
Arm® Compiler for Embedded
Version 6.17

Migration and Compatibility Guide

Non-Confidential
Copyright © 2019–2021 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
100068_0617_00_en

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Arm® Compiler for Embedded
Migration and Compatibility Guide

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0613-00 9 October 2019 Non-Confidential Arm Compiler v6.13 Release.

0614-00 26 February 2020 Non-Confidential Arm Compiler v6.14 Release.

0615-00 7 October 2020 Non-Confidential Arm Compiler v6.15 Release.

0615-01 14 December 2020 Non-Confidential Documentation update 1 for Arm Compiler v6.15 Release.

0616-00 3 March 2021 Non-Confidential Arm Compiler v6.16 Release.

0616-01 12 March 2021 Non-Confidential Documentation update 1 for Arm Compiler v6.16 Release.

0617-00 20 October 2021 Non-Confidential Arm Compiler for Embedded v6.17 Release.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click
through or signed written agreement covering this document with Arm, then the click through or
signed written agreement prevails over and supersedes the conflicting provisions of these terms.
This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands
and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 135

https://www.arm.com/company/policies/trademarks

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Web address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 135

https://developer.arm.com
mailto:terms@arm.com

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Contents

Contents

List of Figures...9

List of Tables.. 10

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Contents

1 Introduction...12
1.1 Conventions... 12
1.2 Feedback...13
1.3 Other information...14

2 Configuration and Support Information.. 15
2.1 Support level definitions...15
2.2 Compiler configuration information... 19

3 Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6...20
3.1 Migration overview.. 20
3.2 Toolchain differences... 21
3.3 Default differences...22
3.4 Optimization differences...24
3.5 Backwards compatibility issues... 25
3.6 Diagnostic messages..26
3.7 Migration example..28

4 Migrating from armcc to armclang... 31
4.1 Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded
6..31
4.2 Arm Compiler 5 and Arm Compiler for Embedded 6 stack protection behavior...........................39
4.3 Command-line options for preprocessing assembly source code... 41
4.4 Inline assembly with Arm Compiler for Embedded 6..42
4.5 Migrating architecture and processor names for command-line options.. 45
4.6 Preprocessing a scatter file when linking with armlink..50
4.7 Migrating predefined macros...50

5 Compiler Source Code Compatibility... 51
5.1 Language extension compatibility: keywords...51
5.2 Language extension compatibility: attributes...54
5.3 Language extension compatibility: pragmas...57
5.4 Language extension compatibility: intrinsics.. 60
5.5 Diagnostics for pragma compatibility.. 64
5.6 C and C++ implementation compatibility...65
5.7 Compatibility of C++ objects...68

6 Migrating from armasm to the armclang Integrated Assembler..70

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Contents

6.1 Migration of assembler command-line options from armasm to the armclang integrated
assembler..70
6.2 Overview of differences between armasm and GNU syntax assembly code.................................75
6.3 Comments.. 77
6.4 Labels...78
6.5 Numeric local labels...79
6.6 Functions.. 80
6.7 Sections...81
6.8 Symbol naming rules..83
6.9 Numeric literals... 84
6.10 Operators... 85
6.11 Alignment... 85
6.12 PC-relative addressing.. 86
6.13 A32 and T32 instruction substitutions...87
6.14 A32 and T32 pseudo-instructions...88
6.15 Conditional directives..89
6.16 Data definition directives... 90
6.17 Instruction set directives..92
6.18 Miscellaneous directives...92
6.19 Symbol definition directives...94
6.20 Migration of armasm macros to integrated assembler macros... 95

7 Changes Between Different Versions of Arm Compiler for Embedded 6..................................... 104
7.1 Summary of changes between Arm Compiler 6.16 and Arm Compiler for Embedded 6.17.... 104
7.2 Summary of changes between Arm Compiler 6.15 and Arm Compiler 6.16...............................105
7.3 Summary of changes between Arm Compiler 6.14 and Arm Compiler 6.15...............................107
7.4 Summary of changes between Arm Compiler 6.13 and Arm Compiler 6.14...............................108
7.5 Summary of changes between Arm Compiler 6.12 and Arm Compiler 6.13...............................109
7.6 Summary of changes between Arm Compiler 6.11 and Arm Compiler 6.12...............................110
7.7 Summary of changes between Arm Compiler 6.10 and Arm Compiler 6.11...............................111
7.8 Summary of changes between Arm Compiler 6.9 and Arm Compiler 6.10................................. 113
7.9 Summary of changes between Arm Compiler 6.8 and Arm Compiler 6.9....................................114
7.10 Summary of changes between Arm Compiler 6.7 and Arm Compiler 6.8................................. 115
7.11 Summary of changes between Arm Compiler 6.6 and Arm Compiler 6.7................................. 117
7.12 Summary of changes between Arm Compiler 6.5 and Arm Compiler 6.6................................. 118
7.13 Compiling with -mexecute-only generates an empty .text section..122

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Contents

8 Code Examples.. 125
8.1 Example startup code for Arm Compiler 5 project..125
8.2 Example startup code for Arm Compiler for Embedded 6 project...127

9 Licenses..130
9.1 Apache License...130

10 Arm Compiler for Embedded Migration and Compatibility Guide Changes.............................. 134
10.1 Changes for the Arm Compiler for Embedded Migration and Compatibility Guide.................134

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

List of Figures

List of Figures

Figure 1: Integration boundaries in Arm Compiler for Embedded 6..................................... 17

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

List of Tables

List of Tables

Table 1: FlexNet versions...19

Table 2: List of compilation tools...21

Table 3: Differences in defaults..22

Table 4: Optimization settings.. 24

Table 5: Command-line changes.. 29

Table 6: Comparison of compiler command-line options in Arm Compiler 5 and Arm
Compiler for Embedded 6..31

Table 7: Architecture selection in Arm Compiler 5 and Arm Compiler for Embedded 6....45

Table 8: Processor selection in Arm Compiler 5 and Arm Compiler for Embedded 6......46

Table 9: Keyword language extensions in Arm Compiler 5 and Arm Compiler for
Embedded 6...51

Table 10: Migrating the __packed keyword...53

Table 11: Support for __declspec attributes... 55

Table 12: Migrating __attribute__((at(address))) and zero-initialized
__attribute__((section("{name}")))...56

Table 13: Pragma language extensions that must be replaced...57

Table 14: Compiler intrinsic support in Arm Compiler for Embedded 6...............................61

Table 15: Pragma diagnostics..64

Table 16: C and C++ implementation detail differences.. 66

Table 17: Comparison of command-line options in armasm and the armclang integrated
assembler..71

Table 18: Operator translation... 85

Table 19: A32 and T32 instruction substitutions supported by armasm..............................87

Table 20: A32 and T32 pseudo-instruction migration..88

Table 21: Conditional directive translation..89

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

List of Tables

Table 22: Data definition directives translation..90

Table 23: Instruction set directives translation.. 92

Table 24: Miscellaneous directives translation... 92

Table 25: Symbol definition directives translation...94

Table 26: Comparison of macro directive features provided by armasm and the
armclang integrated assembler... 95

Table 27: NOT EQUALS assertion...98

Table 28: Unsigned integer division macro... 98

Table 29: Assembly-time diagnostics macro...101

Table 30: Conditional loop macro... 102

Table 31: Changes between 6.17 and 6.16.. 134

Table 32: Changes between 6.16 and 6.15.. 134

Table 33: Changes between 6.15 and 6.14.. 135

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Introduction

1 Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Introduces special terminology, denotes cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for terms in
descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source
code.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

monospace underline Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of
the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For ex-
ample:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or damage.

This represents a requirement for the system that, if not followed, might result in system failure or
damage.

This represents a requirement for the system that, if not followed, will result in system failure or damage.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 135

https://developer.arm.com/glossary

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Introduction

Convention Use
This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

1.2 Feedback
Arm welcomes feedback on this product and its documentation.

Feedback on this product
If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm® Compiler for Embedded Migration and Compatibility Guide.

• The number 100068_0617_00_en.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot
guarantee the quality of the represented document when used with any other PDF
reader.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 135

mailto:errata@arm.com

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Introduction

1.3 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 135

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Configuration and Support Information

2 Configuration and Support Information
A summary of the support levels and FlexNet versions supported by the Arm compilation tools.

2.1 Support level definitions
This describes the levels of support for various Arm® Compiler for Embedded 6 features.

Arm Compiler for Embedded 6 is built on Clang and LLVM technology. Therefore, it has more
functionality than the set of product features described in the documentation. The following
definitions clarify the levels of support and guarantees on functionality that are expected from
these features.

Arm welcomes feedback regarding the use of all Arm Compiler for Embedded 6 features, and
intends to support users to a level that is appropriate for that feature. You can contact support at
https://developer.arm.com/support.

Identification in the documentation
All features that are documented in the Arm Compiler for Embedded 6 documentation are product
features, except where explicitly stated. The limitations of non-product features are explicitly
stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested,
and is expected to be stable across feature and update releases.

• Arm intends to give advance notice of significant functionality changes to product features.

• If you have a support and maintenance contract, Arm provides full support for use of all
product features.

• Arm welcomes feedback on product features.

• Any issues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler for Embedded.

In addition to fully supported product features, some product features are only alpha or beta
quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

• Arm endeavors to document known limitations on beta product features.

• Beta product features are expected to eventually become product features in a future
release of Arm Compiler for Embedded 6.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 135

https://developer.arm.com/support

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Configuration and Support Information

• Arm encourages the use of beta product features, and welcomes feedback on them.

• Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler for Embedded.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are identified with [ALPHA].

• Arm endeavors to document known limitations of alpha product features.

• Arm encourages the use of alpha product features, and welcomes feedback on them.

• Any issues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler for Embedded.

Community features
Arm Compiler for Embedded 6 is built on LLVM technology and preserves the functionality of that
technology where possible. This means that there are additional features available in Arm Compiler
for Embedded that are not listed in the documentation. These additional features are known as
community features. For information on these community features, see the Clang Compiler User's
Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

• Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

• Functionality might change significantly between feature releases.

• Arm makes no guarantees that community features will remain functional across update
releases, although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for this. Arm is interested in understanding your use of these features, and welcomes
feedback on them. Arm supports customers using these features on a best-effort basis, unless the
features are unsupported. Arm accepts defect reports on these features, but does not guarantee
that these issues will be fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 135

http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Configuration and Support Information

• The following figure shows the structure of the Arm Compiler for Embedded 6 toolchain:

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6.

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

C/C++
Source code

GNU syntax
Assembly

Source code
headers

Objects Objects Objects

Scatter/Steering/
Symdefs file

Image

LLVM Project
libc++

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to this is if the interaction is codified in one
of the standards supported by Arm Compiler for Embedded 6. See Application Binary Interface
(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 135

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Configuration and Support Information

• The Clang implementations of compiler features, particularly those that have been present for a
long time in other toolchains, are likely to be mature. The functionality of new features, such as
support for new language features, is likely to be less mature and therefore more likely to have
limited functionality.

Deprecated features
A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler for
Embedded. Arm does not make any guarantee regarding the testing or maintenance of deprecated
features. Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, refer to the Arm
Compiler for Embedded documentation and Release Notes.

Unsupported features
With both the product and community feature categories, specific features and use-cases are
known not to function correctly, or are not intended for use with Arm Compiler for Embedded 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use-cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:

• The Clang option -stdlib=libstdc++ is not supported.

• C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

• Use of C11 library features is unsupported.

• Any community feature that is exclusively related to non-Arm architectures is not supported.

• Except for Armv6-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

• The long double data type is not supported for AArch64 state because of limitations in the
current Arm C library.

• C complex arithmetic is not supported, because of limitations in the current Arm C library.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 135

https://developer.arm.com/documentation/100073/0617/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Configuration and Support Information

• Complex numbers are defined in C++ as a template, std::complex. Arm Compiler for
Embedded supports std::complex with the float and double types, but not the long double
type because of limitations in the current Arm C library.

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers
depends on whether or not you are building for Armv8-M architecture-based
processors.

Alternatives to C complex numbers not being supported
If you are building for Armv8-M architecture-based processors, consider using the free and Open
Source CMSIS-DSP library that includes a data type and library functions for complex number
support in C. For more information about CMSIS-DSP and complex number support see the
following sections of the CMSIS documentation:

• Complex Math Functions

• Complex Matrix Multiplication

• Complex FFT Functions

If you are not building for Armv8-M architecture-based processors, consider modifying the affected
part of your project to use the C++ standard template library type std::complex instead.

2.2 Compiler configuration information
Summarizes the FlexNet versions supported by the Arm compilation tools.

FlexNet versions in the compilation tools
Different versions of Arm® Compiler for Embedded support different versions of FlexNet.

The FlexNet versions in the compilation tools are:

Table 2-1: FlexNet versions

Compilation tools version Windows Linux

Arm Compiler 6.7 and later 11.14.1.0 11.14.1.0

Arm Compiler 6.01 and later 11.12.1.0 11.12.1.0

Arm Compiler 6.00 11.10.1.0 11.10.1.0

Related information
Arm software product license management

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 135

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html
https://developer.arm.com/products/software-development-tools/license-management

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

3 Migrating from Arm Compiler 5 to Arm
Compiler for Embedded 6

Provides an overview of the differences between Arm® Compiler 5 and Arm Compiler for
Embedded 6.

3.1 Migration overview
Migrating from Arm® Compiler 5 to Arm Compiler for Embedded 6 requires the use of new
command-line options and might also require changes to existing source files.

Arm Compiler for Embedded 6 is based on the modern LLVM compiler framework. Arm Compiler
5 is not based on the LLVM compiler framework. Therefore migrating your project and source files
from Arm Compiler 5 to Arm Compiler for Embedded 6 requires you to be aware of:

• Differences in the command-line options when invoking the compiler.

• Differences in the adherence to language standards.

• Differences in compiler specific keywords, attributes, and pragmas.

• Differences in optimization and diagnostic behavior of the compiler.

Even though these differences exist between Arm Compiler 5 and Arm Compiler for Embedded 6,
it is possible to migrate your projects from Arm Compiler 5 to Arm Compiler for Embedded 6 by
modifying your command-line arguments and by changing your source code if required.

Arm Compiler 5 does not support processors based on Armv8 and later architectures. Migrating to
Arm Compiler for Embedded 6 enables you to generate highly efficient code for processors based
on Armv8 and later architectures.

Related information
Optimization differences on page 24
Diagnostic messages on page 26
Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded
6 on page 31
Compiler Source Code Compatibility on page 51
Migrating projects from Arm Compiler 5 to Arm Compiler for Embedded 6

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 135

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/migrating-projects-from-arm-compiler-5-to-arm-compiler-6

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

3.2 Toolchain differences
Arm® Compiler 5 and Arm Compiler for Embedded 6 share many of the same compilation tools.
However, the main difference between the two toolchains is the compiler tool armclang, which is
based on Clang and LLVM.

The table lists the individual compilation tools and the toolchain they apply to.

Table 3-1: List of compilation tools

Arm Compiler 5 Arm Compiler for Embedded 6 Function

armcc armclang Compiles C and C++ language source files,
including inline assembly.

armcc armclang Preprocessor.

armasm armasm Legacy assembler for assembly language
source files written in armasm syntax. Use
the armclang integrated assembler for all
new assembly files.

Not available armclang. This is also called the armclang
integrated assembler.

Assembles assembly language source files
written in GNU assembly syntax.

fromelf fromelf Converts Arm ELF images to binary
formats and can also generate textual
information about the input image, such as
its disassembly and its code and data size.

armlink armlink Combines the contents of one or more
object files with selected parts of one
or more object libraries to produce an
executable program.

armar armar Enables sets of ELF object files to be
collected together and maintained in
archives or libraries.

Arm Compiler for Embedded 6 uses the compiler tool armclang instead of armcc. The command-
line options for armclang are different to the command-line options for armcc. These differences
are described in Migration of compiler command-line options from Arm Compiler 5 to Arm
Compiler for Embedded 6.

Arm Compiler for Embedded 6 includes the legacy assembler armasm, which you can use to
assemble your older assembly language source files if they are written in armasm syntax. Arm
recommends that you write new assembly code using the GNU assembly syntax, which you
can assemble using the armclang integrated assembler. You can also migrate existing assembly
language source files from armasm syntax to GNU syntax, and then assemble them using the
armclang integrated assembler. For more information see Migrating from armasm to the armclang
Integrated Assembler.

Related information
Migrating projects from Arm Compiler 5 to Arm Compiler for Embedded 6

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 135

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/migrating-projects-from-arm-compiler-5-to-arm-compiler-6

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

3.3 Default differences
Some compiler and assembler options are different between Arm® Compiler 5 and Arm Compiler
for Embedded 6, or have different default values.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The following table lists these differences.

Table 3-2: Differences in defaults

Arm Compiler 5 Arm Compiler for Embedded 6 Notes Further information

--hide_all -fvisibility=hidden These defaults are similar but -
fvisibility=hidden does
not affect extern declarations or
symbol references. In Arm Com-
piler for Embedded 6, symbols in
the final image are hidden if the
reference or the definition is hid-
den. Therefore the visibility of
the reference alone does not de-
termine the visibility of the sym-
bol, as it does in Arm Compiler 5.

--hide_all for Arm Compiler 5

-fvisibility for Arm Compiler for
Embedded 6

--apcs=/hardfp or --
apcs=/softfp

-mfloat-abi=softfp The default floating-point link-
age in Arm Compiler 5 depends
on the specified processor. If
the processor has floating-point
hardware, then Arm Compiler
5 uses hardware floating-point
linkage. If the processor does
not have floating-point hard-
ware, then Arm Compiler 5 us-
es software floating-point link-
age. In Arm Compiler for Embed-
ded 6, the default is always soft-
ware floating-point linkage for
AArch32 state.

The -mfloat-abi option al-
so controls the type of float-
ing-point instructions that the
compiler uses. -mfloat-
abi=softfp uses hardware
floating-point instructions. Use -
mfloat-abi=soft to use soft-
ware floating-point linkage and
software library functions for
floating-point operations.

--apcs (armcc) for Arm Compiler
5

-mfloat-abi for Arm Compiler for
Embedded 6

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 135

https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--hide_all-no_hide_all
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fvisibility
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fvisibility
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--apcsqualifierqualifier
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--apcsqualifierqualifier
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mfloat-abi
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mfloat-abi

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

Arm Compiler 5 Arm Compiler for Embedded 6 Notes Further information
__image.axf a.out Default name for the executable

image if none of -o, -c, -E, or
-S are specified on the com-
mand-line.

-o for Arm Compiler 5

-o for Arm Compiler for
Embedded 6

--enum_is_int is disabled by
default

-fno-short-enums --enum_is_int is disabled by
default in Arm Compiler 5, so the
smallest data type that can hold
the enumerator values is used. -
fno-short-enums is the de-
fault in Arm Compiler for Embed-
ded 6, so the size of the enumer-
ation type is at least 32 bits.

--enum_is_int for Arm Compiler
5

-fno-short-enums for Arm
Compiler for Embedded 6

-O2 -O0 Arm Compiler 5 uses high opti-
mization (-O2) by default. Arm
Compiler for Embedded 6 uses
minimum optimization (-O0) by
default.

-Onum for Arm Compiler 5

-Olevel for Arm Compiler for
Embedded 6

Optimization differences.

--apcs=/nointerwork --apcs=/interwork In Arm Compiler 5, armasm
does not specify by default that
code in the input file can safely
interwork between A32 and T32.
In Arm Compiler for Embedded
6, armasm specifies interworking
by default for AArch32 targets
that support A32 and T32
instruction sets.

--apcs (armasm) for Arm
Compiler 5

--apcs for Arm Compiler for
Embedded 6

C++03 C++14 In Arm Compiler 5, the default
C++ source language mode is
C++03. In Arm Compiler for
Embedded 6, the default C+
+ source language mode is C+
+14. You can override the de-
fault source language with -std
in Arm Compiler for Embedded
6.

--cpp for Arm Compiler 5

-std for Arm Compiler for
Embedded 6

C90 C11 [COMMUNITY] In Arm Compiler 5, the default
C source language mode is C90.
In Arm Compiler for Embed-
ded 6, the default C source lan-
guage mode is C11 [COMMUNI-
TY]. You can override the default
source language with -std in
Arm Compiler for Embedded 6.

--c90 for Arm Compiler 5

-std for Arm Compiler for
Embedded 6

--no_exceptions -fexceptions or -fno-ex\
ceptions

In Arm Compiler 5, C++ excep-
tions are disabled by default
(--no_exceptions). In Arm
Compiler for Embedded 6, C+
+ exceptions are enabled by de-
fault (-fexceptions) for C
++ sources, or disabled by de-
fault (-fno-exceptions) for C
sources.

--no_exceptions for Arm
Compiler 5

-fexceptions, -fno-exceptions for
Arm Compiler for Embedded 6

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 135

https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--o-filename
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-o--armclang-
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-o--armclang-
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--enum_is_int
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--enum_is_int
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fshort-enums---fno-short-enums
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fshort-enums---fno-short-enums
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--onum
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/dui0473/latest/Assembler-Command-line-Options/--apcsqualifierqualifier
https://developer.arm.com/documentation/dui0473/latest/Assembler-Command-line-Options/--apcsqualifierqualifier
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--apcs-qualifier-qualifier
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--apcs-qualifier-qualifier
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--cpp
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--c90
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--exceptions----no-exceptions
https://developer.arm.com/documentation/dui0472/latest/Compiler-Command-line-Options/--exceptions----no-exceptions
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fexceptions---fno-exceptions
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fexceptions---fno-exceptions

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

Arm Compiler 5 Arm Compiler for Embedded 6 Notes Further information
--wchar16 -fno-short-wchar In Arm Compiler 5, the size of

wchar_t is 2 bytes by default
(--wchar16). In Arm Compil-
er for Embedded 6, the size of
wchar_t is 4 bytes by default (-
fno-short-wchar).

--wchar16 for Arm Compiler 5

--fno-short-wchar for Arm
Compiler for Embedded 6

--split_sections (is dis-
abled by default)

-ffunction-sections In Arm Compiler 5, func-
tions are not put into separate
ELF sections by default (--
split_sections is disabled).
In Arm Compiler for Embedded
6, each function is put into a
separate ELF section by default
(-ffunction-sections).

--split_sections for Arm Compiler
5

--ffunction-sections for Arm
Compiler for Embedded 6

3.4 Optimization differences
Arm® Compiler for Embedded 6 provides more performance optimization settings than are present
in Arm Compiler 5. However, the optimizations that are performed at each optimization level might
differ between the two toolchains.

The table compares the optimization settings and functions in Arm Compiler 5 and Arm Compiler
for Embedded 6.

Table 3-3: Optimization settings

Description Arm Compiler 5 Arm Compiler for Embedded 6 Notes

Optimization levels for
performance.

• -Otime -O0

• -Otime -O1

• -Otime -O2

• -Otime -O3

• -O0

• -O1

• -O2

• -O3

• -Ofast

• -Omax

The Arm Compiler 5 -O0 option
is more similar to the Arm Com-
piler for Embedded 6 -O1 option
than the Arm Compiler for Em-
bedded 6 -O0 option.

The Arm Compiler for Embedded
6 -Omax option refers to max-
imum performance, with Link-
Time Optimization (LTO) enabled.

Optimization levels for code size. • -Ospace -O0

• -Ospace -O1

• -Ospace -O2

• -Ospace -O3

• -Os

• -Oz

• -Omin

The Arm Compiler 5 -O0 option
is more similar to the Arm Com-
piler for Embedded 6 -O1 option
than the Arm Compiler for Em-
bedded 6 -O0 option.

The Arm Compiler for Embedded
6 -Omin option refers to mini-
mum code size, with Link-Time
Optimization (LTO) enabled..

Default. -Ospace -O2 -O0 -

Best trade-off between image
size, performance, and debug.

-Ospace -O2 -O1 -

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 135

https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options/--wchar16
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fshort-wchar---fno-short-wchar
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fshort-wchar---fno-short-wchar
https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options/--split_sections
https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options/--split_sections
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-ffunction-sections---fno-function-sections
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-ffunction-sections---fno-function-sections

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

Description Arm Compiler 5 Arm Compiler for Embedded 6 Notes
Highest optimization for
performance.

-Otime -O3 • -Omax

• -Ofast

The -Omax option uses Link-
Time Optimization (LTO). If LTO
is not appropriate for you, use -
Ofast.

Highest optimization for code
size.

-Ospace -O3 • -Omin

• -Oz

The -Omin option uses Link-
Time Optimization (LTO). If LTO
is not appropriate for you, use -
Oz.

Arm Compiler for Embedded 6 provides an aggressive performance optimization option, -Omax,
which automatically enables a feature called Link-Time Optimization. For more information, see -
flto.

At the opposite end of the spectrum, the -Omin option in Arm Compiler for Embedded 6 is an
aggressive code size optimization setting. This also enables Link-Time Optimization and aggressively
removes unused code and data.

When using -Omax or -Omin , armclang can perform link-time optimizations that were not possible
in Arm Compiler 5. In some cases these link-time optimizations can expose latent bugs in a
program, which manifest as an image with different or unanticapted behavior. Therefore, an image
built with Arm Compiler 5 might have a different behavior to the image built with Arm Compiler for
Embedded 6.

For example, unused variables without the volatile keyword might be removed when using -Omax
or -Omin in Arm Compiler for Embedded 6. If the unused variable is actually a volatile variable
that requires the volatile keyword, then the removal of the variable can cause the generated
image to behave unexpectedly. Since Arm Compiler 5 does not have these aggressive optimization
settings, it might not have removed the unused variable, and the resulting image might behave as
expected, and therefore the error in the code would be more difficult to detect.

Related information
-flto armclang option
-O armclang option
Effect of the volatile keyword on compiler optimization
Optimizing across modules with link time optimization

3.5 Backwards compatibility issues
Some Arm® Compiler 5 options produce objects that are not compatible with Arm Compiler for
Embedded 6.

SHF_COMDEF ELF sections
Linking with legacy objects that contain ELF sections with the legacy SHF_COMDEF ELF section flag
is deprecated. Use the GRP_COMDAT ELF section group instead of the legacy SHF_COMDEF ELF section
flag by:

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Effect-of-the-volatile-keyword-on-compiler-optimization
https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Optimizing-across-modules-with-Link-Time-Optimization

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

• Replacing the COMDEF section attribute of the legacy armasm syntax AREA directive with the
COMGROUP=symbol_name section attribute.

• Rebuilding incompatible legacy objects using one of the following:

◦ Arm Compiler 5 but with the --dwarf3 option. Other incompatibilities might still exist.

◦ Arm Compiler for Embedded 6.

Related information
AREA directive
-dwarf3

3.6 Diagnostic messages
In general, armclang provides more precise and detailed diagnostic messages compared to armcc.
Therefore you can expect to see more information about your code when using Arm® Compiler for
Embedded 6, which can help you understand and fix your source more quickly.

armclang and armcc differ in the quality of diagnostic information they provide about your code.
The following sections demonstrate some of the differences.

Assignment in condition
The following code is an example of armclang providing more precise information about your
code. The error in this example is that the assignment operator, =, must be changed to the equality
operator, ==.

//main.cpp:

#include <stdio.h>

int main()
{
 int a = 0, b = 0;
 if (a = b)
 {
 printf("Right\n");
 }
 else
 {
 printf("Wrong\n");
 }
 return 0;
}

Compiling this example with Arm Compiler 5 gives the message:

"main.cpp", line 6: Warning: #1293-D: assignment in condition

if (a = b)
 ^

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 135

https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Directives-Reference/AREA
https://developer.arm.com/documentation/dui0472/latest/compiler-command-line-options/-dwarf3

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

Compiling this example with Arm Compiler for Embedded 6 gives the message:

main.cpp:6:7: warning: using the result of an assignment as a condition without
 parentheses[-Wparentheses]

 if (a = b)
 ~^~

main.cpp:6:7: note: place parentheses around the assignment to silence this warning
 if (a = b)
 ^
 ()

main.cpp:6:7: note: use '==' to turn this assignment into an equality comparison
 if (a = b)
 ^
 ==

armclang highlights the error in the code, and also suggests two different ways to resolve the error.
The warning messages highlight the specific part which requires attention from the user.

