
 Copyright © 2017-2021 Arm or its affiliates. All rights reserved.

 Document number: ARM DEN 0054C

Software Delegated Exception Interface (SDEI)
Platform Design Document

 Document number: ARM DEN 0054C

Release Quality: BETA

Issue Number: 0

Confidentiality: Non-Confidential

2 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

Software Delegated Exception Interface
System Software on Arm specification

Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.

Release information

The Change history table lists the changes made to this document.

Table 1 Change history

Date Issue Confidentiality Change

8 May 2017 A Non-confidential First release

6 October 2020 B Non-confidential Cleanup and clarifications, license
update

14 September 2021 C Non-confidential Minor version rev to 1.1

Defined new relative mode for
SDEI_EVENT_REGISTER.

Defined _DSM method in Appendix D
for representing SDEI events in ACPI.

Clarifications in Appendix C (ACPI table
definitions for SDEI) for how CPER
data should be handled.

Misc errata clean up.

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this
Licence (“Document”). Arm licenses its intellectual property in the Document to you on condition that
you agree to the terms of this Licence. By using or copying the Document you indicate that you agree
to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or
controlled, directly or indirectly, by you. A company shall be a Subsidiary only for the period during
which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is
subject to the terms of this Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the
intellectual property in the Document owned or controlled by Arm, a non-exclusive, non-transferable,
non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that

comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence

granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i)

above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or
function of a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology
or any intellectual property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

Table of Contents

 Copyright © 2017-2021 Arm Limited or its affiliates. All rights reserved.
 Non-Confidential

DOCUMENT. Arm may make changes to the Document at any time and without notice. For the
avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to
identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE
FULLEST EXTENT PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT
MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE
DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED
BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT
WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL
OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of
its other rights, if Licensee is in breach of any of the terms and conditions of this Licence then Arm may
terminate this Licence immediately upon giving written notice to Licensee. Licensee may terminate this
Licence at any time. Upon termination of this Licence by Licensee or by Arm, Licensee shall stop using
the Document and destroy all copies of the Document in its possession. Upon termination of this
Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were
the party in breach. Any termination of this Licence shall be effective in respect of all Subsidiaries. Any
rights granted to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing
to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that
any use, duplication or disclosure of the Document complies fully with any relevant export laws and
regulations to assure that the Document or any portion thereof is not exported, directly or indirectly, in
violation of such export laws.

 This Licence may be translated into other languages for convenience, and Licensee agrees that if
there is any conflict between the English version of this Licence and any translation, the terms of the
English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. No licence,
express, implied or otherwise, is granted to Licensee under this Licence, to use the Arm trade marks
in connection with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s

trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2017, 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

Table of Contents

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 5
 Non-Confidential

Table of Contents

1 Introduction ... 6
1.1 Additional reading.. 6
1.2 Feedback ... 6
1.3 Glossary .. 7
1.4 Document structure ... 8

2 Overview .. 9
2.1 SDEI intended usage .. 9

3 Definitions ... 11
3.1 Software Delegated Exception Model ... 11
3.2 Client and Dispatcher .. 11
3.3 Event ... 11
3.4 Interface and Exception levels .. 12

4 System overview .. 15
4.1 Processing Element (PE) .. 15
4.2 Interrupt controller ... 15
4.3 Prioritizing events .. 15
4.4 Event number allocation .. 17

5 Interface ... 19
5.1 SDEI calls .. 19
5.2 Event context ... 40
5.3 Return Codes .. 43

6 Programmers’ Overview .. 44
6.1 Event handler states and properties ... 44
6.2 Event dispatching .. 48
6.3 Bound events .. 49
6.4 Interface Discovery.. 49
6.5 Power management and SDEI events .. 49
6.6 Registering and handling an event ... 53
6.7 Unregistering an event .. 53
6.8 Virtual SDEI events ... 54

7 Appendix A: Implementing use cases ... 56
7.1 Physical interrupt as SDEI event .. 56
7.2 Isolated physical interrupt as SDEI event ... 56

8 Appendix B: Implementation notes with GICv2 and GICv3 architecture
 57

8.1 GICv2 .. 57
8.2 GICv3 .. 57

9 Appendix C: Pseudocode for dispatcher... 58
9.1 Private event dispatcher .. 58
9.2 Shared event dispatcher ... 58

10 Appendix D: ACPI table definitions for SDEI .. 60

11 Appendix E: ACPI definitions for SDEI events .. 62
11.1 Describing SDEI events in ACPI Namespace 62
11.2 SDEI _DSM method .. 62
11.3 Example .. 63

Introduction

6 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

1 Introduction

Software Delegated Exception Interface (SDEI) provides a mechanism for registering and
servicing system events from system firmware. This document defines a standard interface
that is vendor-neutral, interoperable, and software portable. The interface is offered by a
higher Exception level to a lower Exception level, in other words by a Secure platform
firmware to hypervisor or hypervisor to OS or both.

System events are high priority events, which must be serviced immediately by an OS or
hypervisor. These events are often orthogonal to normal OS operation and the events can
be handled even when the OS is executing within its own critical section with interrupts
masked. System events can be provided to support:

• Platform error handling (RAS)

• Software watchdog timer

• Sample based profiling

• Kernel debugger

The document defines a standard interface through which these events can be exposed by
the firmware and handled by OS and hypervisors. The SDEI is not suitable for device
interrupt handling, which is best handled by the OS itself.

1.1 Additional reading

This section lists relevant publications from Arm and third parties.

See the Arm Infocenter, http://infocenter.arm.com, for access to Arm documentation.

1.1.1 Arm publications

The following documents contain information relevant to this document:

1.2

Feedback

Arm welcomes feedback on its documentation.

1.2.1 Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com.

Provide:

• The title.

Document name Document number

1. Arm Architecture Reference Manual, Armv8 for Armv8-
A architecture profile

Arm DDI 0487

2. Critical Interrupt Prioritization Arm PRDC 013242

3. SMC Calling Conventions Arm DEN 0028B

4. Power State Coordination Interface Arm DEN 0022C

5. Arm Generic Interrupt Controller Architecture
Specification version 3.0

Arm IHI 0069C

6. Arm Generic Interrupt Controller Architecture
Specification version 2.0

Arm IHI 0048B

7. Advanced Configuration and Power Interface
Specification v6.2

http://infocenter.arm.com/
mailto:errata@arm.com

Introduction

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 7
 Non-Confidential

• The number, Arm DEN 0054C.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

1.3 Glossary

This document uses the following terms and abbreviations.

Term Description

AArch64 state The 64-bit Execution state. In AArch64 state, addresses are held in 64-
bit registers, and instructions in the base instruction set can use 64-bit
registers for their processing. AArch64 state supports the A64 instruction
set.

ACPI The Advanced Configuration and Power Interface specification. This

defines a standard for device configuration and power management by
an OS.

Client The software entity that uses SDEI. This includes operating system and
hypervisor.

Dispatcher The software entity, which dispatches events to the client. This includes

hypervisor or firmware.

EL0 The lowest Exception level. This Exception level is unprivileged. The

Exception level used to execute user applications, in Non-secure state.

EL1 Privileged Exception level. The Exception level typically used to execute
operating systems.

EL2 Hypervisor Exception level. The Exception level used to execute
hypervisor code. EL2 is always in Non-secure state.

EL3 Secure monitor Exception level. This Exception level has the highest
privilege and is always in Secure state. If implemented, a PE always
reset and commence execution at this Exception level.

FDT Flattened Device Tree. This is a hardware description methodology.
Firmware tables are constructed that describe the hardware. These
tables are passed to the OS at boot time. An OS can interrogate the data
they contain when it needs to discover the hardware properties of a
device.

Firmware See Secure Platform Firmware.

Function Identifier A 32-bit integer, which identifies the function being invoked by this

SMC/HVC call. Passed in X0 into every SMC/HVC call.

HVC Hypervisor Call. An instruction that causes a synchronous exception that
is taken to EL2.

Hypervisor The hypervisor executes at EL2. It supports the execution of multiple EL1
operating systems. In this document, the term hypervisor includes any
software that is running at EL2. EL2 software could include operating
systems if the PE implements the Virtualization Host Extensions.

Non-secure state The Security state that restricts access to only the Non-secure system

resources such as memory, peripherals, and System registers.

Normal world The execution environment when the core is in the Non-secure state.

OS Application operating system such as Linux or Windows. This also
includes virtualized OS running under a hypervisor.

PE The abstract machine defined in the Arm architecture, as documented in

an Arm Architecture Reference Manual. A processing element
implementation that is compliant with the Arm architecture must conform
with the behaviors described in the corresponding Arm Architecture
Reference Manual.

Introduction

8 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

RAS Reliability, Availability, and Serviceability

Secure Platform
Firmware (SPF)

Owned by the silicon vendor and OEM. This firmware is the first software
component that executes at boot on an application PE. It provides a
number of services, including platform initialization, the installation of the
S-EL1 software, and routing of Secure Monitor Calls.

Secure EL1 The Secure EL1 Exception level, the Exception level used to execute the

S-EL1 software in Secure state. The software can be a Secure OS or S-
EL1 firmware.

Secure state The Arm Security state that enables access to the Secure and Non-

secure systems resources, such as memory, peripherals and System
registers.

SMC Secure Monitor Call. An instruction that causes a synchronous exception
that is taken to EL3.

SoC System on Chip.

System event An event typically generated by the system firmware which requires
immediate attention from the OS or hypervisor.

Virtualization Host
Extensions

Virtualized Host Extensions (VHE) is an extension to the Arm
Architecture that enables operating systems to run at the EL2 privilege
level. See Arm Architecture Reference Manual, Armv8 for Armv8-A
architecture profile.

VHE Virtualization Host Extensions

1.4 Document structure

This document is organized as follows,

• Section 2 provides an overview of SDEI and lists typical use cases for SDEI.

• Section 3 provides common definitions that are used in this document.

• Section 4 provides system requirements for implementing SDEI.

• Section 5 provides the interface functions and details about the interface.

• Section 6 provides Programmers’ overview on SDEI.

• Appendix A provides details about implementing use cases mentioned in Section
2.

• Appendix B provides implementation details with GICv2 and GICv3.

• Appendix C lists pseudocode for SDEI event dispatcher.

• Appendix D provides ACPI definitions for SDEI.

Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 9
 Non-Confidential

2 Overview

The Software Delegated Exception (SDE) is a mechanism to deliver extraordinary System
events (also called events in this document) to an OS or hypervisor that preempt all other
exceptions and exclusion mechanisms. This document defines the Software Delegated
Exception Interface (SDEI) which can be used by OS and hypervisor to subscribe to and
manage high priority events.

SDEI should be used instead of a normal interrupt when the exception must be delivered
and must not be delayed by interrupt masking or critical sections. Platform error handling
and software watchdogs are examples that fall into this category.

The SDEI handler execution environment is limited, as at the time of the event the state
and consistency of the underlying OS kernel or hypervisor is unknown. All resources must
be pre-allocated, and interactions with the OS or hypervisor must use methods that are
guaranteed to be safe.

2.1 SDEI intended usage

SDEI provides a high priority event delivery mechanism, which has higher priority than
interrupts that target OSs and hypervisors. SDEI enables a calling hypervisor or OS or
both to:

1. Subscribe to and handle a system event.

2. Mask a system event.

3. Migrate handling of a system event to a different PE.

4. Add or remove a PE from participating in event handling.

5. Convert an existing interrupt into a source of SDEI events.

6. Generate software events.

With SDEI and a description of the events from the platform, OS or hypervisor software is
able to handle system events. The SDEI is designed to work alongside the Power State
Coordination Interface, which handles power management operations.

SDEI events can be masked and the interface provides functions for masking events.
However, Arm recommends that the events are masked only in rare situations.

SDEI handler execution environment is limited as at the time of the event the underlying
state of the OS or hypervisor is unknown. Therefore, SDEI is not suitable for handling
normal device interrupts, which are better handled using the standard services provided
by the OS or hypervisor.

2.1.1 Typical use cases

The following sections lists use cases where prioritizing the system event is beneficial.

• System Error handling (RAS)

At any time of execution, the PE, memory, or system buses can generate errors. Some
of these errors can be corrected in software and might require software handling from
different execution privileges. Firmware first handling is a common approach to error
handling, where a higher Exception level provides an initial error handling, after which
the error is delegated to a lower Exception level. For critical errors, this delegation will not
work if errors occur in a critical section where interrupts are masked. SDEI provides a
solution for this problem.

• Software Watchdog timer

A high priority event can be used to implement a software watchdog timer. When the
watchdog timer ticks, the event handler can examine the system for any activity. The
system can be reset if there was no activity detected since the previous tick. With
prioritizing the timer event, the handler can execute even if the system is busy handling
an interrupt.

• Kernel Debugging

Overview

10 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

Debugging system software usually involves examining the execution path, registers,
and memory. Software debugging is often impaired by the interrupt masking because it
might prevent the debugger from interrupting the PE. With a prioritized event, the state
of the system can be examined even if the system is within its critical section.

• Sample Profiling

Sample-based profiling can have blind spots for those critical sections that have
interrupts masked. A high priority event-based profiler can eliminate such blind spots.

Definitions

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 11
 Non-Confidential

3 Definitions

This section outlines the various definitions that are followed in this document.

3.1 Software Delegated Exception Model

There are different methods for prioritizing system events and a detailed explanation can
be found in the Critical Interrupt Prioritization document. SDEI described in this document
uses the mechanism in which the system events are trapped to a higher Exception level.
Trapping to higher Exception level always preempts the lower Exception level execution,
prioritizing the events that are trapped. We call this mechanism a Software Delegated
Exception.

3.2 Client and Dispatcher

Software Delegated Exception is a software agreement between higher and lower
Exception levels for delegating events from the higher Exception level to the lower
Exception level.

The higher Exception level software is called the dispatcher. The dispatcher handles the
request from lower Exception level and delegates the event.

The lower Exception level software is called the client. The client uses the interface
provided by the dispatcher and handles the events.

3.2.1 Client and Dispatcher Exception level

The client Exception level, ELC, is the Exception level that the client is executing in. ELC
can be Non-secure EL1 or EL2.

The dispatcher Exception level, ELD, is the Exception level that the dispatcher executes in.
ELD can be EL2 or EL3.

