
ACPI for Arm Components 1.1

Platform Design Document
Non-confidential

Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0093



ACPI for Arm Components

Contents

Release information 3
Arm Non-Confidential Document Licence (“Licence”) 4

About this document 6
Terms and abbreviations 6
References 6
Feedback 7

1 Introduction 8

2 ACPI for Arm Components 10
2.1 ACPI Identifiers 10
2.2 Reserved ACPI IDs for legacy Arm components 10
2.3 Reserved ACPI IDs for Arm components defined by Arm BSA 10
2.4 Reserved ACPI IDs for features based on Arm specifications 11
2.5 Reserved ACPI IDs for generic devices 11

2.5.1 Generic Diagnostic Dump and Reset Device Interface 11
2.6 Arm components requiring ACPI description 12

2.6.1 Arm DMC620 Memory Controller 12
2.6.2 Arm DynamIQ Shared Unit (DSU) 13
2.6.3 Arm CoreLink CMN Coherent Mesh Network Family 16
2.6.4 Arm CoreLink Network-on-chip Interconnect Family 21

Page 2 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

Copyright © 2020,2021 Arm Limited. All rights reserved.

Release information

Date Version Changes

2021/Nov/01 1.1 • External release
• Added HID for the HD LCD available in some Arm development platforms

such as the Juno.
• Added clarifying text on the Arm Generic UART and its relation to the PL011.
• Added support for CMN-700, CMN-650 and the CoreLink Networkon-chip

Interconnect family.
• Added support for DSU-110.
• Added chapter to describe HIDs for Arm standards based features.
• Added reference to Arm BSA specification, and updated language to reflect

nomenclature thereof.
• Updated HID definition for Arm CoreSight PMU Architecture PMU device to

match definitions in DEN0117.
• Added the ACPI AGDI table. This table describes a Generic Diagnostic Dump

and Reset device interface.
• Added clarifying text on the differences between CMN-600 and other CMN

networks in terms of the way their register blocks are organized.
• Updated device object description for NI-xy0 series to support description of

more than one PMU overflow interrupts.

2020/Jul/12 1.0 • External release

Page 3 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this Licence
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to
the terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the
terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control
exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to
the terms of this Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply
with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function
of a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the
Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST
EXTENT PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT,
TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING
WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF
THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE
OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this
Licence immediately upon giving written notice to Licensee. Licensee may terminate this Licence at any time.
Upon termination of this Licence by Licensee or by Arm, Licensee shall stop using the Document and destroy
all copies of the Document in its possession. Upon termination of this Licence, all terms shall survive except
for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party
in breach. Any termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted
to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

Page 4 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to
assure that the Document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this Licence and any translation, the terms of the English version of
this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. No licence, express, implied
or otherwise, is granted to Licensee under this Licence, to use the Arm trade marks in connection with the
Document or any products based thereon. Visit Arm’s website at http://www.arm.com/company/policies/
trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2020,2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

Page 5 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks


ACPI for Arm Components

About this document

Terms and abbreviations

Term Meaning

ACPI Advanced Configuration and Power Interface

ASL ACPI Source Language

CMN Arm CoreLink Mesh Network

DSU DynamicIQ Shared Unit

DTC Debug and Trace Controller

GIC Arm Generic Interrupt Controller

GSIV Global System Interrupt Vector

HN Home Node

PMU Performance Monitoring Unit

RN Requester Node

SDEI Software Delegated Exception Interface

SPE Statistical Profiling Extension

XP Cross-point

References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Advanced Configuration and Power Interface Specification. UEFI Forum, https://uefi.org/specifications.

[2] Arm® Architecture Reference Manual Armv8, for Armv8-A architecture profile: ARM DDI 0487F.b
(ID040120). Arm Limited.

[3] Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4:
Arm IHI 0069E (ID012119). Arm Limited.

[4] Arm® System Memory Management Unit Architecture Specification SMMU architecture versions 3.0, 3.1
and 3.2: Arm IHI 0070C.a..

[5] Arm® CoreSight™ Architecture Specification v3.0: Arm IHI 0029E (ID022717). Arm Limited.

[6] Arm® Base System Architecture 1.0: DEN0094. Arm Limited.

[7] Arm IO Remapping Table: DEN0049E. Arm Limited.

[8] ACPI for CoreSight™ 1.1: DEN0067. Arm Limitedd.

