaltingAllowed()
6 if Halted() || DoubleLockStatus() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1188

Chapter 5. Pseudocode definitions
5.254. shared/debug/halting/Restarting

7 return FALSE;
8 elsif IsSecure() then
9 return ExternalSecureInvasiveDebugEnabled();

10 else
11 return ExternalInvasiveDebugEnabled();

5.254 shared/debug/halting/Restarting

1 // Restarting()
2 // ============
3
4 boolean Restarting()
5 return EDSCR.STATUS == '000001'; // Restarting

5.255 shared/debug/halting/StopInstructionPrefetchAndEnableITR

1 StopInstructionPrefetchAndEnableITR();

5.256 shared/debug/halting/UpdateEDSCRFields

1 // UpdateEDSCRFields()
2 // ===================
3 // Update EDSCR PE state fields
4
5 UpdateEDSCRFields()
6
7 if !Halted() then
8 EDSCR.EL = '00';
9 EDSCR.NS = bit UNKNOWN;

10 EDSCR.RW = '1111';
11 else
12 EDSCR.EL = PSTATE.EL;
13 EDSCR.NS = if IsSecure() then '0' else '1';
14
15 bits(4) RW;
16 RW<1> = if ELUsingAArch32(EL1) then '0' else '1';
17 if PSTATE.EL != EL0 then
18 RW<0> = RW<1>;
19 else
20 RW<0> = if UsingAArch32() then '0' else '1';
21 if !HaveEL(EL2) || (HaveEL(EL3) && SCR_GEN[].NS == '0') then
22 RW<2> = RW<1>;
23 else
24 RW<2> = if ELUsingAArch32(EL2) then '0' else '1';
25 if !HaveEL(EL3) then
26 RW<3> = RW<2>;
27 else
28 RW<3> = if ELUsingAArch32(EL3) then '0' else '1';
29
30 // The least-significant bits of EDSCR.RW are UNKNOWN if any higher EL is using AArch32.
31 if RW<3> == '0' then RW<2:0> = bits(3) UNKNOWN;
32 elsif RW<2> == '0' then RW<1:0> = bits(2) UNKNOWN;
33 elsif RW<1> == '0' then RW<0> = bit UNKNOWN;
34 EDSCR.RW = RW;
35 return;

5.257 shared/debug/haltingevents/CheckExceptionCatch

1 // CheckExceptionCatch()
2 // =====================
3 // Check whether an Exception Catch debug event is set on the current Exception level
4
5 CheckExceptionCatch(boolean exception_entry)
6 // Called after an exception entry or exit, that is, such that IsSecure() and PSTATE.EL are correct
7 // for the exception target.
8 base = if IsSecure() then 0 else 4;
9 if HaltingAllowed() then

10 if HaveExtendedECDebugEvents() then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1189

Chapter 5. Pseudocode definitions
5.258. shared/debug/haltingevents/CheckHaltingStep

11 exception_exit = !exception_entry;
12 ctrl = EDECCR<UInt(PSTATE.EL) + base + 8>:EDECCR<UInt(PSTATE.EL) + base>;
13 case ctrl of
14 when '00' halt = FALSE;
15 when '01' halt = TRUE;
16 when '10' halt = (exception_exit == TRUE);
17 when '11' halt = (exception_entry == TRUE);
18 else
19 halt = (EDECCR<UInt(PSTATE.EL) + base> == '1');
20 if halt then Halt(DebugHalt_ExceptionCatch);

5.258 shared/debug/haltingevents/CheckHaltingStep

1 // CheckHaltingStep()
2 // ==================
3 // Check whether EDESR.SS has been set by Halting Step
4
5 CheckHaltingStep()
6 if HaltingAllowed() && EDESR.SS == '1' then
7 // The STATUS code depends on how we arrived at the state where EDESR.SS == 1.
8 if HaltingStep_DidNotStep() then
9 Halt(DebugHalt_Step_NoSyndrome);

10 elsif HaltingStep_SteppedEX() then
11 Halt(DebugHalt_Step_Exclusive);
12 else
13 Halt(DebugHalt_Step_Normal);

5.259 shared/debug/haltingevents/CheckOSUnlockCatch

1 // CheckOSUnlockCatch()
2 // ====================
3 // Called on unlocking the OS Lock to pend an OS Unlock Catch debug event
4
5 CheckOSUnlockCatch()
6 if EDECR.OSUCE == '1' then
7 if !Halted() then EDESR.OSUC = '1';

5.260 shared/debug/haltingevents/CheckPendingOSUnlockCatch

1 // CheckPendingOSUnlockCatch()
2 // ===========================
3 // Check whether EDESR.OSUC has been set by an OS Unlock Catch debug event
4
5 CheckPendingOSUnlockCatch()
6 if HaltingAllowed() && EDESR.OSUC == '1' then
7 Halt(DebugHalt_OSUnlockCatch);

5.261 shared/debug/haltingevents/CheckPendingResetCatch

1 // CheckPendingResetCatch()
2 // ========================
3 // Check whether EDESR.RC has been set by a Reset Catch debug event
4
5 CheckPendingResetCatch()
6 if HaltingAllowed() && EDESR.RC == '1' then
7 Halt(DebugHalt_ResetCatch);

5.262 shared/debug/haltingevents/CheckResetCatch

1 // CheckResetCatch()
2 // =================
3 // Called after reset
4
5 CheckResetCatch()
6 if EDECR.RCE == '1' then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1190

Chapter 5. Pseudocode definitions
5.263. shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

7 EDESR.RC = '1';
8 // If halting is allowed then halt immediately
9 if HaltingAllowed() then Halt(DebugHalt_ResetCatch);

5.263 shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters

1 // CheckSoftwareAccessToDebugRegisters()
2 // =====================================
3 // Check for access to Breakpoint and Watchpoint registers.
4
5 CheckSoftwareAccessToDebugRegisters()
6 os_lock = OSLSR_EL1.OSLK;
7 if HaltingAllowed() && EDSCR.TDA == '1' && os_lock == '0' then
8 Halt(DebugHalt_SoftwareAccess);

5.264 shared/debug/haltingevents/ExternalDebugRequest

1 // ExternalDebugRequest()
2 // ======================
3
4 ExternalDebugRequest()
5 if HaltingAllowed() then
6 Halt(DebugHalt_EDBGRQ);
7 // Otherwise the CTI continues to assert the debug request until it is taken.

5.265 shared/debug/haltingevents/HaltingStep_DidNotStep

1 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
2 // if it was not itself stepped.
3 boolean HaltingStep_DidNotStep();

5.266 shared/debug/haltingevents/HaltingStep_SteppedEX

1 // Returns TRUE if the previously executed instruction was a Load-Exclusive class instruction
2 // executed in the active-not-pending state.
3 boolean HaltingStep_SteppedEX();

5.267 shared/debug/haltingevents/RunHaltingStep

1 // RunHaltingStep()
2 // ================
3
4 RunHaltingStep(boolean exception_generated, bits(2) exception_target, boolean syscall,
5 boolean reset)
6 // "exception_generated" is TRUE if the previous instruction generated a synchronous exception
7 // or was cancelled by an asynchronous exception.
8 //
9 // if "exception_generated" is TRUE then "exception_target" is the target of the exception, and

10 // "syscall" is TRUE if the exception is a synchronous exception where the preferred return
11 // address is the instruction following that which generated the exception.
12 //
13 // "reset" is TRUE if exiting reset state into the highest EL.
14
15 if reset then assert !Halted(); // Cannot come out of reset halted
16 active = EDECR.SS == '1' && !Halted();
17
18 if active && reset then // Coming out of reset with EDECR.SS set
19 EDESR.SS = '1';
20 elsif active && HaltingAllowed() then
21 if exception_generated && exception_target == EL3 then
22 advance = syscall || ExternalSecureInvasiveDebugEnabled();
23 else
24 advance = TRUE;
25 if advance then EDESR.SS = '1';
26
27 return;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1191

Chapter 5. Pseudocode definitions
5.268. shared/debug/interrupts/ExternalDebugInterruptsDisabled

5.268 shared/debug/interrupts/ExternalDebugInterruptsDisabled

1 // ExternalDebugInterruptsDisabled()
2 // =================================
3 // Determine whether EDSCR disables interrupts routed to 'target'
4
5 boolean ExternalDebugInterruptsDisabled(bits(2) target)
6 case target of
7 when EL3
8 int_dis = EDSCR.INTdis == '11' && ExternalSecureInvasiveDebugEnabled();
9 when EL2

10 int_dis = EDSCR.INTdis == '1x' && ExternalInvasiveDebugEnabled();
11 when EL1
12 if IsSecure() then
13 int_dis = EDSCR.INTdis == '1x' && ExternalSecureInvasiveDebugEnabled();
14 else
15 int_dis = EDSCR.INTdis != '00' && ExternalInvasiveDebugEnabled();
16 return int_dis;

5.269 shared/debug/interrupts/InterruptID

1 enumeration InterruptID {InterruptID_PMUIRQ, InterruptID_COMMIRQ, InterruptID_CTIIRQ,
2 InterruptID_COMMRX, InterruptID_COMMTX};

5.270 shared/debug/interrupts/SetInterruptRequestLevel

1 // Set a level-sensitive interrupt to the specified level.
2 SetInterruptRequestLevel(InterruptID id, signal level);

5.271 shared/debug/samplebasedprofiling/CreatePCSample

1 // CreatePCSample()
2 // ================
3
4 CreatePCSample()
5 // In a simple sequential execution of the program, CreatePCSample is executed each time the PE
6 // executes an instruction that can be sampled. An implementation is not constrained such that
7 // reads of EDPCSRlo return the current values of PC, etc.
8
9 pc_sample.valid = ExternalNoninvasiveDebugAllowed() && !Halted();

10 pc_sample.pc = ThisInstrAddr();
11 pc_sample.el = PSTATE.EL;
12 pc_sample.rw = if UsingAArch32() then '0' else '1';
13 pc_sample.ns = if IsSecure() then '0' else '1';
14 pc_sample.contextidr = CONTEXTIDR_EL1;
15 pc_sample.has_el2 = EL2Enabled();
16
17 if EL2Enabled() then
18 pc_sample.vmid = VTTBR_EL2.VMID;
19 pc_sample.contextidr_el2 = CONTEXTIDR_EL2;
20 pc_sample.el0h = FALSE;
21 return;

5.272 shared/debug/samplebasedprofiling/EDPCSRlo

1 // EDPCSRlo[] (read)
2 // =================
3
4 bits(32) EDPCSRlo[boolean memory_mapped]
5
6 sample = bits(32) UNKNOWN;
7
8 return sample;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1192

Chapter 5. Pseudocode definitions
5.273. shared/debug/samplebasedprofiling/PCSample

5.273 shared/debug/samplebasedprofiling/PCSample

1 type PCSample is (
2 boolean valid,
3 bits(64) pc,
4 bits(2) el,
5 bit rw,
6 bit ns,
7 boolean has_el2,
8 bits(32) contextidr,
9 bits(32) contextidr_el2,

10 boolean el0h,
11 bits(16) vmid
12)
13
14 PCSample pc_sample;

5.274 shared/debug/samplebasedprofiling/PMPCSR

1 // PMPCSR[] (read)
2 // ===============
3
4 bits(32) PMPCSR[boolean memory_mapped]
5
6 if EDPRSR<6:5,0> != '001' then // Check DLK, OSLK and PU bits
7 IMPLEMENTATION_DEFINED "generate error response";
8 return bits(32) UNKNOWN;
9

10 // The Software lock is OPTIONAL.
11 update = !memory_mapped || PMLSR.SLK == '0'; // Software locked: no side-effects
12
13 if pc_sample.valid then
14 sample = pc_sample.pc<31:0>;
15 if update then
16 PMPCSR<55:32> = (if pc_sample.rw == '0' then Zeros(24) else pc_sample.pc<55:32>);
17 PMPCSR.EL = pc_sample.el;
18 PMPCSR.NS = pc_sample.ns;
19
20 PMCID1SR = pc_sample.contextidr;
21 PMCID2SR = if pc_sample.has_el2 then pc_sample.contextidr_el2 else bits(32) UNKNOWN;
22
23 PMVIDSR.VMID = (if pc_sample.has_el2 && pc_sample.el IN {EL1,EL0} && !pc_sample.el0h
24 then pc_sample.vmid else bits(16) UNKNOWN);
25 else
26 sample = Ones(32);
27 if update then
28 PMPCSR<55:32> = bits(24) UNKNOWN;
29 PMPCSR.EL = bits(2) UNKNOWN;
30 PMPCSR.NS = bit UNKNOWN;
31
32 PMCID1SR = bits(32) UNKNOWN;
33 PMCID2SR = bits(32) UNKNOWN;
34
35 PMVIDSR.VMID = bits(16) UNKNOWN;
36
37 return sample;

5.275 shared/debug/softwarestep/CheckSoftwareStep

1 // CheckSoftwareStep()
2 // ===================
3 // Take a Software Step exception if in the active-pending state
4
5 CheckSoftwareStep()
6
7 // Other self-hosted debug functions will call AArch32.GenerateDebugExceptions() if called from
8 // AArch32 state. However, because Software Step is only active when the debug target Exception
9 // level is using AArch64, CheckSoftwareStep only calls AArch64.GenerateDebugExceptions().

10 if !ELUsingAArch32(DebugTarget()) && AArch64.GenerateDebugExceptions() then
11 if MDSCR_EL1.SS == '1' && PSTATE.SS == '0' then
12 AArch64.SoftwareStepException();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1193

Chapter 5. Pseudocode definitions
5.276. shared/debug/softwarestep/DebugExceptionReturnSS

5.276 shared/debug/softwarestep/DebugExceptionReturnSS

1 // DebugExceptionReturnSS()
2 // ========================
3 // Returns value to write to PSTATE.SS on an exception return or Debug state exit.
4
5 bit DebugExceptionReturnSS(bits(32) spsr)
6 assert Halted() || Restarting() || PSTATE.EL != EL0;
7
8 SS_bit = '0';
9

10 if MDSCR_EL1.SS == '1' then
11 if Restarting() then
12 enabled_at_source = FALSE;
13 else
14 enabled_at_source = AArch64.GenerateDebugExceptions();
15
16 if IllegalExceptionReturn(spsr) then
17 dest = PSTATE.EL;
18 else
19 (valid, dest) = ELFromSPSR(spsr); assert valid;
20
21 secure = IsSecureBelowEL3() || dest == EL3;
22 mask = spsr<9>;
23 enabled_at_dest = AArch64.GenerateDebugExceptionsFrom(dest, secure, mask);
24 ELd = DebugTargetFrom(secure);
25 if !ELUsingAArch32(ELd) && !enabled_at_source && enabled_at_dest then
26 SS_bit = spsr<21>;
27 return SS_bit;

5.277 shared/debug/softwarestep/SSAdvance

1 // SSAdvance()
2 // ===========
3 // Advance the Software Step state machine.
4
5 SSAdvance()
6
7 // A simpler implementation of this function just clears PSTATE.SS to zero regardless of the
8 // current Software Step state machine. However, this check is made to illustrate that the
9 // processor only needs to consider advancing the state machine from the active-not-pending

10 // state.
11 target = DebugTarget();
12 step_enabled = !ELUsingAArch32(target) && MDSCR_EL1.SS == '1';
13 active_not_pending = step_enabled && PSTATE.SS == '1';
14
15 if active_not_pending then PSTATE.SS = '0';
16
17 return;

5.278 shared/debug/softwarestep/SoftwareStep_DidNotStep

1 // Returns TRUE if the previously executed instruction was executed in the inactive state, that is,
2 // if it was not itself stepped.
3 // Might return TRUE or FALSE if the previously executed instruction was an ISB or ERET executed
4 // in the active-not-pending state, or if another exception was taken before the Software Step exception.
5 // Returns FALSE otherwise, indicating that the previously executed instruction was executed in the
6 // active-not-pending state, that is, the instruction was stepped.
7 boolean SoftwareStep_DidNotStep();

5.279 shared/debug/softwarestep/SoftwareStep_SteppedEX

1 // Returns a value that describes the previously executed instruction. The result is valid only if
2 // SoftwareStep_DidNotStep() returns FALSE.
3 // Might return TRUE or FALSE if the instruction was an AArch32 LDREX that failed its condition code test.
4 // Otherwise returns TRUE if the instruction was a Load-Exclusive class instruction, and FALSE if the
5 // instruction was not a Load-Exclusive class instruction.
6 boolean SoftwareStep_SteppedEX();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1194

Chapter 5. Pseudocode definitions
5.280. shared/exceptions/exceptions/ConditionSyndrome

5.280 shared/exceptions/exceptions/ConditionSyndrome

1 // ConditionSyndrome()
2 // ===================
3 // Return CV and COND fields of instruction syndrome
4
5 bits(5) ConditionSyndrome()
6
7 bits(5) syndrome;
8
9 if UsingAArch32() then

10 cond = AArch32.CurrentCond();
11 if PSTATE.T == '0' then // A32
12 syndrome<4> = '1';
13 // A conditional A32 instruction that is known to pass its condition code check
14 // can be presented either with COND set to 0xE, the value for unconditional, or
15 // the COND value held in the instruction.
16 if ConditionHolds(cond) && ConstrainUnpredictableBool(Unpredictable_ESRCONDPASS) then
17 syndrome<3:0> = '1110';
18 else
19 syndrome<3:0> = cond;
20 else // T32
21 // When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
22 // * CV set to 0 and COND is set to an UNKNOWN value
23 // * CV set to 1 and COND is set to the condition code for the condition that
24 // applied to the instruction.
25 if boolean IMPLEMENTATION_DEFINED "Condition valid for trapped T32" then
26 syndrome<4> = '1';
27 syndrome<3:0> = cond;
28 else
29 syndrome<4> = '0';
30 syndrome<3:0> = bits(4) UNKNOWN;
31 else
32 syndrome<4> = '1';
33 syndrome<3:0> = '1110';
34
35 return syndrome;

5.281 shared/exceptions/exceptions/Exception

1 enumeration Exception {Exception_Uncategorized, // Uncategorized or unknown reason
2 Exception_WFxTrap, // Trapped WFI or WFE instruction
3 Exception_CP15RTTrap, // Trapped AArch32 MCR or MRC access to CP15
4 Exception_CP15RRTTrap, // Trapped AArch32 MCRR or MRRC access to CP15
5 Exception_CP14RTTrap, // Trapped AArch32 MCR or MRC access to CP14
6 Exception_CP14DTTrap, // Trapped AArch32 LDC or STC access to CP14
7 Exception_AdvSIMDFPAccessTrap, // HCPTR-trapped access to SIMD or FP
8 Exception_FPIDTrap, // Trapped access to SIMD or FP ID register
9 // Trapped BXJ instruction not supported in Armv8

10 Exception_CP14RRTTrap, // Trapped MRRC access to CP14 from AArch32
11 Exception_IllegalState, // Illegal Execution state
12 Exception_SupervisorCall, // Supervisor Call
13 Exception_HypervisorCall, // Hypervisor Call
14 Exception_MonitorCall, // Monitor Call or Trapped SMC instruction
15 Exception_SystemRegisterTrap, // Trapped MRS or MSR system register access
16 Exception_InstructionAbort, // Instruction Abort or Prefetch Abort
17 Exception_PCAlignment, // PC alignment fault
18 Exception_DataAbort, // Data Abort
19 Exception_SPAlignment, // SP alignment fault
20 Exception_FPTrappedException, // IEEE trapped FP exception
21 Exception_SError, // SError interrupt
22 Exception_Breakpoint, // (Hardware) Breakpoint
23 Exception_SoftwareStep, // Software Step
24 Exception_Watchpoint, // Watchpoint
25 Exception_SoftwareBreakpoint, // Software Breakpoint Instruction
26 Exception_VectorCatch, // AArch32 Vector Catch
27 Exception_IRQ, // IRQ interrupt
28 Exception_CapabilitySysRegTrap,// Trapped MRS or MSR access to Capability System

↪→register
29 Exception_CapabilityAccess, // Trapped access to Capability functionality
30 Exception_FIQ}; // FIQ interrupt

5.282 shared/exceptions/exceptions/ExceptionRecord

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1195

Chapter 5. Pseudocode definitions
5.283. shared/exceptions/exceptions/ExceptionSyndrome

1 type ExceptionRecord is (Exception exceptype, // Exception class
2 bits(25) syndrome, // Syndrome record
3 bits(64) vaddress, // Virtual fault address
4 boolean ipavalid, // Physical fault address for second stage faults is

↪→valid
5 bits(48) ipaddress) // Physical fault address for second stage faults

5.283 shared/exceptions/exceptions/ExceptionSyndrome

1 // ExceptionSyndrome()
2 // ===================
3 // Return a blank exception syndrome record for an exception of the given type.
4
5 ExceptionRecord ExceptionSyndrome(Exception exceptype)
6
7 ExceptionRecord r;
8
9 r.exceptype = exceptype;

10
11 // Initialize all other fields
12 r.syndrome = Zeros();
13 r.vaddress = Zeros();
14 r.ipavalid = FALSE;
15 r.ipaddress = Zeros();
16
17 return r;

5.284 shared/exceptions/traps/ReservedValue

1 // ReservedValue()
2 // ===============
3
4 ReservedValue()
5 AArch64.UndefinedFault();

5.285 shared/exceptions/traps/UnallocatedEncoding

1 // UnallocatedEncoding()
2 // =====================
3
4 UnallocatedEncoding()
5 AArch64.UndefinedFault();

5.286 shared/functions/aborts/EncodeLDFSC

1 // EncodeLDFSC()
2 // =============
3 // Function that gives the Long-descriptor FSC code for types of Fault
4
5 bits(6) EncodeLDFSC(Fault statuscode, integer level)
6
7 bits(6) result;
8 case statuscode of
9 when Fault_AddressSize result = '0000':level<1:0>; assert level IN {0,1,2,3};

10 when Fault_AccessFlag result = '0010':level<1:0>; assert level IN {1,2,3};
11 when Fault_Permission result = '0011':level<1:0>; assert level IN {1,2,3};
12 when Fault_Translation result = '0001':level<1:0>; assert level IN {0,1,2,3};
13 when Fault_SyncExternal result = '010000';
14 when Fault_SyncExternalOnWalk result = '0101':level<1:0>; assert level IN {0,1,2,3};
15 when Fault_SyncParity result = '011000';
16 when Fault_SyncParityOnWalk result = '0111':level<1:0>; assert level IN {0,1,2,3};
17 when Fault_AsyncParity result = '011001';
18 when Fault_AsyncExternal result = '010001';
19 when Fault_Alignment result = '100001';
20 when Fault_Debug result = '100010';
21 when Fault_TLBConflict result = '110000';
22 when Fault_HWUpdateAccessFlag result = '110001';
23 when Fault_CapTag result = '101000';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1196

Chapter 5. Pseudocode definitions
5.287. shared/functions/aborts/IPAValid

24 when Fault_CapSeal result = '101001';
25 when Fault_CapBounds result = '101010';
26 when Fault_CapPerm result = '101011';
27 when Fault_CapPagePerm result = '101100';
28 when Fault_Lockdown result = '110100'; // IMPLEMENTATION DEFINED
29 when Fault_Exclusive result = '110101'; // IMPLEMENTATION DEFINED
30 otherwise Unreachable();
31
32 return result;

5.287 shared/functions/aborts/IPAValid

1 // IPAValid()
2 // ==========
3 // Return TRUE if the IPA is reported for the abort
4
5 boolean IPAValid(FaultRecord fault)
6 assert fault.statuscode != Fault_None;
7
8 if fault.s2fs1walk then
9 return fault.statuscode IN {Fault_AccessFlag, Fault_Permission, Fault_Translation,

10 Fault_AddressSize};
11 elsif fault.secondstage then
12 return fault.statuscode IN {Fault_AccessFlag, Fault_Translation, Fault_AddressSize};
13 else
14 return FALSE;

5.288 shared/functions/aborts/IsAsyncAbort

1 // IsAsyncAbort()
2 // ==============
3 // Returns TRUE if the abort currently being processed is an asynchronous abort, and FALSE
4 // otherwise.
5
6 boolean IsAsyncAbort(Fault statuscode)
7 assert statuscode != Fault_None;
8
9 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

10
11 // IsAsyncAbort()
12 // ==============
13
14 boolean IsAsyncAbort(FaultRecord fault)
15 return IsAsyncAbort(fault.statuscode);

5.289 shared/functions/aborts/IsDebugException

1 // IsDebugException()
2 // ==================
3
4 boolean IsDebugException(FaultRecord fault)
5 assert fault.statuscode != Fault_None;
6 return fault.statuscode == Fault_Debug;

5.290 shared/functions/aborts/IsExternalAbort

1 // IsExternalAbort()
2 // =================
3 // Returns TRUE if the abort currently being processed is an external abort and FALSE otherwise.
4
5 boolean IsExternalAbort(Fault statuscode)
6 assert statuscode != Fault_None;
7
8 return (statuscode IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk,

↪→Fault_SyncParityOnWalk,
9 Fault_AsyncExternal, Fault_AsyncParity });

10
11 // IsExternalAbort()

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1197

Chapter 5. Pseudocode definitions
5.291. shared/functions/aborts/IsExternalSyncAbort

12 // =================
13
14 boolean IsExternalAbort(FaultRecord fault)
15 return IsExternalAbort(fault.statuscode);

5.291 shared/functions/aborts/IsExternalSyncAbort

1 // IsExternalSyncAbort()
2 // =====================
3 // Returns TRUE if the abort currently being processed is an external synchronous abort and FALSE

↪→otherwise.
4
5 boolean IsExternalSyncAbort(Fault statuscode)
6 assert statuscode != Fault_None;
7
8 return (statuscode IN {Fault_SyncExternal, Fault_SyncParity, Fault_SyncExternalOnWalk,

↪→Fault_SyncParityOnWalk});
9

10 // IsExternalSyncAbort()
11 // =====================
12
13 boolean IsExternalSyncAbort(FaultRecord fault)
14 return IsExternalSyncAbort(fault.statuscode);

5.292 shared/functions/aborts/IsFault

1 // IsFault()
2 // =========
3 // Return TRUE if a fault is associated with an address descriptor
4
5 boolean IsFault(AddressDescriptor addrdesc)
6 return addrdesc.fault.statuscode != Fault_None;

5.293 shared/functions/aborts/IsSErrorInterrupt

1 // IsSErrorInterrupt()
2 // ===================
3 // Returns TRUE if the abort currently being processed is an SError interrupt, and FALSE
4 // otherwise.
5
6 boolean IsSErrorInterrupt(Fault statuscode)
7 assert statuscode != Fault_None;
8
9 return (statuscode IN {Fault_AsyncExternal, Fault_AsyncParity});

10
11 // IsSErrorInterrupt()
12 // ===================
13
14 boolean IsSErrorInterrupt(FaultRecord fault)
15 return IsSErrorInterrupt(fault.statuscode);

5.294 shared/functions/aborts/IsSecondStage

1 // IsSecondStage()
2 // ===============
3
4 boolean IsSecondStage(FaultRecord fault)
5 assert fault.statuscode != Fault_None;
6
7 return fault.secondstage;

5.295 shared/functions/aborts/LSInstructionSyndrome

1 bits(11) LSInstructionSyndrome();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1198

Chapter 5. Pseudocode definitions
5.296. shared/functions/capability/CAP_BASE_EXP_HI_BIT

5.296 shared/functions/capability/CAP_BASE_EXP_HI_BIT

1 constant integer CAP_BASE_EXP_HI_BIT = 66;

5.297 shared/functions/capability/CAP_BASE_HI_BIT

1 constant integer CAP_BASE_HI_BIT = 79;

5.298 shared/functions/capability/CAP_BASE_LO_BIT

1 constant integer CAP_BASE_LO_BIT = 64;

5.299 shared/functions/capability/CAP_BASE_MANTISSA_LO_BIT

1 constant integer CAP_BASE_MANTISSA_LO_BIT = 67;

5.300 shared/functions/capability/CAP_BASE_MANTISSA_NUM_BITS

1 constant integer CAP_BASE_MANTISSA_NUM_BITS = CAP_BASE_HI_BIT-CAP_BASE_MANTISSA_LO_BIT+1;

5.301 shared/functions/capability/CAP_BOUND_MAX

1 constant bits(CAP_BOUND_NUM_BITS) CAP_BOUND_MAX = (1<<CAP_VALUE_NUM_BITS)<0+:CAP_BOUND_NUM_BITS>;

5.302 shared/functions/capability/CAP_BOUND_MIN

1 constant bits(CAP_BOUND_NUM_BITS) CAP_BOUND_MIN = 0x0<0+:CAP_BOUND_NUM_BITS>;

5.303 shared/functions/capability/CAP_BOUND_NUM_BITS

1 constant integer CAP_BOUND_NUM_BITS = CAP_VALUE_NUM_BITS+1;

5.304 shared/functions/capability/CAP_FLAGS_HI_BIT

1 constant integer CAP_FLAGS_HI_BIT = 63;

5.305 shared/functions/capability/CAP_FLAGS_LO_BIT

1 constant integer CAP_FLAGS_LO_BIT = 56;

5.306 shared/functions/capability/CAP_IE_BIT

1 constant integer CAP_IE_BIT = 94;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1199

Chapter 5. Pseudocode definitions
5.307. shared/functions/capability/CAP_LENGTH_NUM_BITS

5.307 shared/functions/capability/CAP_LENGTH_NUM_BITS

1 constant integer CAP_LENGTH_NUM_BITS = CAP_VALUE_NUM_BITS+1;

5.308 shared/functions/capability/CAP_LIMIT_EXP_HI_BIT

1 constant integer CAP_LIMIT_EXP_HI_BIT = 82;

5.309 shared/functions/capability/CAP_LIMIT_HI_BIT

1 constant integer CAP_LIMIT_HI_BIT = 93;

5.310 shared/functions/capability/CAP_LIMIT_LO_BIT

1 constant integer CAP_LIMIT_LO_BIT = 80;

5.311 shared/functions/capability/CAP_LIMIT_MANTISSA_LO_BIT

1 constant integer CAP_LIMIT_MANTISSA_LO_BIT = 83;

5.312 shared/functions/capability/CAP_LIMIT_MANTISSA_NUM_BITS

1 constant integer CAP_LIMIT_MANTISSA_NUM_BITS = CAP_LIMIT_HI_BIT-CAP_LIMIT_MANTISSA_LO_BIT+1;

5.313 shared/functions/capability/CAP_LIMIT_NUM_BITS

1 constant integer CAP_LIMIT_NUM_BITS = CAP_LIMIT_HI_BIT-CAP_LIMIT_LO_BIT+1;

5.314 shared/functions/capability/CAP_MAX_ENCODEABLE_EXPONENT

1 constant integer CAP_MAX_ENCODEABLE_EXPONENT = 63;

5.315 shared/functions/capability/CAP_MAX_EXPONENT

1 constant integer CAP_MAX_EXPONENT = CAP_VALUE_NUM_BITS-CAP_MW+2;

5.316 shared/functions/capability/CAP_MAX_FIXED_SEAL_TYPE

1 constant integer CAP_MAX_FIXED_SEAL_TYPE = 3;

5.317 shared/functions/capability/CAP_MAX_OBJECT_TYPE

1 constant integer CAP_MAX_OBJECT_TYPE = (1<<CAP_OTYPE_NUM_BITS)-1;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1200

Chapter 5. Pseudocode definitions
5.318. shared/functions/capability/CAP_MW

5.318 shared/functions/capability/CAP_MW

1 constant integer CAP_MW = CAP_BASE_HI_BIT-CAP_BASE_LO_BIT+1;

5.319 shared/functions/capability/CAP_NO_SEALING

1 constant bits(64) CAP_NO_SEALING = Ones(64);

5.320 shared/functions/capability/CAP_OTYPE_HI_BIT

1 constant integer CAP_OTYPE_HI_BIT = 109;

5.321 shared/functions/capability/CAP_OTYPE_LO_BIT

1 constant integer CAP_OTYPE_LO_BIT = 95;

5.322 shared/functions/capability/CAP_OTYPE_NUM_BITS

1 constant integer CAP_OTYPE_NUM_BITS = CAP_OTYPE_HI_BIT-CAP_OTYPE_LO_BIT+1;

5.323 shared/functions/capability/CAP_PERMS_HI_BIT

1 constant integer CAP_PERMS_HI_BIT = 127;

5.324 shared/functions/capability/CAP_PERMS_LO_BIT

1 constant integer CAP_PERMS_LO_BIT = 110;

5.325 shared/functions/capability/CAP_PERMS_NUM_BITS

1 constant integer CAP_PERMS_NUM_BITS = CAP_PERMS_HI_BIT-CAP_PERMS_LO_BIT+1;

5.326 shared/functions/capability/CAP_PERM_BRANCH_SEALED_PAIR

1 constant bits(64) CAP_PERM_BRANCH_SEALED_PAIR = (1<<8)<63:0>;

5.327 shared/functions/capability/CAP_PERM_COMPARTMENT_ID

1 constant bits(64) CAP_PERM_COMPARTMENT_ID = (1<<7)<63:0>;

5.328 shared/functions/capability/CAP_PERM_EXECUTE

1 constant bits(64) CAP_PERM_EXECUTE = (1<<15)<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1201

Chapter 5. Pseudocode definitions
5.329. shared/functions/capability/CAP_PERM_EXECUTIVE

5.329 shared/functions/capability/CAP_PERM_EXECUTIVE

1 constant bits(64) CAP_PERM_EXECUTIVE = (1<<1)<63:0>;

5.330 shared/functions/capability/CAP_PERM_GLOBAL

1 constant bits(64) CAP_PERM_GLOBAL = 1<63:0>;

5.331 shared/functions/capability/CAP_PERM_LOAD

1 constant bits(64) CAP_PERM_LOAD = (1<<17)<63:0>;

5.332 shared/functions/capability/CAP_PERM_LOAD_CAP

1 constant bits(64) CAP_PERM_LOAD_CAP = (1<<14)<63:0>;

5.333 shared/functions/capability/CAP_PERM_MUTABLE_LOAD

1 constant bits(64) CAP_PERM_MUTABLE_LOAD = (1<<6)<63:0>;

5.334 shared/functions/capability/CAP_PERM_NONE

1 constant bits(64) CAP_PERM_NONE = 0<63:0>;

5.335 shared/functions/capability/CAP_PERM_SEAL

1 constant bits(64) CAP_PERM_SEAL = (1<<11)<63:0>;

5.336 shared/functions/capability/CAP_PERM_STORE

1 constant bits(64) CAP_PERM_STORE = (1<<16)<63:0>;

5.337 shared/functions/capability/CAP_PERM_STORE_CAP

1 constant bits(64) CAP_PERM_STORE_CAP = (1<<13)<63:0>;

5.338 shared/functions/capability/CAP_PERM_STORE_LOCAL

1 constant bits(64) CAP_PERM_STORE_LOCAL = (1<<12)<63:0>;

5.339 shared/functions/capability/CAP_PERM_SYSTEM

1 constant bits(64) CAP_PERM_SYSTEM = (1<<9)<63:0>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1202

Chapter 5. Pseudocode definitions
5.340. shared/functions/capability/CAP_PERM_UNSEAL

5.340 shared/functions/capability/CAP_PERM_UNSEAL

1 constant bits(64) CAP_PERM_UNSEAL = (1<<10)<63:0>;

5.341 shared/functions/capability/CAP_SEAL_TYPE_LB

1 constant bits(64) CAP_SEAL_TYPE_LB = ZeroExtend('11',64);

5.342 shared/functions/capability/CAP_SEAL_TYPE_LPB

1 constant bits(64) CAP_SEAL_TYPE_LPB = ZeroExtend('10',64);

5.343 shared/functions/capability/CAP_SEAL_TYPE_RB

1 constant bits(64) CAP_SEAL_TYPE_RB = ZeroExtend('01',64);

5.344 shared/functions/capability/CAP_TAG_BIT

1 constant integer CAP_TAG_BIT = 128;

5.345 shared/functions/capability/CAP_VALUE_FOR_BOUND_HI_BIT

1 constant integer CAP_VALUE_FOR_BOUND_HI_BIT = 55;

5.346 shared/functions/capability/CAP_VALUE_FOR_BOUND_NUM_BITS

1 constant integer CAP_VALUE_FOR_BOUND_NUM_BITS = CAP_VALUE_FOR_BOUND_HI_BIT-CAP_VALUE_LO_BIT+1;

5.347 shared/functions/capability/CAP_VALUE_HI_BIT

1 constant integer CAP_VALUE_HI_BIT = 63;

5.348 shared/functions/capability/CAP_VALUE_LO_BIT

1 constant integer CAP_VALUE_LO_BIT = 0;

5.349 shared/functions/capability/CAP_VALUE_NUM_BITS

1 constant integer CAP_VALUE_NUM_BITS = CAP_VALUE_HI_BIT-CAP_VALUE_LO_BIT+1;

5.350 shared/functions/capability/CapAdd

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1203

Chapter 5. Pseudocode definitions
5.351. shared/functions/capability/CapBoundsAddress

1 // CapAdd()
2 // ========
3 // Returns the input capability with the value adjusted by a given delta, if
4 // this results in the bounds no longer being representable the tag is cleared
5
6 Capability CapAdd(Capability c, bits(CAP_VALUE_NUM_BITS) increment)
7 Capability newc = c;
8 newc<CAP_VALUE_HI_BIT:CAP_VALUE_LO_BIT> = CapGetValue(c) + increment;
9 if !CapIsRepresentableFast(c, increment) then

10 newc<CAP_TAG_BIT> = '0';
11
12 if CapIsExponentOutOfRange(c) then
13 newc<CAP_TAG_BIT> = '0';
14
15 // if any bounds bits are taken from the value, ensure the top address bit doesn't change
16 if (CapBoundsUsesValue(CapGetExponent(c)) &&
17 CapGetValue(c)<CAP_FLAGS_LO_BIT-1> != CapGetValue(newc)<CAP_FLAGS_LO_BIT-1>) then
18 newc<CAP_TAG_BIT> = '0';
19
20 return newc;
21
22 // CapAdd()
23 // ========
24 // Integer version of CapAdd to simplify pseudocode for computing the link
25 // register
26
27 Capability CapAdd(Capability c, integer increment)
28 return CapAdd(c,increment<CAP_VALUE_NUM_BITS-1:0>);

5.351 shared/functions/capability/CapBoundsAddress

1 // CapBoundsAddress()
2 // ==================
3 // Return a possibly modified address suitable for generating bounds
4
5 bits(CAP_VALUE_NUM_BITS) CapBoundsAddress(bits(CAP_VALUE_NUM_BITS) address)
6 return SignExtend(address<CAP_FLAGS_LO_BIT-1:0>, CAP_VALUE_NUM_BITS);

5.352 shared/functions/capability/CapBoundsEqual

1 // CapBoundsEqual()
2 // ================
3 // Return if the bounds of two capbilities are equal
4
5 boolean CapBoundsEqual(Capability a, Capability b)
6 (abase,alimit,avalid) = CapGetBounds(a);
7 (bbase,blimit,bvalid) = CapGetBounds(b);
8 // The bounds are never equal if there is an out of range exponent involved.
9 return (abase == bbase) && (alimit == blimit) && avalid && bvalid;

5.353 shared/functions/capability/CapBoundsUsesValue

1 // CapBoundsUsesValue()
2 // ====================
3 // Return whether the capability bounds use value bits in the calculation
4
5 boolean CapBoundsUsesValue(integer exp)
6 return exp + CAP_MW < CAP_VALUE_NUM_BITS;

5.354 shared/functions/capability/CapCheckPermissions

1 // CapCheckPermissions()
2 // =====================
3 // Returns true if a capability has all permissions in a given bit mask, false
4 // otherwise
5
6 boolean CapCheckPermissions(Capability c, bits(64) mask)
7 bits(CAP_PERMS_NUM_BITS) perms = CapGetPermissions(c);
8 return (perms OR NOT mask<CAP_PERMS_NUM_BITS-1:0>) == Ones(CAP_PERMS_NUM_BITS);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1204

Chapter 5. Pseudocode definitions
5.355. shared/functions/capability/CapClearPerms

5.355 shared/functions/capability/CapClearPerms

1 // CapClearPerms()
2 // ===============
3 // Returns the input capability with permissions cleared
4 // according to a given bit mask
5
6 Capability CapClearPerms(Capability c, bits(64) mask)
7 bits(CAP_PERMS_NUM_BITS) old_perms = CapGetPermissions(c);
8 bits(CAP_PERMS_NUM_BITS) new_perms = old_perms AND NOT mask<CAP_PERMS_NUM_BITS-1:0>;
9 c<CAP_PERMS_HI_BIT:CAP_PERMS_LO_BIT> = new_perms<CAP_PERMS_NUM_BITS-1:0>;

10 return c;

5.356 shared/functions/capability/CapGetBase

1 // CapGetBase()
2 // ============
3 // Get the capability base in a form of the right type to use in arithmetic
4 // involving the Capability Value.
5
6 bits(CAP_VALUE_NUM_BITS) CapGetBase(Capability c)
7 (base, - , -) = CapGetBounds(c);
8
9 return base<0+:CAP_VALUE_NUM_BITS>;

5.357 shared/functions/capability/CapGetBottom

1 // CapGetBottom()
2 // ==============
3 // Returns the bottom value
4
5 bits(CAP_MW) CapGetBottom(Capability c)
6 if CapIsInternalExponent(c) then
7 return c<CAP_BASE_HI_BIT:CAP_BASE_MANTISSA_LO_BIT>:'000';
8 else
9 return c<CAP_BASE_HI_BIT:CAP_BASE_LO_BIT>;

5.358 shared/functions/capability/CapGetBounds

1 // CapGetBounds()
2 // ==============
3 // Returns the bounds tuple. The tuple is composed of
4 // (base,limit,isExponentValid). As the top bound depends on the calculation of
5 // the bottom bound it better to always calculate them together The base can
6 // never have the CAP_BOUND_NUM_BITSth bit set. However in order to do
7 // arithmetic combining them base and limit must be of the same type.
8
9 (bits(CAP_BOUND_NUM_BITS), bits(CAP_BOUND_NUM_BITS), boolean) CapGetBounds(Capability c)

10 integer exp = CapGetExponent(c);
11
12 if exp == CAP_MAX_ENCODEABLE_EXPONENT then
13 return (CAP_BOUND_MIN,CAP_BOUND_MAX,TRUE);
14
15 if CapIsExponentOutOfRange(c) then
16 return (CAP_BOUND_MIN,CAP_BOUND_MAX,FALSE);
17
18 bits(66) base;
19 bits(66) limit;
20 bits(CAP_MW) bottom = CapGetBottom(c);
21 bits(CAP_MW) top = CapGetTop(c);
22 // alow is filled with zeros
23 base<0+:exp> = Zeros(exp);
24 limit<0+:exp> = Zeros(exp);
25 // amid is the recovered value of T or B. As exp cannot be greater than 50
26 // we cannot do an out of range bitslice with MW = 16 and 66 bit
27 // arithmetic.
28 base<exp+CAP_MW-1:exp> = bottom;
29 limit<exp+CAP_MW-1:exp> = top;
30
31 // Calculate inputs to correction calculations

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1205

Chapter 5. Pseudocode definitions
5.359. shared/functions/capability/CapGetExponent

32 bits(66) a = '00':CapBoundsAddress(CapGetValue(c));
33 bits(3) A3 = a<exp+CAP_MW-1:exp+CAP_MW-3>;
34 bits(3) B3 = bottom<CAP_MW-1:CAP_MW-3>;
35 bits(3) T3 = top<CAP_MW-1:CAP_MW-3>;
36 bits(3) R3 = B3 - '001';
37
38 integer aHi;
39 if CapUnsignedLessThan(A3,R3) then
40 aHi = 1;
41 else
42 aHi = 0;
43
44 integer bHi;
45 if CapUnsignedLessThan(B3,R3) then
46 bHi = 1;
47 else
48 bHi = 0;
49
50 integer tHi;
51 if CapUnsignedLessThan(T3,R3) then
52 tHi = 1;
53 else
54 tHi = 0;
55
56 correction_base = bHi - aHi;
57 correction_limit = tHi - aHi;
58
59 // Determine if we need any atop bits or if they have all been shifted off
60 // the top of the calculation.
61 if exp+CAP_MW < CAP_MAX_EXPONENT+CAP_MW then
62 atop = a<65:exp+CAP_MW>;
63 base<65:exp+CAP_MW> = atop + correction_base;
64 limit<65:exp+CAP_MW> = atop + correction_limit;
65
66 // Final correction for limit for capabilities which wrap the address space
67 bits(2) l2 = limit<64:63>;
68 bits(2) b2 = '0':base<63>;
69 if exp < (CAP_MAX_EXPONENT-1) && CapUnsignedGreaterThan(l2 - b2,'01') then
70 limit<64> = NOT(limit<64>);
71
72 return ('0':base<63:0>, limit<64:0>, TRUE);

5.359 shared/functions/capability/CapGetExponent

1 // CapGetExponent()
2 // ================
3 // Returns the exponent in the range 0 to 63
4 // The Te and Be bits are stored inverted
5
6 integer CapGetExponent(Capability c)
7 if CapIsInternalExponent(c) then
8 bits(6) nexp = c<CAP_LIMIT_EXP_HI_BIT:CAP_LIMIT_LO_BIT>:c<CAP_BASE_EXP_HI_BIT:CAP_BASE_LO_BIT>;
9 return UInt(NOT(nexp));

10 else
11 return 0;
12
13 // CapIsExponentOutOfRange()
14 // Returns true if the exponent is not in the legal range, false otherwise.
15
16 boolean CapIsExponentOutOfRange(Capability c)
17 integer exp = CapGetExponent(c);
18 // To ensure 0 is a legal capability CAP_MAX_ENCODEABLE_EXPONENT is valid
19 // and is handled specially.
20 return (exp > CAP_MAX_EXPONENT) && (exp < CAP_MAX_ENCODEABLE_EXPONENT);

5.360 shared/functions/capability/CapGetLength

1 // CapGetLength()
2 // ==============
3 // Returns the length of the capability
4
5 bits(CAP_LENGTH_NUM_BITS) CapGetLength(Capability c)
6 (base, limit, -) = CapGetBounds(c);
7 return limit - base;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1206

Chapter 5. Pseudocode definitions
5.361. shared/functions/capability/CapGetObjectType

5.361 shared/functions/capability/CapGetObjectType

1 // CapGetObjectType()
2 // ==================
3 // Returns the object type
4
5 bits(CAP_VALUE_NUM_BITS) CapGetObjectType(Capability c)
6 return ZeroExtend(c<CAP_OTYPE_HI_BIT:CAP_OTYPE_LO_BIT>,CAP_VALUE_NUM_BITS);

5.362 shared/functions/capability/CapGetOffset

1 // CapGetOffset()
2 // ==============
3 // Returns the offset of the capability value
4 // relative to the capability base address
5
6 bits(CAP_VALUE_NUM_BITS) CapGetOffset(Capability c)
7 (base, - , -) = CapGetBounds(c);
8 offset = '0':CapGetValue(c) - base;
9 return offset<0+:CAP_VALUE_NUM_BITS>;

5.363 shared/functions/capability/CapGetPermissions

1 // CapGetPermissions()
2 // ===================
3 // Returns a bit vector of capability permissions
4
5 bits(CAP_PERMS_NUM_BITS) CapGetPermissions(Capability c)
6 return c<CAP_PERMS_HI_BIT:CAP_PERMS_LO_BIT>;

5.364 shared/functions/capability/CapGetRepresentableMask

1 // CapGetRepresentableMask()
2 // =========================
3 // Return a mask that can be used to align down addresses to a value that is
4 // sufficient to set precise bounds for the given nearest representable length
5
6 bits(CAP_VALUE_NUM_BITS) CapGetRepresentableMask(bits(CAP_VALUE_NUM_BITS) len)
7 // CapNull if interpreted as a capability has maximum bounds and it is
8 // defined that introspection does not depend on the tag. Therefore it can
9 // be used here.

