

Neoverse N1

Accelerating DSP functions with dot
product instructions
Non-Confidential Issue 01
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

102651

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 16

Neoverse N1

Accelerating DSP functions with dot product instructions

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 December 14, 2021 Non-confidential Initial draft

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

http://www.arm.com/company/policies/trademarks

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 16

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

https://www.arm.com/

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 16

Contents

1 Overview .. 5

1.1 Before you begin ... 5

2 What are dot product instructions? ... 6

3 Calculating a one-dimensional image convolution .. 8

4 Calculating an average ... 10

5 Calculating the SAD .. 11

6 Use case: improving VP9 performance ... 13

6.1 Results .. 14

7 Next steps ... 15

8 Related information .. 16

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 16

1 Overview
In this guide, learn about the Armv8.4-A dot product instructions, which are available in Cortex-A75,
Cortex-A55, and Neoverse N1 and later. This guide introduces the following three use cases for the
dot product instructions:

• Convolution

• Averaging

• Taking the Sum of Absolute Differences (SAD)

These operations are used to improve the performance of the libvpx implementation of VP9. At the
end of this guide, you will understand the use cases that the dot product instructions can enable and
how to apply them to digital signal processing code of your own.

1.1 Before you begin

This guide assumes you are familiar with the Cortex-A processors and Neoverse. If you are not
familiar with the Cortex-A architecture, see the Arm Cortex-A series processors page. To learn about
Neoverse, see the Neoverse site.

https://chromium.googlesource.com/webm/libvpx/
https://developer.arm.com/ip-products/processors/cortex-a
https://developer.arm.com/ip-products/processors/neoverse

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 16

2 What are dot product instructions?
Arm introduced the SDOT (Signed Dot Product) and UDOT (Unsigned Dot Product) instructions in
the 2017 extensions to the Arm Architecture, known as Armv8.4-A.

These vector instructions operate on 32-bit elements within 64-bit or 128-bit vectors in the Neon
instruction set or within scalable vectors in the Scalable Vector Extensions (SVE2) instruction set. In
these 32-bit elements are four 8-bit elements. Each 8-bit element in each 32-bit element of the first
vector is multiplied by the corresponding 8-bit element in the second vector, creating four sets of four
products. Each group of four products are added to create a 32-bit sum, and this sum is accumulated
into the 32-bit element of the destination vector. Conceptually, this is the vector inner, dot, or scalar
product. In this guide, we use the term dot product to match the instruction name. The following
diagram shows how the vector instructions operate:

Figure 1: Vector instructions

For example, the operation performed on the first set of elements is:

c0 = c0 + ((a0 * b0) + (a1 * b1) + (a2 * b2) + (a3 * b3))

The dot product instructions provide access to many multiply and accumulate operations every cycle.
Processors such as the Arm Cortex-X2 and Arm Neoverse V1 can compute four dot product
instructions in parallel. This computation allows us to multiply four 8-bit elements in four 32-bit
subvectors across four 128-bit parallel operations every cycle. This works out to sixty four 8-bit
multiply and (partial) accumulate operations per cycle. The following diagram shows the SDOT
operations per cycle:

https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://developer.arm.com/documentation/PJDOC-466751330-14955/latest
https://developer.arm.com/documentation/pjdoc466751330-9685/latest/

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 16

Figure 2: SDOT operations

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 16

3 Calculating a one-dimensional
image convolution
In a convolution, we perform a filter function over values either side of our current element and write
back the result. For example, one common filter function is a weighted average of pixel values. To
calculate this average, take a multiplication by a set of constants and sum them to a single value. With
the appropriate data layout, this is a dot product between the input elements and the filter values. For
example, to compute the weighted average of eight 8-bit values, use two rounds of the dot product
instruction as shown in the following code:
#include "arm_neon.h"

uint32x4_t weighted_average (uint8x16_t values_low,

 uint8x16_t values_high,

 uint8x8_t weights) {

 uint32x4_t result = vdupq_n_u32 (0);

 /* Low values multiplied by the first four weights. */

 result = vdotq_lane_u32 (result, values_low, weights, 0);

 /* Accumulate with high values multiplied by the next four weights. */

 result = vdotq_lane_u32 (result, values_high, weights, 1);

 return vshrq_n_u32 (result, 3);

}

This code generates the following instructions with GCC 11.1:
weighted_average:

 movi v3.2d, 0

 udot v3.4s, v0.16b, v2.4b[0]

 udot v3.4s, v1.16b, v2.4b[1]

 ushr v0.4s, v3.4s, 3

 ret

For more information about this code, see Godbolt. To get maximum parallelism out of the DOT
instruction, we compute four output lanes at one time. Because we apply this filter, we can create an
appropriate data layout by loading sixteen values at a time using vld1q_u8, and then use
the TBL instructions to rearrange data. This example is shown in the following diagram:

https://godbolt.org/z/4ejMhh59e
https://developer.arm.com/architectures/instruction-sets/intrinsics/vld1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vqtbl1q_u8

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 16

Figure 3: Data layout example

 Now we can create our first four output values, as shown in the following diagram:

Figure 4: Output value example

Notice that the values_high calculated can be used as the values_low value for the next four

pixels. We use one more TBL instruction to generate the next values_high and complete our

calculation. We then take the eight 32-bit results and reduce them back to eight 8-bit output values,
using the following methods:

• vqmovn_u32 to narrow a 32-bit value to a 16-bit value with saturation.

