

Arm SystemReady IR

Deploying Yocto on SystemReady IR
compliant hardware
Non-Confidential Issue 01
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

DUI1102

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 22

Arm SystemReady IR

Deploying Yocto on SystemReady IR compliant hardware

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 11 October 2021 Non-Confidential First version

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 22

document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address
www.arm.com

http://www.arm.com/company/policies/trademarks
https://www.arm.com/

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Contents

1 Overview .. 5

2 What is SystemReady IR? .. 6

2.1 Arm Base System Architecture .. 6

2.2 Embedded Base Boot Requirements ... 7

2.3 Devicetree specification .. 7

3 UEFI overview ... 9

3.1 UEFI boot process .. 10

3.2 Create a SystemReady IR bootable OS image .. 11

4 Yocto Project overview .. 12

4.1 SystemReady IR for Yocto ... 12

5 Example: deployment on an NXP board.. 14

5.1 Make the board SystemReady IR compatible ... 14

5.2 Build a generic SystemReady IR Yocto image ... 16

6 The meta-arm layer ... 18

7 Glossary .. 19

8 Related information .. 21

9 Next steps ... 22

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 22

1 Overview
SystemReady IR is a compliance certification program based on a set of hardware and firmware
standards that enable interoperability with generic off-the-shelf operating systems and hypervisors.
These standards include the Base System Architecture (BSA) and Base Boot Requirements (BBR)
specifications, and market-specific supplements.

The Yocto Project (YP) is an industry standard development tool to build Linux-based software stacks
for embedded devices. YP provides the flexibility to create custom solutions, however most YP builds
require custom engineering to run on a specific hardware platform. As a result, it is difficult to support
many targets with a single configuration. On SystemReady IR platforms, YP builds rely on consistent
boot behavior, a firmware provided system description, and mainline Linux support to eliminate per-
platform enablement. SystemReady IR reduces the effort for maintenance and can support many
platforms with a single image.

In this guide, learn how SystemReady IR compliant platforms make it easier to build, deploy, and
maintain YP solutions. This guide focuses on the SystemReady IR band of the SystemReady program.
This band addresses the needs of the embedded Linux ecosystem and is relevant for YP developers.
All examples in this guide use SystemReady IR compliant platforms.

This guide teaches you about the following:

• The SystemReady IR boot flow

• A reference deployment example on an Arm-based NXP board

• Information about where to find the necessary components to get YP up and running on a
SystemReady IR compliant platform

You can support SystemReady SR and ES certified platforms with the same YP configuration, but this
configuration is not described in this guide.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 22

2 What is SystemReady IR?
Cloud native software development is crucial to enable large scale IoT deployments. Working to cloud
native principles, you can build systems in which the cloud and edge work together, with the benefits
of each type of compute.

To help the growth of a cloud native edge ecosystem and support the continued growth and
innovation in IoT, Arm launched the Project Cassini initiative. Project Cassini is an open, collaborative,
standards-based initiative formed by three pillars: standardization, security, and ecosystem.
SystemReady IR makes up the standardization pillar of Project Cassini and will be the focus of this
guide. For more information about Project Cassini, see Project Cassini.

IoT devices are generally Linux-based and are used in industries ranging from complex smart cameras
to small industrial controllers. To enable these use cases, a flexible SoC ecosystem is necessary to
implement unique feature sets to meet specific requirements. This flexibility can lead to
fragmentation, where systems lack a set of standards for common features and interfaces. As a result,
fragmentation affects developers and the broader IoT ecosystem.

IoT software typically needs to be developed for specific hardware targets. Each platform has
different dependencies and requires a unique software stack. Debugging and ongoing maintenance
can become costly, however SystemReady IR addresses fragmentation in IoT.

SystemReady is a compliance certification program with separate bands targeting different parts of
the Arm ecosystem. For all bands, SystemReady compliant platforms use a standard firmware
interface that simplifies the boot process and removes the need for platform-specific boot support.
SystemReady IR provides standards for Linux and other operating systems that use the devicetree
specification. These standards enable you to easily deploy a standard software stack across all
SystemReady compliant platforms. Effort spent creating platform-specific software stacks can be
redirected to more important tasks, such as building differentiating features.