10 Capability c = CapNull();
11 bits(CAP_VALUE_NUM_BITS) test_base = Ones(CAP_VALUE_NUM_BITS) - len;
12 bits(CAP_LENGTH_NUM_BITS) test_length = ZeroExtend(len,CAP_LENGTH_NUM_BITS);
13 c<CAP_VALUE_HI_BIT:CAP_VALUE_LO_BIT> = test_base;
14 c = CapSetBounds(c,test_length,FALSE);
15
16 // CapSetBounds provably cannot create an exponent greater than
17 // CAP_MAX_EXPONENT therefore a bad exponent check does not need to be done
18 // in this case.
19 integer exp1 = 0;
20 if CapIsInternalExponent(c) then
21 exp1 = CapGetExponent(c) + 3;
22
23 return Ones(CAP_VALUE_NUM_BITS-exp1):Zeros(exp1);

5.365 shared/functions/capability/CapGetTag

1 // CapGetTag()
2 // ===========
3 // Returns the tag bit in bit<0> of the return value
4
5 bits(64) CapGetTag(Capability c)
6 return ZeroExtend(c<CAP_TAG_BIT>,64);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1207

Chapter 5. Pseudocode definitions
5.366. shared/functions/capability/CapGetTop

5.366 shared/functions/capability/CapGetTop

1 // CapGetTop()
2 // ===========
3 // Returns the top value
4
5 bits(CAP_MW) CapGetTop(Capability c)
6 bits(2) lmsb = '00';
7 bits(2) lcarry = '00';
8 bits(CAP_MW) b = CapGetBottom(c);
9 bits(CAP_MW) t;

10 if CapIsInternalExponent(c) then
11 lmsb = '01';
12 t = '00':c<CAP_LIMIT_HI_BIT:CAP_LIMIT_MANTISSA_LO_BIT>:'000';
13 else
14 t = '00':c<CAP_LIMIT_HI_BIT:CAP_LIMIT_LO_BIT>;
15 if CapUnsignedLessThan(t<CAP_MW-3:0>,b<CAP_MW-3:0>) then
16 lcarry = '01';
17 t<CAP_MW-1:CAP_MW-2> = b<CAP_MW-1:CAP_MW-2> + lmsb + lcarry;
18 return t;

5.367 shared/functions/capability/CapGetValue

1 // CapGetValue()
2 // =============
3 // Returns value field of a capability
4
5 bits(CAP_VALUE_NUM_BITS) CapGetValue(Capability c)
6 return c<CAP_VALUE_HI_BIT:CAP_VALUE_LO_BIT>;

5.368 shared/functions/capability/CapIsBaseAboveLimit

1 // CapIsBaseAboveLimit()
2 // =====================
3 // Returns true if the base is strictly greater than the limit, false otherwise
4
5 boolean CapIsBaseAboveLimit(Capability c)
6 (base,limit,-) = CapGetBounds(c);
7 return CapUnsignedGreaterThan(base,limit);

5.369 shared/functions/capability/CapIsEqual

1 // CapIsEqual()
2 // ============
3 // Returns true if two capabilities are bitwise identical, false otherwise.
4
5 boolean CapIsEqual(Capability c1, Capability c2)
6 return c1 == c2;

5.370 shared/functions/capability/CapIsExecutePermitted

1 // CapIsExecutePermitted()
2 // =======================
3 // Returns true if the capability permits code execution, false otherwise
4
5 boolean CapIsExecutePermitted(Capability c)
6 return CapCheckPermissions(c, CAP_PERM_EXECUTE);

5.371 shared/functions/capability/CapIsExecutive

1 // CapIsExecutive()
2 // ================
3 // Returns true if the capability has Executive permission, false otherwise

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1208

Chapter 5. Pseudocode definitions
5.372. shared/functions/capability/CapIsInBounds

4
5 boolean CapIsExecutive(Capability c)
6 return CapCheckPermissions(c, CAP_PERM_EXECUTIVE);

5.372 shared/functions/capability/CapIsInBounds

1 // CapIsInBounds()
2 // ===============
3 // Returns true if the capability value is within the capability bounds, false
4 // otherwise.
5
6 boolean CapIsInBounds(Capability c)
7 (base, limit, valid) = CapGetBounds(c);
8 value65 = '0':CapGetValue(c);
9 // Never in bounds if there is an out of range exponent involved

10 return CapUnsignedGreaterThanOrEqual(value65,base) && CapUnsignedLessThan(value65,limit) && valid;

5.373 shared/functions/capability/CapIsInternalExponent

1 // CapIsInternalExponent()
2 // =======================
3 // Returns true if an internal exponent is in use, false otherwise.
4 // The Ie bit is stored inverted.
5
6 boolean CapIsInternalExponent(Capability c)
7 return c<CAP_IE_BIT> == '0';

5.374 shared/functions/capability/CapIsLocal

1 // CapIsLocal()
2 // ============
3 // Returns true if the capability is local, false otherwise
4
5 boolean CapIsLocal(Capability c)
6 return !CapCheckPermissions(c, CAP_PERM_GLOBAL);

5.375 shared/functions/capability/CapIsMutableLoadPermitted

1 // CapIsMutableLoadPermitted()
2 // ===========================
3 // Returns true if the capability is capable of loading capabilities
4 // for use in store operations, false otherwise
5
6 boolean CapIsMutableLoadPermitted(Capability c)
7 return CapCheckPermissions(c, CAP_PERM_MUTABLE_LOAD);

5.376 shared/functions/capability/CapIsRangeInBounds

1 // CapIsRangeInBounds()
2 // ====================
3 // Returns true if a range of values is within capability bounds, false otherwise
4
5 boolean CapIsRangeInBounds(Capability c, bits(CAP_VALUE_NUM_BITS) start_address,

↪→bits(CAP_VALUE_NUM_BITS+1) length)
6 (base, limit, valid) = CapGetBounds(c);
7 start_ext = '0':start_address;
8 limit_ext = start_ext + length;
9 // Never in bounds if there is an out of range exponent involved

10 return CapUnsignedGreaterThanOrEqual(start_ext,base) && CapUnsignedLessThanOrEqual(limit_ext,limit) &&
↪→valid;

5.377 shared/functions/capability/CapIsRepresentable

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1209

Chapter 5. Pseudocode definitions
5.378. shared/functions/capability/CapIsRepresentableFast

1 // CapIsRepresentable()
2 // ====================
3 // Return if the bounds are still representable if a new value is applied to an
4 // an existing capability.
5
6 boolean CapIsRepresentable(Capability c, bits(CAP_VALUE_NUM_BITS) address)
7 Capability newc = c;
8 newc<CAP_VALUE_HI_BIT:CAP_VALUE_LO_BIT> = address;
9 return CapBoundsEqual(c,newc);

5.378 shared/functions/capability/CapIsRepresentableFast

1 // CapIsRepresentableFast()
2 // ========================
3 // Return if the bounds are still representable if a new value is applied to an
4 // an existing capability. This version is used for CapAdd only and may exhibit
5 // false negatives vs the full CapIsRepresentable check for values which which
6 // are outside bounds.
7
8 boolean CapIsRepresentableFast(Capability c, bits(CAP_VALUE_NUM_BITS) increment)
9 integer exp = CapGetExponent(c);

10 if exp >= (CAP_MAX_EXPONENT - 2) then
11 return TRUE;
12 else
13 bits(CAP_VALUE_NUM_BITS) a = CapGetValue(c);
14 // calculation needs to be done on address rather than the value
15 a = CapBoundsAddress(a);
16 increment = CapBoundsAddress(increment);
17
18 i_top = ASR(increment,exp+CAP_MW);
19 i_mid = LSR(increment,exp)<CAP_MW-1:0>;
20 a_mid = LSR(a,exp)<CAP_MW-1:0>;
21 B3 = CapGetBottom(c)<CAP_MW-1:CAP_MW-3>;
22 R3 = B3 - '001';
23 R = R3:Zeros(CAP_MW-3);
24 diff = R - a_mid;
25 diff1 = diff - 1;
26
27 // Comparing against Ones below is used as proxy for comparing against
28 // -1 to avoid any issues with comparing a bits value against a signed
29 // integer.
30 if (i_top == 0) then
31 return CapUnsignedLessThan(i_mid, diff1);
32 elsif (i_top == Ones(CAP_VALUE_NUM_BITS)) then
33 return CapUnsignedGreaterThanOrEqual(i_mid, diff) && (R != a_mid);
34 else
35 return FALSE;

5.379 shared/functions/capability/CapIsSealed

1 // CapIsSealed()
2 // =============
3 // Returns true if the input capability is sealed
4
5 boolean CapIsSealed(Capability c)
6 return CapGetObjectType(c) != Zeros(CAP_VALUE_NUM_BITS);

5.380 shared/functions/capability/CapIsSubSetOf

1 // CapIsSubSetOf()
2 // ===============
3 // Returns true if capability a is a subset or equal to capability b
4
5 boolean CapIsSubSetOf(Capability a, Capability b)
6 (abase,alimit,avalid) = CapGetBounds(a);
7 (bbase,blimit,bvalid) = CapGetBounds(b);
8 boolean boundsSubset = CapUnsignedGreaterThanOrEqual(abase,bbase) &&

↪→CapUnsignedLessThanOrEqual(alimit,blimit);
9 boolean permsSubset = (CapGetPermissions(a) AND NOT(CapGetPermissions(b))) ==

↪→Zeros(CAP_PERMS_NUM_BITS);
10 // Subset is never true if there is an out of range exponent involved
11 return boundsSubset && permsSubset && avalid && bvalid;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1210

Chapter 5. Pseudocode definitions
5.381. shared/functions/capability/CapIsSystemAccessPermitted

5.381 shared/functions/capability/CapIsSystemAccessPermitted

1 // CapIsSystemAccessPermitted()
2 // ============================
3 // Returns true if the capability permits system register accesses, false otherwise.
4
5 boolean CapIsSystemAccessPermitted(Capability c)
6 return CapCheckPermissions(c, CAP_PERM_EXECUTE OR CAP_PERM_SYSTEM);

5.382 shared/functions/capability/CapIsTagClear

1 // CapIsTagClear()
2 // ===============
3 // Return true if the tag is clear, false otherwise
4
5 boolean CapIsTagClear(Capability c)
6 return CapGetTag(c)<0> == '0';

5.383 shared/functions/capability/CapIsTagSet

1 // CapIsTagSet()
2 // =============
3 // Return true if the tag is set, false otherwise
4
5 boolean CapIsTagSet(Capability c)
6 return CapGetTag(c)<0> == '1';

5.384 shared/functions/capability/CapNull

1 // CapNull()
2 // =========
3 // Returns the null capability defined as all zeros
4
5 Capability CapNull()
6 Capability c = Zeros(129);
7 return c;

5.385 shared/functions/capability/CapPermsInclude

1 // CapPermsInclude()
2 // =================
3 // Returns true if the perms includes the permissions in mask, false otherwise
4
5 boolean CapPermsInclude(bits(64) perms, bits(64) mask)
6 return (perms<CAP_PERMS_NUM_BITS-1:0> AND mask<CAP_PERMS_NUM_BITS-1:0>) ==

↪→mask<CAP_PERMS_NUM_BITS-1:0>;

5.386 shared/functions/capability/CapSetBounds

1 // CapSetBounds
2 // ============
3 // Returns a capability, derived from the input capability, with base address
4 // set to the value of the input capability and the length set to a given
5 // value. If precise bounds setting is not possible, either the bounds are
6 // rounded, or tag is cleared, depending on the input exact flag.
7
8 Capability CapSetBounds(Capability c, bits(CAP_LENGTH_NUM_BITS) req_len, boolean exact)
9 // For this ASL to be valid according to the proved properties req_len must

10 // be at most 2^64. Called from the ISA via a register it can never be more than 2^64-1.
11 assert CapUnsignedLessThanOrEqual(req_len,CAP_BOUND_MAX);
12
13 // Find a candidate exponent
14 integer exp = CAP_MAX_EXPONENT - CountLeadingZeroBits(req_len<CAP_VALUE_NUM_BITS:CAP_MW-1>);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1211

Chapter 5. Pseudocode definitions
5.386. shared/functions/capability/CapSetBounds

15 // If the candidate exponent is non zero or the calculated part of 'T' for
16 // bounds decoding is not zero then the internal exponent is used.
17 boolean ie = (exp != 0) || req_len<CAP_MW-2> == '1';
18
19 bits(CAP_VALUE_NUM_BITS) base = CapGetValue(c);
20 // Choose the actual base based on whether the desired capability is 'Large' or 'Small'
21 // As exp can be increased in some cases, some potentially large capabilties
22 // will be classed as small.
23 bits(CAP_VALUE_NUM_BITS) abase = if CapBoundsUsesValue(CapGetExponent(c)) then CapBoundsAddress(base)

↪→else base;
24
25 bits(CAP_VALUE_NUM_BITS+2) req_base = '00':abase;
26 bits(CAP_VALUE_NUM_BITS+2) req_top = req_base + ('0':req_len);
27
28 // Caclulate for the non ie case
29 bits(CAP_MW) Bbits = req_base<CAP_MW-1:0>;
30 bits(CAP_MW) TBits = req_top<CAP_MW-1:0>;
31 boolean lostTop = FALSE;
32 boolean lostBottom = FALSE;
33 boolean incrementE = FALSE;
34
35 if ie then
36 // Logically the upper bit address is exp+3+CAP_MW-3-1 but +3-3 can
37 // trivially be omitted.
38 bits(CAP_MW-3) B_ie = req_base<exp+CAP_MW-1:exp+3>;
39 bits(CAP_MW-3) T_ie = req_top<exp+CAP_MW-1:exp+3>;
40
41 // Have we lost any bits of base or top?
42 bits(CAP_VALUE_NUM_BITS+2) maskLo = ZeroExtend(Ones(exp+3),CAP_VALUE_NUM_BITS+2);
43 lostBottom = (req_base AND maskLo) != Zeros(CAP_VALUE_NUM_BITS+2);
44 lostTop = (req_top AND maskLo) != Zeros(CAP_VALUE_NUM_BITS+2);
45
46 if lostTop then
47 // Increment T to make sure it is still above top even with lost bits.
48 // It might wrap but if that makes B<T then decoding will compensate.
49 T_ie = T_ie + 1;
50
51 // We chose e so that the top two bits of the length should be 0b01
52 // however we may have overflowed if T was incremented or we lost bits
53 // of base.
54 L_ie = T_ie - B_ie;
55 if L_ie<CAP_MW-4> == '1' then
56 incrementE = TRUE;
57
58 lostBottom = lostBottom || B_ie[0] == '1';
59 lostTop = lostTop || T_ie[0] == '1';
60
61 // Recalculate. This cannot produce an out of range slice as an SMT
62 // proof exists that the algorithm can never produce an exponent
63 // greater than CAP_MAX_EXPONENT and we are just about to increment
64 // so exp can only be CAP_MAX_EXPONENT-1.
65 assert exp < CAP_MAX_EXPONENT;
66 B_ie = req_base<exp+CAP_MW:exp+4>;
67 T_ie = req_top<exp+CAP_MW:exp+4>;
68 if lostTop then
69 T_ie = T_ie + 1;
70
71 if incrementE == TRUE then
72 exp = exp + 1;
73
74 Bbits = B_ie:'000';
75 TBits = T_ie:'000';
76
77 // Now construct the return
78 Capability newc = c;
79
80 // We must check request was within the bounds of the original capability
81 // and unset the tag if it was not. This must be done using the sign
82 // extended address not including the flags field.
83 (obase, olimit, ovalid) = CapGetBounds(c);
84 if (!CapUnsignedGreaterThanOrEqual(req_base<0+:CAP_BOUND_NUM_BITS>,obase) ||
85 !CapUnsignedLessThanOrEqual(req_top<0+:CAP_BOUND_NUM_BITS>,olimit) ||
86 !ovalid) then
87 newc<CAP_TAG_BIT> = '0';
88
89 // The ie bit and the Te and Be bits are stored inverted
90 if ie then
91 newc<CAP_IE_BIT> = '0';
92 newc<CAP_BASE_EXP_HI_BIT:CAP_BASE_LO_BIT> = NOT(exp<2:0>);
93 newc<CAP_LIMIT_EXP_HI_BIT:CAP_LIMIT_LO_BIT> = NOT(exp<5:3>);
94 else
95 newc<CAP_IE_BIT> = '1';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1212

Chapter 5. Pseudocode definitions
5.387. shared/functions/capability/CapSetObjectType

96 newc<CAP_BASE_EXP_HI_BIT:CAP_BASE_LO_BIT> = Bbits<2:0>;
97 newc<CAP_LIMIT_EXP_HI_BIT:CAP_LIMIT_LO_BIT> = TBits<2:0>;
98
99 newc<CAP_BASE_HI_BIT:CAP_BASE_MANTISSA_LO_BIT> = Bbits<CAP_MW-1:3>;

100 // The top two bits of T are recovered during decoding
101 newc<CAP_LIMIT_HI_BIT:CAP_LIMIT_MANTISSA_LO_BIT> = TBits<CAP_MW-3:3>;
102
103 // if reducing bounds from a large to a small capability, the original
104 // base needs to have consistent bits at the top
105 boolean from_large = !CapBoundsUsesValue(CapGetExponent(c));
106 boolean to_small = CapBoundsUsesValue(exp);
107 if from_large && to_small && SignExtend(base<CAP_FLAGS_LO_BIT-1:0>, 64) != base then
108 newc<CAP_TAG_BIT> = '0';
109
110 // If we were asked for an exact bound and could not provide it then we must clear the tag
111 if exact && (lostBottom || lostTop) then
112 newc<CAP_TAG_BIT> = '0';
113
114 return newc;

5.387 shared/functions/capability/CapSetObjectType

1 // CapSetObjectType()
2 // ==================
3 // Returns the capability c with the object type set to o
4
5 Capability CapSetObjectType(Capability c, bits(64) o)
6 c<CAP_OTYPE_HI_BIT:CAP_OTYPE_LO_BIT> = o<CAP_OTYPE_NUM_BITS-1:0>;
7 return c;
8
9 // CapGetFlags()

10 // Returns the flags field
11
12 bits(CAP_VALUE_NUM_BITS) CapGetFlags(Capability c)
13 bits(CAP_VALUE_NUM_BITS) r = c<CAP_FLAGS_HI_BIT:CAP_FLAGS_LO_BIT>:Zeros(CAP_VALUE_FOR_BOUND_NUM_BITS);
14 return r;
15
16 // CapSetFlags()
17 // Sets the flags field from flags field of f
18
19 Capability CapSetFlags(Capability c, bits(CAP_VALUE_NUM_BITS) f)
20 c<CAP_FLAGS_HI_BIT:CAP_FLAGS_LO_BIT> = f<CAP_FLAGS_HI_BIT:CAP_FLAGS_LO_BIT>;
21 return c;

5.388 shared/functions/capability/CapSetOffset

1 // CapSetOffset()
2 // ==============
3 // Returns the input capability with the address offset set to a given value.
4 // If this results in the bounds not being representable then the tag is
5 // cleared
6
7 Capability CapSetOffset(Capability c, bits(CAP_VALUE_NUM_BITS) offset)
8 // If the exponent is valid does not need to be checked here as CapAdd will
9 // unset the tag if it is.

10 (base, - , -) = CapGetBounds(c);
11 bits(CAP_VALUE_NUM_BITS) newvalue = base<CAP_VALUE_NUM_BITS-1:0> + offset;
12 bits(CAP_VALUE_NUM_BITS) increment = newvalue - CapGetValue(c);
13 return CapAdd(c, increment);

5.389 shared/functions/capability/CapSetTag

1 // CapSetTag()
2 // ===========
3 // Returns a capability formed by setting the tag bit of the argument c to
4 // bit<0> of the argument t
5
6 Capability CapSetTag(Capability c, bits(64) t)
7 Capability r = c;
8 r<CAP_TAG_BIT> = t<0>;
9 return r;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1213

Chapter 5. Pseudocode definitions
5.390. shared/functions/capability/CapSetValue

5.390 shared/functions/capability/CapSetValue

1 // CapSetValue()
2 // =============
3 // Returns the input capability with the value set to v, if this results in the
4 // capability bounds not being respresentable the tag is cleared
5
6 Capability CapSetValue(Capability c, bits(CAP_VALUE_NUM_BITS) v)
7 bits(CAP_VALUE_NUM_BITS) oldv = CapGetValue(c);
8 if !CapIsRepresentable(c,v) then
9 c = CapWithTagClear(c);

10 c<CAP_VALUE_HI_BIT:CAP_VALUE_LO_BIT> = v;
11
12 // if any bounds bits are taken from the value, ensure the top address bit doesn't change
13 if (CapBoundsUsesValue(CapGetExponent(c)) &&
14 v<CAP_FLAGS_LO_BIT-1> != oldv<CAP_FLAGS_LO_BIT-1>) then
15 c = CapWithTagClear(c);
16
17 return c;

5.391 shared/functions/capability/CapSquashPostLoadCap

1 // CapSquashPostLoadCap()
2 // ======================
3 // Perform the following processing
4 // - If the Capability was loaded without LoadCap permission clear the tag
5 // - Remove MutableLoad, Store, StoreCap and StoreLocalCap permissions
6 // in a loaded capability if accessed without MutableLoad permission
7
8 Capability CapSquashPostLoadCap(Capability data, VirtualAddress addr)
9

10 Capability base_cap;
11
12 if VAIsBits64(addr) then
13 base_cap = DDC[];
14 else
15 base_cap = VAToCapability(addr);
16
17 if !CapCheckPermissions(base_cap, CAP_PERM_LOAD_CAP) then
18 data = CapWithTagClear(data);
19
20 if !CapIsMutableLoadPermitted(base_cap) && CapIsTagSet(data) && !CapIsSealed(data) then
21 data = CapClearPerms(data, CAP_PERM_STORE OR CAP_PERM_STORE_CAP OR CAP_PERM_STORE_LOCAL OR

↪→CAP_PERM_MUTABLE_LOAD);
22
23 return data;

5.392 shared/functions/capability/CapUnseal

1 // CapUnseal()
2 // ===========
3 // Returns an unsealed version of the input capability
4
5 Capability CapUnseal(Capability c)
6 return CapSetObjectType(c,Zeros(64));

5.393 shared/functions/capability/CapUnsignedGreaterThan

1 // CapUnsignedGreaterThan()
2 // ========================
3 // Returns true if a is greater than b under an unsigned greater than operation.
4
5 boolean CapUnsignedGreaterThan(bits(N) a, bits(N) b)
6 return UInt(a) > UInt(b);

5.394 shared/functions/capability/CapUnsignedGreaterThanOrEqual

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1214

Chapter 5. Pseudocode definitions
5.395. shared/functions/capability/CapUnsignedLessThan

1 // CapUnsignedGreaterThanOrEqual()
2 // ===============================
3 // Returns true if a is greater than b under an unsigned greater than or equal operation.
4
5 boolean CapUnsignedGreaterThanOrEqual(bits(N) a, bits(N) b)
6 return UInt(a) >= UInt(b);

5.395 shared/functions/capability/CapUnsignedLessThan

1 // CapUnsignedLessThan()
2 // =====================
3 // Returns true if a is less than b under an unsigned less than operation.
4
5 boolean CapUnsignedLessThan(bits(N) a, bits(N) b)
6 return UInt(a) < UInt(b);

5.396 shared/functions/capability/CapUnsignedLessThanOrEqual

1 // CapUnsignedLessThanOrEqual()
2 // ============================
3 // Returns true if a is less than b under an unsigned less than or equal operation.
4
5 boolean CapUnsignedLessThanOrEqual(bits(N) a, bits(N) b)
6 return UInt(a) <= UInt(b);

5.397 shared/functions/capability/CapWithTagClear

1 // CapWithTagClear()
2 // =================
3 // Returns the input capability with tag cleared
4
5 Capability CapWithTagClear(Capability c)
6 return CapSetTag(c,ZeroExtend('0',64));

5.398 shared/functions/capability/CapWithTagSet

1 // CapWithTagSet()
2 // ===============
3 // Returns the input capability with tag set
4
5 Capability CapWithTagSet(Capability c)
6 return CapSetTag(c,ZeroExtend('1',64));

5.399 shared/functions/capability/CapabilityFromData

1 // CapabilityFromData()
2 // ====================
3 // Converts a 1-bit tag and 128-bit data to a Capability
4
5 Capability CapabilityFromData(integer size, bits(1) tag, bits(size) data)
6 Capability c;
7 c<size-1:0> = data;
8 c<CAP_TAG_BIT> = tag;
9 return c;

5.400 shared/functions/capability/DataFromCapability

1 // DataFromCapability()
2 // ====================
3 // Converts a Capability to a 1-bit tag and data of a given size
4
5 (bits(1), bits(size)) DataFromCapability(integer size, Capability c)
6 return (c<CAP_TAG_BIT>, c<size-1:0>);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1215

Chapter 5. Pseudocode definitions
5.401. shared/functions/common/ASR

5.401 shared/functions/common/ASR

1 // ASR()
2 // =====
3
4 bits(N) ASR(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = ASR_C(x, shift);

10 return result;

5.402 shared/functions/common/ASR_C

1 // ASR_C()
2 // =======
3
4 (bits(N), bit) ASR_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = SignExtend(x, shift+N);
7 result = extended_x<shift+N-1:shift>;
8 carry_out = extended_x<shift-1>;
9 return (result, carry_out);

5.403 shared/functions/common/Abs

1 // Abs()
2 // =====
3
4 integer Abs(integer x)
5 return if x >= 0 then x else -x;
6
7 // Abs()
8 // =====
9

10 real Abs(real x)
11 return if x >= 0.0 then x else -x;

5.404 shared/functions/common/Align

1 // Align()
2 // =======
3
4 integer Align(integer x, integer y)
5 return y * (x DIV y);
6
7 // Align()
8 // =======
9

10 bits(N) Align(bits(N) x, integer y)
11 return Align(UInt(x), y)<N-1:0>;

5.405 shared/functions/common/BitCount

1 // BitCount()
2 // ==========
3
4 integer BitCount(bits(N) x)
5 integer result = 0;
6 for i = 0 to N-1
7 if x<i> == '1' then
8 result = result + 1;
9 return result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1216

Chapter 5. Pseudocode definitions
5.406. shared/functions/common/CountLeadingSignBits

5.406 shared/functions/common/CountLeadingSignBits

1 // CountLeadingSignBits()
2 // ======================
3
4 integer CountLeadingSignBits(bits(N) x)
5 return CountLeadingZeroBits(x<N-1:1> EOR x<N-2:0>);

5.407 shared/functions/common/CountLeadingZeroBits

1 // CountLeadingZeroBits()
2 // ======================
3
4 integer CountLeadingZeroBits(bits(N) x)
5 return N - (HighestSetBit(x) + 1);

5.408 shared/functions/common/Elem

1 // Elem[] - non-assignment form
2 // ============================
3
4 bits(size) Elem[bits(N) vector, integer e, integer size]
5 assert e >= 0 && (e+1)*size <= N;
6 return vector<e*size+size-1 : e*size>;
7
8 // Elem[] - non-assignment form
9 // ============================

10
11 bits(size) Elem[bits(N) vector, integer e]
12 return Elem[vector, e, size];
13
14 // Elem[] - assignment form
15 // ========================
16
17 Elem[bits(N) &vector, integer e, integer size] = bits(size) value
18 assert e >= 0 && (e+1)*size <= N;
19 vector<(e+1)*size-1:e*size> = value;
20 return;
21
22 // Elem[] - assignment form
23 // ========================
24
25 Elem[bits(N) &vector, integer e] = bits(size) value
26 Elem[vector, e, size] = value;
27 return;

5.409 shared/functions/common/Extend

1 // Extend()
2 // ========
3
4 bits(N) Extend(bits(M) x, integer N, boolean unsigned)
5 return if unsigned then ZeroExtend(x, N) else SignExtend(x, N);
6
7 // Extend()
8 // ========
9

10 bits(N) Extend(bits(M) x, boolean unsigned)
11 return Extend(x, N, unsigned);

5.410 shared/functions/common/HighestSetBit

1 // HighestSetBit()
2 // ===============
3
4 integer HighestSetBit(bits(N) x)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1217

Chapter 5. Pseudocode definitions
5.411. shared/functions/common/Int

5 for i = N-1 downto 0
6 if x<i> == '1' then return i;
7 return -1;

5.411 shared/functions/common/Int

1 // Int()
2 // =====
3
4 integer Int(bits(N) x, boolean unsigned)
5 result = if unsigned then UInt(x) else SInt(x);
6 return result;

5.412 shared/functions/common/IsOnes

1 // IsOnes()
2 // ========
3
4 boolean IsOnes(bits(N) x)
5 return x == Ones(N);

5.413 shared/functions/common/IsZero

1 // IsZero()
2 // ========
3
4 boolean IsZero(bits(N) x)
5 return x == Zeros(N);

5.414 shared/functions/common/IsZeroBit

1 // IsZeroBit()
2 // ===========
3
4 bit IsZeroBit(bits(N) x)
5 return if IsZero(x) then '1' else '0';

5.415 shared/functions/common/LSL

1 // LSL()
2 // =====
3
4 bits(N) LSL(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = LSL_C(x, shift);

10 return result;

5.416 shared/functions/common/LSL_C

1 // LSL_C()
2 // =======
3
4 (bits(N), bit) LSL_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = x : Zeros(shift);
7 result = extended_x<N-1:0>;
8 carry_out = extended_x<N>;
9 return (result, carry_out);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1218

Chapter 5. Pseudocode definitions
5.417. shared/functions/common/LSR

5.417 shared/functions/common/LSR

1 // LSR()
2 // =====
3
4 bits(N) LSR(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = LSR_C(x, shift);

10 return result;

5.418 shared/functions/common/LSR_C

1 // LSR_C()
2 // =======
3
4 (bits(N), bit) LSR_C(bits(N) x, integer shift)
5 assert shift > 0;
6 extended_x = ZeroExtend(x, shift+N);
7 result = extended_x<shift+N-1:shift>;
8 carry_out = extended_x<shift-1>;
9 return (result, carry_out);

5.419 shared/functions/common/LowestSetBit

1 // LowestSetBit()
2 // ==============
3
4 integer LowestSetBit(bits(N) x)
5 for i = 0 to N-1
6 if x<i> == '1' then return i;
7 return N;

5.420 shared/functions/common/Max

1 // Max()
2 // =====
3
4 integer Max(integer a, integer b)
5 return if a >= b then a else b;
6
7 // Max()
8 // =====
9

10 real Max(real a, real b)
11 return if a >= b then a else b;

5.421 shared/functions/common/Min

1 // Min()
2 // =====
3
4 integer Min(integer a, integer b)
5 return if a <= b then a else b;
6
7 // Min()
8 // =====
9

10 real Min(real a, real b)
11 return if a <= b then a else b;

5.422 shared/functions/common/Ones

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1219

Chapter 5. Pseudocode definitions
5.423. shared/functions/common/ROR

1 // Ones()
2 // ======
3
4 bits(N) Ones(integer N)
5 return Replicate('1',N);
6
7 // Ones()
8 // ======
9

10 bits(N) Ones()
11 return Ones(N);

5.423 shared/functions/common/ROR

1 // ROR()
2 // =====
3
4 bits(N) ROR(bits(N) x, integer shift)
5 assert shift >= 0;
6 if shift == 0 then
7 result = x;
8 else
9 (result, -) = ROR_C(x, shift);

10 return result;

5.424 shared/functions/common/ROR_C

1 // ROR_C()
2 // =======
3
4 (bits(N), bit) ROR_C(bits(N) x, integer shift)
5 assert shift != 0;
6 m = shift MOD N;
7 result = LSR(x,m) OR LSL(x,N-m);
8 carry_out = result<N-1>;
9 return (result, carry_out);

5.425 shared/functions/common/Replicate

1 // Replicate()
2 // ===========
3
4 bits(N) Replicate(bits(M) x)
5 assert N MOD M == 0;
6 return Replicate(x, N DIV M);
7
8 bits(M*N) Replicate(bits(M) x, integer N);

5.426 shared/functions/common/RoundDown

1 integer RoundDown(real x);

5.427 shared/functions/common/RoundTowardsZero

1 // RoundTowardsZero()
2 // ==================
3
4 integer RoundTowardsZero(real x)
5 return if x == 0.0 then 0 else if x >= 0.0 then RoundDown(x) else RoundUp(x);

5.428 shared/functions/common/RoundUp

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1220

Chapter 5. Pseudocode definitions
5.429. shared/functions/common/SInt

1 integer RoundUp(real x);

5.429 shared/functions/common/SInt

1 // SInt()
2 // ======
3
4 integer SInt(bits(N) x)
5 result = 0;
6 for i = 0 to N-1
7 if x<i> == '1' then result = result + 2^i;
8 if x<N-1> == '1' then result = result - 2^N;
9 return result;

5.430 shared/functions/common/SignExtend

1 // SignExtend()
2 // ============
3
4 bits(N) SignExtend(bits(M) x, integer N)
5 assert N >= M;
6 return Replicate(x<M-1>, N-M) : x;
7
8 // SignExtend()
9 // ============

10
11 bits(N) SignExtend(bits(M) x)
12 return SignExtend(x, N);

5.431 shared/functions/common/UInt

1 // UInt()
2 // ======
3
4 integer UInt(bits(N) x)
5 result = 0;
6 for i = 0 to N-1
7 if x<i> == '1' then result = result + 2^i;
8 return result;

5.432 shared/functions/common/ZeroExtend

1 // ZeroExtend()
2 // ============
3
4 bits(N) ZeroExtend(bits(M) x, integer N)
5 assert N >= M;
6 return Zeros(N-M) : x;
7
8 // ZeroExtend()
9 // ============

10
11 bits(N) ZeroExtend(bits(M) x)
12 return ZeroExtend(x, N);

5.433 shared/functions/common/Zeros

1 // Zeros()
2 // =======
3
4 bits(N) Zeros(integer N)
5 return Replicate('0',N);
6
7 // Zeros()
8 // =======

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1221

Chapter 5. Pseudocode definitions
5.434. shared/functions/crc/BitReverse

9
10 bits(N) Zeros()
11 return Zeros(N);

5.434 shared/functions/crc/BitReverse

1 // BitReverse()
2 // ============
3
4 bits(N) BitReverse(bits(N) data)
5 bits(N) result;
6 for i = 0 to N-1
7 result<N-i-1> = data<i>;
8 return result;

5.435 shared/functions/crc/HaveCRCExt

1 // HaveCRCExt()
2 // ============
3
4 boolean HaveCRCExt()
5 return HasArchVersion(ARMv8p1) || boolean IMPLEMENTATION_DEFINED "Have CRC extension";

5.436 shared/functions/crc/Poly32Mod2

1 // Poly32Mod2()
2 // ============
3
4 // Poly32Mod2 on a bitstring does a polynomial Modulus over {0,1} operation
5
6 bits(32) Poly32Mod2(bits(N) data, bits(32) poly)
7 assert N > 32;
8 for i = N-1 downto 32
9 if data<i> == '1' then

10 data<i-1:0> = data<i-1:0> EOR (poly:Zeros(i-32));
11 return data<31:0>;

5.437 shared/functions/crypto/AESInvMixColumns

1 // AESInvMixColumns()
2 // ==================
3 // Transformation in the Inverse Cipher that is the inverse of AESMixColumns.
4
5 bits(128) AESInvMixColumns(bits (128) op)
6 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
7 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;
8 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
9 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;

10
11 bits(4*8) out0;
12 bits(4*8) out1;
13 bits(4*8) out2;
14 bits(4*8) out3;
15
16 for c = 0 to 3
17 out0<c*8+:8> = FFmul0E(in0<c*8+:8>) EOR FFmul0B(in1<c*8+:8>) EOR FFmul0D(in2<c*8+:8>) EOR

↪→FFmul09(in3<c*8+:8>);
18 out1<c*8+:8> = FFmul09(in0<c*8+:8>) EOR FFmul0E(in1<c*8+:8>) EOR FFmul0B(in2<c*8+:8>) EOR

↪→FFmul0D(in3<c*8+:8>);
19 out2<c*8+:8> = FFmul0D(in0<c*8+:8>) EOR FFmul09(in1<c*8+:8>) EOR FFmul0E(in2<c*8+:8>) EOR

↪→FFmul0B(in3<c*8+:8>);
20 out3<c*8+:8> = FFmul0B(in0<c*8+:8>) EOR FFmul0D(in1<c*8+:8>) EOR FFmul09(in2<c*8+:8>) EOR

↪→FFmul0E(in3<c*8+:8>);
21
22 return (
23 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
24 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
25 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1222

Chapter 5. Pseudocode definitions
5.438. shared/functions/crypto/AESInvShiftRows

26 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
27);

5.438 shared/functions/crypto/AESInvShiftRows

1 // AESInvShiftRows()
2 // =================
3 // Transformation in the Inverse Cipher that is inverse of AESShiftRows.
4
5 bits(128) AESInvShiftRows(bits(128) op)
6 return (
7 op< 24+:8> : op< 48+:8> : op< 72+:8> : op< 96+:8> :
8 op<120+:8> : op< 16+:8> : op< 40+:8> : op< 64+:8> :
9 op< 88+:8> : op<112+:8> : op< 8+:8> : op< 32+:8> :

10 op< 56+:8> : op< 80+:8> : op<104+:8> : op< 0+:8>
11);

5.439 shared/functions/crypto/AESInvSubBytes

1 // AESInvSubBytes()
2 // ================
3 // Transformation in the Inverse Cipher that is the inverse of AESSubBytes.
4
5 bits(128) AESInvSubBytes(bits(128) op)
6 // Inverse S-box values
7 bits(16*16*8) GF2_inv = (
8 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
9 /*F*/ 0x7d0c2155631469e126d677ba7e042b17<127:0> :

10 /*E*/ 0x619953833cbbebc8b0f52aae4d3be0a0<127:0> :
11 /*D*/ 0xef9cc9939f7ae52d0d4ab519a97f5160<127:0> :
12 /*C*/ 0x5fec8027591012b131c7078833a8dd1f<127:0> :
13 /*B*/ 0xf45acd78fec0db9a2079d2c64b3e56fc<127:0> :
14 /*A*/ 0x1bbe18aa0e62b76f89c5291d711af147<127:0> :
15 /*9*/ 0x6edf751ce837f9e28535ade72274ac96<127:0> :
16 /*8*/ 0x73e6b4f0cecff297eadc674f4111913a<127:0> :
17 /*7*/ 0x6b8a130103bdafc1020f3fca8f1e2cd0<127:0> :
18 /*6*/ 0x0645b3b80558e4f70ad3bc8c00abd890<127:0> :
19 /*5*/ 0x849d8da75746155edab9edfd5048706c<127:0> :
20 /*4*/ 0x92b6655dcc5ca4d41698688664f6f872<127:0> :
21 /*3*/ 0x25d18b6d49a25b76b224d92866a12e08<127:0> :
22 /*2*/ 0x4ec3fa420b954cee3d23c2a632947b54<127:0> :
23 /*1*/ 0xcbe9dec444438e3487ff2f9b8239e37c<127:0> :
24 /*0*/ 0xfbd7f3819ea340bf38a53630d56a0952<127:0>
25);
26 bits(128) out;
27 for i = 0 to 15
28 out<i*8+:8> = GF2_inv<UInt(op<i*8+:8>)*8+:8>;
29 return out;

5.440 shared/functions/crypto/AESMixColumns

1 // AESMixColumns()
2 // ===============
3 // Transformation in the Cipher that takes all of the columns of the
4 // State and mixes their data (independently of one another) to
5 // produce new columns.
6
7 bits(128) AESMixColumns(bits (128) op)
8 bits(4*8) in0 = op< 96+:8> : op< 64+:8> : op< 32+:8> : op< 0+:8>;
9 bits(4*8) in1 = op<104+:8> : op< 72+:8> : op< 40+:8> : op< 8+:8>;

10 bits(4*8) in2 = op<112+:8> : op< 80+:8> : op< 48+:8> : op< 16+:8>;
11 bits(4*8) in3 = op<120+:8> : op< 88+:8> : op< 56+:8> : op< 24+:8>;
12
13 bits(4*8) out0;
14 bits(4*8) out1;
15 bits(4*8) out2;
16 bits(4*8) out3;
17
18 for c = 0 to 3
19 out0<c*8+:8> = FFmul02(in0<c*8+:8>) EOR FFmul03(in1<c*8+:8>) EOR in2<c*8+:8> EOR

↪→in3<c*8+:8>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1223

Chapter 5. Pseudocode definitions
5.441. shared/functions/crypto/AESShiftRows

20 out1<c*8+:8> = in0<c*8+:8> EOR FFmul02(in1<c*8+:8>) EOR FFmul03(in2<c*8+:8>) EOR
↪→in3<c*8+:8>;

21 out2<c*8+:8> = in0<c*8+:8> EOR in1<c*8+:8> EOR FFmul02(in2<c*8+:8>) EOR
↪→FFmul03(in3<c*8+:8>);

22 out3<c*8+:8> = FFmul03(in0<c*8+:8>) EOR in1<c*8+:8> EOR in2<c*8+:8> EOR
↪→FFmul02(in3<c*8+:8>);

23
24 return (
25 out3<3*8+:8> : out2<3*8+:8> : out1<3*8+:8> : out0<3*8+:8> :
26 out3<2*8+:8> : out2<2*8+:8> : out1<2*8+:8> : out0<2*8+:8> :
27 out3<1*8+:8> : out2<1*8+:8> : out1<1*8+:8> : out0<1*8+:8> :
28 out3<0*8+:8> : out2<0*8+:8> : out1<0*8+:8> : out0<0*8+:8>
29);

5.441 shared/functions/crypto/AESShiftRows

1 // AESShiftRows()
2 // ==============
3 // Transformation in the Cipher that processes the State by cyclically
4 // shifting the last three rows of the State by different offsets.
5
6 bits(128) AESShiftRows(bits(128) op)
7 return (
8 op< 88+:8> : op< 48+:8> : op< 8+:8> : op< 96+:8> :
9 op< 56+:8> : op< 16+:8> : op<104+:8> : op< 64+:8> :

10 op< 24+:8> : op<112+:8> : op< 72+:8> : op< 32+:8> :
11 op<120+:8> : op< 80+:8> : op< 40+:8> : op< 0+:8>
12);