For a firmware dispatcher (ELD = EL3), the client must be a hypervisor (ELC = EL2). If a
hypervisor is not present or not enabled, the client must be an OS (ELC = Non-secure
EL1). In this document, hypervisor refers to any software running at EL2. If a PE
implements VHE an operating system might run at EL2.

For a hypervisor dispatcher (ELD = EL2), the client must be a guest OS (ELC = Non-secure
EL1).

See Interface and Exception levels on page 12 for various SDEI instances that exist
between different Exception levels.

3.3 Event

An event is any notification that the dispatcher wants to inform the client about. The
dispatcher passes the event numbers to the client using an IMPLEMENTATION DEFINED
mechanism. OS and hypervisor can then, subscribe, and handle these events.

3.3.1 Event source

Events are typically generated as a result of hardware exceptions or hardware interrupts.
Hardware events might be notified to the firmware to do the first level of handling. As part
of the handling, the firmware might require lower Exception levels to handle the event.
Firmware can expose SDEI events for the lower exception handling.

In a related use case, a hardware interrupt can generate an event. The firmware can
expose the interrupt as a SDEI event for client handling.

Events can also be generated by software using the system interrupt controller.

3.3.2 Event type

Every SDEI event is either a Private event or a Shared event.

Definitions

12 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

A Private event is local to the PE that generated the event and can only be handled on that
PE. Private event is analogous to a private peripheral interrupt (PPI).

A Shared event is a global event, which can be handled by a single PE among a set of
target PEs. The target PEs are selected using the routing mode. Shared event is
analogous to shared peripheral interrupt (SPI).

The event type can be queried using an SDEI call, see SDEI_EVENT_GET_INFO on page
29. The routing mode of a shared event is decided by the client and must be configured
during registration of an event handler, see SDEI_EVENT_REGISTER on page 20.

3.3.3 Event definition

An event can be defined,

• statically by the platform called platform events or

• dynamically by the client, called bound events.

Platform events are defined by the platform. The platform events can further be divided to
standard or vendor events, see Event number allocation on page 17

Bound events are SDEI events created for client interrupts. The bound events can be
created and released by the client during its execution. For more information, see Bound
events on page 49.

3.4 Interface and Exception levels

A system can provide multiple SDEI instantiations depending on the Exception levels that
are implemented in the PE and the software executing in those Exception levels. This
section describes the various SDEI instances that are permitted in a system and the
method of invoking the interface that should be used by the client. The discussion assumes
the typical Exception level usage model as described in the Arm Architecture Reference
Manual, Armv8 for Armv8-A architecture profile.

3.4.1 SDEI instances in a system

The following SDEI instances are permitted in a system:

1. Physical SDEI: Firmware dispatcher and Non-secure client

Firmware at EL3 provides SDEI to a hypervisor or, if a hypervisor is not present or
not enabled, a Non-secure OS.

A guest OS that is executing under a hypervisor is not permitted to register an
SDEI handler, unless the hypervisor offers support for SDEI. Any attempt by a
guest OS to do this would result in an Unknown SMC Function Identifier error, as
defined in the SMC calling convention specification. This error maps to the
NOT_SUPPORTED error code in the SDEI specification.

2. Virtual SDEI: Hypervisor dispatcher and guest OS

Hypervisor at EL2 provides SDEI to a guest OS. The guest OS registers with the
hypervisor for virtual events. Virtual events originate from either the firmware or the
hypervisor

If the events are originating from firmware, the hypervisor registers with the
firmware and the guest OS registers with the hypervisor. Depending on the SDEI
implementation present in the hypervisor, it can provide services to single or
multiple guest OSs. When an event triggers, the firmware delegates the event to
the hypervisor. The dispatcher at hypervisor may further delegate the event to one
or more appropriate guest OSs.

This specification does not define an interface between firmware at EL3 and software at
Secure EL2 or Secure EL1.It is IMPLEMENTATION DEFINED whether SDEI exists between EL3
and Secure EL2/EL1.

There is no SDEI between EL1 and EL0.

Definitions

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 13
 Non-Confidential

Figure 1 SDEI instances

[1] In a system without hypervisor, there is no virtual interface and physical interface is between firmware and OS.

3.4.2 Conduits

Interface calls from the client to the dispatcher are made using SMC or HVC instructions.
The channel that is used for communication between the client and dispatcher is termed
Conduit as defined in the SMC Calling Conventions specification. This section describes
possible PE implementations and the conduits that are used.

When both of EL3 and EL2 are implemented:

The following SDEI instances are permitted:

• Physical SDEI.

• Virtual SDEI.

A client for a physical SDEI is a hypervisor at EL2 or, if the hypervisor is not enabled, an
OS at EL1. They must use an SMC Conduit.

For a hypervisor, the SDEI calls must always come through EL2.

Implementation note: For a Type-2 (OS hosted) hypervisor that runs on PEs that do not
implement VHE, a hypervisor stub may run at EL2 with the host OS running at EL1. In this
case, the firmware dispatcher cannot distinguish between an SDEI request from the host at
EL1 or a guest at EL1. Therefore, the hypervisor stub at EL2 must always trap SDEI calls
from EL1. One implementation approach is for the hypervisor stub at EL2 to forward the
SDEI calls from the host OS to the firmware dispatcher by invoking identical SDEI calls
with identical parameters. Because the hypervisor stub made SDEI calls to register the
event handlers, the firmware dispatcher will execute the event handlers at EL2. This
means that the address of event handlers must be valid in the EL2 translation regime, even
though the addresses originated from EL1.

Clients for virtual SDEI are guest OSes at EL1. For virtual SDEI, a guest OS can use an
SMC or HVC Conduit for invoking SDEI calls. The guest OS executing under a hypervisor
is not permitted to directly register with firmware and the hypervisor must always trap the
guest requests.

When EL3 is not implemented and EL2 is implemented:

The following SDEI instance is permitted:

1. Virtual SDEI.

The Client for a virtual SDEI is an OS at Non-secure EL1. They must use the HVC conduit.

When EL3 is implemented and EL2 is not implemented:

The following SDEI instances are permitted:

1. Physical SDEI.

The Client for a physical SDEI is an OS at Non-secure EL1. They must use the SMC
conduit.

Definitions

14 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

The following table summarizes the SDEI instances available in a system. The SDEI
specification permits any combination of these interfaces in a system unless specified
otherwise.

Table 2: SDEI instances and Conduits

EL3
present

EL2
present
and
enabled

SDEI
instance

Client ELC Dispatcher ELD

Conduit

Yes No Physical OS EL1 Firmware EL3 SMC

Yes Yes Physical Hypervisor EL2 Firmware EL3 SMC

- Yes Virtual OS EL1 Hypervisor EL2 SMC[1,2] / HVC

[1] SMC must be trapped by hypervisor.
[2] SMC is available only when EL3 is implemented.

System overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 15
 Non-Confidential

4 System overview

This section describes the system requirements and system configuration that is required
to support SDEI.

4.1 Processing Element (PE)

SDEI is for implementation in SoCs that are based on the Armv8-A architecture. To
implement SDEI, the PE is required to have EL2, EL3, or both. This means that SDEI
requires the PE to include the Virtualization Extension, the Security Extensions, or both.
Both the client and dispatcher of SDEI must execute in AArch64 state.

4.2 Interrupt controller

Arm recommends that:

- An interrupt controller is present in the system.

- The SDEI instance utilizes the interrupt controller wherever possible to reduce software
overhead and provide timely handling of events.

Arm recommends the Generic Interrupt Controller (GIC). See Arm Generic Interrupt
Controller Architecture Specification version 3.0.

If the system has a non-GIC interrupt controller, the following features are recommended
for SDEI implementation:

• Interrupt routing modes to support event routing.

• Private and shared interrupts to support private and shared events.

• Ability for software to set an interrupt pending for event signaling and delegation.

• Interrupt groups to trap interrupts at the ELD.

• Interrupt priority to raise the priority of events over client interrupts.

• Ability to generate interrupts in software to support software signaling of events.

4.3 Prioritizing events

SDEI events of interest are trapped to a higher Exception level, preempting any lower
Exception level execution and prioritizing the events that are trapped. The selective
trapping of events is achieved with the help of both PE architecture controls and the
interrupt controller.

4.3.1 Arm PE architecture

The Arm Architecture Reference Manual, Armv8 for Armv8-A architecture profile defines
the levels of execution privileges termed Exception levels. To control when interrupts can
be taken, the Armv8-A architecture provides:

• Process state (PSTATE) interrupt masks. The PSTATE interrupt masks prevent
interrupts from being taken to the current Exception level.

• Interrupt routing controls. Interrupts can be trapped to a higher Exception level
than the current Exception level.

Higher priority asynchronous events can be achieved by associating the events to an
appropriate interrupt group and targeting the interrupt group to ELD. For more details, refer
Appendix B: Implementation notes with GICv2 and GICv3 architecture on page 57. This
preempts the execution of ELC or lower exceptions even when the client has its interrupts
masked in its PSTATE. The exception handler at ELD can triage the interrupt and delegate
the interrupt as necessary to the client. The dispatcher can simulate an exception-like entry
into the client, with the client providing an additional asynchronous entry point similar to an
interrupt entry point. Therefore this architecture is called the Software Delegated Exception
Model.

System overview

16 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

4.3.2 Interrupt controller

The interrupt controller is configured so that the SDEI events are given higher priority to
preempt the execution of lower Exception level. This is essential to raise a physical
interrupt and there by interrupt the PE. The following section details how the interrupt
priority must be managed for different Clients. See Appendix B: Implementation notes with
GICv2 and GICv3 architecture on page 57 for implementation notes with GIC.

4.3.2.1 Event class

To support the SDEI instances, a system can group the events to the respective SDEI
classes as follows:

Physical SDEI

The events in this class must be given priority higher than the client’s interrupt
sources, so that it can preempt an active Non-secure interrupt.

Virtual SDEI

The virtual events in this class must preempt the virtual interrupts.

For both Physical SDEI and Virtual SDEI, there are two levels of priority:

1. Normal priority class, for non-critical system events. A typical example is a
software watchdog timer.

2. Critical priority class, for critical system events. A typical example is error
handling.

Critical priority class events must preempt all normal priority class events, including those
that are currently being handled. The event handler for critical priority class events always
executes to completion before any other code executes in the client context for the
interrupted PE.

Events belonging to a class cannot preempt events from the same class.

For platform events, the priority of the event is configured by the platform and the client
cannot change the priority. All bound events are of normal priority.

The client can query the priority of all available events using SDEI call, see
SDEI_EVENT_GET_INFO on page 29.

The priorities of various event classes are summarized as follows. The convention used
here is as follows,

• A > B denotes that A can preempt B.

The preemption rules are:

Physical critical event > Physical normal event > Non-secure interrupt

Virtual critical event > Virtual normal event > Virtual interrupt

If the system supports both physical and virtual interface class, it must define a priority
between the SDEI instances. The priority must be defined such that the physical events
always preempt the virtual events:

Physical critical
event

>
Physical normal
event

>
Virtual critical
event

>
Virtual normal
event

The event membership in a class and the priority of the class is IMPLEMENTATION DEFINED.
For instance, an error-handling event is a good fit for a critical priority in the respective
class for physical and virtual SDEI clients. This will ensure that the error event can still
preempt the PE, which is handling a normal priority event in the respective class.

System overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 17
 Non-Confidential

4.3.2.2 Nesting depth of running SDEI event handlers

The nesting depth of running SDEI event handlers depends on the number of priority
classes provided by the dispatcher. With two levels of priority, the active running depth of
the SDEI handler is two. The nesting depth of various SDEI instances is as follows:

Physical SDEI

The physical SDEI is managed by the EL3 dispatcher. If EL3 dispatcher supports
both normal and critical priority events, there can be a maximum of two physical
SDEI, events one from each priority class that is handled by a PE. If the dispatcher
implementation supports only one of the classes, the maximum depth of nested
handler is one.

Virtual SDEI

The virtual SDEI is managed by the hypervisor dispatcher. If the hypervisor
dispatcher implementation supports both normal and critical priority events, there
can be a maximum of two virtual SDEI events, one from each priority class that is
handled by a PE. If there is only one priority class supported, the maximum depth
of nested handler is one.

4.4 Event number allocation

An SDEI event number is a 32-bit signed number. The event space is partitioned into
vendor defined events and standard events.

Standard events are defined by Arm. The current version of the specification only defines
event number 0, which is a software signaled SDEI event. More events will be added to the
standard event space in future.

Vendor defined events are implementation specific events. They are allocated in the
vendor event space. All bound events must be allocated in this space.

The format of the event number is as follows:

Table 3: Event number definition

Bit
Numbers

Bit Mask Description

31 0x8000_0000 Must be zero.

30 0x4000_0000 Vendor bit used to specify vendor
defined events. Set to 0 for
standard events.

29:24 0x3F00_0000 Must be zero. Reserved for future
use.

23:0 0x00FF_FFFF Event numbers

The current version of the specification defines the following range of event numbers,

Table 4: Event number space

Event numbers Description

0 Software signaled event

0x0000_0001 - 0x00FF_FFFF Standard events. Reserved
for future expansion.

System overview

18 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

0x4000_0000 - 0x40FF_FFFF Vendor defined events.

The physical and virtual SDEI instance must implement the standard event 0, which
denotes a software signaled event. The event numbers are local to the SDEI instance but
for simplicity, Arm recommends that event numbers are reused across different SDEI
instances for similar events. For instance, a watchdog event can have the same SDEI
event number for both physical and virtual SDEI instance.

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 19
 Non-Confidential

5 Interface

This chapter describes the SDEI calls, the handler execution context and the return error
codes of the interface calls.

5.1 SDEI calls

Clients invoke the SDEI calls by using either the SMC or HVC conduit as described in
Conduits on page 13. The functions adhere to the SMC Calling Conventions and in
particular, the register usage follows the specification for SMC64 calls.

All functions can be safely called within or outside an event handler, unless otherwise
stated.

In a system with multiple clients, an interface call by a client retrieves information or
operates on events that are available only to that client.

An SDEI instance must implement all functions described in this chapter.

The SMC Calling Conventions requires that all unimplemented functions return an
Unknown SMC Function Identifier which maps to the NOT_SUPPORTED error code. This

specification follows this convention. Therefore, a NOT_SUPPORTED error code indicates an

implementation that does not support SDEI.

5.1.1 SDEI_VERSION

Description Returns the version of the SDEI implementation.