SystemReady IR certified platforms use a minimum set of hardware and firmware features and must
be compliant with the following requirements:

• Arm Base System Architecture (BSA) for 64-bit

• Embedded Base Boot Requirements (EBBR)

• EBBR recipe of the Arm Base Boot Requirements

• Devicetree Specification

Platforms are tested for compliance using the Architectural Compliance Suite (ACS) tool for the
relevant SystemReady band. For more information about the certification process for SystemReady
IR, see the SystemReady IR - IoT integration, test, and certification.

2.1 Arm Base System Architecture

The Arm Base System Architecture (BSA) offers a standard hardware architecture for SoC designers.
This architecture allows you to optimize the SoC for specific use cases and retain the minimum

https://www.arm.com/solutions/infrastructure/edge-computing/project-cassini
https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/architectures/platform-design/embedded-systems
https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/documentation/DUI1101/a

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 22

feature set to enable software combability. The cost savings from removing additional hardware
features for specific SoCs is offset by the complication of developing software across different
hardware. Meeting minimum hardware specifications as defined by BSA simplifies this optimization
process.

The BSA specifies a 64-bit hardware system based on the Arm architecture, with baseline
requirements covering processing elements, memory subsystems, interrupts, Memory Management
Units (MMU), PCIe, peripherals, and other power and security features. The BSA describes the
minimum set of features required for an OS to boot and run. Further requirements can be added on
top of these baseline requirements for specific market segments, for example, the BSA server
supplement. The baseline BSA specification is sufficient for IoT.

On AArch64 platforms for SystemReady IR compliance, you must run the BSA tests included in the
ACS test tool and report the results. However, the results are informational and the platform is not
required to pass all BSA tests for certification. BSA does not specify 32-bit hardware requirements
and there are no BSA test cases for AArch32 platforms.

2.2 Embedded Base Boot Requirements

The Embedded Base Boot Requirements (EBBR) addresses fragmentation in embedded boot
sequences. Embedded platforms traditionally implement a bespoke boot sequence and as a result,
require platform-specific modifications to the OS. The EBBR specifies boot features that ensure OSs
can boot without modifications. As embedded deployments become larger and more diverse,
standardized boot behavior becomes more important.

The EBBR specification defines features at the interface between the firmware and an OS or
hypervisor. EBBR-compliant platforms present a consistent firmware interface to the OS, allowing
compliant OSes to boot unmodified and to employ advanced features including Secure Boot and
firmware updates. The EBBR uses the Unified Extensible Firmware Interface (UEFI) specification to
define the boot and runtime services expected by an OS or hypervisor.

The Arm Base Boot Requirements (BBR) covers all SystemReady bands. This specification includes an
EBBR recipe that specifies how BBR compliance is met when implementing the EBBR requirements.

2.3 Devicetree specification

The devicetree specification defines a data structure which describes the hardware components of a
particular system. The bootloader loads both the kernel image and the Devicetree Blob (DTB). The
OS’s kernel then reads the devicetree information, allowing it to use and manage the hardware
components. Devicetrees move the hardware description out of the kernel binary, helping to reduce
the number of kernel forks needed to support specific hardware.

Traditionally in embedded Linux systems the devicetree has been included as part of the OS image,
and the OS needs to include a devicetree for every supported platform. The difference with
SystemReady IR is that firmware is required to provide a default devicetree that is suitable for
booting the Linux kernel so that the OS is not required to provide its own copy. This makes it possible
to deploy a single image on a much wider range of hardware.

https://developer.arm.com/documentation/den0044/latest

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 22

The default devicetree requirement is a requirement on the firmware, not on the OS. The OS is not
required to use the default devicetree and can install a replacement at boot time if needed.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 22

3 UEFI overview
The UEFI standard defines the Application Binary Interface (ABI) exposed by the firmware that an OS
uses. UEFI chooses which binary to load and execute, defines a set of abstract interfaces for accessing
the console, network, storage, and other devices, and details how control is handed over from
firmware to an OS. The most well-known open source implementation of UEFI compliant firmware is
the Tianocore EDK2 reference implementation. U-Boot also implements a subset of the UEFI ABI.
Most IR compliant platforms use the U-Boot implementation.

UEFI firmware works by being able to find, load, and execute UEFI applications. This firmware
provides basic access to devices until the OS is ready to take control of the platform and use its own
device drivers. UEFI applications are executable code in PE/COFF format. The firmware doesn’t need
to know what the application does. When a UEFI application is run, it can either run to completion and
return control back to firmware, or transfer control to an OS which assumes control of the hardware.
The first type of application contains standalone utilities, boot menus, or other tools. The second type
of UEFI application is referred to as an OS loader. A UEFI application can also load and execute
another UEFI application. For example, a boot menu application like GRUB can load and execute an
OS loader such as the UEFI stub embedded in a Linux kernel image.

