Arm’ Architecture Reference Manual

Armv8, for A-profile architecture

arm

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
ARM DDI 0487G.b (ID072021)

Arm Architecture Reference Manual
Armv8, for A-profile architecture

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Release Information

The following releases of this document have been made.

Release history

Date Issue Confidentiality Change

30 April 2013 A.a-1 Confidential-Beta Draft Beta draft of first issue, limited circulation

12 June 2013 A.a-2 Confidential-Beta Draft Second beta draft of first issue, limited circulation

04 September 2013 Aa Non-Confidential Beta Beta release

24 December 2013 Ab Non-Confidential Beta Second beta release

18 July 2014 Ac Non-Confidential Beta Third beta release

09 October 2014 Ad Non-Confidential Beta Fourth beta release

17 December 2014 Ae Non-Confidential Beta Fifth beta release

25 March 2015 Af Non-Confidential Beta Sixth beta release

10 July 2015 A.g Non-Confidential Beta Seventh beta release

30 September 2015 Ah Non-Confidential Beta Eighth beta release

28 January 2016 Al Non-Confidential Beta Ninth beta release

03 June 2016 Aj Non-Confidential EAC EAC release

30 September 2016 Ak Non-Confidential Armv8.0 EAC Updated EAC release

31 March 2017 B.a Non-Confidential Armv8.1 EAC, v8.2 Beta Initial release incorporating Armv8.1 and Armv8.2

26 September 2017 B.b Non-Confidential Armv8.2 EAC Initial Armv8.2 EAC release, incorporating SPE

20 December 2017 Ca Non-Confidential Armv8.3 EAC Initial Armv8.3 EAC release

31 October 2018 D.a Non-Confidential Armv8.4 EAC Initial Armv8.4 EAC release

29 April 2019 D.b Non-Confidential Armv8.4 EAC Updated Armv8.4 EAC release incorporating
accessibility changes

05 July 2019 Ea Non-Confidential Armv8.5 EAC Initial Armv8.5 EAC release

20 February 2020 Fa Non-Confidential Armv8.6 Beta Initial Armv8.6 Beta release

31 March 2020 Fb Non-Confidential Armv8.5 EAC, v8.6 Beta Armv8.5 EAC release, initial Armv8.6 Beta release

17 July 2020 Fc Non-Confidential Armv8.6 EAC Initial Armv8.6 EAC release

22 January 2021 G.a Non-Confidential Armv8.7 EAC Initial Armv8.7 EAC release

22 July 2021 G.b Non-Confidential Armv8.7 EAC Updated Armv8.7 EAC release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

ii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. You must follow the Arm’s trademark usage guidelines
http://www.arm.com/company/policies/trademarks.

Copyright © 2013-2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)
In this document, where the term Arm is used to refer to the company it means “Arm or any of its affiliates as appropriate”.

Note

. The term Arm can refer to versions of the Arm architecture, for example Armv8 refers to version 8 of the Arm architecture.
The context makes it clear when the term is used in this way.

. This document describes only the Armv8-A architecture profile. For the behaviors required by the previous version of this
architecture profile, ARMv7-A, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

The information in this manual is at EAC quality, which means that all features of the specification are described in the manual.
Web Address

http://www.arm.com

Limitations of this issue

This issue of the Armv8 Architecture Reference Manual contains many improvements and corrections. Validation of this
document has identified the following issues that Arm will address in future issues:

. PE state on reset to AArch64 state on page D1-2472 and PE state on reset into AArch32 state on page G1-6100 require
further update. Since the reset information is present in the register descriptions, this does not affect the quality status of
the release.

. Appendix K14 Arm Pseudocode Definition requires further review and update. Since this appendix is informative, rather
than being part of the architecture specification, this does not affect the quality status of this release.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. iii
Non-Confidential

For a list of the known issues in this Manual, please refer to the Known Issues document on
https://developer.arm.com/documentation/102105/Tatest.

For a list of the known issues in the System register and instruction XML content, please refer to the Release Notes on
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools.

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Contents

Arm Architecture Reference Manual Armv8, for
A-profile architecture

Part A

Chapter A1

Chapter A2

A1A1
A1.2
A1.3
A1.4
A1.5
A1.6

A21
A2.2
A2.3
A2.4
A2.5
A2.6
A2.7
A2.8

Preface

ADOUL thisS MaNUALoooeeeeieeee et eeaeaaes Xviii
UsSIiNG thiS ManUAoeeiiiiiiiieiie e eeee s XX
(070 01V 01 (o] 1RSSR XXVi
AditioNal reaAINGcoieieiiiiie e XXViii
ST o | oF=Tod U XXX
Armv8 Architecture Introduction and Overview
Introduction to the Armv8 Architecture

About the Arm arChiteCtureooooiiiiiiiiiiii e A1-34
Architecture profilesooiiiiiiii A1-36
Armv8 architectural CONCEPLSccoiiiiiiiiiii e A1-37
Supported data tYPeSooooi i A1-40
Advanced SIMD and floating-point SUPPOITtc.cooiiieiiiiiieeee e A1-52
The Arm memory MOEIooiiiiiiiiiiee e e A1-62
Armv8-A Architecture Extensions

Armv8.0 architecture extenSIONScooviiiiiiiiiiiiie e A2-64
Architectural features within Armv8.0 architectureccooeeeeiivvvveeeneeee. A2-68
The Armv8 Cryptographic EXteNnsioncccoceeiiiiiiiiiiiiee e A2-72
The Armv8.1 architecture exteNSIONooovvviuieieeee e A2-74
The Armv8.2 architecture exXteNSIONooeevviuiieeeeee e A2-78
The Armv8.3 architecture exteNSIONooevvviuiiiieee e A2-87
The Armv8.4 architecture extenSioNcooeviiiiiiiiiiiieeieeeeceeee e A2-91
The Armv8.5 architecture extensionc.couviuiiiiiiiiiiiieeecceee e A2-96

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

A2.9 The Armv8.6 architecture exteNSIONooveviiiiieeeee e A2-100

A2.10 The Armv8.7 architecture extensionccooeeeiiiiiiiiiicnec e A2-103
A2.11 The Performance Monitors EXtENSIONccccoviiiiiiiiiiinii e A2-107
A2.12 The Reliability, Availability, and Serviceability Extensionc.ccccoviveerinnnns A2-108
A2.13 The Statistical Profiling Extension (SPE)coocoiiiiiiiiiiiiee e A2-109
A2.14 The Scalable Vector EXtension (SVE)cccccocieiiiiiiiiiieccieee e A2-110
A2.15 The Activity Monitors Extension (AMU)ocoeiiiiiiiiiiiieee e A2-111
A2.16 The Memory Partitioning and Monitoring (MPAM) Extensionc.ccccceee. A2-112
Part B The AArch64 Application Level Architecture
Chapter B1 The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ modelccccovviiiiiiiiiee i B1-116
B1.2 Registers in AArch64 Execution stateccooiiiiiiiiiiii e B1-117
B1.3 Software control features and ELOccccooiiiiiiiiiinieecee e B1-122
Chapter B2 The AArch64 Application Level Memory Model
B2.1 About the Arm memory Modeloiiiii e B2-126
B2.2 Atomicity in the Arm architecture ... B2-128
B2.3 Definition of the Armv8 memory modelccoocuieiiiiiieeeee e B2-133
B2.4 Caches and memory hierarChyccccccoeieciiiie e e B2-155
B2.5 AlIGNMENT SUPPOTE ...t B2-160
B2.6 ENdi@N SUPPOIT ...ttt B2-162
B2.7 Memory types and attributes ... B2-165
B2.8 Mismatched memory attributes ... B2-176
B2.9 Synchronization and SEMAPhOrEScocciiiiiiiie e B2-179
Part C The AArch64 Instruction Set
Chapter C1 The A64 Instruction Set
C11 About the AB4 INStruction Set ... C1-194
C1.2 Structure of the AB4 assembler [anguageccoccveviieeriiii e C1-195
C1.3 AdAress generationcoccceeeiiieeeiiieeiiee e e seee e e e e e s e e s nne e e e nneeeenes C1-202
C1.4 INSLIUCHION @lIASESveeiiiiiiieee e C1-205
Chapter C2 About the A64 Instruction Descriptions
Cc2.1 Understanding the A64 instruction descriptionscccccccvieiiiiiiie i C2-208
C2.2 General information about the A64 instruction descriptionsccccceeiieene C2-211
Chapter C3 A64 Instruction Set Overview
C341 Branches, Exception generating, and System instructionscccccocceiiieene C3-216
C3.2 LOAdS @nd STOTESc.ueiiiiiiiiiii e C3-224
C3.3 Data processing - immediatecocviiiiiiiiiii i C3-242
C34 Data processing - regiStErcccuiiiiiiiiiie e C3-247
C3.5 Data processing - SIMD and floating-pointcccceviiriiiiiiiieeneeree e C3-255
Chapter C4 A64 Instruction Set Encoding
C41 AB4 instruction St €NCOAINGccvveeiiiiiiiieeie e e C4-284
Chapter C5 The A64 System Instruction Class
C5.1 The System instruction class encoding SPacecccoccceeveeeiiieeenieeecee e C5-394
C5.2 SPECIal-PUrPOSE MEQISIEIScciiieieec et e C5-408
C5.3 A64 System instructions for cache maintenancecccccoccvivieiiiiei e, C5-506
C54 A64 System instructions for address translationcccccciiiiiiiiiiiin e, C5-567
C5.5 A64 System instructions for TLB maintenanceccccoociiiieiiniecincee e, C5-592
C5.6 A64 System instructions for prediction restrictionccccoeoiiiiie C5-860
Vi Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Chapter C6

Chapter C7

PartD

Chapter D1

Chapter D2

Chapter D3

Chapter D4

C6.1
C6.2

C7.1
C7.2

D1.1
D1.2
D1.3
D1.4
D1.5
D1.6
D1.7
D1.8
D1.9
D1.10
D1.11
D1.12
D1.13
D1.14
D1.15
D1.16
D1.17
D1.18
D1.19
D1.20

D2.1
D2.2
D2.3
D2.4
D2.5
D2.6
D2.7
D2.8
D2.9
D2.10
D2.11
D2.12
D2.13

D3.1
D3.2
D3.3
D3.4

D4.1
D4.2
D4.3

A64 Base Instruction Descriptions
About the AB4 base INSIrUCHIONSoooiiiiiii e C6-872
Alphabetical list of AB4 base insStructionsccccoiiiiiiiiiciecce e C6-875

A64 Advanced SIMD and Floating-point Instruction Descriptions
About the A64 SIMD and floating-point instructionscccccccevviieniieeiinenn. C7-1522
Alphabetical list of A64 Advanced SIMD and floating-point instructions C7-1524

The AArch64 System Level Architecture

The AArch64 System Level Programmers’ Model

EXCEPLION IEVEIS ... D1-2454
EXception terminologyc.c.eii it D1-2455
EXeCUtion Stateooo i D1-2457
SECUMLY SEATE ..eeiieiieeii e D1-2458
VirtualiZationooooi e D1-2460
Registers for instruction processing and exception handlingcccccc...... D1-2463
Process state, PSTATEoeeoeiiiieeeeeeeeeee et D1-2466
Program counter and stack pointer alignmentcccccciiiiiiiii e D1-2469
RSB . e et e e e enaeea e an D1-2471
EXCEPtion €Ntry ..o D1-2475
Exception returnccceevvivieieii e D1-2485
Synchronous exception types, routing and priorities D1-2489
Asynchronous exception types, routing, masking and priorities D1-2500
Configurable instruction enables and disables, and trap controls D1-2510
SYSEM CalIS ... s D1-2535
Mechanisms for entering a low-power stateccccocveeiiiiincieeneeeeee, D1-2536
Self-hosted dEBUQGooveiiiiee e D1-2542
EVENT MONITOIS ... e D1-2544
INEEIPrOCESSING ...veiiiiieiiiee ettt et e e e e D1-2545
The effect of implementation choices on the programmers’ model D1-2558
AArch64 Self-hosted Debug
About self-hosted debugceoiiiiiiiiiii D2-2564
The debug exception enable CONtrolscoccviiiiiiiiiiiiii e D2-2568
Routing debug eXCeptioNSeiiiiiiiiiiie e D2-2569
Enabling debug exceptions from the current Exception levelc.c........... D2-2571
The effect of powerdown on debug exceptionscccccveeeiiiiiiiie e, D2-2573
Summary of the routing and enabling of debug exceptionsc.c.ccecuvenee. D2-2574
Pseudocode description of debug exceptionscccceviiiiiiiiiieniiec e D2-2576
Breakpoint Instruction exceptionsccocoveeiiiiiiiee i D2-2577
Breakpoint €XCEPLIONSuueiiiiiiiiieee e D2-2579
Watchpoint @XCEPLioNSovviiiiiiiiieiccee e D2-2598
Vector CatCh eXCEPLIONSveiie i D2-2612
Software Step eXCePiONScccuviiiiiiceee e D2-2613
Synchronization and debug exceptionsccccoviiiiiii e D2-2626
AArch64 Self-hosted Trace
About Self-hoSted tracecoouiiiiiiiiiii e D3-2628
Prohibited regions in self-hosted tracecccoceiiiiiiii e D3-2629
Self-hosted trace timestamps ... D3-2631
Synchronization in self-hosted traceccccooiiiiiiiiii D3-2632
The AArch64 System Level Memory Model
About the memory system architectureccoocoiiii D4-2634
AJArESS SPACE ..eveiiiiiiiieieie et e e e e et aaaaaaaaa e e s D4-2635
Y [P CTo Br=T gl L F= T TR] o] o Lo i (OSSR D4-2636

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

vii

D4.4 CACNE SUPPOIT ..ttt D4-2637

D4.5 EXternal @aborts ... e D4-2666
D4.6 Memory barrier iINStrUCtiONSooouiiiii e D4-2668
D4.7 Pseudocode description of general memory System instructions D4-2669
Chapter D5 The AArch64 Virtual Memory System Architecture
D5.1 About the Virtual Memory System Architecture (VMSA)cccooveviiiiiiieieeen. D5-2674
D5.2 The VMSAV8-64 address translation systemc..ccocccveeeeiiiiiiie e D5-2682
D5.3 VMSAV8-64 Translation Table format descriptorsccccceviieiiiiiiinieeeinenn. D5-2739
D5.4 MemOory aCCeSS CONEIOlcooiuiiiiiiiiiiiee e D5-2754
D5.5 Memory region attributes ..o D5-2776
D5.6 Virtualization HOSt EXIENSIONScooiiiiiiiiiiiie e D5-2787
D5.7 Nested Virtualization ... D5-2793
D5.8 VMSAV8-64 MEMOIY @DOISccooiiiiiiiiieiiiiie e e e e D5-2800
D5.9 Translation Lookaside Buffers (TLBS)ccoecueiiiiieiiniiiiiee e D5-2810
D5.10 TLB maintenance requirements and the TLB maintenance instructions D5-2816
D5.11 Caches in a VMSAV8-64 implementationcccceviiiiiiiicniececee e D5-2835
Chapter D6 Memory Tagging Extension
D6.1 INErOAUCHION ...t e e e e e e e e D6-2840
D6.2 P {FoTo= o] I IF= Vo =TT PPPRN D6-2841
D6.3 Tag ChECKING ...eeeieeiieieeee ettt e e et e e e e D6-2842
D6.4 Tagged and Untagged AdAreSSESuuiiiiiiiiieeeeeieeeee e D6-2843
D6.5 PE access to AlloCation Tagsccccorueiiiiiiriieeiiiee et D6-2844
D6.6 Enabling the Memory Tagging EXtensionccceviiiiiiiiiiiii e D6-2845
D6.7 PE handling of Tag Check Fault ... D6-2846
D6.8 PE generation of Tag Checked and Tag Unchecked accesses D6-2848
Chapter D7 The Performance Monitors Extension
D71 About the Performance MONItOrScccviiiieiiiiieeiee e D7-2850
D7.2 Accuracy of the Performance Monitorsccccoeveiiiiiiieniee e D7-2853
D7.3 Behavior 0N OVEIIOWcccuiiiiiiiiiie e D7-2855
D7.4 AHADULADIlIEY ...oooeeeeiiieee e e D7-2857
D7.5 Controlling the PMU COUNEEISoiiiiiiiiiiiiiiie e D7-2859
D7.6 Multithreaded implementationsccccciiiiiiiiie e D7-2863
D7.7 7Y o 11 (=Y T o SR D7-2865
D7.8 Performance Monitors and Debug statecccceeeiiiiiciiiiece e D7-2867
D7.9 (07010 o] (=T = oo L1 RSP D7-2868
D7.10 PMU events and event NUMDErSccooiiiiiiiiiiiiici e D7-2869
D7.11 Performance Monitors Extension registersccccoeiiiiinieiniiee e, D7-2940
Chapter D8 The Activity Monitors Extension
D8.1 About the Activity Monitors EXtensioncccoviiiiiiiiiieiii e D8-2942
D8.2 Properties and behavior of the activity monitorsccccoiiiiiiiiiniiii e D8-2943
D8.3 AMU events and event NUMDEISoooiiiiiiiiiiiee e D8-2945
Chapter D9 The Statistical Profiling Extension
D9.1 About the Statistical Profiling EXtensioncccccccoviiioiiiin e D9-2948
D9.2 Defining the sample population ..o D9-2950
D9.3 Controlling when an operation is sampledc.cccocceiieiiiiiiie e, D9-2951
D94 ENabling Profilingveiiieiiee e D9-2954
D9.5 Filtering Sample reCOrASooocuiiiiiiiiiii e D9-2956
D9.6 The profiling dataooii e D9-2958
D9.7 The Profiling BUFfer ... D9-2968
D9.8 Profiling Buffer managementooooeoiiiioie e D9-2973
D9.9 Synchronization and Statistical Profilingccccccoooiiiiiiiicie e D9-2977
viii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Chapter D10
D10.1
D10.2

Chapter D11
D11.1
D11.2

Chapter D12
D12.1
D12.2
D12.3

Chapter D13
D13.1
D13.2
D13.3
D13.4
D13.5
D13.6
D13.7
D13.8

Part E

Chapter E1
E1.1
E1.2
E1.3
E1.4
E1.5

Chapter E2
E2.1
E2.2
E2.3
E2.4
E2.5
E2.6
E2.7
E2.8
E2.9
E2.10

Part F

Chapter F1
F1.1
F1.2
F1.3
F1.4
F1.5
F1.6
F1.7
F1.8

Statistical Profiling Extension Sample Record Specification
About the Statistical Profiling Extension Sample Recordsc.cccoceeennen. D10-2980
Alphabetical list of Statistical Profiling Extension packetscccoccceeenen. D10-2983

The Generic Timer in AArch64 state
About the GENEriC TIMELcoeeeee e e a e e e e D11-3008
The AArch64 view of the Generic TIMErceeeeeeieeeiiiiieeeeeeeee e D11-3012

AArch64 System Register Encoding

The System register encoding SPACEcocveeiiiiiiiiiiiiee e D12-3020

op0==0b10, Moves to and from debug and trace System registers D12-3021

op0==0b11, Moves to and from non-debug System registers, Special-purpose registers
D12-3023

AArch64 System Register Descriptions

About the AArch64 System registerscccccoveeieiii i D13-3040
General system control registers ..o D13-3049
DEbUQG rEGISIEIS ..o D13-3810
Performance Monitors registerscccociiiiiiiiiee e D13-3929
Activity Monitors registers D13-4001
Statistical Profiling Extension registersccccoooeeiiiieeicie e D13-4042
RAS FEQISTEIS ...ttt D13-4091
Generic TIMEr reGISTErSccoiiiiiiiie e D13-4139

The AArch32 Application Level Architecture

The AArch32 Application Level Programmers’ Model

About the Application level programmers’ modelcccccoviiiiiiiiiiiiienenes E1-4248
The Application level programmers’ model in AArch32 stateccc........... E1-4249
Advanced SIMD and floating-point instructionsc.ccceiiiiniic s E1-4260
About the AArch32 System register interfacecccccooeiiiiniiiees E1-4278
oy CeT=T o] (o] o <R E1-4279