When using armclang, it is possible to enable or disable specific warning
messages. In the example above, you can enable this warning message using the -
Wparentheses option, or disable it using the -Wno-parentheses option.

Automatic macro expansion
Another very useful feature of diagnostic messages in Arm Compiler for Embedded 6, is the
inclusion of notes about macro expansion. These notes provide useful context to help you
understand diagnostic messages resulting from automatic macro expansion.

Consider the following code:

//main.cpp:

#include <stdio.h>

#define LOG(PREFIX, MESSAGE) fprintf(stderr, "%s: %s", PREFIX, MESSAGE)
#define LOG_WARNING(MESSAGE) LOG("Warning", MESSAGE)

int main(void)
{
 LOG_WARNING(123);
}

The macro LOG_WARNING has been called with an integer argument. However, expanding the
two macros, you can see that the fprintf function expects a string. When the macros are close
together in the code it is easy to spot these errors. These errors are not easy to spot if they are
defined in different part of the source code, or in other external libraries.

Compiling this example with Arm Compiler 5 armcc main.cpp reports the message:

main.cpp", line 8: Warning: #181-D: argument is incompatible with corresponding
 format string conversion

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

 LOG_WARNING(123);
 ^

Compiling this example with Arm Compiler for Embedded 6 armclang --target=arm-arm-none-
eabi -march=armv8-a reports the message:

main.cpp:8:14: warning: format specifies type 'char *' but the argument has type
 'int' [-Wformat]

