

Windows on Arm

 Building a Native Windows on Arm
App with WinUI 3
Non-Confidential Issue 1.0
Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

102767

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 23

Windows on Arm

 Building a Native Windows on Arm App with WinUI 3

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 06 January 2022 Non-Confidential

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

http://www.arm.com/company/policies/trademarks

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 23

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

https://www.arm.com/

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 23

Contents

1 Overview .. 5

1.1 Before you begin ... 5

1.2 Prepare the development PC ... 5

1.3 Prepare the target device .. 6

2 Create a WinUI 3.0 application .. 7

2.1 Create the WinUI 3.0 desktop project .. 8

2.2 Add controls to the main window ... 10

3 Deploy the application on the two in one laptop .. 14

3.1 Publishing the binaries for each mode .. 14

3.2 Create the app packages .. 16

3.3 Install the package on the two in one laptop ... 19

4 Benchmark the app .. 20

4.1 Benchmark X86 emulation .. 20

4.2 Benchmark AArch64 native .. 20

5 Summary ... 21

6 Related Information .. 22

7 Next steps ... 23

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 23

1 Overview
In this guide, you can learn how to create a simple but complete WoA-native WinUI 3 application.

Microsoft recently released WinUI 3.0, which runs on .NET 5.0, on machines with AArch64
processors (Arm 64), Intel, and AMD. WinUI 3.0 also runs on .NET 5.0.8, Windows forms, UWP, and
WPF already have native Arm support. As seen in the Best Practices for Migrating Windows apps
to Windows on Arm, applications on an AArch64 device can run in x86 emulation mode. Running in
emulation mode is fine for applications that do not require high performance. Sometimes, it can be
more than ten times slower than running in native mode. Therefore, to really take advantage of the
power of the new platform, you want to create native apps.

This guide describes how to develop a simple graphical application for a device with an AArch64
processor. The device we are using to test the app is a Microsoft surface pro X device with an
AArch64 processor. I call this device the two in one laptop.

1.1 Before you begin

To work through in this guide, you need visual studio 2019 (VS2019) as an Integrated Development
Environment (IDE), with C#. Developing WinUI 3.0 applications involves minimal knowledge of XAML
and WPF.

You can find the code for this article on GitHub.

1.2 Prepare the development PC

Detailed instructions to install the right components can be found Windows app development site.
If you have not installed VS2019, you can use the download link the page provides. While you can
complete the exercise on VS2022, it is still in preview, so proceed with caution.

If you already have VS2019, open the visual studio installer to add any necessary workloads.

https://www.codeproject.com/Articles/5306711/Migrating-Windows-Apps-to-Windows-on-Arm-with-WPF
https://www.codeproject.com/Articles/5293252/Todays-Best-Practices-for-Migrating-Windows-apps-t
https://www.codeproject.com/Articles/5293252/Todays-Best-Practices-for-Migrating-Windows-apps-t
https://github.com/GVerelst/DowngradePicture
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/set-up-your-development-environment?tabs=stable

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 23

1.3 Prepare the target device

To prepare your AArch64 PC, follow the instructions to enable your device for development. Then:

• Download .NET 5.0 (Linux, macOS, and Windows)

• Install .NET 5.0 x86

• Install .NET 5.0 Arm64.

Install the x86 version to contrast the x86 emulated mode with the AArch64 native mode.

https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development
https://dotnet.microsoft.com/download/dotnet/5.0
https://dotnet.microsoft.com/download/dotnet/thank-you/sdk-5.0.402-windows-x86-installer
https://dotnet.microsoft.com/download/dotnet/thank-you/sdk-5.0.402-windows-arm64-installer

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 23

2 Create a WinUI 3.0 application
The Windows UI library (WinUI) contains the documentation for WinUI 3.0, and the following
diagram. The diagram highlights the purpose of WinUI 3, which enables you to use one framework to
create applications for all possible Windows platforms.

The following diagram shows the support for the AArch64 processor:

Figure 1: Creating applications with WinUi3 for Windows platforms

First, we create a small application that allows you to reduce the resolution of a user-loaded image.
The resolution is downgraded by selecting squares of 20 x 20 pixels and replacing the color of each
selected square with the average color of its pixels.

This example is just a demo application, so there are not many options. But it is enough to perform
some benchmarks. Detailed instructions for creating Windows app SDK projects can be found on the
Windows app development site.

In the next chapter, we create the downgrade picture application.

WIN UI . the Windows UI p atform
Microsoft.UI. am

Microsoft.UI.Composition
Microsoft.UI.Input.

Uni ersa Windows P atformWin

Windows PCs o Ho o ens
Surface
hu

De ices
 IoT

https://docs.microsoft.com/en-us/windows/apps/winui/
https://docs.microsoft.com/en-us/windows/apps/winui/winui3/create-your-first-winui3-app?tabs=desktop-csharp

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 23

2.1 Create the WinUI 3.0 desktop project

Open VS2019 and follow the instructions:

1. Click File > New > Project, to create a new project and then select C#, Windows, and WinUI:

Figure: Creating new project

2. Select Blank App, Packaged (WinUI 3 in Desktop):

Figure: Selecting blank app, packaged

3. Name the app to DowngradePicture, then choose a location, and click create:

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 23

Figure: Naming the app, selecting the location

4. Select the target and minimum versions of Windows on the appearing dialog box. Leave the
default values and click OK:

Figure: Platform version dialog box

The settings seen on the previous figure, also work in Windows 11.