Parameter

uint32 Function ID: 0xC400_0020

Return

int64

On success, the format of the version number is as follows:

Bit [63] Must be 0.

Bits [62:48] Major revision: must be 1 for this revision of SDEI.

Bits [47:32] Minor revision: must be 1 for this revision of SDEI.

Bits [31:0] Vendor-defined version number.

On error:

NOT_SUPPORTED SDEI is not supported.

5.1.1.1 Usage

Each implemented SDEI instance must support this call and return its version number.

The version number is a 63-bit unsigned integer, with the upper 31 bits denoting the major
and minor revision, and the lower 32 bits denoting a vendor-defined number.

The following rules apply to the version numbering:

• Different major revision values indicate possibly incompatible functions. A
newer major revision might:

o Introduce new functions.

o Deprecate older functions.

o Change behavior of existing functions.

• For two versions, A and B, for which the major revisions are identical, if the
minor revision of B is greater than the minor revision of A, then all functions in

Interface

20 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

A must work in B. However, it is possible for B to have a higher function count
than A.

• This specification does not define the format of the vendor-defined version
number. However, a higher value must indicate a newer version.

5.1.1.2 Dispatcher responsibilities

If a valid version number is returned by this call, the SDEI instance must implement all
SDEI calls described in this chapter.

5.1.2 SDEI_EVENT_REGISTER

Description Register a handler to the specified event.

Parameters

uint32 Function ID 0xC400_0021

int32 event Event number.

uint64
entry_point_address

Entry point address at ELC for the event handler.

uint64 ep_argument User-defined argument passed to entry point routine.

uint64 flags

Registration Flags,

Bits [63:2]: Reserved for future use. Must be zero.

Bit [1]: relative_mode: Specifies whether the entry_point_address
passed to this function is an absolute address or relative to the
Vector Base Address Register (VBAR) for ELC. Possible values
are:

• 0: entry_point_address is an absolute address

• 1: entry_point_address is relative to VBAR

Note: relative_mode is an optional feature. Whether an
implementation supports relative_mode may be determined using
the SDEI_FEATURES function.

Bit [0]: routing_mode Routing mode for shared event. Possible
values are:

• 0: RM_ANY (Route to any PE in the system)

• 1: RM_PE (Route to the PE specified by affinity)

uint64 affinity

Affinity argument. The format of this field depends on the selected
routing mode.

Currently the format is defined only when the selected routing
mode is RM_PE.

With RM_PE, this field follows the MPIDR format as described in

Arm Architecture Reference Manual, Armv8 for Armv8-A
architecture profile.

Bits [40:63]: Must be zero.

Bits [32:39]: Aff3 : Match Aff3 of target PE MPIDR.

Bits [24:31]: Must be zero.

Bits [16:23]: Aff2 : Match Aff2 of target PE MPIDR.

Bits [8:15]: Aff1 : Match Aff1 of target PE MPIDR.

Bits [0:7]: Aff0 : Match Aff0 of target PE MPIDR.

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 21
 Non-Confidential

Return

int64

SUCCESS Event registered successfully.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid parameters in the call.

DENIED Inappropriate event state.

5.1.2.1 Usage

After the specified event has been registered, the event is disabled and the handler is not
called until the event is enabled. The event handler always executes in ELC.

The SDEI_EVENT_REGISTER call, changes the event handler state, see the state diagram in

Event handler states and properties on page 44 for more information.

Any event that triggers before it has been registered a handler is either ignored or remains
pending. It is IMPLEMENTATION DEFINED whether the event is ignored or remains pending.

A client can register only one handler to one event at a time. If the client needs to register a
different handler to the event or change the ep_argument for the event, it must unregister
the event.

For a shared event, SDEI_EVENT_REGISTER registers the handler globally for the calling
client. For a private event, this call only registers the handler for the calling PE.

5.1.2.2 Parameters

• event is the event number that the client is registering. The event number is either
provided by the dispatcher or created dynamic using the SDEI_INTERRUPT_BIND call.

• entry_point_address holds the entry point of the event handler. Event handlers are
executed at ELC and in the client translation regime. Specifying an invalid address will
result an exception (e.g. translation fault, permission fault) in the client as defined in
the ARMv8-A architecture when the invalid address is executed. Refer to Event
handler context for more details about the context of event handlers.

• ep_argument can be any value as defined by the client software. Typical usage might
have this as an alternate stack pointer or a structure defining the event context for the
client software. Dispatcher software must pass this argument unchanged to the
handler routine.

• flags define the flags for registering the event. Currently only the routing mode of an
event is specified through the flags. The unused fields are reserved for future
expansion of the specification. Routing mode is valid only for a shared event. For a
private event, the routing mode is ignored. This specification requires the support of
the following routing modes,

• RM_ANY: The event is routed to any PE in the system.

• RM_PE: The event is routed to a single PE as specified by the affinity argument.

• affinity specifies the PE affinity of a shared event. The format of this field depends on
the selected routing mode. This parameter is unused for private events and shared
events with routing mode RM_ANY. For routing mode RM_PE, affinity specifies the PE to

which the event will be routed and the format follows the MPIDR value as described in
Arm Architecture Reference Manual, Armv8 for Armv8-A architecture profile. New
formats might be introduced in later revisions of the specification.

5.1.2.3 Client responsibilities

Before a SDEI_EVENT_REGISTER call, the client must,

Interface

22 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

• Identify the event number, obtained either from the dispatcher or by creating a bound
event, see Bound events on page 49.

• For a shared event, specify an appropriate routing model and affinity if applicable.

The client must specify a valid entry point address. The client must make sure that the
address is valid to all the PEs that can handle this event. The address can be a physical or
virtual address and must be valid according to the translation regime that will be used
when the event is enabled.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned for any of the following,

• Invalid event number.

• Invalid event handler address, if the dispatcher can determine that it is not
valid.

• For shared events, invalid routing mode or invalid affinity specified for routing
mode, RM_PE.

• DENIED is returned,

• If the event is already registered by the client.

If the event is in state handler-unregister-pending, see Event handler states and properties
on page 44 for more information. The state of the event can be examined using
SDEI_EVENT_STATUS call on page 28.

5.1.3 SDEI_EVENT_ENABLE

Description Enable the specified event.

Parameters

uint32 Function ID: 0xC400_0022

int32 event Event number

Return

int64

SUCCESS Event enabled successfully.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid parameters in the call.

DENIED
Inappropriate event handler
state.

5.1.3.1 Usage

This call enables the event for the client. The client can receive an event only after this call.
Any event that triggers before the enable and after the register will stay pending and only
be delivered to the client when the event is enabled.

The SDEI_EVENT_ENABLE call, changes the event handler state, see the state diagram in

Event handler states and properties on page 44 for more information.

Enabling an event, which is already enabled, is permitted and has no effect. For a private
event, this call enables the event only for the calling PE. For a shared event, this call
enables the event globally for the calling client.

5.1.3.2 Client responsibilities

Before a SDEI_EVENT_ENABLE call, the client must:

• Register the event using SDEI_EVENT_REGISTER.

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 23
 Non-Confidential

• Perform any optional configuration of the event.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned for an unknown event number.

• DENIED is returned if,

• Event is not registered by the client.

• Event handler is in handler-unregister-pending state. See Event handler states
and properties on page 44 to know more about this.

5.1.3.3 Dispatcher responsibilities

The specific responsibilities of the dispatcher at the time that an event is enabled are use-
case dependent. See Appendix A: Implementing use cases. For example, enabling a
bound event may involve enabling a physical interrupt at the interrupt controller. Enabling
a system event may require system-specific interactions.

5.1.4 SDEI_EVENT_DISABLE

Description Disable the specified event.

Parameters

uint32 Function ID 0xC400_0023

int32 event Event number.

Return

int64

SUCCESS Event disabled successfully.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid event number in the call.

DENIED
Inappropriate event handler
state.

5.1.4.1 Usage

This call disables the event for the client. When the event is disabled, no further events will
be passed to client. Any event that triggers after it is disabled will stay pending and passed
to the client when the event is enabled again. This call has no effect on a currently running
event handler.

The SDEI_EVENT_DISABLE call, changes the event handler state, see the state diagram in

Event handler states and properties on page 44 for more information.

Disabling an event, which is already disabled, is permitted and has no effect. For a private
event, this call disables the event only for the calling PE. For a shared event, this call
disables the event globally for the calling client.

5.1.4.2 Client responsibilities

Before a SDEI_EVENT_DISABLE call, the client must register the event using
SDEI_EVENT_REGISTER.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned for an unknown event number.

• DENIED is returned if,

• Event is not registered by the client.

Interface

24 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

• Event handler is in state handler-unregister-pending. See Event handler
states and properties on page 44 to know more about this.

5.1.4.3 Dispatcher responsibilities

The specific responsibilities of the dispatcher when an event is disabled are use-case
dependent. See Appendix A: Implementing use cases.

5.1.5 SDEI_EVENT_CONTEXT

Description To retrieve additional context information within an event handler.

Parameters

uint32 Function ID 0xC400_0024

uint32 param_id

Parameter identifier. Possible values are,

0-17: Returns register X0-X17 of the client PE at the time of the
event.

All other values for param_id are reserved for future use.

Return

On success

int64 The value of the register as specified by param_id will be returned.

On error,

int64

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS
Invalid param_id value in the
call.

DENIED
The event handler is not running
for the calling PE.

5.1.5.1 Usage

This call is used to retrieve additional context information from an event handler. When the
dispatcher passes event to the client, the event number, ep_argument, interrupted PC and
PSTATE is provided to the event handler through registers X0 – X3 respectively. This call
can be used to retrieve the value of registers X0 – X17 of the PE which receives the event.
See Event handler context page 40 for more information about the event handler context.

The type of context information returned through this call is selected using the param_id
argument. Currently the following values of param_id are defined,

• 0-17: General purpose registers X0-X17 of the PE at the time of the event.

The SDEI_EVENT_CONTEXT call is typically used within an event handler. The call is valid

only when the event handler property handler-running is set to TRUE), see Event handler
states and properties on page 44. For private and shared events, this call can be invoked
only from the PE that received the event.

5.1.5.2 Client responsibilities

If the event handler property handler-running is set to TRUE, the call always succeeds, and
the requested register value is returned.

If the client executes the call when the handler-running property is FALSE or from a
different PE than the one in which the event handler is running, the call will always fail with
one of the following error codes,

• INVALID_PARAMETERS is returned for an unknown param_id value.

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 25
 Non-Confidential

• DENIED is returned if the handler-running property is FALSE on the calling PE.

5.1.5.3 Dispatcher responsibilities

The context information must be available until the event handler is completed. The call
must always succeed when the event is running.

5.1.6 SDEI_EVENT_COMPLETE

Description
Complete the event handling and resume execution from the
interrupted context.

Parameters

uint32 Function ID 0xC400_0025

uint32

status_code

0: EV_HANDLED The event was handled successfully.

1: EV_FAILED The event was not handled.

Return

On success this call never returns and resumes the execution from the point of interruption.

On error,

int64

NOT_SUPPORTED SDEI is not supported.

DENIED
No event handler running for the
calling PE.

5.1.6.1 Usage

This call is used by the handler to complete the handling of the event. The event handler
function must never return, it has no valid return address, and always ends with a
SDEI_EVENT_COMPLETE call or SDEI_EVENT_COMPLETE_AND_RESUME call, see page 26. If

successful, the call resumes the execution of the client from where the event occurred.

This call is valid only when the handler-running property is set to TRUE. This call sets the
event handler property handler-running to FALSE. See Event handler states and properties
on page 44.

For private and shared events, this call can be invoked only from the PE that received the
event. For a private event, this call completes the event handling for the calling PE. For a
shared event, this call completes the event handling globally.

5.1.6.2 Parameters

status_code can be used to indicate the status of event handling. The following status
values are defined,

• EV_HANDLED indicates that the event was successfully handled by the client.

• EV_FAILED indicates that the client failed to handle the event. The associated
action for this status code is platform and event specific. For example, with a
software watchdog event, the platform implementation might choose to reset the
system for this status code.

5.1.6.3 Client responsibilities

The client must never return from the event handler and must always call
SDEI_EVENT_COMPLETE or SDEI_EVENT_COMPLETE_AND_RESUME to end the event handling

and resume execution in the client. If the client fails to complete the event handling, the
client might behave in an unpredictable way.

For a hardware event due to a physical interrupt, the trigger could be edge triggered or
level sensitive. For both type of triggers, the client must call SDEI_EVENT_COMPLETE to exit

Interface

26 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

the event handler. In addition, for a level sensitive interrupt, it is up to the client to clear the
interrupt at source before calling SDEI_EVENT_COMPLETE from the event handler.

The call returns only if there is an error and the client must handle the following potential
return error code,

• DENIED is returned if,

• the handler-running property is set to FALSE on the calling PE

5.1.6.4 Dispatcher responsibilities

The status_code available for a given event and for a given client is IMPLEMENTATION

DEFINED by the platform.

5.1.7 SDEI_EVENT_COMPLETE_AND_RESUME

Description
Complete the event handling and resume execution at the specified
address in ELC.

Parameters

uint32 Function ID 0xC400_0026

uint64

resume_addr
Address in client to resume the execution from.

Return

On success this call never returns and resumes the client from the provided address.

On error,

int64

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid resume address.

DENIED
No event handler running for the
calling PE.

5.1.7.1 Usage

This call is used by the handler to complete the handling of an event and resume the
execution from the client at a specified address. This call is similar to
SDEI_EVENT_COMPLETE except that the execution resumes from ELC at the specified

address in the client as opposed to the interrupted context.

If successful, the call never returns to the caller and resumes the execution at
resume_addr from ELC.

This call is valid only when the handler-running property is set to TRUE. The call sets
handler-running to FALSE. See Event handler states and properties on page 44.

For private and shared events, this call can be invoked only from the PE that received the
event. For a private event, this call completes the event handling for the calling PE. For a
shared event, this call completes the event handling globally.

This call is particularly useful when the interrupted Exception level is different from ELC and
the client needs to do additional processing of the event before resuming the interrupted
context. For example, if a firmware SDEI event interrupted the guest OS and the
hypervisor wants to inject a virtual SDEI event into the guest after completing the handling
at hypervisor.

The resume handler Execution state mimics a synchronous exception handler for ELC

where the exception return address is set to the PC at which the SDEI event was taken.
Refer Event resume context on page 42 for more details about the context.

