
An Introduction to CPU
Performance Benchmarks
and How This Applies to
the Home Market

November, 2021 Whitepaper

Abstract

Benchmarks are a vital tool for measuring the performance of CPUs in the

most popular consumer devices, particularly in the Home segment which

includes digital televisions (DTVs) and set-top boxes (STBs).

However, benchmarks are evolving at a rapid pace, moving from

standalone measurements to considering real-world use cases to gain a

more accurate representation of performance. This whitepaper

provides details about recent developments in performance benchmarks on

CPUs and how it has evolved from the early benchmarks of the 80s. It also

outlines the benefits and challenges of using the various available bench-

marks to measure CPU performance on Home and other

 consumer devices.

An Introduction to Benchmarks

Many different metrics have been used in the past 35 plus years to measure

performance of a processor – MIPS, MOPS, MFLOPS, and MHz. Dhrystone,

developed in 1984, was an early attempt to measure performance by

executing real code. It served the industry for a long time, but, due to its

synthetic nature, toy-sized footprint, and susceptibility of performance hot-

spots to toolchain gaming, the benchmark became irrelevant as a measure of

prevailing real-world application performance.

CoreMark was then created by the Embedded Microprocessor Benchmark

Consortium (EEMBC) as a simple and standardized embedded benchmark

that addressed some of the limitations of Dhrystone, while retaining its ease

of use in porting and running on small devices.

Since the early days of Dhrystone and CoreMark, other benchmarks have

been developed to measure performance of application class processors.

These benchmarks have been updated periodically to keep them up to date

with evolving application characteristics and growing complexity. They cover

a wider range of applications, including programming languages, compilers,

combinatorial optimization, audio and video compression, and Artificial

Intelligence (AI), that more accurately represent the types of workloads that

run on modern classes of processor.

2

Today, real world applications running on larger application class processors

exhibit a great diversity of characteristics in their code and data footprints,

control flow, memory access patterns, use of multi-threading and mul-

ti-processing, and use of system peripherals. Therefore, a single benchmark

program is unable to represent the entire spectrum of diverse real-world ap-

plications and use cases. However, more modern and complex benchmarks

can stress the processor core pipeline and memory system in diverse ways

compared to earlier benchmarks like Dhrystone and Coremark.

When selecting benchmarks, the challenge for the industry is the wide

spectrum of performance and overlap between embedded and application

processor performance points that can make it hard to work out the fairest

way to measure processor performance. This paper discusses the underly-

ing requirements for a benchmark and why trying to use the wrong measure

will produce misleading results.

Benchmark Characteristics

Processor architects make different trade-offs between several design

factors, such as the clock frequency, core pipeline, degree of out-of-order

execution, number of execution units, cache organization and size, memory

hierarchy, etc. The performance of a processor is determined by the mi-

croarchitecture bottlenecks (design trade-offs) and how they are exercised

by the application program (application characteristics).

Benchmark suites are a proxy, so one way of assessing their representative-

ness is to compare their performance characteristics to a range of real-world

application programs. For single-threaded programs, the characteristics and

bottlenecks that determine the manifested performance are the stress on

the core pipeline, instruction cache, data cache, memory, and branch predic-

tion. These characteristics can be measured, normalized, and visualized per

application. The visualizations are in some sense a performance signature of

the application or benchmark. This performance signature, along with the in-

herent knowledge of the application or benchmark, can be used to compare

the similarities and differences across them.

At Arm, we measure key performance attributes that quantify the stress on

the core pipeline, instruction cache, data cache, memory, and branch

prediction for a range of benchmarks, tasks and applications on our Cortex

CPU processors. Meanwhile, the range of applications include -

3

boot up sequence; application launch; compression; AI; compilers and inter-

preters; path-finding algorithms; combinatorial optimization; discrete event

simulation; and parsers.

Arm CPUs in the home segment market

Within each segment of consumer devices, different benchmarks are

needed to a) reflect the different use cases and workloads and b) reflect

the different CPUs that are used. The segment market for home consum-

er devices is an interesting case study for benchmarks. Arm technology is

currently deployed in over 600 million new home consumer devices every

year, from Smart TVs to STBs, game consoles and smart displays. The fast

growth of content providers and streaming services has driven the demand

for improved technologies in this segment. Arm offers a complete solution in

this space, ranging from CPUs and GPUs to System IP and dedicated neural

network units.

Devices built on Cortex-A CPUs and Mali GPUs make up a sizeable num-

ber of the home segment market. Cortex-A CPUs deliver smooth and vivid

visuals for the best screen experience. Mali GPUs deliver superior graphics,

enabling key use cases like gaming and 4K UI. Moreover, Arm’s System IP

enables an easier integration improving energy efficiency and system per-

formance.

In the home segment, a variety of CPUs that vary in terms of performance

and efficiency are used due to the nature of the market and the continu-

ous drive towards more complex use cases (e.g., super resolution, AI, etc.).

Therefore, now more than ever, it is important to understand the spectrum

of different benchmarks and how they measure overall system performance.

4

The spectrum of benchmarks

The figure above shows the entire spectrum of benchmarks used within

Arm. The key categories are synthetic, micro, kernel, application, and use

case-based benchmarks. As we move up and to the right on the chart, the

benchmarks start having a higher level of correlation with the end user

experience and more of a system play. However, the cost and complexity to

set them up, maintain, and use for pre-silicon analysis also starts significantly

increasing.

