arm
SystemReady ES integration guide

Non-Confidential Issue 01

Copyright © 2021 Arm Limited (or its affiliates). 102677
All rights reserved.

i i i 102677
SystemReady ES integration guide 01

SystemReady ES
SystemReady ES integration guide

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Release information

Document history

Issue Confidentiality

01 November 16,2021 Non-Confidential First version

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THISDOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FORANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(orits affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 58

http://www.arm.com/company/policies/trademarks

i i i 102677
SystemReady ES integration guide 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

www.arm.com

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 30of 58

https://www.arm.com/

SystemReady ES integration guide

102677

lssue 01
Contents
1 Overview 6
1.1 Before you begin 6
2 Set up the Raspberry Pi
2.1 Set up the terminal 9
2.2 Format the SD drive and ISO 10
2.3 Update the EEPROM 13
2.4 Install UEFI 13
2.5 Configure UEFI 15
2.6 Troubleshooting UEFI 16
2.7 Set UEFI variables 18
2.8 Install and boot requirements 18
2.9 Set the system table selection 18
2.10 Set the console preference 19
2.11 Limit RAM to 3GB 21
2.12 Prepare the OS installer media 21
2.13 Boot order verification 23
2.14 Debugging commands 24
3 Install Windows PE 25
3.1 Download and run Windows ADK and WinPE 25
3.2 Create an ISOfile 27
3.3 Install toa USB drive 28
3.4 Other Boot Configuration Data settings 28
3.5 Install WinPE on QEMU 28
4 ACS 30
4.1 Install and run ACS 33
5 Advanced Configuration and Power Interface 36
5.1 Example: Thermal zone 37
5.2 Example: Fan cooling device 38
5.3 Example: USB XHCl and PCle 41

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 58

SystemReady ES integration guide

5.4 Example: UART

102677
Issue 01

43

45

5.5 Example: Debug port

5.6 Example: Power button

46

5.7 Example: PCle ECAM

49

5.8 ACPI Integration recommendations

50

6 SMBIOS requirements

53

6.1 SMBIOS integration

53

6.2 Platform driver

54

6.3 System Management BIOS framework

7 UEFI requirements

55

56

8 Related information

57

9 Next steps

58

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 58

SystemReady ES integration guide 102677

Issue 01

1 Overview

This guide tells you how to integrate SystemReady ES systems, how to develop and build the
firmware, and how to test SystemReady ES using a Raspberry Pi 4.

In this guide, you will learn:

e HowtosetupaRaspberry Pi4for SystemReady ES tests

e How touse test suites

e About Advanced Configuration and Power Interface (ACPI) power management and System
Management BIOS (SMBIOS) integration

1.1 Before you begin

This guide assumes you are familiar with the following technologies and frameworks:

UEFI

EDK2 firmware development environment
ACPI, ASL, AML

SMBIOS

Raspberry Pi 4 hardware

This guide is aimed at the following audiences:

e |HVsand OEMswho develop SystemReady ES complaint platforms

e UEFI developers who implement ACPI and SMBIOS support for SystemReady ES complaint
platforms

e Operating system developers who adapt their operating systems to run on SystemReady ES
complaint platforms

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 58

i i i 102677
SystemReady ES integration guide 01

2 Set up the Raspberry Pi

Inthis section, we use a Raspberry Pi 4 to demonstrate how to build a SystemReady ES compliant
platform.

To set up the Raspberry Pi, you will need the following hardware:
Power

A powered USB hub to avoid overloading the standard Raspberry Pi power supply.
Network controller (NIC)

UEFI supports the Raspberry Pi NIC such as for PXE booting, however the NIC driver is

missing from many OS distributions. Use a USB NIC, such as a Realtek RTL8153 based device.
For this guide, we tested the Raspberry Piwith RTL8153 NIC.

Storage
A micro SD card and a USB storage device. The micro SD holds the UEFI firmware and any
FAT16 or FAT32 capable drive will work.

The USB Storage device is used as the main disk for the operating system. Connect it to the
USB port of the Raspberry Pi. We recommend the USB 3.0 blue ports for better performance.

Check your OS for minimum install size, for example, 64 to 128GB as a starting point. Thumb
drivers and drive enclosures can be used. We recommend a USAP enabled external drive. A
second 8GB or larger thumb drive is recommended for the OS installer.

Interfacing
Use the Raspberry Pivideo output with a keyboard and mouse or use a serial connection.
Both types of connection can be set up at the same time.

Keyboard and mouse
Use an HDMI micro to HDMI cable and an HDMI display to output the video. USB mice and
keyboards with generic drivers will work.

Serial adapter

For this guide, use a generic TTL serial adapter that utilizes separate cables. You will need to
use three of the wires.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 58

SystemReady ES integration guide

The following image shows how to connect the serial adapter to your Raspberry Pi:

The wires are attached as shown in the table below:

REANY ZABCB RPT4B
TCN\ 20983 :RP 148

& ce
e C Made i The UK

Figure 1: Raspberry Pi serial adapter connections

102677
Issue 01

Description X RX GRND
Color Red Brown Orange
Header pin 8 10 6
GPIO GPIO14 GPIO15 -

Table 1: Wire connections
Finally, connect the serial cable USB connector to your PC.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 58

; ; ; 102677
SystemReady ES integration guide o0l
2.1 Set up the terminal

If you are using Windows, you will need a terminal emulator such as PuTTY. The following table shows
you how to set up your connection:

Variable ‘ Value

Baud rate 115200
Data bits 8
Parity None
Stop bits 1

Table 2: Terminal connection settings

On the Session configuration panel in PuTTY, select Serial from the Connection type options. Use the
Serial line and Speed options to specify which serial line to use and the Baud rate to use to transfer
data. For more information on serial connection with PuTTY, see Connecting to a local serial line.

If you are using Linux or a Mac, use terminal emulators such as minicomor screen to connect to
the TTL serial connection. If there are no serial devices connected to your computer, your serial
connector will be /dev/ttyUSBO. If you have more than one serial device, use a tool such as dmseg
to check ttyUSB<num>.

To connect using screen, enter the following command:
$ screen /dev/ttyUSBO 115200

To connect usingminicom, enter the following command:
$ minicom -D /dev/ttyUSBO

For more information and troubleshooting, see Using a console cable with Raspberry Pi.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 58

https://the.earth.li/~sgtatham/putty/0.61/htmldoc/Chapter3.html#using-serial
https://learn.adafruit.com/adafruits-raspberry-pi-lesson-5-using-a-console-cable/overview

i i i 102677
SystemReady ES integration guide 01

2.2 Format the SD drive and ISO

Toformat the SD drive on Windows, we use Rufus and the following procedure:

1. InRufus, select your device then select Non bootable from the Boot selection menu. Ensure the
file system typeis Large FAT16 or Large FAT32, as shown in the following screenshot:

Rufus 3.11.1678 - x

Drive Properties

Device

UEFI (D) [128 GB] v
Boot selection

Non bootable v @ SELECT |+
Partition scheme Target system

MBR vl |BIOS or UEFI w

v Show advanced drive properties

Format Options

Volume label
[uer
File system i _Cluster size
Large FAT32 (Default) v 32 kilobytes (Default) ~

v Show advanced format options

Status

READY

©0=m

Figure 2: Rufus format options
2. Click Show advanced format options and disable Create extended label and icon files. This option
is not needed for this guide.
3. Click START.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 58

https://rufus.ie/

i i i 102677
SystemReady ES integration guide Y]

To format the drive on Mac OS:

1. Open Disk Utility and select your SD card in the list of drives. An example is shown in the
following screenshot:

Mount Point: /Volumes/UEFI Type: USB Internal Physical Volume

Capacity: 15.93 GB Owners: Disabled
Available: 15.92 GB Connection: use

Used: 6.5 MB Device: disk2s1

Figure 3: Disk Utility window
2. Click Erase to format the drive.
3. Intheformat list, select MS-DOS (FAT).

To format the drive on Linux:

1. Useeither graphical or command-line instructions. For graphical instructions, open Disks and
select your SD card.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 58

i i i 102677
SystemReady ES integration guide ccoe 0l

2. Clickthe bars at the top of the window, as shown in the following screenshot:

SD Card Reader

O =\
JE3, 256 GB Disk Model GBIQT
-_-'zsoceoisk Media SDCard
— Size 32 GB(32,010,928,128 bytes)
77 2.0TB Hard Disk Partitioning Master Boot Record
-
CD/DVD Drive SA3i Numbes

Volumes
SD Card Reader
0 | GBI1QT

freo Space
28 GB

Figure 4: Disk format option

3. Select Format Disk, then select Compatible with all systems and devices (MBR/DQOS).
4. Click Format. A blank formatted disk is created.