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 27
 Non-Confidential

5.1.7.2 Parameters

resume_addr must be a valid resume address in ELC. The resume address must be valid in
translation regime of the client at the point when the event occurred. Specifying an invalid
address will result an exception (e.g. translation fault, permission fault) in the client as
defined in the ARMv8-A architecture when the invalid address is executed.

5.1.7.3 Client responsibilities

The client must use SDEI_EVENT_COMPLETE_AND_RESUME to end the event handling and

resume execution from the client. This is typically useful in the form of ‘post-processing’ an
event, for example, cascading events to a lower Exception level such as a hypervisor
injecting virtual events to a guest, or choosing to preempt or terminate guest execution. If
the client fails to complete the event handling, it might result in UNPREDICTABLE behavior
in the client.

The call returns only if there is an error and the client must handle the following potential
return error code,

• INVALID_PARAMETERS is returned if the dispatcher can identify that the resume
address is invalid, for example address is not 4-byte aligned.

• DENIED is returned if the event handler property handler-running is set to FALSE
on the calling PE.

5.1.7.4 Dispatcher responsibilities

If the client fails to complete the event handling, the dispatcher implementation must
ensure that this does not affect the dispatcher from functioning.

If the client is executing a yielding SMC call and SDEI event interrupts the Secure
execution of the SMC call, and the client completes the handler using
SDEI_EVENT_COMPLETE_AND_RESUME, the resume handler must be executed prior to

resuming the secure execution. The SMC call can be restarted later from the client using
an IMPLEMENTATION DEFINED mechanism agreed with the Secure software.

5.1.8 SDEI_EVENT_UNREGISTER

Description Unregister an event handler.

Parameters

uint32 Function ID 0xC400_0027

int32 event Event number

Return

int64

SUCCESS Event successfully unregistered.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid event number.

DENIED Event not registered by client.

PENDING
Event handler is running and
unregister will be pending.

5.1.8.1 Usage

This call is used to unregister the client from receiving any future events specified by event.
Any event that triggers after a successful unregister, might be queued or discarded with the
specific behavior being event and platform specific. This call has no effect on a currently
running event handler.

The SDEI_EVENT_UNREGISTER call, changes the event handler state, see the state diagram

in Event handler states and properties on page 44 for more information.

Interface

28 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

This function completes asynchronously without waiting for any current handlers executing
on other PEs to complete. If unregister is called when the event handler is running,
unregister will be pending and return code will be set to PENDING. For instance, if the call is

invoked from the event handler, unregister would return PENDING.

When this call returns PENDING, the unregister will be performed when the handler

completes the event-handling using SDEI_EVENT_COMPLETE or

SDEI_EVENT_COMPLETE_AND_RESUME. The client will not receive any future events of type

event, after the client completes the currently running handler. Calling unregister on an
event in the unregister-pending state is permitted and will return PENDING.

For a shared event, this call will unregister the event globally. For a private event, this call
will unregister the event for the calling PE.

5.1.8.2 Client responsibilities

Before a SDEI_EVENT_UNREGISTER call, the client must register the event using
SDEI_EVENT_REGISTER.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned for an unknown event number.

• DENIED is returned if event is not registered by the client.

• PENDING is returned if the event handler property handler-running is set to TRUE.
This error indicates that any resource that the event handler uses cannot be freed
by the client until the event handler completes the event handling.

5.1.8.3 Dispatcher responsibilities

The dispatcher implementation must ensure that after a successful unregister, no events
will be delivered to the client. If the event handler is in handler-unregister-pending state, no
events will be delivered to the client after the client completes the currently running
handler.

5.1.9 SDEI_EVENT_STATUS

Description Retrieve the status of an event.

Parameters

uint32 Function ID 0xC400_0028

int32 event Event number.

Return

On success the format of the return value is as follows,

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 29
 Non-Confidential

int64

Bits[63-3]: Must be zero.

Bit[2]: Running bit. Possible values are,

• 0: Event handler is not-running.

• 1: Event handler is running.

Bit[1]: Enable bit. Possible values are,

• 0: Event handler is disabled.

• 1: Event handler is enabled.

Bit[0]: Register bit. Possible values are,

• 0: Event handler is unregistered.

• 1: Event handler is registered.

See Table 13 on page 46 for more information on how to map the
return value to the event handler states.

On error,

int64

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid event number in the call.

5.1.9.1 Usage

This call can be used to retrieve the status of an event. The status of the event returned by
this call can be directly mapped to event handler states, see Event handler states and
properties on page 44.

5.1.9.2 Client responsibilities

The event status is dynamic and can change even when the return status is inspected.
Therefore, the status must not be used to perform operations that depend on the current
status of the event unless the client synchronizes itself not to change the event handler
state.

The client must handle the following potential return error code,

• INVALID_PARAMETERS is returned for an unknown event number.

5.1.10 SDEI_EVENT_GET_INFO

Description Retrieves the information of an event.

Parameters

uint32 Function ID 0xC400_0029

int32 event Event number

uint32 info Information requested, refer Parameter and Return values below

Return

int64 result

The return value on success depends on the information requested, refer Parameter and
Return values below.

On error the following error codes can be returned. Specific error codes that can be returned
depending on info value are listed in Parameter and Return values below.

Interface

30 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

int64

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS
Invalid event number or invalid info
value

DENIED
see Parameter and Return values
below.

5.1.10.1 Usage

This call is used to retrieve the information of an SDEI event. The call is permitted in all
states, however some return values depends on the event handler state, see Parameter
and Return values below. For event handler states, see Event handler states and
properties on page 44.

5.1.10.2 Parameter and Return values

The different values possible for info parameter and the associated return values are as
follows:

Info value Condition Success return value
Additional error
return

0: EV_TYPE
 0: Private event.

1: Shared event.

1: EV_SIGNALED

 0: Event can be
software signalled.

1: Event cannot be
software signalled.

2:EV_PRIORITY
 0: Normal priority event.

1: Critical priority event.

3: EV_ROUTING_MODE

Valid only for shared
events and when
event handler is in
handler-registered
state.

0: RM_ANY (Route to

any PE in the system)

1: RM_PE (Route to the

PE specified by affinity)

INVALID_PARAMETERS

if event is not shared.

DENIED if event is not

registered.

4: EV_ROUTING_AFF

Valid only for shared
events and RM_PE
routing_mode and
when event handler
is in handler-
registered state.

Affinity value. The
format of this field
depends on the selected
routing mode. Currently
the format is defined
only when the selected
routing mode is RM_PE.

With RM_PE, this field

follows the MPIDR
format as described in
SDEI_EVENT_REGISTER

on page 20

INVALID_PARAMETERS

if event is not shared
or routing mode does
not have an
associated affinity.

DENIED if event is not

registered.

Other values of info are reserved for future use

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 31
 Non-Confidential

5.1.11 SDEI_EVENT_ROUTING_SET

Description Sets the routing information of a shared event.

Parameters

uint32 Function ID 0xC400_002A

int32 event Event number.

uint64 routing_mode

Event routing mode

Bits [63:1]: Reserved for future use. Must be zero.

Bit [0]: Routing mode Possible values are :

• 0: RM_ANY (Route to any PE in the system)

• 1: RM_PE (Route to the PE specified by affinity)

see SDEI_EVENT_REGISTER on page 20.

uint64 affinity
When routing_mode is RM_PE, this field follows the MPIDR format,

see SDEI_EVENT_REGISTER on page 20.

Return

int64

SUCCESS
Event routing information set
successfully.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid parameters.

DENIED
Inappropriate event handler
state.

5.1.11.1 Usage

This call is used to change the routing information of a shared event.

SDEI_EVENT_ROUTING_SET is allowed only when the event handler is in handler-registered

state, see Event handler states and properties on page 44.

5.1.11.2 Parameters

routing_mode denotes the routing mode information. This field follows the same format as
described in SDEI_EVENT_REGISTER on page 20.

affinity denotes the affinity of the event. Currently this is used to specify the PE when the
routing_mode is RM_PE, see SDEI_EVENT_REGISTER on page 20.

5.1.11.3 Client responsibilities

Before this call, the client must register the event using SDEI_EVENT_REGISTER.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned if,

• Invalid event number.

• Event is not a shared event.

• Invalid routing mode or invalid affinity specified for routing mode.

• DENIED is returned if,

• Event handler is in a state other than: handler-registered.

Interface

32 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

5.1.11.4 Dispatcher responsibilities

The implementation must support the routing_mode and affinity combination as permitted
in SDEI_EVENT_REGISTER.

5.1.12 SDEI_PE_MASK

Description Mask the calling PE from receiving SDEI events.

Parameters

uint32 Function ID 0xC400_002B

Return

On success the return value can be,

int64

1: Masked
The calling PE was masked by
this call.

0: Not masked
The PE was not masked by this
call but is already masked.

On error the return value can be,

int64 NOT_SUPPORTED SDEI is not supported.

5.1.12.1 Usage

This call removes the calling PE from participating in SDEI event handling for the calling
client. The call masks the PE from receiving SDEI events of both normal and critical
priority, analogous to masking the IRQ for the PE. This behavior is independent of any
event status (see SDEI_EVENT_STATUS on page 28) and only affects the PE making the
call. The typical use scenario for this call is to temporarily remove the PE from SDEI
handling in particular during power management operations. This call can be invoked by
the client to mask the PE, whether or not the PE is already masked. The return value of
this call indicates whether the PE was already masked.

The initial state for every PE is to have SDEI events masked. This means that the PE is
masked from receiving any SDEI events following powerup or resume from power down
state as defined in Power State Coordination Interface specification, see Power
management and SDEI events on page 49 for more details.

The mask operation is per client and per PE. Each client has to execute this call from each
PE that is to be removed from event handling. If an SDEI implementation is present for the
client, then this call must always succeed.

5.1.12.2 Client responsibilities

If the client decides to mask SDEI events, before the call to SDEI_PE_MASK, it must ensure

that the preemption is disabled in the client.

The client calls SDEI_PE_MASK mainly for two reasons:

1. Powerdown state

Before a suspend to powerdown state through a CPU_SUSPEND call, or a CPU_OFF

call, as defined in Power State Coordination Interface, the client must mask the
PE. See Power management and SDEI events on page 49 for more details on this.

2. Mask PE from SDEI events

To temporarily mask the PE from receiving SDEI events. Masking SDEI events
could affect the handling of the events and it is expected that the masking be done
very rarely.

In the scenario where a registered event is triggered and the PE has its SDEI events
masked, the event will stay pending. In this case

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 33
 Non-Confidential

• If the event is private to the PE, it will be delivered to the PE after the unmask call.

• If the event is shared, other target PEs could handle it.

If a shared event has all of its target PEs masked, then the event remains pending, until a
target PE for this event executes the unmask call.

5.1.12.3 Dispatcher responsibilities

The dispatcher implementation must ensure that the initial state for every PE is to have the
SDEI events masked. During powerup or resume from powerdown state, the Dispatcher
will mask the PE from receiving any SDEI events. This means that if the PE is powered up
through the powerup entry point, then the PE must be masked for SDEI events by the
dispatcher. For a standby power state, the dispatcher implementation must retain the mask
status. See Power management and SDEI events on page 49 for more details on this.

5.1.13 SDEI_PE_UNMASK

Description Unmask the PE to receive SDEI events.

Parameters

uint32 Function ID 0xC400_002C

Return

int64
SUCCESS Unmasked PE successfully.

NOT_SUPPORTED SDEI is not supported.

5.1.13.1 Usage

This call enables the calling PE to participate in SDEI event handling for the client. The call
unmasks the PE from receiving SDEI events of both normal and critical priority for the
client, analogous to unmasking the IRQ for the PE to enable interrupt exceptions. This is
independent of any event status (see SDEI_EVENT_STATUS on page 28) and only affects
the client PE making this call. This call can be invoked by the client to unmask the PE
irrespective of whether the PE is already masked. The initial state for every PE is to have
events masked.

A PE can receive a triggered event only if the following

• The client has registered and enabled the SDEI event.

• The client has unmasked the PE from receiving an event.

The unmask operation is per client and per PE. Each client executes this call from each PE
that is ready to participate in event handling. If SDEI implementation is present for the
client, then this call must always succeed.

5.1.13.2 Client responsibilities

If the client disabled the preemption before executing SDEI_PE_MASK, then the client will

have to enable the preemption after calling SDEI_PE_UNMASK.

The client calls SDEI_PE_UNMASK mainly for two reasons:

1. Powerup or resume from powerdown state

During powerup or resume from powerdown state, the PE will be masked from
receiving any SDEI events. The powerup and resume from powerdown state
follows the definition as per the Power State Coordination Interface specification.
The client is required to unmask the PE using this call from each PE that needs to
participate in the SDEI event handling soon after it has done initial setup. This
typically means that the client executes SDEI_PE_UNMASK from the client powerup

entry point, when it is ready for handling the SDEI events. See Power-on sequence
on page 49 for more details on this.

2. Unmask from a previous masking

Interface

34 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

If the client masked SDEI events for a PE using SDEI_PE_MASK and the call

returned a masked state, then the client does SDEI_PE_UNMASK to unmask the PE.

5.1.13.3 Dispatcher responsibilities

The dispatcher implementation must dispatch any pending events for the calling PE.

5.1.14 SDEI_INTERRUPT_BIND

Description Binds an interrupt to an event.

Parameters

uint32 Function ID: 0xC400_002D

uint32 interrupt Interrupt number.

Return

On success an event number is returned as follows,

int64

Bits [63:32]: Must be zero.

Bits [31:0]: Event number, see Event number allocation on page
17.

On error,

int64

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS
Invalid interrupt number in the
call.

DENIED Inappropriate interrupt state.

OUT_OF_RESOURCE

The client has exceeded the
available event binding slots,
see Bound events on page 49.

5.1.14.1 Usage

This interface call can be used to bind any client interrupt in to a normal priority SDEI
event. The interrupt can be a private peripheral interrupt (PPI) or a shared peripheral
interrupt (SPI). Binding a software generated interrupt (SGI) is not allowed. Binding a PPI
results in a private event and binding a SPI results in a shared event. The event number
returned by this call is valid across all PEs for both private and shared events. Binding any
type of interrupt that is already bound will return the same event number. Refer to Bound
events on page 49 for more information.

