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1 Overview 
In this guide, you can learn how to create a simple but complete WoA-native WinUI 3 application.  

Microsoft recently released WinUI 3.0, which runs on .NET 5.0, on machines with AArch64 
processors (Arm 64), Intel, and AMD. WinUI 3.0 also runs on .NET 5.0.8, Windows forms, UWP, and 
WPF already have native Arm support. As seen in the Best Practices for Migrating Windows apps 
to Windows on Arm, applications on an AArch64 device can run in x86 emulation mode. Running in 
emulation mode is fine for applications that do not require high performance. Sometimes, it can be 
more than ten times slower than running in native mode. Therefore, to really take advantage of the 
power of the new platform, you want to create native apps.  

This guide describes how to develop a simple graphical application for a device with an AArch64 
processor. The device we are using to test the app is a Microsoft surface pro X device with an 
AArch64 processor. I call this device the two in one laptop. 

 

1.1 Before you begin 

To work through in this guide, you need visual studio 2019 (VS2019) as an Integrated Development 
Environment (IDE), with C#. Developing WinUI 3.0 applications involves minimal knowledge of XAML 
and WPF. 

You can find the code for this article on GitHub. 

 

1.2 Prepare the development PC 

Detailed instructions to install the right components can be found Windows app development site. 
If you have not installed VS2019, you can use the download link the page provides. While you can 
complete the exercise on VS2022, it is still in preview, so proceed with caution. 

If you already have VS2019, open the visual studio installer to add any necessary workloads.  

 

 

 

 

https://www.codeproject.com/Articles/5306711/Migrating-Windows-Apps-to-Windows-on-Arm-with-WPF
https://www.codeproject.com/Articles/5293252/Todays-Best-Practices-for-Migrating-Windows-apps-t
https://www.codeproject.com/Articles/5293252/Todays-Best-Practices-for-Migrating-Windows-apps-t
https://github.com/GVerelst/DowngradePicture
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/set-up-your-development-environment?tabs=stable
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1.3 Prepare the target device  

To prepare your AArch64 PC, follow the instructions to enable your device for development. Then: 

• Download .NET 5.0 (Linux, macOS, and Windows) 

• Install .NET 5.0 x86  

• Install .NET 5.0 Arm64. 

Install the x86 version to contrast the x86 emulated mode with the AArch64 native mode. 

https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://dotnet.microsoft.com/download/dotnet/5.0
https://dotnet.microsoft.com/download/dotnet/thank-you/sdk-5.0.402-windows-x86-installer
https://dotnet.microsoft.com/download/dotnet/thank-you/sdk-5.0.402-windows-arm64-installer
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2 Create a WinUI 3.0 application 
The Windows UI library (WinUI) contains the documentation for WinUI 3.0, and the following 
diagram. The diagram highlights the purpose of WinUI 3, which enables you to use one framework to 
create applications for all possible Windows platforms.  

The following diagram shows the support for the AArch64 processor: 

 

Figure 1: Creating applications with WinUi3 for Windows platforms 

 

First, we create a small application that allows you to reduce the resolution of a user-loaded image. 
The resolution is downgraded by selecting squares of 20 x 20 pixels and replacing the color of each 
selected square with the average color of its pixels.  

This example is just a demo application, so there are not many options. But it is enough to perform 
some benchmarks. Detailed instructions for creating Windows app SDK projects can be found on the 
Windows app development site.  

In the next chapter, we create the downgrade picture application. 

 

 

 

 

 

WIN UI  .   the Windows UI p atform
Microsoft.UI. am 

Microsoft.UI.Composition
Microsoft.UI.Input.

Uni ersa  Windows P atformWin   

Windows PCs   o Ho o ens
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hu 
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https://docs.microsoft.com/en-us/windows/apps/winui/
https://docs.microsoft.com/en-us/windows/apps/winui/winui3/create-your-first-winui3-app?tabs=desktop-csharp
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2.1 Create the WinUI 3.0 desktop project 

 

Open VS2019 and follow the instructions: 

1. Click File > New > Project, to create a new project and then select C#, Windows, and WinUI: 

 

Figure: Creating new project 

 

2. Select Blank App, Packaged (WinUI 3 in Desktop): 

 

Figure: Selecting blank app, packaged 

 

3. Name the app to DowngradePicture, then choose a location, and click create: 
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Figure: Naming the app, selecting the location 

 

4. Select the target and minimum versions of Windows on the appearing dialog box. Leave the 
default values and click OK: 

 

Figure: Platform version dialog box 

 

 

The settings seen on the previous figure, also work in Windows 11. 
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After a few seconds, the solution explorer and an overview page will appear. We now have an 
application that can run on our machine. It does not do much yet, but it is the beginning of your first 
WinUI 3.0 application.  

In the Solution Explorer, there are two projects:  

•   DowngradePicture contains the code and resources for the project. Here we publish the 
application for different versions (x86 and AArch64).  

• DowngradePicture (Package) contains the manifest file of the application. This file contains all the 
information that our application must run. Notice that this is a startup project. The manifest file 
allows for setting the icons and capabilities of the application.  