[9] Arm® Functional Fixed Hardware Specification Document number: Arm DEN 0048A. Arm Limited,
https://uefi.org/acpi.

[10] _DSD (Device Specific Data) Implementation Guide v1.2. UEFI Forum, https://uefi.org/specifications.

[11] ACPI for Arm v8-A Memory System Resource Partitioning and Monitoring: DEN0065. Arm Limited.

Page 6 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

[12] Arm Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitoring
(MPAM), for Armv8-A: ARM DDI 0598B.a. Arm Limited.

[13] ACPI for the Armv8-A RAS Extensions 1.0: DEN0085. Arm Limited.

[14] Arm® Reliability, Availability, and Serviceability (RAS) Specification: Arm DDI 0587C.b. Arm Limited.

[15] ACPI for Arm® CoreSight™ Performance Monitoring Unit Architecture: DEN0117. Arm Limited.

[16] Arm® CoreSight™ Performance Monitoring Unit Architecture Specification. Arm Limited.

[17] Serial Port Console Redirection Table. Microsoft Corporation, https://uefi.org/acpi.

[18] Debug Port Table 2. Microsoft Corporation, https://uefi.org/acpi.

[19] Arm® DynamIQ™ Shared Unit, Revision r0p2, Technical Reference Manual: Arm 100453_0002_00_en.
Arm Limited.

[20] https://developer.arm.com/ip-products/system-ip/corelink-interconnect/corelink-coherent-mesh-network-
family. Arm Limited.

[21] https://developer.arm.com/ip-products/system-ip/corelink-interconnect/corelink-network-interconnect-
family. Arm Limited.

[22] Arm® Power State Coordination Interface Platform Design Document: DEN0022D. Arm Limited.

[23] Software Delegated Exception Interface: DEN0054. Arm Limited.

Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (ACPI for Arm Components).
• The document ID and version (DEN0093 1.1).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 7 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

1 Introduction
This document provides guidance for describing system components implemented or licensed by Arm, and
their properties, in ACPI [1].

This specification does not cover ACPI description of the Arm Architecture [2] or related architectures, for
example the Generic Interrupt Controller Architecture [3], the System Memory Management Unit Architecture
[4], the CoreSight Architecture [5], or architected components that are described in the Base System
Architecture [6]. The ACPI descriptions of these architectural components are covered in the following
specifications instead:

Table 3: Arm Architectures that are covered by ACPI Tables

Specification
Table or
object Arm Architecture Covered

ACPI [1] MADT Arm Architecture [2]

ACPI [1] MADT GIC [3], SPE

I/O Remapping Table [7] IORT SMMU [4]

ACPI For CoreSight [8] ACPI graph CoreSight Architecture [5]

FFH for Arm [9] FFH Armv8 Activity Monitors Extension

ACPI _DSD Implementation
Guide [10]

ACPI graph CoreSight Architecture [5]

ACPI for MPAM [11] MPAM Armv8 MPAM Architecture [12]

ACPI for Arm RAS Extensions
[13]

AEST Armv8 RAS Extensions Architecture [14]

ACPI for Arm CoreSight PMU
Architecture [15]

APMT Armv8 CoreSight PMU Architecture [16]

The following table details coverage of specific Arm components in ACPI:

Table 4: Arm Components that are covered by specific ACPI Tables

ACPI Tables Arm Components Covered

GTDT Arm Generic Watchdog timer [6]

PPTT Caches, cores, clusters

SPCR [17], DBG2 [18], Arm Generic UART, PL011

This specification recommends that components that are not covered in standard or Arm-specific ACPI tables
are described as ACPI device objects in ASL. Because a component might have multiple internal interfaces,
Arm recommends that a separate ACPI device object is created to cover each of these interfaces to allow
device drivers in OS to unequivocally bind to those specific interfaces. Interfaces like RAS Extensions and
MPAM are not covered, and instead are described in appropriate tables, as indicated in Table 3 above.

The device objects should define the generic and specific properties of the component interface to aid software
discovery from the OS, where:

Page 8 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

• Generic properties include an ACPI namespace identifier for the component or its interface, the
memory-mapped base address of the component or its interface, and the interrupts that the component
can generate.

• Specific properties are component specific or vendor specific or both.

Page 9 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

2 ACPI for Arm Components

2.1 ACPI Identifiers

ACPI Identifiers of Arm components follow the conventions that are described in [1]. The ACPI Hardware ID
object, _HID, is used as the primary identifier. For Arm components, the format is ARMH####.