5. Click + to add a partition, as shown in the following screenshot:

5D Card Reader

4 256 GB Disk

Model GBIQT
3 256 GB Disk Media SDCard
— Size 32 GB(32,010,928,128 bytes)
-'.'._'llmm Hard Disk Partitioning Master Boot Record
CD/DVD Drive Serial Mumber
- Volumes
¥ Drive

= Samsung Flash Drive FIT

5D Card Reader
| GB1QT

._ﬁ}é’

Figure 5: Add partition

6. Select a Partition Size. For this guide, the firmware image is under 10MB, so any partition size can
be used. Click Next.

7. InType, select For use with all systems and devices (FAT). Click Create.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 58

i i i 102677
SystemReady ES integration guide 01

2.3 Update the EEPROM

Ensure the Raspberry Piis running the latest firmware on the EEPROM. Download the latest version
of rpi-eepromfrom RPieeprom github and use this tool to update the boot EEPROM.

Toupdate the EEPROM:

1. Unzipthe contents of rpi-boot-eeprom-recovery toablank FAT formatted SD-SDCARD.
2. Power off the Raspberry Pi.

3. Insertthe SD card.

4. Power onthe Raspberry Pi and wait 10 seconds.

The green LED light will blink rapidly to indicate success, otherwise, an error pattern is displayed.

If an HDMI display is attached to the Raspberry Pi, the screen will display green for success or red if
failure afailure occurs.

2.4 Install UEFI

The latest UEFI binaries and installation guide are on PFTF Github.
Toinstall UEFI:

1. Download the latest archive from Releases.

2. Createan SD card or a USB drive with at least one partition. This can be a regular partition or an
ESP. Format the partitionto FAT16 or FAT32.

o
% To boot from USB or ESP, you need the latest version of the EEPROM. If you are using the latest
UEFI firmware and you cannot boot from USB or ESP, see Update the EEPROM.

Note

3. Extract all the files from the archive to the partition you created. Do not change the names of the
extracted files and directories.

Torun UEFI:

1. Insert the SD card or connect the USB drive and power up your Raspberry Pi. A multicolored
screenis displayed showing the embedded bootloader reading the data. The Raspberry Pilogo is
displayed when the UEFI firmware is ready.

2. Press Esctoenter the firmware setup, F1 to launch the UEFI Shell, or wait for the UEFI boot
option to boot Raspberry Pi.

You can build UEFI firmware from source. The following steps are for Ubuntu Linux 18.04.1 on
x86_64 host PC and cross compilation is used.

To build UEFI firmware:

1. Create aworkspace directory with the following commands:
$ mkdir RPi4

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 58

https://github.com/raspberrypi/rpi-eeprom/releases
https://github.com/pftf/RPi4/
https://github.com/pftf/RPi4/releases
https://en.wikipedia.org/wiki/EFI_system_partition

i i i 102677
SystemReady ES integration guide 01

S export WORKSPACE=S (pwd) /RPi4
2. Clonethepftf/RPi4 repository:
$ git clone http://github.com/pftf/RPid.git
$ git submodule update -init
3. Initialize submodules for both the edk2 and edk2-platformrepositories using the commands

shown:
$ cd edk2

$ git submodule update -init
$ cd ../edk2-platforms
$ git submodule update -init
$ cd ..
4. Copy 0001-MdeModulePkg-UefiBootManagerLib-Signal-ReadyToBoot-o.patch

to the edk2 folder and run the following command:
$ patch -p3 < 0001-MdeModulePkg-UefiBootManagerLib-Signal-ReadyToBoot-o.patch

5. Install atoolchain for cross compilation using the following command:
$ sudo apt-get install gcc-aarch64-linux-gnu
6. Follow the instructions on Building EDKII UEFI firmware for Arm Platforms to build a binary.

An example of the build command for RPi4 platform follows:
S GCC5 AARCH64 PREFIX=aarché64-linux-gnu-

$ build -n 8 -a AARCH64 -t GCC5 -p Platform/RaspberryPi/RPi4/RPi4.dsc

The resulting binary RPI_EFI. fdcanbefoundinthe RPi4/Build/<BUILD TARGET>/FV
folder.

7. Follow the Booting the firmware section in Raspberry Pi 4 Platform to prepare a bootable SD
card.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 58

https://developer.arm.com/tools-and-software/open-source-software/firmware/edkii-uefi-firmware/building-edkii-uefi-firmware-for-arm-platforms/build-firmware-on-a-linux-host
https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/RPi4/Readme.md

i i ; 102677
SystemReady ES integration guide 01

2.5 Configure UEFI

To boot into the UEFI shell, press F1 during the boot process, as shown in the following screenshot:

UEFI Imteractive Shell v2.2
EDK 11
UEFT v2.70 (https:/fgithub.com/pltf/RPid, 0x00010000)
Happing table
Fa0: Alias(s) :HDOL:
UemHuw (160 A-B586-4198-984C - 1683019581 DAY #/HD (1 . HER - 0 36BZETRE . OxB00 ,

: Aliasis):
UenHu (1 198-9B84C - 1683019581 DA)
Press ESC in 5 sec startup.nsh or any other key to continue.

Shell> _

Figure 6: UEFI boot screen

To boot to the UEFI menu, press Esc during the boot process. The following UEFI menu is displayed:

Raspberry Pi 4 Hodel B

BCMET11 (ARM Cortex-A7T2) 1.50 Gz
UEFI Firmware vl.19 3072 HB RN
Select Language <English> This selection will
take you to the
Qe ice Hanager Device Hanager
¥ Boot Hanager
¥ Boot Haintenmance Hamager
Comt inue
Reset

Tl=Houe Highlight {Enter><Select Entry

Figure 7: UEFI menu

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 58

i i i 102677
SystemReady ES integration guide 01

In this menu, you can change device settings and manually boot the device using Boot Manager.

2.6 Troubleshooting UEFI

To boot to the UEFI menu:
1. Press Esctointerrupt the boot process.

2. Inthe UEFI menu, navigate to the Boot Manager then select UEFI Shell. The Raspberry Pi boots
to the UEFI Shell. The UEFI Shell option is shown in the following screenshot:

Figure 8: UEFI Shell

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 58

i - - 102677
SystemReady ES integration guide Y]

3. Usethemap command to see if a storage device is mounted. In the following example screenshot,

an SD card is mounted as FSO:

Sh(‘.'l l) nap
Happing table

FS2: Alias(s) :HD1b

UenHuw (100C2CFA-BS86-4198 -9BA(

OxECDOOO)

FSO: Alias(s) :HDOcOb: ; BLK1

PcieRoot
7654 -4FFB-BAAO-1D9
FS1: Alias(s)
PcieRoot (Ox
41850-4D32 /-AF26
BLK3: Alia

UVenHu JIC2CFA-B586-4198-9B4(

BLKO: flias(s):

83D195B81DA) /7HD (1,HBR. Ox6F1D7A2C ., 0xB060

,0x0) /USB (0x2,0x0) /7HD (1,6PT, 162B535(

0x0) /USB (0x2 ,0x0) /HD (2,GPT , 54385270

1683D195B1DA)

PcieRoot (0x0) /Pci (0x0,0x0) /Pci (0x0,0x0) /USB (0x2, 0x0)

Shell> _

Figure 9: SD example

4. Change the directory to FSO by typing FS0 at the command prompt.

The following UEFI Shell commands are also helpful for debugging:

pci Show PCle devices or PCle function configuration space
information

drivers Show alist of drivers

devices Show a list of devices managed by EFI drivers

devtree Show a tree of devices

dh -d -v > dh_d v.txt

Save a dump of all UEFI Driver Model-related handles to
dh_d v.txt

memmap

Save the memory map to memmap.txt

smbiosview

Show SMBIOS information

acpiview -1

Show a list of ACPI tables

acpiview -r 2

acpiview -s DSDT -d

Validate that all ACPI tables required by SBBR 1.2 are
installed.

Generate a binary file of DSDT ACPI table.

dmpstore —-all > dmpstore.txt

Dump all UEFI variables to dmpstore.txt

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 17 of 58

i i i 102677
SystemReady ES integration guide 01

Table 3: UEFI Shell commands

Refer to the UEFI Shell Specification for more details. The Shell commands section provides a list of
shell commands, descriptions, and examples.

2.7 Set UEFI variables

The Raspberry Pi UEFI configuration settings can be viewed and changed using the Ul configuration
menu and UEFI shell. To configure the Raspberry Pi using the UEFI Shell, use setvar toread and
write the UEFI variables for the GUID CD7CC258-31DB-22E6-9F22-63BOBSEED6B5.