 

If you are familiar with Windows Presentation Foundation, you can recognize the MainWindow.xaml 
file. This file is where we add the code to load and display the image file. 

 

 

 

 

 

2.2 Add controls to the main window 

If you prefer not to type from blank, you can find the necessary code on GitHub. 

On the main window, we want to show the original and downgraded pictures with some controls. 
Also, we would like a text block to display the time taken to downgrade the image.  

The following image shows how the reduced image must looks like compared to the original: 

https://github.com/GVerelst/DowngradePicture
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Figure: Original and downgraded image comparison 

 

 

The following XAML code to accomplish the task, can be found on GitHub: 
<Window 

    x:Class="Downgrade Aarch64 Picture.MainWindow" 

    xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" 

    xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" 

    xmlns:local="using:DowngradePicture" 

    xmlns:d="http://schemas.microsoft.com/expression/blend/2008" 

    xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" 

    mc:Ignorable="d"> 

  

    <StackPanel Orientation="Vertical" HorizontalAlignment="Center" > 

        <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" > 

            <Button Click="OnLoadClicked">Load image to reduce...</Button> 

            <TextBlock Margin="20" Text="Set pixel size to: " /> 

https://github.com/GVerelst/DowngradePicture/blob/master/DowngradePicture/DowngradePicture/MainWindow.xaml
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            <TextBox Margin="10" Text="20" x:Name="pixelSize" TextChanged="PixelSize_Te

xtChanged" /> 

            <Button x:Name="reduceButton" Click="OnReduceClicked" IsEnabled="False">Red

uce image</Button> 

            <TextBlock Margin="10" FontSize="20" x:Name="txtDuration" Foreground="Blue"

/> 

        </StackPanel> 

        <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" > 

            <StackPanel Orientation="Vertical" HorizontalAlignment="Center" > 

                <TextBlock Margin="20" Text="Original image" FontSize="30" /> 

                <TextBlock x:Name="txtPath" Text="" /> 

                <Image x:Name="originalImage" Width="400" ImageOpened="OnImageOpened" M

argin="0,20" /> 

            </StackPanel> 

            <StackPanel Orientation="Vertical" HorizontalAlignment="Center" Margin="10,

 0"  > 

                <TextBlock Margin="20" Text="Reduced image" FontSize="30" /> 

                <TextBlock x:Name="txtReducedPath" Text="" /> 

                <Image x:Name="reducedImage" Width="400"  Margin="0,20" /> 

            </StackPanel> 

        </StackPanel> 

    </StackPanel> 

</Window> 

 

The code to handle the events, and to reduce the bitmap is in the MainWindow.xaml.cs file. 

The OnLoadClicked function allows you to select an image file and load it into originalImage. 

The OnReduceClicked function calls the ReduceBitmap function and saves the result on the file 

system.  

The ReduceBitmap function uses the value of pixelSize to reduce the bitmap quality.  

 

The following function shows that the parameter step corresponds to the value of pixelSize: 

private static Bitmap ReduceBitmap(Bitmap bitmap, int step) 

{ 

    for (int x = 0; x < bitmap.Width; x += step) 

    { 

        for (int y = 0; y < bitmap.Height; y += step) 

        { 

            int r = 0; 

            int g = 0; 

            int b = 0; 

https://github.com/GVerelst/DowngradePicture/blob/master/DowngradePicture/DowngradePicture/MainWindow.xaml.cs
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            for (int i = 0; i < step && x + i < bitmap.Width; i++) 

            { 

                for (int j = 0; j < step && y + j < bitmap.Height; j++) 

                { 

                    Color c = bitmap.GetPixel(x + i, y + j); 

                    r += c.R; 

                    g += c.G; 

                    b += c.B; 

                } 

            } 

            Color avg = Color.FromArgb(r / (step * step), g / (step * step), b / (step 

* step)); 

                     

            for (int i = 0; i < step && x + i < bitmap.Width; i++) 

            { 

                for (int j = 0; j < step && y + j < bitmap.Height; j++) 

                { 

                    bitmap.SetPixel(x + i, y + j, avg); 

                } 

            } 

        } 

    } 

  

    return bitmap; 

} 

 

The code uses GetPixel to get all pixel colors for each block. The code then calculates the average 

color for that block and uses SetPixel to set all the pixels to that color. Setting all pixels takes 

longer with large pictures. This difference allows us to contrast the performance between x86 and 
AArch64 modes. 
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3 Deploy the application on the two 
in one laptop 
Now that the application runs on our development PC, we can deploy it to the two in one laptop. This 
process is less straightforward than needed, but the following walkthrough must help. The official 
documentation is on package and deploy page for Windows apps. 

3.1 Publishing the binaries for each mode 
 

With the following instructions publish the binaries for each mode: 

 

1. Hit right-click DowngradePicture project in Solution Explorer and select Publish from the context 
menu. The publish window opens. In this window we can create multiple profiles. In our case, we 
need two profiles, one for x86 and one for arm64.  