The AArch32 Application Level Memory Model

About the Arm memory Model ... E2-4282
Atomicity in the Arm architecture ... E2-4284
Definition of the Armv8 memory modelcooocviiiiiiiiiiiee e E2-4288
Ordering of translation table walksccccccciiiiiiiii e E2-4306
Caches and memory hi€rarChycccceiiiiiiiiiieeiee e E2-4307
AlIGNMENT SUPPOTE ... E2-4312
ENdian SUPPOIT ...t e e e e e E2-4314
Memory types and attributes ... E2-4318
Mismatched memory attributes ... E2-4328
Synchronization and SEMAPNOTEScccveeiiiiiiiiii e E2-4331

The AArch32 Instruction Sets

About the T32 and A32 Instruction Descriptions

Format of instruction descriptions ..o F1-4344
Standard assembler syntax fieldsccccoeiiiiiiiiin e F1-4348
Conditional EXECULIONcoiiiiiiiiiie e F1-4349
Shifts applied t0 @ reQIStErccciiiii e F1-4351
MEMOIY GCCESSES ...uuiiiiiiiiiiie ettt ettt F1-4353
Encoding of lists of general-purpose registers and the PCccc... F1-4354
General information about the T32 and A32 instruction descriptions F1-4355
Additional pseudocode support for instruction descriptionsccccceeene F1-4368

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

F1.9 Additional information about Advanced SIMD and floating-point instructions .. F1-4369

Chapter F2 The AArch32 Instruction Sets Overview
F2.1 Support for instructions in different versions of the Arm architecture F2-4376
F2.2 Unified Assembler Languagecccceevoiiiiiieeiiieeece et F2-4377
F2.3 Branch inStrUCHIONS ... F2-4379
F2.4 Data-processing iNStrUCHIONSoooiiiiiiiiiie e F2-4380
F2.5 PSTATE and banked register access instructionsccccccceevviiieieeiiciinnennn. F2-4388
F2.6 Load/store iNStrUCIONScooiiiiiii e F2-4389
F2.7 Load/store multiple inStruCtionsccoiiiiiiiiiii F2-4392
F2.8 Miscellaneous INSTrUCLIONSoiiiiiii e F2-4393
F2.9 Exception-generating and exception-handling instructionscccccocee. F2-4395
F2.10 System register access inStrucCtionsccooceiiiiiiiiiieniee e F2-4397
F2.11 Advanced SIMD and floating-point load/store instructionscc.ccccccounee. F2-4398
F2.12 Advanced SIMD and floating-point register transfer instructions F2-4400
F2.13 Advanced SIMD data-processing inStruCtionscccoevveeiiieeeniieenieee e F2-4401
F2.14 Floating-point data-processing instructionscccccciiiiiiiieiiiiee e, F2-4412

Chapter F3 T32 Instruction Set Encoding
F3.1 T32 instruction set eNCOAINGoooiiiiiiiiiiie e F3-4416
F3.2 About the T32 Advanced SIMD and floating-point instructions and their encoding F3-4491

Chapter F4 A32 Instruction Set Encoding
F4.1 A32 instruction set eNCOdINGcooiiiiiii i F4-4494
F4.2 About the A32 Advanced SIMD and floating-point instructions and their encoding F4-4562

Chapter F5 T32 and A32 Base Instruction Set Instruction Descriptions
F5.1 Alphabetical list of T32 and A32 base instruction set instructions F5-4564
F5.2 Encoding and use of banked register transfer instructionsccc......... F5-5282

Chapter F6 T32 and A32 Advanced SIMD and Floating-point Instruction Descriptions
F6.1 Alphabetical list of Advanced SIMD and floating-point instructions F6-5288

Part G The AArch32 System Level Architecture

Chapter G1 The AArch32 System Level Programmers’ Model
G1.1 About the AArch32 System level programmers’ modelccocccceevineniennnns G1-6012
G1.2 EXCEPLON IEVEIS ..ot G1-6013
G1.3 Exception terminologyccccuviiieiiiiiiee e G1-6014
G1.4 EXECULION STAteeeeieiie e G1-6016
G1.5 Instruction Set stateccooiiiiiiii G1-6018
G1.6 SECUNMLY SEAE ..oiiiiiii e G1-6019
G1.7 Security state, Exception levels, and AArch32 execution privilege G1-6022
(€I TV (U= 12 (1] o PSSR G1-6024
G1.9 AArch32 state PE modes, and general-purpose and Special-purpose registers G1-6026
G1.10 Process state, PSTATE ..o G1-6035
G1.11 InStruction set Statesooocueiiiiiiii G1-6041
G1.12 Handling exceptions that are taken to an Exception level using AArch32 G1-6043
G1.13 Routing of aborts taken to AArch32 state ... G1-6062
G1.14 Exception return to an Exception level using AArch32cccooocvvieeeiieeens G1-6065
G1.15 Asynchronous exception behavior for exceptions taken from AArch32 state . G1-6070
G1.16 AArch32 state exception descriptionsccccceeveiiiiiiiiie e G1-6078
G1.17 Resetinto AArch32 statecccoiiiiiiiiiiii e G1-6100
G1.18 Mechanisms for entering a low-power stateccccooiiiiiii i G1-6104
G1.19 The AArch32 System register interfacecccccoovriiiiiiiii e G1-6109
G1.20 Advanced SIMD and floating-point SUPPOItcccceriiiirerie e G1-6112
G1.21 Configurable instruction enables and disables, and trap controls G1-6117

X Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Chapter G2 AArch32 Self-hosted Debug

G2.1 About self-hosted debUgcociiiiiiiii e G2-6154
G2.2 The debug exception enable CONtrolsccccceviiiiiiiiiiiii e G2-6158
G2.3 Routing debug eXCeplionscccviiiiiiiiiiici e G2-6159
G2.4 Enabling debug exceptions from the current Privilege level and Security state G2-6161
G2.5 The effect of powerdown on debug exceptionsccccveviiieriiiriiceeeneeeee G2-6163
G2.6 Summary of permitted routing and enabling of debug exceptions G2-6164
G2.7 Pseudocode description of debug exceptionscccoeviiiiiiii e G2-6166
G2.8 Breakpoint Instruction eXCeptionsccoceviiiiiiiiiiiii e G2-6167
G2.9 Breakpoint @XCEPLiONSciiiiiiiiie e G2-6170
G2.10 Watchpoint €XCEPHIONScccviiiiiiieeiie et G2-6195
G2.11 Vector Catch eXCeptionscceiiiiiiiiiee e G2-6209
G2.12 Synchronization and debug exceptionscccceiiiiiiiiniiiie e G2-6217
Chapter G3 AArch32 Self-hosted Trace
G3.1 About SEIf-hOSted traCeooiiuiiiiiii e G3-6220
G3.2 Prohibited regions in self-hosted tracecccccceeiiiiiiiiiii G3-6221
G3.3 Self-hosted trace timestampsccoiiiiiiiie i G3-6222
G3.4 Synchronization in self-hosted tracecccccciiiiiiin G3-6223
Chapter G4 The AArch32 System Level Memory Model
G41 About the memory system architectureccccoviiniiiiii e G4-6226
GA4.2 AdAIESS SPACE ..occiiiiiiieee et e ettt e et e e e e e e e e e e e e e e e e e e aaraeaeeaaares G4-6227
G4.3 Mixed-endian SUPPOItoeiiiiiiiiiie e e G4-6228
G4.4 AArch32 cache and branch predictor Supportcccoccveeeiiiiiiee e, G4-6229
G4.5 System register support for IMPLEMENTATION DEFINED memory features G4-6254
G4.6 EXternal @borts ..o G4-6255
G4.7 Memory barrier INSrUCIONSooiiiiiiiiii e G4-6257
G4.8 Pseudocode description of general memory System instructions G4-6258
Chapter G5 The AArch32 Virtual Memory System Architecture
G5.1 ADOUL VIMSANVSB-32 ...ttt G5-6262
G5.2 The effects of disabling address translation stages on VMSAv8-32 behavior G5-6270
G5.3 Translation tablesc.oiiiiiiiii e G5-6274
G5.4 The VMSAV8-32 Short-descriptor translation table formatccocceo G5-6279
G5.5 The VMSAV8-32 Long-descriptor translation table formatccocee G5-6288
G5.6 Memory acCess CONMIOlccccuviiiiiiiiiiee s G5-6308
G5.7 Memory region attributescccoiiiiiiii e G5-6319
G5.8 Translation Lookaside Buffers (TLBS)ccceeeriireiiiiriiie e G5-6332
G5.9 TLB maintenance reqUIrEMENtScccceeeeiiiiiiiiieeeciieeee e e e e e sreee e e e e G5-6336
G5.10 Caches in VIMSAVE-32cc.ioiiiiiiiiieiee sttt sttt G5-6351
G5.11 VMSAV8E-32 MEMOry @bOrSeoviiiiiiiiiee ittt e G5-6354
G5.12 Exception reporting in a VMSAV8-32 implementationcccccceeveiiiinnenee. G5-6367
G5.13 Address translation iNStrUCtIONScoccveiiiiiiii e G5-6386
G5.14 Pseudocode description of VMSAV8-32 memory system operations G5-6393
G5.15 About the System registers for VMSAV8-32coooiiiiiiiiiiiiiiee e G5-6396
G5.16 Functional grouping of VMSAV8-32 System registersccocceeviciiveeeeennen. G5-6401
Chapter G6 The Generic Timer in AArch32 state
G6.1 About the Generic Timer in AArch32 statecccoovoeiiieiii e, G6-6404
G6.2 The AArch32 view of the Generic TIMEercccciiiiiiiniee e G6-6408
Chapter G7 AArch32 System register Encoding
G7.1 The AArch32 System register encoding SPaCecccooveeeeiiieriieeiiiee e G7-6416

G7.2 VMSAV8-32 organization of registers in the (coproc==0b1110) encoding space G7-6417
G7.3 VMSAV8-32 organization of registers in the (coproc==0b1111) encoding space G7-6420

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
ID072021 Non-Confidential

Chapter G8 AArch32 System Register Descriptions

G8.1 About the AArch32 System registers ... G8-6438
G8.2 General system control regisSterscccoiuiiiiiiiiiiiee e G8-6454
G8.3 DebUQG FrEGISTEIS ..o G8-6945
G8.4 Performance Monitors regiStersccoviiireiiireeiie e G8-7074
G8.5 Activity MONItOrS regiStersceiiiiiiieiiie e G8-7155
G8.6 RAS FEQISTEIS . ..niieiiiee ittt e e e e e et e e e s earaeaa e an G8-7192
G8.7 Generic TIMEr FEQISLEIS ...cc.eeiiiiiieiiii e e G8-7253
Part H External Debug
Chapter H1 About External Debug
H1.1 Introduction to external debugoooiiiiiii i H1-7334
H1.2 EXternal debuUgcoooiiiiiiei e H1-7335
H1.3 Required debug authenticationcccciiiiiiiiiiii e H1-7336
Chapter H2 Debug State
H2.1 ADbOUL DEDUQG SEAEoiiiiiiiiiii e H2-7338
H2.2 Halting the PE on debug eVentsccooiiiiiiiiiiiei e H2-7339
H2.3 Entering Debug state ..o H2-7345
H2.4 Behavior in Debug State ... H2-7348
H2.5 EXiting Debug Statecoooiiiiii e H2-7375
Chapter H3 Halting Debug Events
H3.1 Introduction to Halting debug events ..o H3-7378
H3.2 Halting Step debug eVentsociiiiiiiiiiie e H3-7380
H3.3 Halt Instruction debug eventcccoeiiiiiii H3-7390
H3.4 Exception Catch debug eventoccoiiiiiiiiiii e H3-7391
H3.5 External Debug Request debug eventccoociiiiiiiiiiiiii e H3-7395
H3.6 OS Unlock Catch debug @Ventccccoiiiiiiiiiiiiiieie e H3-7396
H3.7 Reset Catch debug eVvents ... H3-7397
H3.8 Software Access debug eVENtcccoiiiiiiiiiiiciiee e H3-7398
H3.9 Synchronization and Halting debug eventscccoiiiiinci e, H3-7399
Chapter H4 The Debug Communication Channel and Instruction Transfer Register
H4.1 INEFOAUCHION ..o H4-7402
H4.2 DCC and ITR regiSterscooiiiiiiiiiiiiee it H4-7403
H4.3 DCC and ITR aCCESS MOUESc.eeiiiiiieiiiiieiiee et H4-7406
H4.4 Flow control of the DCC and ITR registerscccceveverierenieeeree e H4-7410
H4.5 Synchronization of DCC and ITR @CCESSES ...c.eeevvireiriiieriieeeiieeenieeeeeee e H4-7413
H4.6 Interrupt-driven use of the DCCcoooiiiiiiiii e H4-7418
H4.7 Pseudocode description of the operation of the DCC and ITR registers H4-7419
Chapter H5 The Embedded Cross-Trigger Interface
H5.1 About the Embedded Cross-Trigger (ECT)cooccviiieiiiiiiieee e H5-7422
H5.2 Basic operation onthe ECTocciiiiiiiiiiie e H5-7424
H5.3 Cross-triggers on a PE in an Armv8 implementationcccccoviiiiiiinnnen. H5-7428
H5.4 Description and allocation of CTItriggersccoooeeiiiiiiiie e H5-7429
H5.5 CTI registers programmers’ Modelcceeiiiiiiiieiiie e H5-7433
H5.6 EXAMIDIES e e e e e e e e e e e e e e H5-7434
Chapter H6 Debug Reset and Powerdown Support
H6.1 About Debug OVer POWEIAOWNuuiiiiiieiiieieeee e e eeeeeeea e e e e e e e e H6-7438
H6.2 Power domains and debugoooooiiiiiiiii e H6-7439
H6.3 Core power domain pOWEr Statesccovceeiiiiiiiiiee e H6-7440
H6.4 Powerup request mechanisSm ... H6-7442
H6.5 Emulating low-power States ..o H6-7444
xii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Chapter H7

Chapter H8

Chapter H9

Part |

Chapter 1

Chapter 12

Chapter I3

Chapter 14

Chapter I5

Part J

Chapter J1

H6.6
H6.7

H7.1

H8.1
H8.2
H8.3
H8.4
H8.5
H8.6
H8.7
H8.8

H9.1
H9.2
H9.3

11.1
11.2
1.3

12.1
12.2
12.3

13.1

14.1

15.1
156.2
156.3
15.4
15.5
15.6
15.7
15.8

J1.1
J1.2
J1.3

Debug OS Save and Restore SEQUENCESccceeviviiiiieeiniieeeriee e H6-7446
Reset and debuUgoooiiiiiiiii e H6-7452

The PC Sample-based Profiling Extension
About the PC Sample-based Profiling Extensioncccccocviniiiiniciiienes H7-7456

About the External Debug Registers

Relationship between external debug and System registerscccccoeeene H8-7460
Endianness and supported aCCeSS SIiZESuvriiiiiiiiieeeeiiieieie e H8-7461
Synchronization of changes to the external debug registersccccoeieenne H8-7462
Memory-mapped accesses to the external debug interfaceccceee... H8-7466
External debug interface register access permissionsccccvcveeiieeenieenn. H8-7468
External debug interface registerscccocvoiiiiiiii e H8-7472
Cross-trigger interface registers ..o H8-7479
External debug register resets ... H8-7481

External Debug Register Descriptions

About the debug registers ... H9-7486
External debug registers ... H9-7487
Cross-Trigger Interface regiStersccvvivcciiiie e H9-7599

Memory-mapped Components of the Armv8 Architecture

Requirements for Memory-mapped Components

SUPPOtEd ACCESS SIZES ..ocicuviiiieiiiiiiiee et e e et e e e e e e s aneeas 11-7656
Synchronization of memory-mapped registerscccvvvieiiieeicie e 11-7658
Access requirements for reserved and unallocated registerscccceeenee. 11-7660

System Level Implementation of the Generic Timer

About the Generic Timer specificationccccoviiiiiiiiiiee e, 12-7662
Memory-mapped counter Modulecccooiieiiiiiiiiiiie e 12-7664
Memory-mapped timer COMPONENTSccceiiiiiiiiieieie e 12-7668

Recommended External Interface to the Performance Monitors
About the external interface to the Performance Monitors registers 13-7674

Recommended External Interface to the Activity Monitors
About the external interface to the Activity Monitors Extension registers 14-7680

External System Control Register Descriptions

About the external system control register descriptionscccccviieiiiiiennne. 15-7684
External Performance Monitors registers summarycccccccevveeiiieeinieeene, 15-7686
Performance Monitors external register descriptionscc.ccccvveeiiiieeicinenne 15-7689
External Activity Monitors Extension registers summaryccccccoeiiiiieeennnes 15-7765
Activity Monitors external register descriptionscccccooviiiiiiiiiiee e, 15-7767
Generic Timer memory-mapped registers overviewcccccccevevveeeeeccvnenennn. 15-7804
Generic Timer memory-mapped register descriptionscccccovcviiiiiiiieenne 15-7805
RAS register desSCriptionSoiiiiiiiiiii et 15-7849

Architectural Pseudocode

Armv8 Pseudocode

Pseudocode for AArchB64 operationccccceeeevciieiieeiiiiiiee e J1-7960
Pseudocode for AArch32 operationc.cccceoiiieiniiiiiiee e J1-8134
Shared PSEUAOCOAEoooiiieiiiiieeieiee et e e e e e e J1-8221

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

xiii

Part K

Appendix K1
K1.1
K1.2

Appendix K2
K2.1
K2.2
K2.3
K2.4

Appendix K3

K3.1
K3.2

Appendix K4
K4.1

Appendix K5
K5.1
K5.2

Appendix K6
K6.1

Appendix K7
K7.1
K7.2

Appendix K8
K8.1
K8.2

Appendix K9
K9.1

Appendix K10
K10.1
K10.2

Appendix K11
K11.1
K11.2
K11.3
K11.4
K11.5
K11.6

Appendix K12
K12.1

Appendix K13
K13.1

Appendixes

Architectural Constraints on UNPREDICTABLE Behaviors
AArch32 CONSTRAINED UNPREDICTABLE behaviors
AArch64 CONSTRAINED UNPREDICTABLE behaviors

Recommended External Debug Interface
About the recommended external debug interface
PMUEVENT bus
Recommended authentication interface
Management registers and CoreSight compliance

K1-8386
K1-8408

K2-8426
K2-8430
K2-8431
K2-8432

Recommendations for Performance Monitors Event Numbers for

IMPLEMENTATION DEFINED Events
Arm recommendations for IMPLEMENTATION DEFINED event numbers

K3-8446

Summary of events for exceptions taken to an Exception level using AArch64 K3-8462

Recommendations for Reporting Memory Attributes on an
Arm recommendations for reporting memory attributes on an interconnect ...

Interconnect
K4-8466

Additional Information for Implementations of the Generic Timer

Providing a complete set of features in a system level implementation
Gray-count scheme for timer distribution scheme

Legacy Instruction Syntax for AArch32 Instruction Sets
Legacy INStruction SYNtaXc..ooeceieiiieiiie e
Address Translation Examples
AArch64 Address translation examples
AArch32 Address translation examples

Example OS Save and Restore Sequences
Save Debug registers
Restore Debug registers

K5-8468
K5-8470

K6-8472

K7-8480
K7-8492

K8-8502
K8-8504

Recommended Upload and Download Processes for External Debug

Using memory access mode in AArch64 state

Software Usage Examples
Use of the Advanced SIMD complex number instructions
Use of the Armv8.2 extensions to the Cryptographic Extension

Barrier Litmus Tests
Introduction
Load-Acquire, Store-Release and barriers
Load-Acquire Exclusive, Store-Release Exclusive and barriers
Using a mailbox to send an interrupt
Cache and TLB maintenance instructions and barriers
Armv7 compatible approaches for ordering, using DMB and DSB barriers ..