Toread a setting, use the following command:
setvar <NAME> -guid CD7CC258-31DB-22E6-9F22-63B0BSEED6BS

To write a setting, use the following command:
setvar <NAME> -guid CD7CC258-31DB-22E6-9F22-63BOBS8EED6BS5 -bs -rt —-nv =<VALUE>

For string-type settings such as Asset Tag, use the following command:

setvar <NAME> -guid CD7CC258-31DB-22E6-9F22-63BOB8EED6B5 -bs -rt -nv =L"<VALUE>"
=0x0000

The following commands are examples of reading and modifying UEF| variables:

Read the System Table Selection setting
Shell> setvar SystemTableMode -guid CD7CC258-31DB-22E6-9F22-63BOB8EED6BS

Change the System Table Selection setting to Devicetree
Shell> setvar SystemTableMode -guid CD7CC258-31DB-22E6-9F22-63BOB8EED6BS -bs -rt -
nv =0x00000002

Read the Limit RAM to 3 GB setting:
Shell> setvar RamLimitTo3GB -guid CD7CC258-31DB-22E6-9F22-63B0OBS8EED6BS

Change the Limit RAM to 3 GB setting to Disabled:
Shell> setvar RamLimitTo3GB -guid CD7CC258-31DB-22E6-9F22-63BOB8EED6B5 -bs -rt -nv
=0x00000000

Change the Asset Tag to the string ASSET-TAG-123:

Shell> setvar AssetTag —-guid CD7CC258-31DB-22E6-9F22-63BOB8EED6B5 -bs -rt -nv
=L"ASSET-TAG-123" =0x0000

2.8 Install and boot requirements

SystemReady ES operating systems must boot free of board-specific images and with generic
installation instructions. Do not use Raspberry Piversions of an OS and OS install guides.
SystemReady ES does not use special images and guides, and ensures your images are suitable for
Armé4.

2.9 Set the system table selection
In the Advanced Configuration menu, select ACPI as shown in the following screenshot:
Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 18 of 58

https://uefi.org/sites/default/files/resources/UEFI_Shell_2_2.pdf

SystemReady ES integration guide

102677
Issue 01

ACPI fan control <Disabled>
ACPI fan temperature e R S 3
Asset Tag I |

ACPI/DT choice for
Limit RAM to 3 GB <Enabled> specific OSes
System Table Selection
Boot Policy <Full Discovery>

Figure 10: ACPI option

2.10 Set the console preference

Linux uses the /chosen/stdout-path DT property or the SPCR ACPI table to indicate that the
primary console is the serial port, even if a graphical console is available. Therefore, for some Linux
OSes, set the preference to Graphical to remove the SPCR table to make the graphical console work.
To select the graphical console, open Device Manager in the UEFI menu and select Console
Preference Selection. The Console Preference Selection option is shown in the following screenshot:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 58

i i i 102677
SystemReady ES integration guide 01

Device Manager

Figure 11: Console Preference Selection option

In the Console Preference Selection menu, select Graphical or Serial. To get serial console messages,
set the preference to Serial.

The graphical console removes the serial console on most OSes because the UEFI does not install
the SPCR ACPI table. This setting must be Serial when running the ACS test suite because the SPCR
Note ACPI table is mandatory for SystemReady ES and is used in parts of the ACS test.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 20 of 58

i i i 102677
SystemReady ES integration guide 01

2.11 Limit RAM to 3GB

Currently, many operating systems support 3GB of RAM on the Raspberry Pi. To set the limit to 3GB,
from the UEFI menu go to Device Manager > Raspberry Pi Configuration > Advanced Configuration
and enable Limit RAM to 3GB. The RAM limit setting is shown in the following screenshot:

Advanced Configuration

Figure 12: RAM limit enabled
The following operating systems do not require a 3GB RAM limit:
e OpenBSD 6
e NetBSD?9
o VMWare ESXi

2.12 Prepare the OS installer media

Before you prepare the installer media, download the AARCH64 installer image for your OS. The
following table provides links to install tested OSes for System Ready ES:

Operating system Download link

Ubuntu Server 64bit Arm Server Image Installer

Ubuntu Desktop Live 64-bit ARM (ARMv8/AArch64) desktop image
Debian armé64 CD iso

OpenSUSE Leap OpenSUSE DVD iso

OpenSUSE Tumbleweed openSUSE Tumbleweed - Get openSUSE

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 21 of 58

http://cdimage.ubuntu.com/ubuntu/releases/21.04/release/
http://cdimage.ubuntu.com/ubuntu/daily-live/current/
https://cdimage.debian.org/debian-cd/current/arm64/iso-cd/
http://download.opensuse.org/ports/aarch64/distribution/leap/15.3/iso
https://get.opensuse.org/tumbleweed/#download

SystemReady ES integration guide 102677

Issue 01

SLES Evaluation Copy of SUSE Linux Enterprise Server | SUSE
Fedora Server Installer ISO

Fedora Workstation Installer 1ISO

Fedora loT Download Fedora loT (getfedora.org)

OpenBSD OpenBSD FAQ: Installation Guide

NetBSD NetBSD/evbarm

FreeBSD Download FreeBSD | The FreeBSD Project

Windows 10 See blog post

VMware ESXi ESXi Arm Edition

Table 4: Operating systems for SystemReady ES

This list does not indicate that the OS is officially supported on a Raspberry Pi4. Please consult the
Raspberry Piand OS vendors for official support.

On Linux, you can use the same disk tools used to format the SD card. Then you set up a USB storage
device with an OS installer. To set up the device, insert the USB drive then use a disk tool to restore a
disk image to the drive.

After you create the install media, insert the drive into the blue USB ports on the Raspberry Pi. The
drive will be formatted during the OS installation. When everything is plugged in, turn the board on.

If the USB drive is the first boot option, UEF| will discover and automatically boot into the installer
media. The OS bootloader is shown in the following screenshot:

GHI GRUR wversion 2.04

Try Ubuntu Server without installing
Install Ubuntu Server
DEH install (for manufacturers)

Use the & and * keys to select which entry is highlighted.

eiiter to bool the : 05, e f it the cos

beflore booting or ¢ i a command-line. ESC to return previous

e -

Figure 13: GRUB loader

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 22 of 58

https://www.suse.com/download/sles/
https://alt.fedoraproject.org/alt/
https://alt.fedoraproject.org/alt/
https://getfedora.org/en/iot/download/
https://www.openbsd.org/faq/faq4.html#Download
https://wiki.netbsd.org/ports/evbarm/
https://www.freebsd.org/where/
https://rpi4-uefi.dev/alternate-guide-running-windows-10-on-the-pi-4/
https://flings.vmware.com/esxi-arm-edition

i i i 102677
SystemReady ES integration guide 01

If the first boot option is UEFI shell or PXE boot, press Esc to interrupt the boot process. In the UEFI
menu, go to Boot Manager then highlight the USB key. In the following screenshot, the USB key is
called STORE N GO:

Boot Hanager

Figure 14: USB key in Boot Manager

Press Enter. At this point, you can follow the installation instructions provided by your OS. For
example, refer to Ubuntu or Fedora. Install the operating system to the USB storage device, not the
installer media or SD card.

Note

Many operating systems have Raspberry Pi-specific images and guides; however, these guides are
often designed without SystemReady ES.

VMware offers ESXi-Arm Fling as a technical preview for evaluation. For more information, see ESXi
Arm Edition.

2.13 Boot order verification

UEFI variables are not supported at runtime and the OS may not be able to create a boot entry.

To verify the default boot device and modify the boot order:

1. Afterinstallation, power cycle the system an extra time or enter the UEFI configurator as
described in Configure UEFI.

2. Open the Boot Maintenance Manager and change the boot order.
Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 23 of 58

https://ubuntu.com/tutorials/install-ubuntu-server-1604#1-overview
https://docs.fedoraproject.org/en-US/quick-docs/creating-and-using-a-live-installation-image/
https://flings.vmware.com/esxi-arm-edition
https://flings.vmware.com/esxi-arm-edition

; ; i 102677
SystemReady ES integration guide o0l

3. Ifthe USB storage device is not at the top of the list, highlight the device and press + until it is at
the top of the list.

4. Press Enter, then save and exit.

2.14 Debugging commands

The following Linux commands are helpful for debugging:

Command ‘ Description

hostnamectl Control the system hostname

lspci Display information about PCI buses in the system and
devices connected to them

lspci -vvv Display everything that can be parsed

lsusb Display information about USB buses in the system and the
devices connected to them

lsusb -v Display detailed information about the USB devices shown.
This information includes configuration descriptors for the
current speed of the device. Class descriptors are shown for
USB device classes including hub, audio, HID,
communications, and chipcard.

af Report file system disk space usage

cat /etc/os-release Show operating system identification data

Table 5: Linux debugging commands

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 24 of 58

i i i 102677
SystemReady ES integration guide 01

3 Install Windows PE

Windows PE (WinPE) is a small operating system used to deploy, troubleshoot, and repair Windows
10 installations. Windows 10 is required to build the USB key and ISO. This guide uses Windows ADK
version 2004.

In this section, you will learn about the following steps:

e Buildthe ISO and USB key on a device running Windows 10
e [nstall ADKon Windows 10

e Buildthe WinPE image

e Setup QEMU toinstall WinPE

3.1 Download and run Windows ADK and WinPE

Microsoft does not provide an .iso file for WIinPE. Instead, download the Windows ADK and Windows
PE here to build one yourself.