The number of such bind slots that can exist in a system is platform specific and can be
discovered using the SDEI_FEATURES call, see page 37. It is IMPLEMENTATION DEFINED on

how the mapped event number is formed, within the vendor event space, refer Event
number allocation on page 17.

5.1.14.2 Parameters

interrupt is the interrupt number that is to be promoted as an SDEI event. For physical
SDEI instance, the interrupt will be a Non-secure interrupt and for virtual SDEI the interrupt
number will be a virtual interrupt.

5.1.14.3 Client responsibilities

The client can bind any PPI or SPI as an event. When the interrupt is promoted to an
event, the client will lose the ability to change any properties of the interrupt and only SDEI
calls are allowed on the event. The interrupt, prior to binding must be owned and managed
by the client, for example, in the case of a physical SDEI instance and the system uses

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 35
 Non-Confidential

GIC, the interrupt must be in Group-1 Non-secure. Before binding the interrupt, the client
must ensure that the interrupt is disabled at the interrupt controller and in inactive state,
refer Arm Generic Interrupt Controller Architecture Specification version 3.0 for more
information.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned if

• Interrupt number is invalid

• Interrupt number is not allowed for binding. In particular, when the interrupt
is not owned by the client, for example is a secure interrupt.

• DENIED is returned if the interrupt is not in Inactive state, as defined in Arm
Generic Interrupt Controller Architecture Specification version 3.0.

• OUT_OF_RESOURCE is returned if the client has used all the available event
bind slots, see Bound events on page 49.

5.1.14.4 Dispatcher responsibilities

The dispatcher must reserve a set of bind slots to be used by the client. The dispatcher
must only allow the binding of interrupts owned by the clients. All bound interrupts must
have their priority elevated to ensure that they can always preempt client execution.

When an interrupt that is bound as an event triggers, the dispatcher acknowledges the
interrupt and delivers the event to the client. This ensures that only valid (non-spurious)
interrupts are delivered to the client. When the client completes the event, the dispatcher
does the end of interrupt. Dispatcher does the interrupt management from the interrupt
controller side, however it is the client’s responsibility to do the device side interrupt
management.

5.1.15 SDEI_INTERRUPT_RELEASE

Description Release the interrupt from event binding.

Parameters

uint32 Function ID: 0xC400_002E

int32 event Event number

Return

int64

SUCCESS Event released successfully.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid event number in the call.

DENIED Inappropriate event state.

5.1.15.1 Usage

This interface call can be used to release an interrupt-event binding. If the release call is
executed on an interrupt that is not currently bound, an error code INVALID_PARAMETERS

will be returned.

As the event binding is global, to release a private event, the event must be in handler-
unregistered state for all registered PEs. To release a shared event, the event handler
must be in handler-unregistered state, see the state diagram in Event handler states and
properties on page 44 for more information.

Interface

36 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

5.1.15.2 Parameters

event is the event number that was returned from an earlier call to SDEI_INTERRUPT_BIND,

see page 34.

5.1.15.3 Client responsibilities

A successful SDEI_INTERRUPT_RELEASE call effectively removes the event number and no

further SDEI calls will be valid on this event.

The client must also handle the following potential return error codes,

• INVALID_PARAMETERS is returned if

• Event number is invalid.

• Event number is not bound.

• DENIED is returned if the event handler is in a state other than handler-
unregistered.

5.1.15.4 Dispatcher responsibilities

After a successful release, the free slot returns to the pool of bind slots. The client can
reuse the bind slot for the same or different interrupt number. After releasing a bound
event, it is IMPLEMENTATION DEFINED, if the dispatcher returns the same or different event
number for a subsequent bind of the same interrupt. The dispatcher must ensure that all
registered PEs have completed (not pending) unregistering the handler before releasing an
event.

The dispatcher implementation must restore any configuration of an interrupt that is done
during SDEI_INTERRUPT_BIND, so that the client owns and manages the interrupt. For
example, for a physical SDEI instance with a system that uses GIC, the interrupt must be
in Group-1 Non-secure. The interrupt must be disabled at the interrupt controller.

5.1.16 SDEI_EVENT_SIGNAL

Description Signal a software event to a client PE.

Parameters

uint32 Function ID: 0xC400_002F

int32 event event number, must be zero.

uint64 target_pe Target PE including self.

Return

int64

SUCCESS
Event was successfully set as
pending.

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid event or target PE.

5.1.16.1 Usage

This interface call can be used to signal a software event to a client PE. The target PE that
receives the event is specified in target_pe argument in the MPIDR format similar to
SDEI_EVENT_REGISTER call on page 20 call. The target PE can be same as the calling PE.

The software signaled event will be delivered as a private event to the target PE. To handle
the event, the target PE must register and enable the event. The signaling is an
asynchronous process and sets the event pending on the target PE. The event has edge-
triggered semantics and the number of event signals may not correspond to the number of
times the handler is invoked in the target PE.

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 37
 Non-Confidential

5.1.16.2 Parameters

event must be an event that can be signaled. This can be queried using
SDEI_EVENT_GET_INFO. This version of the specification supports only event number 0 that

can be signaled, refer to Event number allocation on page 17 for standard events.

target_pe specifies the PE that receives the event. This is the MPIDR of the target_pe as
described in SDEI_EVENT_REGISTER call on page 20.

5.1.16.3 Client responsibilities

A SUCCESS status code from this call indicates that the event was successfully set as

pending. However, this does not indicate that the event will be handled by the target PE.
To handle the event the target PE must:

• Register for the event.

• Enable the event.

• Unmask SDEI events.

A successful return cannot be relied as an indication for the start or completion of the
handler in the target PE, instead the client must use its own mechanisms to determine
handler execution status.

5.1.16.4 Dispatcher responsibilities

The dispatcher implementation must ensure that the updates to shared data structures by
client is observable by the target PE before generating the event.

5.1.17 SDEI_FEATURES

Description Enumerate SDEI features

Parameters

uint32 Function ID: 0xC400_0030

uint32 feature

This argument specifies the feature that is queried. Currently the
following value is defined:

0: BIND_SLOTS - returns the number of private events and shared
event slots available for binding.

All other values are reserved.

1: RELATIVE_MODE – returns whether the implementation
supports the relative_mode feature of SDEI_EVENT_REGISTER.

Return

On success, the format of the return value is as follows,

int64

For BIND_SLOTS as the parameter, the return value is as follows:

Bits [63:32] : must be zero

Bits [31:16] : The count of shared event slots allocated in the
system.

Bits [15:0] : The count of private event slots allocated in the
system.

For RELATIVE_MODE as the parameter, the return value is as
follows:

0: relative_mode is not supported.

1: relative_mode is supported.

Interface

38 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

On error,

int64

NOT_SUPPORTED SDEI is not supported.

INVALID_PARAMETERS Invalid feature requested.

5.1.17.1 Usage

This interface call is used to query SDEI features that are implemented in the system.
Currently only the number of bind slots can be queried using this interface. Return value for
the bind slots provide the number of private bind slots and shared bind slots that are
allocated by the platform for binding.

5.1.17.2 Parameters

parameter used to specify the feature that is queried.

This version of specification defines only the following value:

0 : BIND_SLOTS

All other values are reserved for future.

5.1.18 SDEI_PRIVATE_RESET

Description Resets private SDEI data of the calling PE.

Parameters

uint32 Function ID 0xC400_0031

Return

int64

SUCCESS
All SDEI data for the calling PE
was reset.

NOT_SUPPORTED SDEI is not supported.

DENIED

At least one event handler was
running while this call was
invoked.

5.1.18.1 Usage

This call is used to reset all private SDEI event registrations of the calling PE. The call
loops through all registered private events of the calling PE and unregisters the event. All
private events will be unregistered if this call is executed outside an event handler. If this
call is executed from an SDEI event handler, all handlers will be unregistered except for
the running handlers. With two levels of event priority implemented, there can be at most
two events that are currently running, see Nesting depth of running SDEI event handlers
on page 17. The running handler will be in state handler-unregister-pending until the event
is completed, see the state diagram in Event handler states and properties on page 44 for
more information. This call has no effect on shared events.

5.1.18.2 Client responsibilities

For a PE reset or PE shutdown, in addition to executing this call, the client must also mask
the PE and re-target or unregister any shared events targeting this PE.

This call is useful in a reset scenario, especially when the private events registered by the
PE are unknown.

To successfully execute this call:

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 39
 Non-Confidential

• It is expected that no private event handlers would have the event handler property
handler-running set to TRUE. If an event handler is running, unregister will be
pending until the event is completed.

5.1.18.3 Dispatcher responsibilities

All private events must be unregistered or unregister-pending (if called from event handler)
following this call. Any auxiliary information relating to the event registration must be
cleared or must be set similar to the warm boot state of the PE.

5.1.19 SDEI_SHARED_RESET

Description Resets shared SDEI data.

Parameters

uint32 Function ID 0xC400_0032

Return

int64

SUCCESS All SDEI system data was reset.

NOT_SUPPORTED SDEI is not supported.

DENIED
Event was running while this call
was invoked.

5.1.19.1 Usage

This call is used to clear all system level SDEI data, which includes shared event
registrations and interrupt-event bindings.

This call does the following:

• Loops through all registered shared events and unregisters the event.

• Releases all interrupts bound to events in the system.

The precondition for invoking SDEI_SHARED_RESET call is as follows:

• For each managed PE, unregister all private events or invoke
SDEI_PRIVATE_RESET.

• For each managed PE, mask SDEI events using SDEI_PE_MASK. This is to stop the

PE from handling any shared events.

To successfully execute this call:

• No shared events should have the event handler property handler-running set to
TRUE. If an event handler is running, unregister is pending until the event is
completed.

• All interrupt bound shared events must be unregistered (in step 1).

• All interrupt bound private events must be unregistered from all registered PEs.

This call has no effect on private events.

5.1.19.2 Client responsibilities

This call is useful in a reset scenario, especially when the various shared events registered
and the interrupt-event bindings are unknown.

The call will return a DENIED error if there was at least one shared event that was running

or at least one interrupt-event binding (private or shared) that was still registered.

Interface

40 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

5.1.19.3 Dispatcher responsibilities

Any auxiliary information relating to the shared event registration or interrupt binding must
be cleared.

5.2 Event context

When the registered event triggers, the event handler is executed preempting the client or
lower level execution. The client interrupts cannot preempt the event handler. A normal
priority event can be preempted by a critical priority event. A critical priority event handler
will run to completion with respect to the client. The PE running a critical event handler
might be preempted to a higher Exception level for other reasons like servicing a firmware
interrupt. However, the client execution always resume in the running handler.

The event handler executes in a special execution context as explained in Event handler
context.

Note that the SDEI handler execution environment is limited, as the state and consistency of the
underlying OS kernel or hypervisor will be unknown. All resources must be pre-allocated and
interactions with the OS or hypervisor must use methods that are guaranteed to be safe.

5.2.1 Event handler context

Event handlers can run even when the client has interrupts disabled and is executing
critical code, such as during exception entry, switching execution threads, or handling
interrupts and faults. Therefore, event handlers should not depend on the client state: for
example, there may be no usable stack pointer in SP, or there may not be enough space
on the stack.

Arm recommends that event handlers should use statically allocated memory or make use
of the ep_argument parameter that is registered with the handler to provide working
memory and stack space to run the handler.

On entry to the handler, the PE registers will contain the interrupted client Execution state,
with the following exceptions:

• The PC is set to the entry_point_address provided in the SDEI_EVENT_REGISTER call

• X0 is set to the event number

• X1 is set to the ep_argument provided in the SDEI_EVENT_REGISTER call

• X2 is set to the interrupted PC

• X3 is set to the interrupted PSTATE

PSTATE is modified as follows: DAIF = 0b1111, EL = ELC, nRW = 0, SP = 1. Other
PSTATE bits are populated according to the AArch64.TakeException() pseudocode
function defined in Arm Architecture Reference Manual, Armv8 for Armv8-A architecture
profile. This will run the handler in AArch64 in the client Exception level using “handler”
mode, with all interrupts masked, providing the event number, provided argument, interrupt
PC, and interrupted PSTATE as parameters.

The additional interrupted PE context that would be available in an asynchronous
exception (X0- X3) can be accessed in the event handler with the SDEI_EVENT_CONTEXT

function.

The handler must preserve all registers except for X0…X17 on completion. Failure to do
this will have undefined consequences when client execution resumes.

Register usage and handler requirements are summarized in the table below.

Table 5 Register Usage in SDEI Event Handlers

Register Name Value on entry Must be preserved

SP Interrupted ELx stack pointer Yes

X30 Interrupted Link Register Yes

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 41
 Non-Confidential

X29 Interrupted Frame Pointer Yes

X19…X28 Interrupted Callee-saved registers Yes

X18 Interrupted Platform Register Yes

X16, X17 Interrupted intra-procedure-call scratch registers No

X9…X15 Interrupted Temporary registers No

X8 Interrupted Indirect result location register No

X4…X7 Interrupted Parameter registers No

X3 Interrupted PSTATE No

X2 Interrupted PC No

X1 ep_parameter registered with the handler No

X0 Event number No

SP_EL0 Interrupted EL0 stack pointer Yes

Fn, Dn, Qn Interrupted SIMD&FP registers Yes

PSTATE As interrupted with

DAIF = 0b1111

EL = ELC

nRW = 0

SP = 1

Other PSTATE bits are populated according to
the AArch64.TakeException() pseudocode
function that is defined in Arm Architecture
Reference Manual, Armv8 for Armv8-A
architecture profile.

No

System
registers

Interrupted register values Yes

5.2.1.1 Client responsibilities

Within the handler, the client software is not restricted in its use of general-purpose,
SIMD&FP, or System registers. The handler must ensure that on completion, all registers
except X0-X17 are restored to their original value.

The handler may use SIMD&FP registers but the handler cannot assume that access to
these registers is enabled at entry to the handler. The register and associated system
control state must be restored before the handler completes.

The handler may modify the accessible System registers, but these must be restored
before the handler completes.

The handler code should not enable asynchronous exceptions by clearing any of the
PSTATE.DAIF bits and should not cause synchronous exceptions to the client Exception
level.

Details of the register context on entry to the handler are described in Table 5 above.

The event handler property handler-running will be set to TRUE, see Event handler states
and properties on page 44. The handler may call ‘fast’ calls as defined in SMC Calling
Conventions document or hypervisor services including SDEI itself. SDEI calls that would
affect the current PE or event will take effect when the current handler has completed
running.