5.442 shared/functions/crypto/AESSubBytes

1 // AESSubBytes()
2 // =============
3 // Transformation in the Cipher that processes the State using a nonlinear
4 // byte substitution table (S-box) that operates on each of the State bytes
5 // independently.
6
7 bits(128) AESSubBytes(bits(128) op)
8 // S-box values
9 bits(16*16*8) GF2 = (

10 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
11 /*F*/ 0x16bb54b00f2d99416842e6bf0d89a18c<127:0> :
12 /*E*/ 0xdf2855cee9871e9b948ed9691198f8e1<127:0> :
13 /*D*/ 0x9e1dc186b95735610ef6034866b53e70<127:0> :
14 /*C*/ 0x8a8bbd4b1f74dde8c6b4a61c2e2578ba<127:0> :
15 /*B*/ 0x08ae7a65eaf4566ca94ed58d6d37c8e7<127:0> :
16 /*A*/ 0x79e4959162acd3c25c2406490a3a32e0<127:0> :
17 /*9*/ 0xdb0b5ede14b8ee4688902a22dc4f8160<127:0> :
18 /*8*/ 0x73195d643d7ea7c41744975fec130ccd<127:0> :
19 /*7*/ 0xd2f3ff1021dab6bcf5389d928f40a351<127:0> :
20 /*6*/ 0xa89f3c507f02f94585334d43fbaaefd0<127:0> :
21 /*5*/ 0xcf584c4a39becb6a5bb1fc20ed00d153<127:0> :
22 /*4*/ 0x842fe329b3d63b52a05a6e1b1a2c8309<127:0> :
23 /*3*/ 0x75b227ebe28012079a059618c323c704<127:0> :
24 /*2*/ 0x1531d871f1e5a534ccf73f362693fdb7<127:0> :
25 /*1*/ 0xc072a49cafa2d4adf04759fa7dc982ca<127:0> :
26 /*0*/ 0x76abd7fe2b670130c56f6bf27b777c63<127:0>
27);
28 bits(128) out;
29 for i = 0 to 15
30 out<i*8+:8> = GF2<UInt(op<i*8+:8>)*8+:8>;
31 return out;

5.443 shared/functions/crypto/FFmul02

1 // FFmul02()
2 // =========
3
4 bits(8) FFmul02(bits(8) b)
5 bits(256*8) FFmul_02 = (
6 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
7 /*F*/ 0xE5E7E1E3EDEFE9EBF5F7F1F3FDFFF9FB<127:0> :

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1224

Chapter 5. Pseudocode definitions
5.444. shared/functions/crypto/FFmul03

8 /*E*/ 0xC5C7C1C3CDCFC9CBD5D7D1D3DDDFD9DB<127:0> :
9 /*D*/ 0xA5A7A1A3ADAFA9ABB5B7B1B3BDBFB9BB<127:0> :

10 /*C*/ 0x858781838D8F898B959791939D9F999B<127:0> :
11 /*B*/ 0x656761636D6F696B757771737D7F797B<127:0> :
12 /*A*/ 0x454741434D4F494B555751535D5F595B<127:0> :
13 /*9*/ 0x252721232D2F292B353731333D3F393B<127:0> :
14 /*8*/ 0x050701030D0F090B151711131D1F191B<127:0> :
15 /*7*/ 0xFEFCFAF8F6F4F2F0EEECEAE8E6E4E2E0<127:0> :
16 /*6*/ 0xDEDCDAD8D6D4D2D0CECCCAC8C6C4C2C0<127:0> :
17 /*5*/ 0xBEBCBAB8B6B4B2B0AEACAAA8A6A4A2A0<127:0> :
18 /*4*/ 0x9E9C9A98969492908E8C8A8886848280<127:0> :
19 /*3*/ 0x7E7C7A78767472706E6C6A6866646260<127:0> :
20 /*2*/ 0x5E5C5A58565452504E4C4A4846444240<127:0> :
21 /*1*/ 0x3E3C3A38363432302E2C2A2826242220<127:0> :
22 /*0*/ 0x1E1C1A18161412100E0C0A0806040200<127:0>
23);
24 return FFmul_02<UInt(b)*8+:8>;

5.444 shared/functions/crypto/FFmul03

1 // FFmul03()
2 // =========
3
4 bits(8) FFmul03(bits(8) b)
5 bits(256*8) FFmul_03 = (
6 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
7 /*F*/ 0x1A191C1F16151013020104070E0D080B<127:0> :
8 /*E*/ 0x2A292C2F26252023323134373E3D383B<127:0> :
9 /*D*/ 0x7A797C7F76757073626164676E6D686B<127:0> :

10 /*C*/ 0x4A494C4F46454043525154575E5D585B<127:0> :
11 /*B*/ 0xDAD9DCDFD6D5D0D3C2C1C4C7CECDC8CB<127:0> :
12 /*A*/ 0xEAE9ECEFE6E5E0E3F2F1F4F7FEFDF8FB<127:0> :
13 /*9*/ 0xBAB9BCBFB6B5B0B3A2A1A4A7AEADA8AB<127:0> :
14 /*8*/ 0x8A898C8F86858083929194979E9D989B<127:0> :
15 /*7*/ 0x818287848D8E8B88999A9F9C95969390<127:0> :
16 /*6*/ 0xB1B2B7B4BDBEBBB8A9AAAFACA5A6A3A0<127:0> :
17 /*5*/ 0xE1E2E7E4EDEEEBE8F9FAFFFCF5F6F3F0<127:0> :
18 /*4*/ 0xD1D2D7D4DDDEDBD8C9CACFCCC5C6C3C0<127:0> :
19 /*3*/ 0x414247444D4E4B48595A5F5C55565350<127:0> :
20 /*2*/ 0x717277747D7E7B78696A6F6C65666360<127:0> :
21 /*1*/ 0x212227242D2E2B28393A3F3C35363330<127:0> :
22 /*0*/ 0x111217141D1E1B18090A0F0C05060300<127:0>
23);
24 return FFmul_03<UInt(b)*8+:8>;

5.445 shared/functions/crypto/FFmul09

1 // FFmul09()
2 // =========
3
4 bits(8) FFmul09(bits(8) b)
5 bits(256*8) FFmul_09 = (
6 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
7 /*F*/ 0x464F545D626B70790E071C152A233831<127:0> :
8 /*E*/ 0xD6DFC4CDF2FBE0E99E978C85BAB3A8A1<127:0> :
9 /*D*/ 0x7D746F6659504B42353C272E1118030A<127:0> :

10 /*C*/ 0xEDE4FFF6C9C0DBD2A5ACB7BE8188939A<127:0> :
11 /*B*/ 0x3039222B141D060F78716A635C554E47<127:0> :
12 /*A*/ 0xA0A9B2BB848D969FE8E1FAF3CCC5DED7<127:0> :
13 /*9*/ 0x0B0219102F263D34434A5158676E757C<127:0> :
14 /*8*/ 0x9B928980BFB6ADA4D3DAC1C8F7FEE5EC<127:0> :
15 /*7*/ 0xAAA3B8B18E879C95E2EBF0F9C6CFD4DD<127:0> :
16 /*6*/ 0x3A3328211E170C05727B6069565F444D<127:0> :
17 /*5*/ 0x9198838AB5BCA7AED9D0CBC2FDF4EFE6<127:0> :
18 /*4*/ 0x0108131A252C373E49405B526D647F76<127:0> :
19 /*3*/ 0xDCD5CEC7F8F1EAE3949D868FB0B9A2AB<127:0> :
20 /*2*/ 0x4C455E5768617A73040D161F2029323B<127:0> :
21 /*1*/ 0xE7EEF5FCC3CAD1D8AFA6BDB48B829990<127:0> :
22 /*0*/ 0x777E656C535A41483F362D241B120900<127:0>
23);
24 return FFmul_09<UInt(b)*8+:8>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1225

Chapter 5. Pseudocode definitions
5.446. shared/functions/crypto/FFmul0B

5.446 shared/functions/crypto/FFmul0B

1 // FFmul0B()
2 // =========
3
4 bits(8) FFmul0B(bits(8) b)
5 bits(256*8) FFmul_0B = (
6 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
7 /*F*/ 0xA3A8B5BE8F849992FBF0EDE6D7DCC1CA<127:0> :
8 /*E*/ 0x1318050E3F3429224B405D56676C717A<127:0> :
9 /*D*/ 0xD8D3CEC5F4FFE2E9808B969DACA7BAB1<127:0> :

10 /*C*/ 0x68637E75444F5259303B262D1C170A01<127:0> :
11 /*B*/ 0x555E434879726F640D061B10212A373C<127:0> :
12 /*A*/ 0xE5EEF3F8C9C2DFD4BDB6ABA0919A878C<127:0> :
13 /*9*/ 0x2E2538330209141F767D606B5A514C47<127:0> :
14 /*8*/ 0x9E958883B2B9A4AFC6CDD0DBEAE1FCF7<127:0> :
15 /*7*/ 0x545F424978736E650C071A11202B363D<127:0> :
16 /*6*/ 0xE4EFF2F9C8C3DED5BCB7AAA1909B868D<127:0> :
17 /*5*/ 0x2F2439320308151E777C616A5B504D46<127:0> :
18 /*4*/ 0x9F948982B3B8A5AEC7CCD1DAEBE0FDF6<127:0> :
19 /*3*/ 0xA2A9B4BF8E859893FAF1ECE7D6DDC0CB<127:0> :
20 /*2*/ 0x1219040F3E3528234A415C57666D707B<127:0> :
21 /*1*/ 0xD9D2CFC4F5FEE3E8818A979CADA6BBB0<127:0> :
22 /*0*/ 0x69627F74454E5358313A272C1D160B00<127:0>
23);
24 return FFmul_0B<UInt(b)*8+:8>;

5.447 shared/functions/crypto/FFmul0D

1 // FFmul0D()
2 // =========
3
4 bits(8) FFmul0D(bits(8) b)
5 bits(256*8) FFmul_0D = (
6 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
7 /*F*/ 0x979A8D80A3AEB9B4FFF2E5E8CBC6D1DC<127:0> :
8 /*E*/ 0x474A5D50737E69642F2235381B16010C<127:0> :
9 /*D*/ 0x2C21363B1815020F44495E53707D6A67<127:0> :

10 /*C*/ 0xFCF1E6EBC8C5D2DF94998E83A0ADBAB7<127:0> :
11 /*B*/ 0xFAF7E0EDCEC3D4D9929F8885A6ABBCB1<127:0> :
12 /*A*/ 0x2A27303D1E130409424F5855767B6C61<127:0> :
13 /*9*/ 0x414C5B5675786F622924333E1D10070A<127:0> :
14 /*8*/ 0x919C8B86A5A8BFB2F9F4E3EECDC0D7DA<127:0> :
15 /*7*/ 0x4D40575A7974636E25283F32111C0B06<127:0> :
16 /*6*/ 0x9D90878AA9A4B3BEF5F8EFE2C1CCDBD6<127:0> :
17 /*5*/ 0xF6FBECE1C2CFD8D59E938489AAA7B0BD<127:0> :
18 /*4*/ 0x262B3C31121F08054E4354597A77606D<127:0> :
19 /*3*/ 0x202D3A3714190E034845525F7C71666B<127:0> :
20 /*2*/ 0xF0FDEAE7C4C9DED39895828FACA1B6BB<127:0> :
21 /*1*/ 0x9B96818CAFA2B5B8F3FEE9E4C7CADDD0<127:0> :
22 /*0*/ 0x4B46515C7F726568232E3934171A0D00<127:0>
23);
24 return FFmul_0D<UInt(b)*8+:8>;

5.448 shared/functions/crypto/FFmul0E

1 // FFmul0E()
2 // =========
3
4 bits(8) FFmul0E(bits(8) b)
5 bits(256*8) FFmul_0E = (
6 /* F E D C B A 9 8 7 6 5 4 3 2 1 0 */
7 /*F*/ 0x8D83919FB5BBA9A7FDF3E1EFC5CBD9D7<127:0> :
8 /*E*/ 0x6D63717F555B49471D13010F252B3937<127:0> :
9 /*D*/ 0x56584A446E60727C26283A341E10020C<127:0> :

10 /*C*/ 0xB6B8AAA48E80929CC6C8DAD4FEF0E2EC<127:0> :
11 /*B*/ 0x202E3C321816040A505E4C426866747A<127:0> :
12 /*A*/ 0xC0CEDCD2F8F6E4EAB0BEACA28886949A<127:0> :
13 /*9*/ 0xFBF5E7E9C3CDDFD18B859799B3BDAFA1<127:0> :
14 /*8*/ 0x1B150709232D3F316B657779535D4F41<127:0> :
15 /*7*/ 0xCCC2D0DEF4FAE8E6BCB2A0AE848A9896<127:0> :
16 /*6*/ 0x2C22303E141A08065C52404E646A7876<127:0> :
17 /*5*/ 0x17190B052F21333D67697B755F51434D<127:0> :

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1226

Chapter 5. Pseudocode definitions
5.449. shared/functions/crypto/HaveAESExt

18 /*4*/ 0xF7F9EBE5CFC1D3DD87899B95BFB1A3AD<127:0> :
19 /*3*/ 0x616F7D735957454B111F0D032927353B<127:0> :
20 /*2*/ 0x818F9D93B9B7A5ABF1FFEDE3C9C7D5DB<127:0> :
21 /*1*/ 0xBAB4A6A8828C9E90CAC4D6D8F2FCEEE0<127:0> :
22 /*0*/ 0x5A544648626C7E702A243638121C0E00<127:0>
23);
24 return FFmul_0E<UInt(b)*8+:8>;

5.449 shared/functions/crypto/HaveAESExt

1 // HaveAESExt()
2 // ============
3 // TRUE if AES cryptographic instructions support is implemented,
4 // FALSE otherwise.
5
6 boolean HaveAESExt()
7 return boolean IMPLEMENTATION_DEFINED "Has AES Crypto instructions";

5.450 shared/functions/crypto/HaveBit128PMULLExt

1 // HaveBit128PMULLExt()
2 // ====================
3 // TRUE if 128 bit form of PMULL instructions support is implemented,
4 // FALSE otherwise.
5
6 boolean HaveBit128PMULLExt()
7 return boolean IMPLEMENTATION_DEFINED "Has 128-bit form of PMULL instructions";

5.451 shared/functions/crypto/HaveSHA1Ext

1 // HaveSHA1Ext()
2 // =============
3 // TRUE if SHA1 cryptographic instructions support is implemented,
4 // FALSE otherwise.
5
6 boolean HaveSHA1Ext()
7 return boolean IMPLEMENTATION_DEFINED "Has SHA1 Crypto instructions";

5.452 shared/functions/crypto/HaveSHA256Ext

1 // HaveSHA256Ext()
2 // ===============
3 // TRUE if SHA256 cryptographic instructions support is implemented,
4 // FALSE otherwise.
5
6 boolean HaveSHA256Ext()
7 return boolean IMPLEMENTATION_DEFINED "Has SHA256 Crypto instructions";

5.453 shared/functions/crypto/HaveSHA3Ext

1 // HaveSHA3Ext()
2 // =============
3 // TRUE if SHA3 cryptographic instructions support is implemented,
4 // and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
5 // FALSE otherwise.
6
7 boolean HaveSHA3Ext()
8 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
9 return FALSE;

10 return boolean IMPLEMENTATION_DEFINED "Has SHA3 Crypto instructions";

5.454 shared/functions/crypto/HaveSHA512Ext

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1227

Chapter 5. Pseudocode definitions
5.455. shared/functions/crypto/HaveSM3Ext

1 // HaveSHA512Ext()
2 // ===============
3 // TRUE if SHA512 cryptographic instructions support is implemented,
4 // and when SHA1 and SHA2 basic cryptographic instructions support is implemented,
5 // FALSE otherwise.
6
7 boolean HaveSHA512Ext()
8 if !HasArchVersion(ARMv8p2) || !(HaveSHA1Ext() && HaveSHA256Ext()) then
9 return FALSE;

10 return boolean IMPLEMENTATION_DEFINED "Has SHA512 Crypto instructions";

5.455 shared/functions/crypto/HaveSM3Ext

1 // HaveSM3Ext()
2 // ============
3 // TRUE if SM3 cryptographic instructions support is implemented,
4 // FALSE otherwise.
5
6 boolean HaveSM3Ext()
7 if !HasArchVersion(ARMv8p2) then
8 return FALSE;
9 return boolean IMPLEMENTATION_DEFINED "Has SM3 Crypto instructions";

5.456 shared/functions/crypto/HaveSM4Ext

1 // HaveSM4Ext()
2 // ============
3 // TRUE if SM4 cryptographic instructions support is implemented,
4 // FALSE otherwise.
5
6 boolean HaveSM4Ext()
7 if !HasArchVersion(ARMv8p2) then
8 return FALSE;
9 return boolean IMPLEMENTATION_DEFINED "Has SM4 Crypto instructions";

5.457 shared/functions/crypto/ROL

1 // ROL()
2 // =====
3
4 bits(N) ROL(bits(N) x, integer shift)
5 assert shift >= 0 && shift <= N;
6 if (shift == 0) then
7 return x;
8 return ROR(x, N-shift);

5.458 shared/functions/crypto/SHA256hash

1 // SHA256hash()
2 // ============
3
4 bits(128) SHA256hash(bits (128) X, bits(128) Y, bits(128) W, boolean part1)
5 bits(32) chs, maj, t;
6
7 for e = 0 to 3
8 chs = SHAchoose(Y<31:0>, Y<63:32>, Y<95:64>);
9 maj = SHAmajority(X<31:0>, X<63:32>, X<95:64>);

10 t = Y<127:96> + SHAhashSIGMA1(Y<31:0>) + chs + Elem[W, e, 32];
11 X<127:96> = t + X<127:96>;
12 Y<127:96> = t + SHAhashSIGMA0(X<31:0>) + maj;
13 <Y, X> = ROL(Y : X, 32);
14 return (if part1 then X else Y);

5.459 shared/functions/crypto/SHAchoose

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1228

Chapter 5. Pseudocode definitions
5.460. shared/functions/crypto/SHAhashSIGMA0

1 // SHAchoose()
2 // ===========
3
4 bits(32) SHAchoose(bits(32) x, bits(32) y, bits(32) z)
5 return (((y EOR z) AND x) EOR z);

5.460 shared/functions/crypto/SHAhashSIGMA0

1 // SHAhashSIGMA0()
2 // ===============
3
4 bits(32) SHAhashSIGMA0(bits(32) x)
5 return ROR(x, 2) EOR ROR(x, 13) EOR ROR(x, 22);

5.461 shared/functions/crypto/SHAhashSIGMA1

1 // SHAhashSIGMA1()
2 // ===============
3
4 bits(32) SHAhashSIGMA1(bits(32) x)
5 return ROR(x, 6) EOR ROR(x, 11) EOR ROR(x, 25);

5.462 shared/functions/crypto/SHAmajority

1 // SHAmajority()
2 // =============
3
4 bits(32) SHAmajority(bits(32) x, bits(32) y, bits(32) z)
5 return ((x AND y) OR ((x OR y) AND z));

5.463 shared/functions/crypto/SHAparity

1 // SHAparity()
2 // ===========
3
4 bits(32) SHAparity(bits(32) x, bits(32) y, bits(32) z)
5 return (x EOR y EOR z);

5.464 shared/functions/crypto/Sbox

1 // Sbox()
2 // ======
3 // Used in SM4E crypto instruction
4
5 bits(8) Sbox(bits(8) sboxin)
6 bits(8) sboxout;
7 bits(2048) sboxstring =

↪→0xd690e9fecce13db716b614c228fb2c052b679a762abe04c3aa441326498606999c4250f491ef987a33540b43edcfac62e4b31ca9c908e89580df94fa758f3fa64707a7fcf37317ba83593c19e6854fa8686b81b27164da8bf8eb0f4b70569d351e240e5e6358d1a225227c3b01217887d40046579fd327524c3602e7a0c4c89eeabf8ad240c738b5a3f7f2cef96115a1e0ae5da49b341a55ad933230f58cb1e31df6e22e8266ca60c02923ab0d534e6fd5db3745defd8e2f03ff6a726d6c5b518d1baf92bbddbc7f11d95c411f105ad80ac13188a5cd7bbd2d74d012b8e5b4b08969974a0c96777e65b9f109c56ec68418f07dec3adc4d2079ee5f3ed7cb3948<2047:0>;
8
9 sboxout = sboxstring<(255-UInt(sboxin))*8+7:(255-UInt(sboxin))*8>;

10 return sboxout;

5.465 shared/functions/exclusive/ClearExclusiveByAddress

1 // Clear the global Exclusives monitors for all PEs EXCEPT processorid if they
2 // record any part of the physical address region of size bytes starting at paddress.
3 // It is IMPLEMENTATION DEFINED whether the global Exclusives monitor for processorid
4 // is also cleared if it records any part of the address region.
5 ClearExclusiveByAddress(FullAddress paddress, integer processorid, integer size);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1229

Chapter 5. Pseudocode definitions
5.466. shared/functions/exclusive/ClearExclusiveLocal

5.466 shared/functions/exclusive/ClearExclusiveLocal

1 // Clear the local Exclusives monitor for the specified processorid.
2 ClearExclusiveLocal(integer processorid);

5.467 shared/functions/exclusive/ClearExclusiveMonitors

1 // ClearExclusiveMonitors()
2 // ========================
3
4 // Clear the local Exclusives monitor for the executing PE.
5
6 ClearExclusiveMonitors()
7 ClearExclusiveLocal(ProcessorID());

5.468 shared/functions/exclusive/ExclusiveMonitorsStatus

1 // Returns '0' to indicate success if the last memory write by this PE was to
2 // the same physical address region endorsed by ExclusiveMonitorsPass().
3 // Returns '1' to indicate failure if address translation resulted in a different
4 // physical address.
5 bit ExclusiveMonitorsStatus();

5.469 shared/functions/exclusive/IsExclusiveGlobal

1 // Return TRUE if the global Exclusives monitor for processorid includes all of
2 // the physical address region of size bytes starting at paddress.
3 boolean IsExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

5.470 shared/functions/exclusive/IsExclusiveLocal

1 // Return TRUE if the local Exclusives monitor for processorid includes all of
2 // the physical address region of size bytes starting at paddress.
3 boolean IsExclusiveLocal(FullAddress paddress, integer processorid, integer size);

5.471 shared/functions/exclusive/MarkExclusiveGlobal

1 // Record the physical address region of size bytes starting at paddress in
2 // the global Exclusives monitor for processorid.
3 MarkExclusiveGlobal(FullAddress paddress, integer processorid, integer size);

5.472 shared/functions/exclusive/MarkExclusiveLocal

1 // Record the physical address region of size bytes starting at paddress in
2 // the local Exclusives monitor for processorid.
3 MarkExclusiveLocal(FullAddress paddress, integer processorid, integer size);

5.473 shared/functions/exclusive/ProcessorID

1 // Return the ID of the currently executing PE.
2 integer ProcessorID();

5.474 shared/functions/extension/AArch32.HaveHPDExt

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1230

Chapter 5. Pseudocode definitions
5.475. shared/functions/extension/AArch64.HaveHPDExt

1 // AArch32.HaveHPDExt()
2 // ====================
3
4 boolean AArch32.HaveHPDExt()
5 return HasArchVersion(ARMv8p2);

5.475 shared/functions/extension/AArch64.HaveHPDExt

1 // AArch64.HaveHPDExt()
2 // ====================
3
4 boolean AArch64.HaveHPDExt()
5 return HasArchVersion(ARMv8p1);

5.476 shared/functions/extension/Have52BitVAExt

1 // Have52BitVAExt()
2 // ================
3 // Returns TRUE if Large Virtual Address extension
4 // support is implemented and FALSE otherwise.
5
6 boolean Have52BitVAExt()
7 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has large 52-bit VA support";

5.477 shared/functions/extension/HaveAArch32BF16Ext

1 // HaveAArch32BF16Ext()
2 // ====================
3 // Returns TRUE if AArch32 BFloat16 instruction support is implemented, and FALSE otherwise.
4
5 boolean HaveAArch32BF16Ext()
6 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 BFloat16 extension";

5.478 shared/functions/extension/HaveAArch32Int8MatMulExt

1 // HaveAArch32Int8MatMulExt()
2 // ==========================
3 // Returns TRUE if AArch32 8-bit integer matrix multiply instruction support
4 // implemented, and FALSE otherwise.
5
6 boolean HaveAArch32Int8MatMulExt()
7 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has AArch32 Int8 Mat Mul extension";

5.479 shared/functions/extension/HaveAtomicExt

1 // HaveAtomicExt()
2 // ===============
3
4 boolean HaveAtomicExt()
5 return HasArchVersion(ARMv8p1);

5.480 shared/functions/extension/HaveCapabilitiesExt

1 // HaveCapabilitiesExt()
2 // =====================
3 // Returns TRUE if the Capabilities extension is implemented and FALSE otherwise.
4
5 boolean HaveCapabilitiesExt()
6 return TRUE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1231

Chapter 5. Pseudocode definitions
5.481. shared/functions/extension/HaveCommonNotPrivateTransExt

5.481 shared/functions/extension/HaveCommonNotPrivateTransExt

1 // HaveCommonNotPrivateTransExt()
2 // ==============================
3
4 boolean HaveCommonNotPrivateTransExt()
5 return HasArchVersion(ARMv8p2);

5.482 shared/functions/extension/HaveDOTPExt

1 // HaveDOTPExt()
2 // =============
3 // Returns TRUE if Dot Product feature support is implemented, and FALSE otherwise.
4
5 boolean HaveDOTPExt()
6 return HasArchVersion(ARMv8p2) && boolean IMPLEMENTATION_DEFINED "Has Dot Product extension";

5.483 shared/functions/extension/HaveDoubleLock

1 // HaveDoubleLock()
2 // ================
3 // Returns TRUE if support for the OS Double Lock is implemented.
4
5 boolean HaveDoubleLock()
6 return boolean IMPLEMENTATION_DEFINED "OS Double Lock is implemented";

5.484 shared/functions/extension/HaveExtendedECDebugEvents

1 // HaveExtendedECDebugEvents()
2 // ===========================
3
4 boolean HaveExtendedECDebugEvents()
5 return HasArchVersion(ARMv8p2);

5.485 shared/functions/extension/HaveExtendedExecuteNeverExt

1 // HaveExtendedExecuteNeverExt()
2 // =============================
3
4 boolean HaveExtendedExecuteNeverExt()
5 return HasArchVersion(ARMv8p2);

5.486 shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext

1 // HaveFP16MulNoRoundingToFP32Ext()
2 // ================================
3 // Returns TRUE if has FP16 multiply with no intermediate rounding accumulate to FP32 instructions,
4 // and FALSE otherwise
5
6 boolean HaveFP16MulNoRoundingToFP32Ext()
7 if !HaveFP16Ext() then return FALSE;
8 return (HasArchVersion(ARMv8p2) &&
9 boolean IMPLEMENTATION_DEFINED "Has accumulate FP16 product into FP32 extension");

5.487 shared/functions/extension/HaveHPMDExt

1 // HaveHPMDExt()
2 // =============
3
4 boolean HaveHPMDExt()
5 return HasArchVersion(ARMv8p1);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1232

Chapter 5. Pseudocode definitions
5.488. shared/functions/extension/HaveIESB

5.488 shared/functions/extension/HaveIESB

1 // HaveIESB()
2 // ==========
3
4 boolean HaveIESB()
5 return (HaveRASExt() &&
6 boolean IMPLEMENTATION_DEFINED "Has Implicit Error Synchronization Barrier");

5.489 shared/functions/extension/HaveMPAMExt

1 // HaveMPAMExt()
2 // =============
3 // Returns TRUE if MPAM is implemented, and FALSE otherwise.
4
5 boolean HaveMPAMExt()
6 return (HasArchVersion(ARMv8p2) &&
7 boolean IMPLEMENTATION_DEFINED "Has MPAM extension");

5.490 shared/functions/extension/HaveNoSecurePMUDisableOverride

1 // HaveNoSecurePMUDisableOverride()
2 // ================================
3
4 boolean HaveNoSecurePMUDisableOverride()
5 return HasArchVersion(ARMv8p2);

5.491 shared/functions/extension/HavePANExt

1 // HavePANExt()
2 // ============
3
4 boolean HavePANExt()
5 return HasArchVersion(ARMv8p1);

5.492 shared/functions/extension/HavePageBasedHardwareAttributes

1 // HavePageBasedHardwareAttributes()
2 // =================================
3
4 boolean HavePageBasedHardwareAttributes()
5 return HasArchVersion(ARMv8p2);

5.493 shared/functions/extension/HavePrivATExt

1 // HavePrivATExt()
2 // ===============
3
4 boolean HavePrivATExt()
5 return HasArchVersion(ARMv8p2);

5.494 shared/functions/extension/HaveQRDMLAHExt

1 // HaveQRDMLAHExt()
2 // ================
3
4 boolean HaveQRDMLAHExt()
5 return HasArchVersion(ARMv8p1);
6

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1233

Chapter 5. Pseudocode definitions
5.495. shared/functions/extension/HaveRASExt

7 boolean HaveAccessFlagUpdateExt()
8 return HasArchVersion(ARMv8p1);
9

10 boolean HaveDirtyBitModifierExt()
11 return HasArchVersion(ARMv8p1);

5.495 shared/functions/extension/HaveRASExt

1 // HaveRASExt()
2 // ============
3
4 boolean HaveRASExt()
5 return (HasArchVersion(ARMv8p2) ||
6 boolean IMPLEMENTATION_DEFINED "Has RAS extension");

5.496 shared/functions/extension/HaveSBExt

1 // HaveSBExt()
2 // ===========
3 // Returns TRUE if support for SB is implemented, and FALSE otherwise.
4
5 boolean HaveSBExt()
6 return boolean IMPLEMENTATION_DEFINED "Has SB extension";

5.497 shared/functions/extension/HaveSSBSExt

1 // HaveSSBSExt()
2 // =============
3 // Returns TRUE if support for SSBS is implemented, and FALSE otherwise.
4
5 boolean HaveSSBSExt()
6 return boolean IMPLEMENTATION_DEFINED "Has SSBS extension";

5.498 shared/functions/extension/HaveStatisticalProfiling

1 // HaveStatisticalProfiling()
2 // ==========================
3
4 boolean HaveStatisticalProfiling()
5 return HasArchVersion(ARMv8p2);

5.499 shared/functions/extension/HaveTraceExt

1 // HaveTraceExt()
2 // ==============
3 // Returns TRUE if Trace functionality as described by the Trace Architecture
4 // is implemented.
5
6 boolean HaveTraceExt()
7 return boolean IMPLEMENTATION_DEFINED "Has Trace Architecture functionality";

5.500 shared/functions/extension/HaveUAOExt

1 // HaveUAOExt()
2 // ============
3
4 boolean HaveUAOExt()
5 return HasArchVersion(ARMv8p2);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1234

Chapter 5. Pseudocode definitions
5.501. shared/functions/extension/HaveVirtHostExt

5.501 shared/functions/extension/HaveVirtHostExt

1 // HaveVirtHostExt()
2 // =================
3
4 boolean HaveVirtHostExt()
5 return HasArchVersion(ARMv8p1);

5.502 shared/functions/extension/InsertIESBBeforeException

1 // If SCTLR_ELx.IESB is 1 when an exception is generated to ELx, any pending Unrecoverable
2 // SError interrupt must be taken before executing any instructions in the exception handler.
3 // However, this can be before the branch to the exception handler is made.
4 boolean InsertIESBBeforeException(bits(2) el);

5.503 shared/functions/float/bfloat/BFAdd

1 // BFAdd()
2 // =======
3 // Single-precision add following BFloat16 computation behaviors.
4
5 bits(32) BFAdd(bits(32) op1, bits(32) op2)
6 bits(32) result;
7
8 (type1,sign1,value1) = BFUnpack(op1);
9 (type2,sign2,value2) = BFUnpack(op2);

10 if type1 == FPType_QNaN || type2 == FPType_QNaN then
11 result = FPDefaultNaN();
12 else
13 inf1 = (type1 == FPType_Infinity);
14 inf2 = (type2 == FPType_Infinity);
15 zero1 = (type1 == FPType_Zero);
16 zero2 = (type2 == FPType_Zero);
17 if inf1 && inf2 && sign1 == NOT(sign2) then
18 result = FPDefaultNaN();
19 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
20 result = FPInfinity('0');
21 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
22 result = FPInfinity('1');
23 elsif zero1 && zero2 && sign1 == sign2 then
24 result = FPZero(sign1);
25 else
26 result_value = value1 + value2;
27 if result_value == 0.0 then
28 result = FPZero('0'); // Positive sign when Round to Odd
29 else
30 result = BFRound(result_value);
31
32 return result;

5.504 shared/functions/float/bfloat/BFMatMulAdd

1 // BFMatMulAdd()
2 // =============
3 // BFloat16 matrix multiply and add to single-precision matrix
4 // result[2, 2] = addend[2, 2] + (op1[2, 4] * op2[4, 2])
5
6 bits(N) BFMatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2)
7 assert N == 128;
8
9 bits(N) result;

10 bits(32) sum, prod0, prod1;
11
12 for i = 0 to 1
13 for j = 0 to 1
14 sum = Elem[addend, 2*i + j, 32];
15 for k = 0 to 1
16 prod0 = BFMul(Elem[op1, 4*i + 2*k + 0, 16], Elem[op2, 4*j + 2*k + 0, 16]);
17 prod1 = BFMul(Elem[op1, 4*i + 2*k + 1, 16], Elem[op2, 4*j + 2*k + 1, 16]);
18 sum = BFAdd(sum, BFAdd(prod0, prod1));

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1235

Chapter 5. Pseudocode definitions
5.505. shared/functions/float/bfloat/BFMul

19 Elem[result, 2*i + j, 32] = sum;
20
21 return result;

5.505 shared/functions/float/bfloat/BFMul

1 // BFMul()
2 // =======
3 // BFloat16 widening multiply to single-precision following BFloat16
4 // computation behaviors.
5
6 bits(32) BFMul(bits(16) op1, bits(16) op2)
7 bits(32) result;
8
9 (type1,sign1,value1) = BFUnpack(op1);

10 (type2,sign2,value2) = BFUnpack(op2);
11 if type1 == FPType_QNaN || type2 == FPType_QNaN then
12 result = FPDefaultNaN();
13 else
14 inf1 = (type1 == FPType_Infinity);
15 inf2 = (type2 == FPType_Infinity);
16 zero1 = (type1 == FPType_Zero);
17 zero2 = (type2 == FPType_Zero);
18 if (inf1 && zero2) || (zero1 && inf2) then
19 result = FPDefaultNaN();
20 elsif inf1 || inf2 then
21 result = FPInfinity(sign1 EOR sign2);
22 elsif zero1 || zero2 then
23 result = FPZero(sign1 EOR sign2);
24 else
25 result = BFRound(value1*value2);
26
27 return result;

5.506 shared/functions/float/bfloat/BFRound

1 // BFRound()
2 // =========
3 // Converts a real number OP into a single-precision value using the
4 // Round to Odd rounding mode and following BFloat16 computation behaviors.
5
6 bits(32) BFRound(real op)
7 assert op != 0.0;
8 bits(32) result;
9

10 // Format parameters - minimum exponent, numbers of exponent and fraction bits.
11 minimum_exp = -126; E = 8; F = 23;
12
13 // Split value into sign, unrounded mantissa and exponent.
14 if op < 0.0 then
15 sign = '1'; mantissa = -op;
16 else
17 sign = '0'; mantissa = op;
18 exponent = 0;
19 while mantissa < 1.0 do
20 mantissa = mantissa * 2.0; exponent = exponent - 1;
21 while mantissa >= 2.0 do
22 mantissa = mantissa / 2.0; exponent = exponent + 1;
23
24 // Fixed Flush-to-zero.
25 if exponent < minimum_exp then
26 return FPZero(sign);
27
28 // Start creating the exponent value for the result. Start by biasing the actual exponent
29 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
30 biased_exp = Max(exponent - minimum_exp + 1, 0);
31 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);
32
33 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
34 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
35 error = mantissa * 2.0^F - Real(int_mant);
36
37 // Round to Odd
38 if error != 0.0 then
39 int_mant<0> = '1';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1236

Chapter 5. Pseudocode definitions
5.507. shared/functions/float/bfloat/BFUnpack

40
41 // Deal with overflow and generate result.
42 if biased_exp >= 2^E - 1 then
43 result = FPInfinity(sign); // Overflows generate appropriately-signed Infinity
44 else
45 result = sign : biased_exp<30-F:0> : int_mant<F-1:0>;
46
47 return result;

5.507 shared/functions/float/bfloat/BFUnpack

1 // BFUnpack()
2 // ==========
3 // Unpacks a BFloat16 or single-precision value into its type,
4 // sign bit and real number that it represents.
5 // The real number result has the correct sign for numbers and infinities,
6 // is very large in magnitude for infinities, and is 0.0 for NaNs.
7 // (These values are chosen to simplify the description of
8 // comparisons and conversions.)
9

10 (FPType, bit, real) BFUnpack(bits(N) fpval)
11 assert N IN {16,32};
12
13 if N == 16 then
14 sign = fpval<15>;
15 exp = fpval<14:7>;
16 frac = fpval<6:0> : Zeros(16);
17 else // N == 32
18 sign = fpval<31>;
19 exp = fpval<30:23>;
20 frac = fpval<22:0>;
21
22 if IsZero(exp) then
23 fptype = FPType_Zero; value = 0.0; // Fixed Flush to Zero
24 elsif IsOnes(exp) then
25 if IsZero(frac) then
26 fptype = FPType_Infinity; value = 2.0^1000000;
27 else // no SNaN for BF16 arithmetic
28 fptype = FPType_QNaN; value = 0.0;
29 else
30 fptype = FPType_Nonzero;
31 value = 2.0^(UInt(exp)-127) * (1.0 + Real(UInt(frac)) * 2.0^-23);
32
33 if sign == '1' then value = -value;
34
35 return (fptype, sign, value);

5.508 shared/functions/float/bfloat/FPConvertBF

1 // FPConvertBF()
2 // =============
3 // Converts a single-precision OP to BFloat16 value with rounding controlled by ROUNDING.
4
5 bits(16) FPConvertBF(bits(32) op, FPCRType fpcr, FPRounding rounding)
6 bits(32) result; // BF16 value in top 16 bits
7
8 // Unpack floating-point operand optionally with flush-to-zero.
9 (fptype,sign,value) = FPUnpack(op, fpcr);

10
11 if fptype == FPType_SNaN || fptype == FPType_QNaN then
12 if fpcr.DN == '1' then
13 result = FPDefaultNaN();
14 else
15 result = FPConvertNaN(op);
16 if fptype == FPType_SNaN then
17 FPProcessException(FPExc_InvalidOp, fpcr);
18 elsif fptype == FPType_Infinity then
19 result = FPInfinity(sign);
20 elsif fptype == FPType_Zero then
21 result = FPZero(sign);
22 else
23 result = FPRoundCVBF(value, fpcr, rounding);
24
25 // Returns correctly rounded BF16 value from top 16 bits
26 return result<31:16>;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1237

Chapter 5. Pseudocode definitions
5.509. shared/functions/float/bfloat/FPRoundCVBF

27
28 // FPConvertBF()
29 // =============
30 // Converts a single-precision operand to BFloat16 value.
31
32 bits(16) FPConvertBF(bits(32) op, FPCRType fpcr)
33 return FPConvertBF(op, fpcr, FPRoundingMode(fpcr));

5.509 shared/functions/float/bfloat/FPRoundCVBF

1 // FPRoundCVBF()
2 // =============
3 // Converts a real number OP into a BFloat16 value using the supplied rounding mode RMODE.
4
5 bits(32) FPRoundCVBF(real op, FPCRType fpcr, FPRounding rounding)
6 boolean isbfloat = TRUE;
7 return FPRoundBase(op, fpcr, rounding, isbfloat);

5.510 shared/functions/float/fixedtofp/FixedToFP

1 // FixedToFP()
2 // ===========
3
4 // Convert M-bit fixed point OP with FBITS fractional bits to
5 // N-bit precision floating point, controlled by UNSIGNED and ROUNDING.
6
7 bits(N) FixedToFP(bits(M) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
8 assert N IN {16,32,64};
9 assert M IN {16,32,64};

10 bits(N) result;
11 assert fbits >= 0;
12 assert rounding != FPRounding_ODD;
13
14 // Correct signed-ness
15 int_operand = Int(op, unsigned);
16
17 // Scale by fractional bits and generate a real value
18 real_operand = Real(int_operand) / 2.0^fbits;
19
20 if real_operand == 0.0 then
21 result = FPZero('0');
22 else
23 result = FPRound(real_operand, fpcr, rounding);
24
25 return result;

5.511 shared/functions/float/fpabs/FPAbs

1 // FPAbs()
2 // =======
3
4 bits(N) FPAbs(bits(N) op)
5 assert N IN {16,32,64};
6 return '0' : op<N-2:0>;

5.512 shared/functions/float/fpadd/FPAdd

1 // FPAdd()
2 // =======
3
4 bits(N) FPAdd(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 rounding = FPRoundingMode(fpcr);
7 (type1,sign1,value1) = FPUnpack(op1, fpcr);
8 (type2,sign2,value2) = FPUnpack(op2, fpcr);
9 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

10 if !done then
11 inf1 = (type1 == FPType_Infinity); inf2 = (type2 == FPType_Infinity);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1238

Chapter 5. Pseudocode definitions
5.513. shared/functions/float/fpcompare/FPCompare

12 zero1 = (type1 == FPType_Zero); zero2 = (type2 == FPType_Zero);
13 if inf1 && inf2 && sign1 == NOT(sign2) then
14 result = FPDefaultNaN();
15 FPProcessException(FPExc_InvalidOp, fpcr);
16 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '0') then
17 result = FPInfinity('0');
18 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '1') then
19 result = FPInfinity('1');
20 elsif zero1 && zero2 && sign1 == sign2 then
21 result = FPZero(sign1);
22 else
23 result_value = value1 + value2;
24 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
25 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
26 result = FPZero(result_sign);
27 else
28 result = FPRound(result_value, fpcr, rounding);
29 return result;

5.513 shared/functions/float/fpcompare/FPCompare

1 // FPCompare()
2 // ===========
3
4 bits(4) FPCompare(bits(N) op1, bits(N) op2, boolean signal_nans, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
9 result = '0011';

10 if type1==FPType_SNaN || type2==FPType_SNaN || signal_nans then
11 FPProcessException(FPExc_InvalidOp, fpcr);
12 else
13 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
14 if value1 == value2 then
15 result = '0110';
16 elsif value1 < value2 then
17 result = '1000';
18 else // value1 > value2
19 result = '0010';
20 return result;

5.514 shared/functions/float/fpcompareeq/FPCompareEQ

1 // FPCompareEQ()
2 // =============
3
4 boolean FPCompareEQ(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
9 result = FALSE;

10 if type1==FPType_SNaN || type2==FPType_SNaN then
11 FPProcessException(FPExc_InvalidOp, fpcr);
12 else
13 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
14 result = (value1 == value2);
15 return result;

5.515 shared/functions/float/fpcomparege/FPCompareGE

1 // FPCompareGE()
2 // =============
3
4 boolean FPCompareGE(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
9 result = FALSE;

10 FPProcessException(FPExc_InvalidOp, fpcr);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1239

Chapter 5. Pseudocode definitions
5.516. shared/functions/float/fpcomparegt/FPCompareGT

11 else
12 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
13 result = (value1 >= value2);
14 return result;

5.516 shared/functions/float/fpcomparegt/FPCompareGT

1 // FPCompareGT()
2 // =============
3
4 boolean FPCompareGT(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 if type1==FPType_SNaN || type1==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
9 result = FALSE;

10 FPProcessException(FPExc_InvalidOp, fpcr);
11 else
12 // All non-NaN cases can be evaluated on the values produced by FPUnpack()
13 result = (value1 > value2);
14 return result;

5.517 shared/functions/float/fpconvert/FPConvert

1 // FPConvert()
2 // ===========
3
4 // Convert floating point OP with N-bit precision to M-bit precision,
5 // with rounding controlled by ROUNDING.
6 // This is used by the FP-to-FP conversion instructions and so for
7 // half-precision data ignores FZ16, but observes AHP.
8
9 bits(M) FPConvert(bits(N) op, FPCRType fpcr, FPRounding rounding)

10 assert M IN {16,32,64};
11 assert N IN {16,32,64};
12 bits(M) result;
13
14 // Unpack floating-point operand optionally with flush-to-zero.
15 (fptype,sign,value) = FPUnpackCV(op, fpcr);
16
17 alt_hp = (M == 16) && (fpcr.AHP == '1');
18
19 if fptype == FPType_SNaN || fptype == FPType_QNaN then
20 if alt_hp then
21 result = FPZero(sign);
22 elsif fpcr.DN == '1' then
23 result = FPDefaultNaN();
24 else
25 result = FPConvertNaN(op);
26 if fptype == FPType_SNaN || alt_hp then
27 FPProcessException(FPExc_InvalidOp,fpcr);
28 elsif fptype == FPType_Infinity then
29 if alt_hp then
30 result = sign:Ones(M-1);
31 FPProcessException(FPExc_InvalidOp, fpcr);
32 else
33 result = FPInfinity(sign);
34 elsif fptype == FPType_Zero then
35 result = FPZero(sign);
36 else
37 result = FPRoundCV(value, fpcr, rounding);
38 return result;
39
40 // FPConvert()
41 // ===========
42
43 bits(M) FPConvert(bits(N) op, FPCRType fpcr)
44 return FPConvert(op, fpcr, FPRoundingMode(fpcr));