 

Visual Studio refers to AArch64 as arm64. 

 

2. Click the New button to create a profile.  
The following profile settings appear for win10-x86: 

https://docs.microsoft.com/en-us/windows/apps/package-and-deploy/
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Figure: Win 10 x86 profile. 

 

3. Click Save. 

The following profile settings appear for win10-arm64: 
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Figure: Win 10 x64 profile. 

4. Click Save. 

5. Click Publish, once both profiles are created. 

 

3.2 Create the app packages 

 

Use the following instructions to create the app packages: 

1. Right-click DowngradePicture (Package) project and select Publish from the context menu.  

2. Finally, click Create app package. 

A wizard opens with options for distribution as you can see in the following screenshot: 

 

Figure: App distribution methods 
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3. Choose Sideloading to enable package deployment without passing through the Microsoft store. 
This selection is preferable for testing purposes. Sideloading is also a good option when the 
application is an in-house application that you do not want to make publicly available. 

 

4. Select Yes, select a certificate: 

 

 

Figure: Select signing method. 

If you already have a certificate, you can select it here. Otherwise, create a self-signed test certificate 
to use instead. Take note of the password that you use to create it for later use: 

 

Figure: Certificate selection 

On the next page, select the packages to create. Here, we can package the profiles we have published: 
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Figure: Select and configure packages. 

We cannot select Release (x64) because we did not publish an x64 profile. Choosing the x64 wizard 
results in a Visual Studio error message. For the output location, we have used a shared folder on the 
development PC. The two in one laptop can access this folder as well, so we do not need to copy and 
distribute files. 

 

Figure: Configure update settings. 
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Click Create to create the packages at the installer location. Ignore warnings about files. Everything 
works if the previous steps have been followed correctly. 

3.3 Install the package on the two in one laptop 

 

Once you have created a developer certificate, you must export it to the target device. You only must 
do this export the first time: 

 

1. Copy the .pfx file to the shared folder and double-click it.  

2. Choose Local machine as the store location and click Next.  

3. Click Next after the security confirmation and type the password that you set for the certificate. 
Leave the other options in their default states.  

4. Click Next again and select Trusted Root Certification Authorities. 

 

Figure: Certificate store 

 

5. Click Next once more to see the overview and click Finish to import the certificate.  

Now we are ready to install the application on the target PC. 

6. Open the index.html file in the publish folder and click Get the app to install and run it. 

We have now successfully created a WinUI 3.0 application and installed it on the target device for 
testing. 

 



Windows on Arm  Building a Native Windows on Arm 
App with WinUI 3 

102767 
Issue 1.0 

 
 

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 20 of 23 

4 Benchmark the app 
We created the application to run in either x86 (emulation) mode or AArch64 (native) mode on the 
two in one laptop. Having used the same picture in both modes, we can compare the results.  

4.1 Benchmark X86 emulation 

Downgrading the picture in x86 emulation mode took 47.39 seconds. Note that the left-hand side of 
the following image shows that this mode is running as a 32-bit process (x86): 

 

 

Figure: Downgrading time in x86 

 

4.2 Benchmark AArch64 native 

In native mode, downgrading the picture takes approximately 24 seconds, nearly twice as fast as in 
x86 emulation mode. Although this application uses integer-based calculations, we can still appreciate 
this boost in performance. When working with floating-point operations, the improvements are 
even better, up to 10 times faster as the following screenshot shows: 

 

Figure: Downgrading time in x64 

https://www.codeproject.com/Articles/5293252/Todays-Best-Practices-for-Migrating-Windows-apps-t
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5 Summary 
WinUI 3 has solid support for the AArch64 processor. Visual Studio allows for easy creation of the 
AArch64 package, which we can deploy on a two in one laptop. Achieving a 100 percent performance 
gain is especially impressive, considering that we only had to create a win10-arm64 profile in Visual 
Studio to accomplish it. 

As a bonus, this building works on Windows 11 too, without any modification. 
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6 Related Information 
Here are some resources related to material discussed in this guide:  

Microsoft docs: 

• Build desktop Windows apps with the Windows App SDK - Windows apps | Microsoft docs 

• Create your first WinUI 3 app - Windows apps | Microsoft docs 

• Install tools for Windows app development - Windows apps | Microsoft docs 

• Stable release channel for the Windows App SDK - Windows apps | Microsoft docs 

• Windows UI library (WinUI) - Windows apps | Microsoft docs 

 

GitHub.com: 

• Microsoft/WinUI-3-Demos (github.com) 

 

https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/
https://docs.microsoft.com/en-us/windows/apps/winui/winui3/create-your-first-winui3-app?tabs=desktop-csharp
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/set-up-your-development-environment
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/stable-channel
https://docs.microsoft.com/en-us/windows/apps/winui/
https://github.com/microsoft/WinUI-3-Demos
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7 Next steps 
This guide has introduced how to build a native Windows on Arm app with WinUI 3. With this 
knowledge you can fork this application and make something out of it. Let us know what you have 
done in the comment section on CodeProject. You can also publish your application on the Microsoft 
store. 
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