As part of the event handling, the client might have to clear the event source, in particular
for events caused by a level sensitive hardware trigger.

It is not permitted to invoke yielding SMC calls from the SDEI event handler. Yielding calls
are defined as calls that can be preempted by a Non-secure interrupt, see SMC Calling

Interface

42 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

Conventions for more information. However fast (atomic) SMC calls are allowed but it is
IMPLEMENTATION DEFINED if they behaves the same as called from outside the handler.

The event handling must always end with a SDEI_EVENT_COMPLETE or

SDEI_EVENT_COMPLETE_AND_RESUME call, and should not return from the handler as it has

no valid return address.

5.2.1.2 Dispatcher responsibilities

The dispatcher must ensure that the SDEI event handler takes precedence over any other
client execution on a PE if the event is triggered and the PE has SDEI unmasked and there
is a registered and enabled SDEI handler for the event.

The dispatcher must ensure that SDEI event handlers cannot interrupt each other, except
that a critical event handler must interrupt a running normal event handler. If multiple
events of the same priority are triggered on a PE, the handlers must run in sequence. See
Appendix C: Pseudocode for dispatcher on page 58.

The dispatcher must save and later restore the client Execution state that may be
modified/corrupted by the handler (see Event handler context on page 40). If multiple event
priorities are implemented, the dispatcher must be able to save the PE state of all nested,
running handlers

The dispatcher must ensure that all register values observed by the handler are those
belonging to the client execution context – in particular the handler must not be able to
access any residual register state from higher Exception levels. The dispatcher is permitted
to do this via traps with emulation or lazy state switching for registers that support this (For
example, SIMD&FP registers).

The dispatcher may allow an SDEI event handler to interrupt a secure firmware or
hypervisor operation (for the physical and virtual SDEI respectively), but the dispatcher is
permitted to defer the execution of the handler until any such operation has completed.

The dispatcher must run the handler to completion, even if the handler modifies the state of
the event or PE through SDEI calls. Changes to the SDEI mask status of the PE, or state
of the event only take full effect when the handler completes via SDEI_EVENT_COMPLETE or

SDEI_EVENT_COMPLETE_AND_RESUME.

5.2.2 Event resume context

When an SDEI event handler ends by calling SDEI_EVENT_COMPLETE_AND_RESUME (see

page 26), execution does not resume from the originally interrupted context. Instead,
execution resumes at the address provided to the call in the resume address parameter.
This context is almost equivalent to a simulated synchronous exception to the client
Exception level (ELC), where ELR_ELC and SPSR_ELC are set to the originally interrupted
PC and PSTATE respectively.

On resumption, the PE registers will contain the interrupted Execution state, with the
following exceptions:

• The PC is set to the resume_addr as provided in the
SDEI_EVENT_COMPLETE_AND_RESUME call.

• PSTATE is modified as follows: DAIF = 0b1111, EL = ELC, nRW = 0, SP = 1

• ELR_ELC is set to the PC when the event was taken, where ELR_ELC is ELR_EL2
for hypervisor client and ELR_EL1 for an OS client.

• SPSR_ELC is set to the PSTATE when the event was taken, where SPSR_ELC is
SPSR_EL2 for hypervisor client and SPSR_EL1 for an OS client.

All registers other than the ones mentioned above will have the interrupted value.

Apart from the register state changes as mentioned above, the event handler context is
different from the resume handler context as follows:

• The resume context is outside of the SDEI handler, and therefore SDEI events are no
longer implicitly masked, as they were during the SDEI handler. This means that the
resume handler may be interrupted by an SDEI event. If necessary, the client can use

Interface

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 43
 Non-Confidential

SDEI_PE_MASK/SDEI_PE_UNMASK to prevent such an interruption until the resume

handler has been able to save critical exception state: ELR and SPSR.

• The SDEI_EVENT_CONTEXT call for accessing event handler register state is not

available.

• The resume handler can return to the interrupted context using ERET, as for a normal
synchronous exception.

5.3 Return Codes

Table 6 defines the possible values for error codes used with the interface functions. The
error return type is 64-bit signed integer. Zero and positive values denotes success and
negative values indicates error.

The error values defined here aligns with the values defined in the Power State
Coordination Interface document.

Table 6 Return code and values

Name Description in SDEI context Value

SUCCESS The call completed successfully. 0

NOT_SUPPORTED SDEI is not supported by the platform. -1

INVALID_PARAMETERS
Some or all of the parameters passed
to the call are invalid.

-2

DENIED
The call is not allowed because of the
inappropriate event state.

-3

PENDING The operation is pending. -5

OUT_OF_RESOURCE Out of resource error. -10

Programmers’ Overview

44 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

6 Programmers’ Overview

This chapter describes the event handler states and SDEI calls available from each of
those states. It also describes sequences of common operations performed using SDEI
calls.

6.1 Event handler states and properties

Figure 2 shows the SDEI event handler state diagram. All of the transitions are caused by
interface calls except for the event trigger transition.

Figure 2 Event handler state diagram

Note: Invalid transitions and transitions that cause no change in state are not shown.

6.1.1 Description

The state model operates independently on each event. For private events, there is a
separate event handler status for each PE. For a shared event, there is a single global
event status for the client.

For a bound event, the event must be created first by binding the interrupt and then it
follows the exact same state transitions as a platform event.

The following discussion on event states and interface calls assumes that the interface
calls operate on the same event for which the handler state is examined.

An SDEI event handler can be in any of the following states,

handler-unregistered state

The handler-unregistered state denotes that there is no event handler registered for the
event. If the event triggers while in this state, the event is either ignored or remains
pending. It is IMPLEMENTATION DEFINED whether the event is ignored or remains pending.

For a shared bound event, the event can be released only from this state. For a private
bound event, the event can be released when all the registered handlers for this event are
in the handler-unregistered state.

Programmers’ Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 45
 Non-Confidential

The event handler transitions to the handler-registered state on a call to
SDEI_EVENT_REGISTER, see Table 7. The SDEI calls available from this state are listed in

Table 8.

Table 7 State transition from unregistered state

State Interface call Next state

handler-
unregistered

SDEI_EVENT_REGISTER handler-registered

Table 8 Interface calls available from unregistered state

State Interface calls

handler-unregistered

SDEI_EVENT_REGISTER

SDEI_EVENT_STATUS

SDEI_INTERRUPT_RELEASE

handler-registered state

The handler-registered state indicates that an event handler is registered for the event and
the event is disabled.

From this state, various configurations can be performed including change of routing, and
any optional platform configurations. The client will not receive any events in this state as
the event is disabled. Any event that triggers in this state will remain pending until it
transitions to handler-enabled state.

The handler can transition to the handler-enabled state or the handler-unregistered state
by calling SDEI_EVENT_ENABLE or SDEI_EVENT_UNREGISTER respectively. Table 9 lists the

possible transitions. The SDEI calls available from this state are listed in Table 10.

Table 9 State transitions from handler-registered state

State Command Next state

handler-
registered

SDEI_EVENT_ENABLE
handler-
enabled

SDEI_EVENT_UNREGISTER handler-
unregistered

Table 10 Interface calls available from handler-registered state

State Available interface calls

Handler-
registered

SDEI_EVENT_STATUS

SDEI_EVENT_ENABLE

SDEI_EVENT_DISABLE

SDEI_EVENT_GET_INFO

SDEI_EVENT_ROUTING_SET

handler-enabled state

Programmers’ Overview

46 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

The client must receive an event only when the event handler is in the handler-enabled
state. Being in this state implies that the event handler is registered and enabled.

The handler can transition to the handler-registered state or handler-unregistered state by
calling SDEI_EVENT_DISABLE or SDEI_EVENT_UNREGISTER respectively. Table 11 lists the

possible transitions. The various interface calls available from this state are listed in Table
12.

Table 11 State transitions from enabled state

State Command Next state

handler-
enabled

SDEI_EVENT_DISABLE
handler-
registered

SDEI_EVENT_UNREGISTER handler-
unregistered

Table 12 Interface calls available from enabled state

State Available interface calls

Handler-
enabled

SDEI_EVENT_STATUS

SDEI_EVENT_ENABLE

SDEI_EVENT_DISABLE

SDEI_EVENT_GET_INFO

SDEI_EVENT_UNREGISTER

Handler-running property

Handler-running is a property that can be associated with all the event handler states. The
description of the handler-unregistered, handler-registered and handler-enabled states in the
preceding sections assume the handler-running property is set to FALSE. Setting handler-
running to TRUE, creates three more states:

• handler-unregister-pending

• handler-registered and handler-running

• handler-enabled and handler-running

The handler-running property is true when the event handler is executing on a PE. This
property is set to TRUE when the event handler begins executing and is set to FALSE
when the event handler executes SDEI_EVENT_COMPLETE or

SDEI_EVENT_COMPLETE_AND_RESUME.

The handler-running property is associated with a given event and the PE that handles that
event. The interface calls that are available when handler-running is TRUE depends on the
state with which handler-running is associated. See the descriptions of the respective SDEI
calls for more information. However, the interface calls SDEI_EVENT_CONTEXT,

SDEI_EVENT_COMPLETE and SDEI_EVENT_COMPLETE_AND_RESUME are always available with

handler-running set for the PE that handles the event.

A description of each of the states with the handler-running property is given in Table 13.
The state bit vector column shows the status bits as returned by SDEI_EVENT_STATUS. The

bit vector is of the format (Reg,Ena,Run) where Reg denotes the handler-register state bit,
Ena denotes the handler-enabled state bit, and Run denotes the handler-running bit.

Table 13 Handler-running property association with states

State Handler-
running

State bit vector

(Reg, Ena, Run) [1]

Description

Programmers’ Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 47
 Non-Confidential

handler-
unregistered

False (0,0,0) Initial state, when handler is
not registered and not running,
called handler-unregistered
state.

True (0,0,1) Handler is unregistered, but
event handler is running. This
happens when the handler is
unregistered while event
handler is running, called
handler-unregister-pending
state.

handler-
registered

False (1,0,0) Handler is registered, not
enabled and not running,
called handler-registered
state.

True (1,0,1) Event handler is registered
and running. This happens
when the event handler is
disabled when the handler is
running, called handler-
registered and handler-running
state.

handler-
enabled

False (1,1,0) Event handler is registered,
enabled but not running, called
handler-enabled state.

True (1,1,1) Event is registered, enabled
and running, called handler-
enabled and handler-running
state.

[1] The state vector (0,1,1) and (0,1,0) are undefined.

6.1.2 Interface calls and states

The interface calls available from each state and property are summarized in Table 14.
The list assumes that the state and the interface calls apply to the same event .

Programmers’ Overview

48 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

Table 14 Interface calls and corresponding event state

Event state S
D

E
I_

E
V

E
N

T
_
R

E
G

IS
T

E
R

S
D

E
I_

IN
T

E
R

R
U

P
T

_
R

E
L
E

A
S

E

S
D

E
I_

E
V

E
N

T
_
E

N
A

B
L
E

S
D

E
I_

E
V

E
N

T
_
D

IS
A

B
L
E

S
D

E
I_

E
V

E
N

T
_
U

N
R

E
G

IS
T

E
R

 S
D

E
I_

E
V

E
N

T
_
R

O
U

T
IN

G
_
S

E
T

S

D
E

I_
E

V
E

N
T

_
C

O
N

T
E

X
T

[2
]

 S
D

E
I_

E
V

E
N

T
_
C

O
M

P
L
E

T
E

 [
2
]

 S
D

E
I_

E
V

E
N

T
_
C

O
M

P
L
E

T
E

_
A

N
D

_
R

E
S

U
M

E
 [

2
]

handler-
unregistered

✓ ✓

handler-
unregister-
pending

 ✓ ✓ ✓

handler-

registered

 ✓ ✓ ✓ ✓

handler-

registered

and

handler-running

 ✓ ✓ ✓ ✓ ✓ ✓

handler-
enabled[1]

 ✓ ✓ ✓

handler-

enabled[1]

and

handler-running

 ✓ ✓ ✓ ✓ ✓ ✓

[1] Event handler is registered.

The following interface calls can be invoked independent of the event handler state and
must always be available.

• SDEI_VERSION

• SDEI_EVENT_STATUS

• SDEI_PE_MASK

• SDEI_PE_UNMASK

• SDEI_INTERRUPT_BIND

• SDEI_EVENT_SIGNAL

Programmers’ Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 49
 Non-Confidential

• SDEI_FEATURES

• SDEI_PRIVATE_RESET

• SDEI_SHARED_RESET

The availability of interface call SDEI_EVENT_GET_INFO depends on the arguments, see

page 29.

6.2 Event dispatching

When an event triggers, the dispatcher can dispatch the event only if all of the following are
true:

1. The event is enabled.

2. The target PE for the event is enabled.

3. The PE is not already handling the same or a higher priority event.

Appendix C: Pseudocode for dispatcher on page 58 summarizes these conditions. If any of
these conditions is not true, the event remains pending until they are all true.

If there are multiple pending events for a target PE within a given priority class, the order in
which the handlers are invoked is IMPLEMENTATION DEFINED.

6.2.1 Recurring events

If an event triggers again after the handler for it at ELC has completed, the handler
executes again for the new trigger. However, if the event triggers again while the handler is
handling the event, the handler can execute again after completing the event. This
depends on the event source and how the event interacts with the system.

At any given time, only one instance of a shared event can be handled in a system. If the
shared event retriggers while the handler for it is running, the event might stay pending.
Concurrent handling of a shared event is not permitted.

6.3 Bound events

A bound event is an SDEI event that corresponds to a client interrupt.
SDEI_INTERRUPT_BIND is used to associate an SDEI event with a client interrupt. This is

called binding.

Binding is removed by using SDEI_INTERRUPT_RELEASE. Binding can only be removed

when all of the PEs that registered for the event have unregistered.

Binding of a shared peripheral interrupt (SPI) creates a shared bound event and binding of
a private peripheral interrupt (PPI) creates a private bound event. Software generated
interrupts (SGI) cannot be used for binding.

In an SDEI instance, the number of bound events that can be created is IMPLEMENTATION

DEFINED and are called bind slots. The number of bind slots available is discovered by
using SDEI_FEATURES. Arm recommends that a dispatcher reserves at least two private

bind slots and two shared bind slots.