To install and run Windows ADK and WinPE:
1. Runthe adksetup.exeinstaller.

2. Select Install the Windows Assessment and Deployment Kit - Windows 10 to this Computer and
follow the installer to feature selection.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 25 of 58

https://docs.microsoft.com/en-us/windows-hardware/get-started/adk-install

SystemReady ES integration guide

102677
Issue 01

3. Enable the Deployment Tools feature to build a WinPE image, as shown in the following

screenshot:

8l Windows Assessment and Deployment Kit - Windows 10

Select the features you want to install

Click a feature name for more ndformation.

L) dpptication Compatiniity Toots

[Clwragirg Ang Configurtion Desigrer (D}

[l cerngurmtion Desgrer

[l user Szate Migration Tool (LISMT)

[l vioieme Actvation Maragement Tool [WAMT)

[Iwircows Pertanrance Tootict

[wiraews Assessmen Tooice

[Tl mierosor wer Experence virupization (UE-V) Temoate Ger
[Media experence Aratzer

[Clwircews = over Uss

Deployment Tools
Sizec 91.4 ME

Tools to customize and manage Windows images and to
automate installation.

Inghdes:

o Deployment Image Servicing and Mansgement
(DiSM) ool To use DISM cmdiets, PowerShell 3.0
st 8o be installed.

DEM Activation 25 snd 3.0 Tools.

Windiows System lenage Manager (SIM).

CRCDING, BCDEoot, DISMAP, WIMGAP), and other
tools and interfaces.

Estimated disk space required: 91.4 MB
Dsk space available; 254 GB
Back || ®instan || cancal

Figure 15: Windows ADK features

4. Runthe WIinPE adkwinpesetup.exe installer and install the Windows Preinstallation

Environment feature.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 58

i i i 102677
SystemReady ES integration guide 01

5. Create abootable WinPE USB drive using the Deployment and Imaging Tools Environment as
Administrator. The following screenshot shows how to start the Deployment and Imaging Tools
Environment app window with administrator privileges:

Best match

I. Dqﬁwmuﬂaﬂlmwhgnwu IIIII
Environment
App
Documents - This PC Deployment and Imaging Tools Environment
* deployment.md production > &
* deployment.md - in productic > i
Open
CepECYITEn LDy Rk 2 Run as administrator
deployment,json - in fixtures > 11 Open file lozation
deployment.ixt - in future > Pin 10 Start
Search work and web Pin 1o taskbar
L deploymen - See work and web result > Uninstall
£ deployment >
£ deployment meaning >
£ deployment plan >
£ deployment synonym >
£ deployment zone >

Figure 16: Starting Deployment and Imaging Tools Environment
The Create bootable WinPE media guide uses amdé4 architecture. Use Armé4 architecture to
build an Armé4 USB.

6. Ifyou are creating an ISO file, follow the instructions in Create an ISO file to change the boot
parameters.

7. Runthe following command to create a working copy of the Windows PE armé4 files:
> copype arm64 C:\WinPE arm64

8. Create bootable media using MakeWinPEMedia. You can either create an ISO file or format a
USB key directly.

3.2 Create an ISO file

To create an ISO file, change the boot parameters before creating the media. The files in the \media

folder are copied to the USB key. This lets you change the boot parameters without having to mount
the ISO.

To enable EMS or serial console on the .iso image, use the following commands:
> cd C:\WinPE_armé64\media\EFI\Microsoft\Boot

C:\WinPE arm64\media\EFI\Microsoft\Boot> bcdedit /store BCD /set {default} ems ON

Use the following command to create the ISO image.
> MakeWinPEMedia /ISO C:\WinPE_armé64 C:\WinPE_ arm64\WinPE_ armé64.iso

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 27 of 58

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/winpe-create-usb-bootable-drive

i i i 102677
SystemReady ES integration guide 01

3.3 Install to a USB drive

In the following code example snippets, P: is the USB drive.

Toinstall directly to USB drive and format the drive, use the following command:
> MakeWinPEMedia /UFD C:\WinPE arm64 P:

To enable the EMS serial console on the WinPE media, enter the following commands:
> P

P:\> cd P:\EFI\Microsoft\Boot\

P:\EFI\Microsoft\Boot> bcdedit /store BCD /set {default} ems ON

3.4 Other Boot Configuration Data settings

If the system has one UART, you cannot enable WinDBG and EMS at the same time.

To enable WinDBG serial debug, use the following commands:
> bcdedit /store BCD /dbgsettings SERIAL DEBUGPORT:1 BAUDRATE:115200

> bcdedit /store BCD /set {default} debug ON

Enterbcdedit /store BCD /enum all tolistall Boot Configuration Data (BCD) settings.

3.5 Install WinPE on QEMU

Due to hardware support issues, WinPE cannot be run on the Raspberry Pi. Instead, use QEMU to
emulate an Armé4 PC and boot WIinPE from an ISO file.

Toinstall QEMU and boot WInPE:

1. Install QEMU from edk2-platforms Sbsa-Qemu and follow the instructions in this repository to
build the UEFI firmware. You must use QEMU version 4.1.0 or later.

2. Rungit submodule update --initintheedk2andedk2-platforms repositories
after cloning them.

3. Compile QEMU with gtk enabled using -—enable-gtkonthe ../configure command.

4. Start QEMU and provide an ISO file as a parameter for the —cdromflag. In this step, ~/winpe-
iso.isoisthe ISOfile from Create an ISO file. The following command shows how to start
QEMU usingwinpe-iso.iso asaparameter:

S gemu-system-aarch64 -m 1024 -M sbsa-ref -pflash SBSA FLASHO.fd -pflash
SBSA FLASHI1.fd -display gtk -cdrom ~/winpe-iso.iso -device gemu-xhci -device usb-
mouse -device usb-kbd -serial stdio

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 28 of 58

https://git.gitlab.arm.com/arm-reference-solutions/edk2-platforms/-/tree/374851cb1ad1948cdb85537f7d155d2eafdd07df/Platform/Qemu/SbsaQemu

i i - 102677
SystemReady ES integration guide Y]

5. Press any key to boot WIinPE from CDROM. A cmd window is displayed and a SAC console inthe
UART terminal if you enabled EMS in the boot configuration. The following screenshot shows an
example of the console and cmd window:

Figure 17: SAC console and cmd window

In QEMU, the keyboard and mouse do not work on the display, however the SAC terminal is fully
functional.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 29 of 58

SystemReady ES integration guide 102677

Issue 01

4 ACS

SystemReady uses the Arm Architecture Compliance Suite (ACS), to help validate system compliance.

The UEFI Self-Certification Test (SCT) is an open-source cross-platform firmware test environment
for the UEFI and Pl specifications. This test is used in the Arm ACS suite to test the Base Boot
Requirements (BBR) and Embedded Base Boot Requirements (EBBR and SBBR). The SCT can also be
compiled and run independently.

TorunSCT:

1.

A S R N

Download the image file here. This repository also has information about how to build an SCT
image for AARCH64. This image builds a zip file that contains SCT, SBBR and EBBR sequence
files, and a log parser.

After you build the image, copy the contents to a USB key.
Connect the USB to the Raspberry Pi, power on, and boot to the UEFI menu.
Select the USB as a boot device in the Boot Manager menu. The system boots into the UEFI shell.

Use the command lineto pass -s <file>.seqgtothe SCT.efi applicationto choose the test
sequence.

Alternatively, you can start SCT with a GUI by passing —u as a parameter, as shown in the
following screenshot:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 30 of 58

https://github.com/tianocore/edk2-test
https://github.com/glikely/edk2-test-manifest

SystemReady ES integration guide

1170172012 13:06 2 Sct.log
} Filels) 245,62 wytes
14 Diris)
F50:\Scth> s
j of ¢ Fal:AScth
P

|
1
1
I
|

i
4 Diris)

F30:\3ct > sct -u_

Figure 18: Start SCT with a GUI

7. Press F5toselect tests manually. Press Enter.

102677
Issue 01

8. View, add, or remove tests in the Test Case Management menu, as shown in the following

screenshot:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 58

i i ; 102677
SystemReady ES integration guide 01

UEFI2.7 Self Certification Test{3CTZ2)

Test Case Hanagenent

[¥] GenericTest

[¥] BootServicesTest

[¥] Bunt imeZery icesTest

[¥] LoadedImageProtocol Test
[x] DewicePathProcotols

[1 ACPITableProtocolTest
[x] ConsoleSupportTest

[1 DriverfodelTest

TS TC TS OTRERTRRERRER

Select Iten Select SubMenu
Chawge Status Exit

Figure 19: Test Case Management menu

9. Press F9torunSCT, as shown in the following screenshot:

LEFI |::||'1|.|i.l||| Ualidating a koot image received through a network device must

1/Gener ie/EliCoapl iant/Bla

pd-Y Topd-Y . Udpd-Y

b General Network I'i|||-|i|.|| om ||-|i||i||'r| PASS

Figure 21: SCT screen

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 32 of 58

i i i 102677
SystemReady ES integration guide 01

Sometimes SCT can hang in the process of self-reset. In this case, power off the Raspberry Pithen
power it on. The tests will not be reset. During the next boot if the same USB drive with SCT has been
selected as the boot device, the test will continue. Follow the steps outlined in Boot order verification
to ensure the USB drive is the first boot option.