Random Number Generation
Properties of the generated random numberccccccoeiviiiiieccccieee e,
Legacy Feature Naming Convention

The Armv8.0 architecture

K9-8508

K10-8512
K10-8514

K11-8522
K11-8525
K11-8529
K11-8534
K11-8535
K11-8547

K12-8562

K13-8564

Xiv

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487G.b
ID072021

K13.2
K13.3
K13.4
K13.5
K13.6
K13.7

Appendix K14

K14.1
K14.2
K14.3
K14.4
K14.5
K14.6
K14.7
K14.8

Appendix K15

K15.1
K15.2
K15.3
K15.4
K15.5
K15.6
K15.7

The Armv8.1 architecture exteNSIONoooviviiiiciiieeee e K13-8565

The Armv8.2 architecture exteNSIONoovvviviiiiieeeee e K13-8566
The Armv8.3 architecture extenSIONoovviviiiiiiieeee e K13-8568
The Armv8.4 architecture extenSIONoovvviiiiiiiieeee e K13-8569
The Armv8.5 architecture extensioncooovviiiiiiieiiii i K13-8570
The Armv8.6 architecture extenSIONooviviiiiiiieeeee e K13-8571

Arm Pseudocode Definition

About the Arm pSEUdOCOEcooiiiiiiiiiiiii e K14-8574
Pseudocode for instruction descriptionsc.ceeiiiiiiiiiiiie e, K14-8575
Data tYPES ..t K14-8577
(0101 = 1 (o] £SO S UURRROSPPURRRN K14-8582
Statements and control StruCtUresccoeeeiiiiieiiee e K14-8588
BUIlt=in FUNCHONS ..o e K14-8593
Miscellaneous helper procedures and functionsc.cccccvieiiiieniiieineen, K14-8596
Arm pseudocode definition INAEXcccceiiiiiiiiiiii i K14-8598

Registers Index

Introduction and register disambiguationccoooiiiiie, K15-8602
Alphabetical index of AArch64 registers and System instructions K15-8607
Functional index of AArch64 registers and System instructions K15-8624
Alphabetical index of AArch32 registers and System instructions K15-8640
Functional index of AArch32 registers and System instructions K15-8650
Alphabetical index of memory-mapped registersccccccoviieriiiiniicenneen, K15-8662
Functional index of memory-mapped registersccoceeeiiieiiiiienicenneen, K15-8669
Glossary

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

XV

XVi Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Preface

This preface introduces the Arm Architecture Reference Manual, Armv8, for Armv8-A architecture profile. It

contains the following sections:

About this Manual on page xviii.
Using this Manual on page Xx.
Conventions on page XXvi.
Additional reading on page xxviii.

Feedback on page xxx.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

XVii

Preface
About this Manual

About this Manual

This manual describes the Arm® architecture v8, Armv8. The architecture describes the operation of an Armv8-A
Processing element (PE), and this Manual includes descriptions of:

The two Execution states, AArch64 and AArch32.

The instruction sets:

— In AArch32 state, the A32 and T32 instruction sets, that are compatible with earlier versions of the
Arm architecture.

— In AArché64 state, the A64 instruction set.

The states that determine how a PE operates, including the current Exception level and Security state, and in
AArch32 state the PE mode.

The Exception model.
The interprocessing model, that supports transitioning between AArch64 state and AArch32 state.

The memory model, that defines memory ordering and memory management. This manual covers a single
architecture profile, Armv8-A, that defines a Virtual Memory System Architecture (VMSA).

The programmers’ model, and its interfaces to System registers that control most PE and memory system
features, and provide status information.

The Advanced SIMD and floating-point instructions, that provide high-performance:
— Single-precision, half-precision, and double-precision floating-point operations.
— Conversions between double-precision, single-precision, and half-precision floating-point values.

— Integer, single-precision floating-point, and half-precision floating-point vector operations in all
instruction sets.

— Double-precision floating-point vector operations in the A64 instruction set.
The security model, that provides two Security states to support Secure applications.
The virtualization model.

The Debug architecture, that provides software access to debug features.

This manual gives the assembler syntax for the instructions it describes, meaning that it describes instructions in
textual form. However, this Manual is not a tutorial for Arm assembler language, nor does it describe Arm assembler
language, except at a very basic level. To make effective use of Arm assembler language, read the documentation
supplied with the assembler being used.

This manual is organized into parts:

Part A Provides an introduction to the Armv8-A architecture, and an overview of the AArch64 and

AArch32 Execution states.

Part B Describes the application level view of the AArch64 Execution state, meaning the view from ELO.

It describes the application level view of the programmers’ model and the memory model.

Part C Describes the A64 instruction set, that is available in the AArch64 Execution state. The descriptions

for each instruction also include the precise effects of each instruction when executed at ELO,
described as unprivileged execution, including any restrictions on its use, and how the effects of the
instruction differ at higher Exception levels. This information is of primary importance to authors
and users of compilers, assemblers, and other programs that generate Arm machine code.

Part D Describes the system level view of the AArch64 Execution state. It includes details of the System

registers, most of which are not accessible from EL0, and the system level view of the programmers’
model and the memory model. This part includes the description of self-hosted debug.

xviii

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Part E

Part F

Part G

Part H

Part1

PartJ

Preface
About this Manual

Describes the application level view of the AArch32 Execution state, meaning the view from the
ELO. It describes the application level view of the programmers’ model and the memory model.

Note

In AArch32 state, execution at ELO is execution in User mode.

Describes the T32 and A32 instruction sets, that are available in the AArch32 Execution state. These
instruction sets are backwards-compatible with earlier versions of the Arm architecture. This part
describes the precise effects of each instruction when executed in User mode, described as
unprivileged execution or execution at EL0, including any restrictions on its use, and how the effects
of the instruction differ at higher Exception levels. This information is of primary importance to
authors and users of compilers, assemblers, and other programs that generate Arm machine code.

Note

User mode is the only mode where software execution is unprivileged.

Describes the system level view of the AArch32 Execution state, that is generally compatible with
earlier versions of the Arm architecture. This part includes details of the System registers, most of
which are not accessible from ELO, and the instruction interface to those registers. It also describes
the system level view of the programmers’ model and the memory model.

Describes the Debug architecture for external debug. This provides configuration, breakpoint and
watchpoint support, and a Debug Communications Channel (DCC) to a debug host.

Describes additional features of the architecture that are not closely coupled to a processing element
(PE), and therefore are accessed through memory-mapped interfaces. Some of these features are
OPTIONAL.

Provides pseudocode that describes various features of the Armv8 architecture.

Part K, Appendixes

Glossary

Provide additional information. Some appendixes give information that is not part of the Armv8
architectural requirements. The cover page of each appendix indicates its status.

Defines terms used in this document that have a specialized meaning.

Note

Terms that are generally well understood in the microelectronics industry are not included in the
Glossary.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. Xix

Non-Confidential

Preface
Using this Manual

Using this Manual

The information in this Manual is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A gives an overview of the Armv8-A architecture profile, including its relationship to the other Arm PE
architectures. It introduces the terminology used to describe the architecture, and gives an overview of the
Executions states, AArch64 and AArch32. It contains the following chapter:

Chapter A1 Introduction to the Armv8 Architecture

Read this for an introduction to the Armv8 architecture.

Chapter A2 Armv8-A Architecture Extensions

Read this for an introduction to the Armv8 architecture extensions.

Part B, The AArch64 Application Level Architecture
Part B describes the AArch64 state application level view of the architecture. It contains the following chapters:

Chapter B1 The AArch64 Application Level Programmers’ Model

Read this for an application level description of the programmers’ model for software executing in
AArch64 state. It describes execution at ELO when ELO is using AArch64 state.

Chapter B2 The AArch64 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch64 state. It describes the memory model for execution in ELO when ELO is using AArch64
state. It includes information about Arm memory types, attributes, and memory access controls.

Part C, The A64 Instruction Set
Part C describes the A64 instruction set, that is used in AArch64 state. It contains the following chapters:

Chapter C1 The A64 Instruction Set

Read this for a description of the A64 instruction set and common instruction operation details.

Chapter C2 About the A64 Instruction Descriptions

Read this to understand the format of the A64 instruction descriptions.

Chapter C3 464 Instruction Set Overview
Read this for an overview of the individual A64 instructions, that are divided into five functional
groups.

Chapter C4 464 Instruction Set Encoding

Read this for a description of the A64 instruction set encoding.

Chapter C5 The A64 System Instruction Class
Read this for a description of the AArch64 System instructions and register descriptions, and the
System instruction class encoding space.

Chapter C6 464 Base Instruction Descriptions
Read this for information on key aspects of the A64 base instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions

Read this for information on key aspects of the A64 Advanced SIMD and floating-point instructions
and for descriptions of the individual instructions, which are listed in alphabetical order.

XX Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Preface
Using this Manual

Part D, The AArch64 System Level Architecture

Part D describes the AArch64 state system level view of the architecture. It contains the following chapters:

Chapter D1 The AArch64 System Level Programmers’ Model

Read this for a description of the AArch64 state system level view of the programmers’ model.

Chapter D2 AArch64 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter D3 AArch64 Self-hosted Trace

Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter D4 The AArch64 System Level Memory Model

Read this for a description of the AArch64 state system level view of the general features of the
memory system.

Chapter D5 The AArch64 Virtual Memory System Architecture

Read this for a system level view of the AArch64 Virtual Memory System Architecture (VMSA),
the memory system architecture of an Armv8 implementation executing in AArch64 state.

Chapter D7 The Performance Monitors Extension

Read this for a description of an implementation of the Arm Performance Monitors, an optional
non-invasive debug component.

Chapter D8 The Activity Monitors Extension

Read this for a description of an implementation of the Arm Activity Monitors, an optional
non-invasive component.

Chapter D9 The Statistical Profiling Extension

Read this for a description of an implementation of the Statistical Profiling Extension, an optional
AArch64 state non-invasive debug component.

Chapter D10 Statistical Profiling Extension Sample Record Specification

Read this for a description the sample records generated by the Statistical Profiling Extension.
Chapter D11 The Generic Timer in AArch64 state

Read this for a description of the AArch64 view of an implementation of the Arm Generic Timer.

Chapter D12 AArch64 System Register Encoding

Read this for a description of the encoding of the AArch64 System registers, and the other uses of
the AArch64 System registers encoding space.

Chapter D13 AArch64 System Register Descriptions

Read this for an introduction to, and description of, each of the AArch64 System registers.

Part E, The AArch32 Application Level Architecture

Part E describes the AArch32 state application level view of the architecture. It contains the following chapters:

Chapter E1 The AArch32 Application Level Programmers’ Model
Read this for an application level description of the programmers’ model for software executing in
AArch32 state. It describes execution at ELO when ELO is using AArch32 state.

Chapter E2 The AArch32 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch32 state. It describes the memory model for execution in ELO when ELO is using AArch32
state. It includes information about Arm memory types, attributes, and memory access controls.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. XXi
ID072021 Non-Confidential

Preface
Using this Manual

Part F, The AArch32 Instruction Sets
Part F describes the T32 and A32 instruction sets, that are used in AArch32 state. It contains the following chapters:

Chapter F1 About the T32 and A32 Instruction Descriptions
Read this to understand the format of the T32 and A32 instruction descriptions.

Chapter F2 The AArch32 Instruction Sets Overview

Read this for an overview of the T32 and A32 instruction sets.

Chapter F3 732 Instruction Set Encoding

Read this for a description of the T32 instruction set encoding. This includes the T32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter ¥4 432 Instruction Set Encoding

Read this for a description of the A32 instruction set encoding. This includes the A32 encoding of
the Advanced SIMD and floating-point instructions.

Chapter F5 732 and A32 Base Instruction Set Instruction Descriptions
Read this for a description of each of the T32 and A32 base instructions.

Chapter F6 732 and A32 Advanced SIMD and Floating-point Instruction Descriptions

Read this for a description of each of the T32 and A32 Advanced SIMD and floating-point
instructions.

Part G, The AArch32 System Level Architecture

Part G describes the AArch32 state system level view of the architecture. It contains the following chapters:

Chapter G1 The AArch32 System Level Programmers’ Model

Read this for a description of the AArch32 state system level view of the programmers’ model for
execution in an Exception level that is using AArch32.

Chapter G2 AArch32 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter G3 AArch32 Self-hosted Trace

Read this for an introduction to, and a description of, self-hosted trace in AArch64 state.

Chapter G4 The AArch32 System Level Memory Model

Read this for a system level view of the general features of the memory system.

Chapter G5 The AArch32 Virtual Memory System Architecture
Read this for a description of the AArch32 Virtual Memory System Architecture (VMSA).

Chapter G6 The Generic Timer in AArch32 state

Read this for a description of the AArch32 view of an implementation of the Arm Generic Timer.

Chapter G7 AArch32 System register Encoding
Read this for a description of the encoding of the AArch32 System registers, including the System
instructions that are part of the AArch32 System registers encoding space.

Chapter G8 AArch32 System Register Descriptions
Read this for a description of each of the AArch32 System registers.

xxii Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Preface
Using this Manual

Part H, External Debug

Part H describes the architecture for external debug. It contains the following chapters:

Chapter H1 About External Debug

Read this for an introduction to external debug, and a definition of the scope of this part of the
manual.

Chapter H2 Debug State

Read this for a description of Debug state, which the PE might enter as the result of a Halting debug
event.

Chapter H3 Halting Debug Events

Read this for a description of the external debug events referred to as Halting debug events.

Chapter H4 The Debug Communication Channel and Instruction Transfer Register

Read this for a description of the communication between a debugger and the PE debug logic using
the Debug Communications Channel and the Instruction Transfer register.

Chapter H5 The Embedded Cross-Trigger Interface

Read this for a description of the embedded cross-trigger interface.

Chapter H6 Debug Reset and Powerdown Support

Read this for a description of reset and powerdown support in the Debug architecture.

Chapter H7 The PC Sample-based Profiling Extension

Read this for a description of the PC Sample-based Profiling Extension that is an OPTIONAL
extension to an Armv8 implementation.

Chapter H8 About the External Debug Registers

Read this for some additional information about the external debug registers.

Chapter H9 External Debug Register Descriptions

Read this for a description of each external debug register.

Part I, Memory-mapped Components of the Armv8 Architecture
Part I describes the memory-mapped components in the architecture. It contains the following chapters:

Chapter I1 Requirements for Memory-mapped Components
Read this for descriptions of some general requirements for memory-mapped components within a
system that complies with the Armv8 Architecture.

Chapter 12 System Level Implementation of the Generic Timer

Read this for a definition of a system level implementation of the Generic Timer.

Chapter 13 Recommended External Interface to the Performance Monitors
Read this for a description of the recommended memory-mapped and external debug interfaces to
the Performance Monitors.

Chapter 14 Recommended External Interface to the Activity Monitors

Read this for a description of the recommended memory-mapped interface to the Activity Monitors.

Chapter IS External System Control Register Descriptions

Read this for a description of each memory-mapped system control register.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. xxiii
ID072021 Non-Confidential

Preface
Using this Manual

Part J, Architectural Pseudocode
Part J contains pseudocode that describes various features of the Arm architecture. It contains the following chapter:

Chapter J1 Armv8 Pseudocode

Read this for the pseudocode definitions that describe various features of the Armv8 architecture,
for operation in AArch64 state and in AArch32 state.

Part K, Appendixes
This manual contains the following appendixes:

Appendix K1 Architectural Constraints on UNPREDICTABLE Behaviors

Read this for a description of the architecturally-required constraints on UNPREDICTABLE behaviors
in the ArmvS8 architecture, including AArch32 behaviors that were UNPREDICTABLE in previous
versions of the architecture.

Appendix K2 Recommended External Debug Interface

Read this for a description of the recommended external debug interface.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION
DEFINED Events

Read this for a description of Arm recommendations for the use of the IMPLEMENTATION DEFINED
event numbers.
Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K4 Recommendations for Reporting Memory Attributes on an Interconnect
Read this for the Arm recommendations about how the architectural memory attributes are reported
on an interconnect.

Appendix KS Additional Information for Implementations of the Generic Timer
Read this for additional information about implementations of the Arm Generic Timer. This
information does not form part of the architectural definition of the Generic Timer.

Appendix K6 Legacy Instruction Syntax for AArch32 Instruction Sets
Read this for information about the pre-UAL syntax of the AArch32 instruction sets, which can still
be valid for the A32 instruction set.

Appendix K7 Address Translation Examples

Read this for examples of translation table lookups using the translation regimes described in
Chapter D5 The AArch64 Virtual Memory System Architecture and Chapter G5 The AArch32 Virtual
Memory System Architecture.

Appendix K8 Example OS Save and Restore Sequences

Read this for software examples that perform the OS Save and Restore sequences for an Armv8
debug implementation.

XXiv Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Glossary

Preface
Using this Manual

Note
Chapter H6 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism.

Appendix K9 Recommended Upload and Download Processes for External Debug
Read this for information about implementing and using the Arm architecture.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K10 Software Usage Examples

Read this for software examples that help understanding of some aspects of the Arm architecture.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K11 Barrier Litmus Tests
Read this for examples of the use of barrier instructions provided by the Armv8 architecture.

Note

This description is not part of the Arm architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

Appendix K14 Arm Pseudocode Definition
Read this for definitions of the AArch32 pseudocode.

Appendix K15 Registers Index

Read this for an alphabetic and functional index of AArch32 and AArch64 registers, and
memory-mapped registers.

Defines terms used in this document that have a specialized meaning.

Note

Terms that are generally well understood in the microelectronics industry are not included in the Glossary.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. XXV
Non-Confidential

Preface

Conventions
Conventions
The following sections describe conventions that this book can use:
. Typographic conventions on page XXvi.
. Signals on page xxvii.
. Numbers on page xxvii.
. Pseudocode descriptions on page xxvii.
. Assembler syntax descriptions on page XXVii.

Typographic conventions

The typographical conventions are:

italic

bold

monospace

Introduces special terminology, and denotes citations.
Denotes signal names, and is used for terms in descriptive lists, where appropriate.

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Colored text

{and}

Notes

Used in body text for a few terms that have specific technical meanings, and are defined in the
Glossary.

Indicates a link. This can be:
. A URL, for example https://developer.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Assembler syntax descriptions on page Xxvii.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Simple sequential execution or SCTLR.

Braces, { and }, have two distinct uses:

Optional items
In syntax descriptions braces enclose optional items. In the following example they
indicate that the <shift> parameter is optional:
ADD <Wd|WSP>, <Wn|WSP>, #<imm>{, <shift>}
Similarly they can be used in generalized field descriptions, for example
TCR_ELx.{I}PS refers to a field in the TCR_ELx registers that is called either IPS or
PS.

Sets of items

Braces can be used to enclose sets. For example, HCR_EL2.{E2H, TGE} refers to a set
of two register fields, HCR_EL2.E2H and HCR_EL2.TGE

Notes are formatted as:

Note
This is a Note.

In this Manual, Notes are used only to provide additional information, usually to help understanding
of the text. While a Note may repeat architectural information given elsewhere in the Manual, a
Note never provides any part of the definition of the architecture.

XXVi Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Preface
Conventions

Signals
In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:
Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
. HIGH for active-HIGH signals.
. LOW for active-LOW signals.
Lowercase n At the start or end of a signal name denotes an active-LOW signal.
Numbers

Numbers are normally written in decimal. Binary numbers are preceded by @b, and hexadecimal numbers by 0x. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions
This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in monospace font, and is described in Appendix K14 Arm Pseudocode Definition.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in Structure of the A64
assembler language on page C1-195, and Appendix K14 Arm Pseudocode Definition.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. XXVii
ID072021 Non-Confidential

Preface
Additional reading

Additional reading

This section lists relevant publications from Arm and third parties.

See Arm Developer, https://developer.arm.com, for access to Arm documentation.

Arm publications

Other publications

ARM® AMBA® 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1, (ARM IHI 0032B).
ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).

ARM® Architecture Reference Manual Supplement, ARMvS, for the ARMvS-R AArch32 architecture profile
(ARM DDI 0568).

ARM® Debug Interface Architecture Specification, ADIv6.0 (ARM IHI 0074).
ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIv5.2 (ARM IHI 0031).
ARM® Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM THI 0064).

ARM" Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0
(ARM IHI 0069).

ARM® CoreSight™ SoC Technical Reference Manual (ARM DDI 0480).
ARM® CoreSight™ Architecture Specification (ARM IHI 0029).
ARM® Procedure Call Standard for the ARM 64-bit Architecture (ARM IHI 0055).

