

SVE Optimization Guide

Non-Confidential Issue 01
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

102699

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 28

SVE Optimization Guide

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 14-Oct-2021 Non-Confidential First issue

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

https://www.arm.com/company/policies/trademarks

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 28

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this document,
email terms@arm.com.

https://developer.arm.com/
mailto:terms@arm.com

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 28

Contents

1 Overview ... 5

2 Advanced SVE features for optimization .. 6

3 Optimizing with auto-vectorization ... 7

3.1 Auto-vectorization hints and tips ... 7

3.2 Auto-vectorization example: SAXPY ... 8

4 Optimizing with intrinsics .. 11

4.1 Macros .. 11

4.2 Types ... 12

4.3 Functions ... 12

4.4 Intrinsics hints and tips ... 13

4.5 Intrinsics example: SAXPY .. 13

5 Optimizing with assembly .. 16

5.1 Assembly hints and tips .. 16

5.1.1 Instruction selection .. 16

5.1.2 Register usage .. 17

5.1.3 Loops ... 17

5.1.4 Cache... 18

5.2 Assembly example: SAXPY ... 18

6 Complete code listing .. 21

6.1 saxpy_example.c.. 21

6.2 saxpy_asm.S .. 22

7 Conclusion .. 25

8 Check your knowledge .. 26

9 Related information ... 27

10 Next steps ... 28

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 28

1 Overview
The Scalable Vector Extension (SVE) is an extension of the Armv8-A Architecture, available from
Armv8.2-A.

SVE is designed to improve integer and floating-point performance of Arm processors through
enhanced vectorization compared to NEON, Arm's existing Advanced SIMD instruction set.

Applications of SVE include machine learning (ML), high performance computing (HPC), data analysis,
and potentially any compute bound software. Please see the Introduction to SVE guide for a more
complete introduction.

SVE2 is an extension of the architecture which is the next phase of the technology after SVE. The
main new features of SVE2 are as follows:

• An extended instruction set designed to replicate the full functionality of NEON

• Extended instructions to cover wider application domains

The examples in this guide apply to both SVE and SVE2. This guide does not make a distinction
between SVE and SVE2, because the SVE Instruction Set Architecture (ISA) is a subset of the SVE2
ISA. Code written for SVE runs on SVE2 machines with no modification.

This guide shows you how to use SVE in your C and C++ code, and how to perform some basic
optimizations. We compare an implementation of a numerical routine in pure C, ACLE SVE intrinsics,
and SVE assembly. Comparing the performance of these different ways of using SVE will demonstrate
some techniques for optimizing codes with SVE.

Any C or C++ programmer should be able to use this guide, but some experience using intrinsics or
writing Arm assembly code may help. This guide is intended for:

• Beginner SVE users

• Library writers who want to use SVE

• Anyone else testing and experimenting with SVE

At the end of this guide, Check Your Knowledge tests if you understand the following concepts:

• The basics of using SVE intrinsics in the C language

• Where to find the SVE intrinsics reference and the SVE instruction set

• How to combine C and assembly code

https://developer.arm.com/documentation/102476/latest/
https://developer.arm.com/documentation/102340/latest/

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 28

2 Advanced SVE features for
optimization

The defining feature of SVE is a vector register file which has a variable vector width. SVE is designed
so that the size of the vector register does not need to be known at compile time. A single binary
image can run on any microarchitecture implementing SVE, regardless of the vector width used by
that implementation.

SVE adds the following functionality to the Arm architecture:

• A configurable vector length, from 128 bits up to 2048 bits in multiples of 128 bits.

• Predication, a means of controlling which elements of a vector are active.

• A dedicated SIMD instruction set that supports predication and different vector lengths.

• Gather-load and scatter-store instructions.

• Support for software-managed speculative vectorization.

This functionality is defined in the Arm Architecture Reference Manual Supplement, The Scalable
Vector Extension.

There are four main ways to write code that uses SVE:

• SVE-enabled libraries, such as the Arm Performance Libraries, provide one of the easiest ways to
take advantage of SVE.

• Various compiler features, such as auto-vectorization, can use SVE.

• SVE intrinsics are function calls that the compiler replaces with appropriate SVE instructions. SVE
intrinsics give you access to most of the SVE instruction set directly from C and C++ code.

• SVE assembly offers great performance in certain applications but is difficult to write and
maintain.

Refer to the SVE programmers guide for a full introduction to SVE.

https://developer.arm.com/documentation/ddi0584/latest/
https://developer.arm.com/documentation/ddi0584/latest/
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-performance-libraries
https://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 28

3 Optimizing with auto-vectorization
Arm Compiler for Linux is based on LLVM Clang which has two auto-vectorization features: loop
vectorization, and Superword Level Parallelism (SLP) vectorization.

The loop vectorizer calculates the optimal amount of loop unrolling and vectorization to perform for a
particular loop. Loop unrolling is beneficial because it increases the number of operations performed
in each iteration of the loop. Loop unrolling also enables the use of SIMD instruction sets such as
NEON or SVE.

SLP vectorization enables the compiler to combine multiple nearby independent operations into a
single vector instruction.

Auto-vectorizations provides the following benefits:

• Ease of use. Auto-vectorization can be controlled using only compiler flags and #pragma
directives.

• Portable. The same source code can be recompiled for different target CPUs easily using the
-mcpu compiler option.