5.518 shared/functions/float/fpconvertnan/FPConvertNaN

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1240

Chapter 5. Pseudocode definitions
5.519. shared/functions/float/fpcrtype/FPCRType

1 // FPConvertNaN()
2 // ==============
3 // Converts a NaN of one floating-point type to another
4
5 bits(M) FPConvertNaN(bits(N) op)
6 assert N IN {16,32,64};
7 assert M IN {16,32,64};
8 bits(M) result;
9 bits(51) frac;

10
11 sign = op<N-1>;
12
13 // Unpack payload from input NaN
14 case N of
15 when 64 frac = op<50:0>;
16 when 32 frac = op<21:0>:Zeros(29);
17 when 16 frac = op<8:0>:Zeros(42);
18
19 // Repack payload into output NaN, while
20 // converting an SNaN to a QNaN.
21 case M of
22 when 64 result = sign:Ones(M-52):frac;
23 when 32 result = sign:Ones(M-23):frac<50:29>;
24 when 16 result = sign:Ones(M-10):frac<50:42>;
25
26 return result;

5.519 shared/functions/float/fpcrtype/FPCRType

1 type FPCRType;

5.520 shared/functions/float/fpdecoderm/FPDecodeRM

1 // FPDecodeRM()
2 // ============
3
4 // Decode most common AArch32 floating-point rounding encoding.
5
6 FPRounding FPDecodeRM(bits(2) rm)
7 case rm of
8 when '00' return FPRounding_TIEAWAY; // A
9 when '01' return FPRounding_TIEEVEN; // N

10 when '10' return FPRounding_POSINF; // P
11 when '11' return FPRounding_NEGINF; // M

5.521 shared/functions/float/fpdecoderounding/FPDecodeRounding

1 // FPDecodeRounding()
2 // ==================
3
4 // Decode floating-point rounding mode and common AArch64 encoding.
5
6 FPRounding FPDecodeRounding(bits(2) rmode)
7 case rmode of
8 when '00' return FPRounding_TIEEVEN; // N
9 when '01' return FPRounding_POSINF; // P

10 when '10' return FPRounding_NEGINF; // M
11 when '11' return FPRounding_ZERO; // Z

5.522 shared/functions/float/fpdefaultnan/FPDefaultNaN

1 // FPDefaultNaN()
2 // ==============
3
4 bits(N) FPDefaultNaN()
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1241

Chapter 5. Pseudocode definitions
5.523. shared/functions/float/fpdiv/FPDiv

8 sign = '0';
9 bits(E) exp = Ones(E);

10 bits(F) frac = '1':Zeros(F-1);
11 return sign : exp : frac;

5.523 shared/functions/float/fpdiv/FPDiv

1 // FPDiv()
2 // =======
3
4 bits(N) FPDiv(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
9 if !done then

10 inf1 = (type1 == FPType_Infinity);
11 inf2 = (type2 == FPType_Infinity);
12 zero1 = (type1 == FPType_Zero);
13 zero2 = (type2 == FPType_Zero);
14 if (inf1 && inf2) || (zero1 && zero2) then
15 result = FPDefaultNaN();
16 FPProcessException(FPExc_InvalidOp, fpcr);
17 elsif inf1 || zero2 then
18 result = FPInfinity(sign1 EOR sign2);
19 if !inf1 then FPProcessException(FPExc_DivideByZero, fpcr);
20 elsif zero1 || inf2 then
21 result = FPZero(sign1 EOR sign2);
22 else
23 result = FPRound(value1/value2, fpcr);
24 return result;

5.524 shared/functions/float/fpexc/FPExc

1 enumeration FPExc {FPExc_InvalidOp, FPExc_DivideByZero, FPExc_Overflow,
2 FPExc_Underflow, FPExc_Inexact, FPExc_InputDenorm};

5.525 shared/functions/float/fpinfinity/FPInfinity

1 // FPInfinity()
2 // ============
3
4 bits(N) FPInfinity(bit sign)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);
8 bits(E) exp = Ones(E);
9 bits(F) frac = Zeros(F);

10 return sign : exp : frac;

5.526 shared/functions/float/fpmax/FPMax

1 // FPMax()
2 // =======
3
4 bits(N) FPMax(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
9 if !done then

10 if value1 > value2 then
11 (fptype,sign,value) = (type1,sign1,value1);
12 else
13 (fptype,sign,value) = (type2,sign2,value2);
14 if fptype == FPType_Infinity then
15 result = FPInfinity(sign);
16 elsif fptype == FPType_Zero then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1242

Chapter 5. Pseudocode definitions
5.527. shared/functions/float/fpmaxnormal/FPMaxNormal

17 sign = sign1 AND sign2; // Use most positive sign
18 result = FPZero(sign);
19 else
20 // The use of FPRound() covers the case where there is a trapped underflow exception
21 // for a denormalized number even though the result is exact.
22 result = FPRound(value, fpcr);
23 return result;

5.527 shared/functions/float/fpmaxnormal/FPMaxNormal

1 // FPMaxNormal()
2 // =============
3
4 bits(N) FPMaxNormal(bit sign)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);
8 exp = Ones(E-1):'0';
9 frac = Ones(F);

10 return sign : exp : frac;

5.528 shared/functions/float/fpmaxnum/FPMaxNum

1 // FPMaxNum()
2 // ==========
3
4 bits(N) FPMaxNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,-,-) = FPUnpack(op1, fpcr);
7 (type2,-,-) = FPUnpack(op2, fpcr);
8
9 // treat a single quiet-NaN as -Infinity

10 if type1 == FPType_QNaN && type2 != FPType_QNaN then
11 op1 = FPInfinity('1');
12 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
13 op2 = FPInfinity('1');
14
15 return FPMax(op1, op2, fpcr);

5.529 shared/functions/float/fpmin/FPMin

1 // FPMin()
2 // =======
3
4 bits(N) FPMin(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
9 if !done then

10 if value1 < value2 then
11 (fptype,sign,value) = (type1,sign1,value1);
12 else
13 (fptype,sign,value) = (type2,sign2,value2);
14 if fptype == FPType_Infinity then
15 result = FPInfinity(sign);
16 elsif fptype == FPType_Zero then
17 sign = sign1 OR sign2; // Use most negative sign
18 result = FPZero(sign);
19 else
20 // The use of FPRound() covers the case where there is a trapped underflow exception
21 // for a denormalized number even though the result is exact.
22 result = FPRound(value, fpcr);
23 return result;

5.530 shared/functions/float/fpminnum/FPMinNum

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1243

Chapter 5. Pseudocode definitions
5.531. shared/functions/float/fpmul/FPMul

1 // FPMinNum()
2 // ==========
3
4 bits(N) FPMinNum(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,-,-) = FPUnpack(op1, fpcr);
7 (type2,-,-) = FPUnpack(op2, fpcr);
8
9 // Treat a single quiet-NaN as +Infinity

10 if type1 == FPType_QNaN && type2 != FPType_QNaN then
11 op1 = FPInfinity('0');
12 elsif type1 != FPType_QNaN && type2 == FPType_QNaN then
13 op2 = FPInfinity('0');
14
15 return FPMin(op1, op2, fpcr);

5.531 shared/functions/float/fpmul/FPMul

1 // FPMul()
2 // =======
3
4 bits(N) FPMul(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (type1,sign1,value1) = FPUnpack(op1, fpcr);
7 (type2,sign2,value2) = FPUnpack(op2, fpcr);
8 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);
9 if !done then

10 inf1 = (type1 == FPType_Infinity);
11 inf2 = (type2 == FPType_Infinity);
12 zero1 = (type1 == FPType_Zero);
13 zero2 = (type2 == FPType_Zero);
14 if (inf1 && zero2) || (zero1 && inf2) then
15 result = FPDefaultNaN();
16 FPProcessException(FPExc_InvalidOp, fpcr);
17 elsif inf1 || inf2 then
18 result = FPInfinity(sign1 EOR sign2);
19 elsif zero1 || zero2 then
20 result = FPZero(sign1 EOR sign2);
21 else
22 result = FPRound(value1*value2, fpcr);
23 return result;

5.532 shared/functions/float/fpmuladd/FPMulAdd

1 // FPMulAdd()
2 // ==========
3 //
4 // Calculates addend + op1*op2 with a single rounding.
5
6 bits(N) FPMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr)
7 assert N IN {16,32,64};
8 rounding = FPRoundingMode(fpcr);
9 (typeA,signA,valueA) = FPUnpack(addend, fpcr);

10 (type1,sign1,value1) = FPUnpack(op1, fpcr);
11 (type2,sign2,value2) = FPUnpack(op2, fpcr);
12 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
13 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
14 (done,result) = FPProcessNaNs3(typeA, type1, type2, addend, op1, op2, fpcr);
15
16 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
17 result = FPDefaultNaN();
18 FPProcessException(FPExc_InvalidOp, fpcr);
19
20 if !done then
21 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);
22
23 // Determine sign and type product will have if it does not cause an Invalid
24 // Operation.
25 signP = sign1 EOR sign2;
26 infP = inf1 || inf2;
27 zeroP = zero1 || zero2;
28
29 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
30 // additions of opposite-signed infinities.
31 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP) then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1244

Chapter 5. Pseudocode definitions
5.533. shared/functions/float/fpmuladdh/FPMulAddH

32 result = FPDefaultNaN();
33 FPProcessException(FPExc_InvalidOp, fpcr);
34
35 // Other cases involving infinities produce an infinity of the same sign.
36 elsif (infA && signA == '0') || (infP && signP == '0') then
37 result = FPInfinity('0');
38 elsif (infA && signA == '1') || (infP && signP == '1') then
39 result = FPInfinity('1');
40
41 // Cases where the result is exactly zero and its sign is not determined by the
42 // rounding mode are additions of same-signed zeros.
43 elsif zeroA && zeroP && signA == signP then
44 result = FPZero(signA);
45
46 // Otherwise calculate numerical result and round it.
47 else
48 result_value = valueA + (value1 * value2);
49 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
50 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
51 result = FPZero(result_sign);
52 else
53 result = FPRound(result_value, fpcr);
54
55 return result;

5.533 shared/functions/float/fpmuladdh/FPMulAddH

1 // FPMulAddH()
2 // ===========
3
4 bits(N) FPMulAddH(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr)
5 assert N IN {32,64};
6 rounding = FPRoundingMode(fpcr);
7 (typeA,signA,valueA) = FPUnpack(addend, fpcr);
8 (type1,sign1,value1) = FPUnpack(op1, fpcr);
9 (type2,sign2,value2) = FPUnpack(op2, fpcr);

10 inf1 = (type1 == FPType_Infinity); zero1 = (type1 == FPType_Zero);
11 inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);
12 (done,result) = FPProcessNaNs3H(typeA, type1, type2, addend, op1, op2, fpcr);
13 if typeA == FPType_QNaN && ((inf1 && zero2) || (zero1 && inf2)) then
14 result = FPDefaultNaN();
15 FPProcessException(FPExc_InvalidOp, fpcr);
16 if !done then
17 infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);
18 // Determine sign and type product will have if it does not cause an Invalid
19 // Operation.
20 signP = sign1 EOR sign2;
21 infP = inf1 || inf2;
22 zeroP = zero1 || zero2;
23 // Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
24 // additions of opposite-signed infinities.
25 if (inf1 && zero2) || (zero1 && inf2) || (infA && infP && signA != signP) then
26 result = FPDefaultNaN();
27 FPProcessException(FPExc_InvalidOp, fpcr);
28 // Other cases involving infinities produce an infinity of the same sign.
29 elsif (infA && signA == '0') || (infP && signP == '0') then
30 result = FPInfinity('0');
31 elsif (infA && signA == '1') || (infP && signP == '1') then
32 result = FPInfinity('1');
33 // Cases where the result is exactly zero and its sign is not determined by the
34 // rounding mode are additions of same-signed zeros.
35 elsif zeroA && zeroP && signA == signP then
36 result = FPZero(signA);
37 // Otherwise calculate numerical result and round it.
38 else
39 result_value = valueA + (value1 * value2);
40 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
41 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
42 result = FPZero(result_sign);
43 else
44 result = FPRound(result_value, fpcr);
45 return result;

5.534 shared/functions/float/fpmuladdh/FPProcessNaNs3H

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1245

Chapter 5. Pseudocode definitions
5.535. shared/functions/float/fpmulx/FPMulX

1 // FPProcessNaNs3H()
2 // =================
3
4 (boolean, bits(N)) FPProcessNaNs3H(FPType type1, FPType type2, FPType type3, bits(N) op1, bits(N DIV 2)

↪→op2, bits(N DIV 2) op3, FPCRType fpcr)
5 assert N IN {32,64};
6 bits(N) result;
7 if type1 == FPType_SNaN then
8 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
9 elsif type2 == FPType_SNaN then

10 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
11 elsif type3 == FPType_SNaN then
12 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
13 elsif type1 == FPType_QNaN then
14 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
15 elsif type2 == FPType_QNaN then
16 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr));
17 elsif type3 == FPType_QNaN then
18 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr));
19 else
20 done = FALSE; result = Zeros(); // 'Don't care' result
21 return (done, result);

5.535 shared/functions/float/fpmulx/FPMulX

1 // FPMulX()
2 // ========
3
4 bits(N) FPMulX(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 bits(N) result;
7 (type1,sign1,value1) = FPUnpack(op1, fpcr);
8 (type2,sign2,value2) = FPUnpack(op2, fpcr);
9 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

10 if !done then
11 inf1 = (type1 == FPType_Infinity);
12 inf2 = (type2 == FPType_Infinity);
13 zero1 = (type1 == FPType_Zero);
14 zero2 = (type2 == FPType_Zero);
15 if (inf1 && zero2) || (zero1 && inf2) then
16 result = FPTwo(sign1 EOR sign2);
17 elsif inf1 || inf2 then
18 result = FPInfinity(sign1 EOR sign2);
19 elsif zero1 || zero2 then
20 result = FPZero(sign1 EOR sign2);
21 else
22 result = FPRound(value1*value2, fpcr);
23 return result;

5.536 shared/functions/float/fpneg/FPNeg

1 // FPNeg()
2 // =======
3
4 bits(N) FPNeg(bits(N) op)
5 assert N IN {16,32,64};
6 return NOT(op<N-1>) : op<N-2:0>;

5.537 shared/functions/float/fponepointfive/FPOnePointFive

1 // FPOnePointFive()
2 // ================
3
4 bits(N) FPOnePointFive(bit sign)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);
8 exp = '0':Ones(E-1);
9 frac = '1':Zeros(F-1);

10 return sign : exp : frac;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1246

Chapter 5. Pseudocode definitions
5.538. shared/functions/float/fpprocessexception/FPProcessException

5.538 shared/functions/float/fpprocessexception/FPProcessException

1 // FPProcessException()
2 // ====================
3 //
4 // The 'fpcr' argument supplies FPCR control bits. Status information is
5 // updated directly in the FPSR where appropriate.
6
7 FPProcessException(FPExc exception, FPCRType fpcr)
8 // Determine the cumulative exception bit number
9 case exception of

10 when FPExc_InvalidOp cumul = 0;
11 when FPExc_DivideByZero cumul = 1;
12 when FPExc_Overflow cumul = 2;
13 when FPExc_Underflow cumul = 3;
14 when FPExc_Inexact cumul = 4;
15 when FPExc_InputDenorm cumul = 7;
16 enable = cumul + 8;
17 if fpcr<enable> == '1' then
18 // Trapping of the exception enabled.
19 // It is IMPLEMENTATION DEFINED whether the enable bit may be set at all, and
20 // if so then how exceptions may be accumulated before calling FPTrappedException()
21 IMPLEMENTATION_DEFINED "floating-point trap handling";
22 else
23 // Set the cumulative exception bit
24 FPSR<cumul> = '1';
25 return;

5.539 shared/functions/float/fpprocessnan/FPProcessNaN

1 // FPProcessNaN()
2 // ==============
3
4 bits(N) FPProcessNaN(FPType fptype, bits(N) op, FPCRType fpcr)
5 assert N IN {16,32,64};
6 assert fptype IN {FPType_QNaN, FPType_SNaN};
7
8 case N of
9 when 16 topfrac = 9;

10 when 32 topfrac = 22;
11 when 64 topfrac = 51;
12
13 result = op;
14 if fptype == FPType_SNaN then
15 result<topfrac> = '1';
16 FPProcessException(FPExc_InvalidOp, fpcr);
17 if fpcr.DN == '1' then // DefaultNaN requested
18 result = FPDefaultNaN();
19 return result;

5.540 shared/functions/float/fpprocessnans/FPProcessNaNs

1 // FPProcessNaNs()
2 // ===============
3 //
4 // The boolean part of the return value says whether a NaN has been found and
5 // processed. The bits(N) part is only relevant if it has and supplies the
6 // result of the operation.
7 //
8 // The 'fpcr' argument supplies FPCR control bits. Status information is
9 // updated directly in the FPSR where appropriate.

10
11 (boolean, bits(N)) FPProcessNaNs(FPType type1, FPType type2,
12 bits(N) op1, bits(N) op2,
13 FPCRType fpcr)
14 assert N IN {16,32,64};
15 if type1 == FPType_SNaN then
16 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
17 elsif type2 == FPType_SNaN then
18 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
19 elsif type1 == FPType_QNaN then
20 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
21 elsif type2 == FPType_QNaN then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1247

Chapter 5. Pseudocode definitions
5.541. shared/functions/float/fpprocessnans3/FPProcessNaNs3

22 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
23 else
24 done = FALSE; result = Zeros(); // 'Don't care' result
25 return (done, result);

5.541 shared/functions/float/fpprocessnans3/FPProcessNaNs3

1 // FPProcessNaNs3()
2 // ================
3 //
4 // The boolean part of the return value says whether a NaN has been found and
5 // processed. The bits(N) part is only relevant if it has and supplies the
6 // result of the operation.
7 //
8 // The 'fpcr' argument supplies FPCR control bits. Status information is
9 // updated directly in the FPSR where appropriate.

10
11 (boolean, bits(N)) FPProcessNaNs3(FPType type1, FPType type2, FPType type3,
12 bits(N) op1, bits(N) op2, bits(N) op3,
13 FPCRType fpcr)
14 assert N IN {16,32,64};
15 if type1 == FPType_SNaN then
16 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
17 elsif type2 == FPType_SNaN then
18 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
19 elsif type3 == FPType_SNaN then
20 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
21 elsif type1 == FPType_QNaN then
22 done = TRUE; result = FPProcessNaN(type1, op1, fpcr);
23 elsif type2 == FPType_QNaN then
24 done = TRUE; result = FPProcessNaN(type2, op2, fpcr);
25 elsif type3 == FPType_QNaN then
26 done = TRUE; result = FPProcessNaN(type3, op3, fpcr);
27 else
28 done = FALSE; result = Zeros(); // 'Don't care' result
29 return (done, result);

5.542 shared/functions/float/fprecipestimate/FPRecipEstimate

1 // FPRecipEstimate()
2 // =================
3
4 bits(N) FPRecipEstimate(bits(N) operand, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (fptype,sign,value) = FPUnpack(operand, fpcr);
7 if fptype == FPType_SNaN || fptype == FPType_QNaN then
8 result = FPProcessNaN(fptype, operand, fpcr);
9 elsif fptype == FPType_Infinity then

10 result = FPZero(sign);
11 elsif fptype == FPType_Zero then
12 result = FPInfinity(sign);
13 FPProcessException(FPExc_DivideByZero, fpcr);
14 elsif (
15 (N == 16 && Abs(value) < 2.0^-16) ||
16 (N == 32 && Abs(value) < 2.0^-128) ||
17 (N == 64 && Abs(value) < 2.0^-1024)
18) then
19 case FPRoundingMode(fpcr) of
20 when FPRounding_TIEEVEN
21 overflow_to_inf = TRUE;
22 when FPRounding_POSINF
23 overflow_to_inf = (sign == '0');
24 when FPRounding_NEGINF
25 overflow_to_inf = (sign == '1');
26 when FPRounding_ZERO
27 overflow_to_inf = FALSE;
28 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
29 FPProcessException(FPExc_Overflow, fpcr);
30 FPProcessException(FPExc_Inexact, fpcr);
31 elsif ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16))
32 && (
33 (N == 16 && Abs(value) >= 2.0^14) ||
34 (N == 32 && Abs(value) >= 2.0^126) ||
35 (N == 64 && Abs(value) >= 2.0^1022)
36) then

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1248

Chapter 5. Pseudocode definitions
5.543. shared/functions/float/fprecipestimate/RecipEstimate

37 // Result flushed to zero of correct sign
38 result = FPZero(sign);
39 FPSR.UFC = '1';
40 else
41 // Scale to a fixed point value in the range 0.5 <= x < 1.0 in steps of 1/512, and
42 // calculate result exponent. Scaled value has copied sign bit,
43 // exponent = 1022 = double-precision biased version of -1,
44 // fraction = original fraction
45 case N of
46 when 16
47 fraction = operand<9:0> : Zeros(42);
48 exp = UInt(operand<14:10>);
49 when 32
50 fraction = operand<22:0> : Zeros(29);
51 exp = UInt(operand<30:23>);
52 when 64
53 fraction = operand<51:0>;
54 exp = UInt(operand<62:52>);
55
56 if exp == 0 then
57 if fraction<51> == '0' then
58 exp = -1;
59 fraction = fraction<49:0>:'00';
60 else
61 fraction = fraction<50:0>:'0';
62
63 integer scaled = UInt('1':fraction<51:44>);
64
65 case N of
66 when 16 result_exp = 29 - exp; // In range 29-30 = -1 to 29+1 = 30
67 when 32 result_exp = 253 - exp; // In range 253-254 = -1 to 253+1 = 254
68 when 64 result_exp = 2045 - exp; // In range 2045-2046 = -1 to 2045+1 = 2046
69
70 // scaled is in range 256..511 representing a fixed-point number in range [0.5..1.0)
71 estimate = RecipEstimate(scaled);
72
73 // estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
74 // Convert to scaled floating point result with copied sign bit,
75 // high-order bits from estimate, and exponent calculated above.
76
77 fraction = estimate<7:0> : Zeros(44);
78 if result_exp == 0 then
79 fraction = '1' : fraction<51:1>;
80 elsif result_exp == -1 then
81 fraction = '01' : fraction<51:2>;
82 result_exp = 0;
83
84 case N of
85 when 16 result = sign : result_exp<N-12:0> : fraction<51:42>;
86 when 32 result = sign : result_exp<N-25:0> : fraction<51:29>;
87 when 64 result = sign : result_exp<N-54:0> : fraction<51:0>;
88
89 return result;

5.543 shared/functions/float/fprecipestimate/RecipEstimate

1 // Compute estimate of reciprocal of 9-bit fixed-point number
2 //
3 // a is in range 256 .. 511 representing a number in the range 0.5 <= x < 1.0.
4 // result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.
5
6 integer RecipEstimate(integer a)
7 assert 256 <= a && a < 512;
8 a = a*2+1; // round to nearest
9 integer b = (2 ^ 19) DIV a;

10 r = (b+1) DIV 2; // round to nearest
11 assert 256 <= r && r < 512;
12 return r;

5.544 shared/functions/float/fprecpx/FPRecpX

1 // FPRecpX()
2 // =========
3
4 bits(N) FPRecpX(bits(N) op, FPCRType fpcr)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1249

Chapter 5. Pseudocode definitions
5.545. shared/functions/float/fpround/FPRound

5 assert N IN {16,32,64};
6
7 case N of
8 when 16 esize = 5;
9 when 32 esize = 8;

10 when 64 esize = 11;
11
12 bits(N) result;
13 bits(esize) exp;
14 bits(esize) max_exp;
15 bits(N-(esize+1)) frac = Zeros();
16
17 case N of
18 when 16 exp = op<10+esize-1:10>;
19 when 32 exp = op<23+esize-1:23>;
20 when 64 exp = op<52+esize-1:52>;
21
22 max_exp = Ones(esize) - 1;
23
24 (fptype,sign,value) = FPUnpack(op, fpcr);
25 if fptype == FPType_SNaN || fptype == FPType_QNaN then
26 result = FPProcessNaN(fptype, op, fpcr);
27 else
28 if IsZero(exp) then // Zero and denormals
29 result = sign:max_exp:frac;
30 else // Infinities and normals
31 result = sign:NOT(exp):frac;
32
33 return result;

5.545 shared/functions/float/fpround/FPRound

1 // FPRound()
2 // =========
3 // Used by data processing and int/fixed <-> FP conversion instructions.
4 // For half-precision data it ignores AHP, and observes FZ16.
5
6 bits(N) FPRound(real op, FPCRType fpcr, FPRounding rounding)
7 fpcr.AHP = '0';
8 boolean isbfloat = FALSE;
9 return FPRoundBase(op, fpcr, rounding, isbfloat);

10
11 // Convert a real number OP into an N-bit floating-point value using the
12 // supplied rounding mode RMODE.
13
14 bits(N) FPRoundBase(real op, FPCRType fpcr, FPRounding rounding, boolean isbfloat)
15 assert N IN {16,32,64};
16 assert op != 0.0;
17 assert rounding != FPRounding_TIEAWAY;
18 bits(N) result;
19
20 // Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
21 if N == 16 then
22 minimum_exp = -14; E = 5; F = 10;
23 elsif N == 32 && isbfloat then
24 minimum_exp = -126; E = 8; F = 7;
25 elsif N == 32 then
26 minimum_exp = -126; E = 8; F = 23;
27 else // N == 64
28 minimum_exp = -1022; E = 11; F = 52;
29
30 // Split value into sign, unrounded mantissa and exponent.
31 if op < 0.0 then
32 sign = '1'; mantissa = -op;
33 else
34 sign = '0'; mantissa = op;
35 exponent = 0;
36 while mantissa < 1.0 do
37 mantissa = mantissa * 2.0; exponent = exponent - 1;
38 while mantissa >= 2.0 do
39 mantissa = mantissa / 2.0; exponent = exponent + 1;
40
41 // Deal with flush-to-zero.
42 if ((fpcr.FZ == '1' && N != 16) || (fpcr.FZ16 == '1' && N == 16)) && exponent < minimum_exp then
43 // Flush-to-zero never generates a trapped exception
44 FPSR.UFC = '1';
45 return FPZero(sign);
46
47 // Start creating the exponent value for the result. Start by biasing the actual exponent

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1250

Chapter 5. Pseudocode definitions
5.546. shared/functions/float/fpround/FPRoundCV

48 // so that the minimum exponent becomes 1, lower values 0 (indicating possible underflow).
49 biased_exp = Max(exponent - minimum_exp + 1, 0);
50 if biased_exp == 0 then mantissa = mantissa / 2.0^(minimum_exp - exponent);
51
52 // Get the unrounded mantissa as an integer, and the "units in last place" rounding error.
53 int_mant = RoundDown(mantissa * 2.0^F); // < 2.0^F if biased_exp == 0, >= 2.0^F if not
54 error = mantissa * 2.0^F - Real(int_mant);
55
56 // Underflow occurs if exponent is too small before rounding, and result is inexact or
57 // the Underflow exception is trapped.
58 if biased_exp == 0 && (error != 0.0 || fpcr.UFE == '1') then
59 FPProcessException(FPExc_Underflow, fpcr);
60
61 // Round result according to rounding mode.
62 case rounding of
63 when FPRounding_TIEEVEN
64 round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == '1'));
65 overflow_to_inf = TRUE;
66 when FPRounding_POSINF
67 round_up = (error != 0.0 && sign == '0');
68 overflow_to_inf = (sign == '0');
69 when FPRounding_NEGINF
70 round_up = (error != 0.0 && sign == '1');
71 overflow_to_inf = (sign == '1');
72 when FPRounding_ZERO, FPRounding_ODD
73 round_up = FALSE;
74 overflow_to_inf = FALSE;
75
76 if round_up then
77 int_mant = int_mant + 1;
78 if int_mant == 2^F then // Rounded up from denormalized to normalized
79 biased_exp = 1;
80 if int_mant == 2^(F+1) then // Rounded up to next exponent
81 biased_exp = biased_exp + 1; int_mant = int_mant DIV 2;
82
83 // Handle rounding to odd aka Von Neumann rounding
84 if error != 0.0 && rounding == FPRounding_ODD then
85 int_mant<0> = '1';
86
87 // Deal with overflow and generate result.
88 if N != 16 || fpcr.AHP == '0' then // Single, double or IEEE half precision
89 if biased_exp >= 2^E - 1 then
90 result = if overflow_to_inf then FPInfinity(sign) else FPMaxNormal(sign);
91 FPProcessException(FPExc_Overflow, fpcr);
92 error = 1.0; // Ensure that an Inexact exception occurs
93 else
94 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));
95 else // Alternative half precision
96 if biased_exp >= 2^E then
97 result = sign : Ones(N-1);
98 FPProcessException(FPExc_InvalidOp, fpcr);
99 error = 0.0; // Ensure that an Inexact exception does not occur

100 else
101 result = sign : biased_exp<E-1:0> : int_mant<F-1:0> : Zeros(N-(E+F+1));
102
103 // Deal with Inexact exception.
104 if error != 0.0 then
105 FPProcessException(FPExc_Inexact, fpcr);
106
107 return result;
108
109 // FPRound()
110 // =========
111
112 bits(N) FPRound(real op, FPCRType fpcr)
113 return FPRound(op, fpcr, FPRoundingMode(fpcr));

5.546 shared/functions/float/fpround/FPRoundCV

1 // FPRoundCV()
2 // ===========
3 // Used for FP <-> FP conversion instructions.
4 // For half-precision data ignores FZ16 and observes AHP.
5
6 bits(N) FPRoundCV(real op, FPCRType fpcr, FPRounding rounding)
7 fpcr.FZ16 = '0';
8 boolean isbfloat = FALSE;
9 return FPRoundBase(op, fpcr, rounding, isbfloat);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1251

Chapter 5. Pseudocode definitions
5.547. shared/functions/float/fprounding/FPRounding

5.547 shared/functions/float/fprounding/FPRounding

1 enumeration FPRounding {FPRounding_TIEEVEN, FPRounding_POSINF,
2 FPRounding_NEGINF, FPRounding_ZERO,
3 FPRounding_TIEAWAY, FPRounding_ODD};

5.548 shared/functions/float/fproundingmode/FPRoundingMode

1 // FPRoundingMode()
2 // ================
3
4 // Return the current floating-point rounding mode.
5
6 FPRounding FPRoundingMode(FPCRType fpcr)
7 return FPDecodeRounding(fpcr.RMode);

5.549 shared/functions/float/fproundint/FPRoundInt

1 // FPRoundInt()
2 // ============
3
4 // Round OP to nearest integral floating point value using rounding mode ROUNDING.
5 // If EXACT is TRUE, set FPSR.IXC if result is not numerically equal to OP.
6
7 bits(N) FPRoundInt(bits(N) op, FPCRType fpcr, FPRounding rounding, boolean exact)
8 assert rounding != FPRounding_ODD;
9 assert N IN {16,32,64};

10
11 // Unpack using FPCR to determine if subnormals are flushed-to-zero
12 (fptype,sign,value) = FPUnpack(op, fpcr);
13
14 if fptype == FPType_SNaN || fptype == FPType_QNaN then
15 result = FPProcessNaN(fptype, op, fpcr);
16 elsif fptype == FPType_Infinity then
17 result = FPInfinity(sign);
18 elsif fptype == FPType_Zero then
19 result = FPZero(sign);
20 else
21 // extract integer component
22 int_result = RoundDown(value);
23 error = value - Real(int_result);
24
25 // Determine whether supplied rounding mode requires an increment
26 case rounding of
27 when FPRounding_TIEEVEN
28 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
29 when FPRounding_POSINF
30 round_up = (error != 0.0);
31 when FPRounding_NEGINF
32 round_up = FALSE;
33 when FPRounding_ZERO
34 round_up = (error != 0.0 && int_result < 0);
35 when FPRounding_TIEAWAY
36 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
37
38 if round_up then int_result = int_result + 1;
39
40 // Convert integer value into an equivalent real value
41 real_result = Real(int_result);
42
43 // Re-encode as a floating-point value, result is always exact
44 if real_result == 0.0 then
45 result = FPZero(sign);
46 else
47 result = FPRound(real_result, fpcr, FPRounding_ZERO);
48
49 // Generate inexact exceptions
50 if error != 0.0 && exact then
51 FPProcessException(FPExc_Inexact, fpcr);
52
53 return result;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1252

Chapter 5. Pseudocode definitions
5.550. shared/functions/float/fproundintn/FPRoundIntN

5.550 shared/functions/float/fproundintn/FPRoundIntN

1 // FPRoundIntN()
2 // =============
3
4 bits(N) FPRoundIntN(bits(N) op, FPCRType fpcr, FPRounding rounding, integer intsize)
5 assert rounding != FPRounding_ODD;
6 assert N IN {32,64};
7 assert intsize IN {32, 64};
8 integer exp;
9 constant integer E = (if N == 32 then 8 else 11);

10 constant integer F = N - (E + 1);
11
12 // Unpack using FPCR to determine if subnormals are flushed-to-zero
13 (fptype,sign,value) = FPUnpack(op, fpcr);
14
15 if fptype IN {FPType_SNaN, FPType_QNaN, FPType_Infinity} then
16 if N == 32 then
17 exp = 126 + intsize;
18 result = '1':exp<(E-1):0>:Zeros(F);
19 else
20 exp = 1022+intsize;
21 result = '1':exp<(E-1):0>:Zeros(F);
22 FPProcessException(FPExc_InvalidOp, fpcr);
23 elsif fptype == FPType_Zero then
24 result = FPZero(sign);
25 else
26 // Extract integer component
27 int_result = RoundDown(value);
28 error = value - Real(int_result);
29
30 // Determine whether supplied rounding mode requires an increment
31 case rounding of
32 when FPRounding_TIEEVEN
33 round_up = error > 0.5 || (error == 0.5 && int_result<0> == '1');
34 when FPRounding_POSINF
35 round_up = error != 0.0;
36 when FPRounding_NEGINF
37 round_up = FALSE;
38 when FPRounding_ZERO
39 round_up = error != 0.0 && int_result < 0;
40 when FPRounding_TIEAWAY
41 round_up = error > 0.5 || (error == 0.5 && int_result >= 0);
42
43 if round_up then int_result = int_result + 1;
44
45 if int_result > 2^(intsize-1)-1 || int_result < -1*2^(intsize-1) then
46 if N == 32 then
47 exp = 126 + intsize;
48 result = '1':exp<(E-1):0>:Zeros(F);
49 else
50 exp = 1022 + intsize;
51 result = '1':exp<(E-1):0>:Zeros(F);
52 FPProcessException(FPExc_InvalidOp, fpcr);
53 // this case shouldn't set Inexact
54 error = 0.0;
55
56 else
57 // Convert integer value into an equivalent real value
58 real_result = Real(int_result);
59
60 // Re-encode as a floating-point value, result is always exact
61 if real_result == 0.0 then
62 result = FPZero(sign);
63 else
64 result = FPRound(real_result, fpcr, FPRounding_ZERO);
65
66 // Generate inexact exceptions
67 if error != 0.0 then
68 FPProcessException(FPExc_Inexact, fpcr);
69
70 return result;

5.551 shared/functions/float/fprsqrtestimate/FPRSqrtEstimate

1 // FPRSqrtEstimate()
2 // =================

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1253

Chapter 5. Pseudocode definitions
5.552. shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

3
4 bits(N) FPRSqrtEstimate(bits(N) operand, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (fptype,sign,value) = FPUnpack(operand, fpcr);
7 if fptype == FPType_SNaN || fptype == FPType_QNaN then
8 result = FPProcessNaN(fptype, operand, fpcr);
9 elsif fptype == FPType_Zero then

10 result = FPInfinity(sign);
11 FPProcessException(FPExc_DivideByZero, fpcr);
12 elsif sign == '1' then
13 result = FPDefaultNaN();
14 FPProcessException(FPExc_InvalidOp, fpcr);
15 elsif fptype == FPType_Infinity then
16 result = FPZero('0');
17 else
18 // Scale to a fixed-point value in the range 0.25 <= x < 1.0 in steps of 512, with the
19 // evenness or oddness of the exponent unchanged, and calculate result exponent.
20 // Scaled value has copied sign bit, exponent = 1022 or 1021 = double-precision
21 // biased version of -1 or -2, fraction = original fraction extended with zeros.
22
23 case N of
24 when 16
25 fraction = operand<9:0> : Zeros(42);
26 exp = UInt(operand<14:10>);
27 when 32
28 fraction = operand<22:0> : Zeros(29);
29 exp = UInt(operand<30:23>);
30 when 64
31 fraction = operand<51:0>;
32 exp = UInt(operand<62:52>);
33
34 if exp == 0 then
35 while fraction<51> == '0' do
36 fraction = fraction<50:0> : '0';
37 exp = exp - 1;
38 fraction = fraction<50:0> : '0';
39
40 if exp<0> == '0' then
41 scaled = UInt('1':fraction<51:44>);
42 else
43 scaled = UInt('01':fraction<51:45>);
44
45 case N of
46 when 16 result_exp = (44 - exp) DIV 2;
47 when 32 result_exp = (380 - exp) DIV 2;
48 when 64 result_exp = (3068 - exp) DIV 2;
49
50 estimate = RecipSqrtEstimate(scaled);
51
52 // estimate is in the range 256..511 representing a fixed point result in the range [1.0..2.0)
53 // Convert to scaled floating point result with copied sign bit and high-order
54 // fraction bits, and exponent calculated above.
55 case N of
56 when 16 result = '0' : result_exp<N-12:0> : estimate<7:0>:Zeros(2);
57 when 32 result = '0' : result_exp<N-25:0> : estimate<7:0>:Zeros(15);
58 when 64 result = '0' : result_exp<N-54:0> : estimate<7:0>:Zeros(44);
59 return result;

5.552 shared/functions/float/fprsqrtestimate/RecipSqrtEstimate

1 // Compute estimate of reciprocal square root of 9-bit fixed-point number
2 //
3 // a is in range 128 .. 511 representing a number in the range 0.25 <= x < 1.0.
4 // result is in the range 256 .. 511 representing a number in the range in the range 1.0 to 511/256.
5
6 integer RecipSqrtEstimate(integer a)
7 assert 128 <= a && a < 512;
8 if a < 256 then // 0.25 .. 0.5
9 a = a*2+1; // a in units of 1/512 rounded to nearest

10 else // 0.5 .. 1.0
11 a = (a >> 1) << 1; // discard bottom bit
12 a = (a+1)*2; // a in units of 1/256 rounded to nearest
13 integer b = 512;
14 while a*(b+1)*(b+1) < 2^28 do
15 b = b+1;
16 // b = largest b such that b < 2^14 / sqrt(a) do
17 r = (b+1) DIV 2; // round to nearest
18 assert 256 <= r && r < 512;
19 return r;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1254

Chapter 5. Pseudocode definitions
5.553. shared/functions/float/fpsqrt/FPSqrt

5.553 shared/functions/float/fpsqrt/FPSqrt

1 // FPSqrt()
2 // ========
3
4 bits(N) FPSqrt(bits(N) op, FPCRType fpcr)
5 assert N IN {16,32,64};
6 (fptype,sign,value) = FPUnpack(op, fpcr);
7 if fptype == FPType_SNaN || fptype == FPType_QNaN then
8 result = FPProcessNaN(fptype, op, fpcr);
9 elsif fptype == FPType_Zero then

10 result = FPZero(sign);
11 elsif fptype == FPType_Infinity && sign == '0' then
12 result = FPInfinity(sign);
13 elsif sign == '1' then
14 result = FPDefaultNaN();
15 FPProcessException(FPExc_InvalidOp, fpcr);
16 else
17 result = FPRound(Sqrt(value), fpcr);
18 return result;

5.554 shared/functions/float/fpsub/FPSub

1 // FPSub()
2 // =======
3
4 bits(N) FPSub(bits(N) op1, bits(N) op2, FPCRType fpcr)
5 assert N IN {16,32,64};
6 rounding = FPRoundingMode(fpcr);
7 (type1,sign1,value1) = FPUnpack(op1, fpcr);
8 (type2,sign2,value2) = FPUnpack(op2, fpcr);
9 (done,result) = FPProcessNaNs(type1, type2, op1, op2, fpcr);

10 if !done then
11 inf1 = (type1 == FPType_Infinity);
12 inf2 = (type2 == FPType_Infinity);
13 zero1 = (type1 == FPType_Zero);
14 zero2 = (type2 == FPType_Zero);
15 if inf1 && inf2 && sign1 == sign2 then
16 result = FPDefaultNaN();
17 FPProcessException(FPExc_InvalidOp, fpcr);
18 elsif (inf1 && sign1 == '0') || (inf2 && sign2 == '1') then
19 result = FPInfinity('0');
20 elsif (inf1 && sign1 == '1') || (inf2 && sign2 == '0') then
21 result = FPInfinity('1');
22 elsif zero1 && zero2 && sign1 == NOT(sign2) then
23 result = FPZero(sign1);
24 else
25 result_value = value1 - value2;
26 if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
27 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
28 result = FPZero(result_sign);
29 else
30 result = FPRound(result_value, fpcr, rounding);
31 return result;

5.555 shared/functions/float/fpthree/FPThree

1 // FPThree()
2 // =========
3
4 bits(N) FPThree(bit sign)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);
8 exp = '1':Zeros(E-1);
9 frac = '1':Zeros(F-1);

10 return sign : exp : frac;

5.556 shared/functions/float/fptofixed/FPToFixed

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1255

Chapter 5. Pseudocode definitions
5.557. shared/functions/float/fptwo/FPTwo

1 // FPToFixed()
2 // ===========
3
4 // Convert N-bit precision floating point OP to M-bit fixed point with
5 // FBITS fractional bits, controlled by UNSIGNED and ROUNDING.
6
7 bits(M) FPToFixed(bits(N) op, integer fbits, boolean unsigned, FPCRType fpcr, FPRounding rounding)
8 assert N IN {16,32,64};
9 assert M IN {16,32,64};

10 assert fbits >= 0;
11 assert rounding != FPRounding_ODD;
12
13 // Unpack using fpcr to determine if subnormals are flushed-to-zero
14 (fptype,sign,value) = FPUnpack(op, fpcr);
15
16 // If NaN, set cumulative flag or take exception
17 if fptype == FPType_SNaN || fptype == FPType_QNaN then
18 FPProcessException(FPExc_InvalidOp, fpcr);
19
20 // Scale by fractional bits and produce integer rounded towards minus-infinity
21 value = value * 2.0^fbits;
22 int_result = RoundDown(value);
23 error = value - Real(int_result);
24
25 // Determine whether supplied rounding mode requires an increment
26 case rounding of
27 when FPRounding_TIEEVEN
28 round_up = (error > 0.5 || (error == 0.5 && int_result<0> == '1'));
29 when FPRounding_POSINF
30 round_up = (error != 0.0);
31 when FPRounding_NEGINF
32 round_up = FALSE;
33 when FPRounding_ZERO
34 round_up = (error != 0.0 && int_result < 0);
35 when FPRounding_TIEAWAY
36 round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
37
38 if round_up then int_result = int_result + 1;
39
40 // Generate saturated result and exceptions
41 (result, overflow) = SatQ(int_result, M, unsigned);
42 if overflow then
43 FPProcessException(FPExc_InvalidOp, fpcr);
44 elsif error != 0.0 then
45 FPProcessException(FPExc_Inexact, fpcr);
46
47 return result;

5.557 shared/functions/float/fptwo/FPTwo

1 // FPTwo()
2 // =======
3
4 bits(N) FPTwo(bit sign)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);
8 exp = '1':Zeros(E-1);
9 frac = Zeros(F);

10 return sign : exp : frac;

5.558 shared/functions/float/fptype/FPType

1 enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity,
2 FPType_QNaN, FPType_SNaN};

5.559 shared/functions/float/fpunpack/FPUnpack

1 // FPUnpack()
2 // ==========
3 //
4 // Used by data processing and int/fixed <-> FP conversion instructions.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1256

Chapter 5. Pseudocode definitions
5.560. shared/functions/float/fpunpack/FPUnpackBase

5 // For half-precision data it ignores AHP, and observes FZ16.
6
7 (FPType, bit, real) FPUnpack(bits(N) fpval, FPCRType fpcr)
8 fpcr.AHP = '0';
9 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr);

10 return (fp_type, sign, value);

5.560 shared/functions/float/fpunpack/FPUnpackBase

1 // FPUnpackBase()
2 // ==============
3 //
4 // Unpack a floating-point number into its type, sign bit and the real number
5 // that it represents. The real number result has the correct sign for numbers
6 // and infinities, is very large in magnitude for infinities, and is 0.0 for
7 // NaNs. (These values are chosen to simplify the description of comparisons
8 // and conversions.)
9 //