 LOG_WARNING(123);
 ~~~~~~~~~~~~^~~

main.cpp:4:45: note: expanded from macro 'LOG_WARNING'
#define LOG_WARNING(MESSAGE) LOG("Warning", MESSAGE)
                             ~~~~~~~~~~~~~~~^~~~~~~

main.cpp:3:64: note: expanded from macro 'LOG'
#define LOG(PREFIX, MESSAGE) fprintf(stderr, "%s: %s", PREFIX, MESSAGE)
 ~~ ^~~~~~~

For more information, see Diagnostics for pragma compatibility.

When starting the migration from Arm Compiler 5 to Arm Compiler for Embedded
6, you can expect additional diagnostic messages because armclang does not
recognize some of the pragmas, keywords, and attributes that were specific to
armcc. When you replace the pragmas, keywords, and attributes from Arm Compiler
5 with their Arm Compiler for Embedded 6 equivalents, the majority of these
diagnostic messages disappear. You might require additional code changes if there
is no direct equivalent for Arm Compiler for Embedded 6. For more information see
Compiler Source Code Compatibility.

3.7 Migration example
This topic shows you the process of migrating an example code from Arm® Compiler 5 to Arm
Compiler for Embedded 6.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

Compiling with Arm Compiler 5
For an example startup code that builds with Arm Compiler 5, see Example startup code for Arm
Compiler 5 project.

To compile this example with Arm Compiler 5, enter:

armcc startup_ac5.c --cpu=7-A -c

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

This command generates a compiled object file for the Armv7-A architecture.

Compiling with Arm Compiler for Embedded 6
Try to compile the startup_ac5.c example with Arm Compiler for Embedded 6. The first step in
the migration is to use the new compiler tool, armclang , and use the correct command-line options
for armclang.

To compile this example with Arm Compiler for Embedded 6, enter:

armclang --target=arm-arm-none-eabi startup_ac5.c -march=armv7-a -c -O1 -std=c90

The following table shows the differences in the command-line options between Arm Compiler 5
and Arm Compiler for Embedded 6:

Table 3-4: Command-line changes

Description Arm Compiler 5 Arm Compiler for Embedded 6

Tool armcc armclang
Specifying an architecture --cpu=7-A • -march=armv7-a

• --target is a mandatory option for
armclang.

Optimization The default optimization is -O2. The default optimization is -O0. To get simi-
lar optimizations as the Arm Compiler 5 de-
fault, use -O1.

Source language mode The default source language mode for .c
files is c90.

The default source language mode for .c
files is gnu11 [COMMUNITY]. To compile
for c90 in Arm Compiler for Embedded 6,
use -std=c90.

Arm Compiler for Embedded 6 generates the following errors and warnings when trying to compile
the example startup_ac5.c file in c90 mode:

startup_ac5.c:39:22: error: 'main' must return 'int'

__declspec(noreturn) void main (void)
 ^~~~
 int
startup_ac5.c:45:9: error: '#pragma import' is an ARM Compiler 5 extension, and is
 not supported by ARM Compiler 6 [-Warmcc-pragma-import]
#pragma import (__use_no_semihosting)
 ^
startup_ac5.c:60:7: error: expected '(' after 'asm'
__asm void Vectors(void) {
 ^
startup_ac5.c:60:6: error: expected ';' after top-level asm block
__asm void Vectors(void) {
 ^
 ;
startup_ac5.c:61:3: error: use of undeclared identifier 'IMPORT'
 IMPORT Undef_Handler
 ^
startup_ac5.c:80:7: error: expected '(' after 'asm'
__asm void Reset_Handler(void) {
 ^
startup_ac5.c:80:6: error: expected ';' after top-level asm block
__asm void Reset_Handler(void) {

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6

 ^
 ;
startup_ac5.c:83:3: error: use of undeclared identifier 'CPSID'
 CPSID if
 ^
8 errors generated.

The following section describes how to modify the source file to fix these errors and warnings.

Modifying the source code for Arm Compiler for Embedded 6
You must make the following changes to the source code to compile with armclang.

• The return type of function main function cannot be void in standard C. Replace the following
line:

__declspec(noreturn) void main(void)

With:

__declspec(noreturn) int main(void)

• The intrinsic __enable_irq() is not supported in Arm Compiler for Embedded 6. You must
replace the intrinsic with an inline assembler equivalent. Replace the following line:

__enable_irq();

With:

__asm("CPSIE i");

• The #pragma import is not supported in Arm Compiler for Embedded 6. You must replace the
pragma with an equivalent directive using inline assembler. Replace the following line:

#pragma import(__use_no_semihosting)

With:

__asm(".global __use_no_semihosting");

• In certain situations, armclang might remove infinite loops that do not have side-effects.
You must use the volatile keyword to tell armclang not to remove such code. Replace the
following line:

while(1);

With:

while(1) __asm volatile("");

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

4 Migrating from armcc to armclang
Compares Arm® Compiler for Embedded 6 command-line options to older versions of Arm
Compiler.

4.1 Migration of compiler command-line options from Arm
Compiler 5 to Arm Compiler for Embedded 6

Arm® Compiler for Embedded 6 provides many command-line options, including most Clang
command-line options and several Arm-specific options.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The following table describes the most common Arm Compiler 5 command-line options, and shows
the equivalent options for Arm Compiler for Embedded 6.

More information about command-line options is available:

• The Arm Compiler for Embedded Reference Guide provides more information about the supported
command-line options. The options described are fully supported, unless the level of support is
indicated.

• For a full list of Clang command-line options, see the Clang and LLVM documentation.

Table 4-1: Comparison of compiler command-line options in Arm Compiler 5 and Arm Compiler for Embedded 6

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description

--allow_fpreg_for_nonfpdata,

--no_allow_fpreg_for_nonfp\
data

-mimplicit-float,

-mno-implicit-float [COMMUNI-
TY]

Enables or disables the use of VFP and SIMD registers
and data transfer instructions for non-VFP and non-
SIMD data.

--apcs=/nointerwork No equivalent. Disables interworking between A32 and T32 code.
Interworking is always enabled in Arm Compiler for
Embedded 6.

--apcs=/ropi

--apcs=/noropi

-fropi

-fno-ropi

Enables or disables the generation of Read-Only
Position Independent (ROPI) code.

--apcs=/rwpi

--apcs=/norwpi

-frwpi

-fno-rwpi

Enables or disables the generation of Read Write
Position Independent (RWPI) code.

--arm -marm Targets the A32 instruction set. The compiler is
permitted to generate both A32 and T32 code, but
recognizes that A32 code is preferred.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
--arm_only No equivalent. Enforces A32 instructions only. The compiler does not

generate T32 instructions.

--asm -save-temps Instructs the compiler to generate intermediate
assembly files as well as object files.

--bigend -mbig-endian Generates code for big-endian data.

--branch_tables, --
no_branch_tables

No equivalent. -fno-jump-tables is the closest option [COM-
MUNITY]

-c -c Performs the compilation step, but not the link step.

--c90 -xc -std=c90 Enables the compilation of C90 source code.

-xc is a positional argument and only affects subse-
quent input files on the command-line. It is also only
required if the input files do not have the appropriate
file extension.

--c90 --gnu -xc -std=gnu90 Enables the compilation of C90 source code with ad-
ditional GNU extensions.

-xc is a positional argument and only affects subse-
quent input files on the command-line. It is also only
required if the input files do not have the appropriate
file extension.

--c99 -xc -std=c99 Enables the compilation of C99 source code.

-xc is a positional argument and only affects subse-
quent input files on the command-line. It is also only
required if the input files do not have the appropriate
file extension.

--c99 --gnu -xc -std=gnu99 Enables the compilation of C99 source code with ad-
ditional GNU extensions.

-xc is a positional argument and only affects subse-
quent input files on the command-line. It is also only
required if the input files do not have the appropriate
file extension.

--cpp -xc++ -std=c++03 Enables the compilation of C++03 source code.

-xc++ is a positional argument and only affects sub-
sequent input files on the command-line. It is also on-
ly required if the input files do not have the appropri-
ate file extension.

The default C++ language standard is different be-
tween Arm Compiler 5 and Arm Compiler for Embed-
ded 6.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
--cpp --gnu -xc++ -std=gnu++03 Enables the compilation of C++03 source code with

additional GNU extensions.

-xc++ is a positional argument and only affects sub-
sequent input files on the command-line. It is also on-
ly required if the input files do not have the appropri-
ate file extension.

The default C++ language standard is different be-
tween Arm Compiler 5 and Arm Compiler for Embed-
ded 6.

--cpp11 -xc++ -std=c++11 Enables the compilation of C++11 source code.

-xc++ is a positional argument and only affects sub-
sequent input files on the command-line. It is also on-
ly required if the input files do not have the appropri-
ate file extension.

The default C++ language standard is different be-
tween Arm Compiler 5 and Arm Compiler for Embed-
ded 6.

--cpp11 --gnu -xc++ -std=gnu++11 Enables the compilation of C++11 source code with
additional GNU extensions.

-xc++ is a positional argument and only affects sub-
sequent input files on the command-line. It is also on-
ly required if the input files do not have the appropri-
ate file extension.

The default C++ language standard is different be-
tween Arm Compiler 5 and Arm Compiler for Embed-
ded 6.

--cpp_compat No equivalent. Compiles C++ code to maximize binary compatibility.

--cpu=8-A.32 --target=arm-arm-none-eabi -
march=armv8-a

Targets Armv8-A and AArch32 state.

--cpu 8-A.64 --target=aarch64-arm-none-
eabi

Targets Armv8-A and AArch64 state. (Implies -
march=armv8-a if -mcpu is not specified.)

--cpu=7-A --target=arm-arm-none-eabi -
march=armv7-a

Targets the Armv7-A architecture.

--cpu=Cortex-M4 --target=arm-arm-none-eabi -
mcpu=cortex-m4

Targets the Cortex® -M4 processor.

--cpu=Cortex-A15 --target=arm-arm-none-eabi -
mcpu=cortex-a15

Targets the Cortex -A15 processor.

-D -D Defines a preprocessing macro.

--depend -MF Specifies a filename for the makefile dependency
rules.

--depend_dir No equivalent. Use -MF to specify each
dependency file individually.

Specifies the directory for dependency output files.

--depend_format=unix_escaped - Dependency file entries use UNIX-style path separa-
tors and escapes spaces with \\. This is the default in
Arm Compiler for Embedded 6.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
--depend_system_headers,

--no_depend_system_headers

No direct equivalent to the standalone
command-line option. However, see
the Arm Compiler 5 entries in this table
for --md, --md --no_depend_sys\
tem_headers, and --mm.

Enables and disables the output of system include de-
pendency lines when generating makefile dependen-
cy information using either the -M option or the --md
option.

--depend_target -MT Changes the target name for the makefile dependency
rule.

--diag_error -Werror Turn compiler warnings into errors.

--diag_style=string No equivalent. armclang produces diagnostic messages in the
following format: source-file:line-num\
ber:char-number: description [diagnos\
tic-flag]

--diag_suppress=foo -Wno-foo Suppress warning message foo. The error or warn-
ing codes might be different between Arm Compiler 5
and Arm Compiler for Embedded 6.

-E -E Executes only the preprocessor step.

--enum_is_int -fno-short-enums, -fshort-
enums

Sets the minimum size of an enumeration type. By de-
fault Arm Compiler 5 does not set a minimum size. By
default Arm Compiler for Embedded 6 uses -fno-
short-enums to set the minimum size to 32-bit.

--float_literal_pools, --
no_float_literal_pools

No equivalent. The way that literals are merged is handled differently
in Arm Compiler for Embedded 6 compared to Arm
Compiler 5. See Literal pool options in armclang for
more information.

--forceline No equivalent. Forces aggressive inlining of functions. Arm Compiler
for Embedded 6 automatically decides whether to
inline functions depending on the optimization level.

--fpmode=std -ffp-mode=std Provides IEEE-compliant code with no IEEE
exceptions, NaNs, and Infinities. Denormals are sign
preserving. This is the default.

--fpmode=fast -ffp-mode=fast Similar to the default behavior, but also performs
aggressive floating-point optimizations and therefore
it is not IEEE-compliant.

--fpmode=ieee_full -ffp-mode=full Provides full IEEE support, including exceptions.

--fpmode=ieee_fixed

--fpmode=ieee_no_fenv

There are no supported equivalent
options.

There might be community features that provide
these IEEE floating-point modes.

--fpu

For example, --fpu=fpv5_d16

-mfpu

For example, -mfpu=fpv5-d16

Specifies the target FPU architecture.

Note:
--fpu=none checks the source code for float-
ing-point operations, and if any are found it pro-
duces an error. -mfpu=none prevents the compil-
er from using hardware-based floating-point func-
tions. If the compiler encounters floating-point types
in the source code, it uses software-based float-
ing-point library functions.

The option values might be different. For example
fpv5_d16 in Arm Compiler 5 is equivalent to fpv5-
d16 in Arm Compiler for Embedded 6, and targets the
FPv5-D16 floating-point extension.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 135

https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Literal-pool-options-in-armclang

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
-I -I Adds the specified directories to the list of places that

are searched to find included files.

--global_reg=reg_name -ffixed-rN Prevents the compiler from using the specified core
register, unless the use is required for Arm ABI com-
pliance.

In Arm Compiler 5, reg_name is an integer starting
from 1 to 8 , which maps to registers R4 to R11.

In Arm Compiler for Embedded 6, N is an integer
starting from 6 to 11, which maps to registers R5 to
R11.

--ignore_missing_headers -MG Prints dependency lines for header files even if the
header files are missing.

--inline Default at -O2 and -O3. There is no equivalent of the --inline option.
Arm Compiler for Embedded 6 automatically decides
whether to inline functions at optimization levels -O2
and -O3.

--integer_literal_pools, --
no_integer_literal_pools

No equivalent. The way that literals are merged is handled differently
in Arm Compiler for Embedded 6 compared to Arm
Compiler 5. See Literal pool options in armclang for
more information.

-J -isystem Adds the specified directories to the list of places that
are searched to find included system header files.

-L -Xlinker Specifies command-line options to pass to the linker
when a link step is being performed after compilation.

--library_interface=armcc This is the default. Arm Compiler for Embedded 6 by default uses the
Arm standard C library.

--library_interface=lib

Where lib is one of:

• aeabi_clib

• aeabi_clib90

• aeabi_clib99

-nostdlib -nostdlibinc -fno-
builtin

Specifies that the compiler output works with any
ISO C library compliant with the Arm Embedded
Application Binary Interface (AEABI).

--library_interface=lib

Where lib is not one of:

• aeabi_clib

• aeabi_clib90

• aeabi_clib99

• armcc

No equivalent. Arm Compiler for Embedded 6 assumes the use of an
AEABI compliant library.

--licretry No equivalent. There is no equivalent of the --licretry option.
The Arm Compiler for Embedded 6 tools automatical-
ly retry failed attempts to obtain a license.

--list_macros -E -dM List all the macros that are defined at the end of the
translation unit, including the predefined macros.

--littleend -mlittle-endian Generates code for little-endian data.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 135

https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Literal-pool-options-in-armclang

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
--lower_ropi,

--no_lower_ropi

-fropi-lowering,

-fno-ropi-lowering

Enables or disables less restrictive C when generating
Read-Only Position Independent (ROPI) code.

Note:
In Arm Compiler 5, when --acps=/ropi is speci-
fied, --lower_ropi is not switched on by default.
In Arm Compiler for Embedded 6, when -fropi is
specified, -fropi-lowering is switched on by de-
fault.

--lower_rwpi,

--no_lower_rwpi

-frwpi-lowering,

-fno-rwpi-lowering

Enables or disables less restrictive C when generating
Read Write Position Independent (RWPI) code.

-M -M Instructs the compiler to produce a list of makefile
dependency lines suitable for use by a make utility.

--md -MD Creates makefile dependency files, including the sys-
tem header files. In Arm Compiler 5, this is equivalent
to --md --depend_system_headers.

--md --no_depend_sys\
tem_headers

-MMD Creates makefile dependency files, without the
system header files.

--mm -MM Creates a single makefile dependency file, without the
system header files. In Arm Compiler 5, this is equiva-
lent to -M --no_depend_system_headers.

--multifile, --no_multifile No direct equivalent. However, see
Optimizing across modules with Link-
Time Optimization in the Arm Compiler
for Embedded User Guide.

Enables and disables optimizations between multiple
source files.

--no_comment_section -fno-ident Removes the .comment section from object files.

--no_exceptions -fno-exceptions Disables the generation of code needed to support C
++ exceptions.

Note:
For C++ code, Arm Compiler for Embedded 6 de-
faults to -fexceptions. As a result, there might
be a large increase in the code size. If you use -
fno_exceptions, then the code size is in the
range of that created with Arm Compiler 5.

--no_hide_all -fvisibility=default Sets the default visibility of ELF symbols to the spec-
ified option, unless overridden in the source with the
__attribute__((visibility("visibili\
ty_type"))) attribute. The default is -fvisibil\
ity=hidden.

Note:
The behavior of armclang -fvisibility=hidden
is different from that of the armcc --hide-all op-
tion. With armclang -fvisibility=hidden, ex\
tern declarations are visible, and all other symbols
are hidden. With armcc --hide-all, all symbols
are hidden.

--no_protect_stack -fno-stack-protector Explicitly disables stack protection. See arm-
compiler-5-and-arm-compiler-6-stack-protection-
behavior for more information.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 135

https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Optimizing-across-modules-with-Link-Time-Optimization
https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Optimizing-across-modules-with-Link-Time-Optimization

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
-rtti -frtti C++ only. -frtti enables the generation of code

that is needed to support Run Time Type Information
(RTTI) features. This option is the default when com-
piling for C++.

See -frtti, -fno-rtti

-no_rtti -fno-rtti C++ only. -fno-rtti disables the generation of
code that is needed to support Run Time Type Infor-
mation (RTTI) features.

See -frtti, -fno-rtti

-o -o Specifies the name of the output file.

-Onum -Onum Specifies the level of optimization to be used when
compiling source files.

The default for Arm Compiler 5 is -O2. The default
for Arm Compiler for Embedded 6 is -O0. For Arm
Compiler for Embedded 6, Arm recommends -O1
rather than -O0 for best trade-off between debug
view, codesize, and performance. For more informa-
tion, see Optimization differences.

-Ospace -Oz /-Os Performs optimizations to reduce image size at the
expense of a possible increase in execution time.

-Otime This is the default. Performs optimizations to reduce execution time at
the expense of a possible increase in image size.

There is no equivalent of the -Otime option. Arm
Compiler for Embedded 6 optimizes for execution
time by default, unless you specify the -Os or -Oz
options.

--phony_targets -MP Emits dummy makefile rules.

--preinclude -include Include the source code of a specified file at the
beginning of the compilation.

--protect_stack -fstack-protector,

-fstack-protector-strong

Enables stack protection on vulnerable functions. See
Arm Compiler 5 and Arm Compiler for Embedded 6
stack protection behavior for more information.

--protect_stack_all -fstack-protector-all Enables stack protection on all functions. See Arm
Compiler 5 and Arm Compiler for Embedded 6 stack
protection behavior for more information.

--relaxed_ref_def -fcommon Places zero-initialized definitions in a common block.

--retain -O The optimization level to use for the best code cover-
age might depend on your source code.

In Arm Compiler 5 the --retain option disables
specific optimizations by name. There is no direct
equivalent of this for Arm Compiler for Embedded 6.

Instead you will need to select the optimization level
which best suits your needs. See -O in the Arm Com-
piler for Embedded Reference Guide for more informa-
tion.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-frtti---fno-rtti
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-frtti---fno-rtti
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-O--armclang-

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
-S -S Outputs the disassembly of the machine code that the

compiler generates.

The output from this option differs between releases.
Arm Compiler 5 produces output with armasm syntax
while Arm Compiler for Embedded 6 produces output
with GNU syntax.

--show_cmdline -v Shows how the compiler processes the command-
line. The commands are shown normalized, and the
contents of any via files are expanded.

--split_ldm -fno-ldm-stm Disables the generation of LDM and STM instructions.

Note that while the armcc --split_ldm option lim-
its the size of generated LDM/STM instructions, the
armclang -fno-ldm-stm option disables the gener-
ation of LDM and STM instructions altogether.

--split_sections -ffunction-sections Generates one ELF section for each function in the
source file.

In Arm Compiler for Embedded 6, -ffunc\
tion-sections is the default. Therefore, the merg-
ing of identical constants cannot be done by arm-
clang. Instead, the merging is done by armlink. See
Merging identical constants in the Arm Compiler for
Embedded Reference Guide for more information.

--strict -pedantic-errors Generate errors if code violates strict ISO C and ISO
C++.

--strict_warnings -pedantic Generate warnings if code violates strict ISO C and
ISO C++.

--string_literal_pools, --
no_string_literal_pools

No equivalent. The way that literals are merged is handled differently
in Arm Compiler for Embedded 6 compared to Arm
Compiler 5. See Literal pool options in armclang for
more information.

--thumb -mthumb Targets the T32 instruction set.

--no_unaligned_access,

--unaligned_access

-mno-unaligned-access,

-munaligned-access

Enables or disables unaligned accesses to data on Arm
processors.

--use_frame_pointer, --
no_use_frame_pointer

-fno-omit-frame-pointer, -
fomit-frame-pointer

Controls whether a register is reserved for storing the
stack frame pointer.

--vectorize

--no_vectorize

-fvectorize

-fno-vectorize

Enables or disables the generation of Advanced SIMD
vector instructions directly from C or C++ code.

--via @file Reads an additional list of compiler options from a file.

--vla No equivalent. Support for variable length arrays. Arm Compiler for
Embedded 6 automatically supports variable length
arrays in accordance with the language standard.

--vsn --version Displays version information and license details. In
Arm Compiler for Embedded 6 you can also use --
vsn.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 135

https://developer.arm.com/documentation/101754/0617/armlink-Reference/Linker-Optimization-Features/Merging-identical-constants
https://developer.arm.com/documentation/100748/0617/Writing-Optimized-Code/Literal-pool-options-in-armclang

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler 5 option Arm Compiler for Embedded 6 option Description
--wchar16, --wchar32 -fshort-wchar,

-fno-short-wchar

Sets the size of wchar_t type.

The default for Arm Compiler 5 is --wchar16. The
default for Arm Compiler for Embedded 6 is -fno-
short-wchar.

Related information
armclang Command-line Options
Compiler-specific Function, Variable, and Type Attributes
The LLVM Compiler Infrastructure Project

4.2 Arm Compiler 5 and Arm Compiler for Embedded 6
stack protection behavior

You can see which functions are protected and compare Arm® Compiler 5 protection with Arm
Compiler for Embedded 6 protection after migration.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The behavior of armclang -fstack-protector and armclang -fstack-protector-strong is
different from the behavior of the armcc --protect_stack option:

• With armcc --protect_stack, a function is considered vulnerable if it contains a char or
wchar_t array of any size.

• With armclang -fstack-protector, a function is considered vulnerable if it contains at least
one of the following:

◦ A character array larger than 8 bytes.

◦ An 8-bit integer array larger than 8 bytes.

◦ A call to alloca() with either a variable size or a constant size bigger than 8 bytes.

• With armclang -fstack-protector-strong, a function is considered vulnerable if it contains:

◦ An array of any size and type.

◦ A call to alloca().

◦ A local variable that has its address taken.

Arm recommends the use of -fstack-protector-strong.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes
http://llvm.org/

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

When using Arm Compiler 5, the value of the variable __stack_chk_guard could
change during the life of the program. With Arm Compiler for Embedded 6, a
suitable implementation might set this variable to a random value when the program
is loaded, before the first protected function is entered. The value must then remain
unchanged during the life of the program.

Example
1. Create the file test.c containing the following code:

// test.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *__stack_chk_guard = (void *)0xdeadbeef;

void __stack_chk_fail(void) {
 printf("Stack smashing detected.\n");
 exit(1);
}

static void copy(const char *p) {
 char buf[8];
 strcpy(buf, p);
 printf("Copied: %s\n", buf);
}

int main(void) {
 const char *t = "Hello World!";
 copy(t);
 printf("%s\n", t);
 return 0;
}

2. For Arm Compiler 5, search for branches to the __stack_chk_fail() function in the output
from the fromelf -c command. The functions containing such branches are protected.

armcc -c --cpu=7-A --protect_stack test.c -o test.o

fromelf -c test.o
...
 copy
 0x00000010: e92d403e >@-. PUSH {r1-r5,lr}
 0x00000014: e1a04000 .@.. MOV r4,r0
 0x00000018: e59f0070 p... LDR r0,[pc,#112] ;
 [__stack_chk_guard = 0x90] = 0
 0x0000001c: e5905000 .P.. LDR r5,[r0,#0]
 0x00000020: e58d5008 .P.. STR r5,[sp,#8]
 0x00000024: e1a01004 MOV r1,r4
 0x00000028: e1a0000d MOV r0,sp
 0x0000002c: ebfffffe BL strcpy
 0x00000030: e1a0100d MOV r1,sp
 0x00000034: e28f0058 X... ADR r0,{pc}+0x60 ; 0x94
 0x00000038: ebfffffe BL __2printf
 0x0000003c: e59d0008 LDR r0,[sp,#8]
 0x00000040: e1500005 ..P. CMP r0,r5
 0x00000044: 0a000000 BEQ {pc}+0x8 ; 0x4c
 0x00000048: ebfffffe BL __stack_chk_fail ; 0x0 Sec\
tion #1
 0x0000004c: e8bd803e >... POP {r1-r5,pc}

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

...

3. For Arm Compiler for Embedded 6, use the armclang [COMMUNITY] -Rpass remark option.

> armclang -c --target=arm-arm-none-eabi -march=armv8-a -O0 -Rpass=stack-protec\
tor test.c
test.c:14:13: remark: Stack protection applied to function copy due to a stack
 allocated buffer or struct containing a
 buffer [-Rpass=stack-protector]
static void copy(const char *p) {
 ^

You can also use the fromelf -c command and search the output for functions
containing branches to the __stack_chk_fail() function.

Related information
Reference Guide: -Rpass

4.3 Command-line options for preprocessing assembly
source code

The functionality of the --cpreproc and --cpreproc_opts command-line options in the version of
armasm supplied with Arm® Compiler for Embedded 6 is different from the options used in earlier
versions of armasm to preprocess assembly source code.

If you are using armasm to assemble source code that requires the use of the preprocessor, you
must use both the --cpreproc and --cpreproc_opts options together. Also:

• As a minimum, you must include the armclang options --target and either -mcpu or -march in
--cpreproc_opts.

• The input assembly source must have an upper-case extension .S.

If you have existing source files, which require preprocessing, and that have the lower-case
extension .s, then to avoid having to rename the files:

1. Perform the preprocessing step separately using the armclang -x assembler-with-cpp option.

2. Assemble the preprocessed file without using the --cpreproc and --cpreproc_opts options.

Example using armclang -x
This example shows the use of the armclang -x option.

armclang --target=aarch64-arm-none-eabi -march=armv8-a -x assembler-with-cpp -E
 test.s -o test_preproc.s
armasm --cpu=8-A.64 test_preproc.s

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-Rpass

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Example using armasm --cpreproc_opts
The options to the preprocessor in this example are --cpreproc_opts=--target=arm-arm-none-
eabi,-mcpu=cortex-a9,-D,DEF1,-D,DEF2.

armasm --cpu=cortex-a9 --cpreproc --cpreproc_opts=--target=arm-arm-none-eabi,-
mcpu=cortex-a9,-D,DEF1,-D,DEF2 -I /path/to/includes1 -I /path/to/includes2 input.S

Ensure that you specify compatible architectures in the armclang options --target,
-mcpu or -march, and the armasm --cpu option.

Related information
--cpreproc assembler option
--cpreproc_opts assembler option
Mandatory armclang options
-march armclang option
-mcpu armclang option
--target armclang option
-x armclang option
Preprocessing assembly code

4.4 Inline assembly with Arm Compiler for Embedded 6
Inline assembly in Arm® Compiler for Embedded 6 must be written in GNU assembly syntax. Inline
assembly in Arm Compiler 5 is written in armasm syntax. If you have inline assembly written in
armasm syntax, you must modify the armasm syntax assembly to use GNU assembly syntax.

In Arm Compiler 5:

• You can use C variable names directly inside inline assembly statements.

• You do not have direct access to physical registers. You must use C or C++ variables names as
operands, and the compiler maps them to physical register. You must set the value of these
variables before you read them within an inline assembly statement.

• If you use register names in inline assembly code, they are treated as C or C++ variables. They
do not necessarily relate to the physical register of the same name. If the register name is not
declared as a C or C++ variable, the compiler generates a warning.

In Arm Compiler for Embedded 6:

• You cannot use C or C++ variable names directly inside inline assembly statements. You can
map the physical registers to C or C++ variable names using operand mapping and constraints.

• You have direct access to physical registers. There is no need to set the value of the registers
before you read them within inline assembly statements.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 135

https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--cpreproc
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--cpreproc_opts-option-option---
https://developer.arm.com/documentation/100748/0617/Using-Common-Compiler-Options/Mandatory-armclang-options
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-x--armclang-
https://developer.arm.com/documentation/100748/0617/Assembling-Assembly-Code/Preprocessing-assembly-code

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

• If you use register names in inline assembly code, they are the physical register of the same
name.

In Arm Compiler for Embedded 6 you cannot use C variable names directly within inline assembly.
However, the GNU assembly syntax in Arm Compiler for Embedded 6 provides a way for mapping
input and output operands to C variable names.

Arm Compiler 5 optimizes inline assembly, but Arm Compiler for Embedded 6 emits it exactly as
written.

While Arm Compiler for Embedded 6 does not attempt to optimize the inline
assembly instructions, it can remove a block of code containing inline assembly
during optimization. The compiler is unaware of the content of the assembly, so
might in some cases remove the block while attempting to remove unused code.

The volatile qualifier disables certain compiler optimizations, which might
otherwise lead to the compiler removing the code block. The volatile qualifier is
OPTIONAL. However, consider using it around your assembly code blocks to ensure
the compiler does not remove them when compiling at any optimization level other
than -O0.

See the documentation of the volatile keyword in the Arm Compiler for Embedded
6 User Guide for details.

For more information on writing inline assembly using __asm in armclang, see __asm.

For more information on GNU assembly syntax, see Overview of differences between armasm and
GNU syntax assembly code.

Inline assembly example in Arm Compiler 5
The following example shows inline assembly code in Arm Compiler 5:

//foo.c:

int add(int i, int j)
{
 int res;
 __asm
 (
 "ADD res, i, j \t\n"
 "SUB res, i, res \t\n"
);
 return res;
}

The following example shows an alternative syntax for inline assembly code in Arm Compiler 5:

//foo.c:

int add(int i, int j)
{
 int res;

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Keywords-and-Operators/--asm

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

 __asm
 {
 ADD res, i, j
 SUB res, i, res
 }
 return res;
}

Compile foo.c using armcc :

armcc foo.c -c -S -o foo.s

Arm Compiler 5 converts the example inline assembly code to:

;foo.s:

add PROC
 ADD r1,r0,r1
 SUB r0,r0,r1
 BX lr
 ENDP

Inline assembly example in Arm Compiler for Embedded 6
The example below shows the equivalent inline assembly code in Arm Compiler for Embedded 6.

//foo.c:

int add(int i, int j)
{
 int res = 0;
 __asm
 (
 "ADD %[result], %[input_i], %[input_j] \t\n"
 "SUB %[result], %[input_i], %[result] \t\n"
 : [result] "=&r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

Compile foo.c using armclang with optimization level -O1 :

armclang foo.c --target=arm-arm-none-eabi -march=armv8-a -O1 -c -S -o foo.s

Arm Compiler for Embedded 6 converts the example inline assembly code to:

;foo.s:

add:
 .fnstart
@ BB#0:
 @APP
 add r2,r0,r1
 sub r2,r0,r2
 @NO_APP
 mov r0,r2
 bx lr