For some Arm components, existing standard ACPI or PNP identifiers may also be used as _HID values. In
such cases, Arm recommends setting the _CID of the device object as ARMH#### where relevant.

2.2 Reserved ACPI IDs for legacy Arm components

This section lists reserved ACPI IDs for components from Arm that are managed as a complete unit by a
single device driver, or are required for cross-referencing from other Arm ACPI tables like the AEST [13] and
the MPAM [12]. These components are listed in Table 5.

Table 5: Reserved ACPI IDs for legacy Arm components

Component HID

Prime cell UART (PL011) ARMH0011

Prime cell General Purpose I/O ARMH0061

Arm HD LCD ARMH0002

2.3 Reserved ACPI IDs for Arm components defined by Arm BSA

The following types of Arm components require a unique ACPI ID for identification:

• Specifically defined by the BSA specification [6]

• Not described in any standard ACPI table listed in Table 3 or Table 4

• Must be described in ACPI namespace by virtue of the above properties

Table 6: Reserved ACPI IDs for BSA components

BSA Component HID Notes

Arm Generic UART ARMHB000 Some operating systems use the PL011 HID (see Table 5 above)
to bind to the Arm Generic UART in the system. While this
practice is flawed and not encouraged by Arm, Arm
acknowledges that it must be permitted until formal support for
the Arm Generic UART HID is made available in these operating
systems.
Arm strongly recommends use of the Arm Generic UART HID
going forward.

A BSA component can be described in both ACPI namespace and the standard ACPI tables in a given system.
For example, a system might have two instances of the Arm Generic UART: a primary UART that is used by
the OS and a secondary, general-purpose, UART for application usage. In this example system, the primary

Page 10 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

UART must be declared in the ACPI SPCR table. The secondary UART might be declared as a device object
in ACPI namespace and assigned the HID that is defined in Table 6.

2.4 Reserved ACPI IDs for features based on Arm specifications

This section lists reserved ACPI IDs for components that are based on features described in Arm specifications.
Such components are primarily described in Arm-specific ACPI tables, but might also have additional
vendor-specific properties that can only be described by means of ACPI device objects in DSDT. The
recommended practice is to link such device objects to the corresponding table node in the Arm ACPI table
that describes the component. The standard HIDs for these device objects enable the OS to understand
that they can be managed by standard drivers that conform to the Arm ACPI table based enumeration and
configuration of the components.

Table 7: HIDs for features described in Arm specifications

Component HID

MPAM Memory System Component
(MSC)

ARMHAA5C

CoreSight PMU Architecture PMU ARMHE001

2.5 Reserved ACPI IDs for generic devices

This section describes devices that are generic across Arm implementations and are not tied to an IP
implementation.

2.5.1 Generic Diagnostic Dump and Reset Device Interface

Some use-cases, such as system management, require the ability to generate a non-maskable event to the
OS to request the OS kernel to perform a diagnostic dump and reset the system. This section describes the
ACPI representation for a Generic Diagnostic Dump and Reset Device for Arm systems that serves as an
interface for initiating the non-maskable event on behalf of requesting agents.

The Generic Diagnostic Dump and Reset device is described using the ACPI table representation outlined in
Section 2.5.1.1.

The interface supports both SDEI and native interrupt based generation of non-maskable events.

2.5.1.1 ACPI Table Representation

Table 8: ACPI AGDI Table

Field Byte length Byte offset Description

Header Standard ACPI format for header.

Signature 4 0 ‘AGDI’, Arm Generic Diagnostic Dump and Reset
Interface table.

Length 4 4 Length of this table in bytes.

Revision 1 8 Must be 0 for version 1.0 of this specification.

Checksum 1 9 The entire table must sum to zero.

OEM ID 6 10 OEM ID.

Page 11 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

Field Byte length Byte offset Description

OEM Table ID 8 16 The table ID is the manufacture model ID.

OEM Revision 4 24 OEM revision of the AGDI table for the supplied OEM
Table ID.

Creator ID 4 28 The vendor ID of the utility that created the table.

Creator Revision 4 32 The revision of the utility that created the table.

Body

Flags node structures 1 36 Bit 0: Signaling mode:
0b: SDEI-based Signaling mode.
1b: Interrupt-based Signaling mode.
Other values are reserved for future use by this
specification and must be zero for this version of the
specification.