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 23

After a few seconds, the solution explorer and an overview page will appear. We now have an
application that can run on our machine. It does not do much yet, but it is the beginning of your first
WinUI 3.0 application.

In the Solution Explorer, there are two projects:

• DowngradePicture contains the code and resources for the project. Here we publish the
application for different versions (x86 and AArch64).

• DowngradePicture (Package) contains the manifest file of the application. This file contains all the
information that our application must run. Notice that this is a startup project. The manifest file
allows for setting the icons and capabilities of the application.

If you are familiar with Windows Presentation Foundation, you can recognize the MainWindow.xaml
file. This file is where we add the code to load and display the image file.

2.2 Add controls to the main window

If you prefer not to type from blank, you can find the necessary code on GitHub.

On the main window, we want to show the original and downgraded pictures with some controls.
Also, we would like a text block to display the time taken to downgrade the image.

The following image shows how the reduced image must looks like compared to the original:

https://github.com/GVerelst/DowngradePicture

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 23

Figure: Original and downgraded image comparison

The following XAML code to accomplish the task, can be found on GitHub:
<Window

 x:Class="Downgrade Aarch64 Picture.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:DowngradePicture"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <StackPanel Orientation="Vertical" HorizontalAlignment="Center" >

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" >

 <Button Click="OnLoadClicked">Load image to reduce...</Button>

 <TextBlock Margin="20" Text="Set pixel size to: " />

https://github.com/GVerelst/DowngradePicture/blob/master/DowngradePicture/DowngradePicture/MainWindow.xaml

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 23

 <TextBox Margin="10" Text="20" x:Name="pixelSize" TextChanged="PixelSize_Te

xtChanged" />

 <Button x:Name="reduceButton" Click="OnReduceClicked" IsEnabled="False">Red

uce image</Button>

 <TextBlock Margin="10" FontSize="20" x:Name="txtDuration" Foreground="Blue"

/>

 </StackPanel>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" >

 <StackPanel Orientation="Vertical" HorizontalAlignment="Center" >

 <TextBlock Margin="20" Text="Original image" FontSize="30" />

 <TextBlock x:Name="txtPath" Text="" />

 <Image x:Name="originalImage" Width="400" ImageOpened="OnImageOpened" M

argin="0,20" />

 </StackPanel>

 <StackPanel Orientation="Vertical" HorizontalAlignment="Center" Margin="10,

 0" >

 <TextBlock Margin="20" Text="Reduced image" FontSize="30" />

 <TextBlock x:Name="txtReducedPath" Text="" />

 <Image x:Name="reducedImage" Width="400" Margin="0,20" />

 </StackPanel>

 </StackPanel>

 </StackPanel>

</Window>

The code to handle the events, and to reduce the bitmap is in the MainWindow.xaml.cs file.

The OnLoadClicked function allows you to select an image file and load it into originalImage.

The OnReduceClicked function calls the ReduceBitmap function and saves the result on the file

system.

The ReduceBitmap function uses the value of pixelSize to reduce the bitmap quality.

The following function shows that the parameter step corresponds to the value of pixelSize:

private static Bitmap ReduceBitmap(Bitmap bitmap, int step)

{

 for (int x = 0; x < bitmap.Width; x += step)

 {

 for (int y = 0; y < bitmap.Height; y += step)

 {

 int r = 0;

 int g = 0;

 int b = 0;

https://github.com/GVerelst/DowngradePicture/blob/master/DowngradePicture/DowngradePicture/MainWindow.xaml.cs

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 23

 for (int i = 0; i < step && x + i < bitmap.Width; i++)

 {

 for (int j = 0; j < step && y + j < bitmap.Height; j++)

 {

 Color c = bitmap.GetPixel(x + i, y + j);

 r += c.R;

 g += c.G;

 b += c.B;

 }

 }

 Color avg = Color.FromArgb(r / (step * step), g / (step * step), b / (step

* step));

 for (int i = 0; i < step && x + i < bitmap.Width; i++)

 {

 for (int j = 0; j < step && y + j < bitmap.Height; j++)

 {

 bitmap.SetPixel(x + i, y + j, avg);

 }

 }

 }

 }

 return bitmap;

}

The code uses GetPixel to get all pixel colors for each block. The code then calculates the average

color for that block and uses SetPixel to set all the pixels to that color. Setting all pixels takes

longer with large pictures. This difference allows us to contrast the performance between x86 and
AArch64 modes.

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 23

3 Deploy the application on the two
in one laptop
Now that the application runs on our development PC, we can deploy it to the two in one laptop. This
process is less straightforward than needed, but the following walkthrough must help. The official
documentation is on package and deploy page for Windows apps.