10 // The 'fpcr' argument supplies FPCR control bits. Status information is
11 // updated directly in the FPSR where appropriate.
12
13 (FPType, bit, real) FPUnpackBase(bits(N) fpval, FPCRType fpcr)
14 assert N IN {16,32,64};
15
16 if N == 16 then
17 sign = fpval<15>;
18 exp16 = fpval<14:10>;
19 frac16 = fpval<9:0>;
20 if IsZero(exp16) then
21 // Produce zero if value is zero or flush-to-zero is selected
22 if IsZero(frac16) || fpcr.FZ16 == '1' then
23 fptype = FPType_Zero; value = 0.0;
24 else
25 fptype = FPType_Nonzero; value = 2.0^-14 * (Real(UInt(frac16)) * 2.0^-10);
26 elsif IsOnes(exp16) && fpcr.AHP == '0' then // Infinity or NaN in IEEE format
27 if IsZero(frac16) then
28 fptype = FPType_Infinity; value = 2.0^1000000;
29 else
30 fptype = if frac16<9> == '1' then FPType_QNaN else FPType_SNaN;
31 value = 0.0;
32 else
33 fptype = FPType_Nonzero;
34 value = 2.0^(UInt(exp16)-15) * (1.0 + Real(UInt(frac16)) * 2.0^-10);
35
36 elsif N == 32 then
37
38 sign = fpval<31>;
39 exp32 = fpval<30:23>;
40 frac32 = fpval<22:0>;
41 if IsZero(exp32) then
42 // Produce zero if value is zero or flush-to-zero is selected.
43 if IsZero(frac32) || fpcr.FZ == '1' then
44 fptype = FPType_Zero; value = 0.0;
45 if !IsZero(frac32) then // Denormalized input flushed to zero
46 FPProcessException(FPExc_InputDenorm, fpcr);
47 else
48 fptype = FPType_Nonzero; value = 2.0^-126 * (Real(UInt(frac32)) * 2.0^-23);
49 elsif IsOnes(exp32) then
50 if IsZero(frac32) then
51 fptype = FPType_Infinity; value = 2.0^1000000;
52 else
53 fptype = if frac32<22> == '1' then FPType_QNaN else FPType_SNaN;
54 value = 0.0;
55 else
56 fptype = FPType_Nonzero;
57 value = 2.0^(UInt(exp32)-127) * (1.0 + Real(UInt(frac32)) * 2.0^-23);
58
59 else // N == 64
60
61 sign = fpval<63>;
62 exp64 = fpval<62:52>;
63 frac64 = fpval<51:0>;
64 if IsZero(exp64) then
65 // Produce zero if value is zero or flush-to-zero is selected.
66 if IsZero(frac64) || fpcr.FZ == '1' then
67 fptype = FPType_Zero; value = 0.0;
68 if !IsZero(frac64) then // Denormalized input flushed to zero
69 FPProcessException(FPExc_InputDenorm, fpcr);
70 else

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1257

Chapter 5. Pseudocode definitions
5.561. shared/functions/float/fpunpack/FPUnpackCV

71 fptype = FPType_Nonzero; value = 2.0^-1022 * (Real(UInt(frac64)) * 2.0^-52);
72 elsif IsOnes(exp64) then
73 if IsZero(frac64) then
74 fptype = FPType_Infinity; value = 2.0^1000000;
75 else
76 fptype = if frac64<51> == '1' then FPType_QNaN else FPType_SNaN;
77 value = 0.0;
78 else
79 fptype = FPType_Nonzero;
80 value = 2.0^(UInt(exp64)-1023) * (1.0 + Real(UInt(frac64)) * 2.0^-52);
81
82 if sign == '1' then value = -value;
83 return (fptype, sign, value);

5.561 shared/functions/float/fpunpack/FPUnpackCV

1 // FPUnpackCV()
2 // ============
3 //
4 // Used for FP <-> FP conversion instructions.
5 // For half-precision data ignores FZ16 and observes AHP.
6
7 (FPType, bit, real) FPUnpackCV(bits(N) fpval, FPCRType fpcr)
8 fpcr.FZ16 = '0';
9 (fp_type, sign, value) = FPUnpackBase(fpval, fpcr);

10 return (fp_type, sign, value);

5.562 shared/functions/float/fpzero/FPZero

1 // FPZero()
2 // ========
3
4 bits(N) FPZero(bit sign)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - (E + 1);
8 exp = Zeros(E);
9 frac = Zeros(F);

10 return sign : exp : frac;

5.563 shared/functions/float/vfpexpandimm/VFPExpandImm

1 // VFPExpandImm()
2 // ==============
3
4 bits(N) VFPExpandImm(bits(8) imm8)
5 assert N IN {16,32,64};
6 constant integer E = (if N == 16 then 5 elsif N == 32 then 8 else 11);
7 constant integer F = N - E - 1;
8 sign = imm8<7>;
9 exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;

10 frac = imm8<3:0>:Zeros(F-4);
11 return sign : exp : frac;

5.564 shared/functions/integer/AddWithCarry

1 // AddWithCarry()
2 // ==============
3 // Integer addition with carry input, returning result and NZCV flags
4
5 (bits(N), bits(4)) AddWithCarry(bits(N) x, bits(N) y, bit carry_in)
6 integer unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
7 integer signed_sum = SInt(x) + SInt(y) + UInt(carry_in);
8 bits(N) result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
9 bit n = result<N-1>;

10 bit z = if IsZero(result) then '1' else '0';
11 bit c = if UInt(result) == unsigned_sum then '0' else '1';
12 bit v = if SInt(result) == signed_sum then '0' else '1';
13 return (result, n:z:c:v);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1258

Chapter 5. Pseudocode definitions
5.565. shared/functions/memory/AArch64.BranchAddr

5.565 shared/functions/memory/AArch64.BranchAddr

1 // AArch64.BranchAddr()
2 // ====================
3 // Return the virtual address with tag bits removed for storing to the program counter.
4
5 bits(64) AArch64.BranchAddr(bits(64) vaddress)
6 assert !UsingAArch32();
7 msbit = AddrTop(vaddress, PSTATE.EL);
8 if msbit == 63 then
9 return vaddress;

10 elsif (PSTATE.EL IN {EL0, EL1} || IsInHost()) && vaddress<msbit> == '1' then
11 return SignExtend(vaddress<msbit:0>);
12 else
13 return ZeroExtend(vaddress<msbit:0>);

5.566 shared/functions/memory/AccType

1 enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal loads and stores
2 AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
3 AccType_ATOMIC, AccType_ATOMICRW, // Atomic loads and stores
4 AccType_ORDERED, AccType_ORDEREDRW, // Load-Acquire and Store-Release
5 AccType_ORDEREDATOMIC, // Load-Acquire and Store-Release with atomic

↪→access
6 AccType_ORDEREDATOMICRW,
7 AccType_LIMITEDORDERED, // Load-LOAcquire and Store-LORelease
8 AccType_UNPRIV, // Load and store unprivileged
9 AccType_IFETCH, // Instruction fetch

10 AccType_PTW, // Page table walk
11 // Other operations
12 AccType_DC, // Data cache maintenance
13 AccType_DC_UNPRIV, // Data cache maintenance instruction used at EL0
14 AccType_IC, // Instruction cache maintenance
15 AccType_DCZVA, // DC ZVA instructions
16 AccType_AT}; // Address translation

5.567 shared/functions/memory/AccessDescriptor

1 type AccessDescriptor is (
2 AccType acctype,
3 MPAMinfo mpam,
4 boolean page_table_walk,
5 boolean secondstage,
6 boolean s2fs1walk,
7 integer level
8)

5.568 shared/functions/memory/AddrTop

1 // AddrTop()
2 // =========
3 // Return the MSB number of a virtual address in the stage 1 translation regime for "el".
4 // If EL1 is using AArch64 then addresses from EL0 using AArch32 are zero-extended to 64 bits.
5
6 integer AddrTop(bits(64) address, bits(2) el)
7 assert HaveEL(el);
8 regime = S1TranslationRegime(el);
9 if ELUsingAArch32(regime) then

10 // AArch32 translation regime.
11 return 31;
12 else
13 // AArch64 translation regime.
14 case regime of
15 when EL1
16 tbi = (if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0);
17 when EL2
18 if HaveVirtHostExt() && ELIsInHost(el) then
19 tbi = (if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0);
20 else
21 tbi = TCR_EL2.TBI;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1259

Chapter 5. Pseudocode definitions
5.569. shared/functions/memory/AddressDescriptor

22 when EL3
23 tbi = TCR_EL3.TBI;
24
25 return (if tbi == '1' then 55 else 63);

5.569 shared/functions/memory/AddressDescriptor

1 type AddressDescriptor is (
2 FaultRecord fault, // fault.statuscode indicates whether the address is valid
3 MemoryAttributes memattrs,
4 FullAddress paddress,
5 bits(64) vaddress
6)

5.570 shared/functions/memory/Allocation

1 constant bits(2) MemHint_No = '00'; // No Read-Allocate, No Write-Allocate
2 constant bits(2) MemHint_WA = '01'; // No Read-Allocate, Write-Allocate
3 constant bits(2) MemHint_RA = '10'; // Read-Allocate, No Write-Allocate
4 constant bits(2) MemHint_RWA = '11'; // Read-Allocate, Write-Allocate

5.571 shared/functions/memory/BigEndian

1 // BigEndian()
2 // ===========
3
4 boolean BigEndian()
5 boolean bigend;
6 if UsingAArch32() then
7 bigend = (PSTATE.E != '0');
8 elsif PSTATE.EL == EL0 then
9 bigend = (SCTLR[].E0E != '0');

10 else
11 bigend = (SCTLR[].EE != '0');
12 return bigend;

5.572 shared/functions/memory/BigEndianReverse

1 // BigEndianReverse()
2 // ==================
3
4 bits(width) BigEndianReverse (bits(width) value)
5 assert width IN {8, 16, 32, 64, 128};
6 integer half = width DIV 2;
7 if width == 8 then return value;
8 return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

5.573 shared/functions/memory/BranchAddr

1 // BranchAddr()
2 // ============
3 // Return the virtual address with tag bits removed for storing to the program counter.
4
5 Capability BranchAddr(Capability c, bits(2) el)
6 assert !UsingAArch32();
7 bits(64) cap_value = CapGetValue(c);
8 msbit = AddrTop(cap_value, el);
9

10 if CapIsSealed(c) then
11 c = CapWithTagClear(c);
12
13 if msbit == 63 then
14 return c;
15 elsif (el IN {EL0, EL1} || IsInHost()) && cap_value<msbit> == '1' then
16 assert msbit == 55;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1260

Chapter 5. Pseudocode definitions
5.574. shared/functions/memory/Cacheability

17 return CapSetFlags(c, SignExtend(cap_value<msbit:0>));
18 else
19 assert msbit == 55;
20 return CapSetFlags(c, ZeroExtend(cap_value<msbit:0>));

5.574 shared/functions/memory/Cacheability

1 constant bits(2) MemAttr_NC = '00'; // Non-cacheable
2 constant bits(2) MemAttr_WT = '10'; // Write-through
3 constant bits(2) MemAttr_WB = '11'; // Write-back

5.575 shared/functions/memory/CreateAccessDescriptor

1 // CreateAccessDescriptor()
2 // ========================
3
4 AccessDescriptor CreateAccessDescriptor(AccType acctype)
5 AccessDescriptor accdesc;
6 accdesc.acctype = acctype;
7 accdesc.mpam = GenMPAMcurEL(acctype IN {AccType_IFETCH, AccType_IC});
8 accdesc.page_table_walk = FALSE;
9 return accdesc;

5.576 shared/functions/memory/CreateAccessDescriptorPTW

1 // CreateAccessDescriptorPTW()
2 // ===========================
3
4 AccessDescriptor CreateAccessDescriptorPTW(AccType acctype, boolean secondstage,
5 boolean s2fs1walk, integer level)
6 AccessDescriptor accdesc;
7 accdesc.acctype = acctype;
8 accdesc.mpam = GenMPAMcurEL(acctype IN {AccType_IFETCH, AccType_IC});
9 accdesc.page_table_walk = TRUE;

10 accdesc.s2fs1walk = s2fs1walk;
11 accdesc.secondstage = secondstage;
12 accdesc.level = level;
13 return accdesc;

5.577 shared/functions/memory/DataMemoryBarrier

1 DataMemoryBarrier(MBReqDomain domain, MBReqTypes types);

5.578 shared/functions/memory/DataSynchronizationBarrier

1 DataSynchronizationBarrier(MBReqDomain domain, MBReqTypes types);

5.579 shared/functions/memory/DescriptorUpdate

1 type DescriptorUpdate is (
2 boolean AF, // AF needs to be set
3 boolean AP, // AP[2] / S2AP[2] will be modified
4 boolean SC, // SC needs to be set
5 AddressDescriptor descaddr // Descriptor to be updated
6)

5.580 shared/functions/memory/DeviceType

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1261

Chapter 5. Pseudocode definitions
5.581. shared/functions/memory/EffectiveTBI

1 enumeration DeviceType {DeviceType_GRE, DeviceType_nGRE, DeviceType_nGnRE, DeviceType_nGnRnE};

5.581 shared/functions/memory/EffectiveTBI

1 // EffectiveTBI()
2 // ==============
3 // Returns the effective TBI in the AArch64 stage 1 translation regime for "el".
4
5 bit EffectiveTBI(bits(64) address, bits(2) el)
6 assert HaveEL(el);
7 regime = S1TranslationRegime(el);
8 assert(!ELUsingAArch32(regime));
9

10 case regime of
11 when EL1
12 tbi = if address<55> == '1' then TCR_EL1.TBI1 else TCR_EL1.TBI0;
13 when EL2
14 if HaveVirtHostExt() && ELIsInHost(el) then
15 tbi = if address<55> == '1' then TCR_EL2.TBI1 else TCR_EL2.TBI0;
16 else
17 tbi = TCR_EL2.TBI;
18 when EL3
19 tbi = TCR_EL3.TBI;
20
21 return tbi;

5.582 shared/functions/memory/EffectiveTGEN

1 // EffectiveTGEN()
2 // ===============
3 // Returns the effective TGEN of a virtual address in the stage 1 translation regime
4 // for "el".
5
6 bit EffectiveTGEN(bits(64) address, bits(2) el)
7 assert HaveEL(el);
8 regime = S1TranslationRegime(el);
9 assert(!ELUsingAArch32(regime));

10
11 case regime of
12 when EL1
13 tgen = if address<55> == '1' then CCTLR_EL1.TGEN1 else CCTLR_EL1.TGEN0;
14 when EL2
15 if HaveVirtHostExt() && ELIsInHost(el) then
16 tgen = if address<55> == '1' then CCTLR_EL2.TGEN1 else CCTLR_EL2.TGEN0;
17 else
18 tgen = CCTLR_EL2.TGEN0;
19 when EL3
20 tgen = CCTLR_EL3.TGEN0;
21
22 return tgen;

5.583 shared/functions/memory/Fault

1 enumeration Fault {Fault_None,
2 Fault_AccessFlag,
3 Fault_Alignment,
4 Fault_Background,
5 Fault_Domain,
6 Fault_Permission,
7 Fault_Translation,
8 Fault_AddressSize,
9 Fault_SyncExternal,

10 Fault_SyncExternalOnWalk,
11 Fault_SyncParity,
12 Fault_SyncParityOnWalk,
13 Fault_AsyncParity,
14 Fault_AsyncExternal,
15 Fault_Debug,
16 Fault_TLBConflict,
17 Fault_HWUpdateAccessFlag,
18 Fault_CapTag,
19 Fault_CapSeal,

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1262

Chapter 5. Pseudocode definitions
5.584. shared/functions/memory/FaultRecord

20 Fault_CapBounds,
21 Fault_CapPerm,
22 Fault_CapPagePerm,
23 Fault_Lockdown,
24 Fault_Exclusive,
25 Fault_ICacheMaint};

5.584 shared/functions/memory/FaultRecord

1 type FaultRecord is (Fault statuscode, // Fault Status
2 AccType acctype, // Type of access that faulted
3 bits(48) ipaddress, // Intermediate physical address
4 boolean s2fs1walk, // Is on a Stage 1 page table walk
5 boolean write, // TRUE for a write, FALSE for a read
6 integer level, // For translation, access flag and permission faults
7 bit extflag, // IMPLEMENTATION DEFINED syndrome for external aborts
8 boolean secondstage, // Is a Stage 2 abort
9 bits(4) domain, // Domain number, AArch32 only

10 bits(2) errortype, // [Armv8.2 RAS] AArch32 AET or AArch64 SET
11 bits(4) debugmoe) // Debug method of entry, from AArch32 only
12
13 type PARTIDtype = bits(16);
14 type PMGtype = bits(8);
15
16 type MPAMinfo is (
17 bit mpam_ns,
18 PARTIDtype partid,
19 PMGtype pmg
20)

5.585 shared/functions/memory/FullAddress

1 type FullAddress is (
2 bits(48) address,
3 bit NS // '0' = Secure, '1' = Non-secure
4)

5.586 shared/functions/memory/Hint_Prefetch

1 // Signals the memory system that memory accesses of type HINT to or from the specified address are
2 // likely in the near future. The memory system may take some action to speed up the memory
3 // accesses when they do occur, such as pre-loading the the specified address into one or more
4 // caches as indicated by the innermost cache level target (0=L1, 1=L2, etc) and non-temporal hint
5 // stream. Any or all prefetch hints may be treated as a NOP. A prefetch hint must not cause a
6 // synchronous abort due to Alignment or Translation faults and the like. Its only effect on
7 // software-visible state should be on caches and TLBs associated with address, which must be
8 // accessible by reads, writes or execution, as defined in the translation regime of the current
9 // Exception level. It is guaranteed not to access Device memory.

10 // A Prefetch_EXEC hint must not result in an access that could not be performed by a speculative
11 // instruction fetch, therefore if all associated MMUs are disabled, then it cannot access any
12 // memory location that cannot be accessed by instruction fetches.
13 Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

5.587 shared/functions/memory/MBReqDomain

1 enumeration MBReqDomain {MBReqDomain_Nonshareable, MBReqDomain_InnerShareable,
2 MBReqDomain_OuterShareable, MBReqDomain_FullSystem};

5.588 shared/functions/memory/MBReqTypes

1 enumeration MBReqTypes {MBReqTypes_Reads, MBReqTypes_Writes, MBReqTypes_All};

5.589 shared/functions/memory/MemAttrHints

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1263

Chapter 5. Pseudocode definitions
5.590. shared/functions/memory/MemType

1 type MemAttrHints is (
2 bits(2) attrs, // See MemAttr_*, Cacheability attributes
3 bits(2) hints, // See MemHint_*, Allocation hints
4 boolean transient
5)

5.590 shared/functions/memory/MemType

1 enumeration MemType {MemType_Normal, MemType_Device};

5.591 shared/functions/memory/MemoryAttributes

1 type MemoryAttributes is (
2 MemType memtype,
3
4 DeviceType device, // For Device memory types
5 MemAttrHints inner, // Inner hints and attributes
6 MemAttrHints outer, // Outer hints and attributes
7 boolean readtagzero, // Tag is read as zero
8 boolean readtagfault, // Fault if reading valid tag
9 bit readtagfaulttgen, // Value of TGENy leading to fault

10 boolean writetagfault, // Fault if writing valid tag
11 boolean iss2writetagfault,// Fault if writing valid tag is due to stage 2
12 boolean shareable,
13 boolean outershareable
14)

5.592 shared/functions/memory/Permissions

1 type Permissions is (
2 bits(3) ap, // Access permission bits
3 bit xn, // Execute-never bit
4 bit xxn, // [Armv8.2] Extended execute-never bit for stage 2
5 bit pxn // Privileged execute-never bit
6)

5.593 shared/functions/memory/PrefetchHint

1 enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

5.594 shared/functions/memory/SpeculativeStoreBypassBarrierToPA

1 SpeculativeStoreBypassBarrierToPA();

5.595 shared/functions/memory/SpeculativeStoreBypassBarrierToVA

1 SpeculativeStoreBypassBarrierToVA();

5.596 shared/functions/memory/TLBRecord

1 type TLBRecord is (
2 Permissions perms,
3 bit nG, // '0' = Global, '1' = not Global
4 bits(4) domain, // AArch32 only
5 boolean contiguous, // Contiguous bit from page table
6 integer level, // AArch32 Short-descriptor format: Indicates Section/Page
7 integer blocksize, // Describes size of memory translated in KBytes
8 DescriptorUpdate descupdate, // [Armv8.1] Context for h/w update of table descriptor

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1264

Chapter 5. Pseudocode definitions
5.597. shared/functions/memory/_Mem

9 bit CnP, // [Armv8.2] TLB entry can be shared between different PEs
10 AddressDescriptor addrdesc
11)

5.597 shared/functions/memory/_Mem

1 // These two _Mem[] accessors are the hardware operations which perform single-copy atomic,
2 // aligned, little-endian memory accesses of size bytes from/to the underlying physical
3 // memory array of bytes.
4 //
5 // The functions address the array using desc.paddress which supplies:
6 // * A 48-bit physical address
7 // * A single NS bit to select between Secure and Non-secure parts of the array.
8 //
9 // The accdesc descriptor describes the access type: normal, exclusive, ordered, streaming,

10 // etc and other parameters required to access the physical memory or for setting syndrome
11 // register in the event of an external abort.
12 bits(8*size) _Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc];
13
14 _Mem[AddressDescriptor desc, integer size, AccessDescriptor accdesc] = bits(8*size) value;

5.598 shared/functions/mpam/DefaultMPAMinfo

1 // DefaultMPAMinfo
2 // ===============
3 // Returns default MPAM info. If secure is TRUE return default Secure
4 // MPAMinfo, otherwise return default Non-secure MPAMinfo.
5
6 MPAMinfo DefaultMPAMinfo(boolean secure)
7 MPAMinfo DefaultInfo;
8 DefaultInfo.mpam_ns = if secure then '0' else '1';
9 DefaultInfo.partid = DefaultPARTID;

10 DefaultInfo.pmg = DefaultPMG;
11 return DefaultInfo;

5.599 shared/functions/mpam/DefaultPARTID

1 constant PARTIDtype DefaultPARTID = 0<15:0>;

5.600 shared/functions/mpam/DefaultPMG

1 constant PMGtype DefaultPMG = 0<7:0>;

5.601 shared/functions/mpam/GenMPAMcurEL

1 // GenMPAMcurEL
2 // ============
3 // Returns MPAMinfo for the current EL and security state.
4 // InD is TRUE instruction access and FALSE otherwise.
5 // May be called if MPAM is not implemented (but in an version that supports
6 // MPAM), MPAM is disabled, or in AArch32. In AArch32, convert the mode to
7 // EL if can and use that to drive MPAM information generation. If mode
8 // cannot be converted, MPAM is not implemented, or MPAM is disabled return
9 // default MPAM information for the current security state.

10
11 MPAMinfo GenMPAMcurEL(boolean InD)
12 bits(2) mpamel;
13 boolean validEL;
14 boolean securempam;
15 securempam = IsSecure();
16 if HaveMPAMExt() && MPAMisEnabled() then
17 mpamel = PSTATE.EL;
18 return genMPAM(UInt(mpamel), InD, securempam);
19 return DefaultMPAMinfo(securempam);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1265

Chapter 5. Pseudocode definitions
5.602. shared/functions/mpam/MAP_vPARTID

5.602 shared/functions/mpam/MAP_vPARTID

1 // MAP_vPARTID
2 // ===========
3 // Performs conversion of virtual PARTID into physical PARTID
4 // Contains all of the error checking and implementation
5 // choices for the conversion.
6
7 (PARTIDtype, boolean) MAP_vPARTID(PARTIDtype vpartid)
8 // should not ever be called if EL2 is not implemented
9 // or is implemented but not enabled in the current

10 // security state.
11 PARTIDtype ret;
12 boolean err;
13 integer virt = UInt(vpartid);
14 integer vpmrmax = UInt(MPAMIDR_EL1.VPMR_MAX);
15
16 // vpartid_max is largest vpartid supported
17 integer vpartid_max = (4 * vpmrmax) + 3;
18
19 // One of many ways to reduce vpartid to value less than vpartid_max.
20 if virt > vpartid_max then
21 virt = virt MOD (vpartid_max+1);
22
23 // Check for valid mapping entry.
24 if MPAMVPMV_EL2<virt> == '1' then
25 // vpartid has a valid mapping so access the map.
26 ret = mapvpmw(virt);
27 err = FALSE;
28
29 // Is the default virtual PARTID valid?
30 elsif MPAMVPMV_EL2<0> == '1' then
31 // Yes, so use default mapping for vpartid == 0.
32 ret = MPAMVPM0_EL2<0 +: 16>;
33 err = FALSE;
34
35 // Neither is valid so use default physical PARTID.
36 else
37 ret = DefaultPARTID;
38 err = TRUE;
39
40 // Check that the physical PARTID is in-range.
41 // This physical PARTID came from a virtual mapping entry.
42 integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
43 if UInt(ret) > partid_max then
44 // Out of range, so return default physical PARTID
45 ret = DefaultPARTID;
46 err = TRUE;
47 return (ret, err);

5.603 shared/functions/mpam/MPAMisEnabled

1 // MPAMisEnabled
2 // =============
3 // Returns TRUE if MPAMisEnabled.
4
5 boolean MPAMisEnabled()
6 el = HighestEL();
7 case el of
8 when EL3 return MPAM3_EL3.MPAMEN == '1';
9 when EL2 return MPAM2_EL2.MPAMEN == '1';

10 when EL1 return MPAM1_EL1.MPAMEN == '1';

5.604 shared/functions/mpam/MPAMisVirtual

1 // MPAMisVirtual
2 // =============
3 // Returns TRUE if MPAM is configured to be virtual at EL.
4
5 boolean MPAMisVirtual(integer el)
6 return (MPAMIDR_EL1.HAS_HCR == '1' && EL2Enabled() &&
7 (HCR_EL2.E2H == '0' || HCR_EL2.TGE == '0') &&
8 ((el == 0 && MPAMHCR_EL2.EL0_VPMEN == '1') ||
9 (el == 1 && MPAMHCR_EL2.EL1_VPMEN == '1')));

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1266

Chapter 5. Pseudocode definitions
5.605. shared/functions/mpam/genMPAM

5.605 shared/functions/mpam/genMPAM

1 // genMPAM
2 // =======
3 // Returns MPAMinfo for exception level el.
4 // If InD is TRUE returns MPAM information using PARTID_I and PMG_I fields
5 // of MPAMel_ELx register and otherwise using PARTID_D and PMG_D fields.
6 // Produces a Secure PARTID if Secure is TRUE and a Non-secure PARTID otherwise.
7
8 MPAMinfo genMPAM(integer el, boolean InD, boolean secure)
9 MPAMinfo returnInfo;

10 PARTIDtype partidel;
11 boolean perr;
12 boolean gstplk = (el == 0 && EL2Enabled() &&
13 MPAMHCR_EL2.GSTAPP_PLK == '1' && HCR_EL2.TGE == '0');
14 integer eff_el = if gstplk then 1 else el;
15 (partidel, perr) = genPARTID(eff_el, InD);
16 PMGtype groupel = genPMG(eff_el, InD, perr);
17 returnInfo.mpam_ns = if secure then '0' else '1';
18 returnInfo.partid = partidel;
19 returnInfo.pmg = groupel;
20 return returnInfo;

5.606 shared/functions/mpam/genMPAMel

1 // genMPAMel
2 // =========
3 // Returns MPAMinfo for specified EL in the current security state.
4 // InD is TRUE for instruction access and FALSE otherwise.
5
6 MPAMinfo genMPAMel(bits(2) el, boolean InD)
7 boolean secure = IsSecure();
8 boolean securempam = secure;
9 if HaveMPAMExt() && MPAMisEnabled() then

10 return genMPAM(UInt(el), InD, securempam);
11 return DefaultMPAMinfo(securempam);

5.607 shared/functions/mpam/genPARTID

1 // genPARTID
2 // =========
3 // Returns physical PARTID and error boolean for exception level el.
4 // If InD is TRUE then PARTID is from MPAMel_ELx.PARTID_I and
5 // otherwise from MPAMel_ELx.PARTID_D.
6
7 (PARTIDtype, boolean) genPARTID(integer el, boolean InD)
8 PARTIDtype partidel = getMPAM_PARTID(el, InD);
9

10 integer partid_max = UInt(MPAMIDR_EL1.PARTID_MAX);
11 if UInt(partidel) > partid_max then
12 return (DefaultPARTID, TRUE);
13
14 if MPAMisVirtual(el) then
15 return MAP_vPARTID(partidel);
16 else
17 return (partidel, FALSE);

5.608 shared/functions/mpam/genPMG

1 // genPMG
2 // ======
3 // Returns PMG for exception level el and I- or D-side (InD).
4 // If PARTID generation (genPARTID) encountered an error, genPMG() should be
5 // called with partid_err as TRUE.
6
7 PMGtype genPMG(integer el, boolean InD, boolean partid_err)
8 integer pmg_max = UInt(MPAMIDR_EL1.PMG_MAX);
9

10 // It is CONSTRAINED UNPREDICTABLE whether partid_err forces PMG to
11 // use the default or if it uses the PMG from getMPAM_PMG.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1267

Chapter 5. Pseudocode definitions
5.609. shared/functions/mpam/getMPAM_PARTID

12 if partid_err then
13 return DefaultPMG;
14 PMGtype groupel = getMPAM_PMG(el, InD);
15 if UInt(groupel) <= pmg_max then
16 return groupel;
17 return DefaultPMG;

5.609 shared/functions/mpam/getMPAM_PARTID

1 // getMPAM_PARTID
2 // ==============
3 // Returns a PARTID from one of the MPAMn_ELx registers.
4 // MPAMn selects the MPAMn_ELx register used.
5 // If InD is TRUE, selects the PARTID_I field of that
6 // register. Otherwise, selects the PARTID_D field.
7
8 PARTIDtype getMPAM_PARTID(integer MPAMn, boolean InD)
9 PARTIDtype partid;

10 boolean el2avail = EL2Enabled();
11
12 if InD then
13 case MPAMn of
14 when 3 partid = MPAM3_EL3.PARTID_I;
15 when 2 partid = if el2avail then MPAM2_EL2.PARTID_I else Zeros();
16 when 1 partid = MPAM1_EL1.PARTID_I;
17 when 0 partid = MPAM0_EL1.PARTID_I;
18 otherwise partid = PARTIDtype UNKNOWN;
19 else
20 case MPAMn of
21 when 3 partid = MPAM3_EL3.PARTID_D;
22 when 2 partid = if el2avail then MPAM2_EL2.PARTID_D else Zeros();
23 when 1 partid = MPAM1_EL1.PARTID_D;
24 when 0 partid = MPAM0_EL1.PARTID_D;
25 otherwise partid = PARTIDtype UNKNOWN;
26 return partid;

5.610 shared/functions/mpam/getMPAM_PMG

1 // getMPAM_PMG
2 // ===========
3 // Returns a PMG from one of the MPAMn_ELx registers.
4 // MPAMn selects the MPAMn_ELx register used.
5 // If InD is TRUE, selects the PMG_I field of that
6 // register. Otherwise, selects the PMG_D field.
7
8 PMGtype getMPAM_PMG(integer MPAMn, boolean InD)
9 PMGtype pmg;

10 boolean el2avail = EL2Enabled();
11
12 if InD then
13 case MPAMn of
14 when 3 pmg = MPAM3_EL3.PMG_I;
15 when 2 pmg = if el2avail then MPAM2_EL2.PMG_I else Zeros();
16 when 1 pmg = MPAM1_EL1.PMG_I;
17 when 0 pmg = MPAM0_EL1.PMG_I;
18 otherwise pmg = PMGtype UNKNOWN;
19 else
20 case MPAMn of
21 when 3 pmg = MPAM3_EL3.PMG_D;
22 when 2 pmg = if el2avail then MPAM2_EL2.PMG_D else Zeros();
23 when 1 pmg = MPAM1_EL1.PMG_D;
24 when 0 pmg = MPAM0_EL1.PMG_D;
25 otherwise pmg = PMGtype UNKNOWN;
26 return pmg;

5.611 shared/functions/mpam/mapvpmw

1 // mapvpmw
2 // =======
3 // Map a virtual PARTID into a physical PARTID using
4 // the MPAMVPMn_EL2 registers.
5 // vpartid is now assumed in-range and valid (checked by caller)

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1268

Chapter 5. Pseudocode definitions
5.612. shared/functions/registers/BranchTo

6 // returns physical PARTID from mapping entry.
7
8 PARTIDtype mapvpmw(integer vpartid)
9 bits(64) vpmw;

10 integer wd = vpartid DIV 4;
11 case wd of
12 when 0 vpmw = MPAMVPM0_EL2;
13 when 1 vpmw = MPAMVPM1_EL2;
14 when 2 vpmw = MPAMVPM2_EL2;
15 when 3 vpmw = MPAMVPM3_EL2;
16 when 4 vpmw = MPAMVPM4_EL2;
17 when 5 vpmw = MPAMVPM5_EL2;
18 when 6 vpmw = MPAMVPM6_EL2;
19 when 7 vpmw = MPAMVPM7_EL2;
20 otherwise vpmw = Zeros(64);
21 // vpme_lsb selects LSB of field within register
22 integer vpme_lsb = (vpartid REM 4) * 16;
23 return vpmw<vpme_lsb +: 16>;

5.612 shared/functions/registers/BranchTo

1 // BranchTo()
2 // ==========
3
4 // Set program counter to a new address, with a branch type
5 // In AArch64 state the address might include a tag in the top eight bits.
6
7 BranchTo(bits(N) target, BranchType branch_type)
8 Hint_Branch(branch_type);
9 if N == 32 then

10 assert UsingAArch32();
11 _PC = ZeroExtend(target);
12 PCC = CapSetValue(PCC, ZeroExtend(target));
13 else
14 assert N == 64 && !UsingAArch32();
15 _PC = AArch64.BranchAddr(target<63:0>);
16 PCC = CapSetValue(PCC, AArch64.BranchAddr(target<63:0>));
17 return;

5.613 shared/functions/registers/BranchToAddr

1 // BranchToAddr()
2 // ==============
3
4 // Set program counter to a new address, with a branch type
5 // In AArch64 state the address does not include a tag in the top eight bits.
6
7 BranchToAddr(bits(N) target, BranchType branch_type)
8 Hint_Branch(branch_type);
9 if N == 32 then

10 assert UsingAArch32();
11 _PC = ZeroExtend(target);
12 PCC = CapSetValue(PCC, ZeroExtend(target));
13 else
14 assert N == 64 && !UsingAArch32();
15 _PC = target<63:0>;
16 PCC = CapSetValue(PCC, target<63:0>);
17 return;

5.614 shared/functions/registers/BranchToOffset

1 // BranchToOffset()
2 // ================
3 // Branch to an offset from the PC
4
5 BranchToOffset(bits(64) offset, BranchType branch_type)
6 Hint_Branch(branch_type);
7 assert !UsingAArch32();
8 Capability new_pcc = CapAdd(PCC, offset);
9 PCC = BranchAddr(new_pcc, PSTATE.EL);

10 _PC = CapGetValue(PCC);
11 return;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1269

Chapter 5. Pseudocode definitions
5.615. shared/functions/registers/BranchType

5.615 shared/functions/registers/BranchType

1 enumeration BranchType {
2 BranchType_DIRCALL, // Direct Branch with link
3 BranchType_INDCALL, // Indirect Branch with link
4 BranchType_ERET, // Exception return (indirect)
5 BranchType_DBGEXIT, // Exit from Debug state
6 BranchType_RET, // Indirect branch with function return hint
7 BranchType_DIR, // Direct branch
8 BranchType_INDIR, // Indirect branch
9 BranchType_EXCEPTION, // Exception entry

10 BranchType_RESET, // Reset
11 BranchType_UNKNOWN}; // Other

5.616 shared/functions/registers/Hint_Branch

1 BranchToCapability(Capability target, BranchType branch_type)
2 Hint_Branch(branch_type);
3 assert !UsingAArch32();
4
5 _PC = AArch64.BranchAddr(CapGetValue(target));
6 PCC = BranchAddr(target, PSTATE.EL);
7 return;
8
9 BranchXToCapability(Capability target, BranchType branch_type)

10 PSTATE.C64 = target<0>;
11 target<0> = '0';
12 BranchToCapability(target, branch_type);
13
14 // Report the hint passed to BranchTo() and BranchToAddr(), for consideration when processing
15 // the next instruction.
16 Hint_Branch(BranchType hint);

5.617 shared/functions/registers/NextInstrAddr

1 // Return address of the sequentially next instruction.
2 bits(N) NextInstrAddr();

5.618 shared/functions/registers/ResetExternalDebugRegisters

1 // Reset the External Debug registers in the Core power domain.
2 ResetExternalDebugRegisters(boolean cold_reset);

5.619 shared/functions/registers/ThisInstrAddr

1 // ThisInstrAddr()
2 // ===============
3 // Return address of the current instruction.
4
5 bits(N) ThisInstrAddr()
6 assert N == 64 || (N == 32 && UsingAArch32());
7 return _PC<N-1:0>;

5.620 shared/functions/registers/_PC

1 bits(64) _PC;

5.621 shared/functions/registers/_R

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1270

Chapter 5. Pseudocode definitions
5.622. shared/functions/registers/_V

1 array Capability _R[0..30];

5.622 shared/functions/registers/_V

1 array bits(128) _V[0..31];

5.623 shared/functions/sysregisters/SPSR

1 // SPSR[] - non-assignment form
2 // ============================
3
4 bits(32) SPSR[]
5 bits(32) result;
6 case PSTATE.EL of
7 when EL1 result = SPSR_EL1;
8 when EL2 result = SPSR_EL2;
9 when EL3 result = SPSR_EL3;

10 otherwise Unreachable();
11 return result;
12
13 // SPSR[] - assignment form
14 // ========================
15
16 SPSR[] = bits(32) value
17 case PSTATE.EL of
18 when EL1 SPSR_EL1 = value;
19 when EL2 SPSR_EL2 = value;
20 when EL3 SPSR_EL3 = value;
21 otherwise Unreachable();
22 return;

5.624 shared/functions/system/ArchVersion

1 enumeration ArchVersion {
2 ARMv8p0
3 , ARMv8p1
4 , ARMv8p2
5 };

5.625 shared/functions/system/ClearEventRegister

1 // ClearEventRegister()
2 // ====================
3 // Clear the Event Register of this PE
4
5 ClearEventRegister()
6 EventRegister = '0';
7 return;

5.626 shared/functions/system/ClearPendingPhysicalSError

1 // Clear a pending physical SError interrupt
2 ClearPendingPhysicalSError();

5.627 shared/functions/system/ClearPendingVirtualSError

1 // Clear a pending virtual SError interrupt
2 ClearPendingVirtualSError();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1271

Chapter 5. Pseudocode definitions
5.628. shared/functions/system/ConditionHolds

5.628 shared/functions/system/ConditionHolds

1 // ConditionHolds()
2 // ================
3 // Return TRUE iff COND currently holds
4
5 boolean ConditionHolds(bits(4) cond)
6 // Evaluate base condition.
7 case cond<3:1> of
8 when '000' result = (PSTATE.Z == '1'); // EQ or NE
9 when '001' result = (PSTATE.C == '1'); // CS or CC

10 when '010' result = (PSTATE.N == '1'); // MI or PL
11 when '011' result = (PSTATE.V == '1'); // VS or VC
12 when '100' result = (PSTATE.C == '1' && PSTATE.Z == '0'); // HI or LS
13 when '101' result = (PSTATE.N == PSTATE.V); // GE or LT
14 when '110' result = (PSTATE.N == PSTATE.V && PSTATE.Z == '0'); // GT or LE
15 when '111' result = TRUE; // AL
16
17 // Condition flag values in the set '111x' indicate always true
18 // Otherwise, invert condition if necessary.
19 if cond<0> == '1' && cond != '1111' then
20 result = !result;
21
22 return result;

5.629 shared/functions/system/ConsumptionOfSpeculativeDataBarrier

1 ConsumptionOfSpeculativeDataBarrier();

5.630 shared/functions/system/CurrentInstrSet

1 // CurrentInstrSet()
2 // =================
3
4 InstrSet CurrentInstrSet()
5
6 if UsingAArch32() then
7 result = if PSTATE.T == '0' then InstrSet_A32 else InstrSet_T32;
8 // PSTATE.J is RES0. Implementation of T32EE or Jazelle state not permitted.
9 else

10 result = InstrSet_A64;
11 return result;

5.631 shared/functions/system/EL0

1 constant bits(2) EL3 = '11';
2 constant bits(2) EL2 = '10';
3 constant bits(2) EL1 = '01';
4 constant bits(2) EL0 = '00';

5.632 shared/functions/system/EL2Enabled

1 // EL2Enabled()
2 // ============
3 // Returns TRUE if EL2 is present and access is Non-secure, FALSE otherwise.
4
5 boolean EL2Enabled()
6 return HaveEL(EL2) && (!HaveEL(EL3) || SCR_EL3.NS == '1');

5.633 shared/functions/system/ELFromSPSR

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1272

Chapter 5. Pseudocode definitions
5.634. shared/functions/system/ELIsInHost

1 // ELFromSPSR()
2 // ============
3
4 // Convert an SPSR value encoding to an Exception level.
5 // Returns (valid,EL):
6 // 'valid' is TRUE if 'spsr<4:0>' encodes a valid mode for the current state.
7 // 'EL' is the Exception level decoded from 'spsr'.
8
9 (boolean,bits(2)) ELFromSPSR(bits(32) spsr)

10 if spsr<4> == '0' then // AArch64 state
11 el = spsr<3:2>;
12 if HighestELUsingAArch32() then // No AArch64 support
13 valid = FALSE;
14 elsif !HaveEL(el) then // Exception level not implemented
15 valid = FALSE;
16 elsif spsr<1> == '1' then // M[1] must be 0
17 valid = FALSE;
18 elsif el == EL0 && spsr<0> == '1' then // for EL0, M[0] must be 0
19 valid = FALSE;
20 elsif el == EL2 && HaveEL(EL3) && SCR_EL3.NS == '0' then
21 valid = FALSE; // EL2 only valid in Non-secure state
22 else
23 valid = TRUE;
24 else
25 valid = FALSE;
26
27 if !valid then el = bits(2) UNKNOWN;
28 return (valid,el);

5.634 shared/functions/system/ELIsInHost

1 // ELIsInHost()
2 // ============
3
4 boolean ELIsInHost(bits(2) el)
5 return (!IsSecureBelowEL3() && HaveVirtHostExt() && !ELUsingAArch32(EL2) &&
6 HCR_EL2.E2H == '1' && (el == EL2 || (el == EL0 && HCR_EL2.TGE == '1')));

5.635 shared/functions/system/ELStateUsingAArch32

1 // ELStateUsingAArch32()
2 // =====================
3
4 boolean ELStateUsingAArch32(bits(2) el, boolean secure)
5 // See ELStateUsingAArch32K() for description. Must only be called in circumstances where
6 // result is valid (typically, that means 'el IN {EL1,EL2,EL3}').
7 (known, aarch32) = ELStateUsingAArch32K(el, secure);
8 assert known;
9 return aarch32;

5.636 shared/functions/system/ELStateUsingAArch32K

1 // ELStateUsingAArch32K()
2 // ======================
3
4 (boolean,boolean) ELStateUsingAArch32K(bits(2) el, boolean secure)
5 // Returns (known, aarch32):
6 // 'known' is FALSE for EL0 if the current Exception level is not EL0 and EL1 is
7 // using AArch64, since it cannot determine the state of EL0; TRUE otherwise.
8 // 'aarch32' is TRUE if the specified Exception level is using AArch32; FALSE otherwise.
9 if !HaveAArch32EL(el) then

10 return (TRUE, FALSE); // Exception level is using AArch64
11 elsif HighestELUsingAArch32() then
12 return (TRUE, TRUE); // Highest Exception level, and therefore all levels

↪→are using AArch32
13 elsif el == HighestEL() then
14 return (TRUE, FALSE); // This is highest Exception level, so is using AArch64
15
16 // Remainder of function deals with the interprocessing cases when highest Exception level is using

↪→AArch64
17
18 boolean aarch32 = boolean UNKNOWN;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1273

Chapter 5. Pseudocode definitions
5.637. shared/functions/system/ELUsingAArch32

19 boolean known = TRUE;
20
21 aarch32_below_el3 = HaveEL(EL3) && SCR_EL3.RW == '0';
22 aarch32_at_el1 = (aarch32_below_el3 || (HaveEL(EL2) && !secure && HCR_EL2.RW == '0' &&
23 !(HCR_EL2.E2H == '1' && HCR_EL2.TGE == '1' &&

↪→HaveVirtHostExt())));
24 if el == EL0 && !aarch32_at_el1 then // Only know if EL0 using AArch32 from PSTATE
25 if PSTATE.EL == EL0 then
26 aarch32 = PSTATE.nRW == '1'; // EL0 controlled by PSTATE
27 else
28 known = FALSE; // EL0 state is UNKNOWN
29 else
30 aarch32 = (aarch32_below_el3 && el != EL3) || (aarch32_at_el1 && el IN {EL1,EL0});
31
32 if !known then aarch32 = boolean UNKNOWN;
33 return (known, aarch32);

5.637 shared/functions/system/ELUsingAArch32

1 // ELUsingAArch32()
2 // ================
3
4 boolean ELUsingAArch32(bits(2) el)
5 return ELStateUsingAArch32(el, IsSecureBelowEL3());

5.638 shared/functions/system/ELUsingAArch32K

1 // ELUsingAArch32K()
2 // =================
3
4 (boolean,boolean) ELUsingAArch32K(bits(2) el)
5 return ELStateUsingAArch32K(el, IsSecureBelowEL3());

5.639 shared/functions/system/EndOfInstruction

1 // Terminate processing of the current instruction.
2 EndOfInstruction();

5.640 shared/functions/system/EnterLowPowerState

1 // PE enters a low-power state
2 EnterLowPowerState();

5.641 shared/functions/system/EventRegister

1 bits(1) EventRegister;

5.642 shared/functions/system/GetPSRFromPSTATE

1 // GetPSRFromPSTATE()
2 // ==================
3 // Return a PSR value which represents the current PSTATE
4
5 bits(32) GetPSRFromPSTATE()
6 bits(32) spsr = Zeros();
7 spsr<31:28> = PSTATE.<N,Z,C,V>;
8 if HavePANExt() then spsr<22> = PSTATE.PAN;
9 spsr<20> = PSTATE.IL;

10 if HaveCapabilitiesExt() then spsr<26> = PSTATE.C64;
11 if HaveUAOExt() then spsr<23> = PSTATE.UAO;
12 spsr<21> = PSTATE.SS;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1274

Chapter 5. Pseudocode definitions
5.643. shared/functions/system/HasArchVersion

13 if HaveSSBSExt() then spsr<12> = PSTATE.SSBS;
14 spsr<9:6> = PSTATE.<D,A,I,F>;
15 spsr<4> = PSTATE.nRW;
16 spsr<3:2> = PSTATE.EL;
17 spsr<0> = PSTATE.SP;
18 return spsr;

5.643 shared/functions/system/HasArchVersion

1 // HasArchVersion()
2 // ================
3 // Return TRUE if the implemented architecture includes the extensions defined in the specified
4 // architecture version.
5
6 boolean HasArchVersion(ArchVersion version)
7 return version == ARMv8p0 || boolean IMPLEMENTATION_DEFINED;

5.644 shared/functions/system/HaveAArch32EL

1 // HaveAArch32EL()
2 // ===============
3
4 boolean HaveAArch32EL(bits(2) el)
5 // Return TRUE if Exception level 'el' supports AArch32 in this implementation
6 if !HaveEL(el) then
7 return FALSE; // The Exception level is not implemented
8 elsif !HaveAnyAArch32() then
9 return FALSE; // No Exception level can use AArch32

10 elsif HighestELUsingAArch32() then
11 return TRUE; // All Exception levels are using AArch32
12 elsif el == HighestEL() then
13 return FALSE; // The highest Exception level is using AArch64
14 elsif el == EL0 then
15 return TRUE; // EL0 must support using AArch32 if any AArch32
16 return boolean IMPLEMENTATION_DEFINED;

5.645 shared/functions/system/HaveAnyAArch32

1 // HaveAnyAArch32()
2 // ================
3 // Return TRUE if AArch32 state is supported at any Exception level
4
5 boolean HaveAnyAArch32()
6 return boolean IMPLEMENTATION_DEFINED;

5.646 shared/functions/system/HaveAnyAArch64

1 // HaveAnyAArch64()
2 // ================
3 // Return TRUE if AArch64 state is supported at any Exception level
4
5 boolean HaveAnyAArch64()
6 return !HighestELUsingAArch32();

5.647 shared/functions/system/HaveEL

1 // HaveEL()
2 // ========
3 // Return TRUE if Exception level 'el' is supported
4
5 boolean HaveEL(bits(2) el)
6 if el IN {EL1,EL0} then
7 return TRUE; // EL1 and EL0 must exist
8 return boolean IMPLEMENTATION_DEFINED;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1275

Chapter 5. Pseudocode definitions
5.648. shared/functions/system/HaveELUsingSecurityState

5.648 shared/functions/system/HaveELUsingSecurityState

1 // HaveELUsingSecurityState()
2 // ==========================
3 // Returns TRUE if Exception level 'el' with Security state 'secure' is supported,
4 // FALSE otherwise.
5
6 boolean HaveELUsingSecurityState(bits(2) el, boolean secure)
7
8 case el of
9 when EL3

10 assert secure;
11 return HaveEL(EL3);
12 when EL2
13 return !secure && HaveEL(EL2);
14 otherwise
15 return (HaveEL(EL3) ||
16 (secure == boolean IMPLEMENTATION_DEFINED "Secure-only implementation"));

5.649 shared/functions/system/HaveFP16Ext

1 // HaveFP16Ext()
2 // =============
3 // Return TRUE if FP16 extension is supported
4
5 boolean HaveFP16Ext()
6 return boolean IMPLEMENTATION_DEFINED;

5.650 shared/functions/system/HighestEL

1 // HighestEL()
2 // ===========
3 // Returns the highest implemented Exception level.
4
5 bits(2) HighestEL()
6 if HaveEL(EL3) then
7 return EL3;
8 elsif HaveEL(EL2) then
9 return EL2;

10 else
11 return EL1;

5.651 shared/functions/system/HighestELUsingAArch32

1 // HighestELUsingAArch32()
2 // =======================
3 // Return TRUE if configured to boot into AArch32 operation
4
5 boolean HighestELUsingAArch32()
6 if !HaveAnyAArch32() then return FALSE;
7 return boolean IMPLEMENTATION_DEFINED; // e.g. CFG32SIGNAL == HIGH

5.652 shared/functions/system/Hint_Yield

1 // Provides a hint that the task performed by a thread is of low
2 // importance so that it could yield to improve overall performance.
3 Hint_Yield();

5.653 shared/functions/system/IllegalExceptionReturn

1 // IllegalExceptionReturn()
2 // ========================
3

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1276

Chapter 5. Pseudocode definitions
5.654. shared/functions/system/InstrSet

4 boolean IllegalExceptionReturn(bits(32) spsr)
5
6 // Check for illegal return:
7 // * To an unimplemented Exception level.
8 // * To EL2 in Secure state.
9 // * To EL0 using AArch64 state, with SPSR.M[0]==1.