Reserved 3 37 Reserved, must be zero.

SDEI Event number 4 40 SDEI Event number of the event generated by the device.
This field is valid only if the signaling mode is set to 0b.

GSIV 4 44 The GSIV of the interrupt that is generated by the device.
This field is valid only if the signaling mode is set to 1b.

2.6 Arm components requiring ACPI description

This section describes Arm components that have at least one interface that is not covered by standard or
Arm-specific ACPI tables, and that must be described in ACPI namespace.

2.6.1 Arm DMC620 Memory Controller

Table 9 describes interfaces within the DMC620 that require ACPI description to support software discovery.

2.6.1.1 Interface identification

Table 9: Arm DMC620 Memory Controller HID values

Value Description

ARMHD620 ACPI Hardware Identifier for the DMC620
PMU.

2.6.1.2 The DMC620 PMU

The DMC620 PMU is assigned the HID value of ARMHD620, as specified in Table 9.

Device configuration objects for the DMC620 PMU

Table 10: Configuration objects for the DMC620 PMU

Object Values Type Description

_CRS Base address QWordMemory Base address of the PMU in the system
address map

Page 12 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

Object Values Type Description

GSIV Interrupt GSIV of the PMU overflow interrupt

ASL reference code for the DMC620 PMU

The DMC620 PMU register space is mapped at a 512-byte range that begins at offset 0x80000A00 in the
system address space. In this reference code, it is assumed that the PMU overflow interrupt from the DMC620
is mapped to GSIV 312.

Device(MC00) { // PMU interface on the example DMC620 memory controller

// instance in the system.

Name(_HID , "ARMHD620")

Name(_CID , "ARMHD620")

Name(_UID , 0)

Name(_CCA , 1)

Name(_STR , Unicode("Socket0:MCU0"))

Name(_STA , 0, NotSerialized) {

Return (0x0f)

}

Name(_CRS , ResourceTemplate () {

// Descriptor for 64-bit memory -mapped register space

// of the DMC620

QWordMemory (

ResourceProducer , // ResouceUsage

PosDecode , // Decode

MinFixed , // Min range is fixed

MaxFixed , // Max range is fixed

NonCacheable , // Cacheable

ReadWrite , // ReadAndWrite

0x0000000000000000 , // Address Granularity - GRA

0x0000100080000A00 , // AddressMinimum - MIN

0x0000100080000BFF , // AddressMaximum - MAX

0x0000000000000000 // AddressTranslation - TRA

0x0000000000000200 , // RangeLength - LEN

, // ResourceSourceIndex

, // ResourceSource

CFGS // DescriptorName

)

// PMU overflow Interrupt , with GSIV = 312

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {312}

})

}

2.6.2 Arm DynamIQ Shared Unit (DSU)

The Arm DynamIQ Shared Unit (DSU) provides circuitry, logic, interfaces, and an optional shared cache to
support a DynamIQ cluster. The DSU is described in detail in [19]. Interfaces within the DSU that require
ACPI description to support software discovery are described here.

The DSU is shared by a set of cores organized as a cluster. The ACPI description of interfaces within the
DSU is therefore expressed as a device object that is a child of the ACPI processor container object that
describes the cluster.

Page 13 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

The OS must parse the CPU topology in ACPI namespace to discover the DSU interface objects and to
understand the associativity between those DSU instances and cores.

2.6.2.1 Interface Identification

Table 11: Arm DSU HID values

Value Description

ARMHD500 ACPI Hardware Identifier for the DSU PMU.

ARMHD501 ACPI Hardware Identifier for the common DSU
elements.

ARMHD510 ACPI Hardware Identifier for the DSU 110 PMU.

2.6.2.2 Common DSU elements

Common DSU elements are collectively described by a single device object with a HID of ARMHD501. This
device object allows cross-referencing the DSU object from other ACPI objects and tables.

2.6.2.3 DSU PMU

The DSU provides a PMU for monitoring and recording miscellaneous events. DSU PMU registers are
presented as System Registers to allow for native software discovery. Therefore, no ACPI description is
required to locate them. When a PMU counter overflows, the PMU asserts an interrupt signal that can be
routed to an interrupt controller such as the GIC.

The DSU PMU is assigned the HID value of ARMHD500, as specified in Table 11.