However, auto-vectorization has the following disadvantages:

• Lack of control. You rely on the compiler's code generation choices, which may not produce the
instructions you want.

• Performance. If the auto-vectorizer fails to identify a particular optimization opportunity, some
loops must be manually vectorized with intrinsics or assembly code.

3.1 Auto-vectorization hints and tips
Use the following compiler flags to control auto-vectorization for all loops in the source code:

Compiler option Description Notes

-fvectorize Enables the loop vectorizer default at -O2 or higher

-no-fvectorize Disables the loop vectorizer default at -O1 and -O0

-mllvm -force-vector-width=<value> Set the SIMD vector width The loop vectorizer will
vectorize operations into
SIMD operations of this width

-mllvm -force-vector-interleave=<value> Set the loop unroll factor The loop vectorizer will unroll
loops by <value>

-fno-slp-vectorize Disable the SLP vectorizer SLP vectorization is enabled
by default

-Rpass=loop-vectorize Remarks on loops that were
successfully vectorized

-Rpass-missed=loop-vectorize Remarks on loops were not
vectorized

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 28

Compiler option Description Notes

-Rpass-analysis=loop-vectorize Remarks on code statements
that caused vectorization to
fail

Table 1: Compiler options for auto-vectorization

To control vectorization of individual loops, use the following pragmas:

Pragma Description

#pragma clang loop vectorize(enable) Enable vectorization.

#pragma clang loop vectorize(disable) Disable vectorization.

#pragma clang loop interleave(enable) Enable loop unrolling.

#pragma clang loop interleave(disable) Disable loop unrolling.

#pragma clang loop vectorize_width(2) Enable vectorization and set the SIMD vector width.

#pragma clang loop interleave_count(2) Enable loop unrolling and set the unroll count.

#pragma clang loop vectorize(assume_safety) Instruct the compiler to assume that successive
iterations of the loop are independent.

Table 2: Pragmas for loop vectorization

The pragmas must be placed before a loop and apply only to that loop. For each loop, LLVM uses a
cost model to balance the expected performance gain from unrolling and vectorizing, with the
increase in code size, loop tails, and extra instructions. The pragmas act as hints to ignore this cost
model, but they are not guaranteed to be respected.

To increase the chance of a loop being vectorized, consider the following:

• Avoid dependencies between loop iterations

• Avoid switch statements

• Use the -Rpass-analysis=loop-vectorize to understand why code is not vectorizing

• Enable optimization by compiling at optimization level -O2 or higher

• Use pragmas on specific loops to control vectorization

3.2 Auto-vectorization example: SAXPY
Single-precision scaled x plus y (SAXPY) is an L1 BLAS routine defining vector addition. SAXPY is
commonly used in numerical software. Because the routine defines a basic mathematical operation,
optimizing SAXPY could provide performance improvements for applications in domains such as
signal processing, HPC, ML, or game engine design.

Consider the following operation: y[i] ← a*x[i] + y[i]. This operation takes an array of data x[i],
multiplies it by the scalar a, then adds y[i], before assigning back to y. A simple C implementation
would be as follows:

/*

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 28

Copyright (C) Arm Limited, 2021 All rights reserved.
The example code is provided to you as an aid to learning when working
with Arm-based technology, including but not limited to programming tutorials.
Arm hereby grants to you, subject to the terms and conditions of this Licence,
a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
to use and copy the Software solely for the purpose of demonstration and
evaluation.
You accept that the Software has not been tested by Arm therefore the Software
is provided “as is”, without warranty of any kind, express or implied. In no
event shall the authors or copyright holders be liable for any claim, damages
or other liability, whether in action or contract, tort or otherwise, arising
from, out of or in connection with the Software or the use of Software.
*/

#include <arm_sve.h>

void saxpy_c(float32_t *x, float32_t *y, float32_t a, uint32_t n) {
 // scaled vector add: y = a*x + y
 int i;
 for (i=0; i<n; i++) {
 y[i] = a*x[i] + y[i];
 }
}

Since all the iterations of the loop are independent of each other, this example can be optimized by
vectorizing the addition and assignment: y[i] = a*x[i] + y[i]. We can then compare the disassembly of
the code with and without vectorization.

Here is the code produced by compiling with armclang -march=armv8.2-a+sve -O1, which
performs no vectorization:

0000000000000000 <saxpy_c>:
 0: 22 01 00 34 cbz w2, 0x24 <saxpy_c+0x24>
 4: e8 03 02 2a mov w8, w2
 8: 01 44 40 bc ldr s1, [x0], #4
 c: 22 00 40 bd ldr s2, [x1]
 10: 08 05 00 f1 subs x8, x8, #1
 14: 21 08 20 1e fmul s1, s1, s0
 18: 21 28 22 1e fadd s1, s1, s2
 1c: 21 44 00 bc str s1, [x1], #4
 20: 41 ff ff 54 b.ne 0x8 <saxpy_c+0x8>
 24: c0 03 5f d6 ret

The FMUL and FADD instructions perform the operation a*x[i] + y[i] and operate on the scalar floating-
point registers s1 and s0, rather than vector registers. Although the Arm v8.2-A architecture
contains NEON FMUL and FADD operations, at optimization level -O1, no vector operations are used.