10 // * To AArch64 state with SPSR.M[1]==1.
11 // * To AArch32 state with an illegal value of SPSR.M.
12 (valid, target) = ELFromSPSR(spsr);
13 if !valid then return TRUE;
14
15 // Check for return to higher Exception level
16 if UInt(target) > UInt(PSTATE.EL) then return TRUE;
17
18 spsr_mode_is_aarch32 = (spsr<4> == '1');
19
20 // Check for illegal return:
21 // * To EL1, EL2 or EL3 with register width specified in the SPSR different from the
22 // Execution state used in the Exception level being returned to, as determined by
23 // the SCR_EL3.RW or HCR_EL2.RW bits, or as configured from reset.
24 // * To EL0 using AArch64 state when EL1 is using AArch32 state as determined by the
25 // SCR_EL3.RW or HCR_EL2.RW bits or as configured from reset.
26 // * To AArch64 state from AArch32 state (should be caught by above)
27 (known, target_el_is_aarch32) = ELUsingAArch32K(target);
28 assert known || (target == EL0 && !ELUsingAArch32(EL1));
29 if known && spsr_mode_is_aarch32 != target_el_is_aarch32 then return TRUE;
30
31 // Check for illegal return from AArch32 to AArch64
32 if UsingAArch32() && !spsr_mode_is_aarch32 then return TRUE;
33
34 // Check for illegal return to EL1 in Non-secure state when HCR.TGE is set
35 if HaveEL(EL2) && target == EL1 && !IsSecureBelowEL3() && HCR_EL2.TGE == '1' then return TRUE;
36 return FALSE;

5.654 shared/functions/system/InstrSet

1 enumeration InstrSet {InstrSet_A64, InstrSet_A32, InstrSet_T32};

5.655 shared/functions/system/InstructionSynchronizationBarrier

1 InstructionSynchronizationBarrier();

5.656 shared/functions/system/InterruptPending

1 // InterruptPending()
2 // ==================
3 // Return TRUE if there are any pending physical or virtual interrupts, and FALSE otherwise
4
5 boolean InterruptPending()
6 return IsPhysicalSErrorPending() || IsVirtualSErrorPending();

5.657 shared/functions/system/IsEventRegisterSet

1 // IsEventRegisterSet()
2 // ====================
3 // Return TRUE if the Event Register of this PE is set, and FALSE otherwise
4
5 boolean IsEventRegisterSet()
6 return EventRegister == '1';

5.658 shared/functions/system/IsHighestEL

1 // IsHighestEL()
2 // =============
3 // Returns TRUE if given exception level is the highest exception level implemented

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1277

Chapter 5. Pseudocode definitions
5.659. shared/functions/system/IsInHost

4
5 boolean IsHighestEL(bits(2) el)
6 return HighestEL() == el;

5.659 shared/functions/system/IsInHost

1 // IsInHost()
2 // ==========
3
4 boolean IsInHost()
5 return ELIsInHost(PSTATE.EL);

5.660 shared/functions/system/IsPhysicalSErrorPending

1 // Return TRUE if a physical SError interrupt is pending
2 boolean IsPhysicalSErrorPending();

5.661 shared/functions/system/IsSecure

1 // IsSecure()
2 // ==========
3 // Returns TRUE if current Exception level is in Secure state.
4
5 boolean IsSecure()
6 if HaveEL(EL3) && !UsingAArch32() && PSTATE.EL == EL3 then
7 return TRUE;
8 elsif HaveEL(EL3) && UsingAArch32() && PSTATE.M == M32_Monitor then
9 return TRUE;

10 return IsSecureBelowEL3();

5.662 shared/functions/system/IsSecureBelowEL3

1 // IsSecureBelowEL3()
2 // ==================
3 // Return TRUE if an Exception level below EL3 is in Secure state
4 // or would be following an exception return to that level.
5 //
6 // Differs from IsSecure in that it ignores the current EL or Mode
7 // in considering security state.
8 // That is, if at AArch64 EL3 or in AArch32 Monitor mode, whether an
9 // exception return would pass to Secure or Non-secure state.

10
11 boolean IsSecureBelowEL3()
12 if HaveEL(EL3) then
13 return SCR_GEN[].NS == '0';
14 elsif HaveEL(EL2) then
15 return FALSE;
16 else
17 // TRUE if processor is Secure or FALSE if Non-secure.
18 return boolean IMPLEMENTATION_DEFINED "Secure-only implementation";

5.663 shared/functions/system/IsVirtualSErrorPending

1 // Return TRUE if a virtual SError interrupt is pending
2 boolean IsVirtualSErrorPending();

5.664 shared/functions/system/Mode_Bits

1 constant bits(5) M32_User = '10000';
2 constant bits(5) M32_FIQ = '10001';
3 constant bits(5) M32_IRQ = '10010';

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1278

Chapter 5. Pseudocode definitions
5.665. shared/functions/system/PSTATE

4 constant bits(5) M32_Svc = '10011';
5 constant bits(5) M32_Monitor = '10110';
6 constant bits(5) M32_Abort = '10111';
7 constant bits(5) M32_Hyp = '11010';
8 constant bits(5) M32_Undef = '11011';
9 constant bits(5) M32_System = '11111';

5.665 shared/functions/system/PSTATE

1 ProcState PSTATE;

5.666 shared/functions/system/PrivilegeLevel

1 enumeration PrivilegeLevel {PL3, PL2, PL1, PL0};

5.667 shared/functions/system/ProcState

1 type ProcState is (
2 bits (1) N, // Negative condition flag
3 bits (1) Z, // Zero condition flag
4 bits (1) C, // Carry condition flag
5 bits (1) V, // oVerflow condition flag
6 bits (1) D, // Debug mask bit [AArch64 only]
7 bits (1) A, // SError interrupt mask bit
8 bits (1) I, // IRQ mask bit
9 bits (1) F, // FIQ mask bit

10 bits (1) PAN, // Privileged Access Never Bit [v8.1]
11 bits (1) UAO, // User Access Override [v8.2]
12 bits (1) C64, // Current instruction set state [Morello only]
13 bits (1) SS, // Software step bit
14 bits (1) IL, // Illegal Execution state bit
15 bits (2) EL, // Exception Level
16 bits (1) nRW, // not Register Width: 0=64, 1=32
17 bits (1) SP, // Stack pointer select: 0=SP0, 1=SPx [AArch64 only]
18 bits (1) Q, // Cumulative saturation flag [AArch32 only]
19 bits (4) GE, // Greater than or Equal flags [AArch32 only]
20 bits (1) SSBS, // Speculative Store Bypass Safe
21 bits (8) IT, // If-then bits, RES0 in CPSR [AArch32 only]
22 bits (1) J, // J bit, RES0 [AArch32 only, RES0 in SPSR and CPSR]
23 bits (1) T, // T32 bit, RES0 in CPSR [AArch32 only]
24 bits (1) E, // Endianness bit [AArch32 only]
25 bits (5) M // Mode field [AArch32 only]
26)

5.668 shared/functions/system/SCRType

1 type SCRType;

5.669 shared/functions/system/SCR_GEN

1 // SCR_GEN[]
2 // =========
3
4 SCRType SCR_GEN[]
5 assert HaveEL(EL3);
6 return ZeroExtend(SCR_EL3);

5.670 shared/functions/system/SendEvent

1 // Signal an event to all PEs in a multiprocessor system to set their Event Registers.
2 // When a PE executes the SEV instruction, it causes this function to be executed
3 SendEvent();

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1279

Chapter 5. Pseudocode definitions
5.671. shared/functions/system/SendEventLocal

5.671 shared/functions/system/SendEventLocal

1 // SendEventLocal()
2 // ================
3 // Set the local Event Register of this PE.
4 // When a PE executes the SEVL instruction, it causes this function to be executed
5
6 SendEventLocal()
7 EventRegister = '1';
8 return;

5.672 shared/functions/system/SetPSTATEFromPSR

1 // SetPSTATEFromPSR()
2 // ==================
3 // Set PSTATE based on a PSR value
4
5 SetPSTATEFromPSR(bits(32) spsr)
6 PSTATE.SS = DebugExceptionReturnSS(spsr);
7 if IllegalExceptionReturn(spsr) then
8 PSTATE.IL = '1';
9 if HaveSSBSExt() then PSTATE.SSBS = bit UNKNOWN;

10 // PSTATE.C64 is unchanged if access to Morello is trapped at the target EL.
11 if HaveCapabilitiesExt() && !IsAccessToCapabilitiesEnabledAtEL(PSTATE.EL) then
12 PSTATE.C64 = '0';
13 else
14 // State that is reinstated only on a legal exception return
15 PSTATE.IL = spsr<20>;
16 PSTATE.nRW = '0';
17 PSTATE.EL = spsr<3:2>;
18 PSTATE.SP = spsr<0>;
19 if HaveSSBSExt() then PSTATE.SSBS = spsr<12>;
20 if HaveCapabilitiesExt() then
21 if IsAccessToCapabilitiesEnabledAtEL(PSTATE.EL) then
22 PSTATE.C64 = spsr<26>;
23 else
24 PSTATE.C64 = '0';
25
26 // If PSTATE.IL is set, it is CONSTRAINED UNPREDICTABLE whether the T bit is set to zero or
27 // copied from SPSR.
28 if PSTATE.IL == '1' && PSTATE.nRW == '1' then
29 if ConstrainUnpredictableBool(Unpredictable_ILZEROT) then spsr<5> = '0';
30
31 // State that is reinstated regardless of illegal exception return
32 PSTATE.<N,Z,C,V> = spsr<31:28>;
33 if HavePANExt() then PSTATE.PAN = spsr<22>;
34 if HaveUAOExt() then PSTATE.UAO = spsr<23>;
35 PSTATE.<D,A,I,F> = spsr<9:6>;
36 return;

5.673 shared/functions/system/ShouldAdvanceIT

1 boolean ShouldAdvanceIT;

5.674 shared/functions/system/SpeculationBarrier

1 SpeculationBarrier();

5.675 shared/functions/system/SynchronizeContext

1 SynchronizeContext();

5.676 shared/functions/system/SynchronizeErrors

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1280

Chapter 5. Pseudocode definitions
5.677. shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

1 // Implements the error synchronization event.
2 SynchronizeErrors();

5.677 shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts

1 // Take any pending unmasked physical SError interrupt
2 TakeUnmaskedPhysicalSErrorInterrupts(boolean iesb_req);

5.678 shared/functions/system/TakeUnmaskedSErrorInterrupts

1 // Take any pending unmasked physical SError interrupt or unmasked virtual SError
2 // interrupt.
3 TakeUnmaskedSErrorInterrupts();

5.679 shared/functions/system/ThisInstr

1 bits(32) ThisInstr();

5.680 shared/functions/system/ThisInstrLength

1 integer ThisInstrLength();

5.681 shared/functions/system/Unreachable

1 Unreachable()
2 assert FALSE;

5.682 shared/functions/system/UsingAArch32

1 // UsingAArch32()
2 // ==============
3 // Return TRUE if the current Exception level is using AArch32, FALSE if using AArch64.
4
5 boolean UsingAArch32()
6 boolean aarch32 = (PSTATE.nRW == '1');
7 if !HaveAnyAArch32() then assert !aarch32;
8 if HighestELUsingAArch32() then assert aarch32;
9 return aarch32;

5.683 shared/functions/system/WaitForEvent

1 // WaitForEvent()
2 // ==============
3 // PE suspends its operation and enters a low-power state
4 // if the Event Register is clear when the WFE is executed
5
6 WaitForEvent()
7 if EventRegister == '0' then
8 EnterLowPowerState();
9 return;

5.684 shared/functions/system/WaitForInterrupt

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1281

Chapter 5. Pseudocode definitions
5.685. shared/functions/unpredictable/ConstrainUnpredictable

1 // WaitForInterrupt()
2 // ==================
3 // PE suspends its operation to enter a low-power state
4 // until a WFI wake-up event occurs or the PE is reset
5
6 WaitForInterrupt()
7 EnterLowPowerState();
8 return;

5.685 shared/functions/unpredictable/ConstrainUnpredictable

1 // ConstrainUnpredictable()
2 // ========================
3 // Return the appropriate Constraint result to control the caller's behavior. The return value
4 // is IMPLEMENTATION DEFINED within a permitted list for each UNPREDICTABLE case.
5 // (The permitted list is determined by an assert or case statement at the call site.)
6
7 // NOTE: This version of the function uses an Unpredictable argument to define the call site.
8 // This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
9 // The extra argument is used here to allow this example definition. This is an example only and

10 // does not imply a fixed implementation of these behaviors. Indeed the intention is that it should
11 // be defined by each implementation, according to its implementation choices.
12
13 Constraint ConstrainUnpredictable(Unpredictable which)
14 case which of
15 when Unpredictable_WBOVERLAPLD
16 return Constraint_WBSUPPRESS; // return loaded value
17 when Unpredictable_WBOVERLAPST
18 return Constraint_NONE; // store pre-writeback value
19 when Unpredictable_LDPOVERLAP
20 return Constraint_UNDEF; // instruction is UNDEFINED
21 when Unpredictable_BASEOVERLAP
22 return Constraint_NONE; // use original address
23 when Unpredictable_DATAOVERLAP
24 return Constraint_NONE; // store original value
25 when Unpredictable_DEVPAGE2
26 return Constraint_FAULT; // take an alignment fault
27 when Unpredictable_INSTRDEVICE
28 return Constraint_NONE; // Do not take a fault
29 when Unpredictable_RESCPACR
30 return Constraint_UNKNOWN; // Map to UNKNOWN value
31 when Unpredictable_RESMAIR
32 return Constraint_UNKNOWN; // Map to UNKNOWN value
33 when Unpredictable_RESTEXCB
34 return Constraint_UNKNOWN; // Map to UNKNOWN value
35 when Unpredictable_RESDACR
36 return Constraint_UNKNOWN; // Map to UNKNOWN value
37 when Unpredictable_RESPRRR
38 return Constraint_UNKNOWN; // Map to UNKNOWN value
39 when Unpredictable_RESVTCRS
40 return Constraint_UNKNOWN; // Map to UNKNOWN value
41 when Unpredictable_RESTnSZ
42 return Constraint_FORCE; // Map to the limit value
43 when Unpredictable_LARGEIPA
44 return Constraint_FORCE; // Restrict the inputsize to the PAMax value
45 when Unpredictable_ESRCONDPASS
46 return Constraint_FALSE; // Report as "AL"
47 when Unpredictable_ILZEROIT
48 return Constraint_FALSE; // Do not zero PSTATE.IT
49 when Unpredictable_ILZEROT
50 return Constraint_FALSE; // Do not zero PSTATE.T
51 when Unpredictable_BPVECTORCATCHPRI
52 return Constraint_TRUE; // Debug Vector Catch: match on 2nd halfword
53 when Unpredictable_VCMATCHHALF
54 return Constraint_FALSE; // No match
55 when Unpredictable_VCMATCHDAPA
56 return Constraint_FALSE; // No match on Data Abort or Prefetch abort
57 when Unpredictable_WPMASKANDBAS
58 return Constraint_FALSE; // Watchpoint disabled
59 when Unpredictable_WPBASCONTIGUOUS
60 return Constraint_FALSE; // Watchpoint disabled
61 when Unpredictable_RESWPMASK
62 return Constraint_DISABLED; // Watchpoint disabled
63 when Unpredictable_WPMASKEDBITS
64 return Constraint_FALSE; // Watchpoint disabled
65 when Unpredictable_RESBPWPCTRL
66 return Constraint_DISABLED; // Breakpoint/watchpoint disabled
67 when Unpredictable_BPNOTIMPL
68 return Constraint_DISABLED; // Breakpoint disabled

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1282

Chapter 5. Pseudocode definitions
5.686. shared/functions/unpredictable/ConstrainUnpredictableBits

69 when Unpredictable_RESBPTYPE
70 return Constraint_DISABLED; // Breakpoint disabled
71 when Unpredictable_BPNOTCTXCMP
72 return Constraint_DISABLED; // Breakpoint disabled
73 when Unpredictable_BPMATCHHALF
74 return Constraint_FALSE; // No match
75 when Unpredictable_BPMISMATCHHALF
76 return Constraint_FALSE; // No match
77 when Unpredictable_RESTARTALIGNPC
78 return Constraint_FALSE; // Do not force alignment
79 when Unpredictable_RESTARTZEROUPPERPC
80 return Constraint_TRUE; // Force zero extension
81 when Unpredictable_ZEROUPPER
82 return Constraint_TRUE; // zero top halves of X registers
83 when Unpredictable_ERETZEROUPPERPC
84 return Constraint_TRUE; // zero top half of PC
85 when Unpredictable_A32FORCEALIGNPC
86 return Constraint_FALSE; // Do not force alignment
87 when Unpredictable_SMD
88 return Constraint_UNDEF; // disabled SMC is Unallocated
89 when Unpredictable_AFUPDATE // AF update for alignment or permission fault
90 return Constraint_TRUE;
91 when Unpredictable_IESBinDebug // Use SCTLR[].IESB in Debug state
92 return Constraint_TRUE;
93 when Unpredictable_BADPMSFCR // Bad settings for PMSFCR_EL1/PMSEVFR_EL1/PMSLATFR_EL1
94 return Constraint_TRUE;
95 when Unpredictable_CLEARERRITEZERO // Clearing sticky errors when instruction in flight
96 return Constraint_FALSE;
97 when Unpredictable_LINKTRANSFEROVERLAPLD // Link/transfer register overlap (load)
98 return Constraint_UNKNOWN;
99 when Unpredictable_LINKBASEOVERLAPLD // Link/base register overlap (load)

100 return Constraint_UNKNOWN;

5.686 shared/functions/unpredictable/ConstrainUnpredictableBits

1 // ConstrainUnpredictableBits()
2 // ============================
3
4 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN.
5 // If the result is Constraint_UNKNOWN then the function also returns UNKNOWN value, but that
6 // value is always an allocated value; that is, one for which the behavior is not itself
7 // CONSTRAINED.
8
9 // NOTE: This version of the function uses an Unpredictable argument to define the call site.

10 // This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
11 // See the NOTE on ConstrainUnpredictable() for more information.
12
13 // This is an example placeholder only and does not imply a fixed implementation of the bits part
14 // of the result, and may not be applicable in all cases.
15
16 (Constraint,bits(width)) ConstrainUnpredictableBits(Unpredictable which)
17
18 c = ConstrainUnpredictable(which);
19
20 if c == Constraint_UNKNOWN then
21 return (c, Zeros(width)); // See notes; this is an example implementation only
22 else
23 return (c, bits(width) UNKNOWN); // bits result not used

5.687 shared/functions/unpredictable/ConstrainUnpredictableBool

1 // ConstrainUnpredictableBool()
2 // ============================
3
4 // This is a simple wrapper function for cases where the constrained result is either TRUE or FALSE.
5
6 // NOTE: This version of the function uses an Unpredictable argument to define the call site.
7 // This argument does not appear in the version used in the Armv8 Architecture Reference Manual.
8 // See the NOTE on ConstrainUnpredictable() for more information.
9

10 boolean ConstrainUnpredictableBool(Unpredictable which)
11
12 c = ConstrainUnpredictable(which);
13 assert c IN {Constraint_TRUE, Constraint_FALSE};
14 return (c == Constraint_TRUE);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1283

Chapter 5. Pseudocode definitions
5.688. shared/functions/unpredictable/ConstrainUnpredictableInteger

5.688 shared/functions/unpredictable/ConstrainUnpredictableInteger

1 // ConstrainUnpredictableInteger()
2 // ===============================
3
4 // This is a variant of ConstrainUnpredictable for when the result can be Constraint_UNKNOWN. If
5 // the result is Constraint_UNKNOWN then the function also returns an UNKNOWN value in the range
6 // low to high, inclusive.
7
8 // NOTE: This version of the function uses an Unpredictable argument to define the call site.
9 // This argument does not appear in the version used in the Armv8 Architecture Reference Manual.

10 // See the NOTE on ConstrainUnpredictable() for more information.
11
12 // This is an example placeholder only and does not imply a fixed implementation of the integer part
13 // of the result.
14
15 (Constraint,integer) ConstrainUnpredictableInteger(integer low, integer high, Unpredictable which)
16
17 c = ConstrainUnpredictable(which);
18
19 if c == Constraint_UNKNOWN then
20 return (c, low); // See notes; this is an example implementation only
21 else
22 return (c, integer UNKNOWN); // integer result not used

5.689 shared/functions/unpredictable/Constraint

1 enumeration Constraint {// General
2 Constraint_NONE, // Instruction executes with
3 // no change or side-effect to its described

↪→behavior
4 Constraint_UNKNOWN, // Destination register has UNKNOWN value
5 Constraint_UNDEF, // Instruction is UNDEFINED
6 Constraint_UNDEFEL0, // Instruction is UNDEFINED at EL0 only
7 Constraint_NOP, // Instruction executes as NOP
8 Constraint_TRUE,
9 Constraint_FALSE,

10 Constraint_DISABLED,
11 Constraint_UNCOND, // Instruction executes unconditionally
12 Constraint_COND, // Instruction executes conditionally
13 Constraint_ADDITIONAL_DECODE, // Instruction executes with additional decode
14 // Load-store
15 Constraint_WBSUPPRESS, Constraint_FAULT,
16 // IPA too large
17 Constraint_FORCE, Constraint_FORCENOSLCHECK};

5.690 shared/functions/unpredictable/Unpredictable

1 enumeration Unpredictable {// Writeback/transfer register overlap (load)
2 Unpredictable_WBOVERLAPLD,
3 // Writeback/transfer register overlap (store)
4 Unpredictable_WBOVERLAPST,
5 // Load Pair transfer register overlap
6 Unpredictable_LDPOVERLAP,
7 // Store-exclusive base/status register overlap
8 Unpredictable_BASEOVERLAP,
9 // Store-exclusive data/status register overlap

10 Unpredictable_DATAOVERLAP,
11 // Load-store alignment checks
12 Unpredictable_DEVPAGE2,
13 // Instruction fetch from Device memory
14 Unpredictable_INSTRDEVICE,
15 // Reserved CPACR value
16 Unpredictable_RESCPACR,
17 // Reserved MAIR value
18 Unpredictable_RESMAIR,
19 // Reserved TEX:C:B value
20 Unpredictable_RESTEXCB,
21 // Reserved PRRR value
22 Unpredictable_RESPRRR,
23 // Reserved DACR field
24 Unpredictable_RESDACR,
25 // Reserved VTCR.S value

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1284

Chapter 5. Pseudocode definitions
5.691. shared/functions/vector/AdvSIMDExpandImm

26 Unpredictable_RESVTCRS,
27 // Reserved TCR.TnSZ value
28 Unpredictable_RESTnSZ,
29 // IPA size exceeds PA size
30 Unpredictable_LARGEIPA,
31 // Syndrome for a known-passing conditional A32 instruction
32 Unpredictable_ESRCONDPASS,
33 // Illegal State exception: zero PSTATE.IT
34 Unpredictable_ILZEROIT,
35 // Illegal State exception: zero PSTATE.T
36 Unpredictable_ILZEROT,
37 // Debug: prioritization of Vector Catch
38 Unpredictable_BPVECTORCATCHPRI,
39 // Debug Vector Catch: match on 2nd halfword
40 Unpredictable_VCMATCHHALF,
41 // Debug Vector Catch: match on Data Abort or Prefetch abort
42 Unpredictable_VCMATCHDAPA,
43 // Debug watchpoints: non-zero MASK and non-ones BAS
44 Unpredictable_WPMASKANDBAS,
45 // Debug watchpoints: non-contiguous BAS
46 Unpredictable_WPBASCONTIGUOUS,
47 // Debug watchpoints: reserved MASK
48 Unpredictable_RESWPMASK,
49 // Debug watchpoints: non-zero MASKed bits of address
50 Unpredictable_WPMASKEDBITS,
51 // Debug breakpoints and watchpoints: reserved control bits
52 Unpredictable_RESBPWPCTRL,
53 // Debug breakpoints: not implemented
54 Unpredictable_BPNOTIMPL,
55 // Debug breakpoints: reserved type
56 Unpredictable_RESBPTYPE,
57 // Debug breakpoints: not-context-aware breakpoint
58 Unpredictable_BPNOTCTXCMP,
59 // Debug breakpoints: match on 2nd halfword of instruction
60 Unpredictable_BPMATCHHALF,
61 // Debug breakpoints: mismatch on 2nd halfword of instruction
62 Unpredictable_BPMISMATCHHALF,
63 // Debug: restart to a misaligned AArch32 PC value
64 Unpredictable_RESTARTALIGNPC,
65 // Debug: restart to a not-zero-extended AArch32 PC value
66 Unpredictable_RESTARTZEROUPPERPC,
67 // Zero top 32 bits of X registers in AArch32 state
68 Unpredictable_ZEROUPPER,
69 // Zero top 32 bits of PC on illegal return to AArch32 state
70 Unpredictable_ERETZEROUPPERPC,
71 // Force address to be aligned when interworking branch to A32 state
72 Unpredictable_A32FORCEALIGNPC,
73 // SMC disabled
74 Unpredictable_SMD,
75 // Access Flag Update by HW
76 Unpredictable_AFUPDATE,
77 // Consider SCTLR[].IESB in Debug state
78 Unpredictable_IESBinDebug,
79 // Bad settings for PMSFCR_EL1/PMSEVFR_EL1/PMSLATFR_EL1
80 Unpredictable_BADPMSFCR,
81 // Link/transfer register overlap (load)
82 Unpredictable_LINKTRANSFEROVERLAPLD,
83 // Link/base register overlap (load)
84 Unpredictable_LINKBASEOVERLAPLD,
85 // Clearing DCC/ITR sticky flags when instruction is in flight
86 Unpredictable_CLEARERRITEZERO};

5.691 shared/functions/vector/AdvSIMDExpandImm

1 // AdvSIMDExpandImm()
2 // ==================
3
4 bits(64) AdvSIMDExpandImm(bit op, bits(4) cmode, bits(8) imm8)
5 case cmode<3:1> of
6 when '000'
7 imm64 = Replicate(Zeros(24):imm8, 2);
8 when '001'
9 imm64 = Replicate(Zeros(16):imm8:Zeros(8), 2);

10 when '010'
11 imm64 = Replicate(Zeros(8):imm8:Zeros(16), 2);
12 when '011'
13 imm64 = Replicate(imm8:Zeros(24), 2);
14 when '100'
15 imm64 = Replicate(Zeros(8):imm8, 4);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1285

Chapter 5. Pseudocode definitions
5.692. shared/functions/vector/MatMulAdd

16 when '101'
17 imm64 = Replicate(imm8:Zeros(8), 4);
18 when '110'
19 if cmode<0> == '0' then
20 imm64 = Replicate(Zeros(16):imm8:Ones(8), 2);
21 else
22 imm64 = Replicate(Zeros(8):imm8:Ones(16), 2);
23 when '111'
24 if cmode<0> == '0' && op == '0' then
25 imm64 = Replicate(imm8, 8);
26 if cmode<0> == '0' && op == '1' then
27 imm8a = Replicate(imm8<7>, 8); imm8b = Replicate(imm8<6>, 8);
28 imm8c = Replicate(imm8<5>, 8); imm8d = Replicate(imm8<4>, 8);
29 imm8e = Replicate(imm8<3>, 8); imm8f = Replicate(imm8<2>, 8);
30 imm8g = Replicate(imm8<1>, 8); imm8h = Replicate(imm8<0>, 8);
31 imm64 = imm8a:imm8b:imm8c:imm8d:imm8e:imm8f:imm8g:imm8h;
32 if cmode<0> == '1' && op == '0' then
33 imm32 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,5):imm8<5:0>:Zeros(19);
34 imm64 = Replicate(imm32, 2);
35 if cmode<0> == '1' && op == '1' then
36 if UsingAArch32() then ReservedEncoding();
37 imm64 = imm8<7>:NOT(imm8<6>):Replicate(imm8<6>,8):imm8<5:0>:Zeros(48);
38
39 return imm64;

5.692 shared/functions/vector/MatMulAdd

1 // MatMulAdd()
2 // ===========
3 //
4 // Signed or unsigned 8-bit integer matrix multiply and add to 32-bit integer matrix
5 // result[2, 2] = addend[2, 2] + (op1[2, 8] * op2[8, 2])
6
7 bits(N) MatMulAdd(bits(N) addend, bits(N) op1, bits(N) op2, boolean op1_unsigned, boolean op2_unsigned)
8 assert N == 128;
9

10 bits(N) result;
11 bits(32) sum;
12 integer prod;
13
14 for i = 0 to 1
15 for j = 0 to 1
16 sum = Elem[addend, 2*i + j, 32];
17 for k = 0 to 7
18 prod = Int(Elem[op1, 8*i + k, 8], op1_unsigned) * Int(Elem[op2, 8*j + k, 8], op2_unsigned);
19 sum = sum + prod;
20 Elem[result, 2*i + j, 32] = sum;
21
22 return result;

5.693 shared/functions/vector/PolynomialMult

1 // PolynomialMult()
2 // ================
3
4 bits(M+N) PolynomialMult(bits(M) op1, bits(N) op2)
5 result = Zeros(M+N);
6 extended_op2 = ZeroExtend(op2, M+N);
7 for i=0 to M-1
8 if op1<i> == '1' then
9 result = result EOR LSL(extended_op2, i);

10 return result;

5.694 shared/functions/vector/SatQ

1 // SatQ()
2 // ======
3
4 (bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
5 (result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
6 return (result, sat);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1286

Chapter 5. Pseudocode definitions
5.695. shared/functions/vector/SignedSatQ

5.695 shared/functions/vector/SignedSatQ

1 // SignedSatQ()
2 // ============
3
4 (bits(N), boolean) SignedSatQ(integer i, integer N)
5 if i > 2^(N-1) - 1 then
6 result = 2^(N-1) - 1; saturated = TRUE;
7 elsif i < -(2^(N-1)) then
8 result = -(2^(N-1)); saturated = TRUE;
9 else

10 result = i; saturated = FALSE;
11 return (result<N-1:0>, saturated);

5.696 shared/functions/vector/UnsignedRSqrtEstimate

1 // UnsignedRSqrtEstimate()
2 // =======================
3
4 bits(N) UnsignedRSqrtEstimate(bits(N) operand)
5 assert N IN {16,32};
6 if operand<N-1:N-2> == '00' then // Operands <= 0x3FFFFFFF produce 0xFFFFFFFF
7 result = Ones(N);
8 else
9 // input is in the range 0x40000000 .. 0xffffffff representing [0.25 .. 1.0)

10
11 // estimate is in the range 256 .. 511 representing [1.0 .. 2.0)
12 case N of
13 when 16 estimate = RecipSqrtEstimate(UInt(operand<15:7>));
14 when 32 estimate = RecipSqrtEstimate(UInt(operand<31:23>));
15
16 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
17 result = estimate<8:0> : Zeros(N-9);
18
19 return result;

5.697 shared/functions/vector/UnsignedRecipEstimate

1 // UnsignedRecipEstimate()
2 // =======================
3
4 bits(N) UnsignedRecipEstimate(bits(N) operand)
5 assert N IN {16,32};
6 if operand<N-1> == '0' then // Operands <= 0x7FFFFFFF produce 0xFFFFFFFF
7 result = Ones(N);
8 else
9 // input is in the range 0x80000000 .. 0xffffffff representing [0.5 .. 1.0)

10
11 // estimate is in the range 256 to 511 representing [1.0 .. 2.0)
12 case N of
13 when 16 estimate = RecipEstimate(UInt(operand<15:7>));
14 when 32 estimate = RecipEstimate(UInt(operand<31:23>));
15
16 // result is in the range 0x80000000 .. 0xff800000 representing [1.0 .. 2.0)
17 result = estimate<8:0> : Zeros(N-9);
18
19 return result;

5.698 shared/functions/vector/UnsignedSatQ

1 // UnsignedSatQ()
2 // ==============
3
4 (bits(N), boolean) UnsignedSatQ(integer i, integer N)
5 if i > 2^N - 1 then
6 result = 2^N - 1; saturated = TRUE;
7 elsif i < 0 then
8 result = 0; saturated = TRUE;
9 else

10 result = i; saturated = FALSE;
11 return (result<N-1:0>, saturated);

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1287

Chapter 5. Pseudocode definitions
5.699. shared/translation/attrs/CanonicalizeMemoryAttributes

5.699 shared/translation/attrs/CanonicalizeMemoryAttributes

1 // CanonicalizeMemoryAttributes()
2 // ==============================
3 // Canoninicalize the memory attributes for Device and Non-cacheable memory types.
4
5 MemoryAttributes CanonicalizeMemoryAttributes(MemoryAttributes memattrs)
6
7 if memattrs.memtype == MemType_Device then
8 memattrs.inner = MemAttrHints UNKNOWN;
9 memattrs.outer = MemAttrHints UNKNOWN;

10 memattrs.shareable = TRUE;
11 memattrs.outershareable = TRUE;
12 else
13 memattrs.device = DeviceType UNKNOWN;
14 if memattrs.inner.attrs == MemAttr_NC && memattrs.outer.attrs == MemAttr_NC then
15 memattrs.shareable = TRUE;
16 memattrs.outershareable = TRUE;
17
18 return memattrs;

5.700 shared/translation/attrs/CombineS1S2AttrHints

1 // CombineS1S2AttrHints()
2 // ======================
3 // Combines cacheability attributes and allocation hints from stage 1 and stage 2
4
5 MemAttrHints CombineS1S2AttrHints(MemAttrHints s1desc, MemAttrHints s2desc)
6
7 MemAttrHints result;
8
9 if s2desc.attrs == '01' || s1desc.attrs == '01' then

10 result.attrs = bits(2) UNKNOWN; // Reserved
11 elsif s2desc.attrs == MemAttr_NC || s1desc.attrs == MemAttr_NC then
12 result.attrs = MemAttr_NC; // Non-cacheable
13 elsif s2desc.attrs == MemAttr_WT || s1desc.attrs == MemAttr_WT then
14 result.attrs = MemAttr_WT; // Write-through
15 else
16 result.attrs = MemAttr_WB; // Write-back
17
18 result.hints = s1desc.hints;
19 result.transient = s1desc.transient;
20
21 return result;

5.701 shared/translation/attrs/CombineS1S2Device

1 // CombineS1S2Device()
2 // ===================
3 // Combines device types from stage 1 and stage 2
4
5 DeviceType CombineS1S2Device(DeviceType s1device, DeviceType s2device)
6
7 if s2device == DeviceType_nGnRnE || s1device == DeviceType_nGnRnE then
8 result = DeviceType_nGnRnE;
9 elsif s2device == DeviceType_nGnRE || s1device == DeviceType_nGnRE then

10 result = DeviceType_nGnRE;
11 elsif s2device == DeviceType_nGRE || s1device == DeviceType_nGRE then
12 result = DeviceType_nGRE;
13 else
14 result = DeviceType_GRE;
15
16 return result;

5.702 shared/translation/attrs/CombineS1S2LCSC

1 // CombineS1S2LCSC()
2 // =================
3 // Combine attributes protecting capability tag access
4

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1288

Chapter 5. Pseudocode definitions
5.703. shared/translation/attrs/LongConvertAttrsHints

5 MemoryAttributes CombineS1S2LCSC(MemoryAttributes new_attr, MemoryAttributes s1_attr, MemoryAttributes
↪→s2_attr)

6
7 new_attr.readtagzero = s1_attr.readtagzero || s2_attr.readtagzero;
8 new_attr.readtagfault = s1_attr.readtagfault && !s2_attr.readtagzero;
9 new_attr.readtagfaulttgen = s1_attr.readtagfaulttgen;

10
11 new_attr.writetagfault = s1_attr.writetagfault || s2_attr.writetagfault;
12 assert !s1_attr.iss2writetagfault;
13 new_attr.iss2writetagfault = !s1_attr.writetagfault && s2_attr.iss2writetagfault;
14
15 return new_attr;

5.703 shared/translation/attrs/LongConvertAttrsHints

1 // LongConvertAttrsHints()
2 // =======================
3 // Convert the long attribute fields for Normal memory as used in the MAIR fields
4 // to orthogonal attributes and hints
5
6 MemAttrHints LongConvertAttrsHints(bits(4) attrfield, AccType acctype)
7 assert !IsZero(attrfield);
8 MemAttrHints result;
9 if S1CacheDisabled(acctype) then // Force Non-cacheable

10 result.attrs = MemAttr_NC;
11 result.hints = MemHint_No;
12 else
13 if attrfield<3:2> == '00' then // Write-through transient
14 result.attrs = MemAttr_WT;
15 result.hints = attrfield<1:0>;
16 result.transient = TRUE;
17 elsif attrfield<3:0> == '0100' then // Non-cacheable (no allocate)
18 result.attrs = MemAttr_NC;
19 result.hints = MemHint_No;
20 result.transient = FALSE;
21 elsif attrfield<3:2> == '01' then // Write-back transient
22 result.attrs = MemAttr_WB;
23 result.hints = attrfield<1:0>;
24 result.transient = TRUE;
25 else // Write-through/Write-back non-transient
26 result.attrs = attrfield<3:2>;
27 result.hints = attrfield<1:0>;
28 result.transient = FALSE;
29
30 return result;

5.704 shared/translation/attrs/S1CacheDisabled

1 // S1CacheDisabled()
2 // =================
3
4 boolean S1CacheDisabled(AccType acctype)
5 enable = if acctype == AccType_IFETCH then SCTLR[].I else SCTLR[].C;
6 return enable == '0';

5.705 shared/translation/attrs/S2AttrDecode

1 // S2AttrDecode()
2 // ==============
3 // Converts the Stage 2 attribute fields into orthogonal attributes and hints
4
5 MemoryAttributes S2AttrDecode(bits(2) SH, bits(4) attr, AccType acctype)
6
7 MemoryAttributes memattrs;
8
9 // Device memory

10 if attr<3:2> == '00' then
11 memattrs.memtype = MemType_Device;
12 case attr<1:0> of
13 when '00' memattrs.device = DeviceType_nGnRnE;
14 when '01' memattrs.device = DeviceType_nGnRE;
15 when '10' memattrs.device = DeviceType_nGRE;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1289

Chapter 5. Pseudocode definitions
5.706. shared/translation/attrs/S2CacheDisabled

16 when '11' memattrs.device = DeviceType_GRE;
17
18 // Normal memory
19 elsif attr<1:0> != '00' then
20 memattrs.memtype = MemType_Normal;
21 memattrs.outer = S2ConvertAttrsHints(attr<3:2>, acctype);
22 memattrs.inner = S2ConvertAttrsHints(attr<1:0>, acctype);
23 memattrs.shareable = SH<1> == '1';
24 memattrs.outershareable = SH == '10';
25 else
26 memattrs = MemoryAttributes UNKNOWN; // Reserved
27
28 return CanonicalizeMemoryAttributes(memattrs);

5.706 shared/translation/attrs/S2CacheDisabled

1 // S2CacheDisabled()
2 // =================
3
4 boolean S2CacheDisabled(AccType acctype)
5 disable = if acctype == AccType_IFETCH then HCR_EL2.ID else HCR_EL2.CD;
6 return disable == '1';

5.707 shared/translation/attrs/S2ConvertAttrsHints

1 // S2ConvertAttrsHints()
2 // =====================
3 // Converts the attribute fields for Normal memory as used in stage 2
4 // descriptors to orthogonal attributes and hints
5
6 MemAttrHints S2ConvertAttrsHints(bits(2) attr, AccType acctype)
7 assert !IsZero(attr);
8
9 MemAttrHints result;

10
11 case attr of
12 when '01' // Non-cacheable (no allocate)
13 result.attrs = MemAttr_NC;
14 result.hints = MemHint_No;
15 when '10' // Write-through
16 result.attrs = MemAttr_WT;
17 result.hints = MemHint_RWA;
18 when '11' // Write-back
19 result.attrs = MemAttr_WB;
20 result.hints = MemHint_RWA;
21
22 result.transient = FALSE;
23
24 return result;

5.708 shared/translation/attrs/ShortConvertAttrsHints

1 // ShortConvertAttrsHints()
2 // ========================
3 // Converts the short attribute fields for Normal memory as used in the TTBR and
4 // TEX fields to orthogonal attributes and hints
5
6 MemAttrHints ShortConvertAttrsHints(bits(2) RGN, AccType acctype, boolean secondstage)
7
8 MemAttrHints result;
9

10 if (!secondstage && S1CacheDisabled(acctype)) || (secondstage && S2CacheDisabled(acctype)) then
11 // Force Non-cacheable
12 result.attrs = MemAttr_NC;
13 result.hints = MemHint_No;
14 else
15 case RGN of
16 when '00' // Non-cacheable (no allocate)
17 result.attrs = MemAttr_NC;
18 result.hints = MemHint_No;
19 when '01' // Write-back, Read and Write allocate
20 result.attrs = MemAttr_WB;

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1290

Chapter 5. Pseudocode definitions
5.709. shared/translation/attrs/WalkAttrDecode

21 result.hints = MemHint_RWA;
22 when '10' // Write-through, Read allocate
23 result.attrs = MemAttr_WT;
24 result.hints = MemHint_RA;
25 when '11' // Write-back, Read allocate
26 result.attrs = MemAttr_WB;
27 result.hints = MemHint_RA;
28
29 result.transient = FALSE;
30
31 return result;

5.709 shared/translation/attrs/WalkAttrDecode

1 // WalkAttrDecode()
2 // ================
3
4 MemoryAttributes WalkAttrDecode(bits(2) SH, bits(2) ORGN, bits(2) IRGN, boolean secondstage)
5
6 MemoryAttributes memattrs;
7
8 AccType acctype = AccType_NORMAL;
9

10 memattrs.memtype = MemType_Normal;
11 memattrs.inner = ShortConvertAttrsHints(IRGN, acctype, secondstage);
12 memattrs.outer = ShortConvertAttrsHints(ORGN, acctype, secondstage);
13 memattrs.shareable = SH<1> == '1';
14 memattrs.outershareable = SH == '10';
15
16 return CanonicalizeMemoryAttributes(memattrs);

5.710 shared/translation/translation/HasS2Translation

1 // HasS2Translation()
2 // ==================
3 // Returns TRUE if stage 2 translation is present for the current translation regime
4
5 boolean HasS2Translation()
6 return (EL2Enabled() && !IsInHost() && PSTATE.EL IN {EL0,EL1});

5.711 shared/translation/translation/Have16bitVMID

1 // Have16bitVMID()
2 // ===============
3 // Returns TRUE if EL2 and support for a 16-bit VMID are implemented.
4
5 boolean Have16bitVMID()
6 return HaveEL(EL2) && boolean IMPLEMENTATION_DEFINED;

5.712 shared/translation/translation/PAMax

1 // PAMax()
2 // =======
3 // Returns the IMPLEMENTATION DEFINED upper limit on the physical address
4 // size for this processor, as log2().
5
6 integer PAMax()
7 return integer IMPLEMENTATION_DEFINED "Maximum Physical Address Size";

5.713 shared/translation/translation/S1TranslationRegime

1 // S1TranslationRegime()
2 // =====================
3 // Stage 1 translation regime for the given Exception level
4

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1291

Chapter 5. Pseudocode definitions
5.714. shared/translation/translation/VAMax

5 bits(2) S1TranslationRegime(bits(2) el)
6 if el != EL0 then
7 return el;
8 elsif HaveVirtHostExt() && ELIsInHost(el) then
9 return EL2;

10 else
11 return EL1;
12
13 // S1TranslationRegime()
14 // =====================
15 // Returns the Exception level controlling the current Stage 1 translation regime. For the most
16 // part this is unused in code because the system register accessors (SCTLR[], etc.) implicitly
17 // return the correct value.
18
19 bits(2) S1TranslationRegime()
20 return S1TranslationRegime(PSTATE.EL);

5.714 shared/translation/translation/VAMax

1 // VAMax()
2 // =======
3 // Returns the IMPLEMENTATION DEFINED upper limit on the virtual address
4 // size for this processor, as log2().
5
6 integer VAMax()
7 return integer IMPLEMENTATION_DEFINED "Maximum Virtual Address Size";

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1292

Chapter 6
Glossary

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1293

Chapter 6. Glossary

Manipulating a capability

An operation manipulates a capability if it changes the rights of that capability by copying the rights to a new
capability.