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Arm Compiler for Embedded 6 supports inline assembly using the __asm or asm
keywords. However, the asm keyword is accepted only when:

• Used within C++ language source files.

• Used within C language source files without strict ISO C Standard compliance.
For example, asm is accepted when using -std=gnu11.

Related information
armclang Inline Assembler

4.5 Migrating architecture and processor names for
command-line options

There are minor differences between the architecture and processor names that Arm® Compiler
for Embedded 6 recognizes, and the names that Arm Compiler 5 recognizes. Within Arm Compiler
for Embedded 6, there are differences in the architecture and processor names that armclang
recognizes and the names that armasm, armlink, and fromelf recognize. This topic shows the
differences in the architecture and processor names for the different tools in Arm Compiler 5 and
Arm Compiler for Embedded 6.

The tables show the documented --cpu options in Arm Compiler 5 and their corresponding options
for migrating your Arm Compiler 5 command-line options to Arm Compiler for Embedded 6.

The tables assume the default floating-point unit derived from the --cpu option
in Arm Compiler 5. However, in Arm Compiler for Embedded 6, armclang selects
different defaults for floating-point unit (VFP) and Advanced SIMD. Therefore, the
tables also show how to use the armclang -mfloat-abi and -mfpu options to be
compatible with the default floating-point unit in Arm Compiler 5. The tables do not
provide an exhaustive list.

Table 4-2: Architecture selection in Arm Compiler 5 and Arm Compiler for Embedded 6

armcc, armlink, armasm, and
fromelf option in Arm Compiler
5

armclang option in Arm
Compiler for Embedded 6

armlink, armasm, and fromelf
option in Arm Compiler for
Embedded 6

Architecture description

--cpu=4 Not supported Not supported Armv4

--cpu=4T Not supported Not supported Armv4T

--cpu=5T Not supported Not supported Armv5T

--cpu=5TE Not supported Not supported Armv5TE

--cpu=5TEJ Not supported Not supported Armv5TEJ

--cpu=6 Not supported Not supported Generic Armv6

--cpu=6-K Not supported Not supported Armv6 -K

--cpu=6-Z Not supported Not supported Armv6 -Z

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Inline-Assembler

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

armcc, armlink, armasm, and
fromelf option in Arm Compiler
5

armclang option in Arm
Compiler for Embedded 6

armlink, armasm, and fromelf
option in Arm Compiler for
Embedded 6

Architecture description

--cpu=6T2 Not supported Not supported Armv6 T2

--cpu=6-M --target=arm-arm-none-
eabi -march=armv6-m

--cpu=6S-M Armv6-M

--cpu=6S-M --target=arm-arm-none-
eabi -march=armv6s-m

--cpu=6S-M Armv6 S-M

--cpu=7-A

--cpu=7-A.security

--target=arm-arm-none-
eabi -march=armv7-a -
mfloat-abi=soft

--cpu=7-A.security Armv7-A without VFP and Ad-
vanced SIMD.

In Arm Compiler 5, security ex-
tension is not enabled with --
cpu=7-A but is enabled with --
cpu=7-A.security. In Arm
Compiler for Embedded 6, arm-
clang always enables the Ar-
mv7-A TrustZone security ex-
tension with -march=armv7-a.
However, armclang does not
generate an SMC instruction un-
less you specify it with an intrin-
sic or inline assembly.

--cpu=7-R --target=arm-arm-none-
eabi -march=armv7-r -
mfloat-abi=soft

--cpu=7-R Armv7-R without VFP and
Advanced SIMD

--cpu=7-M --target=arm-arm-none-
eabi -march=armv7-m

--cpu=7-M Armv7-M

--cpu=7E-M --target=arm-arm-none-
eabi -march=armv7e-m -
mfloat-abi=soft

--cpu=7E-M Armv7 E-M

Table 4-3: Processor selection in Arm Compiler 5 and Arm Compiler for Embedded 6

armcc, armlink, armasm, and
fromelf option in Arm Compiler
5

armclang option in Arm
Compiler for Embedded 6

armlink, armasm, and fromelf
option in Arm Compiler for
Embedded 6

Description

--cpu=Cortex-A5 --target=arm-arm-none-
eabi -mcpu=cortex-a5 -
mfloat-abi=soft

--cpu=Cor\
tex-A5.no_neon.no_vfp

Cortex®-A5 without Advanced
SIMD and VFP

--cpu=Cortex-A5.neon --target=arm-arm-none-
eabi -mcpu=cortex-a5 -
mfloat-abi=hard

--cpu=Cortex-A5 Cortex-A5 with Advanced SIMD
and VFP

--cpu=Cortex-A5.vfp --target=arm-arm-none-
eabi -mcpu=cortex-a5 -
mfloat-abi=hard -mf\
pu=vfpv4-d16

--cpu=Cortex-A5.no_neon Cortex-A5 with VFP, without
Advanced SIMD

--cpu=Cortex-A7 --target=arm-arm-none-
eabi -mcpu=cortex-a7 -
mfloat-abi=hard

--cpu=Cortex-A7 Cortex-A7 with Advanced SIMD
and VFP

--cpu=Cor\
tex-A7.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a7 -
mfloat-abi=soft

--cpu=Cor\
tex-A7.no_neon.no_vfp

Cortex-A7 without Advanced
SIMD and VFP

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

armcc, armlink, armasm, and
fromelf option in Arm Compiler
5

armclang option in Arm
Compiler for Embedded 6

armlink, armasm, and fromelf
option in Arm Compiler for
Embedded 6

Description

--cpu=Cortex-A7.no_neon --target=arm-arm-none-
eabi -mcpu=cortex-a7 -
mfloat-abi=hard -mf\
pu=vfpv4-d16

--cpu=Cortex-A7.no_neon Cortex-A7 with VFP, without
Advanced SIMD

--cpu=Cortex-A8 --target=arm-arm-none-
eabi -mcpu=cortex-a8 -
mfloat-abi=hard

--cpu=Cortex-A8 Cortex-A8 with VFP and
Advanced SIMD

--cpu=Cortex-A8.no_neon --target=arm-arm-none-
eabi -mcpu=cortex-a8 -
mfloat-abi=soft

--cpu=Cortex-A8.no_neon Cortex-A8 without Advanced
SIMD and VFP

--cpu=Cortex-A9 --target=arm-arm-none-
eabi -mcpu=cortex-a9 -
mfloat-abi=hard

--cpu=Cortex-A9 Cortex-A9 with Advanced SIMD
and VFP

--cpu=Cor\
tex-A9.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a9 -
mfloat-abi=soft

--cpu=Cor\
tex-A9.no_neon.no_vfp

Cortex-A9 without Advanced
SIMD and VFP

--cpu=Cortex-A9.no_neon --target=arm-arm-none-
eabi -mcpu=cortex-a9 -
mfloat-abi=hard -mf\
pu=vfpv3-d16-fp16

--cpu=Cortex-A9.no_neon Cortex-A9 with VFP but without
Advanced SIMD

--cpu=Cortex-A12 --target=arm-arm-none-
eabi -mcpu=cortex-a12 -
mfloat-abi=hard

--cpu=Cortex-A12 Cortex-A12 with Advanced
SIMD and VFP

--cpu=Cor\
tex-A12.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a12 -
mfloat-abi=soft

--cpu=Cor\
tex-A12.no_neon.no_vfp

Cortex-A12 without Advanced
SIMD and VFP

--cpu=Cortex-A15 --target=arm-arm-none-
eabi -mcpu=cortex-a15 -
mfloat-abi=hard

--cpu=Cortex-A15 Cortex-A15 with Advanced
SIMD and VFP

--cpu=Cor\
tex-A15.no_neon

--target=arm-arm-none-
eabi -mcpu=cortex-a15
-mfloat-abi=hard -mf\
pu=vfpv4-d16

--cpu=Cortex-A15.no_neon Cortex-A15 with VFP, without
Advanced SIMD

--cpu=Cor\
tex-A15.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a15 -
mfloat-abi=soft

--cpu=Cor\
tex-A15.no_neon.no_vfp

Cortex-A15 without Advanced
SIMD and VFP

--cpu=Cortex-A17 --target=arm-arm-none-
eabi -mcpu=cortex-a17 -
mfloat-abi=hard

--cpu=Cortex-A17 Cortex-A17 with Advanced
SIMD and VFP

--cpu=Cor\
tex-A17.no_neon.no_vfp

--target=arm-arm-none-
eabi -mcpu=cortex-a17 -
mfloat-abi=soft

--cpu=Cor\
tex-A17.no_neon.no_vfp

Cortex-A17 without Advanced
SIMD and VFP

--cpu=Cortex-R4 --target=arm-arm-none-
eabi -mcpu=cortex-r4

--cpu=Cortex-R4 Cortex-R4 without VFP

--cpu=Cortex-R4F --target=arm-arm-none-
eabi -mcpu=cortex-r4f -
mfloat-abi=hard

--cpu=Cortex-R4F Cortex-R4 with VFP

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

armcc, armlink, armasm, and
fromelf option in Arm Compiler
5

armclang option in Arm
Compiler for Embedded 6

armlink, armasm, and fromelf
option in Arm Compiler for
Embedded 6

Description

--cpu=Cortex-R5 --target=arm-arm-none-
eabi -mcpu=cortex-r5 -
mfloat-abi=soft

--cpu=Cortex-R5.no_vfp Cortex-R5 without VFP

--cpu=Cortex-R5F --target=arm-arm-none-
eabi -mcpu=cortex-r5 -
mfloat-abi=hard

--cpu=Cortex-R5 Cortex-R5 with double precision
VFP

--cpu=Cortex-R5F-
rev1.sp

--target=arm-arm-none-
eabi -mcpu=cortex-r5 -
mfloat-abi=hard -mf\
pu=vfpv3xd

--cpu=Cortex-R5.sp Cortex-R5 with single precision
VFP

--cpu=Cortex-R7 --target=arm-arm-none-
eabi -mcpu=cortex-r7 -
mfloat-abi=hard

--cpu=Cortex-R7 Cortex-R7 with VFP

--cpu=Cortex-R7.no_vfp --target=arm-arm-none-
eabi -mcpu=cortex-r7 -
mfloat-abi=soft

--cpu=Cortex-R7.no_vfp Cortex-R7 without VFP

--cpu=Cortex-R8 --target=arm-arm-none-
eabi -mcpu=cortex-r8 -
mfloat-abi=hard

--cpu=Cortex-R8 Cortex-R8 with VFP

--cpu=Cortex-R8.no_vfp --target=arm-arm-none-
eabi -mcpu=cortex-r8 -
mfloat-abi=soft

--cpu=Cortex-R8.no_vfp Cortex-R8 without VFP

--cpu=Cortex-M0 --target=arm-arm-none-
eabi -mcpu=cortex-m0

--cpu=Cortex-M0 Cortex-M0

--cpu=Cortex-M0plus --target=arm-arm-none-
eabi -mcpu=cortex-m0plus

--cpu=Cortex-M0plus Cortex-M0+

--cpu=Cortex-M1 --target=arm-arm-none-
eabi -mcpu=cortex-m1

--cpu=Cortex-M1 Cortex-M1

--cpu=Cortex-M3 --target=arm-arm-none-
eabi -mcpu=cortex-m3

--cpu=Cortex-M3 Cortex-M3

--cpu=Cortex-M4 --target=arm-arm-none-
eabi -mcpu=cortex-m4 -
mfloat-abi=soft

--cpu=Cortex-M4.no_fp Cortex-M4 without VFP

--cpu=Cortex-M4.fp --target=arm-arm-none-
eabi -mcpu=cortex-m4 -
mfloat-abi=hard

--cpu=Cortex-M4 Cortex-M4 with VFP

--cpu=Cortex-M7 --target=arm-arm-none-
eabi -mcpu=cortex-m7 -
mfloat-abi=soft

--cpu=Cortex-M7.no_fp Cortex-M7 without VFP

--cpu=Cortex-M7.fp.dp --target=arm-arm-none-
eabi -mcpu=cortex-m7 -
mfloat-abi=hard

--cpu=Cortex-M7 Cortex-M7 with double precision
VFP

--cpu=Cortex-M7.fp.sp --target=arm-arm-none-
eabi -mcpu=cortex-m7 -
mfloat-abi=hard -mfpu=f\
pv5-sp-d16

--cpu=Cortex-M7.fp.sp Cortex-M7 with single precision
VFP

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

Enabling or disabling architectural features in Arm Compiler for Embedded 6
Arm Compiler for Embedded 6, by default, automatically enables or disables certain architectural
features such as the floating-point unit, Advanced SIMD, and Cryptographic extensions depending
on the specified architecture or processor. For a list of architectural features, see -mcpu in the Arm
Compiler for Embedded Reference Guide. You can override the defaults using other options.

For armclang:

• For AArch64 targets, you must use either -march or -mcpu to specify the architecture or
processor and the required architectural features. You can use +[no]feature with -march or -
mcpu to override any architectural feature.

• For AArch32 targets, you must use either -march or -mcpu to specify the architecture or
processor and the required architectural features. You can use -mfloat-abi to override
floating-point linkage. You can use -mfpu to override floating-point unit, Advanced SIMD, and
Cryptographic extensions. You can use +[no]feature with -march or -mcpu to override certain
other architectural features.

For armasm, armlink, and fromelf, you must use the --cpu option to specify the architecture or
processor and the required architectural features. You can use --fpu to override the floating-point
unit and floating-point linkage. The --cpu option is not mandatory for armlink and fromelf, but is
mandatory for armasm.

• In Arm Compiler 5, if you use the armcc --fpu=none option, the compiler
generates an error if it detects floating-point code. This behavior is different
in Arm Compiler for Embedded 6. If you use the armclang -mfpu=none option,
the compiler automatically uses software floating-point libraries if it detects any
floating-point code. You cannot use the armlink --fpu=none option to link object
files created using armclang.

• To link object files created using the armclang -mfpu=none option, you must set
armlink --fpu to an option that supports software floating-point linkage, for
example --fpu=SoftVFP, rather than using --fpu=none.

Related information
armclang -mcpu option
armclang -march option
armclang -mfloat-abi option
armclang -mfpu option
armclang --target option
armlink --cpu option
armlink --fpu option
fromelf --cpu option
fromelf --fpu option
armasm --cpu option
armasm --fpu option

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mfloat-abi
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mfpu
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--cpu-name--armlink-
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--fpu-name--armlink-
https://developer.arm.com/documentation/101754/0617/fromelf-Reference/fromelf-Command-line-Options/--cpu-name--fromelf-
https://developer.arm.com/documentation/101754/0617/fromelf-Reference/fromelf-Command-line-Options/--fpu-name--fromelf-
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--cpu-name--armasm-
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Command-line-Options/--fpu-ame--armasm-

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armcc to armclang

4.6 Preprocessing a scatter file when linking with armlink
Preprocessing a scatter file when linking with armlink in Arm® Compiler for Embedded 6 requires
extra options.

The following shows the required change to the first line of the scatter file:

Arm Compiler 5
#!armcc -E

Arm Compiler for Embedded 6
#!armclang -E --target=arm-arm-none-eabi -mcpu=cortex-m7 -xc

The mandatory option --target specifies the target state, either AArch32 state, as shown in
this example, or AArch64 state. See --target.

The option -mcpu specifies a processor, Cortex-M7 in this example. Alternatively, you can use
-march to specify an architecture. See -mcpu or -march.

The option -x specifies the source language. See -x.

The option -E makes armclang only execute the preprocessor step. See -E.

4.7 Migrating predefined macros
The functionality of the Arm® Compiler 5 predefined macro __MODULE__ is provded by the
__FILE_NAME__ macro in Arm Compiler for Embedded 6.

Related information
Predefined macros

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/--target
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-x--armclang-
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-E
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Other-Compiler-specific-Features/Predefined-macros

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

5 Compiler Source Code Compatibility
Provides details of source code compatibility between Arm® Compiler for Embedded 6 and older
armcc compiler versions.

5.1 Language extension compatibility: keywords
Arm® Compiler for Embedded 6 supports some keywords that are supported in Arm Compiler 5.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The following table lists some of the commonly used keywords that Arm Compiler 5 supports and
shows whether Arm Compiler for Embedded 6 supports them using __attribute__. Replace any
instances of these keywords in your code with the recommended alternative where available or use
inline assembly instructions.

This table is not an exhaustive list of all keywords.

Table 5-1: Keyword language extensions in Arm Compiler 5 and Arm Compiler for Embedded 6

Keyword supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 keyword or
alternative

__align(x) __attribute__((aligned(x)))

__alignof__ __alignof__

__ALIGNOF__ __alignof__

Embedded assembly using __asm Arm Compiler for Embedded 6 does not support the __asm key-
word on function definitions and declarations for embedded as-
sembly. Instead, you can write embedded assembly using the
__attribute__((naked)) function attribute. See __attribut-
e__((naked)).

__const __attribute__((const))

Note:
Older versions of armcc supported the __const keyword. The
equivalent for this keyword in Arm Compiler 5 and Arm Compiler
for Embedded 6 is __attribute__((const)).

__attribute__((const)) __attribute__((const))

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----naked---function-attribute
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----naked---function-attribute

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Keyword supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 keyword or
alternative

__forceinline • For C90, use __inline__ and __attribute__((al\
ways_inline))

• For other source languages, use inline and __attribut\
e__((always_inline)). See _attribute__((always_inline)).

__global_reg(N) Use the register and __asm keywords for global named register
variables using core registers.

For example: register int Reg5 __asm("r5").

In Arm Compiler for Embedded 6, you must also use the relevant -
ffixed-rN armclang option.

Alternatively, you can use equivalent inline assembler instructions.

__inline(x) __inline__. The use of this keyword depends on the language
mode.

__int64 You can use int64_t, which is a 64-bit integer type defined in the
header file <stdint.h> (for C source files) or <cstdint> (for C
++ source files). You can also use long long, however, if you use
long long in C90 mode, the compiler gives:

• a warning.

• an error, if you also use -pedantic-errors.

__INTADDR__ No equivalent.

__irq __attribute__((interrupt)). This keyword is not supported
in AArch64.

__packed for removing padding within structures. __attribute__((packed)). This keyword provides limited
functionality when compared to __packed:

• The __attribute__((packed)) variable attribute applies
to members of a structure or union. It does not apply to vari-
ables that are not members of a structure or union.

• __attribute__((packed)) is not a type qualifier. Taking
the address of a packed member can result in unaligned point-
ers, and usually the compiler generates a warning. Arm recom-
mends upgrading this warning to an error when migrating code
that uses __packed. To upgrade the warning to error, use the
armclang option -Werror=name.

The placement of the attribute is different from the placement of
__packed. If your legacy code contains typedef __packed
struct, then replace it with:

typedef struct __attribute__((packed))

__packed as a type qualifier for unaligned access. __unaligned. This keyword provides limited functionality when
compared to the __packed type qualifier.

The __unaligned type qualifier can be used over a structure on-
ly when using typedef or when declaring a structure variable. This
limitation does not apply when using __packed in Arm Compil-
er 5. Therefore, there is no migration for legacy code that contains
__packed struct S{...};.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----always-inline---function-attribute

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Keyword supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 keyword or
alternative

__pure __attribute__((const))

__smc Use inline assembler instructions or equivalent routine.

__softfp __attribute__((pcs("aapcs")))

__svc Use inline assembler instructions or equivalent routine.

__svc_indirect Use inline assembler instructions or equivalent routine.

__svc_indirect_r7 Use inline assembler instructions or equivalent routine.

__thread __thread

__value_in_regs __attribute__((value_in_regs))

__weak __attribute__((weak))

__writeonly No equivalent.

Named register variables for direct manipulation of a core register
as if it were a C variable. For example:

register int R5 __asm("r5")

Use the register and __asm keywords for global named register
variables using core registers.

For example:

register int Reg5__asm("r5")

In Arm Compiler for Embedded 6, you must also use the relevant -
ffixed-rN armclang option.

Named register variables for direct manipulation of a system regis-
ter, other than core registers, as if it were a C variable. For example:

register int fpscr__asm("fpscr").

No equivalent. To access FPSCR, use the __vfp_status intrinsic
or inline assembly instructions.

Migrating the __packed keyword from Arm Compiler 5 to Arm Compiler for Embedded 6
The __packed keyword in Arm Compiler 5 has the effect of:

• Removing the padding within structures.

• Qualifying the variable for unaligned access.

__attribute__((packed)) and __unaligned keyword. Depending on the use, you might need to
replace __packed with both __attribute__((packed)) and __unaligned. The following table shows
the migration paths for various uses of __packed.

Table 5-2: Migrating the __packed keyword

Arm Compiler 5 Arm Compiler for Embedded 6

__packed int x; __unaligned int x;

__packed int *x; __unaligned int *x;

int * __packed x; int * __unaligned x;

__unaligned int * __packed x; __unaligned int * __unaligned x;

typedef __packed struct S{...} s; typedef __unaligned struct__attribute__((packed))
S{...} s;

__packed struct S{...}; There is no migration. Use a typedef instead.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Arm Compiler 5 Arm Compiler for Embedded 6
__packed struct S{...} s; __unaligned struct__attribute__((packed)) S{...}

s;

Subsequent declarations of variables of type struct S must use
__unaligned, for example __unaligned struct S s2.

struct S{__packed int a;} struct S {__attribute__((packed)) __unaligned int
a;}

Related information
-W

5.2 Language extension compatibility: attributes
Arm® Compiler for Embedded 6 supports some function, variable, and type attributes that
were supported in Arm Compiler 5. Other attributes are not supported, or have an alternate
implementation.

Arm Compiler 5 and Arm Compiler for Embedded 6 support the following attributes. These
attributes do not require modification in your code:

The __declspec keyword is deprecated.

• __attribute__((aligned(x)))

• __attribute__((const))

• __attribute__((deprecated))

• __attribute__((noinline))

• __declspec(noinline)

• __attribute__((nonnull))

• __attribute__((noreturn))

• __declspec(noreturn)

• __attribute__((nothrow))

• __declspec(nothrow)

• __attribute__((pcs("calling convention")))

• __attribute__((pure))

• __attribute__((unused))

• __attribute__((used))

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-W--armclang-

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

• __attribute__((visibility))

• __attribute__((weak))

• __attribute__((weakref))

The following Arm Compiler 5 attributes are not supported by Arm Compiler for Embedded 6:

• __attribute__((nomerge))

• __attribute__((notailcall))

However, since Arm Compiler for Embedded 6 is built on LLVM technology and preserves the
functionality of that technology where possible, you might consider using the following community
(open-source Clang) features instead:

• __attribute__((nomerge))

• __attribute__((not_tail_called))

Community features are not supported by Arm and are used at your own risk. You are responsible
for making sure that any generated code using community features is operating correctly. For more
information, see Support level definitions.

Though Arm Compiler for Embedded 6 supports certain __declspec attributes, Arm recommends
using __attribute__ where available.

Table 5-3: Support for __declspec attributes

declspec supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 alternative

__declspec(dllimport) None. There is no support for BPABI linking models.

__declspec(dllexport) None. There is no support for BPABI linking models.

__declspec(noinline) __attribute__((noinline))

__declspec(noreturn) __attribute__((noreturn))

__declspec(nothrow) __attribute__((nothrow))

__declspec(notshared) None. There is no support for BPABI linking models.

__declspec(thread) __thread

__attribute__((always_inline))
Arm Compiler 5 and Arm Compiler for Embedded 6 support __attribute__((always_inline)).
However, this attribute might require modification in your code.

When using Arm Compiler 5, __attribute__((always_inline)) affects the linkage of the function
according to the inline semantics of the source language.

When using Arm Compiler for Embedded 6, __attribute__((always_inline)) does not affect the
linkage of the function. To change the linkage according to the inline semantics, you must use the
keyword inline or __inline__ (for C90). For more information, see __attribute__((always_inline)).

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----always-inline---function-attribute

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

__attribute__((section("name")))
Arm Compiler 5 and Arm Compiler for Embedded 6 support __attribute__((section("name"))).
However, this attribute might require modification in your code.

When using Arm Compiler 5, section names do not need to be unique. Therefore, you could use
the same section name to create different section types.

Arm Compiler for Embedded 6 supports multiple sections with the same section name only if you
specify a unique ID. You must ensure that different section types either:

• Have a unique section name.

• Have a unique ID, if they have the same section name.

If you use the same section name, for another section or symbol, without a unique ID, then
armclang integrated assembler merges the sections and gives the merged section the flags of the
first section with that name.

Migrating __attribute__((at(address))) and zero-initialized __attribute__((section("name")))
from Arm Compiler 5 to Arm Compiler for Embedded 6
Arm Compiler 5 supports the following attributes, which Arm Compiler for Embedded 6 does not
support:

• __attribute__((at(address))) to specify the absolute address of a function or variable.

• __attribute__((at(address), zero_init)) to specify the absolute address of a zero-
initialized variable.

• __attribute__((section(name), zero_init)) to place a zero-initialized variable in a zero-
initialized section with the given name.

• __attribute__((zero_init)) to generate an error if the variable has an initializer.

The following table shows migration paths for these features using Arm Compiler for Embedded 6
supported features:

Table 5-4: Migrating __attribute__((at(address))) and zero-initialized __attribute__((section("{name}")))

Arm Compiler 5 attribute Arm Compiler for Embedded 6 attribute Description

__attribute__((at(address))) __attribute__((section(".AR\
M.__at_address")))

armlink in Arm Compiler for Embedded 6
still supports the placement of sections in
the form of .ARM.__at_address

Note:
The Arm Compiler for Embedded 6 at-
tribute only supports a string to specify
the section. To use an arithmetic expres-
sion, see Supporting arithmetic expres-
sions in the at(address) attribute in Arm
Compiler for Embedded 6.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Integrated-Assembler/Section-directives

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Arm Compiler 5 attribute Arm Compiler for Embedded 6 attribute Description
__attribute__((at(address), ze\
ro_init))

__attribute__((section(".bss.AR\
M.__at_address")))

armlink in Arm Compiler for Embedded
6 supports the placement of zero-initial-
ized sections in the form of .bss.AR\
M.__at_address. The .bss prefix is
case-sensitive and must be all lowercase.

__attribute__((section(name),
zero_init))

__attribute__((section(".b\
ss.name")))

name is a name of your choice. The .bss
prefix is case-sensitive and must be all low-
ercase.

__attribute__((zero_init)) Arm Compiler for Embedded 6 by default
places zero-initialized variables in a .bss
section. However, there is no equivalent to
generate an error when you specify an ini-
tializer.

If the variable has an initializer, Arm Compil-
er 5 generates an error. Otherwise, it places
the zero-initialized variable in a .bss sec-
tion.

Supporting arithmetic expressions in the at(address) attribute in Arm Compiler for
Embedded 6
The at(address) attribute in Arm Compiler 5 supports arithmetic expressions to specify the
section, for example:

my_variable_type my_variable __attribute__((at(0xE0001000 + MY_PREDEFINED_OFFSET)));

To do the equivalent in Arm Compiler for Embedded 6, you must use a pointer approach. For this
Arm Compiler 5 example, change the code to:

static my_variable_type * const my_address = (my_variable_type *) (0xE0001000 +
 MY_PREDEFINED_OFFSET);

#define my_variable (*my_address)

Related information
Placing __at sections at a specific address

5.3 Language extension compatibility: pragmas
Arm® Compiler for Embedded 6 provides support for some pragmas that are supported in Arm
Compiler 5. Other pragmas are not supported, or must be replaced with alternatives.

The following table lists some of the commonly used pragmas that are supported by Arm Compiler
5 but are not supported by Arm Compiler for Embedded 6. Replace any instances of these pragmas
in your code with the recommended alternative.

Table 5-5: Pragma language extensions that must be replaced

Pragma supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 alternative

#pragma import (symbol) __asm(".global symbol\n\t");

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 135

https://developer.arm.com/documentation/101754/0617/armlink-Reference/Scatter-loading-Features/Root-region-and-the-initial-entry-point/Placing---at-sections-at-a-specific-address

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Pragma supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 alternative
#pragma anon_unions

#pragma no_anon_unions

In C, anonymous structs and unions are a C11 extension which is
enabled by default in armclang. If you specify the -pedantic op-
tion, the compiler emits warnings about extensions do not match
the specified language standard. For example:

armclang --target=aarch64-arm-none-eabi -c -
pedantic --std=c90 test.c

 test.c:3:5: warning: anonymous structs are a
 C11 extension [-Wc11-extensions]

In C++, anonymous unions are part of the language standard, and
are always enabled. However, anonymous structs and classes are an
extension. If you specify the -pedantic option, the compiler emits
warnings about anonymous structs and classes. For example:

armclang --target=aarch64-arm-none-eabi -c -
pedantic -xc++ test.c

 test.c:3:5: warning: anonymous structs are a
 GNU extension [-Wgnu-anonymous-struct]

Introducing anonymous unions, struct and classes using a typedef
is a separate extension in armclang, which must be enabled using
the -fms-extensions option.

#pragma arm

#pragma thumb

armclang does not support switching instruction set in the mid-
dle of a file. You can use the command-line options -marm and -
mthumb to specify the instruction set of the whole file.

#pragma arm section #pragma clang section

In Arm Compiler 5, the section types you can use this pragma with
are rodata, rwdata, zidata, and code. In Arm Compiler for Em-
bedded 6, the equivalent section types are rodata, data, bss,
and text respectively.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Pragma supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 alternative
#pragma diag_default

#pragma diag_suppress

#pragma diag_remark

#pragma diag_warning

#pragma diag_error

The following pragmas provide equivalent functionality for di\
ag_suppress, diag_warning, and diag_error:

• #pragma clang diagnostic ignored "-Wmulti\
char"

• #pragma clang diagnostic warning "-Wmulti\
char"

• #pragma clang diagnostic error "-Wmultichar"

Note that these pragmas use armclang diagnostic groups, which do
not have a precise mapping to armcc diagnostic tags.

armclang has no equivalent to diag_default or diag_remark.
diag_default can be replaced by wrapping the change of di-
agnostic level with #pragma clang diagnostic push and
#pragma clang diagnostic pop, or by manually returning
the diagnostic to the default level.

There is an additional diagnostic level supported in armclang, fa\
tal, which causes compilation to fail without processing the rest of
the file. You can set this as follows:

#pragma clang diagnostic fatal "-Wmultichar"

#pragma exceptions_unwind

#pragma no_exceptions_unwind

armclang does not support these pragmas.

Use the __attribute__((nothrow)) function attribute in-
stead.

#pragma GCC system_header This pragma is supported by both armcc and armclang, but #prag\
ma clang system_header is the preferred spelling in armclang
for new code.

#pragma hdrstop

#pragma no_pch

armclang does not support these pragmas.

#pragma import(__use_no_semihosting)

#pragma import(__use_no_semihosting_swi)

armclang does not support these pragmas. However, in C code, you
can replace these pragmas with:

__asm(".global __use_no_semihosting\n\t");

#pragma inline

#pragma no_inline

armclang does not support these pragmas. However, inlining
can be disabled on a per-function basis using the __attribut\
e__((noinline)) function attribute.

The default behavior of both armcc and armclang is to inline func-
tions when the compiler considers this worthwhile, and this is the
behavior selected by using #pragma inline in armcc. To force a
function to be inlined in armclang, use the __attribute__((al\
ways_inline)) function attribute.

#pragma Onum

#pragma Ospace

#pragma Otime

armclang does not support changing optimization options within a
file. Instead these must be set on a per-file basis using command-
line options.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Pragma supported by Arm Compiler 5 Recommended Arm Compiler for Embedded 6 alternative
#pragma pop

#pragma push

armclang does not support these pragmas. Therefore, you cannot
push and pop the state of all supported pragmas.

However, you can push and pop the state of the diagnostic pragmas
and the state of the pack pragma.

To control the state of the diagnostic pragmas, use #pragma
clang diagnostic push and #pragma clang diagnostic
pop.

To control the state of the pack pragma, use #pragma
pack(push) and #pragma pack(pop).

#pragma softfp_linkage armclang does not support this pragma. Instead, use the __at\
tribute__((pcs("aapcs"))) function attribute to set the
calling convention on a per-function basis, or use the -mfloat-
abi=soft command-line option to set the calling convention on a
per-file basis.

#pragma no_softfp_linkage armclang does not support this pragma. Instead, use the __at\
tribute__((pcs("aapcs-vfp"))) function attribute to
set the calling convention on a per-function basis, or use the -
mfloat-abi=hard command-line option to set the calling con-
vention on a per-file basis.

#pragma unroll[(n)]

#pragma unroll_completely

armclang supports these pragmas.

The default for #pragma unroll (that is, with no iteration count
specified) differs between armclang and armcc:

• With armclang, the default is to fully unroll a loop.

• With armcc, the default is #pragma unroll(4).

Related information
Reference Guide: Compiler-specific Pragmas

5.4 Language extension compatibility: intrinsics
Arm® Compiler for Embedded 6 provides support for some intrinsics that are supported in Arm
Compiler 5.

The following table lists some of the commonly used intrinsics that are supported by Arm Compiler
5 and shows whether Arm Compiler for Embedded 6 supports them or provides an alternative. If
there is no support in Arm Compiler for Embedded 6, you must replace them with suitable inline
assembly instructions or calls to the standard library. To use the intrinsic in Arm Compiler for
Embedded 6, you must include the appropriate header file. The ACLE intrinsics that are supported
by Arm Compiler 5 are described in the Arm C Language Extensions 2.1. For more information
on the ACLE intrinsics that are supported by Arm Compiler for Embedded 6, see the latest Arm C
Language Extensions.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Pragmas
https://developer.arm.com/documentation/101028/0004
https://developer.arm.com/documentation/101028/latest
https://developer.arm.com/documentation/101028/latest

