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1 Overview 
In this guide, we describe how to set up Android Studio for native C++ development, and learn 

how to use Neon intrinsics for Arm-powered mobile devices. 

Do not repeat yourself (DRY) is one of the major principles of software development. Following 

this principle typically means reusing your code using functions. However, invoking a function 

adds extra overhead. To reduce this overhead, compilers take advantage of built-in functions 

called intrinsics. The compiler replaces the intrinsics that are used in the high-level programming 

languages, for example C/C++, with mostly 1-1 mapped assembly instructions.  

To further improve performance, you need assembly to use Assembly code. However, with Arm 

Neon intrinsics you can avoid the complication of writing assembly functions. Instead you only 

need to program in C/C++ and call the intrinsics or instruction functions that are declared in 

the arm_neon.h header file. 

As an Android developer, you probably do not have time to write assembly language. Instead, 

your focus is on app usability, portability, design, data access, and tuning your app to various 

devices. If so, Neon intrinsics can help with performance. 

Arm Neon intrinsics technology is an advanced Single Instruction Multiple Data 

(SIMD) architecture extension for Arm processors. SIMD performs the same operation on a 

sequence, or vector, of data during a single CPU cycle. 

For instance, if you are summing numbers from two one-dimensional arrays, you must add them 

one by one. In a non-SIMD CPU, each array element is loaded from memory to CPU registers, the 

register values are added, and the result is stored in memory. This procedure is repeated for all 

elements. To speed up such operations, SIMD-enabled CPUs load several elements at once, 

perform the operations, then store results to memory. Performance improves depending on the 

sequence length, N. Theoretically, the computation time reduces N times. 

Using SIMD architecture, Neon intrinsics can accelerate the performance of multimedia and 

signal processing applications, including video and audio encoding and decoding, 3D graphics, 

and speech and image processing. Neon intrinsics provide almost as much control as writing 

assembly code. However, Neon intrinsics leave the allocation of registers to the compiler. This 

allows developers to focus on the algorithms. Therefore, Neon intrinsics strike a balance between 

performance improvement and the writing of assembly language. 

  

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/SIMD
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This guide shows you how to: 

• Set up an Android development environment to use Neon intrinsics 

• Implement an Android application that uses the Android Native Development Kit (NDK) to 

calculate the dot product of two vectors in C/C++ 

• Improve the performance of such a function with Neon intrinsics 

 

At the end of this guide, you can Check your knowledge gained from this guide.  

1.1 Before you begin 

This project was created with Android Studio. The sample code is available from the GitHub 

repository NeonIntrinsics-Android. The code was tested on a Samsung SM-J710F phone. 

You should also explore the Neon intrinsics search engine. 

https://developer.android.com/studio
https://github.com/dawidborycki/NeonIntrinsics-Android
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
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2 Native C++ Android project 

template 
In this section we begin the development cycle by showing you what to select in your Android 

Studio options. Here are step by step instruction on what you need to do. 

1. Create a project using the Native C++ Project Template, as you can see in the following 

screenshot: 

  

 

2. Set the application name to Neon Intrinsics, selected Java as the language, and set the 

minimum SDK to API 19: Android 4.4 (KitKat) as shown in the follow screenshot: 
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3. Select Toolchain Default for the C++ Standard, as shown in the following screenshot: 
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The project that you created comprises one activity that is implemented within the 

MainActivity class, deriving from AppCompatActivity. this can be seen at 

app/java/com.example.neonintrinsics/MainActivity.java for further information. The associated 

view contains only a TextView control that displays the string: “Hello from C++, as you can see 

in the following image:  
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To get these results, run the project directly from Android Studio using one of the emulators. To 

build the project successfully  

4. Install CMake along with the Android NDK. You can do this through File > Settings. Then 

select NDK and CMake on the SDK Tools tab.  You must do this to build the project 

successfully as shown in the following screenshot: 

 

5. Open the MainActivity.java file. The string that is displayed in the app comes from 

native-lib. The code for this library is in the app/cpp/native-lib.cpp file. That file is used for 

the implementation. 
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3 Enabling Neon Intrinsics support 
In this section of the guide, we show how to enable Neon Intrinsic support in Android Studio. To 

enable support for Neon intrinsics, we must modify the ABI filters so that the app can be built 

for the Arm architecture. There are two versions of Neon:  