For comparison, the following code is generated when compiling with optimization level -O2, which
enables auto-vectorization:

0000000000000000 <saxpy_c>:
 0: 82 03 00 34 cbz w2, 0x70 <saxpy_c+0x70>
 4: e8 03 02 2a mov w8, w2
 8: 09 f5 7e d3 lsl x9, x8, #2
 c: 0a 00 09 8b add x10, x0, x9
 10: 5f 01 01 eb cmp x10, x1
 14: 89 01 00 54 b.ls 0x44 <saxpy_c+0x44>
 18: 29 00 09 8b add x9, x1, x9
 1c: 3f 01 00 eb cmp x9, x0
 20: 29 01 00 54 b.ls 0x44 <saxpy_c+0x44>

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 28

 24: 01 44 40 bc ldr s1, [x0], #4
 28: 22 00 40 bd ldr s2, [x1]
 2c: 08 05 00 f1 subs x8, x8, #1
 30: 21 08 20 1e fmul s1, s1, s0
 34: 21 28 22 1e fadd s1, s1, s2
 38: 21 44 00 bc str s1, [x1], #4
 3c: 41 ff ff 54 b.ne 0x24 <saxpy_c+0x24>
 40: 0c 00 00 14 b 0x70 <saxpy_c+0x70>
 44: e9 03 1f aa mov x9, xzr
 48: e0 1f a8 25 whilelo p0.s, xzr, x8
 4c: 00 20 24 05 mov z0.s, s0
 50: 01 40 49 a5 ld1w { z1.s }, p0/z, [x0, x9, lsl #2]
 54: 22 40 49 a5 ld1w { z2.s }, p0/z, [x1, x9, lsl #2]
 58: 21 08 80 65 fmul z1.s, z1.s, z0.s
 5c: 21 00 82 65 fadd z1.s, z1.s, z2.s
 60: 21 40 49 e5 st1w { z1.s }, p0, [x1, x9, lsl #2]
 64: e9 e3 b0 04 incw x9
 68: 20 1d a8 25 whilelo p0.s, x9, x8
 6c: 24 ff ff 54 b.mi 0x50 <saxpy_c+0x50>
 70: c0 03 5f d6 ret

Now let us compare with fast optimization -Ofast:

0000000000000000 <saxpy_c>:
 0: 62 03 00 34 cbz w2, 0x6c <saxpy_c+0x6c>
 4: e8 03 02 2a mov w8, w2
 8: 09 f5 7e d3 lsl x9, x8, #2
 c: 0a 00 09 8b add x10, x0, x9
 10: 5f 01 01 eb cmp x10, x1
 14: 69 01 00 54 b.ls 0x40 <saxpy_c+0x40>
 18: 29 00 09 8b add x9, x1, x9
 1c: 3f 01 00 eb cmp x9, x0
 20: 09 01 00 54 b.ls 0x40 <saxpy_c+0x40>
 24: 01 44 40 bc ldr s1, [x0], #4
 28: 22 00 40 bd ldr s2, [x1]
 2c: 08 05 00 f1 subs x8, x8, #1
 30: 21 08 00 1f fmadd s1, s1, s0, s2
 34: 21 44 00 bc str s1, [x1], #4
 38: 61 ff ff 54 b.ne 0x24 <saxpy_c+0x24>
 3c: 0c 00 00 14 b 0x6c <saxpy_c+0x6c>
 40: e9 03 1f aa mov x9, xzr
 44: e1 1f a8 25 whilelo p1.s, xzr, x8
 48: 00 20 24 05 mov z0.s, s0
 4c: e0 e3 98 25 ptrue p0.s
 50: 01 44 49 a5 ld1w { z1.s }, p1/z, [x0, x9, lsl #2]
 54: 22 44 49 a5 ld1w { z2.s }, p1/z, [x1, x9, lsl #2]
 58: 01 80 a2 65 fmad z1.s, p0/m, z0.s, z2.s
 5c: 21 44 49 e5 st1w { z1.s }, p1, [x1, x9, lsl #2]
 60: e9 e3 b0 04 incw x9
 64: 21 1d a8 25 whilelo p1.s, x9, x8
 68: 44 ff ff 54 b.mi 0x50 <saxpy_c+0x50>
 6c: c0 03 5f d6 ret

Compare lines 58 and 5C when compiling at -O2, with line offset 58 at -Ofast. We can see that the
main difference between -Ofast and -O2 is the presence of FMAD, a single fused multiply-add,
instead of FMUL and FADD. Since this computation now takes only one instruction there may be a
small performance gain in the loop.

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 28

4 Optimizing with intrinsics
The SVE intrinsics are a set of functions and macros defined in the arm_sve.h header file. The
definitions of these functions are known to the compiler, and there is a close correspondence
between the Instruction Set Architecture (ISA) and the intrinsics. For example, the svld1 intrinsics
correspond to various forms of the LD1 instruction. Using intrinsics gives you control over SVE code
generation, without the need for assembly programming.

See the ARM C Language Extensions for SVE for the specification of the intrinsics.

Intrinsics provide the following benefits:

• Powerful. Intrinsics allow the programmer to inline assembly code without having to explicitly
program in assembly.

• Portable. Code containing intrinsics can be compiled for different SVE enabled platforms by
setting the -mcpu option. However, this may not yield the same performance.

• Flexible. The programmer can use intrinsics or C/C++ code in the same program.

However, intrinsics have the following disadvantages:

• Ease-of-Use. The learning curve for intrinsics may make them unsuitable for some projects. Some
knowledge of the target hardware is needed.