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

• This is not an exhaustive list of all the intrinsics.

• The intrinsics provided in <arm_compat.h> are only supported for AArch32.

Table 5-6: Compiler intrinsic support in Arm Compiler for Embedded 6

Intrinsic in Arm Compiler 5 Function Support in Arm Compiler for
Embedded 6

Header file for Arm Compiler
for Embedded 6

__breakpoint Inserts a BKPT instruction. Yes arm_compat.h

__cdp Inserts a coprocessor instruction. Yes. In Arm Compiler for Embed-
ded 6, the equivalent intrinsic is
__arm_cdp.

arm_acle.h

__clrex Inserts a CLREX instruction. No -

__clz Inserts a CLZ instruction or
equivalent routine.

Yes arm_acle.h

__current_pc Returns the program counter at
this point.

Yes arm_compat.h

__current_sp Returns the stack pointer at this
point.

Yes arm_compat.h

__isb Inserts ISB or equivalent. Yes arm_acle.h

__disable_fiq Disables FIQ interrupts (Arm®v7
architecture only). Returns
previous value of FIQ mask.

Yes arm_compat.h

__disable_irq Disable IRQ interrupts. Returns
previous value of IRQ mask.

Yes arm_compat.h

__dmb Inserts a DMB instruction or
equivalent.

Yes arm_acle.h

__dsb Inserts a DSB instruction or
equivalent.

Yes arm_acle.h

__enable_fiq Enables fast interrupts. Yes arm_compat.h

__enable_irq Enables IRQ interrupts. Yes arm_compat.h

__fabs Inserts a VABS or equivalent
code sequence.

No. Arm recommends using
the standard C library function
fabs().

-

__fabsf Single precision version of
__fabs.

No. Arm recommends using the
standard C library function fab\
sf().

-

__force_stores Flushes all external variables
visible from this function, if they
have been changed.

Yes arm_compat.h

__ldrex Inserts an appropriately sized
Load Exclusive instruction.

No. This intrinsic is deprecated in
ACLE 2.0.

-

__ldrexd Inserts an LDREXD instruction. No. This intrinsic is deprecated in
ACLE 2.0.

-

__ldrt Inserts an appropriately sized
user-mode load instruction.

No -

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Intrinsic in Arm Compiler 5 Function Support in Arm Compiler for
Embedded 6

Header file for Arm Compiler
for Embedded 6

__memory_changed Is similar to __force_stores,
but also reloads the values from
memory.

Yes arm_compat.h

__nop Inserts a NOP or equivalent in-
struction that will not be opti-
mized away. It also inserts a se-
quence point, and scheduling
barrier for side-effecting function
calls.

Yes arm_acle.h

__pld Inserts a PLD instruction, if
supported.

Yes arm_acle.h

__pldw Inserts a PLDW instruction, if sup-
ported (Arm®v7 architecture
with MP).

No. Arm recommends using
__pldx described in the ACLE
document.

arm_acle.h

__pli Inserts a PLI instruction, if
supported.

Yes arm_acle.h

__promise Compiler assertion that the ex-
pression always has a nonzero
value. If asserts are enabled then
the promise is checked at run-
time by evaluating expr using
assert(expr).

Yes. However, you must #in\
clude <assert.h> to use
__promise. __promise has
the same behavior as assert()
unless at least one of NDEBUG or
__DO_NOT_LINK_PROMISE_WITH_ASSERT
is defined.

assert.h

__qadd Inserts a saturating add
instruction, if supported.

Yes arm_acle.h

__qdbl Inserts instructions equivalent to
qadd(val,val), if supported.

Yes arm_acle.h

__qsub Inserts a saturating subtract, or
equivalent routine, if supported.

Yes arm_acle.h

__rbit Inserts a bit reverse instruction. Yes arm_acle.h

__rev Insert a REV, or endian swap in-
struction.

Yes arm_acle.h

__return_address Returns value of LR when re-
turning from current function,
without inhibiting optimizations
like inlining or tailcalling.

No. Arm recommends using
inline assembly instructions.

-

__ror Insert an ROR instruction. Yes arm_acle.h

__schedule_barrier Create a sequence point with-
out effecting memory or insert-
ing NOP instructions. Functions
with side effects cannot move
past the new sequence point.

Yes arm_compat.h

__semihost Inserts an SVC or BKPT instruc-
tion.

Yes arm_compat.h

__sev Insert a SEV instruction. Error if
the SEV instruction is not sup-
ported.

Yes arm_acle.h

__sqrt Inserts a VSQRT instruction on
targets with a VFP coprocessor.

No -

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Intrinsic in Arm Compiler 5 Function Support in Arm Compiler for
Embedded 6

Header file for Arm Compiler
for Embedded 6

__sqrtf single precision version of
__sqrt.

No -

__ssat Inserts an SSAT instruction. Er-
ror if the SSAT instruction is not
supported.

Yes arm_acle.h

__strex Inserts an appropriately sized
Store Exclusive instruction.

No. This intrinsic is deprecated in
ACLE 2.0.

-

__strexd Inserts a doubleword Store
Exclusive instruction.

No. This intrinsic is deprecated in
ACLE 2.0.

-

__strt Insert an appropriately sized
STRT instruction.

No -

__swp Inserts an appropriately sized
SWP instruction.

Yes. However, the SWP instruc-
tion is deprecated, and Arm
does not recommend the use of
__swp.

arm_acle.h

__usat Inserts a USAT instruction. Er-
ror if the USAT instruction is not
supported.

Yes arm_acle.h

__wfe Inserts a WFE instruction. Error
if the WFE instruction is not sup-
ported.

Yes arm_acle.h

__wfi Inserts a WFI instruction. Error
if the WFI instruction is not sup-
ported.

Yes arm_acle.h

__yield Inserts a YIELD instruction. Er-
ror if the YIELD instruction is
not supported.

Yes arm_acle.h

Armv6 SIMD intrinsics Inserts an Armv6 SIMD
instruction.

No -

ETSI intrinsics 35 intrinsic functions and 2 glob-
al variable flags specified in ETSI
G729 used for speech encoding.
These are provided in the Arm
headers in dspfns.h.

No -

C55x intrinsics Emulation of selected TI C55x
compiler intrinsics.

No -

__vfp_status Reads the FPSCR. Yes arm_compat.h

FMA intrinsics Intrinsics for fused-multiply-add
on the Cortex®-M4 or Cortex-A5
processor in c99 mode.

No -

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

5.5 Diagnostics for pragma compatibility
Older armcc compiler versions supported many pragmas which are not supported by armclang,
but which could change the semantics of code. When armclang encounters these pragmas, it
generates diagnostic messages.

The following table shows which diagnostics are generated for each pragma type, and the
diagnostic group to which that diagnostic belongs. armclang generates diagnostics as follows:

• Errors indicate use of an armcc pragma which could change the semantics of code.

• Warnings indicate use of any other armcc pragma which is ignored by armclang.

• Pragmas other than those listed are silently ignored.

Table 5-7: Pragma diagnostics

Pragma supported by older compiler
versions

Default diagnostic type Diagnostic group

#pragma anon_unions Warning armcc-pragma-anon-unions

#pragma no_anon_unions Warning armcc-pragma-anon-unions

#pragma arm Error armcc-pragma-arm

#pragma arm section [sec\
tion_type_list]

Error armcc-pragma-arm

#pragma diag_default
tag[,tag,...]

Error armcc-pragma-diag

#pragma diag_error
tag[,tag,...]

Error armcc-pragma-diag

#pragma diag_remark
tag[,tag,...]

Warning armcc-pragma-diag

#pragma diag_suppress
tag[,tag,...]

Warning armcc-pragma-diag

#pragma diag_warning
tag[,tag,...]

Warning armcc-pragma-diag

#pragma exceptions_unwind Error armcc-pragma-exceptions-unwind

#pragma no_exceptions_unwind Error armcc-pragma-exceptions-unwind

#pragma GCC system_header None -

#pragma hdrstop Warning armcc-pragma-hdrstop

#pragma import symbol_name Error armcc-pragma-import

#pragma inline Warning armcc-pragma-inline

#pragma no_inline Warning armcc-pragma-inline

#pragma no_pch Warning armcc-pragma-no-pch

#pragma Onum Warning armcc-pragma-optimization

#pragma once None -

#pragma Ospace Warning armcc-pragma-optimization

#pragma Otime Warning armcc-pragma-optimization

#pragma pack None -

#pragma pop Error armcc-pragma-push-pop

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Pragma supported by older compiler
versions

Default diagnostic type Diagnostic group

#pragma push Error armcc-pragma-push-pop

#pragma softfp_linkage Error armcc-pragma-softfp-linkage

#pragma no_softfp_linkage Error armcc-pragma-softfp-linkage

#pragma thumb Error armcc-pragma-thumb

#pragma weak symbol None -

#pragma weak symbol1 = symbol2 None -

In addition to the above diagnostic groups, there are the following additional diagnostic groups:

armcc-pragmas
Contains all of the above diagnostic groups.

unknown-pragmas
Contains diagnostics about pragmas which are not known to armclang, and are not in the
above table.

pragmas
Contains all pragma-related diagnostics, including armcc-pragmas and unknown-pragmas.

Any non-fatal armclang diagnostic group can be ignored, upgraded, or downgraded using the
following command-line options:

Suppress a group of diagnostics:
-Wno-diag-group

Upgrade a group of diagnostics to warnings:
-Wdiag-group

Upgrade a group of diagnostics to errors:
-Werror=diag-group

Downgrade a group of diagnostics to warnings:
-Wno-error=diag-group

Related information
Language extension compatibility: pragmas on page 57

5.6 C and C++ implementation compatibility
Arm® Compiler for Embedded 6 C and C++ implementation details differ from previous compiler
versions.

The following table describes the C and C++ implementation detail differences.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Table 5-8: C and C++ implementation detail differences

Feature Older versions of Arm Compiler Arm Compiler for Embedded 6

Integer operations

Shifts int shifts > 0 && < 127

int left_shifts > 31 == 0

int right_shifts > 31 == 0

(for unsigned or positive)

int right_shifts > 31 == -1

(for negative)

long long shifts > 0 && < 63

Warns when shift amount > width of type.

You can use the -Wshift-count-overflow option to suppress this
warning.

Integer division Checks that the sign of the remainder
matches the sign of the numerator

The sign of the remainder is not necessarily the same as the sign of the
numerator.

Floating-point operations

Default standard IEEE 754 standard, rounding to nearest
representable value, exceptions disabled
by default.

All facilities, operations, and representations guaranteed by the IEEE
standard are available in single and double-precision. Modes of opera-
tion can be selected dynamically at runtime.

This is equivalent to the --fpmode=ieee_full option in older ver-
sions of Arm Compiler.

#pragma STDC
FP_CONTRACT

#pragma STDC FP_CONTRACT Might affect code generation.

Unions, enums and structs

Enum packing Enums are implemented in the smallest
integral type of the correct sign to hold
the range of the enum values, except for
when compiling in C++ mode with --
enum_is_int.

By default enums are implemented as int, with long long used when
required.

Allocation of bit-
fields in containers

Allocation of bit-fields in containers. A container is an object, aligned as the declared type. Its size is
sufficient to contain the bit-field, but might be smaller or larger than the
bit-field declared type.

Signedness of plain
bit-fields

Unsigned.

Plain bit-fields declared without either the
signed or unsigned qualifiers default to
unsigned. The --signed_bitfields
option treats plain bit-fields as signed.

Signed.

Plain bit-fields declared without either the signed or unsigned qualifiers
default to signed. There is no equivalent to either the --signed_bit\
fields or --no_signed_bitfields options.

Arrays and pointers

Casting between
integers and
pointers

No change of representation Converting a signed integer to a pointer type with greater bit width
sign-extends the integer.

Converting an unsigned integer to a pointer type with greater bit width
zero-extends the integer.

Misc C

sizeof(wchar_t) 2 bytes 4 bytes

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

Feature Older versions of Arm Compiler Arm Compiler for Embedded 6
size_t Defined as unsigned int, 32-bit. Defined as unsigned int in 32-bit architectures, and <sign><type>

64-bit in 64-bit architectures.

ptrdiff_t Defined as signed int, 32-bit. Defined as unsigned int in 32-bit architectures, and <sign><type>
64-bit in 64-bit architectures.

Misc C++

C++ library Rogue Wave Standard C++ Library LLVM libc++ Library

Note:
When the C++ library is used in source code, there is limited
compatibility between object code created with Arm Compiler for
Embedded 6 and object code created with Arm Compiler 5. This
also applies to indirect use of the C++ library, for example memory
allocation or exception handling.

Implicit inclusion If compilation requires a template defini-
tion from a template declared in a head-
er file xyz.h, the compiler implicitly in-
cludes the file xyz.cc or xyz.CC.

Not supported.

Alternative template
lookup algorithms

When performing referencing context
lookups, name lookup matches against
names from the instantiation context
as well as from the template definition
context.

Not supported.

Exceptions Off by default, function unwinding on
with --exceptions by default.

On by default in C++ mode.

Note:
For C++ code, -fexceptions has a large increase in the code size.
If you use -fno_exceptions, then the code size is in the range of
that created with Arm Compiler 5.

Translation

Diagnostics
messages format

source-file, line-number :
severity : error-code : expla\
nation

source-file:line-number:char-number: description
[diagnostic-flag]

Environment

Physical source file
bytes interpretation

Current system locale dependent or set
using the --locale command-line op-
tion.

UTF-8, either with or without the Byte Order Mark (BOM).

Related information
Language extension compatibility: keywords on page 51
Language extension compatibility: attributes on page 54
Language extension compatibility: pragmas on page 57

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

5.7 Compatibility of C++ objects
The compatibility of C++ objects compiled with Arm® Compiler 5 depends on the C++ libraries
used.

Compatibility with objects compiled using Rogue Wave standard library headers
Arm Compiler for Embedded 6 does not support binary compatibility with objects compiled using
the Rogue Wave standard library include files.

There are warnings at link time when objects are mixed. L6869W is reported if an object requests the
Rogue Wave standard library. L6870W is reported when using an object that is compiled with Arm
Compiler 5 with exceptions support.

The impact of mixing objects that have been compiled against different C++ standard library
headers might include:

• Undefined symbol errors.

• Increased code size.

• Possible runtime errors.

If you have Arm Compiler for Embedded 6 objects that have been compiled with the legacy
--stdlib=legacy_cpplib option then these objects use the Rogue Wave standard library and
therefore might be incompatible with objects created using Arm Compiler 6.4 or later. To resolve
these issues, you must recompile all object files with Arm Compiler 6.4 or later.

Compatibility with C++ objects compiled using Arm Compiler 5
The choice of C++ libraries at link time must match the choice of C++ include files at compile
time for all input objects. Arm Compiler 5 objects that use the Rogue Wave C++ libraries are not
compatible with Arm Compiler for Embedded 6 objects. Arm Compiler 5 objects that use C++
but do not make use of the Rogue Wave header files can be compatible with Arm Compiler for
Embedded 6 objects that use libc++ but this is not guaranteed.

Arm recommends using Arm Compiler for Embedded 6 for building the object files.

Compatibility of arrays of objects compiled using Arm Compiler 5
Arm Compiler for Embedded 6 is not compatible with objects from Arm Compiler 5 that use
operator new[] and delete[]. Undefined symbol errors result at link time because Arm Compiler
for Embedded 6 does not provide the helper functions that Arm Compiler 5 depends on. For
example:

//construct.cpp:

class Foo
{
public:
 Foo() : x_(new int) { *x_ = 0; }
 void setX(int x) { *x_ = x; }
 ~Foo() { delete x_; }
private:
 int* x_;

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Compiler Source Code Compatibility

};

void func(void)
{
 Foo* array;
 array = new Foo [10];
 array[0].setX(1);
 delete[] array;
}

If you build this example with the Arm Compiler 5 compiler, armcc, and link with the Arm Compiler
for Embedded 6 linker, armlink, using:

armcc -c construct.cpp -Ospace -O1 --cpu=cortex-a9

armlink construct.o -o construct.axf

the linker reports:

Error: L6218E: Undefined symbol __aeabi_vec_delete (referred from construct.o).

Error: L6218E: Undefined symbol __aeabi_vec_new_cookie_nodtor (referred from con\
struct.o).

To resolve these linker errors, you must use the Arm Compiler for Embedded 6 compiler, armclang,
to compile all C++ files that use the new[] and delete[] operators.

You do not have to specify --stdlib=libc++ for armlink, because this is the default
and only option in Arm Compiler 6.4, and later.

Related information
-stdlib

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 135

https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--stdlib

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

6 Migrating from armasm to the armclang
Integrated Assembler

Describes how to migrate assembly code from legacy armasm syntax to GNU syntax (used by
armclang).

6.1 Migration of assembler command-line options from
armasm to the armclang integrated assembler

Arm® Compiler for Embedded 6 provides many command-line options, including most Clang
command-line options as well as several Arm-specific options.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The following GNU assembly directives are [COMMUNITY] features:

• .eabi_attribute Tag_ABI_PCS_RO_data, value

• .eabi_attribute Tag_ABI_PCS_R9_use, value

• .eabi_attribute Tag_ABI_PCS_RW_data, value

• .eabi_attribute Tag_ABI_VFP_args, value

• .eabi_attribute Tag_CPU_unaligned_access, value

• .ident

• .protected

• .section .note.GNU-stack, "x"

• -Wa,--noexecstack

• -Wa,-L

• -Wa,-defsym,symbol=value

The following table describes the most common armasm command-line options, and shows the
equivalent options for the armclang integrated assembler.

Additional information about command-line options is available:

• The Arm Compiler for Embedded Reference Guide provides more detail about the command-line
options.

• For a full list of Clang command-line options, consult the Clang and LLVM documentation.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Table 6-1: Comparison of command-line options in armasm and the armclang integrated assembler

armasm option armclang integrated assembler option Description

--arm_only No equivalent. Enforces A32 instructions only.

--apcs=/nointerwork No equivalent. Specifies that the code in the input file can interwork
between A32 and T32 safely. Interworking is always
enabled in Arm Compiler for Embedded 6.

--apcs=/ropi,

--apcs=/noropi

No direct equivalent. With armasm, the options specify whether the code
in the input file is Read-Only Position-Independent
(ROPI) code.

With the armclang integrated assembler, use the
GNU assembly .eabi_attribute directive instead.

To specify that the code is ROPI code, use the direc-
tive as follows:

 .eabi_attribute
 Tag_ABI_PCS_RO_data, 1

The code is marked as not ROPI code by default.

--apcs=/rwpi,

--apcs=/norwpi

No direct equivalent. With armasm, the options specify whether the code
in the input file is Read-Write Position-Independent
(RWPI) code.

With the armclang integrated assembler, use the
GNU assembly .eabi_attribute directive instead.

To specify that the code is RWPI code, use the direc-
tive as follows:

 .eabi_attribute
 Tag_ABI_PCS_R9_use, 1

 .eabi_attribute Tag_ABI_PCS_R\
W_data, 2

The code is marked as not RWPI code by default.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm option armclang integrated assembler option Description
--apcs=/hardfp,

--apcs=/softfp

No direct equivalent. With armasm, the options set attributes in the object
file to request hardware or software floating-point
linkage.

With the armclang integrated assembler, use the
GNU assembly .eabi_attribute directive instead.

To request hardware floating-point linkage, use the di-
rective as follows:

 .eabi_attribute Tag_ABI_VF\
P_args, 1

To request software floating-point linkage, use the di-
rective as follows:

 .eabi_attribute Tag_ABI_VF\
P_args, 0

--checkreglist,

--diag_warning=1206

This is the default. Generates warnings if register lists in LDM and STM in-
structions are not provided in increasing register num-
ber order.

Note:
This warning cannot be suppressed or upgraded to
an error.

--comment_section,

--no_comment_section

No direct equivalent. With armasm, the option controls the inclusion of a
comment section .comment in object files.

With the armclang integrated assembler, use the
GNU assembly .ident directive to manually add a
comment section.

--debug,

-g

-g Instructs the assembler to generate DWARF debug
tables.

With armasm, the default format for debug tables is
DWARF 3. Named local labels are not preserved in
the object file, unless the --keep option is used.

With the armclang integrated assembler, the default
format for debug tables is DWARF 4. Named local la-
bels are always preserved in the object file. See the
entry for --keep in this table for details.

--diag_warning=1645 No equivalent. With armasm, the option enables warnings about
instruction substitutions.

With the armclang integrated assembler, instruction
substitution support is limited. Where it is not
supported, the assembler generates an error message.

Use the armasm warning when migrating code to
find instructions being substituted and perform the
substitution manually.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm option armclang integrated assembler option Description
--diag_warning=1763 No equivalent. With armasm, the option enables warnings about au-

tomatic generation of IT blocks when assembling T32
code (formerly Thumb code).

With the armclang integrated assembler, automat-
ic generation of IT blocks is disabled by default. The
assembler generates an error message when assem-
bling conditional instructions without an enclosing IT
block. To enable automatic generation of IT blocks,
use the command-line option -mimplicit-it=al\
ways or -mimplicit-it=thumb.

--dllexport_all No direct equivalent. With armasm, the option gives all exported global
symbols STV_PROTECTED visibility in ELF rather
than STV_HIDDEN, unless overridden by source di-
rectives.

With the armclang integrated assembler, use the
GNU assembly .protected directive to manually
give exported symbols STV_PROTECTED visibility.

--execstack,

--no_execstack

-Wa,--noexecstack

No direct equivalent for

--execstack.

With armasm, the option generates a .note.GNU-
stack section marking the stack as either executable
or non-executable.

With the armclang integrated assembler, the equiva-
lent option can be used to generate a .note.GNU-
stack section marking the stack as non-executable.

To generate such a section and mark the stack as exe-
cutable, use the GNU assembly .section directive
as follows:

 .section .note.GNU-stack, "x"

The command-line option -Wa,--noexecstack
overrides the use of the .section directive.

--keep No direct equivalent. With armasm, the option instructs the assembler to
keep named local labels in the symbol table of the ob-
ject file, for use by the debugger.

With the armclang integrated assembler, named lo-
cal labels defined without using the GNU assembly lo-
cal symbol name prefix .L are always preserved in the
object file.

Use the command-line option -Wa,-L to automati-
cally preserve all named local labels defined using the
GNU assembly local symbol name prefix.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm option armclang integrated assembler option Description
-M -M Instructs the assembler to produce a list of makefile

dependency lines suitable for use by a make utility.

Note:
Only dependencies visible to the preprocessor are
included. Files added using the GNU assembler syn-
tax .incbin or .include directives (or armasm
syntax INCBIN, INCLUDE, or GET directives) are
not included.
Note:
With the armclang integrated assembler, using this
option with -o outputs the makefile dependency
lines to the file specified. An object file is not pro-
duced.

--mm -MM Creates a single makefile dependency file, without the
system header files.

Note:
Only dependencies visible to the preprocessor are
included. Files added using the GNU assembler syn-
tax .incbin or .include directives (or armasm
syntax INCBIN, INCLUDE, or GET directives) are
not included.
Note:
With the armclang integrated assembler, using this
option with -o outputs the makefile dependency file
to the file specified. An object file is not produced.

--no_hide_all -fvisibility=default Gives all exported and imported global sym-
bols STV_DEFAULT visibility in ELF rather than
STV_HIDDEN, unless overridden using source direc-
tives.

--predefine "directive",

--pd "directive"

-Wa,-defsym,symbol=value With armasm, the option instructs the assembler to
pre-execute one of the SETA, SETL, or SETS direc-
tives as specified using directive.

With the armclang integrated assembler, the op-
tion instructs the assembler to pre-define the sym-
bol symbol with the value value. This GNU assem-
bly .set directive can be used to change this value in
the file being assembled.

--reduce_paths, --no_re\
duce_paths

No direct equivalent. Windows systems impose a 260 character limit on
file paths. Arm recommends that you avoid using
long and deeply nested file paths, in preference to
minimizing path lengths using the armasm --re\
duce_paths option, which only works on 32-bit
Windows systems.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm option armclang integrated assembler option Description
--unaligned_access,

--no_unaligned_access

No direct equivalent. With armasm, the options instruct the assembler to
set an attribute in the object file to enable or disable
the use of unaligned accesses.

With the armclang integrated assembler, use the
GNU assembly .eabi_attribute directive instead.

To enable the use of unaligned access, use the direc-
tive as follows:

 .eabi_attribute Tag_CPU_un\
aligned_access, 1

To disable the use of unaligned access, use the direc-
tive as follows:

 .eabi_attribute Tag_CPU_un\
aligned_access, 0

--unsafe No direct equivalent. With armasm, the option enables instructions for ar-
chitectures other than the target architecture to be
assembled without error.

With the armclang integrated assembler, use the
GNU assembly .inst directive to generate such in-
structions.

6.2 Overview of differences between armasm and GNU
syntax assembly code

armasm (for assembling legacy assembly code) uses armasm syntax assembly code.

armclang aims to be compatible with GNU syntax assembly code (that is, the assembly code syntax
supported by the GNU assembler, as).

If you have legacy assembly code that you want to assemble with armclang, you must convert that
assembly code from armasm syntax to GNU syntax.

The specific instructions and order of operands in your UAL syntax assembly code do not change
during this migration process.

However, you need to make changes to the syntax of your assembly code. These changes include:

• The directives in your code.

• The format of labels, comments, and some types of literals.

• Some symbol names.

• The operators in your code.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

The following examples show simple, equivalent, assembly code in both armasm and GNU syntax.

GNU syntax
// Simple GNU syntax example [1]
//
// Iterate round a loop 10 times, adding 1 to a register each time.

 .section .text,"ax" // [2]
 .balign 4
main: // [3]
 MOV w5,#0x64 // W5 = 100 [4]
 MOV w4,#0 // W4 = 0
 B test_loop // branch to test_loop
loop:
 ADD w5,w5,#1 // Add 1 to W5
 ADD w4,w4,#1 // Add 1 to W4
test_loop:
 CMP w4,#0xa // if W4 < 10, branch back to loop
 BLT loop
 .end // [5]

Example notes:

[1] See Comments.

[2] See Sections.

[3] See Labels.

[4] See Numeric literals.

[5] See Miscellaneous directives.

armasm syntax
; Simple armasm syntax example
;
; Iterate round a loop 10 times, adding 1 to a register each time.
 AREA ||.text||, CODE, READONLY, ALIGN=2
main PROC
 MOV w5,#0x64 ; W5 = 100
 MOV w4,#0 ; W4 = 0
 B test_loop ; branch to test_loop
loop
 ADD w5,w5,#1 ; Add 1 to W5
 ADD w4,w4,#1 ; Add 1 to W4
test_loop
 CMP w4,#0xa ; if W4 < 10, branch back to loop
 BLT loop
 ENDP

 END

Related information
Comments on page 77
Labels on page 78
Numeric local labels on page 78
Functions on page 80

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Sections on page 81
Symbol naming rules on page 83
Numeric literals on page 83
Operators on page 85
Alignment on page 85
PC-relative addressing on page 86
Conditional directives on page 89
Data definition directives on page 90
Instruction set directives on page 92
Miscellaneous directives on page 92
Symbol definition directives on page 94
About the Unified Assembler Language

6.3 Comments
A comment identifies text that the assembler ignores.

GNU syntax
GNU syntax assembly code provides two different methods for marking comments:

• The /* and */ markers identify multiline comments:

/* This is a comment
that spans multiple
lines */

• The // marker identifies the remainder of a line as a comment:

 MOV R0,#16 // Load R0 with 16

armasm syntax
A comment is the final part of a source line. The first semicolon on a line marks the beginning of a
comment except where the semicolon appears inside a string literal.

The end of the line is the end of the comment. A comment alone is a valid line.

For example:

; This whole line is a comment

; And also this line

myProc: PROC
 MOV r1, #16 ; Load R0 with 16

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 135

https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/Writing-A32-T32-Instructions-in-armasm-Syntax-Assembly-Language/About-the-Unified-Assembler-Language

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Related information
GNU Binutils - Using as: Comments

6.4 Labels
Labels are symbolic representations of addresses. You can use labels to mark specific addresses
that you want to refer to from other parts of the code.

GNU syntax
A label is written as a symbol that either begins in the first column, or has nothing but whitespace
between the first column and the label. A label can appear either in a line on its own, or in a line
with an instruction or directive. A colon ":" follows the label (whitespace is allowed between the
label and the colon):

 MOV R0,#16
loop: // "loop" label on its own line
 SUB R0,R0,#1
 CMP R0,#0
 BGT loop

 MOV R0,#16
loop: SUB R0,R0,#1 // "loop" label in a line with an instruction
 CMP R0,#0
 BGT loop

armasm syntax
A label is written as a symbol beginning in the first column. A label can appear either in a line on its
own, or in a line with an instruction or directive. Whitespace separates the label from any following
instruction or directive:

 MOV R0,#16

loop SUB R0,R0,#1 ; "loop" is a label
 CMP R0,#0
 BGT loop

Related information
GNU Binutils - Using as: Labels

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 135

https://sourceware.org/binutils/docs-2.24/as/Comments.html
https://sourceware.org/binutils/docs-2.24/as/Labels.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

6.5 Numeric local labels
Numeric local labels are a type of label that you refer to by a number rather than by name. Unlike
other labels, the same numeric local label can be used multiple times and the same number can be
used for more than one numeric local label.

GNU syntax
A numeric local label is a number in the range 0-99.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

n{f|b}|n{f|b}

Where:

• n is the number of the numeric local label in the range 0-99.

• f and b instruct the armclang integrated assembler to search forwards and backwards
respectively. There is no default. You must specify one of f or b.

For example, the following code implements an incrementing loop:

 MOV r4,#1 // r4=1

1: // Local label
 ADD r4,r4,#1 // Increment r4
 CMP r4,#0x5 // if r4 < 5...
 BLT 1b // ...branch backwards to local label "1"

GNU syntax assembly code does not provide mechanisms for restricting the scope
of local labels.

armasm syntax
A numeric local label is a number in the range 0-99, optionally followed by a scope name
corresponding to a ROUT directive.

Numeric local labels follow the same syntax as all other labels.

Refer to numeric local labels using the following syntax:

%[F|B][A|T]n[routname]

Where:

• F and B instruct the legacy assembler to search forwards and backwards respectively. By
default, the legacy assembler searches backwards first, then forwards.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

• A and T instruct the legacy assembler to search all macro levels or only the current macro level
respectively. By default, the assembler searches all macros from the current level to the top
level, but does not search lower level macros.

• n is the number of the numeric local label in the range 0-99.

• routname is an optional scope label corresponding to a ROUT directive. If routname is specified in
either a label or a reference to a label, the legacy assembler checks it against the name of the
nearest preceding ROUT directive. If it does not match, the legacy assembler generates an error
message and the assembly fails.

For example, the following code implements an incrementing loop:

 MOV r4,#1 ; r4=1

1 ; Local label
 ADD r4,r4,#1 ; Increment r4
 CMP r4,#0x5 ; if r4 < 5...
 BLT %b1 ; ...branch backwards to local label "1"

Here is the same example using a ROUT directive to restrict the scope of the local label:

routA ROUT ; Start of "routA" scope

 MOV r4,#1 ; r4=1
1routA ; Local label
 ADD r4,r4,#1 ; Increment r4
 CMP r4,#0x9 ; if r4 < 9...
 BLT %b1routA ; ...branch backwards to local label "1routA"
routB ROUT ; Start of "routB" scope (and therefore end of "routA"
 scope)

Related information
GNU Binutils - Using as: Labels
ROUT directive

6.6 Functions
Assemblers can identify the start of a function when producing DWARF call frame information for
ELF.

GNU syntax
Use the .type directive to identify symbols as functions. For example:

 .type myproc, "function"

myproc:
 // Procedure body

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 135

https://sourceware.org/binutils/docs-2.24/as/Labels.html
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Directives-Reference/ROUT-directive

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

GNU syntax assembly code provides the .func and .endfunc directives. However, these are not
supported by armclang. armclang uses the .size directive to set the symbol size:

 .type myproc, "function"

myproc:
 // Procedure body
.Lmyproc_end0:
 .size myproc, .Lmyproc_end0-myproc

Functions must be typed to link properly.

armasm syntax
The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

The ENDFUNC directive marks the end of a function. ENDP is a synonym for ENDFUNC.