DSU PMU device configuration objects

Table 12: Arm DSU PMU device configuration objects

Object Value Type Description

_CRS GSIV Interrupt GSIV of the DSU PMU overflow interrupt

ASL reference code

This reference code illustrates how the CPU topology that is associated with the DSU is described in ACPI
namspace by including the DSU device objects in the CPU hierarchy description. The code showcases an
example system that has two clusters, each with a single DSU. Each cluster includes two CPU cores that
share the associated DSU.

The code also illustrates how the global DSU device object may be also included within the CPU topology
description. The placement of the global DSU object allows generic references to the DSU from the OSPM.

Device (SYSM) { // System level states

Name (_HID , "ACPI0010")

Name (_UID , 0)

Name (_LPI ,

Package () {...}

)

Device (CLU0) { // Cluster 0

Name (_HID , "ACPI0010")

Name (_UID , 1)

Page 14 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

Name (_LPI ,

Package () {...}

)

Device (DSU0) { // Common DSU Instance 0 associated with cluster 0

Name (_HID , "ARMHD501")

Name (_UID , 0)

} // DSU descriptor ends here

Device (DSP0) { // PMU interface on DSU 0 associated with cluster 0

Name (_HID , "ARMHD500")

Name (_UID , 0)

Name(_CRS , ResourceTemplate () {

// PMU overflow Interrupt , with GSIV = 302

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {302}

})

} // DSU0 PMU interface descriptor ends here

Device (CPU0) { // Core0

Name (_HID , "ACPI0007")

Name (_UID , 0)

Method (_LPI , 0, NotSerialized) {

...

}

} // CPU0 description ends here

Device (CPU1) { // Core1

Name (_HID , "ACPI0007")

Name (_UID , 1)

Method (_LPI , 0, NotSerialized) {

...

}

} // CPU1 description ends here

} // Cluster 0 descriptor ends here

Device (CLU1) { // Cluster 1

Name (_HID , "ACPI0010")

Name (_UID , 2)

Method (_LPI , 0, NotSerialized) {

...

}

Device (DSU1) { // Common DSU Instance 1 associated with cluster 1

Name (_HID , "ARMHD501")

Name (_UID , 1)

} // DSU descriptor ends here

Device (DSP1) { // PMU interface on DSU 1 associated with cluster 1

Name (_HID , "ARMHD500")

Name (_UID , 1)

Name(_CRS , ResourceTemplate () {

// PMU overflow Interrupt , with GSIV = 402

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {402}

})

} // DSU1 PMU interface descriptor ends here

Device (CPU2) { // Core2

Name (_HID , "ACPI0007")

Name (_UID , 2)

Method (_LPI , 0, NotSerialized) {

Page 15 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

...

}

} // CPU2 description ends here

Device (CPU3) { // Core3

Name (_HID , "ACPI0007")

Name (_UID , 3)

Method (_LPI , 0, NotSerialized) {

...

}

} // CPU3 description ends here

} // Cluster 1 descriptor ends here

} // End of system description

2.6.3 Arm CoreLink CMN Coherent Mesh Network Family

The Arm CoreLink CMN-xy0 Coherent Mesh Network components are described in [20]. The CMN-xy0
network consists of Cross-points (XPs), Home Nodes (HNs) and Request Nodes (RNs). A special Home
Node, HN-D, houses the global configuration registers. In this network, PMU logic is integrated into Debug
and Trace Logic Controllers (DTCs). HN-D also houses the primary DTC, which is labelled DTC0. Other
DTCs, DTC1 to DTC3, are housed in special Home Nodes called HN-T. The CMN-xy0 layout is illustrated in
the following diagram:

Figure 1: High-level layout of the CMN-xy0

All configuration registers that belong to the CMN-xy0 network are mapped into System Address Map (SAM)
at a pre-determined, 64MB aligned address range at offset PERIPHBASE. For the CMN-600, the configuration
space of the root node of the network is mapped to an address range at offset ROOTNODEBASE. These
offsets are illustrated in the following diagram:

Page 16 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

Figure 2: Memory-mapped configuration region of the CMN-600

All registers are organized into one or more register blocks. Each register block is 16KB in size, and there is
one register block for each logical block in the network. Each register block is called a node. The nodes are
laid out in a tree hierarchy. For the CMN-600, the root of the tree hierarchy is the root node, as illustrated in
the preceding diagram. For the other CMN series products, the register blocks start at PERIPHBASE itself.