• vcombine_u16 to pack two vectors of four 16-bit values and create one vector of eight 8-bit
values.

• vqshrn_n_u16 to saturate, narrow, and shift a result.

https://developer.arm.com/architectures/instruction-sets/intrinsics/vqtbl1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vqmovn_u32
https://developer.arm.com/architectures/instruction-sets/intrinsics/vcombine_u16
https://developer.arm.com/architectures/instruction-sets/intrinsics/vqshrn_n_u16

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 16

4 Calculating an average
The average over a large array is a weighted average where all weights are set to one. We can use this
same strategy multiplying by a vector of one to perform widening additions in parallel. Because these
widening additions perform 16 parallel partial sums, this can be quicker than using pairs of other
Armv8-A instructions like UADDL and UADDL2.

This calculation is shown in the following code:
#include "arm_neon.h"

#define N 4096

// 16 elements in a vector

#define STRIDE (16)

unsigned int average (uint8_t *in) {

 uint32x4_t sum = vmovq_n_u32 (0);

 uint8x16_t ones = vmovq_n_u8 (1);

 for (int i = 0; i < N; i += STRIDE) {

 sum = vdotq_u32 (sum, vld1q_u8 (in), ones);

 in += STRIDE;

 };

 return vaddvq_u32 (sum) / N;

}

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 16

5 Calculating the SAD
In a Sum of Absolute Differences (SAD) computation, we add together the absolute difference of each
item in two arrays and return the result. In C code this would look like the following snippet:
unsigned int sad (uint8_t *x, uint8_t *y) {

 unsigned int result;

 for (int i = 0; i < N; i++)

 result += abs (x[i] - y[i]);

 return result;

}

While Neon in Armv8.0-A contains instructions to accelerate the calculation of SAD, these
instructions operate on each lane and must use a wider type for intermediate results. This means that
we need more instructions on each loop iteration. The dot product instructions allow us to do this in
one step. It is important to note that multiplication by 1 returns the same value. These two code
generation strategies are shown in the following code generated with GCC 11.1:

Without dot product:
// During the loop

 uabdl2 v0.8h, v1.16b, v2.16b

 uabal v0.8h, v1.8b, v2.8b

 uadalp v3.4s, v0.8h

// After the loop

 addv s3, v3.4s

With dot product:
// Before the loop

 movi v3.16b, 0x1

// During the loop

 abd v0.16b, v0.16b, v1.16b

 udot v2.4s, v0.16b, v3.16b

// After the loop

 addv s2, v2.4s

For more information about this code, see Godbolt. Not only does this optimization reduce the
number of instructions executed within the loop body, but it can also avoid resource utilization
differences between the UABDL2, UABAL, and UDALP instructions. This optimization allows better

throughput of the summation operations and increases overall performance. Further benefits can
come from unrolling the loop multiple times, making better use of available hardware parallelism. For
example, we can rewrite this example using Neon intrinsics as shown in the following snippet:
#include "arm_neon.h"

https://godbolt.org/z/xsfjT4K4n

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 16

#define N 4096

/* Unroll 4x, calculate 16 items per vector. */

#define STRIDE (4 * 16)

unsigned int sad_unrolled (uint8_t *x, uint8_t *y) {

 uint32x4_t p0, p1, p2, p3;

 uint8x16_t x0, x1, x2, x3;

 uint8x16_t y0, y1, y2, y3;

 p0 = p1 = p2 = p3 = vmovq_n_u32 (0);

 uint8x16_t ones = vmovq_n_u8 (1);

 for (int i = 0; i < N; i += STRIDE) {

 x0 = vld1q_u8 (x + 0);

 x1 = vld1q_u8 (x + 16);

 x2 = vld1q_u8 (x + 32);

 x3 = vld1q_u8 (x + 48);

 y0 = vld1q_u8 (y + 0);

 y1 = vld1q_u8 (y + 16);

 y2 = vld1q_u8 (y + 32);

 y3 = vld1q_u8 (y + 48);

 p0 = vdotq_u32 (p0, vabdq_u8 (x0, y0), ones);

 p1 = vdotq_u32 (p1, vabdq_u8 (x1, y1), ones);

 p2 = vdotq_u32 (p2, vabdq_u8 (x2, y2), ones);

 p3 = vdotq_u32 (p3, vabdq_u8 (x3, y3), ones);

 x += STRIDE;

 y += STRIDE;

 };

 return vaddvq_u32 (vaddq_u32 (vaddq_u32 (p0, p1), vaddq_u32 (p2, p3)));

This approach of unrolling to break dependency accumulation chains can provide benefits across a
range of Neon instructions, enabling more instruction level parallelism on the highest performance
cores. This optimization is done by hand because for saturating operations and floating-point
operations, the order of operations impacts results. A compiler cannot know whether it is safe to
accumulate in a different order.