For example:

myproc PROC

 ; Procedure body
 ENDP

Related information
GNU Binutils - Using as: .type

6.7 Sections
Sections are independent, named, indivisible chunks of code or data that are manipulated by the
linker.

GNU syntax
The .section directive instructs the armclang integrated assembler to assemble a new code or
data section.

Flags provide information about the section. Available section flags include the following:

• a specifies that the section is allocatable.

• x specifies that the section is executable.

• w specifies that the section is writable.

• S specifies that the section contains null-terminated strings.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 135

https://sourceware.org/binutils/docs-2.24/as/Type.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

For example:

 .section mysection,"ax"

Not all armasm syntax AREA attributes map onto GNU syntax .section flags. For example, the
armasm syntax ALIGN attribute corresponds to the GNU syntax .balign directive, rather than a
.section flag:

 .section mysection,"ax"
 .balign 8

When using Arm® Compiler 5, section names do not need to be unique. Therefore,
you could use the same section name to create different section types.

Arm Compiler for Embedded 6 supports multiple sections with the same section
name only if you specify a unique ID. You must ensure that different section types
either:

• Have a unique section name.

• Have a unique ID, if they have the same section name.

If you use the same section name for another section or symbol, without a unique
ID, then integrated assembler gives an error.

 .section test, "ax", %progbits
 nop

 .section test, "aw", %progbits
 .word 0

The integrated assembler gives an error when you assemble this example with:

armclang --target=arm-arm-none-eabi -c -mcpu=cortex-a8 err.s
err.s:4:9: error: changed section flags for test, expected: 0x6
 .section test, "aw", %progbits
 ^

armasm syntax
The AREA directive instructs the legacy assembler to assemble a new code or data section.

Section attributes within the AREA directive provide information about the section. Available section
attributes include the following:

• CODE specifies that the section contains machine instructions.

• READONLY specifies that the section must not be written to.

• ALIGN=n specifies that the section is aligned on a 2n byte boundary

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Integrated-Assembler/Section-directives

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

For example:

 AREA mysection, CODE, READONLY, ALIGN=3

The ALIGN attribute does not take the same values as the ALIGN directive. The
ALIGN=n attribute on the AREA directive aligns on a 2n byte boundary. The ALIGN n
directive aligns on an n-byte boundary.

Related information
GNU Binutils - Using as: .section

6.8 Symbol naming rules
armasm syntax assembly code and GNU syntax assembly code use similar, but different naming
rules for symbols.

Symbol naming rules which are common to both armasm syntax and GNU syntax include:

• Symbol names must be unique within their scope.

• Symbol names are case-sensitive, and all characters in the symbol name are significant.

• Symbols must not use the same name as built-in variable names or predefined symbol names.

Symbol naming rules which differ between armasm syntax and GNU syntax include:

• armasm syntax symbols must start with a letter or the underscore character "_".

GNU syntax symbols must start with a letter, the underscore character "_", or a period ".".

• armasm syntax symbols use double bars to delimit symbol names containing non-alphanumeric
characters (except for the underscore):

IMPORT ||Image$$ARM_LIB_STACKHEAP$$ZI$$Limit||

GNU syntax symbols do not require double bars:

.global Image$$ARM_LIB_STACKHEAP$$ZI$$Limit

Related information
GNU Binutils - Using as: Symbol Names

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 135

https://sourceware.org/binutils/docs-2.24/as/Section.html
https://sourceware.org/binutils/docs/as/Symbol-Names.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

6.9 Numeric literals
armasm syntax assembly and GNU syntax assembly provide different methods for specifying some
types of numeric literal.

Implicit shift operations
armasm syntax assembly allows immediate values with an implicit shift operation. For example, the
MOVK instruction takes a 16-bit operand with an optional left shift. armasm accepts the instruction
MOVK x1, #0x40000, converting the operand automatically to MOVK x1, #0x4, LSL #16.

GNU syntax assembly expects immediate values to be presented as encoded. The instruction MOVK
x1, #0x40000 results in the following message: error: immediate must be an integer in range
[0, 65535].

Hexadecimal literals
armasm syntax assembly provides two methods for specifying hexadecimal literals, the prefixes "&"
and "0x".

For example, the following are equivalent:

 ADD r1, #0xAF
 ADD r1, #&AF

GNU syntax assembly only supports the "0x" prefix for specifying hexadecimal literals. Convert any
"&" prefixes to "0x".

n_base-n-digits format
armasm syntax assembly lets you specify numeric literals using the following format:

n_base-n-digits

For example:

• 2_1101 is the binary literal 1101 (13 in decimal).

• 8_27 is the octal literal 27 (23 in decimal).

GNU syntax assembly does not support the n_base-n-digits format. Convert all instances to a
supported numeric literal form.

For example, you could convert:

 ADD r1, #2_1101

to:

 ADD r1, #13

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

or:

 ADD r1, #0xD

Related information
GNU Binutils - Using as: Integers

6.10 Operators
armasm syntax assembly and GNU syntax assembly provide different methods for specifying some
operators.

The following table shows how to translate armasm syntax operators to GNU syntax operators.

Table 6-2: Operator translation

armasm syntax operator GNU syntax operator

:OR: |

:EOR: ^

:AND: &

:NOT: ~

:SHL: <<

:SHR: >>

:LOR: ||

:LAND: &&

:ROL: No GNU equivalent

:ROR: No GNU equivalent

Related information
GNU Binutils - Using as: Infix Operators

6.11 Alignment
Data and code must be aligned to appropriate boundaries.

For example, The T32 pseudo-instruction ADR can only load addresses that are word aligned, but
a label within T32 code might not be word aligned. You must use an alignment directive to ensure
four-byte alignment of an address within T32 code.

An alignment directive aligns the current location to a specified boundary by padding with zeros or
NOP instructions.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 135

https://sourceware.org/binutils/docs-2.24/as/Integers.html
https://sourceware.org/binutils/docs-2.24/as/Infix-Ops.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

The integrated assembler sets a minimum alignment of 4 bytes for a .text section.
However, if you define your own sections with the integrated assembler, then
you must include the .balign directive to set the correct alignment. For a section
containing T32 instructions, set the alignment to 2 bytes. For a section containing
A32 instructions, set the alignment to 4 bytes.

GNU syntax
GNU syntax assembly provides the .balign n directive, which uses the same format as ALIGN.

Convert all instances of ALIGN n to .balign n.

GNU syntax assembly also provides the .align n directive. However, the format of
n varies from system to system. The .balign directive provides the same alignment
functionality as .align with a consistent behavior across all architectures.

Convert all instances of PRESERVE8 to .eabi_attribute Tag_ABI_align_preserved, 1.

armasm syntax
armasm syntax assembly provides the ALIGN n directive, where n specifies the alignment boundary
in bytes. For example, the directive ALIGN 128 aligns addresses to 128-byte boundaries.

armasm syntax assembly also provides the PRESERVE8 directive. The PRESERVE8 directive specifies
that the current file preserves eight-byte alignment of the stack.

Related information
GNU Binutils - Using as: ARM Machine Directives

6.12 PC-relative addressing
armasm syntax assembly and GNU syntax assembly provide different methods for performing PC-
relative addressing.

GNU syntax
GNU syntax assembly does not support the {pc} symbol. Instead, it uses the special dot "."
character, as follows:

 ADRP x0, .

armasm syntax
armasm syntax assembly provides the symbol {pc} to let you specify an address relative to the
current instruction.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 135

https://sourceware.org/binutils/docs/as/ARM-Directives.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

For example:

 ADRP x0, {pc}

Related information
GNU Binutils - Using as: The Special Dot Symbol

6.13 A32 and T32 instruction substitutions
In certain circumstances, if the value of an Operand2 constant is not available with a given
instruction, but its logical inverse or negation is available, then armasm can produce an equivalent
instruction with the inverted or negated constant. The armclang integrated assembler provides
limited support for such substitutions.

Substitutions when using armasm
More information about the syntax of Operand2 constants is available in the Instruction Set
Assembly Guide. The following table shows the instruction substitutions supported by armasm,
based on the values of Operand2 constants for the A32 and T32 instruction sets. The equivalent
instructions shown can be used manually with the armclang integrated assembler for instructions
where automatic substitution is not supported.

Table 6-3: A32 and T32 instruction substitutions supported by armasm

A32 and T32 instruction Equivalent instruction Constant substitution
method

ADC{S}{cond} {Rd}, Rn, #constant SBC{S}{cond} {Rd}, Rn, #~constant Logical inversion

ADD{S}{cond} {Rd}, Rn, #constant SUB{S}{cond} {Rd}, Rn, #-constant Negation

AND{S}{cond} Rd, Rn, #constant BIC{S}{cond} Rd, Rn, #~constant Logical inversion

BIC{S}{cond} Rd, Rn, #constant AND{S}{cond} Rd, Rn, #~constant Logical inversion

CMP{cond} Rn, #constant CMN{cond} Rn, #-constant Negation

CMN{cond} Rn, #constant CMP{cond} Rn, #-constant Negation

MOV{S}{cond} Rd, #constant MVN{S}{cond} Rd, #~constant Logical inversion

MVN{S}{cond} Rd, #constant MOV{S}{cond} Rd, #~constant Logical inversion

ORN{S}{cond} Rd, Rn, #constant

(T32 only)

ORR{S}{cond} Rd, Rn, #~constant

(T32 only)

Logical inversion

ORR{S}{cond} Rd, Rn, #constant

(T32 only)

ORN{S}{cond} Rd, Rn, #~constant

(T32 only)

Logical inversion

SBC{S}{cond} {Rd}, Rn, #constant ADC{S}{cond} {Rd}, Rn, #~constant Logical inversion

SUB{S}{cond} {Rd}, Rn, #constant ADD{S}{cond} {Rd}, Rn, #-constant Negation

To find instruction substitutions in code assembled using armasm, use the command-line option --
diag_warning=1645.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 135

https://sourceware.org/binutils/docs-2.24/as/Dot.html
https://developer.arm.com/documentation/100076/0200/a32-t32-instruction-set-reference/a32-and-t32-instructions/syntax-of-operand2-as-a-constant

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Substitutions when using armclang integrated assembler
The armclang integrated assembler is also able to produce valid equivalent instructions through
substitution, by inverting or negating the specified immediate value. This applies to both assembly
language source files and to inline assembly code in C and C++ language source files.

You can disable this substitution using the -mno-neg-immediates armclang option.

Related information
-mno-neg-immediates armclang option

6.14 A32 and T32 pseudo-instructions
armasm supports several A32 and T32 pseudo-instructions. The support for the pseudo-
instructions varies with the armclang integrated assembler.

More information about the A32 and T32 pseudo-instructions is available in the Arm Compiler for
Embedded Reference Guide. The following table shows how to migrate the pseudo-instructions for
use with the armclang integrated assembler:

Table 6-4: A32 and T32 pseudo-instruction migration

A32 and T32 pseudo-instruction armclang integrated assembler equivalent

ADRL{cond} Rd, label No equivalent.

Use an ADR instruction if label is within the supported offset range.

Use an LDR pseudo-instruction if label is outside the supported off-
set range for an ADR instruction.

CPY{cond} Rd, Rm mov{cond} Rd, Rm

LDR{cond}{.W} Rt, =expr Identical.

LDR{cond}{.W} Rt, =label_expr Identical.

MOV32{cond} Rd, expr Use the following instruction sequence:

 movw{cond} Rd, #:lower16:expr
 movt{cond} Rd, #:upper16:expr

NEG{cond} Rd, Rm rsbs{cond} Rd, Rm, #0

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mno-neg-immediates

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

A32 and T32 pseudo-instruction armclang integrated assembler equivalent
UND{cond}{.W} {#expr} Use the following instruction for the A32 instruction set:

 udf{c}{q} {#}imm

Use the following instruction for the T32 instruction set with 8-bit
encoding:

 udf{c}{q} {#}imm

Use the following instruction for the T32 instruction set with 16-bit
encoding:

 udf{c}.w {#}imm

Related information
Reference Guide: ADRL pseudo-instruction

6.15 Conditional directives
Conditional directives specify conditions that control whether or not to assemble a sequence of
assembly code.

The following table shows how to translate armasm syntax conditional directives to GNU syntax
directives:

Table 6-5: Conditional directive translation

armasm syntax directive GNU syntax directive

IF .if family of directives

IF :DEF: .ifdef

IF :LNOT::DEF: .ifndef

ELSE .else

ELSEIF .elseif

ENDIF .endif

In addition to the change in directives shown, the following syntax differences apply:

• In armasm syntax, the conditional directives can use forward references. This is possible as
armasm is a two-pass assembler. In GNU syntax, forward references are not supported, as the
armclang integrated assembler only performs one pass over the main text.

If a forward reference is used with the .ifdef directive, the condition will always fail implicitly.
Similarly, if a forward reference is used with the .ifndef directive, the condition will always
pass implicitly.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 135

https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Specific-A32-and-T32-Instruction-Set-Features/ADRL-pseudo-instruction

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

• In armasm syntax, the maximum total nesting depth for directive structures such as
IF...ELSE...ENDIF is 256. In GNU syntax, this limit is not applicable.

Related information
GNU Binutils - Using as: .if

6.16 Data definition directives
Data definition directives allocate memory, define data structures, and set initial contents of
memory.

The following table shows how to translate armasm syntax data definition directives to GNU
syntax directives:

This list only contains examples of common data definition assembly directives. It is
not exhaustive.

Table 6-6: Data definition directives translation

armasm syntax directive GNU syntax directive Description

DCB .byte Allocate one-byte blocks of memory, and specify the
initial contents.

DCW .hword Allocate two-byte blocks of memory, and specify the
initial contents.

DCD .word Allocate four-byte blocks of memory, and specify the
initial contents.

DCI .inst Allocate a block of memory in the code, and specify
the opcode. In A32 code, this is a four-byte block. In
T32 code, this can be a two-byte or four-byte block.
.inst.n allocates a two-byte block and .inst.w al-
locates a four-byte block.

DCQ .quad Allocate eight-byte blocks of memory, and specify the
initial contents.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 135

https://sourceware.org/binutils/docs/as/If.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm syntax directive GNU syntax directive Description
SPACE .org Allocate a zeroed block of memory.

The armasm syntax SPACE directive allocates a ze-
roed block of memory with the specified size. The
GNU assembly .org directive zeroes the memory
up to the given address. The address must be greater
than the address at which the directive is placed.

The following example shows the armasm syntax and
GNU syntax methods of creating a 100-byte zeroed
block of memory using these directives:

; armasm syntax
; implementation

start_address SPACE 0x100

// GNU syntax implementation
start_address:
.org start_address + 0x100

Note:
If label arithmetic is not required, the GNU assem-
bly .space directive can be used instead of the
.org directive. However, Arm recommends using
the .org directive wherever possible.

The following examples show how to rewrite a vector table in both armasm and GNU syntax.

armasm syntax GNU syntax

Vectors
 LDR PC, Reset_Addr
 LDR PC, Undefined_Addr
 LDR PC, SVC_Addr
 LDR PC, Prefetch_Addr
 LDR PC, Abort_Addr
 B . ; Reserved vector
 LDR PC, IRQ_Addr
 LDR PC, FIQ_Addr

 Reset_Addr DCD Reset_Handler
 Undefined_Addr DCD Undefined_Handler
 SVC_Addr DCD SVC_Handler
 Prefetch_Addr DCD Prefetch_Handler
 Abort_Addr DCD Abort_Handler
 IRQ_Addr DCD IRQ_Handler
 FIQ_Addr DCD FIQ_Handler

Vectors:
ldr pc, Reset_Addr
ldr pc, Undefined_Addr
ldr pc, SVC_Addr
ldr pc, Prefetch_Addr
ldr pc, Abort_Addr
b . // Reserved vector
ldr pc, IRQ_Addr
ldr pc, FIQ_Addr

.balign 4
Reset_Addr:
.word Reset_Handler
Undefined_Addr:
.word Undefined_Handler
SVC_Addr:
.word SVC_Handler
Prefetch_Addr:
.word Prefetch_Handler
Abort_Addr:
.word Abort_Handler
IRQ_Addr:
.word IRQ_Handler
FIQ_Addr:
word FIQ_Handler

Related information
GNU Binutils - Using as: .byte

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 135

https://sourceware.org/binutils/docs-2.24/as/Byte.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

6.17 Instruction set directives
Instruction set directives instruct the assembler to interpret subsequent instructions as either A32
or T32 instructions.

The following table shows how to translate armasm syntax instruction set directives to GNU syntax
directives:

Table 6-8: Instruction set directives translation

armasm syntax directive GNU syntax directive Description

ARM or CODE32 .arm or .code 32 Interpret subsequent instructions as A32
instructions.

THUMB or CODE16 .thumb or .code 16 Interpret subsequent instructions as T32
instructions.

Related information
GNU Binutils - Using as: ARM Machine Directives

6.18 Miscellaneous directives
Miscellaneous directives perform a range of different functions.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The following table shows how to translate armasm syntax miscellaneous directives to GNU syntax
directives:

Table 6-9: Miscellaneous directives translation

armasm syntax directive GNU syntax directive Description

foo EQU 0x1C .equ foo, 0x1C Assigns a value to a symbol. Note the rearrangement
of operands.

.equ is a synonym for .set.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 135

https://sourceware.org/binutils/docs/as/ARM-Directives.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm syntax directive GNU syntax directive Description
EXPORT StartHere

GLOBAL StartHere

.global StartHere

.type StartHere, %function

Declares a symbol that can be used by the linker (that
is, a symbol that is visible to the linker).

armasm automatically determines the types of export-
ed symbols. However, armclang requires that you ex-
plicitly specify the types of exported symbols using
the .type directive.

If the .type directive is not specified, the linker out-
puts warnings of the form:

Warning: L6437W: Relocation #RELA:1
in test.o(.text) with respect to sym\
bol...

Warning: L6318W: test.o(.text) con\
tains branch to a non-code symbol sym\
bol.

GET file

INCLUDE file

.include file Includes a file within the file being assembled.

IMPORT foo .global foo Provides the assembler with a name that is not
defined in the current assembly.

INCBIN .incbin Includes a file within the file being assembled. The file
is included verbatim. The assembler always emits a
$d (data) mapping symbol for the .incbin directive.
[COMMUNITY]

INFO n, "string" .warning "string" The INFO directive supports diagnostic generation
on either pass of the assembly (specified by n). The
.warning directive does not let you specify a partic-
ular pass, because the armclang integrated assembler
only performs one pass.

ENTRY armlink --entry=location The ENTRY directive declares an entry point to a pro-
gram. armclang does not provide an equivalent direc-
tive. Use armlink --entry=location to spec-
ify the entry point directly to the linker, rather than
defining it in the assembly code.

END .end Marks the end of the assembly file.

PRESERVE8 .eabi_attribute Tag_ABI_align_pre\
served, 1

Emits a build attribute which guarantees that the
functions in the file preserve 8-byte stack alignment.

Note:
For armasm syntax assembly language source files,
even if you do not specify the PRESERVE8 direc-
tive, armasm automatically emits the build attribute
if all functions in the file preserve 8-byte stack align-
ment. For GNU syntax assembly language source
files, the armclang integrated assembler does not
automatically emit this build attribute. Therefore you
must manually inspect and ensure that all functions
in your GNU syntax assembly language source file
preserve 8-byte stack alignment and then manually
add the directive to the file.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Related information
GNU Binutils - Using as: .type

6.19 Symbol definition directives
In armasm, symbol definition directives declare and set arithmetic, logical, or string variables. In
the GNU assembler syntax, these directives define ELF symbols. There are no direct GNU syntax
equivalents for armasm variables.

The following table shows how to translate armasm syntax symbol definition directives to GNU
syntax directives:

This list only contains examples of common symbol definition directives. It is not
exhaustive.

Table 6-10: Symbol definition directives translation

armasm syntax directive GNU syntax directive Description

foo RN 11 foo .req r11 Define an alias foo for register R11.

foo QN q5.I32

 VADD foo, foo, foo

foo .req q5

 VADD.I32 foo, foo, foo

Define an I32 -typed alias foo for the quad-preci-
sion register Q5.

When using the armasm syntax, you can specify a
typed alias for quad-precision registers. The example
defines an I32-typed alias foo for the quad-precision
register Q5.

When using GNU syntax, you must specify the type
on the instruction rather than on the register. The ex-
ample specifies the I32 type on the VADD instruction.

foo DN d2.I32

 VADD foo, foo, foo

foo .req d2

 VADD.I32 foo, foo, foo

Define an I32 -typed alias foo for the double-preci-
sion register D2.

When using the armasm syntax, you can specify a
typed alias for double-precision registers. The ex-
ample defines an I32-typed alias foo for the dou-
ble-precision register D2.

When using GNU syntax, you must specify the type
on the instruction rather than on the register. The ex-
ample specifies the I32 type on the VADD instruction.

Related information
GNU Binutils - Using as: ARM Machine Directives

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 135

https://sourceware.org/binutils/docs-2.24/as/Type.html
https://sourceware.org/binutils/docs/as/ARM-Directives.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

6.20 Migration of armasm macros to integrated assembler
macros

The armclang integrated assembler provides similar macro features to those provided by armasm.
The macro syntax is based on GNU assembler macro syntax.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

The following GNU assembly directives are [COMMUNITY] features:

• .macro and .endm

• .rept and .endr

• .error

Additional information about macro features is available:

• The Arm Compiler for Embedded Reference Guide provides more detail about the macro directives
supported, and examples of using macros.

• The GNU Binutils - Using as document provides more detail about GNU assembly macro
directives.

Macro directive features
The following table describes the most common armasm macro directive features, and shows the
equivalent features for the armclang integrated assembler.

Table 6-11: Comparison of macro directive features provided by armasm and the armclang integrated assembler

armasm feature armclang integrated assembler feature Description

MACRO,

MEND directives

.macro,

.endm directives

Directives to mark the start and end of
the definition of a macro.

{$label} macro parameter Use a normal macro parameter. Optionally define an internal label to
use within the macro.

{$cond} macro parameter Use a normal macro parameter. Optionally define a condition code to
use within the macro.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm feature armclang integrated assembler feature Description
{$parameter{,$parameter}...}
custom macro parameter specification

{parameter{:type}{,parame\
ter{:type}}...} custom macro parameter and
parameter type specification

With armasm, any number of custom
macro parameters can be defined. Un-
specified parameters are substituted
with an empty string.

With the armclang integrated assem-
bler, the custom macro parameters can
optionally have a parameter type type.
This can be either req or vararg. Un-
specified parameters are substituted
with an empty string.

The req type specifies a required para-
meter. The assembler generates an er-
ror when instantiating a macro if a re-
quired parameter is missing and a de-
fault value is not available.

The vararg type collects all remaining
parameters as one parameter. It can on-
ly be used as the last parameter within
the list of parameters for a given macro.
Only one vararg parameter can be
specified.

MEXIT directive .exitm directive Exit early from a macro definition.

IF,

ELSE,

ELIF,

ENDIF conditional assembly directives

.if family of directives,

and the .else,

.elseif,

.endif directives

The directives allow conditional assem-
bly of instructions.

With armasm, the conditional assembly
directives use a logical expression that
evaluates to either TRUE or FALSE as
their controlling expression.

With the armclang integrated assem-
bler, multiple variants of the GNU as-
sembly .if directive are available, re-
ferred to as the .if family of directives.

For the .if and .elseif directives,
the controlling expression is a logical ex-
pression that evaluates to either TRUE
or FALSE.

For other directives in the .if family
of directives, the controlling expression
is an implicit part of the directive used,
and varies for each such directive.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

armasm feature armclang integrated assembler feature Description
WHILE,

WEND directives

.rept,

.endr directives

The directives allow a sequence of in-
structions or directives to be assembled
repeatedly.

With armasm, the WHILE directive us-
es a logical expression that evaluates to
either TRUE or FALSE as its controlling
expression. The sequence enclosed be-
tween a WHILE and WEND directive pair
is assembled until the logical expression
evaluates to FALSE.

With the armclang integrated assem-
bler, the GNU assembly .rept direc-
tive takes a fixed number of repetitions
as a parameter. The sequence enclosed
between a .rept and .endr direc-
tive pair is assembled the specified fixed
number of times.

To replicate the effect of using a logi-
cal expression to repeatedly assemble
a code sequence, the .rept directive
can be used within a macro. See the ex-
ample provided later in this section.

ASSERT directive Use a combination of the .if family of directives and
the .error directive.

With armasm, the ASSERT directive
generates an error message during as-
sembly if a given assertion is false. A
logical expression that evaluates to
TRUE or FALSE is used as the assertion.

With the armclang integrated assem-
bler, this functionality can be achieved
by using a GNU assembly directive from
the .if family of directives to condi-
tionally display an error message dur-
ing assembly using the GNU assembly
.error directive.

Macros can be created to simplify this
process. See the example provided later
in this section.

Notable differences between armasm macro syntax and GNU macro syntax
The following syntax restrictions apply to GNU macro syntax in addition to the differences due to
macro directives:

• In armasm macro syntax, using the pipe character \| as the parameter value when instantiating
a macro selects the default value of the parameter. In GNU macro syntax, leaving the
parameter value empty when instantiating a macro selects the default value of the parameter. If
a default value is not specified in the macro definition, an empty string is used.

• In armasm macro syntax, a dot can be used between a parameter and subsequent text, or
another parameter, if a space is not required in the expansion. In GNU macro syntax, a set
of parentheses () can be used between a parameter and subsequent text, if a space is not

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

required in the expansion. There is no need to separate a parameter from another subsequent
parameter.

• Although the integrated assembler is case-insensitive to register names, the GNU assembly
.ifc directive always performs a case-sensitive comparison. Manually check that the register
names use the same case-sense when comparing them using the directive.

Migration of macro examples provided in the Arm Compiler for Embedded Reference
Guide

Table 6-12: NOT EQUALS assertion

armasm syntax implementation

 ASSERT arg1 <> arg2

GNU syntax implementation

 /* Helper macro to replicate ASSERT <> directive
 functionality from armasm.
 Displays error if NE assertion fails. */
 .macro assertNE arg1:req, arg2:req, message:req
 .ifc \arg1, \arg2
 .error "\message"
 .endif
 .endm

Table 6-13: Unsigned integer division macro

armasm syntax implementation

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

The macro takes the following parameters:

$Bot
The register that holds the divisor.

$Top
The register that holds the dividend before the instructions are executed. After the instructions are executed, it holds the remain-
der.

$Div
The register where the quotient of the division is placed. It can be NULL ("") if only the remainder is required.

$Temp
A temporary register used during the calculation.

 MACRO

$Lab DivMod $Div,$Top,$Bot,$Temp
 ASSERT $Top <> $Bot ; Produce an error message if the
 ASSERT $Top <> $Temp ; registers supplied are
 ASSERT $Bot <> $Temp ; not all different
 IF "$Div" <> ""
 ASSERT $Div <> $Top ; These three only matter if $Div
 ASSERT $Div <> $Bot ; is not null ("")
 ASSERT $Div <> $Temp ;
 ENDIF
$Lab
 MOV $Temp, $Bot ; Put divisor in $Temp
 CMP $Temp, $Top, LSR #1 ; double it until
90 MOVLS $Temp, $Temp, LSL #1 ; 2 * $Temp > $Top
 CMP $Temp, $Top, LSR #1
 BLS %b90 ; The b means search backwards
 IF "$Div" <> "" ; Omit next instruction if $Div
 ; is null
 MOV $Div, #0 ; Initialize quotient
 ENDIF
91 CMP $Top, $Temp ; Can we subtract $Temp?
 SUBCS $Top, $Top,$Temp ; If we can, do so
 IF "$Div" <> "" ; Omit next instruction if $Div
 ; is null
 ADC $Div, $Div, $Div ; Double $Div
 ENDIF
 MOV $Temp, $Temp, LSR #1 ; Halve $Temp,
 CMP $Temp, $Bot ; and loop until
 BHS %b91 ; less than divisor
 MEND

GNU syntax implementation

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

The macro takes the following parameters:

Lab
A label to mark the start of the code. This parameter is required.

BotRegNum
The register number for the register that holds the divisor. This parameter is required.

TopRegNum
The register number for the register that holds the dividend before the instructions are executed. After the instructions are exe-
cuted, it holds the remainder. This parameter is required.

DivRegNum
The register number for the register where the quotient of the division is placed. It can be NULL ("") if only the remainder is re-
quired. This parameter is optional.

TempRegNum
The register number for a temporary register used during the calculation. This parameter is required.

 .macro DivMod Lab:req, DivRegNum, TopRegNum:req, BotRegNum:req, TempRegNum:req
 assertNE \TopRegNum, \BotRegNum, "Top and Bottom cannot be the same register"
 assertNE \TopRegNum, \TempRegNum, "Top and Temp cannot be the same register"
 assertNE \BotRegNum, \TempRegNum, "Bottom and Temp cannot be the same register"
 .ifnb \DivRegNum
 assertNE \DivRegNum, \TopRegNum, "Div and Top cannot be the same register"
 assertNE \DivRegNum, \BotRegNum, "Div and Bottom cannot be the same register"
 assertNE \DivRegNum, \TempRegNum, "Div and Temp cannot be the same register"
 .endif
\Lab:
 mov r\TempRegNum, r\BotRegNum // Put divisor in r\TempRegNum
 cmp r\TempRegNum, r\TopRegNum, lsr #1 // double it until
90:
 movls r\TempRegNum, r\TempRegNum, lsl #1 // 2 * r\TempRegNum > r\TopRegNum
 cmp r\TempRegNum, r\TopRegNum, lsr #1
 bls 90b // The 'b' means search backwards
 .ifnb \DivRegNum // Omit next instruction if r\DivRegNum is null
 mov r\DivRegNum, #0 // Initialize quotient
 .endif
91:
 cmp r\TopRegNum, r\TempRegNum // Can we subtract r\TempRegNum?
 subcs r\TopRegNum, r\TopRegNum, r\TempRegNum // If we can, then do so
 .ifnb \DivRegNum // Omit next instruction if r\DivRegNum is null
 adc r\DivRegNum, r\DivRegNum, r\DivRegNum // Double r\DivRegNum
 .endif
 mov r\TempRegNum, r\TempRegNum, lsr #1 // Halve r\TempRegNum
 cmp r\TempRegNum, r\BotRegNum // and loop until
 bhs 91b // less than divisor
 .endm

Notable differences from the armasm syntax implementation:

• A custom macro, assertNE, is used instead of the armasm ASSERT directive.

• Register numbers are used instead of registers as parameters. This is because the GNU assembly .ifc directive used for the as\
sertNE assertions treats its operands as case-sensitive.

• The GNU assembly .ifnb directive is used to check if the parameter DivRegNum has been defined. In the armasm syntax imple-
mentation, the armasm IF directive is used.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Table 6-14: Assembly-time diagnostics macro

armasm syntax implementation

 MACRO ; Macro definition

 diagnose $param1="default" ; This macro produces
 INFO 0,"$param1" ; assembly-time diagnostics
 MEND ; (on second assembly pass)
; macro expansion
 diagnose ; Prints blank line at assembly-time
 diagnose "hello" ; Prints "hello" at assembly-time
 diagnose | ; Prints "default" at assembly-time

GNU syntax implementation

// macro definition
 .macro diagnose, param1="default"
 .warning "\param1"
 .endm
// macro instantiation
 .section "diagnoseMacro", "ax"
 diagnose "" // Prints a warning with an empty string at assembly-time
 // Cannot print blank line as the .print directive is not supported
 diagnose "hello" // Prints a warning with the message "hello" at assembly-time
 diagnose // Prints a warning with the default message "default"
 // at assembly-time

Notable differences from the armasm syntax implementation:

