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1 Overview 
In this guide, you learn how to transition from x86 to Arm Neon technology for non-portable x86 Intel 
SSE code with sample code. This guide focuses on porting SSE intrinsics used on Intel and AMD 
hardware to Neon intrinsics with the Single Instruction Multiple Data (SIMD) instruction set.  

This guide does not include the underlying assembly code that the intrinsics compile to, or the 
performance characteristics of your code after a port.  

If you maintain code that is accelerated by SSE intrinsics on Intel and AMD platforms, you may have 
investigated how to port SSE code to Arm-powered devices. Previously, x86-targeted and Arm-
targeted assembly code was partitioned along usage boundaries. x86 code typically ran in desktop 
and server environments, and Arm code ran on edge devices and mobile hardware. 

With Windows running on Arm-based devices, it is increasingly important to support both x86 and 
Arm usage scenarios. Microsoft provides x86 emulation modes when running Windows operating 
systems on Arm. However, your program can suffer from reduced performance and thermal 
efficiency, compared to a native port. 

1.1 Before you begin 

To work through this guide, you need to be familiar with the Arm Cortex-A series processors and 
intrinsics. For more information about the Arm Cortex-A processor, read the Arm Architecture 
Reference Manual Armv8, for Armv8-A architecture profile. For an introduction to Neon intrinsics, 
you can read at explanation at Why Neon intrinsics.  

https://developer.arm.com/documentation/ddi0487/ga
https://developer.arm.com/documentation/ddi0487/ga
https://developer.arm.com/documentation/102467/0100/Why-Neon-Intrinsics-
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2 About intrinsics 
In this section, you learn about intrinsics and how Neon intrinsics differ from SSE intrinsics. Intrinsics 
let the compiler assist the programmer. When code is expressed as intrinsics instead of raw assembly, 
the compiler is responsible for controlling register allocation. The compiler is also responsible for 
negotiating call conventions when traversing function call boundaries ad can optimize the generated 
code.  

SSE intrinsics look like the following code example: 
#include <xmmintrin.h> 

__m128 mul(__m128 a, __m128 b) 

{ 

    return _mm_mul_ps(a, b); 

} 

This code defines a function mul which takes two 128-bit vectors as arguments, multiplies them lane-

wise, and returns the result. 

Compared to the SSE code example, the same function with Neon intrinsics looks like the following 
code: 
#include <arm_neon.h> 

 

float32x4_t mul(float32x4_t a, float32x4_t b) 

{ 

    return vmulq_f32(a, b); 

} 

2.1 How is Neon is different to SSE intrinsics? 

Neon intrinsics are different from SSE intrinsics in some important ways. 

First, the specification of the input arguments and output result in Neon is a float32x4_t instead of 
a __m128 type. Unlike SSE register types, Neon register types lead with the component type and are 
followed by the bit width of the component times the lane count. 

For example, we want to port code that operates on 128-bit integers. The expected Neon type 
describes four 32-bit integers. The Neon register corresponding to __m128i in SSE is int32x4_t. The 
Neon type that corresponds to __m128d is contained in the 128-bit register. This register contains 
two 64-bit floats, and the Neon type is float64x2_t. SSE types describe the width of the entire vector 
register, andNeon types describe the width of each component and the component count. 

Another important distinction between SSE and Neon types is the treatment of unsigned quantities. 
Neon encodes the signed nature of the data in the type itself by offering register types 
like uint32x4_t and int32x4_t. SSE offers only one register, __m128i, to store four 32-bit signed and 
unsigned integers. 
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SSE programmers who want the data to be treated as unsigned should choose the appropriate 
intrinsic function. Append the _epu* suffix to treat the operands as unsigned integral data. Neon 

enforces this data at the type level, and conversions are performed explicitly where necessary. There 
are fewer intrinsic function names for to memorize. This is because of the argument-dependent 
lookup. 

If an overload is not supported, the compiler provides an error message, as shown in the following 
code: 
#include <arm_neon.h> 

 

uint32x4_t sat_add(uint32x4_t a, uint32x4_t b) 

{ 

    return vqaddq_u32(a, b); 

} 

 

int32x4_t sat_add(int32x4_t a, int32x4_t b) 

{ 

    // Compile error! "cannot convert 'int32x4_t' to 'uint32x4_t'" 

    return vqaddq_u32(a, b); 

} 

This code uses the intrinsic vqaddq_u32 to add unsigned integers in a vectorized method, saturating 
instead of overflowing. A64 GCC fails to compile the second function in this example. This is 
because vqaddq_u32 is defined for unsigned types only. 

Compared to reading SSE intrinsic functions, Neon functions have a learning curve. SSE intrinsics are 
typically structured as shown in the following code: 
[width-prefix]_[op]_[return-type] 

_mm_extract_epi32 

For example, _mm_extract_epi32 is an intrinsic operating on 128-bit registers, using the width 
prefix _mm. This intrinsic performs an extract operation to produce a 32-bit signed value. The 
intrinsic _mm256_mul_ps performs a mul operation on packed scalar floats in a 256-bit register. 