Although SCT is available as standalone project, it also can be used as a part of the SystemReady ES
Architecture Compliance Suite.

4.1 Install and run ACS

The ACS ensures architectural compliance across the architecture implementations. ACS includes
examples of the behaviors in SystemReady ES systems that can be verified for compliance.

ACS tests are open source and can be downloaded from SystemReady ES ACS. Read the
documentation in this repository to learn how to build and construct test images.

Download the prebuilt images for each release from the prebuilt_images repository. A FAT file system
partition is created for test results, to store logs, and install UEFI-SCT. Another FAT partition is
created with bootable applications and test suites.

Follow the instructions in Install UEF| to install EDK |l on the Raspberry Pi, then copy the Linux
BusyBox operating system to the USB drive. Insert the USB drive into the Raspberry Pi and boot from
thedrive.

In the GRUB menu, select bbr/bsa. This menu performs following tests:
e UEFI Shell application for SBSA compliance

e SCT tests for SBBR compliance

e FWTStests for SBBR compliance

e (OStests for SBSA compliance

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 33 of 58

https://github.com/ARM-software/arm-systemready/blob/main/ES/README.md
https://github.com/ARM-software/arm-systemready/tree/main/ES/prebuilt_images

i - - 102677
SystemReady ES integration guide Y]

After 10 seconds, the board boots to the UEFI shell and a sequence of tests start, as shown in the
following screenshot:

Figure 22: SBBR and SBSA tests running in the UEFI shell

After the tests finish running, the Raspberry Pi automatically boots to the OS to perform Firmware
Test Suite (FWTS) tests.

Test results can be checked in the log files on the RESULT partition. Unplug the USB drive from the
Raspberry Piand connect the drive to a PC. In the RESULT partition on the USB drive, navigate to the
acs_results folder. The following subfolders contain test results:

app_output
fwts

linux
linux_dump
sct_results

uefi_dump

Figure 23: acs_results directory

By default, ACS executes tests automatically. To run tests manually, press Esc after the UEFI shell
loads. Then, navigate to the EFI /BOOT folder on the ACS USB drive partition.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 58

' - - 102677
SystemReady ES integration guide Y]

The folder contents are shown in the following screenshot:

Figure 24: EFI/BOOT folder contents

In this directory, the bbr folder contains the UEFU Self-Certification Test and the bsa folder has a
UEFI shell application for BSA compliance. For more information, see bsa-acs.

To run the test, start the application using the following command:
shell> ./bsa

For alist of application parameters, refer to the Arm BSA Compliance User Guide.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 35 of 58

https://github.com/ARM-software/bsa-acs/blob/main/README.md
https://github.com/ARM-software/bsa-acs/blob/main/docs/Arm_Base_System_Architecture_Compliance_User_Guide.pdf

i i ' 102677
SystemReady ES integration guide Y]

5 Advanced Configuration and Power
Interface

SystemReady ES certified devices must be compliant with the following specifications:
e BSA
e SBBRrecipein BBR

The Advanced Configuration and Power Interface (ACPI) describes the hardware resources that are
installed on SystemReady ES compliant servers. ACPI also handles aspects of runtime system
configuration, event notification, and power management.

SystemReady ES compliant systems on Raspberry Pi use the following ACPI tables:
e Boot Graphics Resource Table (BGRT, optional)
e Core System Resource Table (CSRT, optional)

e Root System Description Pointer (RSDP)

e [Extended system Description Table (XSDT)

e Multiple APIC Description Table (MADT)

e DebugPort 2 Table (DBG2)

e Differentiated System Description Table (DSDT)
e Fixed ACPI Description Table (FACP)

e Generic Timer Descriptor Table (GTDT)

e Processor Property Topology Table (PPTT)

e Secondary System Description Table (SSDT)

e SPCRSerial Port Console Redirection Table. This table is not published by default. To publish this
table, select Device Manager in the UEFI menu, then select Serial as the console device.

The ACPIl examples in this section demonstrate the following use cases:
e Thermal zones

e Fancooling devices

e USBXHClandPCle

e UART

e Debugport

e Power buttons

e PCleECAM

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 36 of 58

SystemReady ES integration guide

5.1 Example: Thermal zone

102677
Issue 01

Raspberry Pihas hardware resources that allow the OS to perform thermal management. BCM2711
provides a register to read CPU temperature. You can enable platform-specific hardware resources
by exposing memory map peripheral addresses with Devicetree or ACPI structures, and provide
platform-specific OS drivers. For example, the bc2711_thermal Linux driver consumes a register
address provided through a Devicetree structure and produces an API to read CPU temperature. The
OS requires an update for any hardware modifications because a new driver is installed to control this
hardware. We recommend that you abstract these hardware resources using ACPI AML methods. In
this example, you do not use a platform driver because the hardware resource is represented as an

ACPI thermal model.

The ACPI DSDT table defines a simple thermal zone TZ0O0. TZ00 specifies the following methods:

ACPI Method Name ‘ Description

_TMP Returns the thermal zone’s current temperature in tenths of
degrees

_ScCp Sets the platform cooling policy, active or passive. A
placeholder on the Raspberry Pi.

_CRT Returns the critical trip point in tenth of degrees where
OSPM must perform a critical shutdown

_HOT Returns the critical trip point in tenths of degrees where
OSPM can choose to transition the system into S4 sleeping
state

_PSV Return the passive cooling policy threshold value in tenths
of degrees

The following objects are also presented:

Table 6: TZ00 methods

Object ‘ Description

Thermal zone polling frequency in tenths of seconds

List of processor device objects for clock throttling.
Specifies all four cores on Raspberry Pi.

Table 7: TZ0O0 objects

The following code shows a thermal zone (TZ00) implementation, whichis listed in the ACPI DSDT

table:

Device (EC00)

{

Name (_ HID, EISAID

Name (_ CCA,

// all temps in are tenths of K

ThermalZone

0x0)

(TZ00)

("PNPOCO6"))

{

(aka 2732 is the min temps in Linux (aka 0C))

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 58

SystemReady ES integration guide 102677

Issue 01
Method (TMP, 0, Serialized) {
OperationRegion (TEMS, SystemMemory, THERM SENSOR, 0x8)
Field (TEMS, DWordAcc, NoLock, Preserve) ({
TMPS, 32
}
return (((410040 - ((TMPS & Ox3ff) * 487)) / 100) + 2732);
}
Method (SCP, 3) { } // receive cooling policy from 0OS
Method (CRT) { Return (3632) } // (90C) Critical temp point (immediate
power-off)
Method (HOT) { Return (3582) } // (85C) HOT state where OS should hibernate
Method (PSV) { Return (3532) } // (80C) Passive cooling (CPU throttling)
trip point
// SSDT inserts ACO/ ALO @60C here, if a FAN is configured
Name (TZP, 10) //The OSPM must poll this device every 1
seconds
Name (PSL, Package () { _SB .CPUO, \ SB .CPUl, \ SB .CPU2, \ SB .CPU3 })

5.2 Example: Fan cooling device

Raspberry Pican be connected to extension hats with a variable speed fan, such as a POE hat. You can
also connect a simple on/off fan. A POE hat uses the Raspberry Pi proprietary mailbox for fan control
and an on/off fan can be controlled with a single GPIO pin. As a result, each fan device uses specific
drivers and can be presented to the OS in different ways.

To simplify OSPM and remove the platform driver, ACPI objects and methods can provide fan device
information and control to the OS.

ACPI 1.0 defines a fan device, which is suitable for an on/off fan connected to GP1O. ACPI 4.0 defines
additional fan device interface objects, enabling OSPM to perform more robust active cooling thermal
control.

Currently, Raspberry Pi supports the ACPI 1.0 fan device. The fan and other related objects and
operators are specified in the SSDT ACPI table.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 38 of 58

i i i 102677
SystemReady ES integration guide ccoe 0l

The following table lists PFAN fan power resource methods:
ACPI Method Name Description

_STA Returns the status of a fan device. This example returns the
exact value of the GPIO pin which is used to connect a fan.
The exact pin used is configured in the UEFI menu.