The event number returned by SDEI_INTERRUPT_BIND is valid across all PEs for both

private and shared events. For a given interrupt number, implementations are not required
to provide the same event number for a second bind following a bind and release
sequence.

6.4 Interface Discovery

The SDEI implementation can be detected by invoking the call SDEI_VERSION. If the

platform is unaware of SDEI, it will return an error code of unknown function identifier as
specified in SMC Calling Conventions document.

Programmers’ Overview

50 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

To allow ease of integration, Arm recommends that the details of the SDEI implementation
be specified in firmware description, for example using ACPI or FDT. Arm recommends
that the entry describe:

• An interface version section, to allow updates to the interface, see SDEI_VERSION.

• Conduit information: SMC or HVC as appropriate, see Interface and Exception
levels on page 12.

Refer Appendix D: ACPI table definitions on page 60 for SDEI ACPI definitions. It is
IMPLEMENTATION DEFINED on how the platform event numbers are passed to the client.

6.5 Power management and SDEI events

The following sections describe how SDEI events are intended to work alongside power
management calls. Refer to Power State Coordination Interface to know more about the
power state terminology used here.

6.5.1 Power-on sequence

The dispatcher must ensure that following every PE reset, SDEI events are masked for the
client. This includes cold-boot of primary/secondary cores or when the PE is powered-on
using the CPU_ON PSCI call, or when the PE resumes from a powerdown state through the

power up entry point. This is to prevent the dispatcher from dispatching events to the PE
before it is ready. For instance the client must setup the PE memory translation to make
the event handler address valid before enabling the event. When the client has done the
initial setup for the PE, it must unmask the PE to receive SDEI events using
SDEI_PE_UNMASK. Figure 3 shows an example sequence where client the unmasks the
PE from client_reset_entrypoint().

Figure 3 PE unmask sequence by client

6.5.2 Powerdown sequence

The powerdown sequence varies on how the PE is brought back online. The different
possibilities are discussed below.

6.5.2.1 CPU_OFF

The CPU_OFF PSCI call is used to power down a core. The core can be brought back only

using a CPU_ON call.

Programmers’ Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 51
 Non-Confidential

6.5.2.1.1 Client Responsibilities

To avoid a race between switching off the PE and the event handling, prior to calling
CPU_OFF, the client must,

• Unregister or disable any private events.

• Route any shared event targeting this PE (routing_mode=RM_PE) to another PE.

• Mask SDEI events for this PE.

6.5.2.1.2 Dispatcher Responsibilities

The dispatcher implementation must ensure that no SDEI event must be able to bring back
the core online. If a client fails to disable/unregister the event or mask the PE, the receipt of
an event will result in PLATFORM DEFINED behavior.

Figure 4 shows an example sequence of the CPU_OFF case.

Figure 4 SDEI power down sequence

6.5.2.2 CPU_SUSPEND with powerdown state

The CPU_SUSPEND with powerdown PSCI call is used to suspend the PE to a power down

state. From this state, the PE can potentially be woken up to handle an SDEI event.

Normally any event that is in enabled state can wake up the PE. Following wake up,
private SDEI events which are enabled will stay pending for the PE. Shared events with
routing mode as RM_PE and affinity set to this PE will stay pending. For all other shared

events, the event might stay pending or might be handled by other event target PEs.

6.5.2.2.1 Client responsibilities

To avoid the race with the suspend operation, before requesting for the CPU_SUSPEND, the

client must,

• Disable any private or shared event that is not a wakeup source for the PE.

• Shared event targeted to this PE (routing mode is RM_PE) and which is not a wakeup

source must be routed to another PE.

• Mask SDEI events for this PE.

6.5.2.2.2 Dispatcher responsibilities

Programmers’ Overview

52 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

The dispatcher must retain the status of all the events that the PE has registered. Any
private or shared events that the PE has registered before going to suspend will remain
valid when the PE wakes up. The dispatcher must mask the SDEI events for the PE when
it wakes up and the event will stay pending until the Client calls SDEI_PE_UNMASK.

Figure 5 shows a possible sequence for a wakeup capable event.

Figure 5 SDEI event wakeup sequence

6.5.3 CPU_SUSPEND with standby state

The CPU_SUSPEND with powerdown PSCI is used to suspend the PE to a low power

retention state where all core context is maintained, and can be directly accessed on
wakeup. The dispatcher retains all the event status for the events that the PE has
registered. In addition to this, the SDEI mask status is retained by the dispatcher. After
wakeup, the SDEI mask status will remain as it was left before the suspend. So if the client
left the PE unmasked for SDEI events, the PE can receive SDEI events as soon as it
comes out of the stand by state. If the client masked the SDEI events before the suspend,
then the event will stay pending until the client calls SDEI_PE_UNMASK.

6.5.4 PSCI calls from SDEI handler

PSCI calls are permitted from an SDEI handler. The minimum set of PSCI calls that must
work from the handler is listed below:

• PSCI_VERSION

• AFFINITIY_INFO

• PSCI_FEATURES

• SYSTEM_RESET

• SYSTEM_OFF

• CPU_OFF

• CPU_FREEZE

• CPU_ON

Programmers’ Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 53
 Non-Confidential

The behavior of all the other PSCI calls is IMPLEMENTATION DEFINED. Refer to the Power
State Coordination Interface document for a description of these functions.

The PSCI calls SYSTEM_RESET, SYSTEM_OFF, CPU_OFF and CPU_FREEZE if invoked

within an SDEI handler will implicitly complete the SDEI handler(s) and proceed with the
power operation performing the same behavior as if they were called outside the handler.

6.6 Registering and handling an event

To receive an SDEI event from the dispatcher, the client software has to

• Register for the event using SDEI_EVENT_REGISTER.

• Perform any optional platform specific event configuration.

• Enable the event using SDEI_EVENT_ENABLE.

When the event triggers and the PE is unmasked to receive SDEI events, the dispatcher
passes the event to the client Exception level by invoking the event handler. To complete
the event handling and to resume the execution, the event handler will call
SDEI_EVENT_COMPLETE. Figure 6 shows the interface call sequence.

Figure 6 Event register and handling

6.7 Unregistering an event

To unregister an event, the client software has to issue a SDEI_EVENT_UNREGISTER. If the

event handler is currently running in any PE, the unregister will stay pending. This will be
indicated by a return code value, PENDING from the SDEI_EVENT_UNREGISTER call.

With the PENDING status, the unregister request will be queued until the event is

completed using SDEI_EVENT_COMPLETE. If the client needs to wait for the unregister to

complete, for instance to free the resources used by the handler, the client needs to wait
until the event handler changes to handler-unregistered state, see Event handler states
and properties on page 44. The status of the event can be examined using
SDEI_EVENT_STATUS call.

Programmers’ Overview

54 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

Figure 7 SDEI unregister sequence

6.8 Virtual SDEI events

The guest OS executing under a hypervisor can register for virtual SDEI events. With a
hypervisor present, there will be two levels of delegation,

1. Firmware to hypervisor

2. Hypervisor to guest OS

The hypervisor must always trap and process OS SDEI calls from a guest OS as the guest
OS cannot directly register with the firmware. For a Type-1 hypervisor the SDEI calls for
physical SDEI originate from EL2. For a Type-2 hypervisor, the SDEI calls can originate
from EL1 assuming that the calls are from the host OS.

The hypervisor can provide events owned by the hypervisor or firmware, see Interface and
Exception levels on page 12.

Figure 8 shows a possible sequence where the guest OS registers for a virtual event (VE)
which is generated from a physical event (E).

Figure 8 Guest OS SDEI event registration

For the physical events originating from firmware, the hypervisor implementation has the
following options to process it:

1. Handle the event within the hypervisor.

2. Delegate a virtual event to the currently executing guest OS.

Programmers’ Overview

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 55
 Non-Confidential

3. Delegate virtual event to all registered guest OSs.

For the virtual events originating from the hypervisor, the hypervisor implementation can
choose to do option (2) or (3).

It is event and hypervisor dispatcher specific if a virtual event can be registered by multiple
guest OSs. In particular, the hypervisor implementation may allow shared physical events
to be distributed to multiple guests. If sharing is allowed and the physical SDEI event
triggers, then hypervisor dispatcher may have to generate the corresponding virtual event
for each of the guests that has registered for this event. When a private or shared physical
event targeting a physical PE triggers, the hypervisor dispatcher may have to generate
virtual events for each registered guest with virtual PE mapped to this physical PE.

Figure 9 shows a possible sequence where a non-fatal event interrupted guest OS
execution with the hypervisor injecting a virtual event to the guest OS.

When the physical event triggers, the firmware dispatcher calls the hypervisor SDEI
handler. As the SDEI handler-execution in hypervisor is limited, to further process the
event, the handler completes the event with resume as exception. While within the resume
handler, the hypervisor dispatcher further delegates the event to the appropriate guest
OS(s). The diagram shows option (2) where the virtual event is delivered to the currently
executing guest OS.

Figure 9 SDEI event delegation to guest OS

Appendix A: Implementing use cases

56 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

7 Appendix A: Implementing use cases

This section provides details about possible implementation models for various use cases
mentioned in Typical use cases on page 9.

In general, asynchronous events may be implemented via physical interrupts. Synchronous
events may be implemented using unused SPIs or using SGIs. This allows the flexibility of
interrupt state management, routing and priority through the GIC.

7.1 Physical interrupt as SDEI event

This model is used when a physical interrupt has to be delivered as a SDEI event to the
client. This is suitable for watchdog timers, profilers and for debugging. The following steps
enumerates the sequence of handling this event,

1. Platform defines the event number of the interrupt and pass the event number
to the client through IMPLEMENTATION DEFINED mechanism. Alternatively the
client can bind the required interrupt and create the event.

2. Client software registers and enables the event.

3. When the event triggers, the dispatcher passes the event to the client through
the registered entry point.

4. The handler routine similar to an interrupt handling routine, handles the event,
clears the device interrupt and completes the event.

The event enable and disable operations directly enables and disables the physical
interrupt. This model is more suitable when the dispatcher wants to provide a service.

7.2 Isolated physical interrupt as SDEI event

In this model, the physical interrupt is isolated from the SDEI event and any operation on
the event does not directly apply to the physical interrupt. This model is suited for more
complex use cases like error-handling. In this model, there can be distinct interrupts for
each client and a different physical interrupt which is the source of the event.

For instance, let the platform define event E as an error-handling event. This event is
generated whenever there is an error recovery procedure to be done by the client. The
firmware might have its own handling for the error and in addition can provide an
opportunity for the client to handle the error. The following steps enumerates the sequence
of handling this event,

1. Client obtains event number from the dispatcher or creates a bound event.

2. The OS registers and enables the event.

3. When the hardware event triggers, a software component in dispatcher
Exception level does the first level of processing.

4. The software in dispatcher triggers the SDEI event for client and passes
control to the SDEI handler in the OS.

5. OS handles and completes the event. The action taken on the status_code of
SDEI_EVENT_COMPLETE is platform specific.

The event enable and disable operations here applies only to the event generation for
the client. Even if the client decide to disable the event, the event can still be handled by
the software in dispatcher as indicated in step 3.

Appendix B: Implementation notes with GICv2 and GICv3 architecture

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 57
 Non-Confidential

8 Appendix B: Implementation notes with GICv2 and GICv3 architecture

The following section explains the implementation details for GICv2 and GICv3
architectures to support SDEI events generated via an interrupt source.

8.1 GICv2

In GICv2 architecture there are two interrupt groups:

• Group 0 interrupts, which are always Secure.

• Group 1 interrupts, which are always Non-secure.

To implement SDEI in an Armv8-A system using GICv2, the Secure Group 0 interrupt has
to be shared between Secure EL1 software and EL3 firmware.

One mechanism to implement SDEI in a GICv2 system is to configure the Secure Group 0
interrupts to trap in EL3. The dispatcher in EL3 can triage and delegate the event to Non-
secure client. This is particularly useful if there is no Secure EL1 software or the Secure
EL1 software does not use any secure interrupts.

If both Secure EL1 and EL3 software need to use the Group 0 interrupts, the interrupts can
be trapped in EL3 in which case there will be an IMPLEMENTATION DEFINED mechanism to
pass a Secure EL1 interrupt to the Secure EL1 software. Alternatively, the secure interrupt
can be trapped in Secure EL1 and any unknown interrupts like SDEI can be passed to EL3
for further handling. The EL3 dispatcher can then triage and delegate the event to Non-
secure client.

8.2 GICv3

In GICv3 architecture there are three interrupt groups:

• Group 0 interrupts, which are always secure.

• Secure Group 1 interrupts.

• Non-secure Group 1 interrupts.

Each group is mapped to either FIQ or IRQ interrupt lines by the GIC.

In an Armv8-A system using GICv3:

• Group 1 interrupts for the current Security state are mapped to the IRQ interrupt.

• Secure Group 0 interrupts and Group 1 interrupts for the other Security state are
mapped to FIQ interrupt.

When the Secure EL1 software is handling the Secure Group 1 interrupt, it might have to
disable the Non-secure Group 1 interrupt but allow Secure Group 0 interrupts to trigger.
This can be achieved either by:

1. Secure EL1 software disables Non-secure Group 1 interrupt-group.

2. The system can allocate interrupt priorities in such a way that, handling a Secure
Group 1 interrupt will effectively disable the Non-secure Group 1 interrupts but allow
the Group 0 interrupts. The interrupt priorities can be assigned as follows:

• All Group 0 interrupts are given priority over Secure Group1 interrupts

• All Secure Group 1 interrupts are given priority over Non Secure Group 1
interrupts

Appendix C: Pseudocode for dispatcher

58 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

9 Appendix C: Pseudocode for dispatcher

9.1 Private event dispatcher

Each event dispatcher can be logically thought as constantly checking for the condition to
run an event handler while the client execution is progressing. This check is performed for
each private event available for the client and for each PE present in the system. The
pseudocode for the condition is summarized as follows:

Dispatcher(Client C)

For each P in PE

For each E in PrivateEvents

IsSignalled(E, P) and

IsEnabled(E, P) and

IsUnmasked(P) and

((IsCriticalEvent(E) and !CriticalEventRunning(P, C)) ||

(!IsCriticalEvent(E) and !EventRunning(P, C)))

Where,

IsSignalled(E, P) Returns true if the event E is triggered for PE P and
false otherwise.

IsEnabled(E, P) Returns true if the event E is enabled for PE P and
false otherwise.