• Performance. User-optimized assembly may still offer the greatest scope for performance gains.

• Compiler auto-vectorization may be sufficient for many projects.

• Performance portability. Code with intrinsics written for one platform may not perform well on
another platform.

Arm recommends using intrinsics over assembly because code with intrinsics is easier to port and
maintain.

The key to applying SVE intrinsics is reading the ARM C Language Extensions for SVE specification.
The following sections in this guide outline some of the important parts of this specification.

4.1 Macros
The following macros indicate which features are enabled by the compiler.

Macro Description

__ARM_FEATURE_SVE==1 The compiler is SVE enabled and the intrinsics are
available

__ARM_FEATURE_SVE_BF16==1 The BFloat16 extensions are enabled

__ARM_FEATURE_SVE_MATMUL_INT8==1 The INT8 matrix multiply extensions are enabled

__ARM_FEATURE_SVE_MATMUL_FP32==1 The FP32 matrix multiply extensions are enabled

__ARM_FEATURE_SVE_MATMUL_FP64==1 The FP64 matrix multiply extensions are enabled

__ARM_FEATURE_SVE2==1 The compiler is SVE2 enabled and the SVE2 intrinsics
are enabled

https://developer.arm.com/documentation/100987/latest
https://developer.arm.com/documentation/100987/latest

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 28

Macro Description

__ARM_FEATURE_SVE2_BITPERM==1 The SVE2 bit permutation instructions are available

__ARM_FEATURE_SVE2_AES==1 The SVE2 AES-128 functions are enabled

__ARM_FEATURE_SVE2_SHA3==1 The SVE2 SHA-3 functions are enabled

__ARM_FEATURE_SVE2_SM4==1 The SM4 functions are available

__ARM_FEATURE_SVE_BITS==N The compiler is generating code for a target of known
SVE vector length

__ARM_FEATURE_SVE_VECTOR_OPERATORS==1 If __ARM_FEATURE_SVE_BITS is nonzero, SVE vector
types support the GNU vector extensions

__ARM_FEATURE_SVE_PREDICATE_OPERATORS==1 If __ARM_FEATURE_SVE_BITS is nonzero, svbool_t
supports vector operations

__ARM_FEATURE_SVE_NONMEMBER_OPERATORS==1 C++ code can define non-member operator functions
for SVE types

Table 3: Macros

4.2 Types
Several sizeless types are defined by the ACLE specification. Sizeless types are necessary because the
length of the SVE vector registers are not known to the compiler. The arithmetic types have the
following pattern:

sv<type>_t

For example, a scalable vector type of 16-bit signed integers is: svint16_t.

There is also the type svbool_t which is used to represent predicates.

4.3 Functions
The SVE intrinsics use the following general naming convention:

svbase[_disambiguator][_type0][_type1]…[_predication]

Where:

• base is the name of an instruction. For example, svmla_n_f32_m() corresponds to the MLA
instruction.

• _disambiguator indicates any special behavior of the function. For example,
svld1_gather_s32_offset_u32() indicates a gather load LD1.

• _type0, _type1 and so on indicate the types of the vectors being operated on. For example,
svld1_f32()loads 32-bit floats.

• _predication indicates a zeroing, z, or merging, m, operation. Predicates control which lanes in
a vector are active, and which are inactive. Zeroing operations set inactive elements to zero in an
operation. Merging operations leave the existing inactive elements unchanged.

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 28

4.4 Intrinsics hints and tips
Writing code with intrinsics is very similar to writing standard C code. The compiler automates many
optimizations, including the following:

• Optimized allocation of variables to registers.

• Application of the procedure call standard rules.

• Auto-vectorization of any remaining parts of the loop without intrinsics

• Instruction selection - where there is no intrinsic, the compiler will choose optimal instructions.

However, the programmer is responsible for the following:

• Intrinsics selection. The programmer must choose the correct intrinsics for their program. The
programmer must be aware of the instruction timings to manually optimize the program.

• Loop unrolling. The programmer must unroll loops that contain intrinsics. Loop tails must be
written manually.

• Vectorization. The correct vector load, store, and arithmetic operations must be selected.

4.5 Intrinsics example: SAXPY
This section explains how SAXPY can be broken down into parts and implemented using intrinsics.

There are two parts to SAXPY :

• The arithmetic operation y[i] ← a*x[i] + y[i]

• The loop that iterates over all the values.

With SVE intrinsics we must rethink the loop, and the operation, by considering what instructions are
necessary.

We need the following:

• A measure of the vector length, used to increment the loop

• A loop to iterate over the vectors

• A governing predicate, to make sure there are no out of bounds memory accesses

• Load operations to get the values x[i] and y[i]

• Floating-point operations to perform the multiply (a*x[i]) and add (+y[i])

• A store operation for the result of the multiply and add.

Once we know what to look for and what types we are using, the SVE intrinsics specification can be
used to identify the intrinsics we need.