_ON Puts the power resource into ON state by setting the GPIO
pin, which is used to control a fan

_OFF Puts the power resource into OFF state by clearing the
GPIO pin, which is used to connect a fan

Table 8: PFAN methods and objects

The following table lists methods and objects for the fan device:

FANO Fan device object
_HID Plug and Play ID. This should be PNPOCOB
_PRO Power Resource for the fan object (fully ON state)

Table 9: Fan device methods and objects

The following table lists methods and objects for the Active Cooling point:

Object Description

ACO Returns the temperature trip point at which OSPM must
start or stop Active cooling

ALO Evaluates alist of Active cooling devices to be turned on
when the corresponding _ACx temperature threshold is
exceeded. _ALO defines a single FANO device on RPi4

Table 10: Active Cooling point methods and objects

The following code shows the ACPI implementation of a fan cooling device and the device resources:
Scope (_SB_.EC00)

{
// Define a NameOp we will modify during InstallTable
Name (GIOP, O0x2) //08 47 49 4f 50 Oa 02 (value must be >1)
Name (FTMP, 0x2)
// Describe a fan
PowerResource (PFAN, 0, 0) {
OperationRegion (GPIO, SystemMemory, GPIO BASE ADDRESS, 0x1000)
Field (GPIO, DWordAcc, NoLock, Preserve) ({
Offset (0x1C),
GPSO, 32,
GBS, 32,

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 39 of 58

SystemReady ES integration guide 102677

[ssue O1

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 40 of 58

102677

SystemReady ES integration guide 01

Name (_ALO, Package () { _SB_.EC00.FANO }) // the fan used for ACO above

}

With the ACPI 1.0 fan, you do not need a platform-specific GPIO driver and a temperature monitor.
The ACPI fan driver consumes the PNPOCOB FANO device and uses an ACPI power subsystem to
turn it on or off.

Use the following Hat 4 methods with ACPI 4.0 on a Raspberry Pifor POE:

Object Description

_FIF Returns fan device information
_FPS Returns a list of supported fan performance states
FSL Control method that sets the fan device’s speed level

(performance state).

RPI_FIRMWARE SET POE HAT VAL wouldbeusedin
ACPI AML on RPi4.

_FST Returns current status information for a fan device.

RPI FIRMWARE GET POE HAT VAL wouldbe usedin
ACPI AML on a Raspberry Pi 4.

Table 11: Hat 4 methods and objects

In this example, instead of exposing a proprietary mailbox to the OS and using a platform driver, we
allow the OS to use a standard ACP fan driver.

5.3 Example: USB XHCI and PCle

If a PCle controller is present and visible by the operating system, you must use an MCGF table.

The PCle controller is present on the Raspberry Pi, but it is not SBSA compatible. To certify a
Raspberry Pias SystemReady ES compliant, the PCle is hidden and as a result MCFG is not used.

The USB XHCI controller is connected to the PCle controller, and an ACPI node XHCO is added to
the DSDT table. Also,a _DMA object is defined to describe resources consumed by XCHO.

The following code shows the ACPI_DMA resource:
Name (DMA, ResourceTemplate () {

/*
* XHCO is limited to DMA to first 3GB. Note this
* only applies to PCIe, not GENET or other devices
* next to the A72.
*/
QWordMemory (ResourceConsumer, +
’
MinFixed,
MaxFixed,
NonCacheable,

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 41 of 58

. . . 102677
SystemReady ES integration guide Issue 01

_ DMA is an optional object and returns a byte stream in the same format asa CRS object. DMA s
defined under devices that represent buses, such as Device SCBO for the Raspberry Pi. This object
specifies the ranges the bus controller decodes on the child interface. This is analogous to the CRS
object, which describes the resources that the bus controller decodes on the parent interface. The
ranges described in the resources of a _ DMA object can be used by child devices for DMA or bus
master transactions.

The DMA objectisonlyvalidifa CRSobjectis defined. The OSPM must reevaluate the DMA object
afteran SRS object has been executed because the _ DMA ranges resources may change depending
on how the bridge has been configured.

The following code shows the ACPI XCHO USB 3.0 controller implementation:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 58

102677

SystemReady ES integration guide Issue 01

5.4 Example: UART

Arm SBSA Generic UART and 16550 UART devices can be presented in the system. Serial Console
Redirection (SPCR) can be used to describe these devices.

The Raspberry Pihas a PLO11 UART port described in spcr.aslc using Clanguage. The following
code snippet shows the ACPI UART PLO11 implementation:

Arm Limited (or its affiliates). A
Non-Confidential
Page 43 of 58

SystemReady ES integration guide 102677

[ssue O1

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 44 of 58

102677

SystemReady ES integration guide Issue 01

5.5 Example: Debug port

For some OSes, the debug port is presented on the platform. To describe the debug ports available on
the platform, Debug Port Table 2 is used. The table contains information about the configuration of

the debug port.

The Raspberry Pihas a PLO11 UART port that can be described to the OS as a debug port. The
following code shows ACPI UART PLO11 debug port implementation:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 45 of 58

102677

SystemReady ES integration guide 01

/*
* Kernel Debug Port
“
DBG2 DEBUG_PORT DDT (
RPI_DBG2 NUMBER OF GENERIC_ ADDRESS REGISTERS,
RPI_UART INTERFACE TYPE,
RPI_UART BASE ADDRESS,
RPI_UART LENGTH,
RPI_UART STR
) r
}
}i
BBR requires platforms to keep a debug port on a separate UART port from the console port so there

is no conflict in debug messages and OS console output. Because the Raspberry Pihas only one active
UART, enable or disable DBG2 as needed for debugging.

5.6 Example: Power button

If you remove the power cable from the device without shutting down the OS, the file system can be
corrupted and other unrecoverable errors can occur. A power button is a useful addition to the
embedded platform, which allows an OS to implement shutdown safely.

If we connect a button to one of the Raspberry Pi GPIO pins, we can define an ACPI power button.

The GPIO interrupt functionality inthe BCM2711 is used with a Generic Event Device to generate
the Notify command to tell OSPM that the button has been pressed. The OS then initiates sleep or

soft shutdown based on user settings.

The Generic Event Device has the following objects:

Object ‘ Description

GED1 Generic Event Device Object
HID Plug and Play ID: ACPI0013 for GED
_CRS List of interrupts

Table 12: Generic Event Device objects

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 46 of 58

i i i 102677
SystemReady ES integration guide ccoe 0l

The following table lists the Generic Event Device methods:

Method Description

EVT Interrupt handler

This has arg0, which contains the Generic System Interrupt
Vector of the interrupt

INT Platform Specific Initialization

Table 13: Generic Event Device objects

The power button has the following objects:

Object Description

PWRB Power Button object

HID Plug and Play ID: PNPOCOC for power button

Table 14: Power button objects

The following table lists the power button methods:

Description

STA Status of the device

We return OxF, which means the device is present, enabled,
should be shown in Ul and is functioning properly.

Table 15: Power button methods

Using the INI method, we set up GPIO pin 5 to trigger an interrupt when arising edge is detected.
Then, inthe EVT method, we check the status of the pins to check that the interrupt was GPIOO, and
that pin 5 triggered the interrupt. If the interrupt is triggered, the status is reset and the power button
notified.

The following code shows an ACPI power button implementation:

// Generic Event Device
Device (GED1) {
Name (HID, "ACPIOO013")
Name (_UID, 0)

Name (CRS, ResourceTemplate () {

Interrupt (ResourceConsumer, Edge, ActiveHigh, ExclusiveAndWake) {
BCM2386 GPIO INTERRUPTO }

b

OperationRegion (PHO, SystemMemory, GPIO BASE ADDRESS, 0x1000)

Field (PHO, DWordAcc, NoLock, Preserve) {

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 47 of 58

SystemReady ES integration guide 102677

[ssue O1

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 48 of 58

i i i 102677
SystemReady ES integration guide 01

5.7 Example: PCle ECAM

If a platform supports PCle, the platform reports PCle Configuration Space using the MCFG ACPI
table. If the PCle Root complex is not SBSA compatible, a different approach can be taken.

The Raspberry Pi hides PCle Configuration space and the MCFG table is not published on this
platform. Only the USB XHCl is exposed in the DSDT table. For more information, see Example: USB
XHCl and PCle.

Alternatively, you can use the Arm PCI Configuration Space Access Firmware Interface. This
interface can be used as alternative to the Enhanced Configuration Access Mechanism (ECAM)
hardware mechanism for platforms that deviate from the rules defined in the PCle Specification.

Before the introduction of the Arm PCI Configuration Space Access Firmware Interface, quirks were
implemented in the OS kernel to use non-compliant PCle hardware. This interface abstracts the PCI
configuration space access, allowing implementations to hide SoC specific errata and non-compliant
behavior. These implementations lead to costly backporting and maintaining quirk patches over a
dozendistribution versions. Introduction of the interface in firmware allows keeping quirks
centralized over multiple OSs and Linux distro versions.

The interface enables a caller to:
e Access PCl configuration space reads and writes

e Discover the implemented PCl segment groups and bus ranges for each segment
For the list of supported calls, refer to the Arm PCI Configuration Space Access Firmware Interface.