• Neon forArmv7, Armv8 AArch32 

• Neon for Armv8 AArch64 

From an intrinsics point of view, there are a few differences between the two versions, like the 

addition of vectors of 2xfloat64 in Armv8-A. Both versions are available in 

the arm_neon.h header file that is included in the compiler installation path. You also must 

import the Neon libraries. Follow these steps: 

1. Go to the Gradle scripts.   

2. Open the build.gradle (Module: app) file.  

3. Supplementing the defaultConfig section by adding the following statements.  

4. Add this line of code to the general settings: 

 

arguments "-DANDROID_ARM_NEON=ON" 

The code should look like this:  

 

defaultConfig { 

 applicationId "com.example.myapplication" 

 minSdkVersion 16 

 targetSdkVersion 29 

 versionCode 1 

 versionName "1.0" 

 ndk.abiFilters 'x86', 'armeabi-v7a', 'arm64-v8a' 

 testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner" 

  

 externalNativeBuild { 

      cmake { 

          cppFlags "" 

          arguments "-DANDROID_ARM_NEON=ON" 

      } 

 } 

} 

https://developer.android.com/ndk/guides/abis


Neon Intrinsics on Android User Guide 102197 

Issue 02 

 

 

Now you can use Neon intrinsics, which are declared within the arm_neon.h header. The build 

will only succeed for Arm-v7 and later. To make your code compatible with x86, use the Intel 

porting guide. 

 

https://github.com/intel/ARM_NEON_2_x86_SSE
https://github.com/intel/ARM_NEON_2_x86_SSE
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4 Dot product and helper methods 
In this section we look at dot product and helper methods. Now we can implement the dot 

product of two vectors using C++. All the code should be placed in the native-lib.cpp file. 

Starting from Armv8.4a, the dot product is part of the new instruction set. This corresponds to 

some Cortex-A75 designs and all Cortex-A76 designs onwards. Exploring the Arm dot product 

instructions includes for more information. Follow these steps: 

1. Beginning with the helper method that generates the ramp, which is the vector of 16-bit 

integers incremented from the code startValue in the following example: 

 

short* generateRamp(short startValue, short len) { 

 short* ramp = new short[len]; 

 for(short i = 0; i < len; i++) { 

      ramp[i] = startValue + i; 

 } 

 return ramp; 

} 

2. Implement the msElapsedTime and now methods, which are used later to determine the 

code execution time:  

 

double msElapsedTime(chrono::system_clock::time_point start) { 

 auto end = chrono::system_clock::now(); 

 return chrono::duration_cast<chrono::milliseconds>(end - start).count(); 

} 

 

chrono::system_clock::time_point now() { 

 return chrono::system_clock::now(); 

} 

The msElapsedTime method calculates the amount of time, expressed in milliseconds, that has 

passed from a starting point. 

The now method is a handy wrapper for the std::chrono::system_clock::now method, 

which returns the current time. 

  

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/exploring-the-arm-dot-product-instructions
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/exploring-the-arm-dot-product-instructions
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3. Create the actual dot product method. To calculate a dot product of two equal-length 

vectors, multiply vectors element-by-element, then accumulate the resulting products. Here 

you can see a straightforward implementation of this algorithm: 

 

int dotProduct(short* vector1, short* vector2, short len) { 

 int result = 0; 

  

 for(short i = 0; i < len; i++) { 

         result += vector1[i] * vector2[i]; 

 } 

  

 return result; 

} 

The previous implementation uses a for loop. So we sequentially multiply vector elements and 

then accumulate the resulting products in a local variable called result.  
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5 Calculating dot products using 

Neon Intrinsics 
In this section of the guide, we look at calculating the dot products using Neon intrinsics. To 

modify the dotProduct function to benefit from Neon intrinsics, we must split the for loop so 

that it uses data lanes. This means that we will partition, or vectorize, the loop to operate on 

sequences of data during a single CPU cycle. These sequences are defined as vectors. However, 

to distinguish from the vectors that we use as inputs for the dot product, we call these 

sequences register vectors. 

With register vectors, reduce the loop iterations so that, at every iteration, you multiply, then 

accumulate, multiple vector elements to calculate the dot product. The number of elements that 

you can work with depends on the register layout. 

The Arm Neon architecture uses a 64-bit or 128-bit register file. In a 64-bit case, you can work 

with either eight 8-bit, four 16-bit, or two 32-bit elements. In a 128-bit case, you can work with 

either sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit elements. 

To represent various register vectors, Neon intrinsics use the following name convention: 

<type><size>x<number of lanes>_t 

In this convention: 

• <type> is the data type (int, uint, float, or poly). 