The following code shows a C implementation of SAXPY using SVE intrinsics:

https://developer.arm.com/documentation/100987/latest

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 28

/*
Copyright (C) Arm Limited, 2021 All rights reserved.
The example code is provided to you as an aid to learning when working
with Arm-based technology, including but not limited to programming tutorials.
Arm hereby grants to you, subject to the terms and conditions of this Licence,
a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
to use and copy the Software solely for the purpose of demonstration and
evaluation.
You accept that the Software has not been tested by Arm therefore the Software
is provided “as is”, without warranty of any kind, express or implied. In no
event shall the authors or copyright holders be liable for any claim, damages
or other liability, whether in action or contract, tort or otherwise, arising
from, out of or in connection with the Software or the use of Software.
*/

#include <arm_sve.h>

void saxpy_sve(float32_t *x, float32_t *y, float32_t a, uint32_t n) {
 uint32_t i;

 // define predicate and 'live' segments of x/y
 svbool_t predicate;
 svfloat32_t xseg;
 svfloat32_t yseg;

 // get the vector length being used, so we know how to increment the loop (1)
 uint64_t numVals = svlen_f32(xseg);

 for (i=0; i<n; i+=numVals) { // (2)
 // set predicate based off loop counter (3)
 predicate = svwhilelt_b32_s32(i, n);

 // load in a vectors worth of x and y values (4)
 xseg = svld1_f32(predicate, x+i); // ld1w for x
 yseg = svld1_f32(predicate, y+i); // ld1w for y

 // perform the a*x[i] + y[i] operation in one go with MLA (5)
 yseg = svmla_n_f32_m(predicate, yseg, xseg, a); // y+a*x

 // store yvalues (6)
 svst1_f32(predicate, y+i, yseg); // st1w for y <-y+a*x
 }
}

This code uses the following intrinsics:

Code element Description Why are we using it?

svbool_t SVE bool type declaration We need a special type for the compiler to
represent predicate registers

svfloat32_t SVE float32_t type declaration Since the compiler must generate vector length
agnostic code, we need a special sizeless type
to represent scalable vector registers.

svlen_f32() Corresponds to the CNTB, CNTD, CNTH,
CNTW instructions (CNTW in this case)

We need to know how long the SVE vector is to
increment the loop. svlen_f32() lets us
determine this at runtime.

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 28

Code element Description Why are we using it?

svwhilelt_b32_s32() Corresponds to the WHILELO/WHILELE
instructions

svwhilelt_b32_s32() is necessary to set the
predicate based on the loop counter, and the
loop length.
When the counter gets close to the length,
svwhilelt_b32_s32() writes zeroes into the
predicate which will prevent out of bounds
loads and stores from occurring.

svld1_f32() Corresponds to the LD1 instruction SVE intrinsics expose explicit load/store
operations to the programmer. These are
needed to retrieve data from memory which
can then be used.

svmla_n_f32_m() Corresponds to the MLA instruction Since the MLA instruction performs a*b +c, it is
ideal for the operation we are performing.

svst1_f32() Corresponds to the ST1 instruction SVE intrinsics expose explicit load/store
operations to the programmer. These are
needed to store data back to memory.

Table 4: Code intrinsics

We can examine the disassembly to see the generated instructions:

saxpy_sve(float*, float*, float, unsigned int): //
@saxpy_sve(float*, float*, float, unsigned int)
 cbz w2, .LBB0_3
 rdvl x9, #1
 lsr x9, x9, #4
 mov w8, wzr
 lsl w9, w9, #2
 mov z0.s, s0
.LBB0_2: // =>This Inner Loop Header: Depth=1
 whilelt p0.s, w8, w2
 mov w10, w8
 ld1w { z1.s }, p0/z, [x0, x10, lsl #2]
 ld1w { z2.s }, p0/z, [x1, x10, lsl #2]
 add w8, w8, w9
 cmp w8, w2
 fmla z2.s, p0/m, z1.s, z0.s
 st1w { z2.s }, p0, [x1, x10, lsl #2]
 b.lo .LBB0_2
.LBB0_3:
 ret

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 28

5 Optimizing with assembly
Instead of using a high-level language such as C/C++, we can use assembly code to write programs by
explicitly specifying instructions. These instructions are then assembled by an assembler into machine
code that can be executed by the processor.

Compilers such as armclang have a built-in assembler.

Writing assembly code has the following advantages:

• Control. The program is exactly what the programmer specifies.

• Performance. It is possible to achieve great performance by coding directly in assembly, but the
programmer must be better than the compiler. Modern compilers are hard to beat in many
situations.

Writing assembly code also has the following disadvantages, however:

• Lack of portability. Code written for one processor may not run on another if the ISAs are
different. For example, SVE assembly code will run on the Cortex-X2, but not the Cortex-A72.
The programmer would have to rewrite the code.

• Lack of performance portability. Programs must be tuned for the specific processor you want to
run the code on. Running the code on a different processor is likely to have a performance
penalty.

• Difficulty. There is a steep learning curve for assembly programming.

• Hard to maintain. It can be difficult to understand existing assembly programs, which makes them
hard to maintain in long-term projects.

• Hardware is not abstract, the programmer must be aware of the implementation details such as
caches, pipelines, and the memory system, to write optimal programs.

5.1 Assembly hints and tips
Programming in assembly is difficult because the program must be written by hand. Everything from
program correctness to optimization is the responsibility of the programmer.

5.1.1 Instruction selection

The following hints and tips relate to instruction selection:

• Instructions can have different execution times on different microarchitecture implementations.
The programmer must choose which instructions to use to manually optimize the program.

• Be aware of the trade-offs of performance and convenience for some instructions, for example
gather load and scatter store.

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 28

• Some logical operations, for example CSEL could perform better than branch instructions in very
unpredictable branches. However normal predictable branches perform better than instructions
like CSEL.