• It is not possible to print a blank line at assembly-time using the GNU assembly .warning directive. Only a warning with an empty
message can be printed.

• The format of the diagnostic message displayed is different between armasm and the armclang integrated assembler.

With armasm, the diagnostic messages displayed at assembly-time by the macro example are:

"macros_armasm.S", line 11:
"macros_armasm.S", line 12: hello
"macros_armasm.S", line 13: default

With the armclang integrated assembler, the diagnostic messages displayed at assembly-time by the macro example are:

<instantiation>:1:1: warning:
.warning ""
^
macros_armclang.S:11:5: note: while in macro instantiation
 diagnose ""
 ^
<instantiation>:1:1: warning: hello
.warning "hello"
^
macros_armclang.S:13:5: note: while in macro instantiation
 diagnose "hello"
 ^
<instantiation>:1:1: warning: default
.warning "default"
^
macros_armclang.S:14:5: note: while in macro instantiation
 diagnose
 ^

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

Table 6-15: Conditional loop macro

armasm syntax implementation
The macro takes the following parameters:

$counter
The assembly-time variable for the loop counter. This parameter is required. The {$label} parameter for the MACRO directive
has been used for this parameter. If a normal macro parameter is used, the parameter cannot be instantiated as a label.

$N
The maximum number of iterations for the loop. This parameter is required.

$decr
The loop decrement value. This parameter is optional.

do
The text to which $counter is appended in each iteration of the loop. This parameter is required.

 MACRO
$counter WhileLoop $N, $decr="1", $do ; macro definition
 ASSERT "$counter" <> "" ; check that $counter has been specified
 ASSERT "$N" <> "" ; check that $N has been specified
 ASSERT "$do" <> "" ; check that $do has been specified
 GBLA $counter ; create new local variable $counter
$counter SETA $N ; initialise $counter
 WHILE $counter > 0 ; loop while $counter > 0
 docounter ; assemble in each iteration of the loop
$counter SETA $counter-$decr ; decrement the counter by $decr
 WEND
 MEND
; macro instantiation
 AREA WhileLoopMacro,CODE
 THUMB
counter WhileLoop 10, 2, "mov r0, #"
 END

GNU syntax implementation

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Migrating from armasm to the armclang Integrated Assembler

The macro takes the following parameters:

counter
The assembly-time variable for the loop counter. This parameter is required.

N
The maximum number of iterations for the loop. This parameter is required.

decr
The loop decrement value. This parameter is optional.

do
The text to which \counter is appended in each iteration of the loop. This parameter is required.

 /* Macro that inserts the \counter value
 at the end of all \do varargs,
 up to N times. */
 .macro WhileLoop, counter:req, N:req, decr=1, do:vararg
 .set \counter, \N // initialise the variable \counter to 0
 .rept \N // loop up to \N times
 .ifgt \counter // assemble only if \counter is greater than zero
 \do\counter
 .set \counter, \counter-\decr // decrement the counter by \decr
 .endif
 .endr
 .endm
// macro instantiation
 .section "WhileLoopMacro", "ax"
 WhileLoop counter, 10, 2, mov r0, #

Note:
The order in which the GNU assembly .ifgt, .endif, .rept, and .endr directives are used is important. Including the .endr di-
rective as a statement within the .ifgtendif structure produces an error. Similarly, placing the .endif directive outside the
.reptendr structure produces an error.

The macro expansion produces the following code:

 mov r0, #0xa
 mov r0, #8
 mov r0, #6
 mov r0, #4
 mov r0, #2

Notable differences from the armasm syntax implementation:

• In the armasm syntax implementation, the ASSERT directive is used to raise an error if a required parameter is missing. In the GNU
syntax implementation, this can be achieved by using the parameter type req for required parameters in the macro definition.

• In the armasm syntax implementation, the macro instantiation uses a string as the value to the $do parameter. The quotes are implic-
itly removed at assembly-time. Quotes are required as the parameter value contains spaces. In the GNU syntax implementation, this
is achieved using the parameter type vararg for the \do parameter in the macro definition.

• In the GNU syntax implementation, the .reptendr structure is always evaluated \N times at assembly-time. This is be-
cause the .ifgtendif structure must be placed within the .reptendr structure. In the armasm syntax imple-
mentation, the WHILE...WEND structure is only evaluated the required number of times at assembly-time based on the controlling
expression of the WHILE directive.

Related information
GNU Binutils - Using as: .error

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 135

https://sourceware.org/binutils/docs/as/Error.html

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

7 Changes Between Different Versions of
Arm Compiler for Embedded 6

A description of the changes that affect migration and compatibility between different versions of
Arm® Compiler for Embedded 6.

• Arm does not guarantee the compatibility of C++ compilation units compiled
with different major or minor versions of Arm Compiler for Embedded and
linked into a single image. Therefore, Arm recommends that you always build
your C++ code from source with a single version of the toolchain.

You can mix C++ with C code or C libraries.

• All C++ compilation units that are to be linked into a single image must be
compiled with the same version of the C++ standard library ABI. If the ABI
version changes between Arm Compiler for Embedded releases, then you must
recompile your object files.

If you are unable to recompile some of your object files, then contact Arm
Support at https://developer.arm.com/support.

The documentation changes for Arm Compiler 6.15 and later releases are listed in
an appendix for each document.

7.1 Summary of changes between Arm Compiler 6.16 and
Arm Compiler for Embedded 6.17

A summary of the changes between Arm® Compiler 6.16 and Arm Compiler for Embedded 6.17.

This topic includes descriptions of [ALPHA] and [BETA] features. See Support level
definitions.

Product name change
The Arm Compiler product name has changed to Arm Compiler for Embedded from version 6.17.

Documentation
The following appendixes list the technical changes in each document:

• Arm Compiler for Embedded User Guide Changes.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 135

https://developer.arm.com/support
https://developer.arm.com/documentation/100748/0617/Arm-Compiler-User-Guide-Changes

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• Arm Compiler for Embedded Reference Guide Changes.

• Arm Compiler for Embedded Migration and Compatibility Guide Changes.

• Arm Compiler for Embedded Arm C and C++ Libraries and Floating-Point Support User Guide
Changes.

• Arm Compiler for Embedded Errors and Warnings Reference Guide Changes.

Architecture and optional extension changes
The following architectures and extensions are supported:

• Armv8.8-A [ALPHA].

• Armv9-A, Armv9.1-A, and Armv9.2-A.

• Armv9.3-A [ALPHA].

• Scalable Matrix Extension (SME) [ALPHA].

• Realm Management Extension (RME) [ALPHA].

• PACBTI-M extension [BETA].

For more information, see -march and -mcpu.

7.2 Summary of changes between Arm Compiler 6.15 and
Arm Compiler 6.16

A summary of the changes between Arm® Compiler 6.15 and Arm Compiler 6.16.

Documentation
The following appendixes list the technical changes in each document:

• Arm Compiler for Embedded User Guide Changes.

• Arm Compiler for Embedded Reference Guide Changes.

• Arm Compiler for Embedded Arm C and C++ Libraries and Floating-Point Support User Guide
Changes.

• Arm Compiler for Embedded Migration and Compatibility Guide Changes.

• Arm Compiler for Embedded Errors and Warnings Reference Guide Changes.

Architecture and optional extension changes
Armv8.7-A is fully supported, and enables the following in the release:

• The following base Armv8.7-A ISA features:

◦ the HCRX_EL2 System register

◦ the WFET, WFIT, DSBNXS, and TLBINXS instructions.

• The Extended Event Filter of the Statistical Profiling Extension, that consists of an extra register
in the Statistical Profiling Extension.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 135

https://developer.arm.com/documentation/101754/0617/Appendixes/Arm-Compiler-Reference-Guide-Changes
https://developer.arm.com/documentation/100073/0617/Arm-C-and-C---Libraries-and-Floating-Point-Support-User-Guide-Changes
https://developer.arm.com/documentation/100073/0617/Arm-C-and-C---Libraries-and-Floating-Point-Support-User-Guide-Changes
https://developer.arm.com/documentation/100074/0617/Arm-Compiler-Errors-and-Warnings-Reference-Guide-Changes
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/100748/0617/Arm-Compiler-User-Guide-Changes
https://developer.arm.com/documentation/101754/0617/Appendixes/Arm-Compiler-Reference-Guide-Changes
https://developer.arm.com/documentation/100073/0617/Arm-C-and-C---Libraries-and-Floating-Point-Support-User-Guide-Changes
https://developer.arm.com/documentation/100073/0617/Arm-C-and-C---Libraries-and-Floating-Point-Support-User-Guide-Changes
https://developer.arm.com/documentation/100074/0617/Arm-Compiler-Errors-and-Warnings-Reference-Guide-Changes

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• The Invalidate the Branch Record Buffer extension, +brbe.

• The accelerator support extension, +ls64, is fully supported. The extension enables the 64-byte
load and store instruction family. That is, LD64B and ST64BV0, and the ACCDATA_EL1 system
register.

For more information, see -march and -mcpu.

C++ library changes
The following changes have been made to the C++ library, libc++:

• The Application Binary Interface (ABI) version used for the C++ library is now version 2. The
change of ABI version has some consequences:

◦ C++ objects or libraries built using Arm Compiler 6.15 or earlier are not guaranteed to be
compatible with C++ objects or libraries built using 6.16. Therefore, you might see link-time
errors or, in rare circumstances, unexpected runtime behavior.

To make sure your C++ objects and libraries are compatible with Arm Compiler 6.16, you
must rebuild all your C++ code with 6.16.

If you cannot rebuild any of your C++ objects or libraries, then you must
continue to use your previous Arm Compiler version.

◦ std::pointer_safety and std::get_pointer_safety() are no longer available
in C++03. However, because the get_pointer_safety() function always returns
pointer_safety::relaxed, you can either reimplement the function or avoid using it.

• The Arm Compiler implementation of std::deque<T> allocates memory for storing its elements
as blocks of certain size. In Arm Compiler 6.15 and earlier versions, the number of elements per
block is computed as follows:

◦ If sizeof(T) < 256, each block can hold 4096/sizeof(T) elements.

◦ Otherwise, each block can hold 16 elements.

For Arm Compiler 6.16 and later versions, the formula is different:

◦ If sizeof(T) < 8, each block can hold 64/sizeof(T) elements.

◦ Otherwise, each block can hold 8 elements.

armlink changes
Arm Compiler 5 does not support literal pool merging.

Arm Compiler for Embedded 6 merges literal pools by default. In Arm Compiler 6.15 and earlier,
marking a load region as PROTECTED prevents merging of literal pools for const strings but not for
other const values in literal pools. For example, your code might have three literal pools, each
containing the same const value, where two of the literal pools are in a PROTECTED region. In Arm
Compiler 6.15 and earlier, armlink merges the three const values but leaves a single copy in the
PROTECTED regions. However, the function containing the copy still references that copy, but the
referencing function is now part of a different region.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

In Arm Compiler 6.16, armlink prevents merging literal pool entries of const strings and const
values across regions that have the PROTECTED load region attribute.

Here, the terms const string and const value have the following meanings:

const string
A string literal from an ELF section with the SHF_MERGE and SHF_STRINGS flags.

const value
A constant defined in a constant pool where the constant pool is in the same section as the
code that uses it.

7.3 Summary of changes between Arm Compiler 6.14 and
Arm Compiler 6.15

A summary of the changes between Arm® Compiler 6.14 and Arm Compiler 6.15.

Documentation
The following appendixes list the technical changes in each document:

• Arm Compiler for Embedded User Guide Changes.

• Arm Compiler for Embedded Reference Guide Changes.

• Arm Compiler for Embedded Arm C and C++ Libraries and Floating-Point Support User Guide
Changes.

• Arm Compiler for Embedded Migration and Compatibility Guide Changes.

• Arm Compiler for Embedded Errors and Warnings Reference Guide Changes.

Architecture and optional extension changes
Arm Compiler 6.15 adds the following:

• [ALPHA] support for the Armv8.7-A architecture and the Accelerator Support Extension, +ls64,
for 64-byte atomic loads and stores.

• [BETA] support for the Armv8-R AArch64 architecture.

Other changes are as follows:

The Custom Datapath Extension (CDE), +cdecpN is fully supported.

For more information, see -march and -mcpu.

Command-line options
Arm Compiler 6.15 adds support for the armlink command-line option, --dangling-debug-
address=address. See -dangling-debug-address=address.

Arm Compiler 6.15 adds a new -Omin command-line option for armclang and armlink which
aims to produce the minimum code size using link-time optimization. The value Omin can also be

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 135

https://developer.arm.com/documentation/100748/0617/Arm-Compiler-User-Guide-Changes
https://developer.arm.com/documentation/101754/0617/Appendixes/Arm-Compiler-Reference-Guide-Changes
https://developer.arm.com/documentation/100073/0617/Arm-C-and-C---Libraries-and-Floating-Point-Support-User-Guide-Changes
https://developer.arm.com/documentation/100073/0617/Arm-C-and-C---Libraries-and-Floating-Point-Support-User-Guide-Changes
https://developer.arm.com/documentation/100074/0617/Arm-Compiler-Errors-and-Warnings-Reference-Guide-Changes
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--dangling-debug-address-address

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

specified for the armlink command-line option --lto-level. For more information, see the -lto-
level armclang reference page.

7.4 Summary of changes between Arm Compiler 6.13 and
Arm Compiler 6.14

A summary of the changes between Arm® Compiler 6.13 and Arm Compiler 6.14.

This topic includes descriptions of [BETA] features. See Support level definitions.

New architectures and optional extensions
Arm Compiler 6.14 adds [BETA] support for the Custom Datapath Extension (CDE), +cdecpN. For
more information, see -march.

New processors
Arm Compiler 6.14 adds Cortex-M55 processor support. For information about the M-profile
Vector Extension (MVE) and floating-point (FP) combinations for this processor, see Supported
architecture feature combinations for specific processors.

Command-line options
Arm Compiler 6.14 adds [BETA] support for the fromelf command-line option, --coprocN=value, to
enable T32 encodings of the CDE. See -coprocN=value.

Function attributes
Arm Compiler 6.14 adds support for the __attribute__((target("options"))) function attribute.
See __attribute__((target("options"))) for more information.

Library-related features
The Arm implementation of the C++ standard library class std::random_device is described in
Numerics library.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-O--armclang-
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Other-Compiler-specific-Features/Supported-architecture-feature-combinations-for-specific-processors
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Other-Compiler-specific-Features/Supported-architecture-feature-combinations-for-specific-processors
https://developer.arm.com/documentation/101754/0617/fromelf-Reference/fromelf-Command-line-Options/--coprocN-value--fromelf-
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----target--options-----function-attribute
https://developer.arm.com/documentation/101754/0617/Appendixes/Standard-C---Implementation-Definition/Numerics-library

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

7.5 Summary of changes between Arm Compiler 6.12 and
Arm Compiler 6.13

A summary of the changes between Arm® Compiler 6.12 and Arm Compiler 6.13.

This topic includes descriptions of [ALPHA] and [BETA] features. See Support level
definitions.

New architectures and optional extensions
Arm Compiler 6.13 adds:

• Early support for Future Architecture Technologies:

◦ Assembly for the Embedded Trace Extension (ETE). This is enabled by default.

◦ Assembly for the Trace Buffer Extension (TRBE). This is enabled by default.

◦ Assembly for Scalable Vector Extension 2 (SVE2).

◦ Assembly and intrinsics for Transactional Memory Extension (TME).

For more information, see -march.

• [ALPHA] support for the Armv8.6-A architecture:

◦ [ALPHA] support assembly and intrinsics for the BFloat16 Extension.

◦ [ALPHA] support assembly and intrinsics for the Matrix Multiplication Extension.

For more information, see -march.

• Support for the Armv8.1-M architecture:

◦ Assembly and intrinsics for the M-profile Vector Extension (MVE).

◦ [BETA] support for the automatic vectorization for MVE.

For more information, see -march.

• Intrinsics for the Armv8.5-A architecture Memory Tagging Extension are promoted from
[ALPHA] support to full product quality support. See -march.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

Command-line options
• Arm Compiler 6.13 supports the SysV dynamic linking model, using the following command-line

options:

◦ armclang -fpic, armclang -fno-pic

◦ armclang -fsysv, armclang -fno-sysv

◦ armclang -shared

◦ armlink -dynamiclinker=name

◦ armlink -import_unresolved, armlink -no_import_unresolved

◦ armlink -soname

◦ armlink -sysv

◦ armlink -shared

• The armclang -fsanitize option replaces the armclang -mmemtag-stack option.

7.6 Summary of changes between Arm Compiler 6.11 and
Arm Compiler 6.12

A summary of the changes between Arm® Compiler 6.11 and Arm Compiler 6.12.

This topic includes descriptions of [ALPHA] features. See Support level definitions.

New architectures and optional extensions
Arm Compiler 6.12 adds:

• armclang inline assembler and integrated assembler support for the Speculation Barrier (SB)
instruction in the AArch32 and AArch64 states. This is mandatory for the Armv8.5-A and later
architectures. This is optional for the Armv8-A to Armv8.4-A architectures. To enable the use of
the SB instruction, use -march=armv8-a+sb. For more information, see -march.

• armclang inline assembler and integrated assembler support for the Speculative Store Bypass
Safe (SSBS) register and instructions in the AArch64 state. This is mandatory for the Armv8.5-A
and later architectures. This is optional for the Armv8-A to Armv8.4-A architectures. To enable
the use of the SSBS register and instructions, use -march=armv8-a+ssbs. For more information,
see -march.

• armclang inline assembler and integrated assembler support for the Prediction Restriction by
Context registers and instructions in the AArch64 state. This is mandatory for the Armv8.5-A
and later architectures. This is optional for the Armv8-A to Armv8.4-A architectures. To enable
the Prediction Restriction by Context registers and instructions, use -march=armv8-a+predres.
For more information, see -march.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fpic---fno-pic
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fsysv---fno-sysv
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-shared--armclang-
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--dynamic-linker-name
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--import-unresolved-no-import-unresolved
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--soname-name
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--sysv
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--shared
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fsanitize
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-mmemtag-stack-mno-memtag-stack
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

Command-line options
Arm Compiler 6.12 adds support for the following command-line options.

• These [ALPHA] options support generation of code for protecting the stack with the memory
tagging extension:

◦ armclang -mmemtag-stack

◦ armlink -library_security=v8.5a

The memory tagging extension is optional in Armv8.5-A and later architectures.

To disable this stack protection, use -mno-memtag-stack.

Arm Compiler 6.12 also adds support for heap protection using the memory
tagging extension, when defining the symbol __use_memtag_heap.

• These options support generation of code for protecting the stack with stack guard variables:

◦ armclang -fstack-protector

◦ armclang -fstack-protector-strong

◦ armclang -fstack-protector-all

To disable this stack protection, use armclang -fno-stack-protector.

• The armclang -ffixed-r<N> option prevents the compiler from using the specified core register,
unless the use is required for Arm ABI compliance.

Keywords
Arm Compiler 6.12 adds support for the register keyword. The register keyword enables the use of
certain core registers as global named register variables in the AArch32 state.

7.7 Summary of changes between Arm Compiler 6.10 and
Arm Compiler 6.11

A summary of the changes between Arm® Compiler 6.10 and Arm Compiler 6.11.

New architectures and optional extensions
Arm Compiler 6.11 adds:

• armclang inline assembler and integrated assembler support for the Armv8.5-A architecture. To
target the Armv8.5-A architecture, use -march=armv8.5-a. For more information, see -march.

• armclang inline assembler and integrated assembler support for the optional Memory Tagging
Extension for the Armv8.5-A architecture. To target the Memory Tagging Extension, use -
march=armv8.5-a+memtag. For more information, see -march.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fsanitize
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--library-security-protection
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fsanitize
https://developer.arm.com/documentation/100073/0617/The-Arm-C-and-C---Libraries/Stack-and-heap-memory-allocation-and-the-Arm-C-and-C---libraries/Choosing-a-heap-implementation-for-memory-allocation-functions
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fstack-protector---fstack-protector-all---fstack-protector-strong---fno-stack-protector
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fstack-protector---fstack-protector-all---fstack-protector-strong---fno-stack-protector
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fstack-protector---fstack-protector-all---fstack-protector-strong---fno-stack-protector
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fstack-protector---fstack-protector-all---fstack-protector-strong---fno-stack-protector
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-ffixed-rN
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Keywords-and-Operators/Global-named-register-variables
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Keywords-and-Operators/Global-named-register-variables
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• armclang inline assembler and integrated assembler support for the optional Random Number
Instructions for the Armv8.5-A architecture. To target the Random Number Instructions, use -
march=armv8.5-a+rng. For more information, see -march.

• Support for branch protection features for Armv8.3-A and later architectures. For more
information, see -mbranch-protection.

• Support for half-precision floating-point multiply with add or multiply with subtract instructions
for Armv8.2-A and later architectures. To target these instructions, use +fp16fml with -mcpu or
-march. For more information, see -march and -mcpu.

Command-line options
Arm Compiler 6.11 adds support for the following command-line options.

• These options support generation of code with branch protection:

◦ -mbranch-protection

◦ -library_security=protection

• These options control whether the output file contains compiler name and version information:

◦ -fident

◦ -fno-ident

• These options enable the generation of Position Independent eXecute Only (PIXO) library
features for Armv7-M targets:

◦ -mpixolib

◦ -pixolib

Deprecated features
Arm Compiler 6.11 deprecates the following features:

• __declspec attributes has been deprecated.

• Support for ELF sections that contain the legacy SHF_COMDEF ELF section flag has been
deprecated.

◦ The COMDEF section attribute of the legacy armasm syntax AREA directive has been
deprecated.

◦ Linking with legacy objects that contain ELF sections with the legacy SHF_COMDEF ELF
section flag has been deprecated.

• The legacy R-type dynamic linking model, which does not conform to the 32-bit Application
Binary Interface for the Arm Architecture, has been deprecated.

◦ Linking with -reloc command-line option has been deprecated.

◦ Linking without -base_platform, with a scatter file that contains the Load region attributes
load region attribute, has been deprecated.

For more information, see Backwards compatibility issues.

Removed features
The following options have been removed from Arm Compiler 6.11:

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mbranch-protection
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-march
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mbranch-protection
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--library-security-protection
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fident---fno-ident
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fident---fno-ident
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mpixolib
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--pixolib
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Keywords-and-Operators/--declspec-attributes
https://developer.arm.com/documentation/101754/0617/armasm-Legacy-Assembler-Reference/armasm-Directives-Reference/AREA
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--reloc
https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--base-platform
https://developer.arm.com/documentation/101754/0617/armlink-Reference/Scatter-File-Syntax/Load-region-descriptions/Load-region-attributes
https://developer.arm.com/documentation/100068/0617/Migrating-from-Arm-Compiler-5-to-Arm-Compiler-6/Backwards-compatibility-issues

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• armlink -compress_debug and -no_compress_debug command-line options.

• armlink -match=crossmangled command-line option.

• armlink -strict_enum_size and -no_strict_enum_size command-line options.

• armlink -strict_wchar_size and -no_strict_wchar_size command-line options.

Product quality support level
Support for -std=c++14 and -std=gnu++14 has changed from [BETA] to fully supported, with the
exception of certain C++14 features. For more information, see -std in the armclang Reference Guide
and Clang and LLVM documentation in the Arm Compiler for Embedded 6 User Guide.

For earlier versions of the compiler, Arm recommended the use of -std=c++11 when compiling C++
source files. This recommendation has been removed.

7.8 Summary of changes between Arm Compiler 6.9 and
Arm Compiler 6.10

A summary of the changes between Arm® Compiler 6.9 and Arm Compiler 6.10.

General changes
The following are general changes in Arm Compiler 6.10:

• When using the legacy assembler, armasm, to assemble for AArch32 targets that support
A32 and T32 instruction sets, the apcs interworking default has changed from /nointerwork
to /interwork. If you must use the non-interworking apcs, then you must specify --apcs=/
nointerwork on the command-line of the legacy assembler, armasm. However, from Arm
Compiler 6.10, the compiler does not include pure A32 libraries for non-interworking apcs.
Therefore, if you use the non-interworking apcs for A32 code and require library support, then
armlink generates an error unless you provide your own supporting libraries.

• In certain circumstances, when a legacy assembler or linker process invoked the compiler as a
subprocess to preprocess a file but all suitable licenses were already in use, the processes could
deadlock. This issue has been fixed.

• The default C++ source language mode has changed from gnu++98 to gnu++14. gnu++14
language and library features are a [BETA] product feature. Arm recommends compiling with -
std=c++11 to restrict Arm Compiler to using only C++11 language and library features, which
are fully supported. See -std in the armclang Reference Guide.

Enhancements
The following are enhancements in Arm Compiler 6.10:

Compiler and integrated assembler (armclang)
Added support for the -fno-builtin option that can prevent the compiler from optimizing
calls to certain standard C library functions, such as printf(). When compiling without -
fno-builtin, the compiler can replace such calls with inline code or with calls to other library
functions.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 135

https://developer.arm.com/docs/100070/0610/linker-command-line-options/--compress-debug----no-compress-debug
https://developer.arm.com/docs/100070/0610/linker-command-line-options/--compress-debug----no-compress-debug
https://developer.arm.com/docs/100070/0610/linker-command-line-options/--match-crossmangled
https://developer.arm.com/docs/100070/0610/linker-command-line-options/--strict-enum-size----no-strict-enum-size
https://developer.arm.com/docs/100070/0610/linker-command-line-options/--strict-enum-size----no-strict-enum-size
https://developer.arm.com/docs/100070/0610/linker-command-line-options/--strict-wchar-size----no-strict-wchar-size
https://developer.arm.com/docs/100070/0610/linker-command-line-options/--strict-wchar-size----no-strict-wchar-size
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/documentation/100748/0617/Supporting-reference-information/Clang-and-LLVM-documentation
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

See -fno_builtin in the armclang Reference Guide.

7.9 Summary of changes between Arm Compiler 6.8 and
Arm Compiler 6.9

A summary of the changes between Arm® Compiler 6.8 and Arm Compiler 6.9.

General changes
The following are general changes in Arm Compiler 6.9:

• Added support for the Armv8.4-A architecture. To target Armv8.4-A, use the following options:

State armclang options armlink, and fromelf options

AArch64 --target=aarch64-arm-none-eabi
-march=armv8.4-a

Do not use the --cpu=name option.

AArch32 --target=arm-arm-none-eabi -
march=armv8.4-a

Do not use the --cpu=name option.

The legacy assembler, armasm, does not support the Armv8.4-A architecture.

• Added support for the optional Cryptographic Extension in Armv8.4-A. To target Armv8.4-A
with the Cryptographic Extension, use the following options:

State armclang options armlink and fromelf options

AArch64 --target=aarch64-arm-none-eabi
-march=armv8.4-a+crypto

Do not use the --cpu=name option.

AArch32 --target=arm-arm-none-eabi -
march=armv8.4-a -mfpu=cryp\
to-neon-fp-armv8

Do not use the --cpu=name option.

The legacy assembler, armasm, does not support the Armv8.4-A architecture.

For more information about selecting specific cryptographic algorithms, see -mcpu in the
armclang Reference Guide.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-fno-builtin
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mcpu

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• A change in Arm Compiler 6.9 means that compiling with -mexecute-only always generates an
empty .text section that is read-only.

For more information about handling this section, see Compiling with -mexecute-only
generates an empty .text section.

7.10 Summary of changes between Arm Compiler 6.7 and
Arm Compiler 6.8

A summary of the changes between Arm® Compiler 6.7 and Arm Compiler 6.8.

General changes
The following are general changes in Arm Compiler 6.8:

• Added support for the optional Dot Product instructions in Armv8.2-A and Armv8.3-A. To
target Armv8.2-A and Armv8.3-A with the Dot Product instructions, use the following options:

Processor armclang options armasm, armlink, and fromelf options

Armv8.3-A and AArch64 state --target=aarch64-arm-none-eabi
-march=armv8.3-a+dotprod

--cpu=8.3-A.64.dotprod

Armv8.3-A and AArch32 state --target=arm-arm-none-eabi -
march=armv8.3-a+dotprod

--cpu=8.3-A.32.dotprod

Armv8.2-A and AArch64 state --target=aarch64-arm-none-eabi
-march=armv8.2-a+dotprod

--cpu=8.2-A.64.dotprod

Armv8.2-A and AArch32 state --target=arm-arm-none-eabi -
march=armv8.2-a+dotprod

--cpu=8.2-A.32.dotprod

• Added support for the Cortex®-A75 and Cortex-A55 processors. To target Cortex-A75 and
Cortex-A55, use the following options:

Processor armclang options armasm, armlink, and fromelf options

Cortex-A 75 for AArch64 state --target=aarch64-arm-none-eab -
mcpu=cortex-a75

8.2-A.64

Cortex-A 75 for AArch32 state --target=arm-arm-none-eab -
mcpu=cortex-a75

8.2-A.32

Cortex-A 55 for AArch64 state --target=aarch64-arm-none-eab
-mcpu=cortex-a55 -mcpu=cor\
tex-a55

8.2-A.64

Cortex-A 55 for AArch32 state --target=arm-arm-none-eab -
mcpu=cortex-a55 -mcpu=cor\
tex-a55

8.2-A.32

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• When resolving the relocations of a branch instruction from a function with build attributes
that include ~PRES8 to another function with build attributes that include REQ8, the linker
previously reported:

Error: L6238E: <objname>(<secname>) contains invalid call from '~PRES8 (The user
did not require code to preserve 8-byte alignment of 8-byte data objects)' function
to 'REQ8 (Code was permitted to depend on the 8-byte alignment of 8-byte data
items)' function <sym>.

This behavior has been changed. By default, the linker no longer reports an error in these
circumstances. To restore the previous behavior, use the option --strict_preserve8_require8.
For more information about this option, see -strict_preserve8_require8 in the Arm Compiler for
Embedded Reference Guide.

To successfully link with --strict_preserve8_require8

1. Manually inspect assembly language source files that are assembled using the integrated
assembler.

2. Ensure that all functions preserve 8-byte alignment of the stack and of 8-byte data items.

3. Add the directive .eabi_attribute Tag_ABI_align_preserved, 1 to each such source file.

Enhancements
The following are enhancements in Arm Compiler 6.8:

Compiler and integrated assembler (armclang)
• Previously, the inline assembler and integrated assembler provided limited support for