Arm® Reliability, Availability, and Serviceability (RAS) Specification, Armv8, for the Armv8-A architecture
profile (ARM DDI 0587).

Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A (ARM
DDI 0584).

Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring

(MPAM), for A-Profile Architecture (ARM DDI 0598).

The following publications are referred to in this Manual, or provide more information:

Announcing the Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, November 2001.

IEEE Std 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.
IEEE Std 754-1985, IEEE Standard for Floating-point Arithmetic, March 1985.
Secure Hash Standard (SHA), Federal Information Processing Standards Publication 180-2, August 2002.

The Galois/Counter Mode of Operation, McGraw, D. and Viega, J., Submission to NIST Modes of Operation
Process, January 2004.

Memory Consistency Models for Shared Memory-Multiprocessors, Gharachorloo, Kourosh, 1995, Stanford
University Technical Report CSL-TR-95-685.

Standard Manufacturer’s Identification Code, JEP106, JEDEC Solid State Technology Association.
SM3 Cryptographic Hash Algorithm, China Internet Network Information Center (CNNIC).
SM4 Block Cipher Algorithm, China Internet Network Information Center (CNNIC).

The QARMA Block Cipher Family, Roberto Avanzi, Qualcomm Product Security Initiative.

Xxviii

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Preface
Additional reading

Available from https://eprint.iacr.org/2016/444.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. XXiX
ID072021 Non-Confidential

Preface
Feedback

Feedback

Arm welcomes feedback on its documentation.

Feedback on this Manual

If you have comments on the content of this Manual, send email to errata@arm.com. Give:

The title, Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile.

The number, ARM DDI 0487G.b.

The section name to which your comments refer.
The page numbers to which your comments refer.
A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior of
any document when viewed with any other PDF reader.

Progressive Terminology Commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

Previous issues of this document included terms that can be offensive. We have replaced these terms. If you find
offensive terms in this document, please contact terms@arm. com.

XXX

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487G.b
ID072021

Part A

Armv8 Architecture Introduction and Overview

Chapter A1
Introduction to the Armv8 Architecture

This chapter introduces the Arm architecture. It contains the following sections:
. About the Arm architecture on page Al1-34.

. Architecture profiles on page A1-36.

. Armv8 architectural concepts on page A1-37.

. Supported data types on page A1-40.

. Advanced SIMD and floating-point support on page A1-52.

. The Arm memory model on page A1-62.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-33
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.1 About the Arm architecture

A11

About the Arm architecture

The Arm architecture described in this Architecture Reference Manual defines the behavior of an abstract machine,
referred to as a processing element, often abbreviated to PE. Implementations compliant with the Arm architecture
must conform to the described behavior of the processing element. It is not intended to describe how to build an
implementation of the PE, nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the Arm architecture must be the same as a simple sequential execution of the program on the
processing element. This programmer-visible behavior does not include the execution time of the program.

The Arm Architecture Reference Manual also describes rules for software to use the processing element.
The Arm architecture includes definitions of:

. An associated debug architecture, see:

Chapter D2 AArch64 Self-hosted Debug.

Chapter G2 AArch32 Self-hosted Debug.

Part H of this Manual, External Debug on page Part H-7331.

. Associated trace architectures that define PE Trace Units that implementers can implement with the
associated processor hardware. For more information, see:

— The Embedded Trace Macrocell Architecture Specification.
Chapter D3 AArch64 Self-hosted Trace.
— Chapter G3 4A4rch32 Self-hosted Trace.

The Arm architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

. A large uniform register file.

. A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

. Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

The architecture defines the interaction of the PE with memory, including caches, and includes a memory translation
system. It also describes how multiple PEs interact with each other and with other observers in a system.

This document defines the Armv8-A architecture profile. See Architecture profiles on page A1-36 for more
information.

The Arm architecture supports implementations across a wide range of performance points. Implementation size,
performance, and very low power consumption are key attributes of the Arm architecture.

An important feature of the Armv8 architecture is backwards compatibility, combined with the freedom for optimal
implementation in a wide range of standard and more specialized use cases. The Armv8 architecture supports:

. A 64-bit Execution state, AArch64.
. A 32-bit Execution state, AArch32, that is compatible with previous versions of the Arm architecture.

Note

The AArch32 Execution state is compatible with the Armv7-A architecture profile, and enhances that profile to
support some features included in the AArch64 Execution state.

Features that are optional are explicitly defined as such in this Manual.

Note

The presence of an ID register field for a feature does not imply that the feature is optional.

A1-34

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.1 About the Arm architecture

Both Execution states support SIMD and floating-point instructions:
. AArch32 state provides:
— SIMD instructions in the base instruction sets that operate on the 32-bit general-purpose registers.

— Advanced SIMD instructions that operate on registers in the SIMD and floating-point register
(SIMD&FP register) file.

— Floating-point instructions that operate on registers in the SIMD&FP register file.

. AArch64 state provides:
— Advanced SIMD instructions that operate on registers in the SIMD&FP register file.
— Floating-point instructions that operate on registers in the SIMD&FP register file.

Note

See Conventions on page xxvi for information about conventions used in this Manual, including the use of SMALL
CAPITALS for particular terms that have Arm-specific meanings that are defined in the Glossary.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-35
Non-Confidential

Introduction to the Armv8 Architecture
A1.2 Architecture profiles

A1.2 Architecture profiles

The Arm architecture has evolved significantly since its introduction, and Arm continues to develop it. Eight major

versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the first three

versions are now obsolete.

The generic names AArch64 and AArch32 describe the 64-bit and 32-bit Execution states:

AArch64 Is the 64-bit Execution state, meaning addresses are held in 64-bit registers, and instructions in the
base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64
instruction set.

AArch32 Is the 32-bit Execution state, meaning addresses are held in 32-bit registers, and instructions in the
base instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and
A32 instruction sets.

Note

The Base instruction set comprises the supported instructions other than the Advanced SIMD and floating-point

instructions.

See sections Execution state on page A1-37 and The Armv8 instruction sets on page A1-38 for more information.

Arm defines three architecture profiles:

A Application profile, described in this Manual:

. Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit MMU).

Note
An Armv8-A implementation can be called an AArchv§-A implementation.

. Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

. Supports the A32 and T32 instruction sets.

M Microcontroller profile:

. Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

. Implements a variant of the R-profile PMSA.

. Supports a variant of the T32 instruction set.

Note

This Architecture Reference Manual describes only the Armv8-A profile.

For information about the R and M architecture profiles, and earlier Arm architecture versions see:

. The ARM™ Architecture Reference Manual Supplement, ARMVS, for the ARMv8-R AArch32 architecture

profile.

. The ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

. The Arm®v8-M Architecture Reference Manual.

. The ARM™v7-M Architecture Reference Manual.

. The ARM™v6-M Architecture Reference Manual.

A1-36 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.3 Armv8 architectural concepts

A1.3 Armv8 architectural concepts

Armv8 introduces major changes to the Arm architecture, while maintaining a high level of consistency with
previous versions of the architecture. The Armv8 Architecture Reference Manual includes significant changes in
the terminology used to describe the architecture, and this section introduces both the Armv8 architectural concepts
and the associated terminology.

The following subsections describe key Armv8 architectural concepts. Each section introduces the corresponding
terms that are used to describe the architecture:

. Execution state on page Al1-37.
. The ArmvS8 instruction sets on page A1-38.
. System registers on page A1-38.

. Armv8 Debug on page A1-39.

A1.3.1 Execution state

The Execution state defines the PE execution environment, including:
. The supported register widths.
. The supported instruction sets.
. Significant aspects of:
— The Exception model.
— The Virtual Memory System Architecture (VMSA).
— The programmers’ model.

The Execution states are:

AArch64 The 64-bit Execution state. This Execution state:
. Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure link
register.
. Provides a 64-bit Program Counter (PC), stack pointers (SPs), and Exception Link Registers
(ELRs).
. Provides 32 128-bit registers for SIMD vector and scalar floating-point support.
. Provides a single instruction set, A64. For more information, see The Armv8 instruction sets

on page A1-38.
. Defines the Armv8 Exception model, with up to four Exception levels, ELO - EL3, that
provide an execution privilege hierarchy, see Exception levels on page D1-2454.

. Provides support for 64-bit virtual addressing. For more information, including the limits on
address ranges, see Chapter D5 The AArch64 Virtual Memory System Architecture.

. Defines a number of Process state (PSTATE) elements that hold PE state. The A64
instruction set includes instructions that operate directly on various PSTATE elements.

. Names each System register using a suffix that indicates the lowest Exception level at which
the register can be accessed.
AArch32 The 32-bit Execution state. This Execution state:

. Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and Link Register (LR).
The LR is used as both an ELR and a procedure link register.

Some of these registers have multiple banked instances for use in different PE modes.

. Provides a single ELR, for exception returns from Hyp mode.
. Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-point support.
. Provides two instruction sets, A32 and T32. For more information, see The Armv8 instruction

sets on page A1-38.

. Supports the Armv7-A Exception model, based on PE modes, and maps this onto the Armv§
Exception model, that is based on the Exception levels.

. Provides support for 32-bit virtual addressing.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-37
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.3 Armv8 architectural concepts

. Defines a number of Process state (PSTATE) elements that hold PE state. The A32 and T32
instruction sets include instructions that operate directly on various PSTATE elements, and
instructions that access PSTATE by using the Application Program Status Register (APSR)
or the Current Program Status Register (CPSR).

Later subsections give more information about the different properties of the Execution states.

Transferring control between the AArch64 and AArch32 Execution states is known as inferprocessing. The PE can
move between Execution states only on a change of Exception level, and subject to the rules given in
Interprocessing on page D1-2545. This means different software layers, such as an application, an operating system
kernel, and a hypervisor, executing at different Exception levels, can execute in different Execution states.

A1.3.2 The Armv8 instruction sets
In Armv§ the possible instruction sets depend on the Execution state:
AArch64 AArch64 state supports only a single instruction set, called A64. This is a fixed-length instruction
set that uses 32-bit instruction encodings.
For information on the A64 instruction set, see Chapter C3 464 Instruction Set Overview.
AArch32 AArch32 state supports the following instruction sets:
A32 This is a fixed-length instruction set that uses 32-bit instruction encodings.
T32 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction
encodings.
In previous documentation, these instruction sets were called the ARM and Thumb instruction sets.
Armv8 extends each of these instruction sets. In AArch32 state, the Instruction set state determines
the instruction set that the PE executes.
For information on the A32 and T32 instruction sets, see Chapter F2 The AArch32 Instruction Sets
Overview.
The ArmvS8 instruction sets support SIMD and scalar floating-point instructions. See Advanced SIMD and
floating-point support on page A1-52.
A1.3.3 System registers
System registers provide control and status information of architected features.
The System registers use a standard naming format: <register name>.<bit_field name> to identify specific
registers as well as control and status bits within a register.
Bits can also be described by their numerical position in the form <register name>[x:y] or the generic form
bits[x:y].
In addition, in AArch64 state, most register names include the lowest Exception level that can access the register as
a suffix to the register name:
. <register name> ELx, where x is 0, 1, 2, or 3.
For information about Exception levels, see Exception levels on page D1-2454.
The System registers comprise:
. The following registers that are described in this Manual:
— General system control registers.
— Debug registers.
— Generic Timer registers.
— Optionally, Performance Monitor registers.
— Optionally, the Activity Monitors registers.
A1-38 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.3 Armv8 architectural concepts

. Optionally, one or more of the following groups of registers that are defined in other Arm architecture
specifications:

— Trace System registers, as defined in the Embedded Trace Macrocell Architecture Specification,
ETMv4.

— Scalable Vector Extension System registers, as defined in the Arm® Architecture Reference Manual
Supplement, The Scalable Vector Extension (SVE), for Armv8-A.

— Generic Interrupt Controller (GIC) System registers, see The Arm Generic Interrupt Controller
System registers on page Al1-39.

. RAS Extension System registers, as defined in the Arm® Reliability, Availability, and Serviceability (RAS)
Specification, Armv8, for the Armv8-A architecture profile. The RAS Extension is a mandatory extension to
the Armv8.2 architecture, and an OPTIONAL extension to the Armv8.0 and the Armv8.1 architectures.

For information about the AArch64 System registers, see Chapter D13 A4rch64 System Register Descriptions.

For information about the AArch32 System registers, see Chapter G8 AA4rch32 System Register Descriptions.

The Arm Generic Interrupt Controller System registers

From version 3 of the Arm Generic Interrupt Controller architecture, GICv3, the GIC architecture specification
defines a System register interface to some of its functionality. The System register summaries in this Manual
include these registers, see:

. About the GIC System registers on page D12-3037, for more information about the AArch64 GIC System
registers.

. About the GIC System registers on page G7-6434, for more information about the AArch32 GIC System
registers.

These sections give only short overviews of the GIC System registers. For more information, including descriptions
of the registers, see the ARM™ Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0
and version 4.0 (ARM IHI 0069).

Note

The programmers’ model for earlier versions of the GIC architecture is wholly memory-mapped.

A1.3.4 Armv8 Debug

Armv8 supports the following:

Self-hosted debug

In this model, the PE generates debug exceptions. Debug exceptions are part of the Armv§8
Exception model.

External debug

In this model, debug events cause the PE to enter Debug state. In Debug state, the PE is controlled
by an external debugger.

All Armv8 implementations support both models. The model chosen by a particular user depends on the debug
requirements during different stages of the design and development life cycle of the product. For example, external
debug might be used during debugging of the hardware implementation and OS bring-up, and self-hosted debug
might be used during application development.

For more information about self-hosted debug:
. In AArch64 state, see Chapter D2 AArch64 Self-hosted Debug.
. In AArch32 state, see Chapter G2 AArch32 Self-hosted Debug.

For more information about external debug, see Part H External Debug on page Part H-7331.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-39
Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types

A1.4 Supported data types
The Armv8 architecture supports the following integer data types:
Byte 8 bits.
Halfword 16 bits.
Word 32 bits.
Doubleword 64 bits.
Quadword 128 bits.
The architecture also supports the following floating-point data types:
. Half-precision, see Half-precision floating-point formats on page A1-44 for details.
. Single-precision, see Single-precision floating-point format on page A1-46 for details.
. Double-precision, see Double-precision floating-point format on page A1-47 for details.
. BFloatl6, see BFloatl6 floating-point format on page A1-48 for details.
It also supports:
. Fixed-point interpretation of words and doublewords. See Fixed-point format on page A1-50.
. Vectors, where a register holds multiple elements, each of the same data type. See Vector formats on
page A1-41 for details.
The Armv8 architecture provides two register files:
. A general-purpose register file.
. A SIMD&FP register file.
In each of these, the possible register widths depend on the Execution state.
In AArch64 state:
. A general-purpose register file contains 64-bit registers:

— Many instructions can access these registers as 64-bit registers or as 32-bit registers, using only the
bottom 32 bits.

. A SIMD&FP register file contains 128-bit registers:

— The quadword integer data types only apply to the SIMD&FP register file.

— The floating-point data types only apply to the SIMD&FP register file.

— While the AArch64 vector registers support 128-bit vectors, the effective vector length can be 64-bits
or 128-bits depending on the A64 instruction encoding used, see /nstruction Mnemonics on
page C1-197.

For more information on the register files in AArch64 state, see Registers in AArch64 Execution state on
page B1-117.
In AArch32 state:
. A general-purpose register file contains 32-bit registers:

— Two 32-bit registers can support a doubleword.

— Vector formatting is supported, see Figure A1-4 on page A1-44.
. A SIMD&FP register file contains 64-bit registers:

— AArch32 state does not support quadword integer or floating-point data types.

Note

Two consecutive 64-bit registers can be used as a 128-bit register.

For more information on the register files in AArch32 state, see The general-purpose registers, and the PC, in
AArch32 state on page E1-4251.
A1-40 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.4 Supported data types

A1.41 Vector formats

In an implementation that includes the SIMD instructions that operate on the SIMD&FP register file, a register can
hold one or more packed elements, all of the same size and type. The combination of a register and a data type
describes a vector of elements. The vector is considered to be an array of elements of the data type specified in the
instruction. The number of elements in the vector is implied by the size of the data elements and the size of the
register.

Vector indices are in the range 0 to (number of elements — 1). An index of 0 refers to the least significant end of the
vector.

Vector formats in AArch64 state

In AArch64 state, the SIMD&FP registers can be referred to as Vi, where # is a value from 0 to 31.

The SIMD&FP registers support three data formats for loads, stores, and data-processing operations:

. A single, scalar, element in the least significant bits of the register.
. A 64-bit vector of byte, halfword, or word elements.
. A 128-bit vector of byte, halfword, word, or doubleword elements.

The element sizes are defined in Table A1-1 on page A1-41 with the vector format described as:
. For a 128-bit vector: Vn{.2D, .4S, .8H, .16B}.
. For a 64-bit vector: Vn{.1D, .2S, .4H, .8B}.

Table A1-1 SIMD elements in AArch64 state

Mnemonic Size

B 8 bits
H 16 bits
S 32 bits
D 64 bits
Figure Al-1 on page A1-42 shows the SIMD vectors in AArch64 state.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-41

ID072021

Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types

128-bit vector of 64-bit elements (.2D)

128-bit vector of 32-bit elements (.4S)

128-bit vector of 16-bit elements (.8H)

128-bit vector of 8-bit elements (.16B)

127 112 111 96 95

80 79 64 63 48 47 32 31 16 15 0

Vn

(1]

[0]

(3]

Al (1] []

H H

H

H H H H H

(71 [6]

(3]

(4] (3] (2] (1] [0]

B|(B|B|B|B

B|(B|B|B|B|(B|B|B|B|.B|.B

[15] [14] [13] [12] [11] [10] [9] [8] [7] [6] [S] [4] [3] [2 [[O]

64-bit vector of 32-bit elements (.2S) .S .S

64-bit vector of 16-bit elements (.4H) H H H H

64-bit vector of 8-bit elements (8B) [B|(.B| B|.B|(.B|.B|.B|.B

Vector formats in AArch32 state

63 48 47 3231 16 15 0
Vn

(1] [0]

(3] (2] (1] [0]

(71 © [B1 4 381 [21 [1] [0]

Figure A1-1 SIMD vectors in AArch64 state

Table A1-2 on page A1-42 shows the available formats. Each instruction description specifies the data types that

the instruction supports.

Table A1-2 Advanced SIMD data types in AArch32 state

Data type specifier

Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

I<size> Signed or unsigned integer of <size> bits
.P<size> Polynomial over {0, 1} of degree less than <size>
.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

Polynomial arithmetic over {0, 1} on page A1-50 describes the polynomial data type.

The .F16 data type is the half-precision data type selected by the FPSCR.AHP bit, see Half-precision floating-point

formats on page Al1-44.

The .F32 data type is the Arm standard single-precision floating-point data type, see Single-precision floating-point

format on page Al-46.

A1-42

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

Introduction to the Armv8 Architecture
A1.4 Supported data types

The instruction definitions use a data type specifier to define the data types appropriate to the operation. Figure A1-2
on page A1-43 shows the hierarchy of the Advanced SIMD data types.

S8
18
8 .us
: P8
516
. 116 6
' P16t
F16
832
132
U32
32 us
F32
.564
64 164 Ue4
: P64t

1 Output format only. See VMULL instruction description.

I Available only if the Cyptographic Extension is implemented.
See VMULL instruction description.

Figure A1-2 Advanced SIMD data type hierarchy in AArch32 state
For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as
signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have

to distinguish between signed and unsigned inputs.
Figure A1-3 on page A1-44 shows the Advanced SIMD vectors in AArch32 state.
Note

In AArch32 state, a pair of even and following odd numbered doubleword registers can be concatenated and treated
as a single quadword register.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-43
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types

128-bit vector of double-precision
(64-bit) elements

128-bit vector of single-precision
(32-bit) elements

128-bit vector of 16-bit elements

128-bit vector of 8-bit elements

127 11211 96 95 80 79 64 63 48 47 32 31 16 15 0
Qn
.64 64
(1] [0]
.32 .32 .32 .32
(3] (2] (1] [0]

.16 .16 .16 .16 .16 .16 .16 .16
[7] [6] (8] [4] [3] [2 (11 [0
8|18(8|8|8(8|8)]8|8(8|]8|8(8|].8]|..8]|3.8
(18] [14] [13] [12] [11] [10] [9] [8] [7]1 [6] [5] [41 [3] [2] [1] [O]

63 48 47 32 31 16 15 0
Dn
64-bit vector of 32-bit elements .32 .32
(1] [0]
64-bit vector of 16-bit elements 16 16 .16 .16
[3] [2 (11 [
64-bit vector of 8-bitelements | 8 (8 8| 8| .8| .8 .8[.8
(71 [6] [5] [4] [3] [2] [1] [O]

Figure A1-3 Advanced SIMD vectors in AArch32 state

The AArch32 general-purpose registers support vectors formats for use by the SIMD instructions in the Base
instruction set. Figure A1-4 on page A1-44 shows these formats, that means that a general-purpose register can be
treated as either 2 halfwords or 4 bytes.