• Instructions such as TBL can gain performance improvement if you can fit the lookup table in one
vector.

5.1.2 Register usage

The following hints and tips relate to register usage:

• Always comply with the Procedure Call Standard.

• Load registers as far in advance as possible before the value is used to avoid stalls in the pipelines.

• Moves, loads, and stores have a cost. Retain individual values in registers for as long as possible.

• Where possible, use destination registers immediately as source registers in the next instruction.
This minimizes register usage.

• Backup registers by spilling registers to the stack to ensure values are not lost or corrupted.

5.1.3 Loops

Loop unrolling can improve performance by increasing pipeline efficiency. Consider the following
pipeline diagram for the Cortex-X2:

Figure 1 – Cortex-X2 pipeline diagram

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 28

If each loop iteration is independent of the previous and next, the extra arithmetic instructions from
the loop unrolling can be issued to different pipelines. Since we have four integer and four floating-
point pipelines, we could unroll the loop at least four times to make full use of them. The Cortex-X2
Software Optimization Guide contains specific information about the Cortex-X2 that is useful to the
programmer, including the following:

• Instruction timings

• Pipeline diagram

• Information about the memory system and cache utilization

5.1.4 Cache

The following hints and tips relate to caching:

• The ordering of load and store instructions affect data being loaded into and evicted from the
cache.

• Preloading data into caches in advance might help to improve performance. However, misusing
these instructions could lead to a loss of useful data from the cache which will reduce
performance.

5.2 Assembly example: SAXPY
Let us see how the assembly kernel is built up for SAXPY. First, we must define the interface between
our C code and the assembly kernel. In the C code we add the following declaration:

extern void saxpy_asm(float32_t *x, float32_t *y, float32_t a, uint32_t n);

This creates the function symbol and the signature defines the input arguments. The ordering of the
input arguments is important because it determines which registers those values will be in. The full
set of rules is defined in the Procedure Call Standard and we apply them in the following table:

Input argument Corresponding register Notes

float32_t *x x0 64-bit pointers in AArch64
float32_t *y x1 64-bit pointers in AArch64
float32_t a s0 Bottom 32 bits of v0
uint32_t n w2 Bottom 32 bits of x2

Table 5: Input arguments

Now we have defined the interface in C we are able to write the assembly kernel in a separate file,
which we will compile and link to our C code. The assembly is as follows:

/*
Copyright (C) Arm Limited, 2021 All rights reserved.
The example code is provided to you as an aid to learning when working
with Arm-based technology, including but not limited to programming tutorials.
Arm hereby grants to you, subject to the terms and conditions of this Licence,
a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
to use and copy the Software solely for the purpose of demonstration and

https://developer.arm.com/documentation/PJDOC-466751330-14955/latest
https://developer.arm.com/documentation/PJDOC-466751330-14955/latest

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 28

evaluation.
You accept that the Software has not been tested by Arm therefore the Software
is provided “as is”, without warranty of any kind, express or implied. In no
event shall the authors or copyright holders be liable for any claim, damages
or other liability, whether in action or contract, tort or otherwise, arising
from, out of or in connection with the Software or the use of Software.
*/

/* SAXPY, scaled X plus Y
* extern void saxpy_asm(float32_t *x, float32_t *y, float32_t a, uint32_t n)
* Y <- Y + a*X
*`
*/

Input Argument Aliases
x_base_addr .req x0
y_base_addr .req x1
a .req s0
n .req x2

Local Variable Aliases

p_op .req p0
i_idx .req x5

a_vals .req z0
x_vals .req z1
y_vals .req z2

#define RZERO(register) eor register, register, register

 .global saxpy_asm
 .type saxpy_asm, %function
saxpy_asm:
 // save state, rules in the procedure call standard
 stp x29, x30, [sp, #-320]!
 mov x29, sp
 stp x19, x20, [sp, #224]
 stp x21, x22, [sp, #208]
 stp x23, x24, [sp, #192]
 stp x25, x26, [sp, #176]
 stp x27, x28, [sp, #160]
 stp d8, d9, [sp, #80]
 stp d10, d11, [sp, #64]
 stp d12, d13, [sp, #48]
 stp d14, d15, [sp, #32]

 RZERO(i_idx)
 dup a_vals.s, a_vals.s[0]

.L_loop:
 // set predicate from our index and the total number of values
 whilelo p_op.s, i_idx, n

 // load x and y values
 ld1w x_vals.s, p_op/z, [x_base_addr, i_idx, lsl 2]
 ld1w y_vals.s, p_op/z, [y_base_addr, i_idx, lsl 2]

 // perform the y <- a*x + y operation
 fmla y_vals.s, p_op/m, a_vals.s, x_vals.s

 // store our new value for y over the old ones
 st1w y_vals.s, p_op, [y_base_addr, i_idx, lsl 2]

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 28

.L_cond:
 // increment the index by the number of 32 bit values in the Z registers
 incw i_idx
 b.first .L_loop

.L_saxpy_asm_end:
 // restore state
 ldp x19, x20, [sp, #224]
 ldp x21, x22, [sp, #208]
 ldp x23, x24, [sp, #192]
 ldp x25, x26, [sp, #176]
 ldp x27, x28, [sp, #160]
 ldp d8, d9, [sp, #80]
 ldp d10, d11, [sp, #64]
 ldp d12, d13, [sp, #48]
 ldp d14, d15, [sp, #32]
 ldp x29, x30, [sp], #320
 ret

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 28

6 Complete code listing
This section of the guide contains the C code listing, including helper functions. This code is also
available as an archive which you can download from the Arm Developer site.