In contrast, Neon intrinsics have the following form: 
[op][q]_[type] 

vaddq_f64 

The q in the intrinsic name indicates that the intrinsic accepts 128-bit registers, as opposed to 64-bit 

registers. Many of the op names lead with a v, meaning vector. 

For example, vaddq_f64 performs a vector add of 64-bit floats. The q indicates that this intrinsic 

operates on 128-bit vectors. The accepted arguments must be float64x2_t, since only two 64-bit 
floats fit in a 128-bit vector. 

Neon intrinsics also support operations that act on lanes of the SIMD register and other options. The 
full form of a Neon intrinsic and its specification is described in the Program conventions topic in 
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Optimizing C Code with Neon Intrinsics. Read this topic to help decipher intrinsics when you 
encounter them, and to follow the Porting intrinsics section of this guide.  

https://developer.arm.com/documentation/102467/0100/Program-conventions
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3 Porting intrinsics 
In this guide, we learn about: 

• Porting SSE code to run on Arm processors manually 

• Using platform-agnostic headers 

• Porting to a unified vector library 

• Porting with SSE2Neon and SIMDe 

3.1 Port intrinsics manually 

When porting existing SSE code, you can manually port each SSE routine. Manual porting is suitable 
for porting short, isolated snippets of code. In addition, code with fewer rare intrinsics and wide 
registers that are 256-bit and greater is easier to port. 

The following example code is from Klein, a C++ library that is written using SSE intrinsics to compute 
operators in Geometric Algebra. The following SSE code conjugates a vector denoting the orientation 
of a plane with a rotor, also known as a quaternion, rotating the plane in space: 
#include <xmmintrin.h> 

 

#define KLN_SWIZZLE(reg, x, y, z, w) \ 

    _mm_shuffle_ps((reg), (reg), _MM_SHUFFLE(x, y, z, w)) 

 

// a := plane (components indicate orientation and distance from the origin) 

// b := rotor (rotor group isomorphic to the quaternions) 

__m128 rotate_plane(__m128 a, __m128 b) noexcept 

{ 

    // LSB 

     // 

     //  a0 (b2^2 + b1^2 + b0^2 + b3^2)) e0 + 

     // 

     // (2a2(b0 b3 + b2 b1) + 

     //  2a3(b1 b3 - b0 b2) + 

     //  a1 (b0^2 + b1^2 - b3^2 - b2^2)) e1 + 

     // 

     // (2a3(b0 b1 + b3 b2) + 

     //  2a1(b2 b1 - b0 b3) + 

     //  a2 (b0^2 + b2^2 - b1^2 - b3^2)) e2 + 

     // 

     // (2a1(b0 b2 + b1 b3) + 

     //  2a2(b3 b2 - b0 b1) + 

https://github.com/jeremyong/klein
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     //  a3 (b0^2 + b3^2 - b2^2 - b1^2)) e3 

     // 

     // MSB 

 

     // Double-cover scale 

     __m128 dc_scale = _mm_set_ps(2.f, 2.f, 2.f, 1.f); 

     __m128 b_xwyz   = KLN_SWIZZLE(b, 2, 1, 3, 0); 

     __m128 b_xzwy   = KLN_SWIZZLE(b, 1, 3, 2, 0); 

     __m128 b_xxxx   = KLN_SWIZZLE(b, 0, 0, 0, 0); 

 

     __m128 tmp1 

         = _mm_mul_ps(KLN_SWIZZLE(b, 0, 0, 0, 2), KLN_SWIZZLE(b, 2, 1, 3, 2)); 

     tmp1 = _mm_add_ps( 

         tmp1, 

         _mm_mul_ps(KLN_SWIZZLE(b, 1, 3, 2, 1), KLN_SWIZZLE(b, 3, 2, 1, 1))); 

     // Scale later with (a0, a2, a3, a1) 

     tmp1 = _mm_mul_ps(tmp1, dc_scale); 

 

     __m128 tmp2 = _mm_mul_ps(b, b_xwyz); 

 

     tmp2 = _mm_sub_ps(tmp2, 

                       _mm_xor_ps(_mm_set_ss(-0.f), 

                                  _mm_mul_ps(KLN_SWIZZLE(b, 0, 0, 0, 3), 

                                             KLN_SWIZZLE(b, 1, 3, 2, 3)))); 

     // Scale later with (a0, a3, a1, a2) 

     tmp2 = _mm_mul_ps(tmp2, dc_scale); 

 

     // Alternately add and subtract to improve low component stability 

     __m128 tmp3 = _mm_mul_ps(b, b); 

     tmp3        = _mm_sub_ps(tmp3, _mm_mul_ps(b_xwyz, b_xwyz)); 

     tmp3        = _mm_add_ps(tmp3, _mm_mul_ps(b_xxxx, b_xxxx)); 

     tmp3        = _mm_sub_ps(tmp3, _mm_mul_ps(b_xzwy, b_xzwy)); 