31 2423 16 15 8 7 0
Rn
32-bit general-purpose register 16 16
as a set of two halfwords))
(11 []
32-bit general-purpose register 8 8 8 8
as a set of four bytes

(3]

(2]

(1]

[0]

Figure A1-4 Vector formatting in AArch32 state

A1.4.2 Half-precision floating-point formats
Armv8 supports two half-precision floating-point formats:
. IEEE half-precision, as described in the IEEE 754-2008 standard.
. Arm alternative half-precision format.
Note
BFloat16 is not a half-precision floating-point format, see BFloat16 floating-point format on page A1-48.
A1-44 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.4 Supported data types

Both formats can be used for conversions to and from other floating-point formats. FPCR.AHP controls the format
in AArch64 state and FPSCR.AHP controls the format in AArch32 state. FEAT FP16 adds half-precision
data-processing instructions, which always use the IEEE format. These instructions ignore the value of the relevant
AHP field, and behave as if it has an Effective value of 0.

The description of IEEE half-precision includes Arm-specific details that are left open by the standard, and is only
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs, and signed zeros, see the IEEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit format is the same. The format is:

1514 10 9 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.
0 < exponent < 0x1F
The value is a normalized number and is equal to:
(=1)S x 2(exponent-15) x (1. fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 - 10-5.
The maximum positive normalized number is (2 — 2-10) x 215 or 65504.
Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.
exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==0
-0 when S==1.
fraction !=0
The value is a denormalized number and is equal to:
(=1)8 x 2-14 x (0.fraction)
The minimum positive denormalized number is 224, or approximately 5.960 x 1078,

Half-precision denormalized numbers are not flushed to zero by default. When FEAT FP16 is
implemented, the FPCR.FZ16 bit controls whether flushing denormalized numbers to zero is
enabled for half-precision data-processing instructions. For details, see Flushing denormalized
numbers to zero on page Al-54.

exponent == Ox1F

The value depends on which half-precision format is being used:

IEEE half-precision
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too
big to be represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an
absolute value that is too big to be represented accurately as a
normalized number.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-45

ID072021

Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types

fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction
bit, bit[9]:

bit[9] == 0 The NaN is a signaling NaN. The sign bit can take any value,
and the remaining fraction bits can take any value except all
Zeros.

bit[9] ==1 The NaN is a quiet NaN. The sign bit and remaining fraction
bits can take any value.

Alternative half-precision
The value is a normalized number and is equal to:
-18 x 216 x (1.fraction)

The maximum positive normalized number is (2-2-10) x 216 or 131008.

A1.4.3 Single-precision floating-point format
The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes Arm-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs, and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word with the format:

3130 23 22 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < 0xFF
The value is a normalized number and is equal to:
(=1)S x 2(exponent — 127) x (] fraction)
The minimum positive normalized number is 2-126, or approximately 1.175 x 10-38,

The maximum positive normalized number is (2 — 2-23) x 2127 or approximately 3.403 x 1038,

exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The value is a zero. There are two distinct zeros:
+0 When S==0.
-0 When S==1.
These usually behave identically. In particular, the result is equal if +0 and —0 are
compared as floating-point numbers. However, they yield different results in some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer comparison of the two words.
fraction !=0
The value is a denormalized number and is equal to:
(=1)8 x 27126 x (0.fraction)
The minimum positive denormalized number is 2-149, or approximately 1.401 x 1045,
Denormalized numbers are always flushed to zero in Advanced SIMD processing in AArch32 state.
They are optionally flushed to zero in floating-point processing and in Advanced SIMD processing
in AArch64 state. For details, see Flushing denormalized numbers to zero on page A1-54.
A1-46 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.4 Supported data types

exponent == OxFF
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:
fraction ==
The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.
fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction bit, bit[22]:
bit[22] =

The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[22] ==

The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

For details of the default NaN, see The Default NaN on page A1-57.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A1.4.4 Double-precision floating-point format

The double-precision floating-point format is as defined by the IEEE 754 standard. Double-precision floating-point
is supported by both SIMD and floating-point instructions in AArch64 state, and only by floating-point instructions
in AArch32 state.

This description includes implementation-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs, and signed zeros, see the IEEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

63 62 52 51 32 31 0

{(((Itd
7 7)T

S exponent fraction

{(((Itd
t)T t

Double-precision values represent numbers, infinities, and NaNs in a similar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF
The value is a normalized number and is equal to:
(~1)S x 2(exponent-1023) x (1 fraction)
The minimum positive normalized number is 21922, or approximately 2.225 x 10-308,

The maximum positive normalized number is (2 — 2-52) x 21023 or approximately 1.798 x 10308,

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-47
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types

exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros that behave in the same way as the two
single-precision zeros:
+0 when S==0
-0 when S==1.
fraction !=0

The value is a denormalized number and is equal to:
(-1)S x 271022 x (0.fraction)
The minimum positive denormalized number is 2-1074, or approximately 4.941 x 10324,

Optionally, denormalized numbers are flushed to zero in floating-point calculations. For details, see
Flushing denormalized numbers to zero on page Al1-54.

exponent == Ox7FF
The value is either an infinity or a NaN, depending on the fraction bits:
fraction ==
The value is an infinity. As for single-precision, there are two infinities:
+infinity When S==0.
-infinity When S==1.
fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction bit, bit[51] of
the doubleword:
bit[51] =
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.
bit[51] ==
The NaN is a quiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN, see The Default NaN on page A1-57.
Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

A1.4.5 BFloat16 floating-point format

BFloat16, or BF16, is a 16-bit floating-point storage format. The BF16 format inherits many of its properties and
behaviors from the single-precision format defined by the IEEE 754 standard, as described in Single-precision
floating-point format on page A1-46.

For the BFloat16 floating-point format, the layout is:

15 14 76 0

S exponent fraction

0 < exponent < 0xFF
The value is a normalized number and is equal to:

(=1)S x 2(exponent-127) x (] fraction)

A1-48 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.4 Supported data types

The minimum positive normalized number is 2-126, or approximately 1.175 - 10-38.

The maximum positive normalized number is (2 — 2-7) x 2127 or approximately 3.390 - 1038.

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==0
-0 when S==1.
These usually behave identically. However, they yield different results in some
circumstances. For example, the sign of the result produced as the result of multiplying
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer bitwise comparison of the two halfwords.

fraction !=0
The value is a denormalized number and is equal to:
(=1)8 x 27126 x (0.fraction)

The minimum positive denormalized number is 2-133, or approximately 9.184 x 1041,

If Flushing denormalized numbers to zero on page A1-54 is enabled, for the conversion instructions
that generate a BF16 result, a result will be flushed to zero if it satisfies the condition 0 <Abs(result)
<2126,

Denormalized numbers are unconditionally flushed to zero by the BF16 arithmetic instructions, and
by Advanced SIMD floating-point instructions in AArch32 state. They might be flushed to zero by
other floating-point instructions, see Flushing denormalized numbers to zero on page A1-54.

For the conversion instructions that generate a BF16 result, flushing denormalized numbers to zero
is enabled by the FPCR.FZ and FPCR.FIZ bits in AArch64 state and the FPSCR.FZ bit in AArch32
state.

exponent == OxFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==
The value is an infinity. There are two distinct infinities:
+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.
-infinity When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.
fraction !=0

The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction bit, bit[6]:

bit[6] == 0 The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[6] ==1 The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

In the arithmetic instructions that accept BF16 inputs, there is no distinction between quiet and
signaling input NaNs, since these instructions cannot signal a floating-point exception, and any type
of input NaN generates the same Default NaN result.

BF16 values are 16-bit halfwords that software can convert to single-precision format, by appending 16 zero bits,
so that single-precision arithmetic instructions can be used. A single-precision value can be converted to BF16
format if required, either by:

Truncating, by removing the least significant 16 bits.
Using the BFloat16 conversion instructions, see BFloat16 floating-point instructions on page C3-262.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-49

Non-Confidential

Introduction to the Armv8 Architecture
A1.4 Supported data types

A1.4.6

A14.7

A1.4.8

Fixed-point format

Fixed-point formats are used only for conversions between floating-point and fixed-point values. They apply to
general-purpose registers.

Fixed-point values can be signed or unsigned, and can be 16-bit or 32-bit. Conversion instructions take an argument
that specifies the number of fraction bits in the fixed-point number. That is, it specifies the position of the binary
point.

Conversion between floating-point and fixed-point values

Armv8 supports the conversion of a scalar floating-point to or from a signed or unsigned fixed-point value in a
general-purpose register.

The instruction argument #fbits indicates that the general-purpose register holds a fixed-point number with fbits bits
after the binary point, where fbits is in the range 1 to 64 for a 64-bit general-purpose register, or 1 to 32 for a 32-bit
general-purpose register.
More specifically:
. For a 64-bit register Xq:

— The integer part is Xy[63:#1bits].

— The fractional part is Xy[(#fbits-1):0].
. For a 32-bit register Wq or Ry:

— The integer part is Wq[31:#fbits] or Ryq[3 1:#{bits].

— The fractional part is W[(#fbits-1):0] or Ry[(#fbits-1):0].

These instructions can cause the following floating-point exceptions:

Invalid Operation =~ When the floating-point input is NaN or Infinity or when a numerical value cannot be
represented within the destination register.

Inexact When the numeric result differs from the input value.

Input Denormal When flushing denormalized numbers to zero is enabled and the denormal input is replaced
by a zero, see Flushing denormalized numbers to zero on page A1-54 and Input Denormal
exceptions on page D1-2495.

Note

An out of range fixed-point result is saturated to the destination size.

For more information, see Floating-point exceptions and exception traps on page D1-2495.

Polynomial arithmetic over {0, 1}

Some SIMD instructions that operate on SIMD&FP registers can operate on polynomials over {0, 1}, see Supported
data types on page A1-40. The polynomial data type represents a polynomial in x of the form b,_jx2-1 + ... +b;x
+ by where by is bit[k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:
. 0+0=1+1=0.

. 0+1=1+0=1.

. 0x0=0x1=1x0=0.

. Ix1=1.

That is:

. Adding two polynomials over {0, 1} is the same as a bitwise exclusive OR.

. Multiplying two polynomials over {0, 1} is the same as integer multiplication except that partial products are
exclusive-ORed instead of being added.

A1-50

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.4 Supported data types

A64, A32, and T32 provide instructions for performing polynomial multiplication of 8-bit values.

. For AArch32, see VMUL (integer and polynomial) on page F6-5694 and VMULL (integer and polynomial)
on page F6-5700.

. For AArch64, see PMUL on page C7-2019 and PMULL, PMULL?2 on page C7-2021.

The Cryptographic Extension adds the ability to perform long polynomial multiplies of 64-bit values. See PMULL,
PMULL?2 on page C7-2021.

Pseudocode description of polynomial multiplication

In pseudocode, polynomial addition is described by the EOR operation on bitstrings.

Polynomial multiplication is described by the PoTlynomialMult() function defined in Chapter J1 Armv8 Pseudocode.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-51
Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

A1.5

Advanced SIMD and floating-point support

Note

In AArch32 state, the SIMD instructions that operate on SIMD&FP registers are always described as the Advanced
SIMD instructions, to distinguish them from the SIMD instructions in the base instruction sets, that operate on the
32-bit general-purpose registers. The A64 instruction set does not provide any SIMD instructions that operate on
the general-purpose registers, and therefore some A Arch64 state descriptions use SIMD as a synonym for Advanced
SIMD. Unless the context clearly indicates otherwise, this section describes the support for SIMD instructions that
operate on SIMD&FP registers.

Armv8 can support the following levels of support for Advanced SIMD and floating-point instructions:
. Full SIMD and floating-point support without exception trapping.
. Full SIMD and floating-point support with exception trapping.
. No floating-point or SIMD support. This option is licensed only for implementations targeting specialized
markets.
Note
All systems that support standard operating systems with rich application environments provide hardware

support for Advanced SIMD and floating-point. It is a requirement of the ARM Procedure Call Standard for
AArch64, see Procedure Call Standard for the Arm 64-bit Architecture.

Armv8 supports single-precision (32-bit) and double-precision (64-bit) floating-point data types and arithmetic as
defined by the IEEE 754 floating-point standard. It also supports the half-precision (16-bit) floating-point data type
for data storage, by supporting conversions between single-precision and half-precision data types and
double-precision and half-precision data types. When FEAT FP16 is implemented, it also supports the
half-precision floating-point data type for data-processing operations.

The SIMD instructions provide packed Single Instruction Multiple Data (SIMD) and single-element scalar
operations, and support:

. Single-precision and double-precision arithmetic in AArch64 state.
. Single-precision arithmetic only in AArch32 state.
. When FEAT FP16 is implemented, half-precision arithmetic is supported in AArch64 and AArch32 states.

Floating-point support in AArch64 state SIMD is IEEE 754-2008 compliant with:
. Configurable rounding modes.

. Configurable Default NaN behavior.

. Configurable flushing to zero of denormalized numbers.

Floating-point computation using AArch32 Advanced SIMD instructions remains unchanged from Armv7. A32
and T32 Advanced SIMD floating-point always uses Arm standard floating-point arithmetic and performs
IEEE 754 floating-point arithmetic with the following restrictions:

. Denormalized numbers are flushed to zero, see Flushing denormalized numbers to zero on page A1-54.
. Only default NaNs are supported, see The Default NaN on page A1-57.

. The Round to Nearest rounding mode is used.

. Untrapped floating-point exception handling is used for all floating-point exceptions.

If floating-point exception trapping is supported, floating-point exceptions, such as Overflow or Divide by Zero,
can be handled without trapping. This applies to both SIMD and floating-point operations. When handled in this
way, a floating-point exception causes a cumulative status register bit to be set to 1 and a default result to be
produced by the operation. For more information about floating-point exceptions, see Floating-point exceptions and
exception traps on page D1-2495.

In AArch64 state, the following registers control floating-point operation and return floating-point status
information:

. The Floating-Point Control Register, FPCR, controls:
— The half-precision format where applicable, FPCR.AHP bit.

A1-52

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

— Default NaN behavior, FPCR.DN bit.

— Flushing of denormalized numbers to zero, FPCR.{FZ, FZ16} bits. [f FEAT FP16 is not
implemented, FPCR.FZ16 is RESO.

— Rounding mode support, FPCR.Rmode field.

— Len and Stride fields associated with execution in AArch32 state, and only supported for a context
save and restore from AArch64 state. These fields are obsolete in Armv8 and can be implemented as
RAZ/WI. If they are implemented as RW and are programmed to a nonzero value, they make some
AArch32 floating-point instructions UNDEFINED.

— Floating-point exception trap controls, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits, see
Floating-point exceptions and exception traps on page D1-2495.

. The Floating-Point Status Register, FPSR, provides:
— Cumulative floating-point exceptions flags, FPSR.{IDC, IXC, UFC, OFC, DZC, IOC and QC}.

— The AArch32 floating-point comparison flags {N,Z,C,V}. These bits are RESO if AArch32
floating-point is not implemented.

Note
In AArch64 state, the process state flags, PSTATE.{N,Z,C,V} are used for all data-processing
compares and any associated conditional execution.
If FEAT FlagM2 is implemented, the instructions AXFLAG and XAFLAG convert between the Arm
condition flag format and an alternative format shown in Relationship between ARM format and
alternative format PSTATE condition flags on page C6-874.

AArch32 state provides a single Floating-Point Status and Control Register, FPSCR, combining the FPCR and
FPSR fields.

For system level information about the SIMD and floating-point support, see Advanced SIMD and floating-point
support on page G1-6112.

A1.5.1 Instruction support

The Advanced SIMD and floating-point instructions support:
. Load and store for single elements and vectors of multiple elements.
Note

Single elements are also referred to as scalar elements.

. Data processing on single and multiple elements for both integer and floating-point data types.
. When FEAT FCMA is implemented, complex number arithmetic.

. Floating-point conversion between different levels of precision.

. Conversion between floating-point, fixed-point integer, and integer data types.

. Floating-point rounding.

For more information on the SIMD and floating-point instructions in AArch64 state, see Chapter C3 464
Instruction Set Overview.

For more information on the Advanced SIMD and floating-point instructions in AArch32 state, see Chapter F2 The
AArch32 Instruction Sets Overview.

A1.5.2 Floating-point standards, and terminology

The Arm architecture includes support for all the required features of ANSI/IEEE Std 754-2008, [EEE Standard for
Binary Floating-Point Arithmetic, referred to as IEEE 754-2008. However, some terms in this Manual are based on
the 1985 version of this standard, referred to as IEEE 754-1985:

. Arm floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.
. References to IEEE 754 that do not include the issue year apply to either issue of the standard.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-53

ID072021

Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

Table A1-3 on page A1-54 shows how the terminology in this Manual differs from that used in IEEE 754-2008.

Table A1-3 Floating-point terminology

This manual IEEE 754-2008
Normalized 2 Normal
Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative

Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away ~ roundTiesToAway

Rounding mode Rounding-direction attribute

a. Normalized number is used in preference to normal number,
because of the other specific uses of normal in this Manual.

A1.5.3 Arm standard floating-point input and output values

Armv8 provides full IEEE 754 floating-point arithmetic support. In AArch32 state, floating-point operations
performed using Advanced SIMD instructions are limited to Arm standard floating-point operation, regardless of
the selected rounding mode in the FPSCR. Unlike AArch32, AArch64 SIMD floating point arithmetic is performed
using the rounding mode selected by the FPCR.

Arm standard floating-point arithmetic supports the following input formats defined by the IEEE 754 floating-point
standard:

Zeros.
Normalized numbers.

Denormalized numbers are flushed to 0 before floating-point operations, see Flushing denormalized numbers
to zero on page Al-54.

NaNs.

Infinities.

Arm standard floating-point arithmetic supports the Round to Nearest (roundTiesToEven) rounding mode defined
by the IEEE 754 standard.

Arm standard floating-point arithmetic supports the following output result formats defined by the IEEE 754
standard:

Zeros.
Normalized numbers.

Results that are less than the minimum normalized number are flushed to zero, see Flushing denormalized
numbers to zero on page Al1-54.

NaNs produced in floating-point operations are always the default NaN, see The Default NaN on page A1-57.

Infinities.

A1.5.4 Flushing denormalized numbers to zero

For this section if FEAT AFP is not implemented, the behavior is the same as if FPCR.AH == 0, FPCR.FZ ==
and FPCR.NEP == 0.

A1-54

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

Calculations involving denormalized numbers and Underflow exceptions can reduce the performance of
floating-point processing. For many algorithms, replacing the denormalized operands and Intermediate results with
zeros can recover this performance, without significantly affecting the accuracy of the final result. Arm
floating-point implementations allow denormalized numbers to be flushed to zero to permit this optimization.

If a number value satisfies the condition @ < Abs(value) < MinNorm, it is treated as a denormalized number.

MinNorm is defined as follows:

. For half-precision numbers, MinNorm is 2-14-
. For single-precision and BFloat16 numbers, MinNorm is 2-126,
. For double-precision numbers, MinNorm is 2-1022,

Flushing denormals to zero is incompatible with the IEEE 754 standard, and must not be used when IEEE 754
compatibility is a requirement. Enabling flushing of denormals to zero must be done with care. Although it can
improve performance on some algorithms, there are significant limitations on its use. These are
application-dependent:

. On many algorithms, it has no noticeable effect, because the algorithm does not usually process denormalized
numbers.
. On other algorithms, it can cause exceptions to occur and can seriously reduce the accuracy of the results of

the algorithm.