Arm PCI Configuration Space Access Firmware Interface implementation requires the following:
e Onthe platform with EL3 presented, Platform Firmware SMCCCv1.1 compliant implementation
e [fEL3isnotpresent but EL2 is present, HVC conduit must be implemented in hypervisor

e Operating System SMCCv1.1 compliant SMC or HVC conduit implementation

Enabling Arm PCI Configuration Space Access Firmware Interface requires patches for a platform
firmware, UEFI, and an OS.

An example of the SMCCC implementation supporting Arm PCI Configuration Space Access
Firmware Interface can be found in Arm Trusted Firmware. Arm Trusted Firmware already allows
platforms to handle PCl configuration access requests through standard SMCCC. To enable these
access requests, the SMC_PCI SUPPORT build flagis provided.

Touse PCle SMCCC, we need to describe PCle Root Complex in the SSDT ACPI table. Refer to this
patch [PATCH v2 3/6] Platform/RaspberryPi: Add PCle SSDT. With this patch, instead of hiding the
PCle root complex, we expose PCle to the OS. The OS ACPI PCI driver controls the PCle root
complex but because the MCFG table is absent, the driver uses the OS SMC conduit to get access to
the PCle ECAM.

An example of the OS SMC conduit implementation can be found in the NetBSD. NetBSD implements
pci_smccc_call(), which uses Secure Monitor Call to request a PCI Configurate access service to a
platform firmware running in EL3. With PCI_SMCCC enabled, NetBSD PCle subsystem uses the
PCI_VERSION SMC call to check if the SMCCC supports PCl configuration access. If the SMCCC
versionis 1.1 or later, the PCI SMCCC is supported.
Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 49 of 58

https://developer.arm.com/documentation/den0115/b
https://github.com/ARM-software/arm-trusted-firmware
https://edk2.groups.io/g/devel/message/79008
https://src.fossil.netbsd.org/artifact/a5411fa1e9a5e8c9

i i i 102677
SystemReady ES integration guide 01

NetBSD, Arm Trusted Firmware, and EDK2 can be built and run on the Raspberry Pi 4 with PCI
SMCCC enabled. As a result, the PCle is exposed through SMCCC driving the XHCI controller.

In the future, other operation systems or hypervisors such as VMWare ESXi may implement this
interface.

5.8 ACPI Integration recommendations

ACPI tables can be implemented using a platform driver or dynamic ACPI framework.

For platformdrivers, you manually create ACPI tables using ACPI Source Language (ASL). Create a
set of . as1 files and an edk2 module information file AcpiTable. inf. You can also create an ACP]
table using C language. In this case, . as1c files must be used.

These files are compiled at build time and stored in a firmware volume. At boot time, a platform driver
uses ArmLib methods, shown in the following code:
EFI_STATUS LocateAndInstallAcpiFromFvConditional (

IN CONST EFI GUID* AcpiFile,

IN EFI_LOCATE ACPI CHECK CheckAcpiTableFunction
)

or
EFI_STATUS LocateAndInstallAcpiFromEv (

IN CONST EFI GUID* AcpiFile

)

These methods locate and install ACPI tables in a firmware volume. The following code snippet
locates ACPI tables implemented for the platform and installs it in a firmware volume:
Status = LocateAndInstallAcpiFromFv (&mAcpiTableFile) ;

Inthis example, mAcpiTableFile is a GUID of the ACPI storage file in a firmware volume and
matches FILE_GUID inthe AcpiTable. inf.

Although ACPI tables are compiled at build time and stored in a firmware volume, it is still possible to
modify these tables at boot time. The second parameter CheckAcpiTableFunctionin
LocateAndInstallAcpiFromFvConditional () isapointertoafunction. This parameteris an
algorithm LocateAndInstallAcpiFromFvConditional () used to locate andinstall ACPI
tables, and performs the following steps:

1. UseEFI_FIRMWARE VOLUME2 PROTOCOL andmAcpiTableFile GUID to findan ACPI
tablein afirmware volume.

2. Prior tothe installation of the table, call CheckAcpiTableFunction () with apointertoa
newly found ACPI table as a parameter.

3. Provided CheckAcpiTableFunction () indicates that the table should be installed, use
EFI_ACPI TABLE PROTOCOL toinstall the table.

4. Repeat until all ACPI tables are found and installed.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 50 of 58

i i i 102677
SystemReady ES integration guide 01

CheckAcpiTableFunction () hasapointer to a newly discovered ACPI table and can modify the
table before beinginstalled. For an example, refer to the HandleDynamicNamespace () function
of the Raspberry Pi ACPI platform driver and see how it is used to modify DSDT and SSDT ACPI
tables with values taken from PCD values.

For a Raspberry Pi ACPI table implementation, see AcpiTables.
Tolearn how ACPI tables are installed on the Raspberry Pi, see ConfigDxe.

For another example of the ACPI platform driver, see PlatformDxe. The dynamic ACPI framework
provides mechanisms to reduce the effort required to port firmware to new platforms. It can
generate the ACPI tables dynamically without writing the TDL/ASL description for ACPI tables
manually.

For platform ACPI driver implementations, ACPI tables are created using ASL, table definition
language (TDL), and C code. You can also configure platform hardware at runtime, such as configuring
the number of cores available to the OS or turning SoC features on or off.

The dynamic ACPI framework provides a set of standard ACPI table generators that are implemented
as libraries. These generators query a platform-specific Configuration Manager to collate the
information required for generating the tables at runtime. See Arm at master for a list of the
generators supported.

Toimplement Configuration Manager, include a platform-specific DXE driver called
ConfigurationManagerDxe. Configuration Manager produces
EDKII_CONFIGURATION_MANAGER PROTOCOL and implements its API. The declaration of the
APl for the EDKII_CONFIGURATION_MANAGER_PROTOCOL s in
ConfigurationManagerProtocol.h.

The following code shows the GUID of the Configuration Manager Protocol:
#define EDKII_CONFIGURATION_MANAGER_PROTOCOL_GUID \

{ 0xd85a4835, 0x5a82, 0x4894, \
{ Oxac, 0x2, 0x70, Ox6f, 0x43, 0xd5, 0x97, 0x8e } \
}i
The following code shows a software interface of the Configuration Manager Protocol:
typedef struct ConfigurationManagerProtocol {
UINT32 Revision;

EDKII CONFIGURATION MANAGER GET OBJECT GetObject;

EDKII CONFIGURATION MANAGER SET OBJECT SetObject;

EDKII PLATFORM REPOSITORY INFO * PlatRepolInfo;
} EDKII CONFIGURATION MANAGER PROTOCOL;

The API consists of the following functions:

e GetObject (). TheGetObject () function defines the interface implemented by the
Configuration Manager Protocol used to return the Configuration Manager Objects

e SetObject (). ThesSetObject () function defines the interface implemented by the
Configuration Manager Protocol to update the Configuration Manager Objects

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 51 of 58

https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/AcpiTables
https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/Drivers/ConfigDxe
https://github.com/tianocore/edk2-platforms/tree/master/Platform/ARM/SgiPkg/Drivers/PlatformDxe
https://github.com/tianocore/edk2/tree/master/DynamicTablesPkg/Library/Acpi/Arm
https://github.com/tianocore/edk2/blob/master/DynamicTablesPkg/Include/Protocol/ConfigurationManagerProtocol.h

i i i 102677
SystemReady ES integration guide 01

Configuration Manager Objects are objects that represent platform configuration and are stored in
the EDKII_PLATFORM_REPOSITORY_INFO repository, maintained by Configuration Manager.

Configuration Manager maintains a list of ACPI tables to be installed. Based on this list, the
corresponding ACPI table generators are invoked by the Dynamic ACPI framework.

For example, the IORT ACPI table generator handles the following ACPI objects:
e EArmObjltsGroup

e EArmObjNamedComponent

e EArmObjRootComplex

e EArmObjSmmuV1SmmuV2

e EArmObjSmmuV3

e EArmObjPmcg

e EArmObjGicltsldentifierArray

e EArmObjldMappingArray

e EArmODbjGicltsldentifierArray

If the OEM platform has an SMMUvV3 hardware block, include an object with ID equal to
EArmObjSmmuV3 in the Configuration Manager repository. For more information, refer to the list of
Arm object IDs and data structures in ArmNameSpaceObjects.h.

The IORT ACPI table generator requests the EArmObjSmmuV3 object using the
EDKII_CONFIGURATION_MANAGER_GET_OBJECT function and adds the SMMUv3 node to the
IORT ACPI table. The same mechanism is used by other ACPI table generators.