Examples of UEFI applications are as follows:

• GRUB, a boot system used by Linux distributions to display a menu of boot options

• Memtest86, an industry standard memory stress testing application

• UEFI shell

• Linux kernel. The Linux kernel itself is a UEFI application. The kernel contains a UEFI stub that
calls ExitBootServices() and sets up the execution environment before jumping into the kernel.

• Tianocore EDK2 SCT, the standard UEFI Self Certification Test suite

• Doom

By design, UEFI is a simplified execution environment. Applications are single threaded using simple
memory management. UEFI does not provide scheduling services. One UEFI application runs at a
time. UEFI is designed to provide enough functionality for an OS to perform pre-boot actions, such as
choosing a specific kernel version or loading additional files, before handing control to the OS. The
defined ABIs, which are also called protocols, provide abstract access to network, storage, console,
variable, and memory management services.

Also included in UEFI is the GUID Partition Table (GPT) format for partitioning block devices. GPT
replaces the MBR (Master Boot Record) method of partitioning because GPT supports larger devices,
can handle a greater number of partitions, and is robust against corruption.

https://github.com/Tianocore/edk2

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 22

3.1 UEFI boot process

This section explains how UEFI boot occurs when the device is powered on. The UEFI components
and the OS are generic and independent of the system firmware. There are no platform-specific
customizations. The information in this section applies to any SystemReady compliant platform.

When the platform is released from reset, the firmware performs an internal initialization before
performing Boot Device Selection to locate and run a UEFI application. Boot Device Selection begins
by using the BootOrder and BootXXXX variables to find a suitable UEFI application. Each of the

BootXXXX variables contains the name of the boot option and a path to a UEFI executable in the

form /Device/path/in device. Use the efibootmgr utility on Linux to see examples of BootXXXX

entries, such as the following example code:
root@toybrick-debian:~# efibootmgr -v

BootCurrent: 0001

BootOrder: 0001

Boot0001* Debian VenHw(e61d73b9-a384-4acc-aeab-

82e828f3628b)/eMMC(0)/eMMC(1)/HD(3,GPT,5f6b0000-0000-403e-8000-

0d7d00000b89,0x6000,0x100800)/File(EFI\debian\shimaa64.efi)

root@toybrick-debian:~#

BootOrder is a list of numbers in the form 0001, 0004, 0002. BootOrder corresponds to the

BootXXXX variables that tell firmware where to find a UEFI application. In the code example, the

firmware attempts to load and execute the UEFI applications pointed to by Boot0001, Boot0004,

and Boot0002, in that order. Firmware will attempt to execute each BootXXXX entry in

BootOrder order. If an application cannot be found or if it exits and returns to firmware, firmware

continues to the next BootOrder entry until the list is complete.

Typically, the BootXXXX entries point to a file stored in the EFI System Partition (ESP). The ESP is a

FAT formatted partition that firmware uses for storing boot applications and other utilities. When an
OS is installed, the OS copies boot applications into the ESP so that firmware can find and read these
applications.

If BootOrder is not defined or none of the BootXXXX targets can be run, firmware falls back to the

default boot targets. These targets is either the removable device path of
/EFI/BOOT/BOOT<ARCH>.EFI on any device with an ESP, or network boot. The order of the

default boot targets is implementation defined and can usually be controlled by the user. Most EDK2
implementations provide a boot menu to the user. In U-Boot implementations, the default boot order
is typically defined by the boot_targets variable, as shown in the following code:

U-Boot 2021.07-dirty (Aug 06 2021 - 21:43:32 +0100)

SoC: Rockchip rk3399

Reset cause: RST

Model: Rockchip RK3399 Toybrick ProD Board

DRAM: 2 GiB

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 22

PMIC: RK8090 (on=0x40, off=0x00)

MMC: mmc@fe320000: 1, sdhci@fe330000: 0

Loading Environment from MMC... OK

In: serial

Out: serial

Err: serial

Model: Rockchip RK3399 Toybrick ProD Board

Net:

Warning: ethernet@fe300000 (eth0) using random MAC address - ce:82:85:cf:61:0d

eth0: ethernet@fe300000

Hit any key to stop autoboot: 0

=> printenv boot_targets

boot_targets=mmc0 mmc1 usb0 pxe dhcp sf0

=>

3.2 Create a SystemReady IR bootable OS image

This section describes how an OS uses UEFI firmware to boot. Linux, BSD, and other operating
systems contain support for the UEFI ABI. To build a bootable operating system image, the
executable files must be in the right place.