2.6.3.1 Interface Identification

Notation: The HID is composed of the following sub-identifier fields:

• The first four characters, “ARMH”, indicate that this is an Arm-specific hardware.
• The fifth character is set to ‘C’ to indicate that this is a product from the CoreLink interconnect family.
• The last three characters are set to the product number.

Table 13: Arm CMN-xy0 HID values

Value Description

ARMHC600 ACPI Hardware Identifier for the
CMN-600 PMU

ARMHC650 ACPI Hardware Identifier for the
CMN-650 PMU

ARMHC700 ACPI Hardware Identifier for the
CMN-700 PMU

2.6.3.2 Common CMN-xy0 elements

Common CMN-xy0 elements other than the PMU might be optionally described with a HID of ARMHCxy1.
The common device object facilitates cross-referencing the CMN-xy0 object from other ACPI objects and
tables.

2.6.3.3 CMN-xy0 PMU

CMN-xy0 PMU logic is integrated into Debug and Trace Logic Controllers (DTCs). Thus, discovery of the PMU
interface in a CMN-xy0 network relies on the topology in which the DTCs are organized within the network.

Page 17 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

The HN-D houses the primary DTC, which is labelled DTC0. Each DTC is associated with multiple DTMs.
The parent DTC and its children DTMs form a DTC domain. The following diagram shows an example system
with two DTC domains:

Figure 3: CMN-xy0-based topology with 2 DTCs

Each PMU asserts its own dedicated interrupt signal on overflow, called INTREQPMU. The interrupts from
the PMUs are routed to the GIC, and appear as one or more GSIVs to software.

This means that, to support software discovery of CMN PMUs, the primary sources of required information
are:

Table 14: Information sources for CMN-xy0 PMU discovery

Information Information source

Discovery of PMUs in CMN-xy0 network. This
is based on discovery of DTCn for PMUn

PERIPHBASE

Discovery of PMUs in CMN-600 only. For the
CMN-600, register blocks are organized in a
tree hierarchy that begins at offset
ROOTNODEBASE.

ROOTNODEBASE

Identity of PMU overflow interrupt for all PMU
logic within the network , where PMUn is
housed in DTCn

INTREQPMUn routing

PMU overflow interrupt description ordering and Logical ID

The CMN-xy0 network specification allows for up to four DTCs in the system. DTC0 is the primary DTC,
and must always exist. Additional DTCs may be installed on various cross-points, based on system design

Page 18 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

and topology. The CMN-xy0 provides logical numbering of DTCs to allow for their unique identification in
hardware. The Logical ID is the only way for software to identify a unique DTC. However, the Logical IDs is
not guaranteed to be the same as the DTC number. For example, DTC 1 is not guaranteed to obtain a Logical
ID of 1.

Here is an example mapping for a CMN-xy0 system with 4 DTCs is as follows:

Table 15: DTC domain number to Logical ID mapping in an example system

DTC Name
DTC Domain
Number (Value)

DTC Logical ID
(Notation)

DTC Logical ID
(Value) Description

DTC0 0 DTC[0] 0 DTC0 is always assigned Logical
ID of 0.

DTC1 1 DTC[1] j DTC1 is assigned Logical ID j,
where j != 0.

DTC2 2 DTC[2] k DTC2 is assigned Logical ID k,
where j != 0 && k != j.

DTC3 3 DTC[3] m DTC1 is assigned Logical ID m,
where m != 0 && m != j != k.

To address the lack of an explicit relation between the Logic ID and Domain Number as shown in Table 15, the
PMU overflow interrupt descriptors are organized in increasing order of the hardware assigned Logical IDs of
the related DTCs, respectively. This allows OS software to map interrupt descriptors to their parent DTCs.
This means that INTDESC[1] corresponds to DTC0, INTDESC[2] corresponds to the DTC that is assigned
the next smallest Logical ID, and so on.

Device Identification for CMN-xy0 PMU

The CMN-xy0 PMU interface is assigned an ACPI ID of ARMHCxy0 as indicated in Table 13.

Device configuration objects

Table 16: Arm CMN-xy0 Coherent Mesh Network configuration objects

Object Values Type Description

_CRS PERIPHBASE QWordMemory Base address of the memory-mapped
region in the system address map where
the CMN-xy0 registers are mapped.

ROOTNODEBASE QWordMemory Base address of the root node. This field
is specific to the CMN-600 device object.