Using Arm Compiler for Linux, we can compile the code as follows:

armclang -march=armv8.2a+sve -g -O3 -c saxpy_example.c -o saxpy_example.o
armclang -march=armv8.2a+sve -g -O3 -c saxpy_asm.S -o saxpy_asm.o

Then link the object files:

armclang -march=armv8.2a+sve -g -O3 saxpy_example.o saxpy_asm.o -o saxpy.out

These steps, along with the code, are included in a Makefile in the supplied archive.

If you have an Arm system without SVE, you can use the Arm Instruction Emulator to run SVE code as
follows:

armie -msve-vector-bits=128 ./saxpy.out

6.1 saxpy_example.c
The code listing for the saxpy_example.c source file is as follows:

/*
Copyright (C) Arm Limited, 2021 All rights reserved.
The example code is provided to you as an aid to learning when working
with Arm-based technology, including but not limited to programming tutorials.
Arm hereby grants to you, subject to the terms and conditions of this Licence,
a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
to use and copy the Software solely for the purpose of demonstration and
evaluation.
You accept that the Software has not been tested by Arm therefore the Software
is provided “as is”, without warranty of any kind, express or implied. In no
event shall the authors or copyright holders be liable for any claim, damages
or other liability, whether in action or contract, tort or otherwise, arising
from, out of or in connection with the Software or the use of Software.
*/

#include <arm_sve.h>
#include <stdio.h>

void saxpy_c(float32_t *x, float32_t *y, float32_t a, uint32_t n) {
 // scaled vector add: y = a*x + y
 int i;
 for (i=0; i<n; i++) {
 y[i] = a*x[i] + y[i];
 }
}

void saxpy_sve(float32_t *x, float32_t *y, float32_t a, uint32_t n) {
 uint32_t i;

 svbool_t predicate;
 svfloat32_t xseg;
 svfloat32_t yseg;

https://developer.arm.com/-/media/Arm%20Developer%20Community/Downloads/Tutorials/SVE%20Optimization%20Guide/saxpy_code.tar.gz
https://developer.arm.com/-/media/Arm%20Developer%20Community/Downloads/Tutorials/SVE%20Optimization%20Guide/saxpy_code.tar.gz
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 28

 uint64_t numVals = svlen_f32(xseg);

 for (i=0; i<n; i+=numVals) {
 predicate = svwhilelt_b32_s32(i, n);

 xseg = svld1_f32(predicate, x+i); // ld1w for x
 yseg = svld1_f32(predicate, y+i); // ld1w for y

 yseg = svmla_n_f32_m(predicate, yseg, xseg, a); // y+a*x

 svst1_f32(predicate, y+i, yseg); // st1w for y <-y+a*x
 }
}

extern void saxpy_asm(float32_t *x, float32_t *y, float32_t a, uint32_t n);

void vecprint(float32_t *vec, uint32_t n) {
 int i;
 for (i=0; i<n; i++) {
 printf("[%f]", vec[i]);
 }
 printf("\n");
}

void vecset(float32_t *vec, float32_t val, uint32_t n) {
 int i;
 for (i=0; i<n; i++) {
 vec[i] = val;
 }
}

int main() {
 uint32_t N = 10;
 float32_t x[N];
 float32_t y[N];

 vecset(x, 1.5, N);
 vecset(y, 2.0, N);

 vecprint(x, N);
 vecprint(y, N);

 // choose implementation
 saxpy_c(x, y, 2.0, N);
 //saxpy_sve(x, y, 2.0, N);
 //saxpy_asm(x, y, 2.0, N);

 vecprint(y, N);
}

6.2 saxpy_asm.S
The code listing for the saxpy_asm.S source file is as follows:

/*
Copyright (C) Arm Limited, 2021 All rights reserved.
The example code is provided to you as an aid to learning when working
with Arm-based technology, including but not limited to programming tutorials.

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 28

Arm hereby grants to you, subject to the terms and conditions of this Licence,
a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
to use and copy the Software solely for the purpose of demonstration and
evaluation.
You accept that the Software has not been tested by Arm therefore the Software
is provided “as is”, without warranty of any kind, express or implied. In no
event shall the authors or copyright holders be liable for any claim, damages
or other liability, whether in action or contract, tort or otherwise, arising
from, out of or in connection with the Software or the use of Software.
*/

/* SAXPY, scaled X plus Y
* extern void saxpy_asm(float32_t *x, float32_t *y, float32_t a, uint32_t n)
* Y <- Y + a*X
*`
*/

Input Argument Aliases
x_base_addr .req x0
y_base_addr .req x1
a .req s0
n .req x2

Local Variable Aliases

p_op .req p0
i_idx .req x5

a_vals .req z0
x_vals .req z1
y_vals .req z2

#define RZERO(register) eor register, register, register

 .global saxpy_asm
 .type saxpy_asm, %function
saxpy_asm:
 // save state, rules in the procedure call standard
 stp x29, x30, [sp, #-320]!
 mov x29, sp
 stp x19, x20, [sp, #224]
 stp x21, x22, [sp, #208]
 stp x23, x24, [sp, #192]
 stp x25, x26, [sp, #176]
 stp x27, x28, [sp, #160]
 stp d8, d9, [sp, #80]
 stp d10, d11, [sp, #64]
 stp d12, d13, [sp, #48]
 stp d14, d15, [sp, #32]