     // Scale later with a 

 

     __m128 out = _mm_mul_ps(tmp1, KLN_SWIZZLE(a, 1, 3, 2, 0)); 

     out = _mm_add_ps(out, _mm_mul_ps(tmp2, KLN_SWIZZLE(a, 2, 1, 3, 0))); 

     out = _mm_add_ps(out, _mm_mul_ps(tmp3, a)); 

     return out; 

 }</xmmintrin.h> 
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This code pattern will be familiar to SSE programmers. A general approach is to start from the 
component-by-component computation to be performed. In this case, we are given two four-
component vectors as __m128 registers. Then, we factor out common subexpressions in a vector 
method before composing and returning the result. The first parameter named a indicates a plane 

corresponding to the following implicit equation: 

The second parameter b is also a four-component register that represents the four components of a 

rotor. The operation we are computing is the sandwich operator, written as follows: 

Let’s start our port to Neon with the following function signature: 
float32x4_t rotate_plane(float32x4_t a, float32x4_t b) noexcept 

{ 

    // TODO 

} 

Next, we learn how to initialize a float32x4_t with constant values. Compilers allow us to specify initial 
values with standard aggregate initialization, as shown in the following code: 
float32_t tmp[4] = {1.f, 2.f, 2.f, 2.f}; 

float32x4_t dc_scale = vld1q_f32(tmp); 

In this code, the lowest address in the register comes first, unlike in the _mm_set_ps intrinsic, which 
leads with the most significant bytes first. 

The swizzle operation in _mm_shuffle_ps is common in SSE code that is more difficult to port. This is 
because there is no mirroring intrinsic in Neon. To do this function, we need the following tools: 

• vgetq_lane_f32 to retrieve a specified component within a vector as a scalar. The corresponding 
intrinsic for setting a lane from a scalar is vsetq_lane_f32.  

• vcopyq_lane_f32 to move a component from one vector to another 

• vdupq_lane_f32 to broadcast a line to all four components 

We can go line by line, replacing all swizzles with the corresponding lane queries and assignments. 

Replacing the swizzles line by line is unlikely to produce good results on an Arm-powered device. For 
example, on Intel hardware, a shuffle has a one cycle latency penalty and throughput of one cycle per 
instruction. In contrast, the DUP instruction that is used to extract a lane has a three cycle penalty on 
an Arm Cortex-A78 processor. Each MOV that is needed to assign a lane incurs another two cycle 
latency penalty. 

Figure 2: Vector equation 

Figure 1: Sandwich operator 

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vgetq_lane_f32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vcopyq_lane_f32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vdupq_lane_f32
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To get better performance with Neon, we need to get exposure to instructions that operate on more 
than a lane-by-lane granularity. For an overview of the options for data permutation, refer to the 
Permutation section in the Neon Programmer's Guide for Armv8-A : Coding for Neon. 

vextq_f32 extracts components from two separate vectors, combining them from a provided 
component index. In addition, there is a family of rev intrinsics which lets us reverse the order of 
components. 

Note: To generate permutations, you can cast a float32x4_t to a float64x2_t or the reverse. 
Each REV16, REV32, or REV64 instruction has a two cycle latency penalty, but can combine many 
individual lane gets and sets. 

After carefully permuting the input vectors minimally, we receive the following function: 
#include <arm_neon.h> 

 

float32x4_t rotate_plane(float32x4_t a, float32x4_t b) noexcept 

{ 

    // LSB 

    // 

    //  a0 (b0^2 + b1^2 + b2^2 + b3^2)) e0 + // tmp 4 

    // 

    // (2a2(b0 b3 + b2 b1) +                 // tmp 1 

    //  2a3(b1 b3 - b0 b2) +                 // tmp 2 

    //  a1 (b0^2 + b1^2 - b3^2 - b2^2)) e1 + // tmp 3 

    // 

    // (2a3(b0 b1 + b3 b2) +                 // tmp 1 

    //  2a1(b2 b1 - b0 b3) +                 // tmp 2 

    //  a2 (b0^2 + b2^2 - b1^2 - b3^2)) e2 + // tmp 3 

    // 

    // (2a1(b0 b2 + b1 b3) +                 // tmp 1 

    //  2a2(b3 b2 - b0 b1) +                 // tmp 2 

    //  a3 (b0^2 + b3^2 - b2^2 - b1^2)) e3   // tmp 3 

    // 

    // MSB 

 

    // Broadcast b[0] to all components of b_xxxx 

    float32x4_t b_0000 = vdupq_laneq_f32(b, 0); // 3:1 

 

    // Execution Latency : Execution Throughput in trailing comments 

 

    // We need b_.312, b_.231, b_.123 (contents of component 0 don’t matter) 

    float32x4_t b_3012 = vextq_f32(b, b, 3);                // 2:2 

    float32x4_t b_3312 = vcopyq_laneq_f32(b_3012, 1, b, 3); // 2:2 

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/coding-for-neon/permutation-neon-instructions
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vextq_f32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=rev