At one end of the spectrum are synthetic benchmarks, such as Dhrystone

and CoreMark. They are not very representative of real-world performance,

but are quite easy to port, run, maintain, and do not require a full system

setup for projecting scores.

Next on the spectrum are microbenchmarks that are typically used to meas-

ure specific aspects of IP performance, such as memory latency and band-

width. For example, the STREAM benchmark is used specifically to measure

sustained memory bandwidth.

Kernel benchmarks comprise of extracted algorithms from a range of

algorithms and can help assess performance on key hotspots from larger

applications. Geekbench is one example of a kernel benchmark, broadly used

in mobile and desktop applications. The latest version is Geekbench 5, which

is 64-bit only. It uses a scoring system that separates single core and multi

core performance.

5

Application benchmarks comprise of complete and real programs that are

widely used to solve various compute challenges but could be complex to

port and setup. One example is SPEC CPU, which is the most popular bench-

mark for measuring CPU performance. The latest version has been updated

to be more representative of real-world applications.

Finally, at the end of the spectrum there are use case-based benchmarks.

Speedometer is one example of a use case-based benchmark that measures

the responsiveness of web applications. These are very representative of

end usage, but difficult to port, run, maintain, and require full-system plat-

forms for projecting scores. Also, the metrics to measure the performance

of use cases – JANK, frame rate, frame drops, etc. – are difficult to measure

in pre-silicon platforms. This makes it difficult to use them for performance

exploration in the early stages of the design cycle. Moreover, use case-based

benchmarks can often be impractical as a measure of IP performance. For

example, a web browsing benchmark will exercise a complex software stack,

system, and CPU IP. Although especially useful for analysing the perfor-

mance of a product, it is difficult to isolate the performance upside from

improvements in the software, system, and CPU.

Each of the categories of benchmarks has its own place and value during

various stages of the hardware and software product design stage. For

example, synthetic benchmarks such as Dhrystone can be used as a proxy

to represent the power of longer running benchmarks; microbenchmarks,

such as STREAM, are used to measure peak achievable bandwidth; kernel

benchmarks provide an estimate of performance of specific algorithms; and

application/use case-based benchmarks run late in the design cycle and

provide an accurate measure of system level performance.

It is important to note that the list of benchmarks continues to cumulatively

evolve over time and needs to be kept relevant to the segments targeted

by Arm products. The current portfolio of benchmarks is not necessarily

exhaustive in terms of: (a) representativeness to performance characteris-

tics of emerging workloads/segments (e.g., high instruction cache miss-rate

is observed in server workloads but not in the existing suite of benchmarks);

(b) assessing benefits of new instructions incorporated in the architecture

(e.g., assessing performance benefit of LDAPR, Load Acquire-RcPC register,

instruction); and (c) evaluating design alternatives and assessing goodness

of microarchitecture features for emerging workloads (e.g., instruction-

6

- cache side improvements for server workloads) and newer architecture

features (e.g., SVE).

It is also important to note that the choice of benchmarks used for pre-sil-

icon projections and post-silicon benchmarking, particularly for CPUs, is

driven by factors that include partner requests, popularity in the external

ecosystem, competitive pressures, and technical merit of benchmark.

Conclusions

To be useful, a benchmark must be representative of the characteristics of

the target real world applications and use cases. In the past 35 years, bench-

marks have evolved from standalone performance measurements to being

focused on real-world use cases. Using an application benchmark, such as

SPEC CPU, instead of Dhrystone and Coremark is a huge step forward in

benchmarking an application class processor. Therefore, our assertion is

that if a workload needs an application class processor, then older bench-

marks such as Dhrystone and Coremark are too simple and, as a result, not

appropriate to usefully measure this. This is important because trying to

compare devices using an unsuitable benchmark may lead to disappoint-

ment when running your real application code. For example, techniques to

improve compute-bound synthetic benchmarks, such as Dhrystone, will -

7

not necessarily translate into improvements in real-world applications that

are likely to be more memory bound.

However, it should be noted that any benchmark suite will only represent

a portion of the performance spectrum of real-world usages. The industry

should rely on a range of benchmark suites to measure a wide range of appli-

cations and performance points. In fact, there can still a role for older bench-

marks that purely measure the compute-bound performance of synthetic

programs, but these are best deployed in the early stages of processor and

IP development. Using these older benchmarks combined with application

and use case-based benchmarks can provide useful performance insights

during the early development stages of IP.

An approach that would complement the existing portfolio of benchmarks

would be to develop a methodology to distil the essence of use cases into

microbenchmarks or kernel benchmarks with similar stress patterns as the

use cases. These microbenchmarks can be used early in the design cycle for

stressing key aspects in existing IPs, project high-level metrics early in the

design cycle, and create a suite for performance verification.

Finally, it is worth noting that different benchmark suites might be more

applicable to certain device types and market segments. For example,

processors and IP for consumer devices in the home segment will greatly

benefit from application benchmarks like SPEC CPU that will be able to

more effectively measure the range of more complex workloads that are

now happening on these devices. However, some older benchmarks might

still be applicable for consumer devices that do not run complex applications

or have a very high compute processing requirement. Benchmarks are not

a ‘one-size-fits-all’ for all processors, devices, and use cases, so it is worth

reflecting on the information in this whitepaper when selecting the most

appropriate benchmark to use.

8