3.1 Publishing the binaries for each mode

With the following instructions publish the binaries for each mode:

1. Hit right-click DowngradePicture project in Solution Explorer and select Publish from the context
menu. The publish window opens. In this window we can create multiple profiles. In our case, we
need two profiles, one for x86 and one for arm64.

Visual Studio refers to AArch64 as arm64.

2. Click the New button to create a profile.
The following profile settings appear for win10-x86:

https://docs.microsoft.com/en-us/windows/apps/package-and-deploy/

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 23

Figure: Win 10 x86 profile.

3. Click Save.

The following profile settings appear for win10-arm64:

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 23

Figure: Win 10 x64 profile.

4. Click Save.

5. Click Publish, once both profiles are created.

3.2 Create the app packages

Use the following instructions to create the app packages:

1. Right-click DowngradePicture (Package) project and select Publish from the context menu.

2. Finally, click Create app package.

A wizard opens with options for distribution as you can see in the following screenshot:

Figure: App distribution methods

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 23

3. Choose Sideloading to enable package deployment without passing through the Microsoft store.
This selection is preferable for testing purposes. Sideloading is also a good option when the
application is an in-house application that you do not want to make publicly available.

4. Select Yes, select a certificate:

Figure: Select signing method.

If you already have a certificate, you can select it here. Otherwise, create a self-signed test certificate
to use instead. Take note of the password that you use to create it for later use:

Figure: Certificate selection

On the next page, select the packages to create. Here, we can package the profiles we have published:

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 23

Figure: Select and configure packages.

We cannot select Release (x64) because we did not publish an x64 profile. Choosing the x64 wizard
results in a Visual Studio error message. For the output location, we have used a shared folder on the
development PC. The two in one laptop can access this folder as well, so we do not need to copy and
distribute files.

Figure: Configure update settings.

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 23

Click Create to create the packages at the installer location. Ignore warnings about files. Everything
works if the previous steps have been followed correctly.

3.3 Install the package on the two in one laptop

Once you have created a developer certificate, you must export it to the target device. You only must
do this export the first time:

1. Copy the .pfx file to the shared folder and double-click it.

2. Choose Local machine as the store location and click Next.

3. Click Next after the security confirmation and type the password that you set for the certificate.
Leave the other options in their default states.

4. Click Next again and select Trusted Root Certification Authorities.

Figure: Certificate store

5. Click Next once more to see the overview and click Finish to import the certificate.

Now we are ready to install the application on the target PC.

6. Open the index.html file in the publish folder and click Get the app to install and run it.

We have now successfully created a WinUI 3.0 application and installed it on the target device for
testing.

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 23

4 Benchmark the app
We created the application to run in either x86 (emulation) mode or AArch64 (native) mode on the
two in one laptop. Having used the same picture in both modes, we can compare the results.

4.1 Benchmark X86 emulation

Downgrading the picture in x86 emulation mode took 47.39 seconds. Note that the left-hand side of
the following image shows that this mode is running as a 32-bit process (x86):

Figure: Downgrading time in x86

4.2 Benchmark AArch64 native

In native mode, downgrading the picture takes approximately 24 seconds, nearly twice as fast as in
x86 emulation mode. Although this application uses integer-based calculations, we can still appreciate
this boost in performance. When working with floating-point operations, the improvements are
even better, up to 10 times faster as the following screenshot shows:

Figure: Downgrading time in x64

https://www.codeproject.com/Articles/5293252/Todays-Best-Practices-for-Migrating-Windows-apps-t

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 23

5 Summary
WinUI 3 has solid support for the AArch64 processor. Visual Studio allows for easy creation of the
AArch64 package, which we can deploy on a two in one laptop. Achieving a 100 percent performance
gain is especially impressive, considering that we only had to create a win10-arm64 profile in Visual
Studio to accomplish it.

As a bonus, this building works on Windows 11 too, without any modification.

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 23

6 Related Information
Here are some resources related to material discussed in this guide:

Microsoft docs:

• Build desktop Windows apps with the Windows App SDK - Windows apps | Microsoft docs

• Create your first WinUI 3 app - Windows apps | Microsoft docs

• Install tools for Windows app development - Windows apps | Microsoft docs

• Stable release channel for the Windows App SDK - Windows apps | Microsoft docs

• Windows UI library (WinUI) - Windows apps | Microsoft docs

GitHub.com:

• Microsoft/WinUI-3-Demos (github.com)

https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/
https://docs.microsoft.com/en-us/windows/apps/winui/winui3/create-your-first-winui3-app?tabs=desktop-csharp
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/set-up-your-development-environment
https://docs.microsoft.com/en-us/windows/apps/windows-app-sdk/stable-channel
https://docs.microsoft.com/en-us/windows/apps/winui/
https://github.com/microsoft/WinUI-3-Demos

Windows on Arm Building a Native Windows on Arm
App with WinUI 3

102767
Issue 1.0

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 23

7 Next steps
This guide has introduced how to build a native Windows on Arm app with WinUI 3. With this
knowledge you can fork this application and make something out of it. Let us know what you have
done in the comment section on CodeProject. You can also publish your application on the Microsoft
store.

https://www.codeproject.com/Tags/ARM