Neon technology Port Intel intrinsics to Neon 
technology 

102581 
Issue 1 

3 Porting intrinsics 
 

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 13 of 26 

    float32x4_t b_1230 = vextq_f32(b, b, 1);                // 2:2 

    float32x4_t b_1231 = vcopyq_laneq_f32(b_1230, 3, b, 1); // 2:2 

 

    // We also need a_.231 and a_.312 

    float32x4_t a_1230 = vextq_f32(a, a, 1);                // 2:2 

    float32x4_t a_1231 = vcopyq_laneq_f32(a_1230, 3, a, 1); // 2:2 

    float32x4_t a_2311 = vextq_f32(a_1231, a_1231, 1);      // 2:2 

    float32x4_t a_2312 = vcopyq_laneq_f32(a_2311, 3, a, 2); // 2:2 

 

    // After the permutations above are done, the rest of the port is more natural 

    float32x4_t tmp1 = vfmaq_f32(vmulq_f32(b_0000, b_3312), b_1231, b); 

    tmp1 = vmulq_f32(tmp1, a_1231); 

 

    float32x4_t tmp2 = vfmsq_f32(vmulq_f32(b, b_3312), b_0000, b_1231); 

    tmp2 = vmulq_f32(tmp2, a_2312); 

 

    float32x4_t tmp3_1 = vfmaq_f32(vmulq_f32(b_0000, b_0000), b, b); 

    float32x4_t tmp3_2 = vfmaq_f32(vmulq_f32(b_3312, b_3312), b_1231, b_1231); 

    float32x4_t tmp3 = vmulq_f32(vsubq_f32(tmp3_1, tmp3_2), a); 

 

    // tmp1 + tmp2 + tmp3 

    float32x4_t out = vaddq_f32(vaddq_f32(tmp1, tmp2), tmp3); 

 

    // Compute 0 component and set it directly 

    float32x4_t b2 = vmulq_f32(b, b); 

    // Add the top two components and the bottom two components 

    float32x2_t b2_hadd = vadd_f32(vget_high_f32(b2), vget_low_f32(b2)); 

    // dot(b, b) in both float32 components 

    float32x2_t b_dot_b = vpadd_f32(b2_hadd, b2_hadd); 

 

    float32x4_t tmp4 = vmulq_lane_f32(a, b_dot_b, 0); 

    out = vcopyq_laneq_f32(out, 0, tmp4, 0); 

 

    return out; 

} 

The annotated expression in the comment at the top of the function shows how the temporaries that 
evaluate the expression are constructed. The compiled output code is a small routine of instructions, 
as shown in the following example: 
rotate_plane(__Float32x4_t, __Float32x4_t): 

ext v16.16b, v0.16b, v0.16b, #4 

ext v3.16b, v1.16b, v1.16b, #12 
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mov v6.16b, v0.16b 

fmul v4.4s, v1.4s, v1.4s 

ins v16.s[3], v0.s[1] 

ins v3.s[1], v1.s[3] 

dup v2.4s, v1.s[0] 

ext v7.16b, v1.16b, v1.16b, #4 

ext v0.16b, v16.16b, v16.16b, #4 

fmul v19.4s, v1.4s, v3.4s 

fmul v18.4s, v2.4s, v3.4s 

ins v7.s[3], v1.s[1] 

ins v0.s[3], v6.s[2] 

dup d17, v4.d[1] 

dup d5, v4.d[0] 

fmul v3.4s, v3.4s, v3.4s 

mov v4.16b, v0.16b 

mov v0.16b, v19.16b 

fadd v5.2s, v5.2s, v17.2s 

mov v17.16b, v18.16b 

fmla v3.4s, v7.4s, v7.4s 

fmls v0.4s, v2.4s, v7.4s 

fmul v2.4s, v2.4s, v2.4s 

faddp v5.2s, v5.2s, v5.2s 

fmla v17.4s, v7.4s, v1.4s 

fmul v0.4s, v4.4s, v0.4s 

fmla v2.4s, v1.4s, v1.4s 

fmul v5.4s, v6.4s, v5.s[0] 

fmla v0.4s, v17.4s, v16.4s 

fsub v2.4s, v2.4s, v3.4s 

fmla v0.4s, v6.4s, v2.4s 

ins v0.s[0], v5.s[0] 

ret 

With optimization settings set, Clang produces a better sequence of instructions to permute the 
vector. However, the optimizer might not notice the possible code improvements. 

3.2 Port with platform-agnostic headers 

The process of writing efficient intrinsics on Arm-powered hardware can seem complicated. Direct 
ports of SSE code to Neon can be time consuming, and do not always produce the wanted result. 

The SIMD Everywhere (SIMDe) header-only library eases the task of porting. With SIMDe, the only 
change that your code needs is to replace the header, which is where you include platform intrinsics. 

https://github.com/simd-everywhere/simde
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For example, you include the SIMDe variant matching the instruction set that you originally targeted, 
instead of including xmmintrin.h. 