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 16

6 Use case: improving VP9
performance
Libvpx is an open-source library that provides reference implementations of the VP8 and VP9 video
codecs. It is available as part of the WebM project and you can find the code on Google Git. To
accelerate VP9 performance on the latest cores, some of the core functions of the VP9 encoder use
the dot product instructions.

The standard Linux performance analysis tools perf record and perf report are used to

understand where the encoder spends time. The experiments were completed using the Neoverse
N1 SDP platform with a Clang 12 compiler, as shown in the following code:
$ perf record ./vpxenc --codec=vp9 --height=1080 --width=1920 --fps=25/1 --limit=20

$ perf report

 14.60% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_convolve8_horiz_neon

 7.43% vpxenc-12a14913 vpxenc-12a149139 [.] vp9_optimize_b

 7.00% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_convolve8_vert_neon

 4.60% vpxenc-12a14913 vpxenc-12a149139 [.] vp9_diamond_search_sad_c

 4.21% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_sad16x16x4d_neon

 3.19% vpxenc-12a14913 vpxenc-12a149139 [.] rd_pick_best_sub8x8_mode

 2.90% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_sad32x32x4d_neon

 2.76% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_quantize_b_neon

 2.24% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_quantize_b_32x32_neon

 1.53% vpxenc-12a14913 vpxenc-12a149139 [.] vpx_variance32x32_neon

From the names of the functions in the above report, we can see that there are already optimized
paths in the code that use the Advanced SIMD architecture. Looking in more detail, we can identify
several target functions for further optimization:

• vpx_convolve8_horiz_neon vpx_convolve8_vert_neon

These functions are optimized using the approach described in Calculating a one-dimensional image
convolution. The functions use the dot product instructions to increase the available multiply and
accumulate throughput available to us.

The following patches to VP9 perform this optimization:

• Implement horizontal convolution using Neon SDOT instruction

• Implement vertical convolution using Neon SDOT instruction

• Merge transpose and permute in Neon SDOT vertical convolution

The following patches optimize the averaging versions of these convolutions:

• Implement vpx_convolve8_avg_vert_neon using SDOT instruction

• Implement vpx_convolve8_avg_vert_neon using SDOT instruction

• vpx_sad16x16x4d_neon, vpx_sad32x32x4d_neon

https://www.webmproject.org/code/
https://chromium.googlesource.com/webm/libvpx/
https://developer.arm.com/tools-and-software/development-boards/neoverse-n1-sdp
https://developer.arm.com/tools-and-software/development-boards/neoverse-n1-sdp
https://chromium.googlesource.com/webm/libvpx/+/c1f77a3689a6cf5e95e1c1ae35d76f4f171f5ef3
https://chromium.googlesource.com/webm/libvpx/+/231aa6ae32fca53efc45ffd39e14650346fcb030
https://chromium.googlesource.com/webm/libvpx/+/10823f54681747b9f64deb3002531c95cc67d17f
https://chromium.googlesource.com/webm/libvpx/+/66c1ff6850fd53bcf5c17247569bea1d700d6247
https://chromium.googlesource.com/webm/libvpx/+/35bce9389ea875b57b352a0f5f532b96aa47bff6

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 16

We optimized these functions using the approach described in Calculating the SAD.

The following patch implements this optimization:

• Use ABD and UDOT to implement Neon sad_4d functions

• vpx_variance32x32_neon

We optimized the variance functions using the approach described in Calculating an average.

The following patch implements this optimization:

• Implement Neon variance functions using UDOT instruction

6.1 Results

The encode performance improved more than 17% at 1080p on the Neoverse N1 SDP platform. To
achieve this, each optimization technique is combined and techniques are contributed back to the
libvpx project.

Note: Results across Arm-based platforms depend on properties of the system, the compiler used,
input and output resolution, and file and encode settings.

The following graph shows the performance results:

Figure 5: Performance results

https://chromium.googlesource.com/webm/libvpx/+/2db85c269bc5479e48ea7cd4fde85236ee0bc347
https://chromium.googlesource.com/webm/libvpx/+/c8b0432505d32820af0c42a94b219aa83eed5db9

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 16

7 Next steps
In this guide, we introduced three optimization techniques that use the dot product instructions from
Armv8.4-A and shown how to use these techniques in a video encode library. The instructions
improve performance by more than 15% on the latest processors. These techniques can apply across
a range of workloads and increase the available throughput for widening multiply and accumulate for
8-bit data.

The next step is to learn more about how to optimize and use Arm Neon technology. See the Neon
site for more information. This site contains examples of how to use SIMD architecture to unlock the
performance of your devices.

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon

Neoverse N1 Accelerating DSP functions with dot
product instructions

102651
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 16

8 Related information
The following resources are related to material in this guide:

• Arm Cortex-A series processors

• Armv8.4-A

• Neoverse

• Neoverse N1 SDP

https://developer.arm.com/ip-products/processors/cortex-a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/introducing-2017s-extensions-to-the-arm-architecture
https://developer.arm.com/ip-products/processors/neoverse
https://developer.arm.com/tools-and-software/development-boards/neoverse-n1-sdp