Using a capability

An operation uses a capability if it relies on the permissions granted by that capability.

DDI0606
A.k

Copyright © 2019-2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1294

	Release information
	Non-Confidential Proprietary Notice
	Product Status
	Changes in PROTO_REL_04
	Known issues
	Contents
	Preface
	About this book
	Conventions
	Signals
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Rules-based writing
	Identifiers
	Examples

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this book

	Progressive terminology commitment

	1 Introduction
	1.1 About the Morello architecture
	1.2 The CHERI protection model
	1.3 The Morello architecture in the Armv8-A profile
	1.3.1 Capability registers and memory
	1.3.2 Capability tagged memory
	1.3.3 ISA
	1.3.4 Controlled non-monotonicity
	1.3.5 Capability memory protection
	1.3.6 Capability protection for System registers and instructions
	1.3.7 Capability memory relocation
	1.3.8 Recursive immutability
	1.3.9 The Virtual Memory System Architecture
	1.3.10 Debug and trace

	1.4 The Morello architecture features

	2 Capability architecture rules
	2.1 Capabilities
	2.2 Capability registers
	2.3 Changes to Armv8 terminology
	2.4 Capabilities in memory
	2.5 Capability encoding
	2.5.1 Morello Bounds format
	2.5.2 Representability checks

	2.6 Manipulating capabilities
	2.6.1 Monotonic manipulation: sealing operations
	2.6.2 Controlled non-monotonic manipulation

	2.7 Using capabilities
	2.7.1 System permission
	2.7.2 Capability memory protection
	2.7.3 Capability memory protection exceptions
	2.7.4 Recursive immutability

	2.8 Capability memory relocation
	2.9 Compartment ID
	2.10 Instruction set selection
	2.11 Reset
	2.12 Access to the Morello architecture
	2.13 Exception model
	2.13.1 Non-capability exception entry or return
	2.13.2 Capability exception entry and return
	2.13.3 Exception types
	2.13.4 Exception routing
	2.13.5 Exception priorities

	2.14 The Virtual Memory System Architecture
	2.14.1 Translation table descriptors

	2.15 Self-hosted debug
	2.15.1 Watchpoints

	2.16 The Embedded Trace Macrocell architecture
	2.16.1 Exception instruction trace element
	2.16.2 Address and Context tracing packets

	2.17 Performance Monitoring Unit
	2.18 Statistical profiling extension
	2.18.1 The Statistical Profiling Buffer
	2.18.2 Statistical profiling extension packets

	2.19 External debug
	2.19.1 Entering Debug state
	2.19.2 Exiting Debug state
	2.19.3 Executing instructions in Debug state
	2.19.4 Instructions in Debug state
	2.19.5 Debug Communications Channel (DCC) access

	3 Register definitions
	3.1 Register index
	3.1.1 AArch64 registers
	3.1.2 Changes to existing registers
	3.1.3 New registers added by Morello
	3.1.4 External registers

	3.2 Alphabetical list of registers
	3.2.1 CCTLR_EL0, Capability Control Register (EL0)
	Field descriptions
	Bits [63:8]
	SBL, bit [7]
	PERMVCT, bit [6]
	Bit [5]
	ADRDPB, bit [4]
	PCCBO, bit [3]
	DDCBO, bit [2]
	Bits [1:0]

	Accessing the CCTLR_EL0
	Read using name CCTLR_EL0
	Write using name CCTLR_EL0

	3.2.2 CCTLR_EL1, Capability Control Register (EL1)
	Field descriptions
	Bits [63:8]
	SBL, bit [7]
	PERMVCT, bit [6]
	C64E, bit [5]
	ADRDPB, bit [4]
	PCCBO, bit [3]
	DDCBO, bit [2]
	TGEN1, bit [1]
	TGEN0, bit [0]

	Accessing the CCTLR_EL1
	Read using name CCTLR_EL1
	Write using name CCTLR_EL1
	Read using name CCTLR_EL12
	Write using name CCTLR_EL12

	3.2.3 CCTLR_EL2, Capability Control Register (EL2)
	Field descriptions
	Bits [63:8]
	SBL, bit [7]
	PERMVCT, bit [6]
	C64E, bit [5]
	ADRDPB, bit [4]
	PCCBO, bit [3]
	DDCBO, bit [2]
	TGEN1, bit [1]
	TGEN0, bit [0]

	Accessing the CCTLR_EL2
	Read using name CCTLR_EL2
	Write using name CCTLR_EL2
	Read using name CCTLR_EL1
	Write using name CCTLR_EL1

	3.2.4 CCTLR_EL3, Capability Control Register (EL3)
	Field descriptions
	Bits [63:8]
	SBL, bit [7]
	PERMVCT, bit [6]
	C64E, bit [5]
	ADRDPB, bit [4]
	PCCBO, bit [3]
	DDCBO, bit [2]
	Bit [1]
	TGEN0, bit [0]

	Accessing the CCTLR_EL3
	Read using name CCTLR_EL3
	Write using name CCTLR_EL3

	3.2.5 CDBGDTR_EL0, Capability Debug Data Transfer Register, half-duplex
	Field descriptions
	Bits [128:0]

	Accessing the CDBGDTR_EL0
	Read using name CDBGDTR_EL0
	Write using name CDBGDTR_EL0

	3.2.6 CDLR_EL0, Capability Debug Link Register
	Field descriptions
	Bits [128:0]

	Accessing the CDLR_EL0
	Read using name CDLR_EL0
	Write using name CDLR_EL0

	3.2.7 CHCR_EL2, Capability Hypervisor Configuration Register
	Field descriptions
	Bits [63:1]
	SETTAG, bit [0]

	Accessing the CHCR_EL2
	Read using name CHCR_EL2
	Write using name CHCR_EL2

	3.2.8 CID_EL0, Compartment ID Register
	Field descriptions
	Bits [128:0]

	Accessing the CID_EL0
	Read using name CID_EL0
	Write using name CID_EL0

	3.2.9 CNTVCT_EL0, Counter-timer Virtual Count register
	Field descriptions
	Bits [63:0]

	Accessing the CNTVCT_EL0
	Read using name CNTVCT_EL0

	3.2.10 CPACR_EL1, Architectural Feature Access Control Register
	Field descriptions
	Bits [63:29]
	TTA, bit [28]
	Bits [27:22]
	FPEN, bits [21:20]
	CEN, bits [19:18]
	ZEN, bits [17:16]
	Bits [15:0]

	Accessing the CPACR_EL1
	Read using name CPACR_EL1
	Write using name CPACR_EL1
	Read using name CPACR_EL12
	Write using name CPACR_EL12

	3.2.11 CPTR_EL2, Architectural Feature Trap Register (EL2)
	Field descriptions
	When ARMv8.1-VHE is implemented and HCR_EL2.E2H == 1:
	Bits [63:32]
	TCPAC, bit [31]
	Bit [30:29]
	TTA, bit [28]
	Bits [27:22]
	FPEN, bits [21:20]
	CEN, bits [19:18]
	ZEN, bits [17:16]
	Bits [15:0]

	Otherwise:
	Bits [63:32]
	TCPAC, bit [31]
	Bit [30:21]
	TTA, bit [20]
	Bits [19:14]
	Bits [13:12]
	Bit [11]
	TFP, bit [10]
	TC, bit [9]
	TZ, bit [8]
	Bits [7:0]

	Accessing the CPTR_EL2
	Read using name CPTR_EL2
	Write using name CPTR_EL2
	Read using name CPACR_EL1
	Write using name CPACR_EL1

	3.2.12 CPTR_EL3, Architectural Feature Trap Register (EL3)
	Field descriptions
	Bits [63:32]
	TCPAC, bit [31]
	Bit [30:21]
	TTA, bit [20]
	Bits [19:11]
	TFP, bit [10]
	EC, bit [9]
	EZ, bit [8]
	Bits [7:0]

	Accessing the CPTR_EL3
	Read using name CPTR_EL3
	Write using name CPTR_EL3

	3.2.13 CSCR_EL3, Capability Secure Configuration Register
	Field descriptions
	Bits [63:1]
	SETTAG, bit [0]

	Accessing the CSCR_EL3
	Read using name CSCR_EL3
	Write using name CSCR_EL3

	3.2.14 DBGDTR2A, Debug Data Transfer Register 2A
	Field descriptions
	Bits [31:0]

	Accessing the DBGDTR2A

	3.2.15 DBGDTR2B, Debug Data Transfer Register 2B
	Field descriptions
	Bits [31:0]

	Accessing the DBGDTR2B

	3.2.16 DDC_EL0, Default Data Capability (EL0)
	Field descriptions
	Bits [128:0]

	Accessing the DDC_EL0
	Read using name DDC_EL0
	Write using name DDC_EL0
	Read using name DDC
	Write using name DDC

	3.2.17 DDC_EL1, Default Data Capability (EL1)
	Field descriptions
	Bits [128:0]

	Accessing the DDC_EL1
	Read using name DDC_EL1
	Write using name DDC_EL1
	Read using name DDC
	Write using name DDC

	3.2.18 DDC_EL2, Default Data Capability (EL2)
	Field descriptions
	Bits [128:0]

	Accessing the DDC_EL2
	Read using name DDC_EL2
	Write using name DDC_EL2
	Read using name DDC
	Write using name DDC

	3.2.19 DDC_EL3, Default Data Capability (EL3)
	Field descriptions
	Bits [128:0]

	Accessing the DDC_EL3
	Read using name DDC
	Write using name DDC

	3.2.20 DSPSR_EL0, Debug Saved Program Status Register
	Field descriptions
	When exiting Debug state to AArch32 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Q, bit [27]
	IT[1:0], bits [26:25]
	Bit [24]
	SSBS, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	GE, bits [19:16]
	IT[7:2], bits [15:10]
	E, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	T, bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	When entering Debug state from AArch64 state and exiting Debug state to AArch64 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Bit [27]
	C64, bit [26]
	Bit [25:24]
	UAO, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	Bits [19:13]
	SSBS, bit [12]
	Bits [11:10]
	D, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	Bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	Accessing the DSPSR_EL0
	Read using name DSPSR_EL0
	Write using name DSPSR_EL0

	3.2.21 EDSCR2, External Debug Status and Control Register 2
	Field descriptions
	Bits [31:5]
	CE, bits [4:1]
	DTRTAG, bit [0]

	Accessing the EDSCR2

	3.2.22 ELR_EL1, Exception Link Register (EL1)
	Field descriptions
	When Morello is implemented and Capability access at EL1 is not trapped:
	Bits [128:0]

	When Morello is implemented and Capability access at EL1 is trapped:
	Bits [128:64]
	Bits [63:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the ELR_EL1
	Read using name ELR_EL1
	Write using name ELR_EL1
	Read using name ELR_EL12
	Write using name ELR_EL12
	Read using name CELR_EL1
	Write using name CELR_EL1
	Read using name CELR_EL12
	Write using name CELR_EL12

	3.2.23 ELR_EL2, Exception Link Register (EL2)
	Field descriptions
	When Morello is implemented and Capability access at EL2 is not trapped:
	Bits [128:0]

	When Morello is implemented and Capability access at EL2 is trapped:
	Bits [128:64]
	Bits [63:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the ELR_EL2
	Read using name ELR_EL2
	Write using name ELR_EL2
	Read using name ELR_EL1
	Write using name ELR_EL1
	Read using name CELR_EL2
	Write using name CELR_EL2
	Read using name CELR_EL1
	Write using name CELR_EL1

	3.2.24 ELR_EL3, Exception Link Register (EL3)
	Field descriptions
	When Morello is implemented and Capability access at EL3 is not trapped:
	Bits [128:0]

	When Morello is implemented and Capability access at EL3 is trapped:
	Bits [128:64]
	Bits [63:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the ELR_EL3
	Read using name ELR_EL3
	Write using name ELR_EL3
	Read using name CELR_EL3
	Write using name CELR_EL3

	3.2.25 ESR_EL1, Exception Syndrome Register (EL1)
	Field descriptions
	Bits [63:32]
	EC, bits [31:26]
	IL, bit [25]
	ISS, bits [24:0]
	exceptions with an unknown reason
	an exception from a WFI or WFE instruction
	an exception from an MCR or MRC access
	an exception from an MCRR or MRRC access
	an exception from an LDC or STC instruction
	an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from CPACR_EL1.FPEN, CPTR_EL2.FPEN or CPTR_ELx.TFP
	an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ
	an exception from an Illegal Execution state, or a PC or SP alignment fault
	an exception from HVC or SVC instruction execution
	an exception from SMC instruction execution in AArch32 state
	an exception from SMC instruction execution in AArch64 state
	an exception from MSR, MRS, or System instruction execution in AArch64 state
	an IMPLEMENTATION DEFINED exception to EL3
	an exception from an Instruction Abort
	an exception from a Data Abort
	an exception from an access to the Morello architecture
	an exception from capability MSR or MRS instruction execution
	an exception from a trapped floating-point exception
	an SError interrupt
	an exception from a Breakpoint or Vector Catch debug exception
	an exception from a Software Step exception
	an exception from a Watchpoint exception
	an exception from execution of a Breakpoint instruction
	an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0
	an exception from a Pointer Authentication instruction authentication failure

	Accessing the ESR_EL1
	Read using name ESR_EL1
	Write using name ESR_EL1
	Read using name ESR_EL12
	Write using name ESR_EL12

	3.2.26 ESR_EL2, Exception Syndrome Register (EL2)
	Field descriptions
	Bits [63:32]
	EC, bits [31:26]
	IL, bit [25]
	ISS, bits [24:0]
	exceptions with an unknown reason
	an exception from a WFI or WFE instruction
	an exception from an MCR or MRC access
	an exception from an MCRR or MRRC access
	an exception from an LDC or STC instruction
	an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from CPACR_EL1.FPEN, CPTR_EL2.FPEN or CPTR_ELx.TFP
	an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ
	an exception from an Illegal Execution state, or a PC or SP alignment fault
	an exception from HVC or SVC instruction execution
	an exception from SMC instruction execution in AArch32 state
	an exception from SMC instruction execution in AArch64 state
	an exception from MSR, MRS, or System instruction execution in AArch64 state
	an IMPLEMENTATION DEFINED exception to EL3
	an exception from an Instruction Abort
	an exception from a Data Abort
	an exception from an access to the Morello architecture
	an exception from capability MSR or MRS instruction execution
	an exception from a trapped floating-point exception
	an SError interrupt
	an exception from a Breakpoint or Vector Catch debug exception
	an exception from a Software Step exception
	an exception from a Watchpoint exception
	an exception from execution of a Breakpoint instruction
	an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0
	an exception from a Pointer Authentication instruction authentication failure

	Accessing the ESR_EL2
	Read using name ESR_EL2
	Write using name ESR_EL2
	Read using name ESR_EL1
	Write using name ESR_EL1

	3.2.27 ESR_EL3, Exception Syndrome Register (EL3)
	Field descriptions
	Bits [63:32]
	EC, bits [31:26]
	IL, bit [25]
	ISS, bits [24:0]
	exceptions with an unknown reason
	an exception from a WFI or WFE instruction
	an exception from an MCR or MRC access
	an exception from an MCRR or MRRC access
	an exception from an LDC or STC instruction
	an exception from an access to SVE, Advanced SIMD or floating-point functionality, resulting from CPACR_EL1.FPEN, CPTR_EL2.FPEN or CPTR_ELx.TFP
	an exception from an access to SVE functionality, resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or CPTR_EL3.EZ
	an exception from an Illegal Execution state, or a PC or SP alignment fault
	an exception from HVC or SVC instruction execution
	an exception from SMC instruction execution in AArch32 state
	an exception from SMC instruction execution in AArch64 state
	an exception from MSR, MRS, or System instruction execution in AArch64 state
	an IMPLEMENTATION DEFINED exception to EL3
	an exception from an Instruction Abort
	an exception from a Data Abort
	an exception from an access to the Morello architecture
	an exception from capability MSR or MRS instruction execution
	an exception from a trapped floating-point exception
	an SError interrupt
	an exception from a Breakpoint or Vector Catch debug exception
	an exception from a Software Step exception
	an exception from a Watchpoint exception
	an exception from execution of a Breakpoint instruction
	an exception from a Pointer Authentication instruction when HCR_EL2.API == 0 || SCR_EL3.API == 0
	an exception from a Pointer Authentication instruction authentication failure

	Accessing the ESR_EL3
	Read using name ESR_EL3
	Write using name ESR_EL3

	3.2.28 FAR_EL1, Fault Address Register (EL1)
	Field descriptions
	Bits [63:0]

	Accessing the FAR_EL1
	Read using name FAR_EL1
	Write using name FAR_EL1
	Read using name FAR_EL12
	Write using name FAR_EL12

	3.2.29 FAR_EL2, Fault Address Register (EL2)
	Field descriptions
	Bits [63:0]

	Accessing the FAR_EL2
	Read using name FAR_EL2
	Write using name FAR_EL2
	Read using name FAR_EL1
	Write using name FAR_EL1

	3.2.30 FAR_EL3, Fault Address Register (EL3)
	Field descriptions
	Bits [63:0]

	Accessing the FAR_EL3
	Read using name FAR_EL3
	Write using name FAR_EL3

	3.2.31 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	Field descriptions
	Bits [63:24]
	CE, bits [23:20]
	Bits [19:16]
	RAS_frac, bits [15:12]
	MTE, bits [11:8]
	SSBS, bits [7:4]
	BT, bits [3:0]

	Accessing the ID_AA64PFR1_EL1
	Read using name ID_AA64PFR1_EL1

	3.2.32 PMBSR_EL1, Profiling Buffer Status/syndrome Register
	Field descriptions
	Bits [63:32, 25:20]
	EC, bits [31:26]
	DL, bit [19]
	EA, bit [18]
	S, bit [17]
	COLL, bit [16]
	MSS, bits [15:0]
	stage 1 or stage 2 Data Aborts on write to buffer
	other buffer management events

	Accessing the PMBSR_EL1
	Read using name PMBSR_EL1
	Write using name PMBSR_EL1

	3.2.33 RDDC_EL0, Restricted Default Data Capability
	Field descriptions
	Bits [128:0]

	Accessing the RDDC_EL0
	Read using name RDDC_EL0
	Write using name RDDC_EL0
	Read using name DDC
	Write using name DDC

	3.2.34 RSP_EL0, Restricted Stack Pointer
	Field descriptions
	Bits [128:0]

	Accessing the RSP_EL0
	Read using name RSP_EL0
	Write using name RSP_EL0
	Read using name RCSP_EL0
	Write using name RCSP_EL0

	3.2.35 RTPIDR_EL0, Restricted Read/Write Software Thread ID Register
	Field descriptions
	Bits [128:0]

	Accessing the RTPIDR_EL0
	Read using name RTPIDR_EL0
	Write using name RTPIDR_EL0
	Read using name TPIDR_EL0
	Write using name TPIDR_EL0
	Read using name TPIDR_EL1
	Write using name TPIDR_EL1
	Read using name TPIDR_EL2
	Write using name TPIDR_EL2
	Read using name TPIDR_EL3
	Write using name TPIDR_EL3
	Read using name RCTPIDR_EL0
	Write using name RCTPIDR_EL0
	Read using name CTPIDR_EL0
	Write using name CTPIDR_EL0
	Read using name CTPIDR_EL1
	Write using name CTPIDR_EL1
	Read using name CTPIDR_EL2
	Write using name CTPIDR_EL2
	Read using name CTPIDR_EL3
	Write using name CTPIDR_EL3

	3.2.36 SP_EL0, Stack Pointer (EL0)
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the SP_EL0
	Read using name SP_EL0
	Write using name SP_EL0
	Read using name CSP_EL0
	Write using name CSP_EL0

	3.2.37 SP_EL1, Stack Pointer (EL1)
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the SP_EL1
	Read using name SP_EL1
	Write using name SP_EL1
	Read using name CSP_EL1
	Write using name CSP_EL1

	3.2.38 SP_EL2, Stack Pointer (EL2)
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the SP_EL2
	Read using name SP_EL2
	Write using name SP_EL2
	Read using name CSP_EL2
	Write using name CSP_EL2

	3.2.39 SP_EL3, Stack Pointer (EL3)
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the SP_EL3

	3.2.40 SPSR_EL1, Saved Program Status Register (EL1)
	Field descriptions
	When exception taken from AArch32 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Q, bit [27]
	IT[1:0], bits [26:25]
	Bit [24]
	SSBS, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	GE, bits [19:16]
	IT[7:2], bits [15:10]
	E, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	T, bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	When exception taken from AArch64 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Bit [27]
	C64, bit [26]
	Bit [25:24]
	UAO, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	Bits [19:13]
	SSBS, bit [12]
	Bits [11:10]
	D, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	Bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	Accessing the SPSR_EL1
	Read using name SPSR_EL1
	Write using name SPSR_EL1
	Read using name SPSR_EL12
	Write using name SPSR_EL12

	3.2.41 SPSR_EL2, Saved Program Status Register (EL2)
	Field descriptions
	When exception taken from AArch32 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Q, bit [27]
	IT[1:0], bits [26:25]
	Bit [24]
	SSBS, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	GE, bits [19:16]
	IT[7:2], bits [15:10]
	E, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	T, bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	When exception taken from AArch64 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Bit [27]
	C64, bit [26]
	Bit [25:24]
	UAO, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	Bits [19:13]
	SSBS, bit [12]
	Bits [11:10]
	D, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	Bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	Accessing the SPSR_EL2
	Read using name SPSR_EL2
	Write using name SPSR_EL2
	Read using name SPSR_EL1
	Write using name SPSR_EL1

	3.2.42 SPSR_EL3, Saved Program Status Register (EL3)
	Field descriptions
	When exception taken from AArch32 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Q, bit [27]
	IT[1:0], bits [26:25]
	Bit [24]
	SSBS, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	GE, bits [19:16]
	IT[7:2], bits [15:10]
	E, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	T, bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	When exception taken from AArch64 state:
	Bits [63:32]
	N, bit [31]
	Z, bit [30]
	C, bit [29]
	V, bit [28]
	Bit [27]
	C64, bit [26]
	Bit [25:24]
	UAO, bit [23]
	PAN, bit [22]
	SS, bit [21]
	IL, bit [20]
	Bits [19:13]
	SSBS, bit [12]
	Bits [11:10]
	D, bit [9]
	A, bit [8]
	I, bit [7]
	F, bit [6]
	Bit [5]
	M[4], bit [4]
	M[3:0], bits [3:0]

	Accessing the SPSR_EL3
	Read using name SPSR_EL3
	Write using name SPSR_EL3

	3.2.43 TPIDR_EL0, EL0 Read/Write Software Thread ID Register
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the TPIDR_EL0
	Read using name TPIDR_EL0
	Write using name TPIDR_EL0
	Read using name CTPIDR_EL0
	Write using name CTPIDR_EL0

	3.2.44 TPIDR_EL1, EL1 Software Thread ID Register
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the TPIDR_EL1
	Read using name TPIDR_EL1
	Write using name TPIDR_EL1
	Read using name CTPIDR_EL1
	Write using name CTPIDR_EL1

	3.2.45 TPIDR_EL2, EL2 Software Thread ID Register
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the TPIDR_EL2
	Read using name TPIDR_EL2
	Write using name TPIDR_EL2
	Read using name CTPIDR_EL2
	Write using name CTPIDR_EL2

	3.2.46 TPIDR_EL3, EL3 Software Thread ID Register
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the TPIDR_EL3
	Read using name TPIDR_EL3
	Write using name TPIDR_EL3
	Read using name CTPIDR_EL3
	Write using name CTPIDR_EL3

	3.2.47 TPIDRRO_EL0, EL0 Read-Only Software Thread ID Register
	Field descriptions
	When Morello is implemented:
	Bits [128:0]

	When Morello is not implemented:
	Bits [63:0]

	Accessing the TPIDRRO_EL0
	Read using name TPIDRRO_EL0
	Write using name TPIDRRO_EL0
	Read using name CTPIDRRO_EL0
	Write using name CTPIDRRO_EL0

	3.2.48 VBAR_EL1, Vector Base Address Register (EL1)
	Field descriptions
	When Morello is implemented and Capability access at EL1 is not trapped:
	Bits [128:0]

	When Morello is implemented and Capability access at EL1 is trapped:
	Bits [128:64]
	Bits [63:11]
	Bits [10:0]

	When Morello is not implemented:
	Bits [63:11]
	Bits [10:0]

	Accessing the VBAR_EL1
	Read using name VBAR_EL1
	Write using name VBAR_EL1
	Read using name VBAR_EL12
	Write using name VBAR_EL12
	Read using name CVBAR_EL1
	Write using name CVBAR_EL1
	Read using name CVBAR_EL12
	Write using name CVBAR_EL12

	3.2.49 VBAR_EL2, Vector Base Address Register (EL2)
	Field descriptions
	When Morello is implemented and Capability access at EL2 is not trapped:
	Bits [128:0]

	When Morello is implemented and Capability access at EL2 is trapped:
	Bits [128:64]
	Bits [63:11]
	Bits [10:0]

	When Morello is not implemented:
	Bits [63:11]
	Bits [10:0]

	Accessing the VBAR_EL2
	Read using name VBAR_EL2
	Write using name VBAR_EL2
	Read using name VBAR_EL1
	Write using name VBAR_EL1
	Read using name CVBAR_EL2
	Write using name CVBAR_EL2
	Read using name CVBAR_EL1
	Write using name CVBAR_EL1

	3.2.50 VBAR_EL3, Vector Base Address Register (EL3)
	Field descriptions
	When Morello is implemented and Capability access at EL3 is not trapped:
	Bits [128:0]

	When Morello is implemented and Capability access at EL3 is trapped:
	Bits [128:64]
	Bits [63:11]
	Bits [10:0]

	When Morello is not implemented:
	Bits [63:11]
	Bits [10:0]

	Accessing the VBAR_EL3
	Read using name VBAR_EL3
	Write using name VBAR_EL3
	Read using name CVBAR_EL3
	Write using name CVBAR_EL3

	4 Instruction definitions
	4.1 The instruction sets
	4.2 Modified base instructions
	4.2.1 ADR
	4.2.2 ADRP
	4.2.3 BL
	4.2.4 BLR
	4.2.5 BR
	4.2.6 CAS, CASA, CASAL, CASL
	4.2.7 CASB, CASAB, CASALB, CASLB
	4.2.8 CASH, CASAH, CASALH, CASLH
	4.2.9 CASP, CASPA, CASPAL, CASPL
	4.2.10 DC
	4.2.11 ERET
	4.2.12 IC
	4.2.13 LDADD, LDADDA, LDADDAL, LDADDL
	4.2.14 LDADDB, LDADDAB, LDADDALB, LDADDLB
	4.2.15 LDADDH, LDADDAH, LDADDALH, LDADDLH
	4.2.16 LDAPR
	4.2.17 LDAPRB
	4.2.18 LDAPRH
	4.2.19 LDAR
	4.2.20 LDARB
	4.2.21 LDARH
	4.2.22 LDAXP
	4.2.23 LDAXR
	4.2.24 LDAXRB
	4.2.25 LDAXRH
	4.2.26 LDCLR, LDCLRA, LDCLRAL, LDCLRL
	4.2.27 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB
	4.2.28 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH
	4.2.29 LDEOR, LDEORA, LDEORAL, LDEORL
	4.2.30 LDEORB, LDEORAB, LDEORALB, LDEORLB
	4.2.31 LDEORH, LDEORAH, LDEORALH, LDEORLH
	4.2.32 LDLAR
	4.2.33 LDLARB
	4.2.34 LDLARH
	4.2.35 LDNP
	4.2.36 LDP
	4.2.37 LDPSW
	4.2.38 LDR (immediate)
	4.2.39 LDR (literal)
	4.2.40 LDR (register)
	4.2.41 LDRB (immediate)
	4.2.42 LDRB (register)
	4.2.43 LDRH (immediate)
	4.2.44 LDRH (register)
	4.2.45 LDRSB (immediate)
	4.2.46 LDRSB (register)
	4.2.47 LDRSH (immediate)
	4.2.48 LDRSH (register)
	4.2.49 LDRSW (immediate)
	4.2.50 LDRSW (literal)
	4.2.51 LDRSW (register)
	4.2.52 LDSET, LDSETA, LDSETAL, LDSETL
	4.2.53 LDSETB, LDSETAB, LDSETALB, LDSETLB
	4.2.54 LDSETH, LDSETAH, LDSETALH, LDSETLH
	4.2.55 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL
	4.2.56 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB
	4.2.57 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH
	4.2.58 LDSMIN, LDSMINA, LDSMINAL, LDSMINL
	4.2.59 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB
	4.2.60 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH
	4.2.61 LDTR
	4.2.62 LDTRB
	4.2.63 LDTRH
	4.2.64 LDTRSB
	4.2.65 LDTRSH
	4.2.66 LDTRSW
	4.2.67 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL
	4.2.68 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB
	4.2.69 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH
	4.2.70 LDUMIN, LDUMINA, LDUMINAL, LDUMINL
	4.2.71 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB
	4.2.72 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH
	4.2.73 LDUR
	4.2.74 LDURB
	4.2.75 LDURH
	4.2.76 LDURSB
	4.2.77 LDURSH
	4.2.78 LDURSW
	4.2.79 LDXP
	4.2.80 LDXR
	4.2.81 LDXRB
	4.2.82 LDXRH
	4.2.83 PRFM (immediate)
	4.2.84 PRFM (literal)
	4.2.85 PRFM (register)
	4.2.86 PRFUM
	4.2.87 RET
	4.2.88 STADD, STADDL
	4.2.89 STADDB, STADDLB
	4.2.90 STADDH, STADDLH
	4.2.91 STCLR, STCLRL
	4.2.92 STCLRB, STCLRLB
	4.2.93 STCLRH, STCLRLH
	4.2.94 STEOR, STEORL
	4.2.95 STEORB, STEORLB
	4.2.96 STEORH, STEORLH
	4.2.97 STLLR
	4.2.98 STLLRB
	4.2.99 STLLRH
	4.2.100 STLR
	4.2.101 STLRB
	4.2.102 STLRH
	4.2.103 STLXP
	4.2.104 STLXR
	4.2.105 STLXRB
	4.2.106 STLXRH
	4.2.107 STNP
	4.2.108 STP
	4.2.109 STR (immediate)
	4.2.110 STR (register)
	4.2.111 STRB (immediate)
	4.2.112 STRB (register)
	4.2.113 STRH (immediate)
	4.2.114 STRH (register)
	4.2.115 STSET, STSETL
	4.2.116 STSETB, STSETLB
	4.2.117 STSETH, STSETLH
	4.2.118 STSMAX, STSMAXL
	4.2.119 STSMAXB, STSMAXLB
	4.2.120 STSMAXH, STSMAXLH
	4.2.121 STSMIN, STSMINL
	4.2.122 STSMINB, STSMINLB
	4.2.123 STSMINH, STSMINLH
	4.2.124 STTR
	4.2.125 STTRB
	4.2.126 STTRH
	4.2.127 STUMAX, STUMAXL
	4.2.128 STUMAXB, STUMAXLB
	4.2.129 STUMAXH, STUMAXLH
	4.2.130 STUMIN, STUMINL
	4.2.131 STUMINB, STUMINLB
	4.2.132 STUMINH, STUMINLH
	4.2.133 STUR
	4.2.134 STURB
	4.2.135 STURH
	4.2.136 STXP
	4.2.137 STXR
	4.2.138 STXRB
	4.2.139 STXRH
	4.2.140 SWP, SWPA, SWPAL, SWPL
	4.2.141 SWPB, SWPAB, SWPALB, SWPLB
	4.2.142 SWPH, SWPAH, SWPALH, SWPLH

	4.3 Modified SIMD&FP instructions
	4.3.1 LD1 (multiple structures)
	4.3.2 LD1 (single structure)
	4.3.3 LD1R
	4.3.4 LD2 (multiple structures)
	4.3.5 LD2 (single structure)
	4.3.6 LD2R
	4.3.7 LD3 (multiple structures)
	4.3.8 LD3 (single structure)
	4.3.9 LD3R
	4.3.10 LD4 (multiple structures)
	4.3.11 LD4 (single structure)
	4.3.12 LD4R
	4.3.13 LDNP (SIMD&FP)
	4.3.14 LDP (SIMD&FP)
	4.3.15 LDR (immediate, SIMD&FP)
	4.3.16 LDR (literal, SIMD&FP)
	4.3.17 LDR (register, SIMD&FP)
	4.3.18 LDUR (SIMD&FP)
	4.3.19 ST1 (multiple structures)
	4.3.20 ST1 (single structure)
	4.3.21 ST2 (multiple structures)
	4.3.22 ST2 (single structure)
	4.3.23 ST3 (multiple structures)
	4.3.24 ST3 (single structure)
	4.3.25 ST4 (multiple structures)
	4.3.26 ST4 (single structure)
	4.3.27 STNP (SIMD&FP)
	4.3.28 STP (SIMD&FP)
	4.3.29 STR (immediate, SIMD&FP)
	4.3.30 STR (register, SIMD&FP)
	4.3.31 STUR (SIMD&FP)

	4.4 New instructions
	4.4.1 ADD (extended register)
	4.4.2 ADD (immediate)
	4.4.3 ADRDP
	4.4.4 ADRP
	4.4.5 ALIGND
	4.4.6 ALIGNU
	4.4.7 BICFLGS (immediate)
	4.4.8 BICFLGS (register)
	4.4.9 BLR (indirect)
	4.4.10 BLR (memory indirect)
	4.4.11 BLRR
	4.4.12 BLRS (capability)
	4.4.13 BLRS (pair of capabilities)
	4.4.14 BR (indirect)
	4.4.15 BR (memory indirect)
	4.4.16 BRR
	4.4.17 BRS (capability)
	4.4.18 BRS (pair of capabilities)
	4.4.19 BUILD
	4.4.20 BX
	4.4.21 CAS
	4.4.22 CASA
	4.4.23 CASAL
	4.4.24 CASL
	4.4.25 CFHI
	4.4.26 CHKEQ
	4.4.27 CHKSLD
	4.4.28 CHKSS
	4.4.29 CHKSSU
	4.4.30 CHKTGD
	4.4.31 CLRPERM (immediate)
	4.4.32 CLRPERM (register)
	4.4.33 CLRTAG
	4.4.34 CMP
	4.4.35 CPY
	4.4.36 CPYTYPE
	4.4.37 CPYVALUE
	4.4.38 CSEAL
	4.4.39 CSEL
	4.4.40 CTHI
	4.4.41 CVT (to capability)
	4.4.42 CVT (to pointer)
	4.4.43 CVTD (to capability)
	4.4.44 CVTD (to pointer)
	4.4.45 CVTDZ
	4.4.46 CVTP (to capability)
	4.4.47 CVTP (to pointer)
	4.4.48 CVTPZ
	4.4.49 CVTZ
	4.4.50 EORFLGS (immediate)
	4.4.51 EORFLGS (register)
	4.4.52 GCBASE
	4.4.53 GCFLGS
	4.4.54 GCLEN
	4.4.55 GCLIM
	4.4.56 GCOFF
	4.4.57 GCPERM
	4.4.58 GCSEAL
	4.4.59 GCTAG
	4.4.60 GCTYPE
	4.4.61 GCVALUE
	4.4.62 LDAPR
	4.4.63 LDAR (capability, alternate base)
	4.4.64 LDAR (capability, normal base)
	4.4.65 LDAR (integer)
	4.4.66 LDARB
	4.4.67 LDAXP
	4.4.68 LDAXR
	4.4.69 LDCT
	4.4.70 LDNP
	4.4.71 LDP (post-indexed)
	4.4.72 LDP (pre-indexed)
	4.4.73 LDP (signed offset)
	4.4.74 LDPBLR
	4.4.75 LDPBR
	4.4.76 LDR (literal)
	4.4.77 LDR (post-indexed)
	4.4.78 LDR (pre-indexed)
	4.4.79 LDR (register offset, capability, alternate base)
	4.4.80 LDR (register offset, capability, normal base)
	4.4.81 LDR (register offset, integer)
	4.4.82 LDR (register offset, SIMD&FP)
	4.4.83 LDR (unsigned offset, capability, alternate base)
	4.4.84 LDR (unsigned offset, capability, normal base)
	4.4.85 LDR (unsigned offset, integer)
	4.4.86 LDRB (register offset)
	4.4.87 LDRB (unsigned offset)
	4.4.88 LDRH
	4.4.89 LDRSB
	4.4.90 LDRSH
	4.4.91 LDTR
	4.4.92 LDUR (capability, alternate base)
	4.4.93 LDUR (capability, normal base)
	4.4.94 LDUR (integer)
	4.4.95 LDUR (SIMD&FP)
	4.4.96 LDURB
	4.4.97 LDURH
	4.4.98 LDURSB
	4.4.99 LDURSH
	4.4.100 LDURSW
	4.4.101 LDXP
	4.4.102 LDXR
	4.4.103 MOV
	4.4.104 MRS
	4.4.105 MSR
	4.4.106 ORRFLGS (immediate)
	4.4.107 ORRFLGS (register)
	4.4.108 RET
	4.4.109 RETR
	4.4.110 RETS (capability)
	4.4.111 RETS (pair of capabilities)
	4.4.112 RRLEN
	4.4.113 RRMASK
	4.4.114 SCBNDS (immediate)
	4.4.115 SCBNDS (register)
	4.4.116 SCBNDSE
	4.4.117 SCFLGS
	4.4.118 SCOFF
	4.4.119 SCTAG
	4.4.120 SCVALUE
	4.4.121 SEAL (capability)
	4.4.122 SEAL (immediate)
	4.4.123 STCT
	4.4.124 STLR (capability, alternate base)
	4.4.125 STLR (capability, normal base)
	4.4.126 STLR (integer)
	4.4.127 STLRB
	4.4.128 STLXP
	4.4.129 STLXR
	4.4.130 STNP
	4.4.131 STP (post-indexed)
	4.4.132 STP (pre-indexed)
	4.4.133 STP (signed offset)
	4.4.134 STR (post-indexed)
	4.4.135 STR (pre-indexed)
	4.4.136 STR (register offset, capability, alternate base)
	4.4.137 STR (register offset, capability, normal base)
	4.4.138 STR (register offset, integer)
	4.4.139 STR (register offset, SIMD&FP)
	4.4.140 STR (unsigned offset, capability, alternate base)
	4.4.141 STR (unsigned offset, capability, normal base)
	4.4.142 STR (unsigned offset, integer)
	4.4.143 STRB (register offset)
	4.4.144 STRB (unsigned offset)
	4.4.145 STRH
	4.4.146 STTR
	4.4.147 STUR (capability, alternate base)
	4.4.148 STUR (capability, normal base)
	4.4.149 STUR (integer)
	4.4.150 STUR (SIMD&FP)
	4.4.151 STURB
	4.4.152 STURH
	4.4.153 STXP
	4.4.154 STXR
	4.4.155 SUB
	4.4.156 SUBS
	4.4.157 SWP
	4.4.158 SWPA
	4.4.159 SWPAL
	4.4.160 SWPL
	4.4.161 UNSEAL