• <size> is the number of bits that are used for the data type, for example 8, 16, 32, 64. 

• <number of lanes> defines how many lanes. 

For example, int16x4_t represents a vector register with 4 lanes of 16-bit integer elements, 

which is equivalent to a four-element int16 one-dimensional array (short[4]). 

Do not instantiate Neon intrinsic types directly. Instead, use dedicated methods to load data 

from the arrays to CPU registers. The names of these methods start with vld. Method naming 

uses a convention that similar to the one for type naming. All methods start with v, which is 

followed by a method short name, like ld for load, and the combination of a letter and a 

number of bits, for example, s16, to specify the input data type. 

Neon intrinsics directly correspond to the assembly instructions, as you can see in the following 

code: 
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int dotProductNeon(short* vector1, short* vector2, short len) { 

 const short transferSize = 4; 

 short segments = len / transferSize; 

  

 // 4-element vector of zeros 

 int32x4_t partialSumsNeon = vdupq_n_s32(0); 

  

 // Main loop (note that loop index goes through segments) 

 for(short i = 0; i < segments; i++) { 

      // Load vector elements to registers 

     short offset = i * transferSize; 

        int16x4_t vector1Neon = vld1_s16(vector1 + offset); 

     int16x4_t vector2Neon = vld1_s16(vector2 + offset); 

  

      // Multiply and accumulate: partialSumsNeon += vector1Neon * vector2Neon 

     partialSumsNeon = vmlal_s16(partialSumsNeon, vector1Neon, vector2Neon); 

 } 

  

 // Store partial sums 

 int partialSums[transferSize]; 

 vst1q_s32(partialSums, partialSumsNeon); 

  

 // Sum up partial sums 

 int result = 0; 

 for(short i = 0; i < transferSize; i++) { 

      result += partialSums[i]; 

 } 

  

 return result; 

} 

To load data from memory, use the vld1_s16 method. This method loads four elements to the 

CPU registers from the array of shorts signed 16-bit integers or s16 for short.  

When the elements are in the CPU registers, add the elements using the vmlal, multiply and 

accumulate method. This method adds elements from two arrays and accumulates the result in a 

third array. 

This array is stored within the partialSumsNeon variable. To initialize this variable, use 

the vdupq_n_s32, duplicate method, which sets all CPU registers to the specific value. In this 

case, the value is 0. It is the vectorized equivalent of writing int sum = 0. 
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When all the loop iterations complete, store the resulting sums back to memory. The results can 

be read element by element using vget_lane methods. Alternatively, store the whole vector 

using vst methods. In this example, we use the second option. 

When the partial sums are back in memory, I sum them to get the final result. 

On AArch64, you could also use: 

 

return vaddv_s32 (partialSumsNeon); 

Then skip the second for loop.  



Neon Intrinsics on Android User Guide 102197 

Issue 02 

 

 

6 Putting our code together 
We can now put all of the code together. To do this, we modify the 

MainActivity.stringFromJNI method in the following code:  

 

extern "C" JNIEXPORT jstring JNICALL 

MainActivity.stringFromJNI ( 

     JNIEnv* env, 

     jobject /* this */) { 

  

 // Ramp length and number of trials 

 const int rampLength = 1024; 

 const int trials = 10000; 

  

 // Generate two input vectors 

 // (0, 1, ..., rampLength - 1) 

 // (100, 101, ..., 100 + rampLength-1) 

 auto ramp1 = generateRamp(0, rampLength); 

 auto ramp2 = generateRamp(100, rampLength); 

  

 // Without NEON intrinsics 

 // Invoke dotProduct and measure performance 

 int lastResult = 0; 

  

 auto start = now(); 

 for(int i = 0; i < trials; i++) { 

      lastResult = dotProduct(ramp1, ramp2, rampLength); 

 } 

 auto elapsedTime = msElapsedTime(start); 

  

 // With NEON intrinsics 

 // Invoke dotProductNeon and measure performance 

 int lastResultNeon = 0; 

  

 start = now(); 

 for(int i = 0; i < trials; i++) { 

      lastResultNeon = dotProductNeon(ramp1, ramp2, rampLength); 

 } 

 auto elapsedTimeNeon = msElapsedTime(start); 



Neon Intrinsics on Android User Guide 102197 

Issue 02 

 

 

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 19 of 23 

  

 // Clean up 

 delete ramp1, ramp2; 