SIMDe can be used to port x86 code to the Neon architecture. This custom code replaces the code 
that does not have a direct x86 to Neon functionality mapping. This code allows the source to benefit 
from performance optimization. 

Internally, the SIMDe header detects the target architecture that you are compiling to. The header 
also generates instructions that match the intrinsics that are used when writing code for the original 
target. 

For example, in our original code, we had an _mm_mul_ps intrinsic. After changing the header to 
include the SIMDe sse.h header, the code continues to invoke _mm_mul_ps when targeting x86 
hardware. However, compiling for Neon also succeeds, because the SIMDe header converts 
the _mm_mul_ps invocation to a vmulq_f32. 

To see how this intrinsic rewriting is happening directly, refer to the SIMDe implementation 
of _mm_mul_ps. The same approach is taken for all supported intrinsics, and the SIMDe 
implementation tries to select the most efficient replacement implementation possible. A commit like 
in this implementation can be sufficient to get set up with Neon quickly. 

With a single line change to each file with SSE headers pointing to SIMDe headers, you now have a 
codebase that can be compiled for Neon. 

The next step is to profile the result to see if the performance of the SIMDe direct replacement port is 
acceptable. Although porting with SIMDe is quicker, direct replacement of x86 intrinsics with the 
Neon equivalents can result in inefficient code. By profiling the ported code, you can slowly migrate 
problematic portions of code to a native handwritten port on a case-by-case basis. 

To see the effect of SIMDe on our plane rotating function, we can swap out the line to include the SSE 
header with the following code: 
#include <arm_neon.h> 

typedef float32x4_t __m128; 

 

inline __attribute__((always_inline)) __m128 _mm_set_ps(float e3, float e2, float e1, 

float e0) 

{ 

    __m128 r; 

    alignas(16) float data[4] = {e0, e1, e2, e3}; 

    r = vld1q_f32(data); 

    return r; 

} 

 

#define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w)) 

 

inline __attribute__((always_inline)) __m128 _mm_mul_ps(__m128 a, __m128 b) { 

    return vmulq_f32(a, b); 

} 

https://github.com/simd-everywhere/simde/blob/107fab8cf29c36506e8b5b98629eb909043cbefb/simde/x86/sse.h#L3180
https://github.com/simd-everywhere/simde/blob/107fab8cf29c36506e8b5b98629eb909043cbefb/simde/x86/sse.h#L3180
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inline __attribute__((always_inline)) __m128 _mm_add_ps(__m128 a, __m128 b) { 

    return vaddq_f32(a, b); 

} 

 

inline __attribute__((always_inline)) __m128 _mm_sub_ps(__m128 a, __m128 b) { 

    return vaddq_f32(a, b); 

} 

 

inline __attribute__((always_inline)) __m128 _mm_set_ss(float a) { 

    return vsetq_lane_f32(a, vdupq_n_f32(0.f), 0); 

} 

 

inline __attribute__((always_inline)) __m128 _mm_xor_ps(__m128 a, __m128 b) { 

    return veorq_s32(a, b); 

} 

 

#define _mm_shuffle_ps(a, b, imm8)                                   \ 

   __extension__({                                                        \ 

      float32x4_t ret;                                                   \ 

      ret = vmovq_n_f32(                                                 \ 

          vgetq_lane_f32(a, (imm8) & (0x3)));     \ 

      ret = vsetq_lane_f32(                                              \ 

          vgetq_lane_f32(a, ((imm8) >> 2) & 0x3), \ 

          ret, 1);                                                       \ 

      ret = vsetq_lane_f32(                                              \ 

          vgetq_lane_f32(b, ((imm8) >> 4) & 0x3), \ 

          ret, 2);                                                       \ 

      ret = vsetq_lane_f32(                                              \ 

          vgetq_lane_f32(b, ((imm8) >> 6) & 0x3), \ 

          ret, 3);                                                                    \ 

  } 

These routines are lifted directly from the SIMDe header. This means that you can see how the SSE 
intrinsics and shuffles map to Neon intrinsics. The following AArch64 assembly code is generated: 
rotate_plane(__Float32x4_t, __Float32x4_t):      // @rotate_plane(__Float32x4_t, 

__Float32x4_t) 

        dup     v3.4s, v1.s[2] 

        ext     v3.16b, v1.16b, v3.16b, #4 

        dup     v2.4s, v1.s[0] 

        ext     v20.16b, v1.16b, v3.16b, #12 

        dup     v4.4s, v1.s[1] 
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        dup     v5.4s, v1.s[3] 

        adrp    x8, .LCPI0_1 

        ext     v7.16b, v1.16b, v2.16b, #4 

        ext     v19.16b, v3.16b, v2.16b, #12 

        ext     v3.16b, v3.16b, v20.16b, #12 

        dup     v6.4s, v0.s[0] 