	4.5 Index by encoding

	5 Pseudocode definitions
	5.1 aarch64/debug/breakpoint/AArch64.BreakpointMatch
	5.2 aarch64/debug/breakpoint/AArch64.BreakpointValueMatch
	5.3 aarch64/debug/breakpoint/AArch64.StateMatch
	5.4 aarch64/debug/enables/AArch64.GenerateDebugExceptions
	5.5 aarch64/debug/enables/AArch64.GenerateDebugExceptionsFrom
	5.6 aarch64/debug/pmu/AArch64.CheckForPMUOverflow
	5.7 aarch64/debug/pmu/AArch64.CountEvents
	5.8 aarch64/debug/statisticalprofiling/CheckProfilingBufferAccess
	5.9 aarch64/debug/statisticalprofiling/CheckStatisticalProfilingAccess
	5.10 aarch64/debug/statisticalprofiling/CollectContextIDR1
	5.11 aarch64/debug/statisticalprofiling/CollectContextIDR2
	5.12 aarch64/debug/statisticalprofiling/CollectPhysicalAddress
	5.13 aarch64/debug/statisticalprofiling/CollectRecord
	5.14 aarch64/debug/statisticalprofiling/CollectTimeStamp
	5.15 aarch64/debug/statisticalprofiling/OpType
	5.16 aarch64/debug/statisticalprofiling/ProfilingBufferEnabled
	5.17 aarch64/debug/statisticalprofiling/ProfilingBufferOwner
	5.18 aarch64/debug/statisticalprofiling/ProfilingSynchronizationBarrier
	5.19 aarch64/debug/statisticalprofiling/StatisticalProfilingEnabled
	5.20 aarch64/debug/statisticalprofiling/SysRegAccess
	5.21 aarch64/debug/statisticalprofiling/TimeStamp
	5.22 aarch64/debug/takeexceptiondbg/AArch64.TakeExceptionInDebugState
	5.23 aarch64/debug/watchpoint/AArch64.WatchpointByteMatch
	5.24 aarch64/debug/watchpoint/AArch64.WatchpointMatch
	5.25 aarch64/exceptions/aborts/AArch64.Abort
	5.26 aarch64/exceptions/aborts/AArch64.AbortSyndrome
	5.27 aarch64/exceptions/aborts/AArch64.CheckPCAlignment
	5.28 aarch64/exceptions/aborts/AArch64.DataAbort
	5.29 aarch64/exceptions/aborts/AArch64.InstructionAbort
	5.30 aarch64/exceptions/aborts/AArch64.PCAlignmentFault
	5.31 aarch64/exceptions/aborts/AArch64.SPAlignmentFault
	5.32 aarch64/exceptions/aborts/CapabilityFault
	5.33 aarch64/exceptions/aborts/CheckCapability
	5.34 aarch64/exceptions/aborts/CheckPCCCapability
	5.35 aarch64/exceptions/asynch/AArch64.TakePhysicalFIQException
	5.36 aarch64/exceptions/asynch/AArch64.TakePhysicalIRQException
	5.37 aarch64/exceptions/asynch/AArch64.TakePhysicalSErrorException
	5.38 aarch64/exceptions/asynch/AArch64.TakeVirtualFIQException
	5.39 aarch64/exceptions/asynch/AArch64.TakeVirtualIRQException
	5.40 aarch64/exceptions/asynch/AArch64.TakeVirtualSErrorException
	5.41 aarch64/exceptions/debug/AArch64.BreakpointException
	5.42 aarch64/exceptions/debug/AArch64.SoftwareBreakpoint
	5.43 aarch64/exceptions/debug/AArch64.SoftwareStepException
	5.44 aarch64/exceptions/debug/AArch64.VectorCatchException
	5.45 aarch64/exceptions/debug/AArch64.WatchpointException
	5.46 aarch64/exceptions/exceptions/AArch64.ExceptionClass
	5.47 aarch64/exceptions/exceptions/AArch64.ReportException
	5.48 aarch64/exceptions/exceptions/AArch64.ResetControlRegisters
	5.49 aarch64/exceptions/exceptions/AArch64.TakeReset
	5.50 aarch64/exceptions/ieeefp/AArch64.FPTrappedException
	5.51 aarch64/exceptions/syscalls/AArch64.CallHypervisor
	5.52 aarch64/exceptions/syscalls/AArch64.CallSecureMonitor
	5.53 aarch64/exceptions/syscalls/AArch64.CallSupervisor
	5.54 aarch64/exceptions/takeexception/AArch64.TakeException
	5.55 aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrap
	5.56 aarch64/exceptions/traps/AArch64.AArch32SystemAccessTrapSyndrome
	5.57 aarch64/exceptions/traps/AArch64.AdvSIMDFPAccessTrap
	5.58 aarch64/exceptions/traps/AArch64.CheckCP15InstrCoarseTraps
	5.59 aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDEnabled
	5.60 aarch64/exceptions/traps/AArch64.CheckFPAdvSIMDTrap
	5.61 aarch64/exceptions/traps/AArch64.CheckForSMCUndefOrTrap
	5.62 aarch64/exceptions/traps/AArch64.CheckForWFxTrap
	5.63 aarch64/exceptions/traps/AArch64.CheckIllegalState
	5.64 aarch64/exceptions/traps/AArch64.MonitorModeTrap
	5.65 aarch64/exceptions/traps/AArch64.SystemAccessTrap
	5.66 aarch64/exceptions/traps/AArch64.SystemAccessTrapSyndrome
	5.67 aarch64/exceptions/traps/AArch64.UndefinedFault
	5.68 aarch64/exceptions/traps/AArch64.WFxTrap
	5.69 aarch64/exceptions/traps/CapabilityAccessTrap
	5.70 aarch64/exceptions/traps/CheckCapabilitiesEnabled
	5.71 aarch64/exceptions/traps/CheckFPAdvSIMDEnabled64
	5.72 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL0
	5.73 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL1
	5.74 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL2
	5.75 aarch64/exceptions/traps/IsAccessToCapabilitiesDisabledAtEL3
	5.76 aarch64/exceptions/traps/IsAccessToCapabilitiesEnabledAtEL
	5.77 aarch64/exceptions/traps/IsInC64
	5.78 aarch64/exceptions/traps/IsTagSettingDisabled
	5.79 aarch64/exceptions/traps/TargetELForCapabilityExceptions
	5.80 aarch64/functions/aborts/AArch64.CreateFaultRecord
	5.81 aarch64/functions/aborts/AArch64.FaultSyndrome
	5.82 aarch64/functions/exclusive/AArch64.ExclusiveMonitorsPass
	5.83 aarch64/functions/exclusive/AArch64.IsExclusiveVA
	5.84 aarch64/functions/exclusive/AArch64.MarkExclusiveVA
	5.85 aarch64/functions/exclusive/AArch64.SetExclusiveMonitors
	5.86 aarch64/functions/fusedrstep/FPRSqrtStepFused
	5.87 aarch64/functions/fusedrstep/FPRecipStepFused
	5.88 aarch64/functions/memory/AArch64.CheckAlignment
	5.89 aarch64/functions/memory/AArch64.MemSingle
	5.90 aarch64/functions/memory/AArch64.TaggedMemSingle
	5.91 aarch64/functions/memory/AArch64.TranslateAddressForAtomicAccess
	5.92 aarch64/functions/memory/CapabilityTag
	5.93 aarch64/functions/memory/CheckSPAlignment
	5.94 aarch64/functions/memory/Mem
	5.95 aarch64/functions/memory/MemAtomic
	5.96 aarch64/functions/memory/MemAtomicC
	5.97 aarch64/functions/memory/MemAtomicCompareAndSwap
	5.98 aarch64/functions/memory/MemAtomicCompareAndSwapC
	5.99 aarch64/functions/ras/AArch64.ESBOperation
	5.100 aarch64/functions/ras/AArch64.PhysicalSErrorSyndrome
	5.101 aarch64/functions/ras/AArch64.ReportDeferredSError
	5.102 aarch64/functions/ras/AArch64.vESBOperation
	5.103 aarch64/functions/registers/AArch64.MaybeZeroRegisterUppers
	5.104 aarch64/functions/registers/AArch64.ResetGeneralRegisters
	5.105 aarch64/functions/registers/AArch64.ResetSIMDFPRegisters
	5.106 aarch64/functions/registers/AArch64.ResetSpecialRegisters
	5.107 aarch64/functions/registers/AArch64.ResetSystemRegisters
	5.108 aarch64/functions/registers/C
	5.109 aarch64/functions/registers/CSP
	5.110 aarch64/functions/registers/CapIsSystemAccessEnabled
	5.111 aarch64/functions/registers/Capability
	5.112 aarch64/functions/registers/DDC
	5.113 aarch64/functions/registers/IsInRestricted
	5.114 aarch64/functions/registers/PC
	5.115 aarch64/functions/registers/PCC
	5.116 aarch64/functions/registers/SP
	5.117 aarch64/functions/registers/V
	5.118 aarch64/functions/registers/VirtualAddress
	5.119 aarch64/functions/registers/VirtualAddressType
	5.120 aarch64/functions/registers/Vpart
	5.121 aarch64/functions/registers/X
	5.122 aarch64/functions/sysregisters/CCTLR
	5.123 aarch64/functions/sysregisters/CELR
	5.124 aarch64/functions/sysregisters/CNTKCTL
	5.125 aarch64/functions/sysregisters/CNTKCTLType
	5.126 aarch64/functions/sysregisters/CPACR
	5.127 aarch64/functions/sysregisters/CPACRType
	5.128 aarch64/functions/sysregisters/CVBAR
	5.129 aarch64/functions/sysregisters/ELR
	5.130 aarch64/functions/sysregisters/ESR
	5.131 aarch64/functions/sysregisters/ESRType
	5.132 aarch64/functions/sysregisters/FAR
	5.133 aarch64/functions/sysregisters/MAIR
	5.134 aarch64/functions/sysregisters/MAIRType
	5.135 aarch64/functions/sysregisters/SCTLR
	5.136 aarch64/functions/sysregisters/SCTLRType
	5.137 aarch64/functions/sysregisters/VBAR
	5.138 aarch64/functions/system/AArch64.CheckSystemAccess
	5.139 aarch64/functions/system/AArch64.ExecutingATS1xPInstr
	5.140 aarch64/functions/system/AArch64.SysInstr
	5.141 aarch64/functions/system/AArch64.SysInstrInputIsCapability
	5.142 aarch64/functions/system/AArch64.SysInstrWithCapability
	5.143 aarch64/functions/system/AArch64.SysInstrWithResult
	5.144 aarch64/functions/system/AArch64.SysRegRead
	5.145 aarch64/functions/system/AArch64.SysRegWrite
	5.146 aarch64/functions/virtualaddress/VAAdd
	5.147 aarch64/functions/virtualaddress/VACheckAddress
	5.148 aarch64/functions/virtualaddress/VACheckPerm
	5.149 aarch64/functions/virtualaddress/VAFromBits64
	5.150 aarch64/functions/virtualaddress/VAFromCapability
	5.151 aarch64/functions/virtualaddress/VAIsBits64
	5.152 aarch64/functions/virtualaddress/VAIsCapability
	5.153 aarch64/functions/virtualaddress/VAToBits64
	5.154 aarch64/functions/virtualaddress/VAToCapability
	5.155 aarch64/functions/virtualaddress/VAddress
	5.156 aarch64/instrs/branch/eret/AArch64.ExceptionReturn
	5.157 aarch64/instrs/branch/eret/AArch64.ExceptionReturnToCapability
	5.158 aarch64/instrs/countop/CountOp
	5.159 aarch64/instrs/extendreg/DecodeRegExtend
	5.160 aarch64/instrs/extendreg/ExtendReg
	5.161 aarch64/instrs/extendreg/ExtendType
	5.162 aarch64/instrs/float/arithmetic/max-min/fpmaxminop/FPMaxMinOp
	5.163 aarch64/instrs/float/arithmetic/unary/fpunaryop/FPUnaryOp
	5.164 aarch64/instrs/float/convert/fpconvop/FPConvOp
	5.165 aarch64/instrs/integer/bitfield/bfxpreferred/BFXPreferred
	5.166 aarch64/instrs/integer/bitmasks/DecodeBitMasks
	5.167 aarch64/instrs/integer/ins-ext/insert/movewide/movewideop/MoveWideOp
	5.168 aarch64/instrs/integer/logical/movwpreferred/MoveWidePreferred
	5.169 aarch64/instrs/integer/shiftreg/DecodeShift
	5.170 aarch64/instrs/integer/shiftreg/ShiftReg
	5.171 aarch64/instrs/integer/shiftreg/ShiftType
	5.172 aarch64/instrs/logicalop/LogicalOp
	5.173 aarch64/instrs/memory/memop/MemAtomicOp
	5.174 aarch64/instrs/memory/memop/MemOp
	5.175 aarch64/instrs/memory/prefetch/Prefetch
	5.176 aarch64/instrs/system/barriers/barrierop/MemBarrierOp
	5.177 aarch64/instrs/system/hints/syshintop/SystemHintOp
	5.178 aarch64/instrs/system/register/cpsr/pstatefield/PSTATEField
	5.179 aarch64/instrs/system/sysops/sysop/SysOp
	5.180 aarch64/instrs/system/sysops/sysop/SystemOp
	5.181 aarch64/instrs/vector/arithmetic/binary/uniform/logical/bsl-eor/vbitop/VBitOp
	5.182 aarch64/instrs/vector/arithmetic/unary/cmp/compareop/CompareOp
	5.183 aarch64/instrs/vector/logical/immediateop/ImmediateOp
	5.184 aarch64/instrs/vector/reduce/reduceop/Reduce
	5.185 aarch64/instrs/vector/reduce/reduceop/ReduceOp
	5.186 aarch64/translation/attrs/AArch64.CombineS1S2Desc
	5.187 aarch64/translation/attrs/AArch64.InstructionDevice
	5.188 aarch64/translation/attrs/AArch64.S1AttrDecode
	5.189 aarch64/translation/attrs/AArch64.TranslateAddressS1Off
	5.190 aarch64/translation/checks/AArch64.AccessIsPrivileged
	5.191 aarch64/translation/checks/AArch64.AccessUsesEL
	5.192 aarch64/translation/checks/AArch64.CheckLoadTagsPermission
	5.193 aarch64/translation/checks/AArch64.CheckPermission
	5.194 aarch64/translation/checks/AArch64.CheckS2Permission
	5.195 aarch64/translation/checks/AArch64.CheckStoreTagsPermission
	5.196 aarch64/translation/debug/AArch64.CheckBreakpoint
	5.197 aarch64/translation/debug/AArch64.CheckDebug
	5.198 aarch64/translation/debug/AArch64.CheckWatchpoint
	5.199 aarch64/translation/faults/AArch64.AccessFlagFault
	5.200 aarch64/translation/faults/AArch64.AddressSizeFault
	5.201 aarch64/translation/faults/AArch64.AlignmentFault
	5.202 aarch64/translation/faults/AArch64.AsynchExternalAbort
	5.203 aarch64/translation/faults/AArch64.DebugFault
	5.204 aarch64/translation/faults/AArch64.NoFault
	5.205 aarch64/translation/faults/AArch64.PermissionFault
	5.206 aarch64/translation/faults/AArch64.TranslationFault
	5.207 aarch64/translation/translation/AArch64.CheckAndUpdateDescriptor
	5.208 aarch64/translation/translation/AArch64.FirstStageTranslate
	5.209 aarch64/translation/translation/AArch64.FirstStageTranslateWithTag
	5.210 aarch64/translation/translation/AArch64.FullTranslate
	5.211 aarch64/translation/translation/AArch64.FullTranslateWithTag
	5.212 aarch64/translation/translation/AArch64.IsStageOneEnabled
	5.213 aarch64/translation/translation/AArch64.SecondStageTranslate
	5.214 aarch64/translation/translation/AArch64.SecondStageWalk
	5.215 aarch64/translation/translation/AArch64.TranslateAddress
	5.216 aarch64/translation/translation/AArch64.TranslateAddressWithTag
	5.217 aarch64/translation/walk/AArch64.TranslationTableWalk
	5.218 aarch64/translation/walk/EffectiveHWU
	5.219 shared/debug/ClearStickyErrors/ClearStickyErrors
	5.220 shared/debug/DebugTarget/DebugTarget
	5.221 shared/debug/DebugTarget/DebugTargetFrom
	5.222 shared/debug/DoubleLockStatus/DoubleLockStatus
	5.223 shared/debug/authentication/AllowExternalDebugAccess
	5.224 shared/debug/authentication/AllowExternalPMUAccess
	5.225 shared/debug/authentication/Debug_authentication
	5.226 shared/debug/authentication/ExternalInvasiveDebugEnabled
	5.227 shared/debug/authentication/ExternalNoninvasiveDebugAllowed
	5.228 shared/debug/authentication/ExternalNoninvasiveDebugEnabled
	5.229 shared/debug/authentication/ExternalSecureInvasiveDebugEnabled
	5.230 shared/debug/authentication/ExternalSecureNoninvasiveDebugEnabled
	5.231 shared/debug/authentication/IsCorePowered
	5.232 shared/debug/breakpoint/CheckValidStateMatch
	5.233 shared/debug/cti/CTI_SetEventLevel
	5.234 shared/debug/cti/CTI_SignalEvent
	5.235 shared/debug/cti/CrossTrigger
	5.236 shared/debug/dccanditr/CDBGDTR_EL0
	5.237 shared/debug/dccanditr/CheckForDCCInterrupts
	5.238 shared/debug/dccanditr/DBGDTRRX_EL0
	5.239 shared/debug/dccanditr/DBGDTRTX_EL0
	5.240 shared/debug/dccanditr/DBGDTR_EL0
	5.241 shared/debug/dccanditr/DTR
	5.242 shared/debug/dccanditr/EDITR
	5.243 shared/debug/halting/DCPSInstruction
	5.244 shared/debug/halting/DRPSInstruction
	5.245 shared/debug/halting/DebugHalt
	5.246 shared/debug/halting/DisableITRAndResumeInstructionPrefetch
	5.247 shared/debug/halting/ExecuteA64
	5.248 shared/debug/halting/ExecuteT32
	5.249 shared/debug/halting/ExitDebugState
	5.250 shared/debug/halting/Halt
	5.251 shared/debug/halting/HaltOnBreakpointOrWatchpoint
	5.252 shared/debug/halting/Halted
	5.253 shared/debug/halting/HaltingAllowed
	5.254 shared/debug/halting/Restarting
	5.255 shared/debug/halting/StopInstructionPrefetchAndEnableITR
	5.256 shared/debug/halting/UpdateEDSCRFields
	5.257 shared/debug/haltingevents/CheckExceptionCatch
	5.258 shared/debug/haltingevents/CheckHaltingStep
	5.259 shared/debug/haltingevents/CheckOSUnlockCatch
	5.260 shared/debug/haltingevents/CheckPendingOSUnlockCatch
	5.261 shared/debug/haltingevents/CheckPendingResetCatch
	5.262 shared/debug/haltingevents/CheckResetCatch
	5.263 shared/debug/haltingevents/CheckSoftwareAccessToDebugRegisters
	5.264 shared/debug/haltingevents/ExternalDebugRequest
	5.265 shared/debug/haltingevents/HaltingStep_DidNotStep
	5.266 shared/debug/haltingevents/HaltingStep_SteppedEX
	5.267 shared/debug/haltingevents/RunHaltingStep
	5.268 shared/debug/interrupts/ExternalDebugInterruptsDisabled
	5.269 shared/debug/interrupts/InterruptID
	5.270 shared/debug/interrupts/SetInterruptRequestLevel
	5.271 shared/debug/samplebasedprofiling/CreatePCSample
	5.272 shared/debug/samplebasedprofiling/EDPCSRlo
	5.273 shared/debug/samplebasedprofiling/PCSample
	5.274 shared/debug/samplebasedprofiling/PMPCSR
	5.275 shared/debug/softwarestep/CheckSoftwareStep
	5.276 shared/debug/softwarestep/DebugExceptionReturnSS
	5.277 shared/debug/softwarestep/SSAdvance
	5.278 shared/debug/softwarestep/SoftwareStep_DidNotStep
	5.279 shared/debug/softwarestep/SoftwareStep_SteppedEX
	5.280 shared/exceptions/exceptions/ConditionSyndrome
	5.281 shared/exceptions/exceptions/Exception
	5.282 shared/exceptions/exceptions/ExceptionRecord
	5.283 shared/exceptions/exceptions/ExceptionSyndrome
	5.284 shared/exceptions/traps/ReservedValue
	5.285 shared/exceptions/traps/UnallocatedEncoding
	5.286 shared/functions/aborts/EncodeLDFSC
	5.287 shared/functions/aborts/IPAValid
	5.288 shared/functions/aborts/IsAsyncAbort
	5.289 shared/functions/aborts/IsDebugException
	5.290 shared/functions/aborts/IsExternalAbort
	5.291 shared/functions/aborts/IsExternalSyncAbort
	5.292 shared/functions/aborts/IsFault
	5.293 shared/functions/aborts/IsSErrorInterrupt
	5.294 shared/functions/aborts/IsSecondStage
	5.295 shared/functions/aborts/LSInstructionSyndrome
	5.296 shared/functions/capability/CAP_BASE_EXP_HI_BIT
	5.297 shared/functions/capability/CAP_BASE_HI_BIT
	5.298 shared/functions/capability/CAP_BASE_LO_BIT
	5.299 shared/functions/capability/CAP_BASE_MANTISSA_LO_BIT
	5.300 shared/functions/capability/CAP_BASE_MANTISSA_NUM_BITS
	5.301 shared/functions/capability/CAP_BOUND_MAX
	5.302 shared/functions/capability/CAP_BOUND_MIN
	5.303 shared/functions/capability/CAP_BOUND_NUM_BITS
	5.304 shared/functions/capability/CAP_FLAGS_HI_BIT
	5.305 shared/functions/capability/CAP_FLAGS_LO_BIT
	5.306 shared/functions/capability/CAP_IE_BIT
	5.307 shared/functions/capability/CAP_LENGTH_NUM_BITS
	5.308 shared/functions/capability/CAP_LIMIT_EXP_HI_BIT
	5.309 shared/functions/capability/CAP_LIMIT_HI_BIT
	5.310 shared/functions/capability/CAP_LIMIT_LO_BIT
	5.311 shared/functions/capability/CAP_LIMIT_MANTISSA_LO_BIT
	5.312 shared/functions/capability/CAP_LIMIT_MANTISSA_NUM_BITS
	5.313 shared/functions/capability/CAP_LIMIT_NUM_BITS
	5.314 shared/functions/capability/CAP_MAX_ENCODEABLE_EXPONENT
	5.315 shared/functions/capability/CAP_MAX_EXPONENT
	5.316 shared/functions/capability/CAP_MAX_FIXED_SEAL_TYPE
	5.317 shared/functions/capability/CAP_MAX_OBJECT_TYPE
	5.318 shared/functions/capability/CAP_MW
	5.319 shared/functions/capability/CAP_NO_SEALING
	5.320 shared/functions/capability/CAP_OTYPE_HI_BIT
	5.321 shared/functions/capability/CAP_OTYPE_LO_BIT
	5.322 shared/functions/capability/CAP_OTYPE_NUM_BITS
	5.323 shared/functions/capability/CAP_PERMS_HI_BIT
	5.324 shared/functions/capability/CAP_PERMS_LO_BIT
	5.325 shared/functions/capability/CAP_PERMS_NUM_BITS
	5.326 shared/functions/capability/CAP_PERM_BRANCH_SEALED_PAIR
	5.327 shared/functions/capability/CAP_PERM_COMPARTMENT_ID
	5.328 shared/functions/capability/CAP_PERM_EXECUTE
	5.329 shared/functions/capability/CAP_PERM_EXECUTIVE
	5.330 shared/functions/capability/CAP_PERM_GLOBAL
	5.331 shared/functions/capability/CAP_PERM_LOAD
	5.332 shared/functions/capability/CAP_PERM_LOAD_CAP
	5.333 shared/functions/capability/CAP_PERM_MUTABLE_LOAD
	5.334 shared/functions/capability/CAP_PERM_NONE
	5.335 shared/functions/capability/CAP_PERM_SEAL
	5.336 shared/functions/capability/CAP_PERM_STORE
	5.337 shared/functions/capability/CAP_PERM_STORE_CAP
	5.338 shared/functions/capability/CAP_PERM_STORE_LOCAL
	5.339 shared/functions/capability/CAP_PERM_SYSTEM
	5.340 shared/functions/capability/CAP_PERM_UNSEAL
	5.341 shared/functions/capability/CAP_SEAL_TYPE_LB
	5.342 shared/functions/capability/CAP_SEAL_TYPE_LPB
	5.343 shared/functions/capability/CAP_SEAL_TYPE_RB
	5.344 shared/functions/capability/CAP_TAG_BIT
	5.345 shared/functions/capability/CAP_VALUE_FOR_BOUND_HI_BIT
	5.346 shared/functions/capability/CAP_VALUE_FOR_BOUND_NUM_BITS
	5.347 shared/functions/capability/CAP_VALUE_HI_BIT
	5.348 shared/functions/capability/CAP_VALUE_LO_BIT
	5.349 shared/functions/capability/CAP_VALUE_NUM_BITS
	5.350 shared/functions/capability/CapAdd
	5.351 shared/functions/capability/CapBoundsAddress
	5.352 shared/functions/capability/CapBoundsEqual
	5.353 shared/functions/capability/CapBoundsUsesValue
	5.354 shared/functions/capability/CapCheckPermissions
	5.355 shared/functions/capability/CapClearPerms
	5.356 shared/functions/capability/CapGetBase
	5.357 shared/functions/capability/CapGetBottom
	5.358 shared/functions/capability/CapGetBounds
	5.359 shared/functions/capability/CapGetExponent
	5.360 shared/functions/capability/CapGetLength
	5.361 shared/functions/capability/CapGetObjectType
	5.362 shared/functions/capability/CapGetOffset
	5.363 shared/functions/capability/CapGetPermissions
	5.364 shared/functions/capability/CapGetRepresentableMask
	5.365 shared/functions/capability/CapGetTag
	5.366 shared/functions/capability/CapGetTop
	5.367 shared/functions/capability/CapGetValue
	5.368 shared/functions/capability/CapIsBaseAboveLimit
	5.369 shared/functions/capability/CapIsEqual
	5.370 shared/functions/capability/CapIsExecutePermitted
	5.371 shared/functions/capability/CapIsExecutive
	5.372 shared/functions/capability/CapIsInBounds
	5.373 shared/functions/capability/CapIsInternalExponent
	5.374 shared/functions/capability/CapIsLocal
	5.375 shared/functions/capability/CapIsMutableLoadPermitted
	5.376 shared/functions/capability/CapIsRangeInBounds
	5.377 shared/functions/capability/CapIsRepresentable
	5.378 shared/functions/capability/CapIsRepresentableFast
	5.379 shared/functions/capability/CapIsSealed
	5.380 shared/functions/capability/CapIsSubSetOf
	5.381 shared/functions/capability/CapIsSystemAccessPermitted
	5.382 shared/functions/capability/CapIsTagClear
	5.383 shared/functions/capability/CapIsTagSet
	5.384 shared/functions/capability/CapNull
	5.385 shared/functions/capability/CapPermsInclude
	5.386 shared/functions/capability/CapSetBounds
	5.387 shared/functions/capability/CapSetObjectType
	5.388 shared/functions/capability/CapSetOffset
	5.389 shared/functions/capability/CapSetTag
	5.390 shared/functions/capability/CapSetValue
	5.391 shared/functions/capability/CapSquashPostLoadCap
	5.392 shared/functions/capability/CapUnseal
	5.393 shared/functions/capability/CapUnsignedGreaterThan
	5.394 shared/functions/capability/CapUnsignedGreaterThanOrEqual
	5.395 shared/functions/capability/CapUnsignedLessThan
	5.396 shared/functions/capability/CapUnsignedLessThanOrEqual
	5.397 shared/functions/capability/CapWithTagClear
	5.398 shared/functions/capability/CapWithTagSet
	5.399 shared/functions/capability/CapabilityFromData
	5.400 shared/functions/capability/DataFromCapability
	5.401 shared/functions/common/ASR
	5.402 shared/functions/common/ASR_C
	5.403 shared/functions/common/Abs
	5.404 shared/functions/common/Align
	5.405 shared/functions/common/BitCount
	5.406 shared/functions/common/CountLeadingSignBits
	5.407 shared/functions/common/CountLeadingZeroBits
	5.408 shared/functions/common/Elem
	5.409 shared/functions/common/Extend
	5.410 shared/functions/common/HighestSetBit
	5.411 shared/functions/common/Int
	5.412 shared/functions/common/IsOnes
	5.413 shared/functions/common/IsZero
	5.414 shared/functions/common/IsZeroBit
	5.415 shared/functions/common/LSL
	5.416 shared/functions/common/LSL_C
	5.417 shared/functions/common/LSR
	5.418 shared/functions/common/LSR_C
	5.419 shared/functions/common/LowestSetBit
	5.420 shared/functions/common/Max
	5.421 shared/functions/common/Min
	5.422 shared/functions/common/Ones
	5.423 shared/functions/common/ROR
	5.424 shared/functions/common/ROR_C
	5.425 shared/functions/common/Replicate
	5.426 shared/functions/common/RoundDown
	5.427 shared/functions/common/RoundTowardsZero
	5.428 shared/functions/common/RoundUp
	5.429 shared/functions/common/SInt
	5.430 shared/functions/common/SignExtend
	5.431 shared/functions/common/UInt
	5.432 shared/functions/common/ZeroExtend
	5.433 shared/functions/common/Zeros
	5.434 shared/functions/crc/BitReverse
	5.435 shared/functions/crc/HaveCRCExt
	5.436 shared/functions/crc/Poly32Mod2
	5.437 shared/functions/crypto/AESInvMixColumns
	5.438 shared/functions/crypto/AESInvShiftRows
	5.439 shared/functions/crypto/AESInvSubBytes
	5.440 shared/functions/crypto/AESMixColumns
	5.441 shared/functions/crypto/AESShiftRows
	5.442 shared/functions/crypto/AESSubBytes
	5.443 shared/functions/crypto/FFmul02
	5.444 shared/functions/crypto/FFmul03
	5.445 shared/functions/crypto/FFmul09
	5.446 shared/functions/crypto/FFmul0B
	5.447 shared/functions/crypto/FFmul0D
	5.448 shared/functions/crypto/FFmul0E
	5.449 shared/functions/crypto/HaveAESExt
	5.450 shared/functions/crypto/HaveBit128PMULLExt
	5.451 shared/functions/crypto/HaveSHA1Ext
	5.452 shared/functions/crypto/HaveSHA256Ext
	5.453 shared/functions/crypto/HaveSHA3Ext
	5.454 shared/functions/crypto/HaveSHA512Ext
	5.455 shared/functions/crypto/HaveSM3Ext
	5.456 shared/functions/crypto/HaveSM4Ext
	5.457 shared/functions/crypto/ROL
	5.458 shared/functions/crypto/SHA256hash
	5.459 shared/functions/crypto/SHAchoose
	5.460 shared/functions/crypto/SHAhashSIGMA0
	5.461 shared/functions/crypto/SHAhashSIGMA1
	5.462 shared/functions/crypto/SHAmajority
	5.463 shared/functions/crypto/SHAparity
	5.464 shared/functions/crypto/Sbox
	5.465 shared/functions/exclusive/ClearExclusiveByAddress
	5.466 shared/functions/exclusive/ClearExclusiveLocal
	5.467 shared/functions/exclusive/ClearExclusiveMonitors
	5.468 shared/functions/exclusive/ExclusiveMonitorsStatus
	5.469 shared/functions/exclusive/IsExclusiveGlobal
	5.470 shared/functions/exclusive/IsExclusiveLocal
	5.471 shared/functions/exclusive/MarkExclusiveGlobal
	5.472 shared/functions/exclusive/MarkExclusiveLocal
	5.473 shared/functions/exclusive/ProcessorID
	5.474 shared/functions/extension/AArch32.HaveHPDExt
	5.475 shared/functions/extension/AArch64.HaveHPDExt
	5.476 shared/functions/extension/Have52BitVAExt
	5.477 shared/functions/extension/HaveAArch32BF16Ext
	5.478 shared/functions/extension/HaveAArch32Int8MatMulExt
	5.479 shared/functions/extension/HaveAtomicExt
	5.480 shared/functions/extension/HaveCapabilitiesExt
	5.481 shared/functions/extension/HaveCommonNotPrivateTransExt
	5.482 shared/functions/extension/HaveDOTPExt
	5.483 shared/functions/extension/HaveDoubleLock
	5.484 shared/functions/extension/HaveExtendedECDebugEvents
	5.485 shared/functions/extension/HaveExtendedExecuteNeverExt
	5.486 shared/functions/extension/HaveFP16MulNoRoundingToFP32Ext
	5.487 shared/functions/extension/HaveHPMDExt
	5.488 shared/functions/extension/HaveIESB
	5.489 shared/functions/extension/HaveMPAMExt
	5.490 shared/functions/extension/HaveNoSecurePMUDisableOverride
	5.491 shared/functions/extension/HavePANExt
	5.492 shared/functions/extension/HavePageBasedHardwareAttributes
	5.493 shared/functions/extension/HavePrivATExt
	5.494 shared/functions/extension/HaveQRDMLAHExt
	5.495 shared/functions/extension/HaveRASExt
	5.496 shared/functions/extension/HaveSBExt
	5.497 shared/functions/extension/HaveSSBSExt
	5.498 shared/functions/extension/HaveStatisticalProfiling
	5.499 shared/functions/extension/HaveTraceExt
	5.500 shared/functions/extension/HaveUAOExt
	5.501 shared/functions/extension/HaveVirtHostExt
	5.502 shared/functions/extension/InsertIESBBeforeException
	5.503 shared/functions/float/bfloat/BFAdd
	5.504 shared/functions/float/bfloat/BFMatMulAdd
	5.505 shared/functions/float/bfloat/BFMul
	5.506 shared/functions/float/bfloat/BFRound
	5.507 shared/functions/float/bfloat/BFUnpack
	5.508 shared/functions/float/bfloat/FPConvertBF
	5.509 shared/functions/float/bfloat/FPRoundCVBF
	5.510 shared/functions/float/fixedtofp/FixedToFP
	5.511 shared/functions/float/fpabs/FPAbs
	5.512 shared/functions/float/fpadd/FPAdd
	5.513 shared/functions/float/fpcompare/FPCompare
	5.514 shared/functions/float/fpcompareeq/FPCompareEQ
	5.515 shared/functions/float/fpcomparege/FPCompareGE
	5.516 shared/functions/float/fpcomparegt/FPCompareGT
	5.517 shared/functions/float/fpconvert/FPConvert
	5.518 shared/functions/float/fpconvertnan/FPConvertNaN
	5.519 shared/functions/float/fpcrtype/FPCRType
	5.520 shared/functions/float/fpdecoderm/FPDecodeRM
	5.521 shared/functions/float/fpdecoderounding/FPDecodeRounding
	5.522 shared/functions/float/fpdefaultnan/FPDefaultNaN
	5.523 shared/functions/float/fpdiv/FPDiv
	5.524 shared/functions/float/fpexc/FPExc
	5.525 shared/functions/float/fpinfinity/FPInfinity
	5.526 shared/functions/float/fpmax/FPMax
	5.527 shared/functions/float/fpmaxnormal/FPMaxNormal
	5.528 shared/functions/float/fpmaxnum/FPMaxNum
	5.529 shared/functions/float/fpmin/FPMin
	5.530 shared/functions/float/fpminnum/FPMinNum
	5.531 shared/functions/float/fpmul/FPMul
	5.532 shared/functions/float/fpmuladd/FPMulAdd
	5.533 shared/functions/float/fpmuladdh/FPMulAddH
	5.534 shared/functions/float/fpmuladdh/FPProcessNaNs3H
	5.535 shared/functions/float/fpmulx/FPMulX
	5.536 shared/functions/float/fpneg/FPNeg
	5.537 shared/functions/float/fponepointfive/FPOnePointFive
	5.538 shared/functions/float/fpprocessexception/FPProcessException
	5.539 shared/functions/float/fpprocessnan/FPProcessNaN
	5.540 shared/functions/float/fpprocessnans/FPProcessNaNs
	5.541 shared/functions/float/fpprocessnans3/FPProcessNaNs3
	5.542 shared/functions/float/fprecipestimate/FPRecipEstimate
	5.543 shared/functions/float/fprecipestimate/RecipEstimate
	5.544 shared/functions/float/fprecpx/FPRecpX
	5.545 shared/functions/float/fpround/FPRound
	5.546 shared/functions/float/fpround/FPRoundCV
	5.547 shared/functions/float/fprounding/FPRounding
	5.548 shared/functions/float/fproundingmode/FPRoundingMode
	5.549 shared/functions/float/fproundint/FPRoundInt
	5.550 shared/functions/float/fproundintn/FPRoundIntN
	5.551 shared/functions/float/fprsqrtestimate/FPRSqrtEstimate
	5.552 shared/functions/float/fprsqrtestimate/RecipSqrtEstimate
	5.553 shared/functions/float/fpsqrt/FPSqrt
	5.554 shared/functions/float/fpsub/FPSub
	5.555 shared/functions/float/fpthree/FPThree
	5.556 shared/functions/float/fptofixed/FPToFixed
	5.557 shared/functions/float/fptwo/FPTwo
	5.558 shared/functions/float/fptype/FPType
	5.559 shared/functions/float/fpunpack/FPUnpack
	5.560 shared/functions/float/fpunpack/FPUnpackBase
	5.561 shared/functions/float/fpunpack/FPUnpackCV
	5.562 shared/functions/float/fpzero/FPZero
	5.563 shared/functions/float/vfpexpandimm/VFPExpandImm
	5.564 shared/functions/integer/AddWithCarry
	5.565 shared/functions/memory/AArch64.BranchAddr
	5.566 shared/functions/memory/AccType
	5.567 shared/functions/memory/AccessDescriptor
	5.568 shared/functions/memory/AddrTop
	5.569 shared/functions/memory/AddressDescriptor
	5.570 shared/functions/memory/Allocation
	5.571 shared/functions/memory/BigEndian
	5.572 shared/functions/memory/BigEndianReverse
	5.573 shared/functions/memory/BranchAddr
	5.574 shared/functions/memory/Cacheability
	5.575 shared/functions/memory/CreateAccessDescriptor
	5.576 shared/functions/memory/CreateAccessDescriptorPTW
	5.577 shared/functions/memory/DataMemoryBarrier
	5.578 shared/functions/memory/DataSynchronizationBarrier
	5.579 shared/functions/memory/DescriptorUpdate
	5.580 shared/functions/memory/DeviceType
	5.581 shared/functions/memory/EffectiveTBI
	5.582 shared/functions/memory/EffectiveTGEN
	5.583 shared/functions/memory/Fault
	5.584 shared/functions/memory/FaultRecord
	5.585 shared/functions/memory/FullAddress
	5.586 shared/functions/memory/Hint_Prefetch
	5.587 shared/functions/memory/MBReqDomain
	5.588 shared/functions/memory/MBReqTypes
	5.589 shared/functions/memory/MemAttrHints
	5.590 shared/functions/memory/MemType
	5.591 shared/functions/memory/MemoryAttributes
	5.592 shared/functions/memory/Permissions
	5.593 shared/functions/memory/PrefetchHint
	5.594 shared/functions/memory/SpeculativeStoreBypassBarrierToPA
	5.595 shared/functions/memory/SpeculativeStoreBypassBarrierToVA
	5.596 shared/functions/memory/TLBRecord
	5.597 shared/functions/memory/_Mem
	5.598 shared/functions/mpam/DefaultMPAMinfo
	5.599 shared/functions/mpam/DefaultPARTID
	5.600 shared/functions/mpam/DefaultPMG
	5.601 shared/functions/mpam/GenMPAMcurEL
	5.602 shared/functions/mpam/MAP_vPARTID
	5.603 shared/functions/mpam/MPAMisEnabled
	5.604 shared/functions/mpam/MPAMisVirtual
	5.605 shared/functions/mpam/genMPAM
	5.606 shared/functions/mpam/genMPAMel
	5.607 shared/functions/mpam/genPARTID
	5.608 shared/functions/mpam/genPMG
	5.609 shared/functions/mpam/getMPAM_PARTID
	5.610 shared/functions/mpam/getMPAM_PMG
	5.611 shared/functions/mpam/mapvpmw
	5.612 shared/functions/registers/BranchTo
	5.613 shared/functions/registers/BranchToAddr
	5.614 shared/functions/registers/BranchToOffset
	5.615 shared/functions/registers/BranchType
	5.616 shared/functions/registers/Hint_Branch
	5.617 shared/functions/registers/NextInstrAddr
	5.618 shared/functions/registers/ResetExternalDebugRegisters
	5.619 shared/functions/registers/ThisInstrAddr
	5.620 shared/functions/registers/_PC
	5.621 shared/functions/registers/_R
	5.622 shared/functions/registers/_V
	5.623 shared/functions/sysregisters/SPSR
	5.624 shared/functions/system/ArchVersion
	5.625 shared/functions/system/ClearEventRegister
	5.626 shared/functions/system/ClearPendingPhysicalSError
	5.627 shared/functions/system/ClearPendingVirtualSError
	5.628 shared/functions/system/ConditionHolds
	5.629 shared/functions/system/ConsumptionOfSpeculativeDataBarrier
	5.630 shared/functions/system/CurrentInstrSet
	5.631 shared/functions/system/EL0
	5.632 shared/functions/system/EL2Enabled
	5.633 shared/functions/system/ELFromSPSR
	5.634 shared/functions/system/ELIsInHost
	5.635 shared/functions/system/ELStateUsingAArch32
	5.636 shared/functions/system/ELStateUsingAArch32K
	5.637 shared/functions/system/ELUsingAArch32
	5.638 shared/functions/system/ELUsingAArch32K
	5.639 shared/functions/system/EndOfInstruction
	5.640 shared/functions/system/EnterLowPowerState
	5.641 shared/functions/system/EventRegister
	5.642 shared/functions/system/GetPSRFromPSTATE
	5.643 shared/functions/system/HasArchVersion
	5.644 shared/functions/system/HaveAArch32EL
	5.645 shared/functions/system/HaveAnyAArch32
	5.646 shared/functions/system/HaveAnyAArch64
	5.647 shared/functions/system/HaveEL
	5.648 shared/functions/system/HaveELUsingSecurityState
	5.649 shared/functions/system/HaveFP16Ext
	5.650 shared/functions/system/HighestEL
	5.651 shared/functions/system/HighestELUsingAArch32
	5.652 shared/functions/system/Hint_Yield
	5.653 shared/functions/system/IllegalExceptionReturn
	5.654 shared/functions/system/InstrSet
	5.655 shared/functions/system/InstructionSynchronizationBarrier
	5.656 shared/functions/system/InterruptPending
	5.657 shared/functions/system/IsEventRegisterSet
	5.658 shared/functions/system/IsHighestEL
	5.659 shared/functions/system/IsInHost
	5.660 shared/functions/system/IsPhysicalSErrorPending
	5.661 shared/functions/system/IsSecure
	5.662 shared/functions/system/IsSecureBelowEL3
	5.663 shared/functions/system/IsVirtualSErrorPending
	5.664 shared/functions/system/Mode_Bits
	5.665 shared/functions/system/PSTATE
	5.666 shared/functions/system/PrivilegeLevel
	5.667 shared/functions/system/ProcState
	5.668 shared/functions/system/SCRType
	5.669 shared/functions/system/SCR_GEN
	5.670 shared/functions/system/SendEvent
	5.671 shared/functions/system/SendEventLocal
	5.672 shared/functions/system/SetPSTATEFromPSR
	5.673 shared/functions/system/ShouldAdvanceIT
	5.674 shared/functions/system/SpeculationBarrier
	5.675 shared/functions/system/SynchronizeContext
	5.676 shared/functions/system/SynchronizeErrors
	5.677 shared/functions/system/TakeUnmaskedPhysicalSErrorInterrupts
	5.678 shared/functions/system/TakeUnmaskedSErrorInterrupts
	5.679 shared/functions/system/ThisInstr
	5.680 shared/functions/system/ThisInstrLength
	5.681 shared/functions/system/Unreachable
	5.682 shared/functions/system/UsingAArch32
	5.683 shared/functions/system/WaitForEvent
	5.684 shared/functions/system/WaitForInterrupt
	5.685 shared/functions/unpredictable/ConstrainUnpredictable
	5.686 shared/functions/unpredictable/ConstrainUnpredictableBits
	5.687 shared/functions/unpredictable/ConstrainUnpredictableBool
	5.688 shared/functions/unpredictable/ConstrainUnpredictableInteger
	5.689 shared/functions/unpredictable/Constraint
	5.690 shared/functions/unpredictable/Unpredictable
	5.691 shared/functions/vector/AdvSIMDExpandImm
	5.692 shared/functions/vector/MatMulAdd
	5.693 shared/functions/vector/PolynomialMult
	5.694 shared/functions/vector/SatQ
	5.695 shared/functions/vector/SignedSatQ
	5.696 shared/functions/vector/UnsignedRSqrtEstimate
	5.697 shared/functions/vector/UnsignedRecipEstimate
	5.698 shared/functions/vector/UnsignedSatQ
	5.699 shared/translation/attrs/CanonicalizeMemoryAttributes
	5.700 shared/translation/attrs/CombineS1S2AttrHints
	5.701 shared/translation/attrs/CombineS1S2Device
	5.702 shared/translation/attrs/CombineS1S2LCSC
	5.703 shared/translation/attrs/LongConvertAttrsHints
	5.704 shared/translation/attrs/S1CacheDisabled
	5.705 shared/translation/attrs/S2AttrDecode
	5.706 shared/translation/attrs/S2CacheDisabled
	5.707 shared/translation/attrs/S2ConvertAttrsHints
	5.708 shared/translation/attrs/ShortConvertAttrsHints
	5.709 shared/translation/attrs/WalkAttrDecode
	5.710 shared/translation/translation/HasS2Translation
	5.711 shared/translation/translation/Have16bitVMID
	5.712 shared/translation/translation/PAMax
	5.713 shared/translation/translation/S1TranslationRegime
	5.714 shared/translation/translation/VAMax

	6 Glossary