For initial provisioning, a device will not have BootOrder or BootXXXX variables set, and the

platform will boot from one of the default boot targets. The most common boot targets use the
removable media boot path on a block device or boot over the network using DHCP/TFTP, iSCSI, or
HTTPS. Currently, U-Boot implements TFTP boot and iPXE can be used for iSCSI boot. U-Boot does
not have an implementation of HTTPS boot. In this guide, we boot from a block device like a USB
drive.

For firmware to treat the block device as bootable, the firmware needs to be able to find an ESP
partition containing a /efi/boot/boot<architecture>.efi file. For example, on AArch64 the

boot file is /efi/boot/bootaa64.efi. For GPT formatted disks, the ESP must be FAT formatted

and tagged with partition type 0xef00. ISO disk images do not need a separate ESP but must contain a
/efi/boot/bootaa64.efi file.

To create a bootable image in GRUB, copy grub.efi to /efi/boot/bootaa64.efi and put the

GRUB config file in the same directory. Other UEFI boot applications like systemd-boot are installed
in a similar way. For more information, refer to the documentation for your boot application.

After an OS has been copied to local storage, it can replace the removable boot path with a
BootXXXX variable. This variable allows the OS to specify the install path and a selection of UEFI

boot targets. Linux distribution installers use the SetVariable() UEFI API to set BootXXXX after

the boot loader is copied to the ESP.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 22

4 Yocto Project overview
The Yocto Project helps developers build custom embedded Linux distributions. It is popular due to
its modularity, which allows you to optimize speed, footprint, and memory utilization. The Yocto
Project contains the following key elements:

• Tools for Linux development

• Poky, a reference embedded distribution

• OpenEmbedded build system

Poky is Yocto’s stable reference OS, which demonstrates a basic level of functionality for embedded
systems. Poky combines core components from the Yocto Project, is tested and supported, and
receives frequent updates. Developers can use Poky as a foundation and adapt it to meet their
requirements. Underpinning Yocto’s modularity is the Layer Model, which allows for functionality to
be logically organized into layers. Layers group related recipes and tell the build system what to make.
Recipes are a form of metadata, which contain instructions on where to find the source code and
information on dependencies and compilation options.

The OpenEmbedded layer index provides an easy way to find layers, such as Board Support Packages
(BSP), GUIs, middleware, and the Poky layer. The Yocto Project Compatible Layer Index includes a
curation of layers validated to work with Yocto. Combining pre-built layers with custom built layers,
developers can build an entire distribution. The layer system creates a logical hierarchy which enables
collaboration and reuse of code, whilst simplifying the overall view of the software.

An example hierarchy can include the following layers:

• Developer Specific Layer, a custom functionality for the specific product requirements

• Poky, a reference OS to act as a foundation

• Hardware Specific BSP provided by the silicon vender or ODM

• Yocto Specific Layer, which are recipes specific to Yocto builds

• OpenEmbedded-core, a small set of foundational recipes consistent across OpenEmbedded
derived builds

The OpenEmbedded Build System uses the BitBake tool. BitBake parses recipes to compile a final
image either through native or cross compilation. For more detailed information about Yocto, see the
Yocto documentation.

4.1 SystemReady IR for Yocto

Yocto offers an easy way to build custom OS images. Embedded developers often support many
platforms with different hardware and firmware, creating bespoke Yocto images for each
configuration. SystemReady IR is designed to address this complexity. SystemReady IR compliant
platforms expose a standardized set of interfaces to the OS so that Yocto builds and other off-the-
shelf Linux distributions can boot without modifications. Embedded platforms can target

https://docs.yoctoproject.org/

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 22

SystemReady IR, however Yocto builds can boot without modification across platforms compliant
with SystemReady. For example, a Yocto build can be developed on a SystemReady SR compliant
server then be seamlessly ported to production silicon that is SystemReady IR.