        ext     v16.16b, v1.16b, v4.16b, #4 

        ext     v5.16b, v1.16b, v5.16b, #4 

        ext     v17.16b, v1.16b, v7.16b, #12 

        ext     v18.16b, v1.16b, v7.16b, #8 

        fmul    v3.4s, v19.4s, v3.4s 

        ldr     q19, [x8, :lo12:.LCPI0_1] 

        ext     v6.16b, v0.16b, v6.16b, #4 

        ext     v17.16b, v7.16b, v17.16b, #12 

        ext     v7.16b, v7.16b, v18.16b, #12 

        ext     v18.16b, v1.16b, v16.16b, #8 

        ext     v20.16b, v1.16b, v5.16b, #8 

        ext     v2.16b, v5.16b, v2.16b, #12 

        ext     v16.16b, v16.16b, v18.16b, #12 

        ext     v18.16b, v0.16b, v6.16b, #8 

        ext     v5.16b, v5.16b, v20.16b, #12 

        ext     v20.16b, v0.16b, v6.16b, #12 

        adrp    x8, .LCPI0_0 

        ext     v18.16b, v6.16b, v18.16b, #12 

        ext     v6.16b, v6.16b, v20.16b, #12 

        fmul    v20.4s, v1.4s, v1.4s 

        fmul    v2.4s, v2.4s, v5.4s 

        fmul    v5.4s, v17.4s, v1.4s 

        mov     v1.s[0], v4.s[0] 

        ldr     q4, [x8, :lo12:.LCPI0_0] 

        eor     v2.16b, v2.16b, v19.16b 

        fmul    v1.4s, v16.4s, v1.4s 

        fadd    v2.4s, v5.4s, v2.4s 

        fmul    v5.4s, v17.4s, v17.4s 

        fadd    v5.4s, v20.4s, v5.4s 

        dup     v16.4s, v20.s[0] 

        fadd    v1.4s, v3.4s, v1.4s 

        fmul    v7.4s, v7.4s, v7.4s 

        fadd    v5.4s, v16.4s, v5.4s 

        fmul    v2.4s, v2.4s, v4.4s 
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        fmul    v1.4s, v1.4s, v4.4s 

        fadd    v3.4s, v7.4s, v5.4s 

        fmul    v2.4s, v6.4s, v2.4s 

        fmul    v1.4s, v18.4s, v1.4s 

        fadd    v1.4s, v1.4s, v2.4s 

        fmul    v0.4s, v3.4s, v0.4s 

        fadd    v0.4s, v0.4s, v1.4s 

        ret 

Even with the same -O2 optimization settings, the code contains 53 instructions with several DUP 
and Ext permutation intrinsics.  

The effect of SIMDe on your codebase depends on several factors. One significant factor is the usage 
of SSE intrinsics that do not map well to Neon architecture. 

3.3 Port to a unified vector library 

You can use an intermediate library, for example xsimd, to express vector manipulation and 
compilation. 

Instead of maintaining a bespoke set of routines and algorithms for each instruction set, you use a 
common abstraction layer. This extraction layer has an efficient implementation on each supported 
architecture. 

For smaller codebases, libraries like xsimd can be used to simplify working with vectorized code. 
Libraries can be useful if research and maintenance are needed to optimize bespoke implementations 
for each architecture. 

The disadvantage to this approach is that integrating a library like xsimd is invasive. Optimization 
opportunities can be missed when you lose the capability to drop closer to the hardware. Sometimes, 
xsimd does not support certain operations, if they perform well on one architecture but poorly on 
another. 

Despite these problems, using a library like xsimd can be better than using poor manual ports. For 
example, libraries can be useful for engineers who do not have the time to profile and optimize for 
each architecture. 

https://github.com/xtensor-stack/xsimd
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4 Port with SSE2Neon and SIMDe 
Currently, games and applications are moving to devices that support Arm Neon. For example, PC 
and console games that have moved to mobile include Grand Theft Auto, Fortnite, and Brawlhalla. PC 
and laptop apps that support Arm Neon include Photoshop, Zoom, and Visual Studio Code. 

When you move to Arm Neon, code in the app or game will need to be recompiled with the new 
target. If needed, there is help on framework support, but what happens with handwritten Intel 
intrinsics code? 

Figure 3: Intel memory to intrinsics register alignment 

https://developer.arm.com/solutions/os/windows-on-arm#supportedlibraries
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Figure 4: Example intrinsics instruction Multiply Accumulate (MLA) 

Intrinsics provide an easier way to use specialized SIMD instructions than writing assembly code by 
hand. Intrinsics provide the same operations as assembly instructions, but directly in C/C++ and 
without needing to know which registers are used, the ABI, and so on. 

Writing intrinsics code takes time, effort, and planning, especially if it is a new suite of commands you 
are unfamiliar with. An easier way is with one of the following open-source libraries: 

• SSE2Neon converts Intel’s SSE to Neon 

• SIMDe, or SIMD Everywhere aims to make as much SIMD code translatable to as many different 
architectures as possible. Blender, OGRE, and FoundationDB are some products that have used 
one of these libraries to port to Arm Neon. 