Flushing denormalized inputs to zero

If flushing denormalized inputs to zero is enabled for an instruction and a data type, and an input to that instruction
is a denormalized number of that data type, the input operand is flushed to zero, and its sign bit is not changed.

If a floating-point operation has an input denormalized number that is flushed to zero, for all purposes within the
instruction other than calculating Input Denormal floating-point exceptions, all inputs that are denormalized
numbers are treated as though they were zero with the same sign as the input.

For Advanced SIMD and floating-point instructions, if the instruction processes half-precision inputs, flushing
denormalized inputs to zero can be controlled as follows:

. If FPCR.FZ16 == 0, denormalized half-precision inputs are not flushed to zero.

. If FPCR.FZ16 == 1, for half-precision data-processing instructions, flushing of input denormalized numbers
to zero occurs as follows:

— If an instruction does not convert a half-precision input to a higher precision output, all input
denormalized numbers are flushed to zero.

— If an instruction converts a half-precision input to a higher precision output, input denormalized
numbers are not flushed to zero.

If FPCR.FIZ == 1, or both FPCR.AH == 0 and FPCR.FZ == 1, for Advanced SIMD, floating-point and BF16
instructions other than FABS and FNEG, all single-precision, double-precision and BF16 input operands that are
denormalized numbers are flushed to zero. Half-precision input operands are not flushed to zero.

If FPCR.FZ == 0, for Advanced SIMD, floating-point and BF 16 instructions, for single-precision, double-precision
and BF16 inputs, the FPCR.FZ setting does not cause denormalized inputs to be flushed to zero, although other
factors might cause denormalized numbers to be flushed to zero.

If FPCR.AH == 1, regardless of the value of FPCR.FIZ, all of the following instructions flush all input denormal
numbers to zero:

. BFloat instructions: BFECVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT (by element), BFMLALB,
BFMLALT (vector), and BFCVTNT.

. Single-precision and double-precision instructions: FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-55
Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

Flushing to zero of denormalized numbers as Intermediate results of some BF16
instructions

BF16 arithmetic instructions BFDOT (by element), BFDOT (vector), BFMMLA in AArch64, and VDOT (by
element), VDOT (vector), VMMLA in AArch32 when working with BF16 inputs, convert BF16 input values to
IEEE single-precision format, and calculate N-way dot-products, accumulating the products in single-precision
accumulators.

If a BF16 arithmetic instruction processes an Intermediate result that is a single-precision denormalized number, the
Intermediate result is unconditionally flushed to zero.

Flushing denormalized outputs to zero

If a denormalized output is flushed to zero, the output is returned as zero with the same sign bit as the denormalized
output value.

If FPCR.AH == 0, for half-precision, single-precision and double-precision numbers, the test for a denormalized
number for the purpose of flushing the output to zero occurs before rounding.

If FPCR.AH == 1, and if output flushing is caused by FPCR.FZ == 1 or FPCR.FZ16 == 1, for half-precision,
single-precision and double-precision numbers, the test for a denormalized number for the purpose of flushing the
output to zero occurs after rounding using an unbounded exponent.

If FPCR.AH == 1, and if FPCR.FZ == 0, Advanced SIMD, floating-point and BF16 instructions, for
single-precision, double-precision and BF16 outputs, the FPCR.FZ setting does not cause denormalized outputs to
be flushed to zero, although other factors might cause denormalized outputs to be flushed to zero.

BFDOT (by element), BFDOT (vector), and BFMMLA instructions unconditionally flush denormalized output
numbers to zero.

If FPCR.AH == 0, for Advanced SIMD, floating-point, and BF16 instructions, for single-precision,
double-precision and BF16 outputs, flushing denormalized numbers to zero can be controlled as follows:

. If FPCR.FZ == 0, the FPCR.FZ setting does not cause denormalized output numbers to be flushed to zero,
although other factors might cause denormalized output numbers to be flushed to zero.

. If FPCR.FZ == 1, for all Advanced SIMD, floating-point and BF16 instructions other than FABS and FNEG, all
single-precision, double-precision, and BF16 outputs that are denormalized numbers are flushed to zero.

If FPCR.FZ16 == 0 denormalized half-precision output numbers are not flushed to zero.

If FPCR.FZ16 == 1, for Advanced SIMD and floating-point instructions other than FABS, FNEG, FMAXz, and FMIN«, if
the instruction processes half-precision numbers, flushing denormalized output numbers to zero can be controlled
as follows:

. Instructions that convert between half-precision and single-precision numbers do not flush denormalized
half-precision output numbers to zero.

. Instructions that convert between half-precision and double-precision numbers do not flush denormalized
half-precision output numbers to zero.

. All other half-precision data-processing instructions flush all denormalized half-precision output numbers to
Zero.

If FPCR.AH == 1 and FPCR.FZ == 1, for Advanced SIMD, floating-point and BF16 instructions, all of the
following apply:

. For all floating-point operations other than FABS, FNEG, FMAX«, and FMIN«, all single-precision and
double-precision denormalized output operands are flushed to zero.

. For FABS, FNEG, FMAXx, and FMIN«, denormalized output operands are not flushed to zero.

A1-56

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

If FPCR.AH == 1, regardless of the value of FPCR.FZ bit, for both Advanced SIMD and SVE, all of the following
instructions flush all output denormal numbers to zero:

. BFloat instructions: BFECVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT (by element), BFMLALB,
BFMLALT (vector), and BFCVTNT.

. Single-precision and double-precision instructions: FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

A1.5.5 NaN handling and the Default NaN

The IEEE 754 standard defines a NaN as a number with all exponent bits set to 1 and a nonzero number in the
mantissa. The Arm architecture additionally defines a Default NaN which does not follow this format.

The IEEE 754 standard specifies that the sign bit of a NaN has no significance.

For a quiet NaN output derived from a signaling NaN operand, the most significant fraction bit is set to 1.

The Default NaN

The Default NaN is encoded as described inTable A1-4 on page A1-57.

Table A1-4 Default NaN encoding

Half- ision, ; isi isi
al-precision Single-precision Double-precision BFloat16

IEEE Format
Sign bit 0 0 0 0
If FPCR.AH ==
Sign bit 1 1 1 1
IfFPCR.AH==1
Exponent 0x1F OxFF Ox7FF OxFF
Fraction Bit[9]==1, Bit[22]==1, Bit[51]==1, Bit[6]==1,
bits[8:0] == bits[21:0] = bits[50:0] == bits[5:0] =

IF FPCR.DN == 1, for Advanced SIMD and floating-point instructions other than FABS, FMAX* FMIN* and
FNEQG, if any input to a floating-point operation performed by the instruction is a NaN, the output of the
floating-point operation is the Default NaN.

For FABS, FNEG, FMAXx, and FMIN:, Default NaN behavior is explained in the instruction description.
If FPCR.DN == 0, for floating-point processing the Default NaN is not used for NaN propagation.

If a floating-point instruction performs a floating-point operation, and that instruction generates an untrapped
Invalid Operation floating-point exception for a reason other than one of the inputs being a signaling NaN, the
output is the Default NaN.

NaN handling

The IEE 754 standard does not specify which input NaN is used as the output NaN. Therefore, where the Arm
architecture specifies which input NaN to use, this is an addition to the requirements in the IEEE 754 standard.

Depending on the operation, the exact value of a derived quiet NaN output might have both a different sign and a
different number of fraction bits from its source. See instruction descriptions for details.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-57
Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

NaN propagation

If an output NaN is derived from one of the operands, how the input NaN propagates to the output depends on the
instruction and the number of operands.

If an output NaN is derived from an input NaN and if the size of the output format is the same as the input format,
then all of the following apply:

. If the input NaN is a quiet NaN, the output NaN is the same as the input NaN.

. If the input NaN is a signaling NaN, the output NaN is derived as follows:

— If'the handling of a signaling NaN by the instruction generates an Invalid Operation exception, the
output NaN is the quieted version of the input NaN.

— Ifthe handling of a signaling NaN by the instruction does not generate an Invalid Operation exception,
the output NaN is the same as the input NaN. This case applies for FABS, FNEG, and FTSSEL
instructions.

If an output NaN is derived from an input NaN and if the size of the output format is larger than the input format,
all of the following apply:

. If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
zero-extended in the low-order bit to fit the output format, and the exponent field is set to all ones.

. If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN, except that the
mantissa is zero-extended in the low-order bits and the exponent field is set to all ones.

If an output NaN is derived from an input NaN and if the size of the output format is smaller than the input format,
all of the following apply:

. If the input NaN is a quiet NaN, the output NaN is the same as the input NaN except that the mantissa is
truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

. If the input NaN is a signaling NaN, the output NaN is the quieted version of the input NaN except that the
mantissa is truncated in the lower-order bits to fit the output format, and the exponent field is set to all ones.

For the following descriptions, the term “first operand” and “second operand” relate to the left-to-right ordering of
the arguments of the pseudocode function that describes the operation.

If FPCR.DN ==0, for Advanced SIMD, floating-point, or BF16 instructions that perform a floating-point operation,
other than FABS, FNEG, FMAXx, and FMIN:, NaN outputs that derive from NaN inputs are derived as follows:

. If all of the following apply, an instruction outputs a quiet NaN derived from the first signaling NaN operand:
— FPCR.AH==0.
— At least one operand is a signaling NaN.
— The instruction is not trapped.

. If all of the following apply, an instruction outputs a quiet NaN derived from the first NaN operand:
— FPCR.AH==0.
— Atleast one operand is a NaN, but none of the operands is a signaling NaN.
— The instruction is not trapped.

. If all of the following apply, the output is a quiet NaN derived from the NaN operand:
— FPCR.AAH==1.
— The operation has two floating-point inputs.
— The operation has only one NaN operand.

. If all of the following apply, the output is a NaN derived from the <Vn>, <Hn>, <Sn>, or <Dn> register:
— FPCR.AH==1.
— The operation has two floating-point inputs.
— The operation has two NaN operands.

A1-58

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

. If all of the following apply, the output is a NaN derived from the NaN held in the <Vn>, <Hn>, <Sn>, or <Dn>

register:

— FPCR.AH==

— The instruction is one of: BFMLALB, BFMLALT (by element), BFMLALB, BEMLALT (vector),
FCMLA, FMADD, FMLA (by element), FMLA (vector), FMLAL, FMLAL2 (by element), FMLAL,
FMLAL2 (vector), FMLS (by element), FMLS (vector), FMLSL, FMLSL2 (by element), FMLSL,
FMLSL2 (vector), FMSUB, FNMADD, and FNMSUB.

— One of the following applies:
— The operation has three NaN operands.
— The operation has two NaN operands and the <Vn>, <Hn>, <Sn> or <Dn> register holds a NaN.

. If all of the following apply, the output is a NaN derived from the NaN held in the <Vm>, <Hm>, <Sm>, or <Dm>
register:
— FPCR.AH==

— The instruction is one of: BFMLALB, BEMLALT (by element), BFMLALB, BEMLALT (vector),
FCMLA, FMADD, FMLA (by element), FMLA (vector), FMLAL, FMLAL2 (by element), FMLAL,
FMLAL2 (vector), FMLS (by element), FMLS (vector), FMLSL, FMLSL2 (by element), FMLSL,
FMLSL2 (vector), FMSUB, FNMADD, and FNMSUB.

— The operation has two NaN operands and the <Vn>, <Hn>, <Sn> or <Dn> register does not hold a NaN.

If FPCR.AH == 0, and an output NaN is derived from an input NaN, the pseudocode functions FPAbs(), FPNeg(),
FPTrigMAdd(), and FPTrigSSel() can change the sign of the NaN,

If FPCR.AH == 1, and an output NaN is derived from an input NaN, for all cases, the sign bit of the NaN is
unchanged.

For FMAXx and FMINx, the NaN handling is described in the instruction.

A1.5.6 Rounding

The rounding mode specifies how the exact result of a floating-point operation is rounded to a value in the
destination format.

The rounding mode is either determined by the rounding mode control field FPCR.RMode or by the instruction.
If FPCR.AH == 1, for any value of FPCR.RMode, the following instructions use Round to Nearest on outputs:

. BF16 instructions BFCVT, BFCVTN, BFCVTN2, BFMLALB, BFMLALT (by element), BFEMLALB,
BFMLALT (vector), and the SVE instruction BFCVTNT.

. Single-precision and double-precision instructions FRECPE, FRECPS, FRECPX, FRSQRTE, and
FRSQRTS.

. Half-precision instructions FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS.

The rounding mode control field FPCR.RMode can select the following rounding modes:
. Round to Nearest (RN) mode.

. Round towards Plus Infinity (RP) mode.

. Round towards Minus Infinity (RM) mode.

. Round towards Zero (RZ) mode.

The following two additional rounding modes are not selected by FPCR.RMode, but are used by some instructions:
. Round to Odd mode.
. Round to Nearest with ties to away mode.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-59
ID072021 Non-Confidential

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

Round to Nearest mode

Round to Nearest rounding mode rounds the exact result of a floating-point operation to a value that is representable
in the destination format as follows:

. If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity. The sign of the rounded value is the same as the sign of the value before
rounding.

. If the value before rounding has an absolute value that is not too large to represent in the output format, the

result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the number with an even least significant digit.

— If'the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

Round towards Plus Infinity mode

Round towards Plus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not less than the value before rounding. The result can be plus infinity.

Round towards Minus Infinity mode

Round towards Minus Infinity rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the number in the output format that is closest to and not greater
than the value before rounding. The result can be minus infinity.

Round towards Zero mode

Round towards Zero rounding mode rounds the exact result of a floating-point operation to a value that is
representable in the destination format. The result is the floating-point number in the output format that is closest to
and not greater in absolute value than the value before rounding.

Round to Nearest with Ties to Away

Round to Nearest with Ties to Away rounding mode is used by the FCVTAS (scalar), FCVTAS (vector), FCVTAU
(scalar), FCVTAU (vector), FRINTA (scalar), and FRINTA (vector) instructions.

Round to Nearest with Ties to Away rounding mode rounds the exact result of a floating-point operation to a value
that is representable in the destination format as follows:

. If the value before rounding has an absolute value that is too large to represent in the output format, the
rounded value is an Infinity, the sign of the rounded value is the same as the sign of the value before rounding.

. If the value before rounding has an absolute value that is not too large to represent in the output format, the
result is calculated as follows:

— If the two nearest floating-point numbers bracketing the value before rounding are equally near, the
result is the larger number.

— If the two nearest floating-point numbers bracketing the value before rounding are not equally near,
the result is the floating-point number nearest to the value before rounding.

Round to Odd mode

Round to Odd mode is not defined by IEEE 754, and differs between the FCVTXN, FCVTXN?2 instructions, and
the BFDOT (by element), BFDOT (vector), and BFMMLA instructions.

The FCVTXN, FCVTXN2 instructions use Round to Odd rounding mode. If the result of the rounding is inexact,
the least significant bit of the mantissa is forced to 1.

A1-60

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Introduction to the Armv8 Architecture
A1.5 Advanced SIMD and floating-point support

Round to Odd rounding mode can avoid double rounding errors when a floating-point value is converted to a lower
precision destination format through an intermediate precision format.

Example A1-1 Converting 64-bit floating-point format to 16-bit floating-point format

A 64-bit floating-point value can be converted to a correctly rounded 16-bit floating-point value using the following
steps:

1. Use an FCVTXN instruction to produce a 32-bit value.

2. Use another instruction with the required rounding mode to convert the 32-bit value to the final 16-bit
floating-point value.

For BFDOT (by element), BFDOT (vector), and BFMMLA instructions, if the intermediate format has at least two
more bits of precision than the result format, Round to Odd mode is used and operates as follows:

. If the rounded value is inexact, the least significant bit of the fraction is set to 1.

. If the value is too large to represent in the single-precision format, the rounded value is a single-precision
Infinity, the sign of the rounded value is the same as the sign of the value before rounding.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A1-61
Non-Confidential

Introduction to the Armv8 Architecture
A1.6 The Arm memory model

A1.6 The Arm memory model

The Arm memory model supports:

. Generating an exception on an unaligned memory access.

. Restricting access by applications to specified areas of memory.

. Translating virtual addresses (VAs) provided by executing instructions to physical addresses (PAs).

. Altering the interpretation of multi-byte data between big-endian and little-endian.

. Controlling the order of accesses to memory.

. Controlling caches and address translation structures.

. Synchronizing access to shared memory by multiple PEs.

. Barriers that control and prevent speculative access to memory.

VA support depends on the Execution state, as follows:

AArch64 state
Supports 64-bit virtual addressing, with the Translation Control Register determining the supported
VA range. Execution at EL1 and ELO supports two independent VA ranges, each with its own
translation controls.

AArch32 state
Supports 32-bit virtual addressing, with the Translation Control Register determining the supported
VA range. For execution at EL1 and ELO0, system software can split the VA range into two
subranges, each with its own translation controls.

The supported PA space is IMPLEMENTATION DEFINED, and can be discovered by system software.

Regardless of the Execution state, the Virtual Memory System Architecture (VMSA) can translate VAs to blocks or

pages of memory anywhere within the supported PA space.

For more information, see:

For execution in AArch64 state
. Chapter B2 The AArch64 Application Level Memory Model.
. Chapter D4 The AArch64 System Level Memory Model.
. Chapter D5 The AArch64 Virtual Memory System Architecture.

For execution in AArch32 state
. Chapter E2 The AArch32 Application Level Memory Model.
. Chapter G4 The AArch32 System Level Memory Model.
. Chapter G5 The AArch32 Virtual Memory System Architecture.

A1-62 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Chapter A2
Armv8-A Architecture Extensions

This chapter introduces the Arm architecture versions and extensions. It contains the following sections:

. Armv8.0 architecture extensions on page A2-64.

. Architectural features within Armv8.0 architecture on page A2-68.
. The Armv8 Cryptographic Extension on page A2-72.

. The Armv8.1 architecture extension on page A2-74.

. The Armv8.2 architecture extension on page A2-78.

. The Armv8.3 architecture extension on page A2-87.

. The Armv8.4 architecture extension on page A2-91.

. The Armv8.5 architecture extension on page A2-96.

. The Armv8.6 architecture extension on page A2-100.

. The Armv8.7 architecture extension on page A2-103.

. The Performance Monitors Extension on page A2-107.

. The Reliability, Availability, and Serviceability Extension on page A2-108.

. The Statistical Profiling Extension (SPE) on page A2-109.

. The Scalable Vector Extension (SVE) on page A2-110.

. The Activity Monitors Extension (AMU) on page A2-111.

. The Memory Partitioning and Monitoring (MPAM) Extension on page A2-112.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-63
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions

A2.1

Armv8.0 architecture extensions

The original Armv8-A architecture is called Armv8.0. The following sections of this manual describe or summarize
permitted extensions to Armv8.0:

. The Armv8 Cryptographic Extension on page A2-72.

. The Reliability, Availability, and Serviceability Extension on page A2-108.
. Event monitors on page D1-2544.

. The IVIPT Extension on page D5-2837.

. Chapter H7 The PC Sample-based Profiling Extension.

Note

The naming convention of features in the Arm architecture has been redefined. For more information on how these
names map to the legacy convention, see Appendix K13 Legacy Feature Naming Convention.

In addition to describing Armv8.0, this manual describes the following architectural extensions:

Features added to Armv8.0 in later releases

Architectural features and architectural requirements have been added to the original Armv8-A
architecture. For more information, see:

. Additional functionality added to Armv8.0 in later releases on page A2-68.

. Architectural requirements within Armv8.0 architecture on page A2-71.

For more information, see Architectural features within Armv8.0 architecture on page A2-68.

The Armv8.1 architectural extension
The Armv8.1 architecture extension adds both:

. Architectural features. Some of these are mandatory, others are optional. Some features must
be implemented together.

. Architectural requirements. These are mandatory.
An implementation is Armv8.1 compliant if all of the following apply:

. It includes all of the Armv8.1 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.1 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.1 on page A2-74 for all
of the Armv8.1 architectural features.

. It includes all of the Armv8.1 architectural requirements. Additional requirements of Armv§.1
on page A2-76 lists these requirements.