SystemReady IR provides an effective solution to the issue of fragmentation for embedded
developers, offering a software experience that works while retaining the customizability that Yocto
is known for. With this combination, you can support large, diverse deployments with substantially
reduced effort.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 22

5 Example: deployment on an NXP
board
Before you begin, you will need the following:

• An NXP i.MX 8M Mini EVK board

• A micro SD card that is 2GB or larger

• A computer running a Linux environment

5.1 Make the board SystemReady IR compatible
1. Ensure you have an NXP account.

2. Download and extract the i.MX 8M Mini EVK boot image (SystemReady-IR certified) from
Embedded Linux for i.MX Applications Processors.

3. Download the uuu tool from the mfgtools GitHub repository. This tool is used to program the
onboard eMMC.

4. On the NXP board, slide the power switch to the off position and set the boot mode switches to
Download mode. The following table shows the switch settings:

 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW0

Top row 1 0 1 0 X X X X X X

Bottom
row

X X X X X X X X X 0

1=Switch Up, 0= Switch Down, X= Either

Table 1: Boot mode switch settings

5. Connect the USB-C power cable to the power supply, the USB-C USB cable to the PC, and the
USB Micro cable to the PC (serial). The following diagram shows how the cables should be
connected:

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX?tab=In-Depth_Tab
https://github.com/NXPmicro/mfgtools/releases

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 22

Figure 1: Cable connection

6. Slide the power switch to the on position and flash the boot firmware as shown in the following
code snippet:
$ sudo uuu -b emmc imx-boot-imx8mmevk-sd.bin-flash_evk

The SystemReady IR compatible version of U-Boot is installed to the onboard eMMC.

7. Slide the power switch to the off position and set the boot mode switches to eMMC mode, as
shown in the following table:

 SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 SW9 SW0

Top Row 0 1 1 0 1 1 0 0 0 1

Bottom
Row

0 0 0 1 0 1 0 1 0 0

1=Switch Up, 0= Switch Down

Table 2: eMMC mode switch settings

The board is now ready to boot SystemReady IR compatible operating systems from an SD Card or
USB.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 22

5.2 Build a generic SystemReady IR Yocto image

Now that the board is SystemReady IR compatible, the next step is to build a base generic Yocto
image that will boot on any SystemReady compatible platform.

1. Make sure all the Yocto build prerequisites are met, as described in Yocto Project Quick Build.

2. Set up Poky and the meta-arm layers using the following code:
$ git clone git://git.yoctoproject.org/poky

$ git clone git://git.yoctoproject.org/meta-arm

$ cd poky

$ source oe-init-build-env

$ bitbake-layers add-layer ../../meta-arm/meta-arm-toolchain

$ bitbake-layers add-layer ../../meta-arm/meta-arm

3. Change the MACHINE config value in the conf/local.conf config file to generic-arm64 ,

as shown in the following snippet:
$ sed -i 's/qemux86-64/generic-arm64/' conf/local.conf

Generic-arm 64 is a generic SystemReady IR aarch64 machine.

4. Change the init system from sysvinit to systemd, as shown in the following code:
$ echo 'DISTRO_FEATURES += " systemd"

VIRTUAL-RUNTIME_init_manager = "systemd"

DISTRO_FEATURES_BACKFILL_CONSIDERED += "sysvinit"' >> conf/local.conf

This system can properly detect the console tty from the kernel.

5. Build the Yocto image using the following code:
$ bitbake core-image-base

6. Copy the image to a micro SD card using the following code:
sudo dd if=tmp/deploy/images/generic-arm64/core-image-base-generic-arm64.wic

of=/dev/sdX bs=4M

https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 22

7. Insert the microSD card into the development board and power it on. As shown in the following
screen shot, the board shows U-boot, the systemd-boot menu, and a login shell for Yocto:

Figure 2: Boot display

The Yocto image is now installed on the NXP board.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 22

6 The meta-arm layer
meta-arm is a layer with recipes specific for Arm platforms, and contains generic-arm64 and
qemuarm64-sbsa QEMU machines.

The following table describes the recipes in the meta-arm layer:

Recipe Description

Android Common Kernel Downstream of kernel.org kernels, including selected patches that have not been
merged into the mainline or Long Term Supported (LTS) kernel

Arm FVP – Architecture Envelope
Model

Support for Fixed Virtual Platform (FVP) Architecture Envelope Models (AEM)

Arm FVP – Library Ecosystem
Reference Design

Support for Arm FVP library, which includes all CPU FVPs

DS-5 Streamline Gator daemon Daemon for gathering data for Arm Streamline Performance Analyser (part of Arm
Development Studio)

Hafnium A reference Secure Partition Manager (SPM) for systems that implement the
Armv8.4-A Secure-EL2 extension, enabling multiple, isolated Secure Partitions (SPs)
to run at Secure-EL1