GSIV[n] Interrupt List of GSIVs of n distinct interrupts that
can be generated by the n PMUs
located in this instance of the CMN-xy0.

The list must always begin with PERIPHBASE, followed by ROOTNODEBASE if this is a CMN-600 device
object, and finally the interrupt resource descriptors. Similarly, the interrupt resource descriptors for the
PMUs,for example GSIV[n], must appear in numerically increasing order of the corresponding DTC[n]. So the
first interrupt resource descriptor relates to DTC[0], the second interrupt resource descriptor relates to DTC[1]
and so on. The mth interrupt resource descriptor in the list corresponds to DTC[m-1].

ASL code example

Page 19 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

This code example showcases a CMN-600 based network with a dimension larger than 4x4 and that has
two DTCs. Like the example illustrated in Figure 3 in Section 2.6.3.3, the first DTC is always DTC0 and is
attached to HN-D. However, the second DTC could be assigned any Logical ID that will be non-zero. The
term DTC[n] is used to represent the Logical ID of DTCn. In this example, PERIPHBASE of the CMN-600 is
set as 0xAFE0000000, and the root node is at an offset of 0xC000 from PERIPHBASE.

Device(CMN6) { // CMN -600 device object for an X * Y mesh where X, Y > 4

Name(_HID , "ARMHC600")

Name(_CRS , ResourceTemplate () {

// Descriptor for 256 MB of the CFG region at offset PERIPHBASE

QWordMemory (

ResourceConsumer , // bit 0 of general flags is 0

PosDecode ,

MinFixed , // Range is fixed

MaxFixed , // Range is Fixed

NonCacheable ,

ReadWrite ,

0x00000000 , // Granularity

0xAFE0000000 , // Min , set to PERIPHBASE

0xAFEFFFFFFF , // Max

0x00000000 , // Translation

0x0010000000 , // Range Length = 256MB

, // ResourceSourceIndex

, // ResourceSource

CFGR // DescriptorName

)

// Descriptor for the root node. This is a 16KB region at

// offset ROOTNODEBASE. In this example , ROOTNODEBASE starts

// at the 16KB aligned offset of PEIPHBASE + 0xC000

QWordMemory (

ResourceConsumer , // bit 0 of general flags is 0

PosDecode ,

MinFixed , // Range is fixed

MaxFixed , // Range is Fixed

NonCacheable ,

ReadWrite ,

0x00000000 , // Granularity

0xAFE000C000 , // Min , set to ROOTNODEBASE

0xAFE000FFFF , // Max

0x00000000 , // Translation

0x0000004000 , // Range Length = 16KB

, // ResourceSourceIndex

, // ResourceSource

ROOT // DescriptorName

)

// Interrupt on PMU0 overflow , attached to DTC[0], with GSIV = <

↪→gsiv0 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv0 >}

// Interrupt on PMU1 overflow , attached to DTC[1], with GSIV = <

↪→gsiv1 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv1 >}

})

}

Page 20 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

The following ASL code example shows a CMN-700 based network that has a dimension less than 4x4 and
that has four DTCs, DTC0-DTC3. The logical numbers of these DTCs are DTC[0] to DTC[3].

Device(CMN7) { // CMN -700 device object for an X * Y mesh where X, Y <= 4

Name(_HID , "ARMHC700")

Name(_CRS , ResourceTemplate () {

// Descriptor for 256 MB of the CFG region at offset PERIPHBASE

QWordMemory (

ResourceConsumer , // bit 0 of general flags is 0

PosDecode ,

MinFixed , // Range is fixed

MaxFixed , // Range is Fixed

NonCacheable ,

ReadWrite ,

0x00000000 , // Granularity

0xAFE0000000 , // Min

0xAFE0FFFFFFF // Max

0x00000000 , // Translation

0x0010000000 , // Range Length

, // ResourceSourceIndex

, // ResourceSource

CFGR // DescriptorName

)

// Interrupt on PMU0 overflow , attached to DTC[0], with GSIV = <

↪→gsiv0 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv0 >}

// Interrupt on PMU1 overflow , attached to DTC[1], with GSIV = <

↪→gsiv1 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv1 >}

// Interrupt on PMU2 overflow , attached to DTC[2], with GSIV = <

↪→gsiv2 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv2 >}

// Interrupt on PMU3 overflow , attached to DTC[3], with GSIV = <

↪→gsiv3 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv3 >}

})

}

2.6.4 Arm CoreLink Network-on-chip Interconnect Family

The Arm CoreLink NI-xy0 Coherent Network-on-chip Interconnect family is described in [21]. Configuration
registers of the NI-x00 components are mapped into a dedicated memory-mapped address range at offset
PERIPHBASE. The PMU registers are then available at an offset from PERIPHBASE in a 4K register block
called a node. Overflow interrupts from each of the eight counters are wired together to a summary overflow
interrupt.