instruction substitutions for the A32 and T32 instruction sets. Substitution occurs when
a valid encoding does not exist for an instruction with a particular immediate, but an
equivalent instruction that has the same result with the inverted or negated immediate is
available. To disable this feature, use the option -mno-neg-immediates.

When -mno-neg-immediates is not specified, the range of substitutions that the inline
assembler and integrated assembler perform has also been extended to cover extra valid
substitutions for A64, A32, and T32.

For more information about this option, see -mno-neg-immediates in the armclang
Reference Guide.

• Added support for:

◦ #pragma clang section. This pragma enables migration of source code that
previously used the legacy armcc feature #pragma arm section. See #pragma clang
section in the armclang Reference Guide.

◦ -nostdlib and -nostdlibinc options that enable objects to be linked with other ABI-
compliant libraries. See -nostdlib and -nostdlibinc in the armclang Reference Guide.

◦ __unaligned keyword. This keyword aids migration of source code that previously
used the legacy armcc feature __packed. See __unaligned in the armclang Reference
Guide.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 135

https://developer.arm.com/documentation/101754/0617/armlink-Reference/armlink-Command-line-Options/--strict-preserve8-require8
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mno-neg-immediates
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Pragmas/-pragma-clang-section
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Pragmas/-pragma-clang-section
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-nostdlib
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-nostdlibinc
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Keywords-and-Operators/--unaligned

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

General enhancements
Added support for C++14 source language modes. Use one of the following options to
enable the compilation of C++14 source code:

• -std=c++14.

• -std=gnu++14.

See -std in the armclang Reference Guide.

7.11 Summary of changes between Arm Compiler 6.6 and
Arm Compiler 6.7

A summary of the changes between Arm® Compiler 6.6 and Arm Compiler 6.7.

General changes
The following are general changes in Arm Compiler 6.7:

• Armv8-M architecture-based targets are now supported when using an Arm DS-5 Professional
license.

• Arm Compiler 6.7 includes FlexNet Publisher 11.14.1.0 client libraries. This version of the
license client is not compatible with previous versions of the FlexNet Publisher license server
software. When used with a license server running an armlmd and lmgrd version earlier than
11.14.1.0, Arm Compiler 6.7 can report any of the following:

◦ Failed to check out a license. Bad message command.

◦ Failed to check out a license. Version of vendor daemon is too old.

◦ Flex error code: -83.

◦ Flex error code: -140.

A license server running armlmd and lmgrd version 11.14.1.0 (or later) is compatible with Arm
Compiler 6.7 and all previous releases of Arm tools.

Arm recommends that you always use the latest version of the license server software that
is available from https://developer.arm.com/products/software-development-tools/license-
management/downloads.

• Previously, when generating execute-only sections, the tools set the ELF section header flag to
SHF_ARM_NOREAD. For compliance with forthcoming changes to the Application Binary Interface
(ABI) for the Arm Architecture, this behavior has changed. For execute-only sections, the tools
now set the ELF section header flag to SHF_ARM_PURECODE.

Enhancements
The following are enhancements in Arm Compiler 6.7:

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-std
https://developer.arm.com/products/software-development-tools/license-management/downloads
https://developer.arm.com/products/software-development-tools/license-management/downloads

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

Compiler and integrated assembler (armclang)
• Added support for the -ffp-mode=model option that you can use to specify the level of

floating-point standard compliance:

◦ -ffp-mode=std selects the default compiler behavior.

◦ -ffp-mode=fast is equivalent to -ffast-math.

◦ -ffp-mode=full is equivalent to -fno-fast-math.

Arm recommends using -ffp-mode rather than -ffast-math or -fno-fast-math.

For more information about this option, see -ffp-mode in the armclang Reference Guide.

• Extended the support for the __attribute__((value_in_regs)) function attribute to
improve compatibility with the equivalent Arm Compiler 5 feature.

For more information about this attribute, see the __attribute__((value_in_regs)) function
attribute in the armclang Reference Guide.

• Added support for the generation of implicit IT blocks when assembling for T32 state.
To specify the behavior of the inline assembler and integrated assembler if there are
conditional instructions outside IT blocks, use the option -mimplicit-it=name.

For more information about this option, see -mimplicit-it in the:title:armclang Reference
Guide.

• Previously, when compiling at -Os, the compiler could over-align literal pools that are
generated during vectorization to a 128-bit boundary. This behavior has been changed.
The compiler now avoids adding excessive padding.

armlink
Added support for __at sections that are named .bss.ARM.__at_<address>. The linker places
the associated ZI data at the specified address.

7.12 Summary of changes between Arm Compiler 6.5 and
Arm Compiler 6.6

A summary of the changes between Arm® Compiler 6.5 and Arm Compiler 6.6.

General changes
The following are general changes in Arm Compiler 6.6:

• Added support for the Armv8.3-A architecture. To target Armv8.3-A, use the following options:

State armclang options armasm, armlink, and fromelf options

AArch64 --target=aarch64-arm-none-eabi
-march=armv8.3-a

--cpu=8.3-A.64

AArch32 --target=arm-arm-none-eabi -
march=armv8.3-a

--cpu=8.3-A.32

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 135

https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-ffp-mode
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----value-in-regs---function-attribute
https://developer.arm.com/documentation/101754/0617/armclang-Reference/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----value-in-regs---function-attribute
https://developer.arm.com/documentation/101754/0617/armclang-Reference/armclang-Command-line-Options/-mimplicit-it

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• Added support for the Armv8-A AArch64 state Scalable Vector Extension (SVE) to the
compiler. To target bare-metal systems with SVE, use the option -march=armv8-a+sve.

To disassemble objects that have been built for SVE, llvm-objdump is provided as an interim
solution.

SVE features are available under a separate license. Contact Arm for more information. Added
support for the Cortex®-R52 processor. To target Cortex-R52, use the following options:

Processor variant armclang options armasm, armlink, and fromelf options

D32 and Advanced SIMD --target=arm-arm-none-eab -
mcpu=cortex-r52

--cpu=Cortex-R52

D16 and single-precision only --target=arm-arm-none-eab -
mcpu=cortex-r52 -mfpu=fpv5-d16

--cpu=Cortex-R52 --fpu=FPv5-SP

• Added support for the Cortex-M23 processor. To target Cortex-M23, use the following options:
armclang

--target=arm-arm-none-eabi -mcpu=cortex-m23

armasm, armlink, and fromelf
--cpu=Cortex-M23

• Added support for the Cortex-M33 processor. To target Cortex-M33, use the following options:

Processor variant armclang options armasm, armlink, and fromelf options

With both DSP and FP --target=arm-arm-none-eab -
mcpu=cortex-m33

--cpu=Cortex-M33

Without DSP but with FP --target=arm-arm-none-eab -
mcpu=cortex-m33+nodsp

--cpu=Cortex-M33.no_dsp

With DSP but without FP --target=arm-arm-none-eab
-mcpu=cortex-m33 -mfloat-
abi=soft

--cpu=Cortex-M33 --fpu=SoftVFP

Without both DSP and FP --target=arm-arm-none-eab -
mcpu=cortex-m33+nodsp -mfloat-
abi=soft

--cpu=Cortex-M33.no_dsp --
fpu=SoftVFP

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• The default compiler behavior has changed. The following options are selected by default:

◦ -fdata-sections.

◦ -ffunction-sections.

◦ -fomit-frame-pointer.

◦ -fvisibility=hidden.

◦ Configuration options that select a smaller, less IEEE 754 compliant floating-point math
library.

To restore the previous behavior, select from the following options:

◦ -fno-data-sections.

◦ -fno-function-sections.

◦ -fno-omit-frame-pointer.

◦ -fvisibility=default [COMMUNITY].

Arm recommends not using this option to restore the previous behavior.

◦ -fno-fast-math.

For more information about support level definitions and a subset of these options, see Support
level definitions.

• The --cpu=name option in armasm, armlink, and fromelf has changed to improve compatibility
with the -mcpu compiler option.

Replace this option name With this option name

Cortex-A5.neon Cortex-A5

Cortex-A5.vfp Cortex-A5.no_neon

Cortex-A5 Cortex-A5.no_neon.no_vfp

Cortex-R5F-rev1 Cortex-R5

Cortex-R5F Cortex-R5-rev0

Cortex-R5 Cortex-R5-rev0.no_vfp

Cortex-R5F-rev1.sp Cortex-R5.sp

Cortex-R5-rev1 Cortex-R5.no_vfp

Cortex-M4F or Cortex-M4.fp Cortex-M4

Cortex-M4 Cortex-M4.no_fp

Cortex-M7.fp.dp Cortex-M7

Cortex-M7 Cortex-M7.no_fp

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

• The following linker options are deprecated and are to be removed in a future release:

◦ --compress_debug.

◦ --gnu_linker_defined_syms.

◦ --legacyalign.

◦ --match=crossmangled.

◦ --strict_enum_size.

◦ --strict_wchar_size.

Enhancements
The following are enhancements in Arm Compiler 6.6:

Compiler and integrated assembler (armclang)
Added support for:

• __attribute__((naked)) function attribute. This function attribute enables migration
of Arm Compiler 5 and earlier embedded assembler functions to Arm Compiler for
Embedded 6.

• Use of floating-point code in secure functions when compiling with -mcmse -mfloat-
abi=hard.

armlink
Added full support for link-time optimization (LTO). To use LTO, specify the -flto option to
the compiler and the --lto option to the linker.

Libraries and system headers
• Added [ALPHA] support for multithreading features in the C++11 standard library, for

example std::atomic and std::thread. The API for these features is in the arm-tpl.h
header file, but you must implement the low-level interface to the underlying operating
system. The specification of this thread porting API is available through a separate
document. Contact Arm Support for more information.

• Added support to the Arm C library to implement semihosting calls using the HLT
instruction for Armv8-A and Armv8-R targets in AArch32 state.

• Added support for use of the C++ library without exceptions. To target C++ without
exceptions, compile with the option -fno-exceptions.

When linking objects compiled without exceptions, a specialized C++ library variant
is selected that does not have the code-size overhead of exceptions. This C++ library
variant has undefined behavior at points where the normal library variant results in an
exception being thrown.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

7.13 Compiling with -mexecute-only generates an
empty .text section

A change between Arm® Compiler 6.8 and Arm Compiler 6.9 means that compiling with -
mexecute-only always generates an empty .text section that is read-only. That is, a section that
does not have the SHF_ARM_PURECODE attribute.

The linker normally removes the empty .text section during unused section elimination. However,
the unused section elimination does not occur when:

• The image has no entry point.

• You specify one of the following linker options:

◦ --no_remove

◦ --keep (<object-file-name>(.text))

If you use a scatter file to merge execute-only (XO) and read-only (RO) sections into a single
executable region, then the XO sections lose the XO attribute and become RO.

When compiling with -fno-function-sections , all functions are placed in the .text section
with the SHF_ARM_PURECODE attribute. As a result, there are two sections with the name .text,
one with and one without the SHF_ARM_PURECODE attribute. You cannot select between the two
.text sections by name. Therefore, you must use attributes as the selectors in the scatter file to
differentiate between XO and RO sections.

Examples
The following example shows how Arm Compiler for Embedded 6 handles .text sections:

1. Create the file example.c containing:

void foo() {}

int main() {
 foo();
}

2. Compile the program and examine the object file with fromelf.

armclang --target=arm-arm-none-eabi -mcpu=Cortex-M3 -mexecute-only -c -o exam\
ple.o example.c
fromelf example.o

The output shows that Section #2 is the empty RO .text section:

...

** Section #1 '.strtab' (SHT_STRTAB)
 Size : 148 bytes

** Section #2 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 0 bytes (alignment 4)

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

 Address: 0x00000000

** Section #3 '.text.foo' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_AR\
M_PURECODE]
 Size : 2 bytes (alignment 4)
 Address: 0x00000000

** Section #4 '.ARM.exidx.text.foo' (SHT_ARM_EXIDX) [SHF_ALLOC + SHF_LINK_ORDER]
 Size : 8 bytes (alignment 4)
 Address: 0x00000000
 Link to section #3 '.text.foo'

** Section #5 '.rel.ARM.exidx.text.foo' (SHT_REL)
 Size : 8 bytes (alignment 4)
 Symbol table #13 '.symtab'
 1 relocations applied to section #4 '.ARM.exidx.text.foo'

** Section #6 '.text.main' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_AR\
M_PURECODE]
 Size : 10 bytes (alignment 4)
 Address: 0x00000000
...

3. Create the file example.scat containing:

LR_XO 0x10000

{
 ER_MAIN_FOO 0x10000
 {
 example.o(.text*)
 }
}

LR_2 0x20000
{
 ER_REST 0x20000
 {
 *(+RO, +ZI)
 }
 ARM_LIB_STACKHEAP 0x80000 EMPTY -0x1000 {}
}

4. Create an image file with armlink and examine the image file with fromelf:

armlink --scatter example.scat -o example_scat.axf example.o
fromelf example_scat.axf

The output shows that Section #1 has the SHF_ARM_PURECODE attribute:

...

** Section #1 'ER_MAIN_FOO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_AR\
M_PURECODE]
 Size : 16 bytes (alignment 4)
 Address: 0x00010000

** Section #2 'ER_REST' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 604 bytes (alignment 4)
 Address: 0x00020000

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Changes Between Different Versions of Arm Compiler for Embedded
6

...

5. Repeat the link again with the linker option --no_remove and examine the image file with
fromelf.

armlink --scatter example.scat --no_remove -o example_scat.axf example.o
fromelf example_scat.axf

The output shows that Section #1 does not have the SHF_ARM_PURECODE attribute:

6. To ensure that the sections remain as execute-only, either:

• Change the scatter file to use the XO attribute selector as follows:

LR_XO 0x10000

{
 ER_MAIN_FOO 0x10000
 {
 example.o(+XO)
 }
}

LR_2 0x20000
{
 ER_REST 0x20000
 {
 *(+RO, +ZI)
 }
 ARM_LIB_STACKHEAP 0x80000 EMPTY -0x1000 {}
}

• Explicitly place sections in their execution regions. However, compiling with -fno-function
sections generates two .text sections with different attributes:

armclang --target=arm-arm-none-eabi -mcpu=Cortex-M3 -mexecute-only -fno-func\
tion-sections -c -o example.o example.c

fromelf example.o
...
** Section #1 '.strtab' (SHT_STRTAB)
 Size : 107 bytes

** Section #2 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR]
 Size : 0 bytes (alignment 4)
 Address: 0x00000000

** Section #3 '.text' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_AR\
M_PURECODE]
 Size : 14 bytes (alignment 4)
 Address: 0x00000000
...

In this case, differentiating the sections by name only is not possible. If unused section
elimination does not remove the empty .text sections, the attribute selectors are required
to place the sections in different output sections.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Code Examples

8 Code Examples
Provides source code examples for Arm® Compiler 5 and Arm Compiler for Embedded 6.

8.1 Example startup code for Arm Compiler 5 project
This is an example startup code that compiles without errors using Arm® Compiler 5.

This code has been modified to demonstrate migration from Arm Compiler 5 to Arm Compiler for
Embedded 6. This code requires other modifications for use in a real application.

// startup_ac5.c:

/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*--
 Definitions
 --/
#define USR_MODE 0x10 // User mode
#define FIQ_MODE 0x11 // Fast Interrupt Request mode
#define IRQ_MODE 0x12 // Interrupt Request mode
#define SVC_MODE 0x13 // Supervisor mode
#define ABT_MODE 0x17 // Abort mode
#define UND_MODE 0x1B // Undefined Instruction mode
#define SYS_MODE 0x1F // System mode

/*--
 Internal References
 --/
void Vectors (void) __attribute__ ((section("RESET")));
void Reset_Handler(void);
extern int printf(const char *format, ...);

__declspec(noreturn) void main (void)
{
 __enable_irq();
 printf("Starting main\n");
 while(1);
}
#pragma import (__use_no_semihosting)

/*--
 Exception / Interrupt Handler
 --/
void Undef_Handler (void) __attribute__ ((weak, alias("Default_Handler")));

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Code Examples

void SVC_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void PAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void DAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void IRQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void FIQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));

/*--
 Exception / Interrupt Vector Table
 --/
__asm void Vectors(void) {
 IMPORT Undef_Handler
 IMPORT SVC_Handler
 IMPORT PAbt_Handler
 IMPORT DAbt_Handler
 IMPORT IRQ_Handler
 IMPORT FIQ_Handler
 LDR PC, =Reset_Handler
 LDR PC, =Undef_Handler
 LDR PC, =SVC_Handler
 LDR PC, =PAbt_Handler
 LDR PC, =DAbt_Handler
 NOP
 LDR PC, =IRQ_Handler
 LDR PC, =FIQ_Handler
}

/*--
 Reset Handler called on controller reset
 --/
__asm void Reset_Handler(void) {

 // Mask interrupts
 CPSID if

 // Put any cores other than 0 to sleep
 MRC p15, 0, R0, c0, c0, 5 // Read MPIDR
 ANDS R0, R0, #3
goToSleep
 WFINE
 BNE goToSleep

 // Reset SCTLR Settings
 MRC p15, 0, R0, c1, c0, 0 // Read CP15 System Control register
 BIC R0, R0, #(0x1 << 12) // Clear I bit 12 to disable I Cache
 BIC R0, R0, #(0x1 << 2) // Clear C bit 2 to disable D Cache
 BIC R0, R0, #0x1 // Clear M bit 0 to disable MMU
 BIC R0, R0, #(0x1 << 11) // Clear Z bit 11 to disable branch prediction
 BIC R0, R0, #(0x1 << 13) // Clear V bit 13 to disable hivecs
 MCR p15, 0, R0, c1, c0, 0 // Write value back to CP15 System Control
 register
 ISB

 // Configure ACTLR
 MRC p15, 0, r0, c1, c0, 1 // Read CP15 Auxiliary Control Register
 ORR r0, r0, #(1 << 1) // Enable L2 prefetch hint (UNK/WI since r4p1)
 MCR p15, 0, r0, c1, c0, 1 // Write CP15 Auxiliary Control Register

 // Set Vector Base Address Register (VBAR) to point to this application's vector
 table
 LDR R0, =Vectors
 MCR p15, 0, R0, c12, c0, 0

 // Setup Stack for each exceptional mode
 IMPORT |Image$$FIQ_STACK$$ZI$$Limit|
 IMPORT |Image$$IRQ_STACK$$ZI$$Limit|
 IMPORT |Image$$SVC_STACK$$ZI$$Limit|
 IMPORT |Image$$ABT_STACK$$ZI$$Limit|
 IMPORT |Image$$UND_STACK$$ZI$$Limit|
 IMPORT |Image$$ARM_LIB_STACK$$ZI$$Limit|
 CPS #0x11
 LDR SP, =|Image$$FIQ_STACK$$ZI$$Limit|

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Code Examples

 CPS #0x12
 LDR SP, =|Image$$IRQ_STACK$$ZI$$Limit|
 CPS #0x13
 LDR SP, =|Image$$SVC_STACK$$ZI$$Limit|
 CPS #0x17
 LDR SP, =|Image$$ABT_STACK$$ZI$$Limit|
 CPS #0x1B
 LDR SP, =|Image$$UND_STACK$$ZI$$Limit|
 CPS #0x1F
 LDR SP, =|Image$$ARM_LIB_STACK$$ZI$$Limit|

 // Call SystemInit
 IMPORT SystemInit
 BL SystemInit

 // Unmask interrupts
 CPSIE if

 // Call main
 IMPORT main
 BL main

}

/*--
 Default Handler for Exceptions / Interrupts
 --/
void Default_Handler(void) {
 while(1);
}

Related information
Apache License on page 130

8.2 Example startup code for Arm Compiler for Embedded
6 project

This is an example startup code that compiles without errors using Arm® Compiler for Embedded
6.

This code has been modified to demonstrate migration from Arm Compiler 5 to Arm Compiler for
Embedded 6. This code requires other modifications for use in a real application.

// startup_ac6.c:

/*
* Copyright (c) 2009-2017 ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Code Examples

* See the License for the specific language governing permissions and
* limitations under the License.
*/

/*--
 Definitions
 --/
#define USR_MODE 0x10 // User mode
#define FIQ_MODE 0x11 // Fast Interrupt Request mode
#define IRQ_MODE 0x12 // Interrupt Request mode
#define SVC_MODE 0x13 // Supervisor mode
#define ABT_MODE 0x17 // Abort mode
#define UND_MODE 0x1B // Undefined Instruction mode
#define SYS_MODE 0x1F // System mode

/*--
 Internal References
 --/
void Vectors (void) __attribute__ ((naked, section("RESET")));
void Reset_Handler (void) __attribute__ ((naked));
extern int printf(const char *format, ...);

__declspec(noreturn) int main (void)
{
 __asm("CPSIE i");
 printf("Starting main\n");
 while(1) __asm volatile("");
}
__asm(".global __use_no_semihosting");

/*--
 Exception / Interrupt Handler
 --/
void Undef_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void SVC_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void PAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void DAbt_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void IRQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));
void FIQ_Handler (void) __attribute__ ((weak, alias("Default_Handler")));

/*--
 Exception / Interrupt Vector Table
 --/
void Vectors(void) {
 __asm volatile(
 "LDR PC, =Reset_Handler \n"
 "LDR PC, =Undef_Handler \n"
 "LDR PC, =SVC_Handler \n"
 "LDR PC, =PAbt_Handler \n"
 "LDR PC, =DAbt_Handler \n"
 "NOP \n"
 "LDR PC, =IRQ_Handler \n"
 "LDR PC, =FIQ_Handler \n"
);
}

/*--
 Reset Handler called on controller reset
 --/
void Reset_Handler(void) {
 __asm volatile(

 // Mask interrupts
 "CPSID if \n"

 // Put any cores other than 0 to sleep
 "MRC p15, 0, R0, c0, c0, 5 \n" // Read MPIDR
 "ANDS R0, R0, #3 \n"
 "goToSleep: \n"
 "WFINE \n"
 "BNE goToSleep \n"

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Code Examples

 // Reset SCTLR Settings
 "MRC p15, 0, R0, c1, c0, 0 \n" // Read CP15 System Control
 register
 "BIC R0, R0, #(0x1 << 12) \n" // Clear I bit 12 to disable
 I Cache
 "BIC R0, R0, #(0x1 << 2) \n" // Clear C bit 2 to disable
 D Cache
 "BIC R0, R0, #0x1 \n" // Clear M bit 0 to disable
 MMU
 "BIC R0, R0, #(0x1 << 11) \n" // Clear Z bit 11 to disable
 branch prediction
 "BIC R0, R0, #(0x1 << 13) \n" // Clear V bit 13 to disable
 hivecs
 "MCR p15, 0, R0, c1, c0, 0 \n" // Write value back to CP15
 System Control register
 "ISB \n"

 // Configure ACTLR
 "MRC p15, 0, r0, c1, c0, 1 \n" // Read CP15 Auxiliary Con\
trol Register
 "ORR r0, r0, #(1 << 1) \n" // Enable L2 prefetch hint
 (UNK/WI since r4p1)
 "MCR p15, 0, r0, c1, c0, 1 \n" // Write CP15 Auxiliary Con\
trol Register

 // Set Vector Base Address Register (VBAR) to point to this application's vector
 table
 "LDR R0, =Vectors \n"
 "MCR p15, 0, R0, c12, c0, 0 \n"

 // Setup Stack for each exceptional mode
 "CPS #0x11 \n"
 "LDR SP, =Image$$FIQ_STACK$$ZI$$Limit \n"
 "CPS #0x12 \n"
 "LDR SP, =Image$$IRQ_STACK$$ZI$$Limit \n"
 "CPS #0x13 \n"
 "LDR SP, =Image$$SVC_STACK$$ZI$$Limit \n"
 "CPS #0x17 \n"
 "LDR SP, =Image$$ABT_STACK$$ZI$$Limit \n"
 "CPS #0x1B \n"
 "LDR SP, =Image$$UND_STACK$$ZI$$Limit \n"
 "CPS #0x1F \n"
 "LDR SP, =Image$$ARM_LIB_STACK$$ZI$$Limit \n"

 // Call SystemInit
 "BL SystemInit \n"

 // Unmask interrupts
 "CPSIE if \n"

 // Call main
 "BL main \n"
);
}

/*--
 Default Handler for Exceptions / Interrupts
 --/
void Default_Handler(void) {
 while(1);
}

Related information
Apache License on page 130

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Licenses

9 Licenses
Describes the Apache license.

9.1 Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND
DISTRIBUTION

1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this
License.

"Source" form shall mean the preferred form for making modifications, including but not limited
to software source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this
License, Derivative Works shall not include works that remain separable from, or merely link (or
bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the
Work and any modifications or additions to that Work or Derivative Works thereof, that
is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or
by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 135

http://www.apache.org/licenses/

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Licenses

communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-
free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display,
publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or
Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell,
import, and otherwise transfer the Work, where such license applies only to those patent
claims licensable by such Contributor that are necessarily infringed by their Contribution(s)
alone or by combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a cross-claim or
counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then any patent licenses granted
to You under this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form, provided
that You meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of this License;
and

b. You must cause any modified files to carry prominent notices stating that You changed the
files; and

c. You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of
the Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License. You may add Your own
copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Licenses

such Derivative Works as a whole, provided Your use, reproduction, and distribution of the
Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under
the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate
license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor
provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible
for determining the appropriateness of using or redistributing the Work and assume any risks
associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use or inability to use the Work
(including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability incurred by, or claims asserted
against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: HOW TO APPLY THE APACHE LICENSE TO YOUR WORK
To apply the Apache License to your work, attach the following boilerplate notice, with the fields
enclosed by brackets "[]" replaced with your own identifying information. (Don't include the
brackets!) The text should be enclosed in the appropriate comment syntax for the file format. We
also recommend that a file or class name and description of purpose be included on the same
"printed page" as the copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00
Licenses

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Arm Compiler for Embedded Migration and Compatibility Guide
Changes

10 Arm Compiler for Embedded Migration
and Compatibility Guide Changes

Describes the technical changes that have been made to the Arm® Compiler for Embedded
Migration and Compatibility Guide.

10.1 Changes for the Arm Compiler for Embedded
Migration and Compatibility Guide

Changes that have been made to the Arm® Compiler for Embedded Migration and Compatibility
Guide are listed with the latest version first.

Table 10-1: Changes between 6.17 and 6.16

Change Topics affected

Improved #pragma clang section documentation. • Language extension compatibility: pragmas.

Updated information for -frtti, -fno-rtti. • Migration of compiler command-line options from Arm
Compiler 5 to Arm Compiler for Embedded 6.

Added a note that the armasm legacy assembler is deprecated. • Migrating from armasm to the armclang Integrated Assembler.

Updated the table comparing command-line options in armasm and
the integrated assembler. There is no direct equivalent for the --
reduce_paths, --no_reduce_paths command-line options
with the integrated assembler. Arm recommends that you avoid us-
ing long and deeply nested file paths on Windows.

• Migration of assembler command-line options from armasm to
the armclang integrated assembler.

Added a list of the changes between Arm Compiler 6.16 and Arm
Compiler for Embedded 6.17.

• Summary of changes between Arm Compiler 6.16 and Arm
Compiler for Embedded 6.17.

Table 10-2: Changes between 6.16 and 6.15

Change Topics affected

A note has been added to include a .balign directive when defin-
ing your own sections with the armclang integrated assembler.

• Alignment.

Added --diag_style to the Migration of command-line options
section.

• Migration of compiler command-line options from Arm
Compiler 5 to Arm Compiler for Embedded 6.

Added note about mixing objects compiled with different C/C++
standards and the change in ABI version.

• Changes Between Different Versions of Arm Compiler for
Embedded 6.

Added note about the change in ABI version. • Changes Between Different Versions of Arm Compiler for
Embedded 6.

Added information to reflect the change in behavior of literal pool
merging when using the PROTECTED load region attribute.

• Summary of changes between Arm Compiler 6.15 and Arm
Compiler 6.16.

Added a list of the changes between Arm Compiler 6.15 and Arm
Compiler 6.16.

• Summary of changes between Arm Compiler 6.15 and Arm
Compiler 6.16.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 135

Arm® Compiler for Embedded Migration and Compatibility
Guide

Document ID: 100068_0617_00_en
Issue: 00

Arm Compiler for Embedded Migration and Compatibility Guide
Changes

Table 10-3: Changes between 6.15 and 6.14

Change Topics affected

Added comparison for Arm Compiler 5 --retain option and Arm
Compiler for Embedded 6 -O option.

• Migration of compiler command-line options from Arm
Compiler 5 to Arm Compiler for Embedded 6.

Corrected the miscellaneous directives translation table.

Mentioned that .equ is a synonym for .set.

• Miscellaneous directives.

• Symbol definition directives.

Improved explanation of when to use the volatile keyword to
prevent unwanted removal of inline assembler code when building
optimized output.

• Inline assembly with Arm Compiler for Embedded 6.

Added details of the new -Omin compiler option. • Optimization differences.

Removed outdated note about using __ARM_use_no_argv with
-O0 optimization level in Arm Compiler for Embedded 6. The -O0
option now supports argv / argc optimization.

• Optimization differences.

Updated the entry for the Arm Compiler 5 --multifile option. • Migration of compiler command-line options from Arm
Compiler 5 to Arm Compiler for Embedded 6.

Update language extension compatibility section to clarify that the
nomerge and notailcall Arm Compiler 5 attributes are not supported
in Arm Compiler for Embedded 6, but that the Community features
nomerge and not_tail_called might be considered.

• Language extension compatibility: attributes.

Progressive terminology commitment added to Proprietary notices
section (all documents).

• Proprietary notices

Added a list of the changes between Arm Compiler 6.14 and Arm
Compiler 6.15.

• Summary of changes between Arm Compiler 6.14 and Arm
Compiler 6.15.

Copyright © 2019–2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 135

	Arm® Compiler for Embedded Migration and Compatibility Guide
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Conventions
	1.2 Feedback
	1.3 Other information

	2 Configuration and Support Information
	2.1 Support level definitions
	2.2 Compiler configuration information

	3 Migrating from Arm Compiler 5 to Arm Compiler for Embedded 6
	3.1 Migration overview
	3.2 Toolchain differences
	3.3 Default differences
	3.4 Optimization differences
	3.5 Backwards compatibility issues
	3.6 Diagnostic messages
	3.7 Migration example

	4 Migrating from armcc to armclang
	4.1 Migration of compiler command-line options from Arm Compiler 5 to Arm Compiler for Embedded 6
	4.2 Arm Compiler 5 and Arm Compiler for Embedded 6 stack protection behavior
	4.3 Command-line options for preprocessing assembly source code
	4.4 Inline assembly with Arm Compiler for Embedded 6
	4.5 Migrating architecture and processor names for command-line options
	4.6 Preprocessing a scatter file when linking with armlink
	4.7 Migrating predefined macros

	5 Compiler Source Code Compatibility
	5.1 Language extension compatibility: keywords
	5.2 Language extension compatibility: attributes
	5.3 Language extension compatibility: pragmas
	5.4 Language extension compatibility: intrinsics
	5.5 Diagnostics for pragma compatibility
	5.6 C and C++ implementation compatibility
	5.7 Compatibility of C++ objects

	6 Migrating from armasm to the armclang Integrated Assembler
	6.1 Migration of assembler command-line options from armasm to the armclang integrated assembler
	6.2 Overview of differences between armasm and GNU syntax assembly code
	6.3 Comments
	6.4 Labels
	6.5 Numeric local labels
	6.6 Functions
	6.7 Sections
	6.8 Symbol naming rules
	6.9 Numeric literals
	6.10 Operators
	6.11 Alignment
	6.12 PC-relative addressing
	6.13 A32 and T32 instruction substitutions
	6.14 A32 and T32 pseudo-instructions
	6.15 Conditional directives
	6.16 Data definition directives
	6.17 Instruction set directives
	6.18 Miscellaneous directives
	6.19 Symbol definition directives
	6.20 Migration of armasm macros to integrated assembler macros

	7 Changes Between Different Versions of Arm Compiler for Embedded 6
	7.1 Summary of changes between Arm Compiler 6.16 and Arm Compiler for Embedded 6.17
	7.2 Summary of changes between Arm Compiler 6.15 and Arm Compiler 6.16
	7.3 Summary of changes between Arm Compiler 6.14 and Arm Compiler 6.15
	7.4 Summary of changes between Arm Compiler 6.13 and Arm Compiler 6.14
	7.5 Summary of changes between Arm Compiler 6.12 and Arm Compiler 6.13
	7.6 Summary of changes between Arm Compiler 6.11 and Arm Compiler 6.12
	7.7 Summary of changes between Arm Compiler 6.10 and Arm Compiler 6.11
	7.8 Summary of changes between Arm Compiler 6.9 and Arm Compiler 6.10
	7.9 Summary of changes between Arm Compiler 6.8 and Arm Compiler 6.9
	7.10 Summary of changes between Arm Compiler 6.7 and Arm Compiler 6.8
	7.11 Summary of changes between Arm Compiler 6.6 and Arm Compiler 6.7
	7.12 Summary of changes between Arm Compiler 6.5 and Arm Compiler 6.6
	7.13 Compiling with -mexecute-only generates an empty .text section

	8 Code Examples
	8.1 Example startup code for Arm Compiler 5 project
	8.2 Example startup code for Arm Compiler for Embedded 6 project

	9 Licenses
	9.1 Apache License

	10 Arm Compiler for Embedded Migration and Compatibility Guide Changes
	10.1 Changes for the Arm Compiler for Embedded Migration and Compatibility Guide