For an implementation example, see ConfigurationManager for
EDKII_CONFIGURATION_MANAGER_PROTOCOL.

v

Note

Currently, the capability to generate ASL tables (DSDT and SSDT) is limited to generating ASL Serial
Port Information corresponding to DBG2 and SPCR because it is platform-specific.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 52 of 58

https://github.com/tianocore/edk2/blob/master/DynamicTablesPkg/Include/ArmNameSpaceObjects.h
https://github.com/tianocore/edk2-platforms/tree/master/Platform/ARM/VExpressPkg/ConfigurationManager

i i i 102677
SystemReady ES integration guide Y]

6 SMBIOS requirements

The SMBIOS table version 3.0.0 or later is required to conform to the SMBIOS specification. Earlier
SMBIQOS table and format versions are not supported.

SystemReady ES compliant systems with Raspberry Pi use the following data structures:
e Type 00: BIOS information

e Type O1:system information

e Type O3: chassis information

e Type 04: processor information

e Type O7/:cacheinformation

e Type 09:system slot information

e Type 16: physical memory array

e Type 17:memory device

e Type 19: memory array mapped address

e Type 32: boot status

e Type 02: base board information (optional)

e Type 11: OEM string (optional)

6.1 SMBIOS integration

SMBIQOS data structures are built on top of the platform-independent driver SmbiosDxe, which uses
the EFI_SMBIOS_PROTOCOL API. EFI_SMBIOS_PROTOCOL allows consumers to log SMBIOS data
records and enables the producer (SmbiosDxe) to create the SMBIOS tables for a platform.
SmbiosDxe is responsible for installing the pointer to the tables in the EFI System Configuration
Table.

The following code shows a GUID of SMBIOS Protocol:
#define EFI SMBIOS PROTOCOL GUID \

{ 0x3583ff6, Oxcb36, 0x4940, { 0x94, 0x7e, 0xb9, 0xb3, 0x9f,\
Ox4a, Oxfa, O0xf7 } }

The following code shows an SMBIOS Protocol data structure:
typedef struct EFI SMBIOS PROTOCOL ({

EFI_SMBIOS ADD Add;
EFI_SMBIOS UPDATE STRING UpdateString;
EFI_SMBIOS REMOVE Remove;
EFI SMBIOS GET NEXT GetNext;
UINT8 MajorVersion;
UINT8 MinorVersion;
Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 53 of 58

i i i 102677
SystemReady ES integration guide 01

} EFI_SMBIOS_ PROTOCOL;

6.2 Platform driver

The SMBIOS driver is a platform-specific DXE driver that uses SMBIOS data records provided by the
OEM. The driver consumes EFI_SMBIOS PROTOCOL, which is produced by SmbiosDxe and uses its
interface to add SMBIOS records.

The driver creates SMBIOS records defined in SmBios.h. These records are standard SMBIOS data
structures, defined according to the latest SMBIOS specification.

For example, the following code shows the definition for a TYPE 1 System information SMBIOS table,
which is defined by the PlatformSmbiosDxe Raspberry Pi platform driver:
SMBTOS_TABLE_TYPE1 mSysInfoTypel = {

{ EFI SMBIOS TYPE SYSTEM INFORMATION, sizeof (SMBIOS_TABLE_TYPEI), 0 1},
1, // Manufacturer String

2, // ProductName String

3, // Version String

4, // SerialNumber String

{ Ox25EF0280, O0xEC82, 0x42B0O, { Ox8F, 0xB6, 0x10, OxAD, 0OxCC, 0xCe6, 0x7C, 0x02 } 1},
SystemWakeupTypePowerSwitch,
5, // SKUNumber String
6, // Family String
}i
PlatformSmbiosDxe uses EFI SMBIOS PROTOCOL method Add() to add mSysInfoTypel record.
Status = gBS->LocateProtocol (&gEfiSmbiosProtocolGuid, NULL, (VOID**)&Smbios);
Status = Smbios->Add (
Smbios,
gImageHandle,
&c,
Record // mSysInfoTypel
) i
The platform driver is responsible for ensuring that the SMBIOS record is formatted to match the

version of the SMBIOS specification as defined in the MajorVersion and MinorVersion fields of the
EFI_SMBIOS_PROTOCOL.

Add both a platform driver and SmbiosDxe driver to your platform and flash description files. Use the
RPi4.dsc and the RPi4.fdf files as a reference.

For more information about how the platformdriver is implemented on the Raspberry Pi, see the
PlatformSmbiosDxe implementation.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 54 of 58

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
https://github.com/tianocore/edk2-platforms/blob/master/Platform/RaspberryPi/RPi4/RPi4.dsc
https://github.com/tianocore/edk2-platforms/blob/master/Platform/RaspberryPi/RPi4/RPi4.fdf
https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi/Drivers/PlatformSmbiosDxe

i i i 102677
SystemReady ES integration guide 01

6.3 System Management BIOS framework

The platform driver requires the OEM to define SMB records using C and check that these records
are formatted according to the version of the SMBIOS specification as defined in the MajorVersion
and MinorVersion fields of the EFI_ SMBIOS PROTOCOL.

The generic Arm System Management BIOS (SMBIOS) framework allows you to generate SMBIOS
tables without writing C code. This framework uses platform configuration PCD database entries and
strings from a Human Interface Infrastructure (HI1).

For example, the OEM can provide the following PCD entries in its platform description file:
e gkfiMdeModulePkgTokenSpaceGuid.PcdFirmwareVendor

e gEfiMdeModulePkgTokenSpaceGuid.PcdFirmwareVersionString

e gArmTokenSpaceGuid.PcdSystemBiosRelease

e gArmTokenSpaceGuid.PcdEmbeddedControllerFirmwareRelease

These entries are taken by the SMBIOS framework and added to the SMBIOS table type 00 BIOS
information automatically.

The OEM must provide an OemMiscLib library with the following platform-specific definitions:

Processor Information

The SMBIOS framework creates processor and cache information tables and requires the
following functions:

= OemGetCpuFreq()
"= QOemGetProcessorInformation ()
"= QOemGetCacheInformation ()

= OemGetMaxProcessors ()

The SMBIOS framework calls these functions to get processor and cache information and
uses the EFI_SMBIOS_PROTOCOL Add () functionto add SMBIOS type 04 and type 07
tables.

OemUpdateSmbiosInfo() function
The SMBIOS framework uses hardcoded PCD entries to create SMBIOS tables, but platform-
specific information is needed in runtime. For example, a baseboard serial number or chassis
serial number must not be hardcoded in the UEFI binary the OEM uses to flash the board. The
OEM canwrite OemUpdateSmbiosInfo () so that these two strings are read in runtime
from a baseboard management controller. The SMBIOS framework calls
OemUpdateSmbiosInfo () toretrieve these two strings and update default information in
the SMBIOS type 02 and type O3 tables.

For more details about the OemMiscLib implementation, see tianocore/edk2-
platforms/Platform/Qemu/SbsaQemu/OemMiscLib.

For more information about the SMBIOS framework, see
https://github.com/tianocore/edk2/tree/master/ArmPkg/Universal/Smbios/SmbiosMiscDxe.
Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 55 of 58

https://github.com/tianocore/edk2/tree/master/ArmPkg/Universal/Smbios/SmbiosMiscDxe

i i ' 102677
SystemReady ES integration guide Y]

7 UEFI requirements

The boot and system firmware for 64-bit Arm embedded servers is based on the UEF| specification
version 2.8 or later and incorporates the AArch64 bindings.

UEFI compliant systems must follow the requirements in section 2.6 of the UEFI specification.
However, to ensure a common boot architecture for server-class AArché4, systems compliant with
this specification must provide the UEFI services and protocol from the provided list.

UEFI compliance is tested using UEF| Self-Certification Tests (SCT). For more information about
using SCT, see ACS.

For alist of required UEFI runtime and boot services, see the Arm Base Boot Requirements 1.0.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 56 of 58

https://developer.arm.com/documentation/den0044/f

SystemReady ES integration guide

8 Related information

The following documents are related to material in this guide:

Advanced Configuration and Power Interface (ACPI) Specification
Arm Base Boot Requirements 1.0

Arm PCI Configuration Space Access Firmware Interface

Project Cassini

SystemReady ES

UEFI Self-Certification Test

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

102677
Issue 01

Page 57 of 58

https://uefi.org/sites/default/files/resources/ACPI_6_3_final_Jan30.pdf
https://developer.arm.com/documentation/den0044/f
https://developer.arm.com/documentation/den0115/b
https://www.arm.com/solutions/infrastructure/edge-computing/project-cassini?_ga=2.45068322.769895572.1632130872-1514066959.1612183942
https://developer.arm.com/architectures/system-architectures/arm-systemready/es
https://github.com/tianocore/edk2-test

i i ' 102677
SystemReady ES integration guide Y]

9 Next steps

In this guide, you learned how to integrate SystemReady ES systems, how to develop and build the
firmware, and how to test SystemReady ES using a Raspberry Pi 4.

After reading this guide, you can go to the Arm SystemReady Certification Program site for more
information about certification registration.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 58 of 58

https://www.arm.com/resources/contact-us/systemready-certification?_ga=2.209181460.769895572.1632130872-1514066959.1612183942