 RZERO(i_idx)
 dup a_vals.s, a_vals.s[0]

.L_loop:
 // set predicate from our index and the total number of values
 whilelo p_op.s, i_idx, n

 // load x and y values
 ld1w x_vals.s, p_op/z, [x_base_addr, i_idx, lsl 2]
 ld1w y_vals.s, p_op/z, [y_base_addr, i_idx, lsl 2]

 // perform the y <- a*x + y operation
 fmla y_vals.s, p_op/m, a_vals.s, x_vals.s

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 28

 // store our new value for y over the old ones
 st1w y_vals.s, p_op, [y_base_addr, i_idx, lsl 2]

.L_cond:
 // increment the index by the number of 32 bit values in the Z registers
 incw i_idx
 b.first .L_loop

.L_saxpy_asm_end:
 // restore state
 ldp x19, x20, [sp, #224]
 ldp x21, x22, [sp, #208]
 ldp x23, x24, [sp, #192]
 ldp x25, x26, [sp, #176]
 ldp x27, x28, [sp, #160]
 ldp d8, d9, [sp, #80]
 ldp d10, d11, [sp, #64]
 ldp d12, d13, [sp, #48]
 ldp d14, d15, [sp, #32]
 ldp x29, x30, [sp], #320
 ret

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 28

7 Conclusion
To test optimized performance, we ran the code on an SVE enabled machine and measured execution
time using the Linux perf tool.

The results were as follows:

Method Speed improvement Notes

C, no vectorization base Compiled with -O1
C, with vectorization 27.5% Compiled with -O3
SVE intrinsics 33.2%
SVE assembly 34.7%

Table 6: Results

Auto-vectorization offers a significant speedup, while being trivial to use. SVE intrinsics offer a
noticeable speed improvement but are harder to use. Finally, SVE assembly offers great scope for
performance but is much harder to write and maintain.

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 28

8 Check your knowledge
What are the four ways of using SVE instructions?

• SVE Assembly

• SVE Intrinsics

• SVE enabled compiler

• Library that uses SVE

What C header file must you include to use the intrinsics?

• arm_sve.h (#include <arm_sve.h>)

What does the svst1_f32(p, y, z) intrinsic function do?

From the name we can see that this intrinsic corresponds to the 32-bit form ST1 instruction. This
instruction will store the values in z at the address given by y, and the operation will be masked with
the predicate p.

What is the difference between the float32_t and svfloat32_t types?

• float32_t is a fixed width 32 bit float.

• svfloat32_t is a sizeless type of 32 bit floats.

• Sizeless types are necessary for the compiler to represent the scalable vector registers.

What engineering resources can you use for SVE programming?

• The SVE ACLE Specification

• The Architecture Specification

• Arm Developer Guides

• The Procedure Call Standard

https://developer.arm.com/documentation/100987/latest
https://developer.arm.com/docs/ddi0596/c/a64-sve-instructions-alphabetic-order
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve
https://developer.arm.com/documentation/100986/latest/

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 28

9 Related information
Here are some resources related to material in this guide:

• The Instruction Set Architecture Extension can be found in Arm Architecture Reference Manual
Supplement, The Scalable Vector Extension

• Engineering specifications for the SVE intrinsics can be found in the Arm C Language Extensions
for SVE.

• The Architecture Exploration Tools let you investigate the Arm instruction set.

• The Arm Architecture Reference Manual provides a complete specification of the Arm Instruction
Set.

• Arm training:

o Introduction to Armv8-A

o Overview ISA

o Arm's other architectures

https://developer.arm.com/documentation/ddi0584/latest/
https://developer.arm.com/documentation/ddi0584/latest/
https://developer.arm.com/documentation/100987/latest
https://developer.arm.com/documentation/100987/latest
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/cpu-architecture/a-profile/docs
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/contents/409521
https://training.developer.arm.com/contents/406863

SVE Optimization Guide 102699
Issue 01

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 28

10 Next steps
As a next step, continue learning about SVE and SVE2 programming with the SVE and SVE2
Programmer's Guide.

From the fundamentals to more advanced concepts, these guides introduce the SVE and SVE2
extensions to the Arm Armv8-A architecture.

https://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide
https://developer.arm.com/architectures/instruction-sets/simd-isas/sve/sve-programmers-guide

	1 Overview
	2 Advanced SVE features for optimization
	3 Optimizing with auto-vectorization
	3.1 Auto-vectorization hints and tips
	3.2 Auto-vectorization example: SAXPY

	4 Optimizing with intrinsics
	4.1 Macros
	4.2 Types
	4.3 Functions
	4.4 Intrinsics hints and tips
	4.5 Intrinsics example: SAXPY

	5 Optimizing with assembly
	5.1 Assembly hints and tips
	5.1.1 Instruction selection
	5.1.2 Register usage
	5.1.3 Loops
	5.1.4 Cache

	5.2 Assembly example: SAXPY

	6 Complete code listing
	6.1 saxpy_example.c
	6.2 saxpy_asm.S

	7 Conclusion
	8 Check your knowledge
	9 Related information
	10 Next steps