  

 // Display results 

 std::string resultsString = 

         "----==== NO NEON ====----\nResult: " + to_string(lastResult) 

         + "\nElapsed time: " + to_string((int)elapsedTime) + " ms" 

         + "\n\n----==== NEON ====----\n" 

         + "Result: " + to_string(lastResultNeon) 

         + "\nElapsed time: " + to_string((int)elapsedTimeNeon) + " ms"; 

  

 return env->NewStringUTF(resultsString.c_str()); 

} 

The MainActivity.stringFromJNI method proceeds as follows: 

1. Create two equal-length vectors using generateRamp methods. 

2. Calculate the dot product of those vectors using the non-Neon method dotProduct. 

Repeat this calculation several times (trials constant) and measure the computation time 

using msElasedTime. 

3. Perform the same operations as in Step 1 and Step 2, but now using the Neon-enabled 

method dotProductNeon. 

Combine the results of those two methods along with the computation times within 

the resultsString. The latter is displayed in the TextView. To build and run the preceding 

code successfully, you need an Arm-v7-A or Armv8-A device. The following image shows the 

improvements that Neon Intrinsics can bring to an application: 
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Using built-in intrinsics provided a seven percent improvement in elapsed time. A theoretical 

improvement of 25 percent could be achieved on Arm 64 devices. 
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7 Check your knowledge 
Q: What are the benefits of using Neon Intrinsics compared to using assembly code? 

A: Compilers take advantage of built-in functions called intrinsics, with mostly 1-2-1 mapped 

assembly instructions. Using intrinsics removes the need to use Assembly code to get the 

highest performance out of the underlying hardware.  

 

 

Q: What are some example areas that can be improved by using SIMD architecture? 

A: Some examples include video and audio encoding and decoding, 3D graphics, and speech 

and image processing. 

 

 

Q: What are the name conventions that Neon intrinsics use to represent various register vectors? 

A: To represent various register vectors, Neon intrinsics use the following name conventions: 

<type><size>x<number of lanes>_t 

• <type> is the data type (int, uint, float, or poly). 

• <size> is the number of bits used for the data type (8, 16, 32, 64). 

• <number of lanes> defines how many lanes. 
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8 Related information 
Here are some resources related to material in this guide: 

Arm resources 

• Neon Intrinsics search engine 

• Neon Programmer’s guide 

• Fundamentals of Armv8 Neon Technology 

Android resources 

• Android Studio 

• Android NDK 

• Google Example, Hello Neon 

• Neon Support in Android NDK 

Other resources 

• Original guide on CodeProject 

• Author profile - Dawid Borycki 

 

 

 

 

 

 

 

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/optimizing-c-code-with-neon-intrinsics/rgb-deinterleaving
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a/introducing-neon-for-armv8-a/fundamentals-of-armv8-neon-technology
https://developer.android.com/studio
https://developer.android.com/ndk/guides
https://github.com/android/ndk-samples/tree/master/hello-neon
https://developer.android.com/ndk/guides/cpu-arm-neon
https://www.codeproject.com/Articles/5267160/Neon-Intrinsics-Getting-Started-on-Android
https://www.codeproject.com/Members/User-14659742
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9 Next steps 
This guide introduced the fundamental principles of using Neon intrinsics with an Android-based 

device. In the guide, we saw how to set up Android Studio for native C++ development, and how 

to use Neon intrinsics for Arm-powered mobile devices. 

After explaining the idea behind Neon intrinsics, we demonstrated a sample implementation of 

the dot product of two equal-length vectors. We then vectorized the method using dedicated 

Neon intrinsics. In particular, we described loading data from memory to CPU registers, 

completing the operations, and then storing the results back to memory. 

Vectorizing code is never an easy task. However, you can simplify it with Neon intrinsics to 

improve performance in scenarios that employ 3D graphics. An example of this would be signal 

and image processing, audio encoding, and video streaming. 

Now you can start using the Neon intrinsics in your own projects. If you want to learn more 

about Neon, you can read our guide Neon Intrinsics on Android: How to Truncate 

Thresholding and Convolution of a 1D Signal. 

https://developer.arm.com/solutions/os/android/developer-guides/neon-intrinsics-on-android-how-to-truncate-thresholding-and-convolution-of-a-1d-signal
https://developer.arm.com/solutions/os/android/developer-guides/neon-intrinsics-on-android-how-to-truncate-thresholding-and-convolution-of-a-1d-signal
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