Intrinsics are used to optimize the performance of specific parts of the code. You need to decide if it is 
worth writing intrinsics code by hand to optimize efficiency, or if you would rather use the libraries to 
make porting and maintenance easier. This section helps you work out that balance. 

In this section, we show how to port an SSE application to 64-bit Armv8-A architecture. For simplicity, 
this guide assumes we are porting from 128-bit SSE to 128-bit Neon. Armv9-A is similar for this Neon 
use case. You can also use this guide if you are converting 256-bit SSE. Although you would need to 
split everything in half to go from 256-bit SSE to 128-bit Neon, this split is also necessary if you are 
converting by hand. 

Start your port with intrinsics because it simplifies the task of porting, whether you end up replacing 
library code with handwritten Neon. 

The libraries allow you to replace as much or as little as you need with a true native port. For example, 
you could replace the library entirely and still use it in the porting process. The libraries allow you to 
quickly get your project compiling and working on Neon, even if you still want to improve 
performance. You do not need to rewrite all your SSE intrinsics code before anything works, and you 
have a functionally correct port working before you begin your optimization. 

https://github.com/DLTcollab/sse2neon
https://github.com/simd-everywhere/simde
https://www.arm.com/company/news/2021/03/arms-answer-to-the-future-of-ai-armv9-architecture
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The libraries provide the best transliteration as possible, with a community contributing to the 
libraries to ensure good mapping without knowing why the intrinsics are called. However, when you 
are doing a port, you know the algorithm that calls the intrinsics and can adjust the surrounding code 
to suit Neon commands and get better improvements. Also, knowing your code and what you want to 
achieve, there may be Neon intrinsics available that are not in SSE that you could use. For example, in 
later Neon implementations there is complex number support with functions that can be done with 
one intrinsic call instead of many in an SSE function and its direct Neon translation. There are also 
areas like 8-bit support where many functions can be done directly with Neon calls, rather than in 
more complicated ways with SSE. In later Neon implementations and SSE implementations, there are 
different Dot Product intrinsics implementations, but the libraries fail to map them to each other. 
Instead, the libraries implement many multiply accumulates. In situations like this, you may be able to 
use these newer, more specialized Neon intrinsics to improve performance. 

Generally, the first step for your SSE to Neon port is simply to get your application running on Neon 
hardware. If the intrinsics use of your project is very small, it might be most efficient to port by hand: 
you can quickly make SSE and Neon variants of the small number of functions, and you can consider 
the intrinsics available and adapt your algorithm around the intrinsics for efficiency. However, if your 
project uses intrinsics more extensively, porting by hand is harder. In this case, you might decide to 
use a library to help make porting easier. 

4.1 What are the differences between SIMDe and 
SSE2Neon? 

If you decide to use a library, which library should you use? 

The SIMDe and SSE2Neon libraries both work in the same way. In your code, replace the #include 

for the Intel intrinsics header file with an #include for the library header file. In the implementation, 

the libraries detect what intrinsics are available from the compiler. The outcomes of this detection are 
as follows:  

• Compiling for Intel uses the original SSE intrinsics implementation 

• Compiling for Arm converts to Neon 

• Compiling for a platform that is neither Intel or Arm uses a non-intrinsics implementation 

For SSE2Neon, the #include changes are all that is needed. 

For SIMDe, there is a #define to avoid code changes beyond the different #includes, but we 

recommend that you make code changes by adding SIMDe prefixes to the SSE functions for clarity. 

SSE2Neon supports MMX and SSE, but if you have AVX code, use SIMDe. SIMDe supports AVX and 
AVX2, but only has partial support for AVX512. If you are considering a one-way port, use the 
simplicity of SSE2Neon rather than all the options that SIMDe gives you. 

SIMDe offers ways to add further ports and future technology changes. If you want to support 
WebAssembly or implement a feature in Neon that automatically works on SSE, these options are 
covered in SIMDe. SIMDe intends to expand over time, so you will be able to use new SIMD 
technologies as they are released from both Arm and Intel. For example, SVE2 is an improvement on 
Neon in Arm’s v9 architecture. 

https://www.anandtech.com/show/16584/arm-announces-armv9-architecture
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SIMDe and SSE2Neon are both open source and benefit from contributions that improve functions to 
be more efficient. SSE2Neon is older and its code was initially used for SIMDe for the SSE to Neon 
use case, and the implementations are almost identical. Presently both libraries are maintained and 
there does not seem to be a performance reason to choose one over the other. 

4.2 Improve the code 

After you port with the library and have a functionally correct version of code running on Arm, you 
need to decide if your code can benefit from any improvements. Intrinsics increase performance in 
code but if mappings are not perfect from SSE to Neon, that code might need to be improved. There 
are some intrinsics that have perfect mapping and performance improvements might not be possible.  

The Arm device may have different bottlenecks to an Intel device, and there may be different pieces 
of code that need to be improved. For the intrinsics, we look at which pieces of code are likely to 
require a closer look. 