2.6.4.1 Interface Identification

Notation: The HID is composed of the following sub-identifier fields:

• The first four characters, “ARMH”, indicate that this is an Arm-specific hardware.

Page 21 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

• The fifth character is set to ‘C’ to indicate that this is a product from the CoreLink Network-on-chip
interconnect family.

• The sixth character is set to ‘B’ to indicate that this is a product from the Arm CoreLink Network
Interconnect family.

• The last two characters are set to the first two numbers of the product name.

Table 17: Arm NI-xy0 HID values

Value Description

ARMHCB70 ACPI Hardware Identifier for the NI-700
PMU

Device configuration objects

Table 18: Arm NI-xy0 configuration objects

Object Values Type Description

_CRS PERIPHBASE QWordMemory Base address of the memory-mapped
region in the system address map where
the NI-xy0 registers are mapped

GSIV[n] Interrupt List of GSIVs for the overflow interrupts
of the PMU instances in the NI-xy0.
GSIV[i] is associated with the i th PMU
block.

ASL reference code example

The following ASL code example shows an NI-700 interconnect being described in DSDT. The NI-700 registers
are mapped to PERIPHBASE of 0x2000000000 in this example.

Device(CNI0) { // NI -700 device object

Name(_HID , "ARMHCB70")

Name(_CRS , ResourceTemplate () {

// Descriptor for PERIPHBASE

QWordMemory (

ResourceConsumer , // bit 0 of general flags is 0

PosDecode ,

MinFixed , // Range is fixed

MaxFixed , // Range is Fixed

NonCacheable ,

ReadWrite ,

0x00000000 , // Granularity

0x2000000000 , // Min

0x2000FFFFFFF // Max

0x00000000 , // Translation

0x0010000000 , // Range Length

, // ResourceSourceIndex

, // ResourceSource

PERB // DescriptorName

)

Page 22 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1



ACPI for Arm Components

// Interrupt on PMU 0 overflow , GSIV = <gsiv0 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv0 >}

// ..

// Interrupt on PMU 31 overflow , GSIV = <gsiv31 >

Interrupt (ResourceConsumer , Level , ActiveHigh , Exclusive) {<

↪→gsiv31 >}

})

}

Page 23 of 23 Copyright © 2020,2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0093
1.1


	Release information
	Arm Non-Confidential Document Licence (``Licence'')
	About this document
	Terms and abbreviations
	References
	Feedback

	1 Introduction
	2 ACPI for Arm Components
	2.1 ACPI Identifiers
	2.2 Reserved ACPI IDs for legacy Arm components
	2.3 Reserved ACPI IDs for Arm components defined by Arm BSA
	2.4 Reserved ACPI IDs for features based on Arm specifications
	2.5 Reserved ACPI IDs for generic devices
	2.5.1 Generic Diagnostic Dump and Reset Device Interface
	2.5.1.1 ACPI Table Representation


	2.6 Arm components requiring ACPI description
	2.6.1 Arm DMC620 Memory Controller
	2.6.1.1 Interface identification
	2.6.1.2 The DMC620 PMU
	Device configuration objects for the DMC620 PMU
	ASL reference code for the DMC620 PMU


	2.6.2 Arm DynamIQ Shared Unit (DSU)
	2.6.2.1 Interface Identification
	2.6.2.2 Common DSU elements
	2.6.2.3 DSU PMU
	DSU PMU device configuration objects
	ASL reference code


	2.6.3 Arm CoreLink CMN Coherent Mesh Network Family
	2.6.3.1 Interface Identification
	2.6.3.2 Common CMN-xy0 elements
	2.6.3.3 CMN-xy0 PMU
	PMU overflow interrupt description ordering and Logical ID
	Device Identification for CMN-xy0 PMU
	Device configuration objects
	ASL code example


	2.6.4 Arm CoreLink Network-on-chip Interconnect Family
	2.6.4.1 Interface Identification
	Device configuration objects
	ASL reference code example