IsUnmasked(P) Returns true if the PE P is unmasked for SDEI events
and false otherwise.

IsCriticalEvent(E) Returns true if the event E is from critical priority class
and false otherwise.

CriticalEventRunning(P, C) Returns true if the PE P and Client C is running a
critical priority event and false otherwise.

EventRunning(P, C) Returns true if the PE P is running any – normal or
critical SDEI event.

9.2 Shared event dispatcher

Each event dispatcher can be logically thought as constantly checking for the condition to
run an event handler while the client execution is progressing. This check is performed for
each shared event available for the client and for each PE present in the system. The
pseudocode for the condition is summarized as follows:

Dispatcher(Client C)

For each P in PE

For each E in SharedEvents

IsSignalled(E) and

IsEnabled(E) and

IsEventTarget(E, P)

IsUnmasked(P) and

((IsCriticalEvent(E) and !CriticalEventRunning(P, C)) ||

(!IsCriticalEvent(E) and !EventRunning(P, C)))

Where,

Appendix C: Pseudocode for dispatcher

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 59
 Non-Confidential

IsSignalled(E) Returns true if the event E is triggered and false
otherwise.

IsEnabled(E) Returns true if the event E is enabled and false
otherwise.

IsEventTarget(E, P) Returns true if either the event E is targeted for PE P
using RM_PE and affinity as routing parameters or the

event is currently targeted only for PE P, to ensure
that a single trigger of a shared event is not handled
by multiple PEs.

IsUnmasked(P) Returns true if the PE P is unmasked for SDEI events
and false otherwise.

IsCriticalEvent(E) Returns true if the event E is from critical priority class
and false otherwise.

CriticalEventRunning(P, C) Returns true if the PE P and Client C is running a
critical priority event and false otherwise.

EventRunning(P, C) Returns true if the PE P is running any – normal or
critical SDEI event.

Appendix D: ACPI table definitions for SDEI

60 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

10 Appendix D: ACPI table definitions for SDEI

The SDEI ACPI table advertises the presence of the Software Delegated Exception
Interface implemented by platform firmware or a hypervisor for use by an OS. The table
consists only of a basic header with revision 1. Later revisions of the SDEI table may
define additional fields.

Table 15 The SDEI table

Field Byte Length Byte Offset Description

Signature 4 0 ‘SDEI`. Software Delegated Exception Interface Table.

Length 4 4 Length in bytes of this table.

Revision 1 8 This document describes revision 1 of the SDEI Table.

Checksum 1 9 The entire table must sum to zero.

OEMID 6 10 OEM ID.

OEM Table ID 8 16 For the SDEI table, the table ID is the manufacture model
ID.

OEM Revision 4 24 OEM revision of the SDEI table for the supplied OEM Table

ID.

Creator ID 4 28 The vendor ID of the utility that created the table.

Creator
Revision

4 32 The revision of the utility that created the table.

When an OS discovers the SDEI table, it can call SDEI_VERSION to discover the version

number of the interface and determine the features supported.

The conduit is discovered from the Fixed ACPI Description Table's (FADT) 'Arm
Architecture boot flags' PSCI_USE_HVC flag. See Advanced Configuration and Power
Interface Specification v6.2.

A typical use-case for SDEI is as a notification mechanism for firmware-first RAS errors

using the ACPI Platform Error Interface (APEI). When the OS parses the Hardware Error

Source Table's (HEST) Generic Hardware Error Source (GHES) entries, it should use the

SDEI calls to register a handler for events that use SDEI as a notification method. SDEI

uses notification type 11 in the 'Hardware Error Notification Structure', and stores the 32bit

event number in the vector. If the platform uses multiple events for RAS, it should describe

each one with a GHES entry. Private events should be represented with a single GHES

entry.

The SDEI event handler in the OS should copy or consume the Common Platform Error

Record (CPER) data associated with the GHES entry before calling SDEI_COMPLETE or

SDEI_COMPLETE_AND_RESUME. Doing this ensures that the SDEI implementation in

firmware will not overwrite CPER data while it is being used by the OS.

Table 16 shows an example Hardware Error Notification Structure for a single GHES
notified by SDEI event number 804.

Appendix D: ACPI table definitions for SDEI

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 61
 Non-Confidential

Table 16 Example event definition for SDEI event 804

Field Byte

Length

Byte

Offset

Value Description

Type 1 0 11 SDEI

Length 4 1 28 Total length of the structure in bytes

Configuration Write
Enabled

2 2 0 Ignored

Poll Interval 4 4 0 Ignored

Vector 4 8 804 The SDEI event number

Switch To Polling
Threshold Value

4 12 0 Ignored

Switch To Polling
Threshold Window

4 16 0 Ignored

Error Threshold Value 4 20 0 Ignored

Error Threshold Window 4 24 0 Ignored

Appendix E: ACPI definitions for SDEI events

62 Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. ARM DEN 0054C
 Non-Confidential

11 Appendix E: ACPI definitions for SDEI events

This Appendix provides guidelines for describing SDEI events in ACPI namespace.
Devices that signal events through SDEI can use the methods outlined in this Appendix to
advertise these events to an OS. Likewise, an OS can use these methods to discover if
SDEI signaling is supported by a device and identify the associated event numbers.

11.1 Describing SDEI events in ACPI Namespace

This specification defines a dedicated _DSM method that returns the SDEI event number
for the SDEI event.

It is also possible for a device to support multiple events that are reported using this
approach. Events are identified using an event index. The OS must pass the event index of
the event as an argument. The number and meaning of indexes used by a device are
specific to that device and must be specified in a standard or specification document that
describes the device’s ACPI properties.

11.2 SDEI _DSM method

Table 17 provides a summary of the SDEI _DSM method.

Table 17 _DSM Method for SDEI Event Signaling

Argument Description Value

Arg0 UUID The _DSM for SDEI signaling uses a reserved UUID of:
e83a4698-e3a0-11eb-ba80-0242ac130004

Arg1 Revision ID 0x00

Arg2 Function Index 0x01: Get SDEI Event number.

Arg3 Event Index For devices that support multiple SDEI events,
specifies the index of the SDEI event. If a device
supports a single event, this value must be 0x0.

The available SDEI events and the meaning of each
event index is defined in the binding for the HID for the
device.

If the caller passes an invalid index, an error code must
be return as defined in the Return value definition.

 The value returned by the _DSM method is the SDEI event number.

Return value: QWORD

Bits [63:32] Bits [31:0]

Reserved, must be zero.

The SDEI event number of the
event.

If an invalid Event Index was
passed by the caller, the returned
value must be the invalid event
number 0x80000000.

The _DSM method must be placed within the scope of the device object that requires the
SDEI event signaling. Presence of this method within the device’s scope is an indication to
the OS that the device supports extended SDEI-based event signaling. The events that
require the SDEI event signaling are specific to the device itself, and within the purview of
the device driver. OSPM must invoke the _DSM method to obtain the event number used.

Appendix E: ACPI definitions for SDEI events

ARM DEN 0054C Copyright © 2017-2021 ARM Limited or its affiliates. All rights reserved. 63
 Non-Confidential

11.3 Example

The following example reference code describes an ACPI device that supports SDEI-
based event signaling with a single event:

Device (DEV0) {

 Name (_HID, "DEV0001")

 // Device is capable of signaling two events using SDEI

 Method (_DSM, 0x4, NotSerialized) {

 Switch (Arg0) {

 case (ToUUID (e83a4698-e3a0-11eb-ba80-0242ac130004))

 {

 switch (Arg2) {

 {

 // <ev1> = SDEI event number reserved for the first event

 // <ev2> = SDEI event number reserved for the second event

 case (1) {

 if (Arg3 == 0)

 return <ev1>;

 if (Arg3 == 1)

 return <ev2>;

 return 0x8000_0000;

 }

 }

 }

 }

 }

}

	Software Delegated Exception Interface
	System Software on Arm specification
	Release information
	1 Introduction
	1.1 Additional reading
	1.1.1 Arm publications

	1.2 Feedback
	1.2.1 Feedback on this manual

	1.3 Glossary
	1.4 Document structure

	2 Overview
	2.1 SDEI intended usage
	2.1.1 Typical use cases

	3 Definitions
	3.1 Software Delegated Exception Model
	3.2 Client and Dispatcher
	3.2.1 Client and Dispatcher Exception level

	3.3 Event
	3.3.1 Event source
	3.3.2 Event type
	3.3.3 Event definition

	3.4 Interface and Exception levels
	3.4.1 SDEI instances in a system
	3.4.2 Conduits
	When both of EL3 and EL2 are implemented:
	When EL3 is not implemented and EL2 is implemented:
	When EL3 is implemented and EL2 is not implemented:

	4 System overview
	4.1 Processing Element (PE)
	4.2 Interrupt controller
	4.3 Prioritizing events
	4.3.1 Arm PE architecture
	4.3.2 Interrupt controller
	4.3.2.1 Event class
	Physical SDEI
	Virtual SDEI

	4.3.2.2 Nesting depth of running SDEI event handlers
	Physical SDEI
	Virtual SDEI

	4.4 Event number allocation

	5 Interface
	5.1 SDEI calls
	5.1.1 SDEI_VERSION
	5.1.1.1 Usage
	5.1.1.2 Dispatcher responsibilities
	5.1.2 SDEI_EVENT_REGISTER
	5.1.2.1 Usage
	5.1.2.2 Parameters
	5.1.2.3 Client responsibilities
	5.1.3 SDEI_EVENT_ENABLE
	5.1.3.1 Usage
	5.1.3.2 Client responsibilities
	5.1.3.3 Dispatcher responsibilities
	5.1.4 SDEI_EVENT_DISABLE
	5.1.4.1 Usage
	5.1.4.2 Client responsibilities
	5.1.4.3 Dispatcher responsibilities
	5.1.5 SDEI_EVENT_CONTEXT
	5.1.5.1 Usage
	5.1.5.2 Client responsibilities
	5.1.5.3 Dispatcher responsibilities
	5.1.6 SDEI_EVENT_COMPLETE
	5.1.6.1 Usage
	5.1.6.2 Parameters
	5.1.6.3 Client responsibilities
	5.1.6.4 Dispatcher responsibilities
	5.1.7 SDEI_EVENT_COMPLETE_AND_RESUME
	5.1.7.1 Usage
	5.1.7.2 Parameters
	5.1.7.3 Client responsibilities
	5.1.7.4 Dispatcher responsibilities
	5.1.8 SDEI_EVENT_UNREGISTER
	5.1.8.1 Usage
	5.1.8.2 Client responsibilities
	5.1.8.3 Dispatcher responsibilities
	5.1.9 SDEI_EVENT_STATUS
	5.1.9.1 Usage
	5.1.9.2 Client responsibilities
	5.1.10 SDEI_EVENT_GET_INFO
	5.1.10.1 Usage
	5.1.10.2 Parameter and Return values
	5.1.11 SDEI_EVENT_ROUTING_SET
	5.1.11.1 Usage
	5.1.11.2 Parameters
	5.1.11.3 Client responsibilities
	5.1.11.4 Dispatcher responsibilities
	5.1.12 SDEI_PE_MASK
	5.1.12.1 Usage
	5.1.12.2 Client responsibilities
	5.1.12.3 Dispatcher responsibilities
	5.1.13 SDEI_PE_UNMASK
	5.1.13.1 Usage
	5.1.13.2 Client responsibilities
	5.1.13.3 Dispatcher responsibilities
	5.1.14 SDEI_INTERRUPT_BIND
	5.1.14.1 Usage
	5.1.14.2 Parameters
	5.1.14.3 Client responsibilities
	5.1.14.4 Dispatcher responsibilities
	5.1.15 SDEI_INTERRUPT_RELEASE
	5.1.15.1 Usage
	5.1.15.2 Parameters
	5.1.15.3 Client responsibilities
	5.1.15.4 Dispatcher responsibilities
	5.1.16 SDEI_EVENT_SIGNAL
	5.1.16.1 Usage
	5.1.16.2 Parameters
	5.1.16.3 Client responsibilities
	5.1.16.4 Dispatcher responsibilities
	5.1.17 SDEI_FEATURES
	5.1.17.1 Usage
	5.1.17.2 Parameters
	5.1.18 SDEI_PRIVATE_RESET
	5.1.18.1 Usage
	5.1.18.2 Client responsibilities
	5.1.18.3 Dispatcher responsibilities
	5.1.19 SDEI_SHARED_RESET
	5.1.19.1 Usage
	5.1.19.2 Client responsibilities
	5.1.19.3 Dispatcher responsibilities

	5.2 Event context
	5.2.1 Event handler context
	5.2.1.1 Client responsibilities
	5.2.1.2 Dispatcher responsibilities
	5.2.2 Event resume context

	5.3 Return Codes

	6 Programmers’ Overview
	6.1 Event handler states and properties
	6.1.1 Description
	handler-unregistered state
	handler-registered state
	handler-enabled state
	Handler-running property

	6.1.2 Interface calls and states

	6.2 Event dispatching
	6.2.1 Recurring events

	6.3 Bound events
	6.4 Interface Discovery
	6.5 Power management and SDEI events
	6.5.1 Power-on sequence
	6.5.2 Powerdown sequence
	6.5.2.1 CPU_OFF
	6.5.2.1.1 Client Responsibilities
	6.5.2.1.2 Dispatcher Responsibilities
	6.5.2.2 CPU_SUSPEND with powerdown state
	6.5.2.2.1 Client responsibilities
	6.5.2.2.2 Dispatcher responsibilities

	6.5.3 CPU_SUSPEND with standby state
	6.5.4 PSCI calls from SDEI handler

	6.6 Registering and handling an event
	6.7 Unregistering an event
	6.8 Virtual SDEI events

	7 Appendix A: Implementing use cases
	7.1 Physical interrupt as SDEI event
	7.2 Isolated physical interrupt as SDEI event

	8 Appendix B: Implementation notes with GICv2 and GICv3 architecture
	8.1 GICv2
	8.2 GICv3

	9 Appendix C: Pseudocode for dispatcher
	9.1 Private event dispatcher
	9.2 Shared event dispatcher

	10 Appendix D: ACPI table definitions for SDEI
	11 Appendix E: ACPI definitions for SDEI events
	11.1 Describing SDEI events in ACPI Namespace
	11.2 SDEI _DSM method
	11.3 Example