For more information, see The ArmvS.1 architecture extension on page A2-74.

The Armv8.2 architectural extension
The Armv8.2 architecture extension is an extension to Armv8.1. It adds both:

. Architectural features. Some of these are mandatory, others are optional. Some features must
be implemented together.

. Architectural requirements. These are mandatory.
An implementation is Armv8.2 compliant if all of the following apply:
. It is Armv8.1 compliant.

. It includes all of the Armv8.2 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.2 compliant implementation includes the optional architecture
component or extension. The features are listed at:

— Architectural features added by Armv8.2 on page A2-78, which lists the original
Armv8.2 architectural features.

A2-64

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions

— Features added to the Armv8.2 extension in later releases on page A2-84, which lists
additional Armv8.2 architectural features.

. Itincludes all of the Armv8.2 architectural requirements. Additional requirements of Armv8.2
on page A2-84 lists these requirements.

For more information, see The ArmvS.2 architecture extension on page A2-78.

The Armv8.3 architectural extension
The Armv8.3 architecture extension is an extension to Armv8.2. It adds both:

. Architectural features. Some of these are mandatory, others are optional. Some features must
be implemented together.

. Architectural requirements. These are mandatory.
An implementation is Armv8.3 compliant if all of the following apply:
. It is Armv8.2 compliant.

. It includes all of the Armv8.3 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.3 compliant implementation includes the optional architecture
component or extension. The features are listed at:

— Architectural features added by Armv8.3 on page A2-87, which lists the original
Armv8.3 architectural features.

— Features added to the Armv8.3 extension in later releases on page A2-89, which lists
additional Armv8.3 architectural features.

. Itincludes all of the Armv8.3 architectural requirements. Additional requirements of Armv8.3
on page A2-89 lists these requirements.

For more information, see The ArmvS8.3 architecture extension on page A2-87.

The Armv8.4 architectural extension

The Armv8.4 architecture extension is an extension to Armv8.3. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.4 compliant if all of the following apply:
. It is Armv8.3 compliant.

. It includes all of the Armv8.4 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.4 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.4 on page A2-91 for all
of the Armv8.4 architectural features.

For more information, see The ArmvS8.4 architecture extension on page A2-91.

The Armv8.5 architectural extension

The Armv8.5 architecture extension is an extension to Armv8.4. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.5 compliant if all of the following apply:
. It is Armv8.4 compliant.

. It includes all of the Armv8.5 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.5 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.5 on page A2-96 for all
of the Armv8.5 architectural features.

. Itincludes all of the Armv8.5 architectural requirements. Additional requirements of Armv8.5
on page A2-98 lists these requirements.

For more information, see The Armv8.5 architecture extension on page A2-96.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-65
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions

The Armv8.6 architectural extension

The Armv8.6 architecture extension is an extension to Armv8.5. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.6 compliant if all of the following apply:
. It is Armv8.5 compliant.

. It includes all of the Armv8.6 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.6 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.6 on page A2-100 for
all of the Armv8.6 architectural features.

. Itincludes all of the Armv8.6 architectural requirements. Additional requirements of Armv§.6
on page A2-101 lists these requirements.

For more information, see The Armv8.6 architecture extension on page A2-100.

The Armv8.7 architectural extension

The Armv8.7 architecture extension is an extension to Armv8.6. It adds architectural features. Some
of these are mandatory, others are optional. Some features must be implemented together.

An implementation is Armv8.7 compliant if all of the following apply:
. It is Armv8.6 compliant.

. It includes all of the Armv8.7 architectural features that are mandatory. This includes all
architectural features of an optional architecture component or extension that are defined as
mandatory, if the Armv8.7 compliant implementation includes the optional architecture
component or extension. See Architectural features added by Armv8.7 on page A2-103 for
all of the Armv8.7 architectural features.

. It includes all of the Armv8.7 architectural requirements. Additional requirements of Armv8.7
on page A2-106 lists these requirements.

For more information, see The Armv8.7 architecture extension on page A2-103.

The Statistical Profiling Extension (SPE)
SPE is an optional extension to Armv8.2. That is, SPE requires the implementation of Armv8.2.

For more information, see The Statistical Profiling Extension (SPE) on page A2-109.

The Scalable Vector Extension (SVE)
SVE is an optional extension to Armv8.2. That is, SVE requires the implementation of Armv8.2.

For more information, see The Scalable Vector Extension (SVE) on page A2-110.

The Activity Monitors Extension (AMU)
AMU is an optional extension to Armv8.4. That is, AMU requires the implementation of Armv8.4.

For more information, see The Activity Monitors Extension (AMU) on page A2-111.

The Memory Partitioning and Monitoring Extension (MPAM)

MPAM is an optional extension to Armv8.2. That is, MPAM requires the implementation of
Armv8.2.

For more information, see The Memory Partitioning and Monitoring (MPAM) Extension on
page A2-112.

See also Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features on page A2-66.

A211 Permitted implementation of subsets of Armv8.x and Armv8.(x+1) architectural features

An Armv8.x compliant implementation can include any arbitrary subset of the architectural features of
Armv8.(x+1), subject only to those constraints that require that certain features be implemented together.

A2-66 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.1 Armv8.0 architecture extensions

Unless this manual permits otherwise, an Armv8.x compliant implementation does not include any features of
Armv8.(x+2) or later.

Note

The addition of Armv8.(x+1) features to an Armv8.x compliant implementation is permitted only if the implementer
has a license to Armv8.(x+1) in addition to the license to Armv8.x.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-67
Non-Confidential

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture

A2.2 Architectural features within Armv8.0 architecture

This includes architectural features and architectural requirements that have been added to the Armv8.0 architecture
since the initial release, that were not part of the original Armv8-A architecture, see:

. Additional functionality added to Armv8.0 in later releases on page A2-68.

. Architectural requirements within Armv8.0 architecture on page A2-71.

A2.21 Additional functionality added to Armv8.0 in later releases
An implementation of Armv8.0 can include any or all of the features that this section describes.

The Armv8.0 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_SB, Speculation Barrier
FEAT SB introduces a barrier to control speculation.
This instruction is supported in both AArch64 and AArch32 states.
This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.
The following fields identify the presence of FEAT SB:
. ID_AAG4ISARI1_ELI.SB.
. ID_ISAR6_EL1.SB.
. ID_ISARG6.SB.
For more information, see:
. Speculation Barrier (SB) on page B2-148.
. Barriers and CLREX instructions on page C3-219.
. Speculation Barrier (SB) on page E2-4301.

. Miscellaneous instructions on page F2-4393.

FEAT _SSBS, FEAT SBSS2, Speculative Store Bypass Safe

FEAT SSBS allows software to indicate whether hardware is permitted to load or store
speculatively in a manner that could give rise to a cache timing side channel, which in turn could be
used to derive an address from values loaded to a register from memory.

FEAT SSBS2 provides controls for the MSR and MRS instructions to read and write the
PSTATE.SSBS field.

FEAT SSBS is supported in both AArch64 and AArch32 states. FEAT SSBS2 is supported in
AArch64 state only.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.

The following fields identify the presence of FEAT SSBS and FEAT SSBS2:
. ID_AA64PFR1_EL1.SSBS.

« ID PFR2 ELI.SSBS.

. ID_PFR2.SSBS.

For more information, see:

. Speculative Store Bypass Safe (SSBS) on page B2-145.

. Speculative Store Bypass Safe (SSBS) on page E2-4298.

FEAT_CSV2 and FEAT_CSV2_2, Cache Speculation Variant 2

FEAT CSV2 adds a mechanism to identify if hardware cannot disclose information about whether
branch targets trained in one hardware described context can control speculative execution in a
different hardware described context.

FEAT CSV2 2 adds the SCXTNUM_ELx registers, which provide a number that can be used to
separate out different context numbers within their respective Exception levels for the purpose of
protecting against side-channels using branch prediction and similar resources.

FEAT CSV2 is supported in both AArch64 and AArch32 states.

A2-68 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture

FEAT CSV2 2 is supported in AArch64 state only.

FEAT CSV2 is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5
implementations.

FEAT CSV2_2 is OPTIONAL in Armv8.0 implementations.

The following fields identify the presence of FEAT CSV2:

. ID_AAG64PFRO_EL1.CSV2.

. ID_PFRO_EL1.CSV2.

. ID_PFRO.CSV2.

The ID_AA64PFRO_EL1.CSV2 field identifies the presence of FEAT CSV2 2.
For more information, see:

. Restrictions on the effects of speculation on page B2-144.

. Restrictions on the effects of speculation on page E2-4297.

FEAT_CSV2_1pl and FEAT_CSV2_1p2, Cache Speculation Variant 2

For each of these features, within a hardware-described context, branch targets trained for branches
situated at one address can control speculative execution of branches situated at different addresses
only in a hard-to-determine way.

FEAT CSV2 1pl does not support the SCXTNUM_ELx registers, and the contexts do not include
the SCXTNUM_ELx register contexts.

FEAT CSV2 1p2 adds the SCXTNUM_ELx registers, but the contexts do not include the
SCXTNUM_ELx register contexts.

These features are supported in AArch64 state only.
These features are OPTIONAL in Armv8.0 implementations.

The ID_AA64PFR1_EL1.CSV2_frac field identifies the presence of FEAT CSV2 1pl and
FEAT _CSV2_1p2.

For more information, see:

. Restrictions on the effects of speculation on page B2-144.

. Restrictions on the effects of speculation on page E2-4297.

FEAT_CSV3, Cache Speculation Variant 3

FEAT CSV3 adds a mechanism to identify if hardware cannot disclose information about whether
data loaded under speculation with a permission or domain fault can be used to form an address,
generate condition codes, or generate SVE predicate values, to be used by instructions newer than
the load in the speculative sequence.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.
This feature is mandatory when FEAT EOPD is implemented.

The following fields identify the presence of FEAT CSV3:

. ID_AA64PFRO_EL1.CSV3.

« ID_PFR2 ELI.CSV3.
« ID PFR2.CSV3.

FEAT_SPECRES, Speculation restriction instructions

FEAT SPECRES adds the CFP RCTX, CPP RCTX, DVP RCTX, CFPRCTX, CPPRCTX, and
DVPRCTX System instructions. These instructions prevent predictions based on information
gathered from earlier execution within a particular execution context from affecting the later
speculative execution within that context, to the extent that the speculative execution is observable
through side channels.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.5 implementations.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-69
ID072021 Non-Confidential

Armv8-A Architecture Extensions

A2.2 Architectural features within Armv8.0 architecture

The following fields identify the presence of FEAT SPECRES:
. ID_AAG64ISAR1_EL1.SPECRES.

. ID_ISAR6_EL1.SPECRES.

. ID_ISAR6.SPECRES.

For more information, see:

. Prediction restriction instructions on page C5-400.
. Execution and data prediction restriction System instructions on page D4-2663.
. Execution and data prediction restriction System instructions on page G4-6251.

FEAT_CP15SDISABLE2, CP15SDISABLE2

FEAT CP15SDISABLE?2 provides an implementation-defined mechanism, the CP15SDISABLE2
signal, which when asserted HIGH prevents writes to a set of Secure CP15 registers. This signal is
analogous to the existing CP1SSDISABLE signal.

This feature is supported only when EL3 is executing in AArch32 state.
This feature is OPTIONAL in Armv8.0 implementations.

For more information, see The CP15SDISABLE and CP15SDISABLE? input signals on
page G5-6400.

FEAT_DoubleLock, Double Lock

FEAT DoubleLock is the mnemonic used for the OS Double Lock.

If FEAT DoPD is not implemented and FEAT Debugv8p2 is implemented, this feature is
OPTIONAL.

If FEAT DoPD is not implemented and FEAT Debugv8p2 is not implemented, this feature is
mandatory.

If FEAT DoPD is implemented, this feature is not implemented.

The ID_AA64DFRO_EL1.DoubleLock field identifies that the OS Double Lock has been
implemented.

FEAT_DGH, Data Gathering Hint

FEAT DGH adds the Data Gathering Hint instruction to the hint space.

This instruction is added to the A64 instruction set only.

This feature is OPTIONAL in Armv8.0 implementations.

The ID_AA64ISAR1_EL1.DGH field identifies the presence of FEAT DGH.

For more information, see Hint instructions on page C3-219.

FEAT _ETS, Enhanced Translation Synchronization

FEAT ETS adds support for enhanced memory access ordering requirements for translation table
walks.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.0 implementations and mandatory in Armv8.7 implementations.
The following fields identify the presence of FEAT ETS:

. ID_AA64MMFR1_EL1.ETS.

. ID_MMFRS5_ELI.ETS.

. ID_MMFRS5.ETS.

For more information, see:

. Ordering of memory accesses from translation table walks on page D5-2707.

. Ordering of translation table walks on page E2-4306.

A2-70

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.2 Architectural features within Armv8.0 architecture

FEAT nTLBPA, Intermediate caching of translation table walks

FEAT nTLBPA adds a mechanism to identify if the intermediate caching of translation table walks
does not include non-coherent caches of previous valid translation table entries since the last
completed TLBI applicable to the PE.

This feature is supported in both AArch64 and AArch32 states.
This feature is OPTIONAL in Armv8.0 implementations.

The following fields identify the presence of FEAT nTLBPA:
. ID_AA64MMFR1_EL1.nTLBPA.

. ID_ MMFRS5 EL1.nTLBPA.

. ID_MMFR5.nTLBPA.

For more information, see:
. General TLB maintenance requirements on page D5-2816.

. General TLB maintenance requirements on page G5-6336.

FEAT _PCSRv8, PC Sample-based Profiling Extension

FEAT PCSRv8 adds support for PC Sample-based Profiling Extension that provides
coarse-grained, non-invasive profiling by an external debugger.

This feature is OPTIONAL in Armv8.0 implementations.

The following fields identify the presence of FEAT PCSRvS:
. EDDEVID.PCSample.

. DBGDEVID.PCSample.

. EDDEVID1.PCSROffset.

. DBGDEVID1.PCSROffset.

. PMDEVID.PCSample.

For more information, see About the PC Sample-based Profiling Extension on page H7-7456.

A2.2.2 Architectural requirements within Armv8.0 architecture

The Armv8.0 architecture includes some mandatory changes, that have been added to the architecture at a later date,
that are not associated with a feature. These are:

Prefetch speculation protection

When substituting a direct branch with another direct branch, or a NOP with a direct branch, by the
modified PE, at around the time that the executing PE is executing the software being modified,
prefetch speculation protection prevents the old instructions from accidentally being fetched to the
executing PE. For further information on implementation of these requirements, see:

. Ordering of instruction fetches on page B2-143.

. Ordering of instruction fetches on page E2-4297.

An implementation of the Armv8.0 architecture must comply with all of the additional requirements. When
combined with the mandatory architectural features that have been added to the Armv8.0 architecture, such an
implementation is also called an implementation of the Armv8.0 architecture.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-71
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.3 The Armv8 Cryptographic Extension

A2.3 The Armv8 Cryptographic Extension

The Armv8.0 Cryptographic Extension provides instructions for the acceleration of encryption and decryption, and
includes the following features:

. FEAT AES, which includes the AESD and AESE instructions.

. FEAT PMULL, which includes the PMULL, PMULL2 instructions.
. FEAT SHAI1, which includes the SHALx instructions.

. FEAT SHAZ256, which includes the SHA256+ instructions.

From Armv8.2, an implementation of the Armv8.0 Cryptographic Extension can include either or both of:

. The AES functionality, including support for multiplication of 64-bit polynomials. The
ID_AA64ISARO_ELI1.AES field indicates whether this functionality is supported.

. The SHA1 and SHA2-256 functionality. The ID_AA64ISARO _EL1.{SHA2, SHA1} fields indicate whether
this functionality is supported.

The presence of the Cryptographic Extension in an implementation is subject to export license controls. The
Cryptographic Extension is an extension of the SIMD support and operates on the vector register file.

The Cryptographic Extension also provides multiply instructions that operate on long polynomials.

The Cryptographic Extension provides this functionality in AArch64 state and AArch32 state, and an
implementation that supports both AArch64 state and AArch32 state provides the same Cryptographic Extension
functionality in both states.

For more information, see The Cryptographic Extension on page C3-278 or The Cryptographic Extension in
AArch32 state on page F2-4410.

A2.3.1 Armv8.2 extensions to the Cryptographic Extension

Armv8.2 adds optional extensions to the Armv8 Cryptographic Extension, that provide cryptographic functionality
in AArch64 state only. These optional features are:
FEAT _SHAS512, Advanced SIMD SHAS512 instructions

FEAT SHAS512 adds Advanced SIMD instructions that support SHA2-512 functionality.

These instructions are added to the A64 instruction set only.

Implementation of FEAT SHAS512 requires implementation of the Armv8.0 Cryptographic
Extension FEAT SHA1 and FEAT SHA256 functionality.

The ID_AA64ISARO_EL1.SHA?2 field identifies the presence of FEAT SHAS512.
For more information, see FEAT SHA512, SHA2-512 functionality on page C3-279.

FEAT_SHA3, Advanced SIMD SHA3 instructions
FEAT SHA3 adds Advanced SIMD instructions that support SHA3 functionality.
These instructions are added to the A64 instruction set only.

Implementation of FEAT SHAS3 requires implementation of the Armv8.0 Cryptographic Extension
FEAT SHA1 and FEAT SHAZ256 functionality.

The ID_AA64ISARO_EL1.SHA3 field identifies the presence of FEAT SHA3.
For more information, see FEAT SHA3, SHA3 functionality on page C3-279.

FEAT _SM3, Advanced SIMD SM3 instructions

FEAT SM3 adds Advanced SIMD instructions that support the Chinese cryptography algorithm
SM3.

These instructions are added to the A64 instruction set only.
Implementation of FEAT SM3 is independent of the implementation of any SHA functionality.
The ID_AA64ISARO_EL1.SM3 field identifies the presence of FEAT SM3.

A2-72 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.3 The Armv8 Cryptographic Extension

For more information, see FEAT SM3, SM3 functionality on page C3-280.

FEAT _SM4, Advanced SIMD SM4 instructions

FEAT SM4 adds Advanced SIMD instructions that support the Chinese cryptography algorithm
SM4.

Implementation of FEAT SM4 is independent of the implementation of any SHA functionality.
These instructions are added to the A64 instruction set only.

The ID_AA64ISARO_EL1.SM4 field identifies the presence of FEAT SM4.

For more information, see FEAT SM4, SM4 functionality on page C3-281.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-73
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension

A2.4

A2.4.1

The Armv8.1 architecture extension

The Armv8.1 architecture extension adds both architectural features and architectural requirements, see:

. Architectural features added by Armv8.1 on page A2-74.

. Additional requirements of Armv8.1 on page A2-76.

Features added to the Armv8.1 extension in later releases on page A2-77.

Features made optional in Armv8.1 implementations on page A2-77.

Architectural features added by Armv8.1

An implementation of the Armv8.1 extension must include all of the features that this section describes as
mandatory. Such an implementation, when combined with the additional requirements of Armv8.1, is also called an
implementation of the Armv8.1 architecture.

The Armv8.1 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_LSE, Large System Extensions

FEAT_RDM, Advanced SIMD rounding double multiply accumulate instructions

FEAT LSE introduces a set of atomic instructions:

. Compare and Swap instructions, CAS and CASP.

. Atomic memory operation instructions, LD<OP> and ST<OP>, where <OP> is one of ADD, CLR, EOR,

SET, SMAX, SMIN, UMAX, and UMIN.
. Swap instruction, SWP.
These instructions are added only to the A64 instruction set.

This feature is mandatory in Armv8.1 implementations.

Implementations of FEAT VHE require the implementation of FEAT LSE.
The ID_AA64ISARO_EL1.Atomic field identifies the presence of FEAT LSE.

For more information, see:

. Atomic memory operations on page C3-236.
. Swap on page C3-239.

. Compare and Swap on page C3-239.

FEAT RDM introduces Rounding Double Multiply Add/Subtract Advanced SIMD instructions.