Most basic arithmetic and logic functions are either a perfect mapping or almost perfect. Along with 
the reinterpreted intrinsics being no-cost compiler directives, the load, set, and store intrinsics also 
map well with their library translations. Simple math will often not need any additional work. For 
example, a 2D distance calculation can be left to the library translation. The following code snippet 
shows a vectorized 2D distance calculation implemented using SSE intrinsics: 
void distances(float* xDists, float* yDists, float* results, int size) 

{ 

    __m128 Xs, Ys, m1, m2, m3, res; 

 

    for (size_t index = 0; index < size; index += 4) 

    { 

        Xs = _mm_load_ps(xDists + index);  

        Ys = _mm_load_ps(yDists + index);  

        m1 = _mm_mul_ps(Xs, Xs);         

        m2 = _mm_mul_ps(Ys, Ys); 

        m3 = _mm_add_ps(m1, m2);   

        res = _mm_sqrt_ps(m3);    

        _mm_store_ps(results + index, res); 

    } 

} 

The following code shows the resulting assembly code after GCC compilation with SIMDe Neon 
translation on Godbolt: 
distances(float*, float*, float*, int): 

        sxtw    x4, w3 

        cbz     w3, .L1 

        sub     x3, x4, #1 

        add     x4, x0, 16 

        lsr     x3, x3, 2 

https://godbolt.org/z/dvr7G8W3P
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        add     x3, x4, x3, lsl 4 

.L3: 

        ldr     q0, [x1], 16 

        ldr     q1, [x0], 16 

        fmul    v0.4s, v0.4s, v0.4s 

        fmla    v0.4s, v1.4s, v1.4s 

        fsqrt   v0.4s, v0.4s 

        str     q0, [x2], 16 

        cmp     x0, x3 

        bne     .L3 

.L1: 

        ret 

The loads and stores are not perfect because the SSE ordering of the vector in the SIMD type is the 
reverse of Neon, but this difference does not cause major issues. 

Functions can be categorized as follows: 

• Basic arithmetic and logic functions are either a perfect mapping or almost 
perfect. Loads, sets, and stores mostly map well. 

• More complicated maths functions such as sqrt, avg, min, and max map well from SSE to Neon, 

although abs is usually not ideal but can sometimes be perfect. 

• Bit shifts are an area where you may get a gain by writing some native Neon, negations, and aligns. 

• Converts, inserts, and extracts generally map well and should be low priority for specialized Neon 
code. 

• Compares mostly map well, although gains may be possible on specific compares to NaN, 0 or 1 
where Intel has specialized functions. 

• Moves mostly map well, but movemasks mostly do not. 

• Higher precision division and sqrt make the mapping less efficient. Consider whether you need 

the precision. 

• Pairwise functions are horizontal operations where the values within one vector are used 
together. Pairwise functions can be less efficient, especially subtractions. These functions have 
potential for improvement by specialized Neon code. 

• Very specialized SSE functions like _mm_dp_ps and _mm_minpos_epu16 could be very difficult 

to implement efficiently in Neon. Using a different algorithm for Neon could have a significant 
improvement. 

• Crypto functions and bit tests may benefit from implementing specialized Neon code. 

• Blends, shuffles, and rounding have more potential for gain than arithmetic-type functions. 

• Narrowing and Widening have potential for gain with handwritten code. 

• Recent function additions to Neon or SSE are less likely to be well mapped yet but may be an 
opportunity to contribute to the open-source libraries. 
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How much you replace will depend not just on efficiency, but on time available to port and the cost of 
maintenance. Having the SSE functions run on Neon without regard for performance requires almost 
no overhead, but optimizations made using specialized code changes need to be implemented and 
tested twice. These decisions about how much specialized code to write need to be made on a 
project-by-project basis. 
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5 Related information 
Here are some resources related to the material in this guide: 

• Arm Performance Libraries 

• Neon Intrinsics reference search engine 

• Neon Programmer's Guide for Armv8-A: Coding for Neon 

• SIMD Everywhere 

• xsimd project on GitHub 

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-performance-libraries/get-started-with-armpl-free-version/single-page
https://developer.arm.com/architectures/instruction-sets/intrinsics/
https://developer.arm.com/documentation/102159/latest/
https://github.com/simd-everywhere/simde
https://github.com/xtensor-stack/xsimd
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6 Next steps 
In this guide, you learned that porting SSE code to Neon by hand is preferable if you do not have much 
code to port or if the performance needed is known to push hardware boundaries. For smaller 
codebases, libraries like xsimd can be used to simplify working with vectorized code. Finally, rather 
than writing or re-writing code to use an abstraction layer like xsimd, SIMDe can be used to port x86 
code to the architecture. 

After your initial port and conducting benchmarks, we recommend that you refer to the Arm Cortex-
A78 Core Software Optimization Guide for the specific chips you intend to target. 

 

https://developer.arm.com/documentation/102160/0300?lang=en
https://developer.arm.com/documentation/102160/0300?lang=en