OpenCSD API for decoding trace streams from Arm CoreSight trace hardware

OP-TEE Trusted Execution Environment (TEE) designed as companion to a non-secure Linux
kernel running on Cortex-A cores using TrustZone

SCP Firmware System Control Processor (SCP) and Manageability Control Processor (MCP)
firmware reference implementation

Tianocore EDK2 Open-source implementation of UEFI

Trusted Firmware-A Reference implementation of secure world software for Cortex-A

Trusted Firmware for Cortex-M Reference implementation of secure world software for Cortex-M

Table 3: meta-arm layer recipes

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 22

7 Glossary
Abbreviations and terms used in this document are defined in the following table:

Term Abbreviation Definition

AArch32/64 - 32/64-bit version of the Arm architecture.

Application Binary
Interface

ABI Describes the low-level interface between two binaries, one of
which is often an OS.

Advanced Configuration
and Power Interface

ACPI An open standard that OSs can use to discover and configure
hardware components.

Architecture Compliance
Suite

ACS Test suite from Arm to evaluate platforms against EBBR and BSA
specifications.

Base Boot Requirements BBR Set of requirements for boot and runtime services that system
software can rely on. BBR is a superset of EBBR.

Base Standard
Architecture

BSA Specification for a hardware system architecture based on
AArch64. See Arm Base System Architecture.

Basic Input/Output
System

BIOS Firmware that performs hardware initialization during system
boot, largely superseded by UEFI.

Board Support Package BSP Software containing hardware specific drivers.

Cloud native - Method of building and running applications in a way that
leverages cloud computing.

Devicetree - A data structure which describes the hardware components of a
particular system. See Devicetree specification.

Devicetree blob DTB A format that is a flat binary encoding of Devicetree data.

Embedded Base Boot
Requirements

EBBR Subset of the BBR targeted at embedded devices. See Embedded
Base Boot Requirements.

Globally Unique
Identifiers

GUID 128-bit reference numbers that are unlikely to repeat and are
considered unique.

GUID Partition Table GPT A standard layout for partition tables for storage devices using
GUIDs.

GNU GR and Unified
Bootloader

GRUB Bootloader package from the GNU Project which displays a boot
menu.

OpenEmbedded - Build automation and cross-compile environment used to create
Linux distributions for embedded environments.

Poky - Reference embedded OS for the Yocto project. See Yocto Project
overview.

Project Cassini - Standards-based initiative from Arm, with a focus on
standardization, security, and ecosystem.

UEFI Secure Boot - Protocol to secure the boot process by verifying loaded UEFI
driver or OS boot loader signatures against known keys.

System Management
BIOS

SMBIOS Specification that defines data structures that can be used to read
information produced by the BIOS.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 22

Term Abbreviation Definition

SystemReady - Compliance certification program from Arm based on a set of
hardware and firmware standards. See What is SystemReady IR?

Tianocore EDK2 - Open-source UEFI implementation.

U-boot - Open-source primary bootloader (first and second stage) often
used in embedded devices.

Unified Extensible
Firmware Interface

UEFI A standard that defines an ABI that is exposed by the firmware for
an OS to use. See UEFI overview.

Yocto layer - A collection of related recipes organized as a modular block. See
Yocto Project overview.

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 22

8 Related information
The following are resources related to material in this guide:

• Arm Base System Architecture (BSA) specification

• Embedded Base Boot Requirements (EBBR) specification

• EBBR recipe of the Arm Base Boot Requirements (BBR)

• SystemReady IR

• SystemReady IR ACS GitHub repository

• SystemReady IR - IoT integration, test, and certification

• Yocto Project Documentation

https://developer.arm.com/documentation/den0094/latest
https://developer.arm.com/architectures/platform-design/embedded-systems
https://developer.arm.com/documentation/den0044/latest
https://developer.arm.com/architectures/system-architectures/arm-systemready/ir
https://github.com/ARM-software/arm-systemready/tree/main/IR
https://developer.arm.com/documentation/ARMDUI1101/A/
https://docs.yoctoproject.org/

Deploying Yocto on SystemReady IR compliant
hardware

DUI1102
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 22

9 Next steps
In this guide, you learned about SystemReady, the Yocto Project, and how the two work together. As a
next step, you can follow the example in Example: deployment on an NXP board to deploy a Yocto
build on SystemReady compliant hardware.