For more information, see:

For the A64 instruction set
. SORDMLAH (by element) on page C7-2181.
. SORDMLAH (vector) on page C7-2184.
. SORDMLSH (by element) on page C7-2187.
. SORDMLSH (vector) on page C7-2190.
For the T32 and A32 instruction sets
. VORDMLAH on page F6-5776.
. VORDMLSH on page F6-5780.
This feature is mandatory in Armv8.1 implementations.
The following fields identify the presence of FEAT RDM:
. ID AA64ISARO EL1.RDM.
. ID ISAR5 EL1.RDM.
. ID ISAR5.RDM.

A2-74

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension

FEAT LOR, Limited ordering regions

Limited ordering regions allow large systems to perform special Load-Acquire and Store-Release
instructions that provide order between the memory accesses to a region of the PA map as observed
by a limited set of observers.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.1 implementations.

The ID AA64AMMFR1 _EL1.LO field identifies the presence of FEAT LOR.
For more information, see:

. Limited ordering regions on page B2-154.

FEAT HPDS, Hierarchical permission disables

FEAT HPDS introduces the facility to disable the hierarchical attributes, APTable, PXNTable, and
UXNTable, in the translation tables. This disable has no effect on the NSTable bit.

This feature is mandatory in Armv8.1 implementations.

This feature is added only to the VMSAvVS8-64 translation regimes. Armv8.2 extends this to the
AArch32 translation regimes, see FEAT AA32HPD.

The ID AA64AMMFR1 _EL1.HPDS field identifies the presence of FEAT HPDS.

FEAT_HAFDBS, Hardware management of the Access flag and dirty state

In Armv8.0, all updates to the translation tables are performed by software. From Armv8.1, for the
VMSAv8-64 translation regimes only, hardware can perform updates to the translation tables in two

contexts:
. Hardware management of the Access flag.
. Hardware management of dirty state, with updates to a dirty state in the translation tables.

The dirty state is introduced in Armv8.1.

Hardware management of dirty state can only be enabled when hardware management of the Access
flag is also enabled.

This feature is OPTIONAL in Armv8.1 implementations. It is IMPLEMENTATION DEFINED whether this
is implemented.

The ID_ AA64AMMFR1_EL1.HAFDBS field identifies the presence of FEAT HAFDBS.

For more information, see:

. The dirty state on page D5-2766.

. Hardware management of the Access flag and dirty state on page D5-2767.

FEAT_ PAN, Privileged access never

FEAT PAN adds a bit to PSTATE. When the value of this PAN state bit is 1, any privileged data
access from EL1, or EL2 when HCR_EL2.E2H is 1, to a virtual memory address that is accessible
to data accesses at EL0, generates a Permission fault.

This feature is mandatory in Armv8.1 implementations.

This feature is supported in both AArch64 and AArch32 states.
The following fields identify the presence of FEAT PAN:

. ID_AA64MMFR1_EL1.PAN.

. ID_MMFR3 ELI1.PAN.

. ID MMFR3.PAN.

For more information, see:

. About PSTATE.PAN on page D5-2755.

. About the PAN bit on page G5-6311.

FEAT_VMID16, 16-bit VMID

In an Armv8.1 implementation, when EL2 is using AArch64, the virtual machine identifier (VMID)
size is an IMPLEMENTATION DEFINED choice of 8 bits or 16 bits.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-75
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension

This feature is OPTIONAL in Armv8.1 implementations.

When implemented, this feature is supported only when EL2 is using AArch64.
The ID_ AA64AMMFR1_EL1.VMIDBits field identifies the supported VMID size.
For more information, see:

. VMID size on page D5-2812.

FEAT_VHE, Virtualization Host Extensions

Armv8.1 introduces the Virtualization Host Extensions (VHE) that provide enhanced support for
Type 2 hypervisors in Non-secure state.

This feature is mandatory in Armv8.1 implementations.
An implementation that includes FEAT VHE requires FEAT LSE to be implemented.
The ID_ AA6AMMFR1_EL1.VH field identifies the presence of FEAT VHE.

The following fields indicate the presence of the Virtualization Host Extensions for debug,
including the changes for the PC Sample-based Profiling Extension and the Performance Monitors
Extension:

. ID_AA64DFRO_EL1.DebugVer.
. ID DFRO _EL1.{CopSDbg, CopDbg}.
For more information, see:

. Virtualization Host Extensions on page D5-2787.

FEAT_PMUv3pl, PMU Extensions v3.1
Armv8.1 makes the following enhancements to the Performance Monitors Extension:

. The event number space is extended to 16 bits to allow additional IMPLEMENTATION DEFINED
event types, and the reserved space for future additions to the architecturally-defined event
types is extended.

. The HPMD bit is added to MDCR_EL2. This bit disables event counting at EL2.

. The STALL FRONTEND and STALL BACKEND events are required to be implemented.
For more information, see Required events on page D7-2937.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Arm8.1
implementation must include FEAT PMUv3pl.

The following fields identify the presence of FEAT PMUv3pl:

. ID_AA64DFRO_EL1.PMU Ver.

. ID_DFRO_EL1.PerfMon.

. ID_DFRO.PerfMon.

A2.4.2 Additional requirements of Armv8.1
The Armv8.1 architecture includes some mandatory changes that are not associated with a feature. These are:
Changes to CRC32 instructions
All implementations of the Armv8.1 architecture are required to implement the CRC32x instructions.
These are OPTIONAL in Armv8.0.
The following fields identify the presence of the CRC32+ instructions:
. ID_AA64ISARO_EL1.CRC32.
. ID_ISARS_EL1.CRC32.
. ID_ISAR5.CRC32.
An implementation of the Armv8.1 extension must comply with all of the additional requirements. Such an
implementation, when combined with the mandatory architectural features of Armv8.1, is also called an
implementation of the Armv8.1 architecture.
A2-76 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.4 The Armv8.1 architecture extension

A2.43 Features added to the Armv8.1 extension in later releases

FEAT_PANS3, Support for SCTLR_ELx.EPAN

FEAT PANS3 adds a bitto SCTLR_EL1 and SCTLR_EL2, EPAN, to support using Privileged
Access Never with instruction accesses for stage 1 translation regimes.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.1 implementations and mandatory in Armv8.7 implementations.
The ID_ AA6AMMFR1_EL1.PAN field identifies the presence of FEAT PAN3.
For more information, see About PSTATE.PAN on page D5-2755.

A2.4.4 Features made OPTIONAL in Armv8.1 implementations

The feature that has been made OPTIONAL in Armv8.1 implementations is FEAT PAN2 on page A2-78.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
ID072021

A2-77
Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

A2.5 The Armv8.2 architecture extension

The Armv8.2 architecture extension adds both architectural features and architectural requirements, see:
. Architectural features added by Armv8.2 on page A2-78.

. Additional requirements of Armv8.2 on page A2-84.

. Features added to the Armv8.2 extension in later releases on page A2-84.

. Features made optional in Armv8.2 implementations on page A2-86.

The Armv8.2 architecture extension also adds functionality to the Cryptographic Extension, see Armv8.2 extensions
to the Cryptographic Extension on page A2-72.

A2.5.1 Architectural features added by Armv8.2

An implementation of the Armv8.2 extension must include all of the features that this section describes as
mandatory. Such an implementation, when combined with the additional requirements of Armv8.2, is also called an
implementation of the Armv8.2 architecture.

The Armv8.2 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_ASMv8p2, Armv8.2 changes to the A64 ISA

FEAT ASMv8p2 adds the BFC instruction to the A64 instruction set as an alias of BFM. It also requires
that the BFC instruction and the A64 pseudo-instruction REV64 are implemented by assemblers.

Note
. In Armv8.0 and Armv8.1, the A64 pseudo-instruction REV64 is OPTIONAL.
. Because this feature relates to support for an instruction alias and for a pseudo-instruction,

there are no corresponding feature ID register fields.

This change to the instruction set and assembler requirements is mandatory in an Armv§.2
implementation.

For more information, see:

. BFC on page C6-922.

. REV64 on page C6-1290.

FEAT _PAN2, AT S1EIR and AT S1EIW instruction variants affected by PSTATE.PAN

FEAT PAN?2 adds variants of the AArch64 AT S1EIR and AT S1E1W instructions and the AArch32
ATS1CPR and ATS1CPW instructions. These instructions factor in the PSTATE.PAN bit when
determining whether or not the location will generate a Permission fault for a privileged access, as
is reported in the PAR. For more information, see:
For the AArch64 System instructions

. AT SIEIRP, Address Translate Stage 1 EL1 Read PAN on page C5-582.

. AT SIEIWP, Address Translate Stage 1 EL1 Write PAN on page C5-586.
For the AArch32 System instructions

. ATSICPRP, Address Translate Stage 1 Current state PL1 Read PAN on
page G8-6477.

. ATS1CPWP, Address Translate Stage 1 Current state PL1 Write PAN on
page G8-6479.

This feature is OPTIONAL in Armv8.1 implementations and mandatory in Armv8.2 implementations.
These instructions are added to the A64 and A32/T32 instruction sets.
The following fields identify the presence of FEAT PAN2:
. ID_AA64MMFR1_EL1.PAN.
. ID_MMFR3_ELI1.PAN.
. ID_MMFR3.PAN.

A2-78 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

For more information, see:

. Address translation instructions on page D5-2735.

. ATSI1C** Address translation stage 1, current security state on page G5-6387.

. Encoding and availability of the address translation instructions on page G5-6388.

FEAT_FP16, Half-precision floating-point data processing
FEAT FP16 supports:

. Half-precision data-processing instructions for Advanced SIMD and floating-point in both
AArch64 and AArch32 states.

. The FPCR.FZ16 and FPSCR.FZ16 bits, which enables flushing of denormalized numbers to
zero for half-precision data-processing instructions.

This feature is OPTIONAL in Armv8.2 implementations, unless one of the following is implemented:

. The Scalable Vector Extension (SVE).

« FEAT FHM.

If SVE or FEAT FHM is implemented, FEAT FP16 is implemented. From Armv8.4, if
FEAT FHM is not implemented, FEAT FP16 is not implemented.

When this feature is implemented it is implemented in both Advanced SIMD and floating-point, and
in AArch64 and AArch32 states.

The following fields identify the presence of FEAT FP16:

. ID_AA64PFRO EL1.{FP, AdvSIMD}.

. MVFR1 ELI.{FPHP, SIMDHP}.

. MVEFRI1.{FPHP, SIMDHP}.

For more information, see:

. Half-precision floating-point formats on page Al1-44.

. Flushing denormalized numbers to zero on page Al-54.

. Modified immediate constants in A64 instructions on page C2-212.

FEAT _DotProd, Advanced SIMD dot product instructions

FEAT DotProd provides instructions to perform the dot product of two 32-bit vectors,
accumulating the result in a third 32-bit vector. This can be performed using signed or unsigned
arithmetic.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.4 implementations.
These instructions are added to the A64 and A32/T32 instruction sets.

The following fields identify the presence of FEAT DotProd:

. ID_AA64ISARO EL1.DP.

. ID_ISAR6_EL1.DP.

. ID_ISARG6.DP.

For more information, see:

. SIMD dot product on page C3-275.
. Advanced SIMD dot product instructions on page F2-4407.

FEAT FHM, Floating-point half-precision multiplication instructions
FEAT FHM adds floating-point multiplication instructions.
These instructions are added to the A64 and A32/T32 instruction sets.

This feature is OPTIONAL in Armv8.2 implementations, and can only be implemented when
FEAT FP16 is implemented. This feature is mandatory in Armv8.4 implementations when
FEAT FP16 is implemented. This feature is not implemented in Armv8.4 implementations when
FEAT FP16 is not implemented.

The following fields identify the presence of FEAT FHM:

. ID_AAG64ISARO_EL1.FHM.

. ID_ISAR6_EL1.FHM.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-79
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

. ID_ISAR6.FHM.

For more information, see:

. SIMD arithmetic on page C3-262.

. SIMD by element arithmetic on page C3-270.

. Advanced SIMD multiply instructions on page F2-4406.

FEAT LSMAOC, AArch32 Load/Store Multiple instruction atomicity and ordering controls
FEAT LSMAOC adds controls that disable legacy behavior of AArch32 load multiple and store
multiple instructions, and provide a trap of one aspect of this legacy behavior.
Implementation of FEAT LSMAOC is OPTIONAL. When implemented it provides:
. LSMAGOE fields in the SCTLR_EL1, SCTLR EL2, HSCTLR, and SCTLR registers. These

fields can have the following effects on the behavior of AArch32 load multiple and store
multiple instructions:

— Aninterrupt can be taken between two memory accesses made by a single load
multiple or store multiple instruction.

— The memory accesses made by a single load multiple or store multiple instruction to
Device memory with the non-Reordering attribute can be reordered.

. nTLSMD fields in the SCTLR_ELI1, SCTLR EL2, HSCTLR, and SCTLR registers. These
fields can cause an access to Device-nGRE, Device-nGnRE, or Device-nGnRnE memory by
an AArch32 load multiple and store multiple instruction to generate an Alignment fault.

Note

Armv8.2 deprecates software dependence on the legacy behavior of AArch32 load multiple and
store multiple instructions, and these fields disable this behavior.

The following fields identify the presence of FEAT LSMAOC:
« 1D _AA64MMFR2 ELI.LSM.

. ID MMFR4 EL1.LSM.

. ID MMFR4.LSM.

For more information, see the register field descriptions and:

. Generation of Alignment faults by load/store multiple accesses to Device memory on
page E2-4313.

. Multi-register loads and stores that access Device memory on page E2-4326.
. Taking an interrupt or other exception during a multiple-register load or store on
page G1-6077.
FEAT UAO, Unprivileged Access Override control

Armv8.2 adds a bit to PSTATE. When the value of PSTATE.UAO is 1, and when executed at EL1
or at EL2 with HCR_EL2.{E2H, TGE} == {1, 1}, the memory accesses made by the load/store
unprivileged instructions behave as if they were made by the load/store register instructions. See
Load/store unprivileged on page C3-228 and Load/store register on page C3-224.

This feature is mandatory in Armv8.2 implementations.

This feature is supported in AArch64 state only.

The ID_ AA6AMMFR2_ EL1.UAO field identifies the presence of FEAT UAO.
For more information, see About PSTATE.UAO on page D5-2756.

FEAT _DPB, DC CVAP instruction

FEAT DPB introduces a mechanism to identify and manage persistent memory locations in a
shared memory hierarchy, including adding the DC CVAP instruction.

This feature is mandatory in Armv8.2 implementations.
This feature is supported in AArch64 state only.
The ID_AA64ISAR1_EL1.DPB field identifies the presence of FEAT DPB.

A2-80 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

For more information about FEAT DPB, see Memory hierarchy on page B2-155.

FEAT_VPIPT, VMID-aware PIPT instruction cache
FEAT VPIPT supports a instruction cache type, described as the VMID-aware PIPT (VPIPT)
instruction cache.

Note

Armv8.2 adds VPIPT to the set of supported cache types, meaning an Armv8.2 implementation is
permitted to implement VPIPT caches, but is not required to do so.

This feature is supported in both AArch64 and AArch32 states.
The CTR_ELO.L1Ip and CTR.L1Ip fields identify the presence of FEAT VPIPT.
For more information, see:

. VPIPT (VMID-aware PIPT) instruction caches on page D5-2836.
. VPIPT (VMID-aware PIPT) instruction caches on page G5-6352.

FEAT_AA32HPD, AArch32 hierarchical permission disables

FEAT HPDS introduced the ability to disable the hierarchical attributes, APTable, PXNTable, and
UXNTable, in the VMSAv8-64 translation regimes. FEAT AA32HPD extends this functionality to
the VMSAVS-32 translation regimes when those regimes are using the Long descriptor Translation
Table format.

This feature is OPTIONAL in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether this
is implemented.

The ID_ MMFR4 EL1.HPDS and ID MMFR4.HPDS fields identify the presence of
FEAT AA32HPD.

For more information, see Attribute fields in VMSAvS-32 Long-descriptor translation table format
descriptors on page G5-6292.

FEAT_HPDS2, Translation table page-based hardware attributes

Armv8.2 provides a mechanism to allow operating systems or hypervisors to make up to four bits
of Translation Table final-level descriptors available for IMPLEMENTATION DEFINED hardware use.

This functionality is available for all translation regimes in AArch64 state and for stages of
translation in AArch32 state that use the Long descriptor Translation Table format.

FEAT HPDS2 is OPTIONAL in Armv8.2 implementations, but implementation of FEAT HPDS2
requires implementation of both:

. FEAT HPDS.

. FEAT AA32HPD, if any Exception level higher than ELO can use AArch32.

Note

For stage 1 translations, page-based hardware attributes can only be used for a stage of translation
for which the Hierarchical permission disables field has a value of 1.

The following fields identify the presence of FEAT HPDS2:
. ID_AA64MMFR1 _EL1.HPDS.

. ID MMFR4 EL1.HPDS.

. ID MMFR4.HPDS.

For more information, see:

. Memory attribute fields in the VMSAvS-64 Translation Table format descriptors on
page D5-2746.

. Attribute fields in VMSAvS-32 Long-descriptor translation table format descriptors on
page G5-6292.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-81
ID072021 Non-Confidential

Armv8-A Architecture Extensions

A2.5 The Armv8.2 architecture extension

FEAT LPA, Large PA and IPA support

FEAT LPA:

. Allows a larger intermediate physical address (IPA) and PA space of up to 52 bits when using
the 64KB translation granule.

. Allows a level 1 block size where the block covers a 4TB address range for the 64KB
translation granule if the implementation support 52 bits of PA.

This is an OPTIONAL feature in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether

it is implemented.

This feature is supported in AArch64 state only.

The ID AA6AMMFRO_EL1.PARange field identifies the presence of FEAT LPA.

For more information about FEAT LPA, see:

. VMSA address types and address spaces on page D5-2675.

. Address size configuration on page D5-2689.

. Extending addressing above 48 bits when using the 64KB translation granule on
page D5-2695.

. VMSAvS-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

. ArmvS8 translation table level 3 descriptor formats on page D5-2744.

FEAT_LVA, Large VA support

FEAT LVA supports a larger VA space for each translation table base register of up to 52 bits when
using the 64KB translation granule.

This feature is supported in AArch64 state only.

This is an OPTIONAL feature in Armv8.2 implementations. It is IMPLEMENTATION DEFINED whether
it is implemented.

If FEAT LVA is implemented, then any implemented trace macrocell must be at least ETMv4.2.
The ID_ AA64AMMFR2_EL1.VARange field identifies the presence of FEAT LVA.
For more information about FEAT LVA, see:

. VMSA address types and address spaces on page D5-2675.
. Address size configuration on page D5-2689.

. Extending addressing above 48 bits when using the 64KB translation granule on
page D5-2695.
. VMSAvS-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on

page D5-2739.
. Armv8 translation table level 3 descriptor formats on page D5-2744.

FEAT _TTCNP, Translation table Common not private translations

FEAT TTCNP permits multiple PEs in the same Inner Shareable domain to use the same translation
tables for a given stage of address translation.

This feature is mandatory in Armv8.2 implementations.

This facility is available for all VMSAvS8-64 translation regimes and for VMSAvVS8-32 translation
stages that use the Long descriptor Translation Table format.

The following fields identify the presence of FEAT TTCNP:

. ID_AA64MMFR2 EL1.CnP.

. ID MMFR4 ELI1.CnP.

. ID_MMFR4.CnP.

For more information, see:

. Common not private translations on page D5-2811.

. Common not private translations in VMSAvS-32 on page G5-6341.

A2-82

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

FEAT XNX, Translation table stage 2 Unprivileged Execute-never

FEAT XNX extends the stage 2 translation table access permissions to provide control of whether
memory is executable at ELO independent of whether it is executable at EL1.

This feature is mandatory in Armv8.2 implementations that implement EL2.
This facility is available for stage 2 translation stages in VMSAv8-64 and VMSAv8-32.

The following fields identify the presence of FEAT XNX:

. ID_AA64MMFR1_ELI1.XNX.

. ID_ MMFR4 EL1.XNX.

. ID MMFR4.XNX.

For more information, see:

. Access permissions for instruction execution on page D5-2760.

. Access permissions for instruction execution on page G5-6312.
FEAT_Debugv8p2, Debug v8.2

FEAT Debugv8p2 covers a selection of mandatory changes, including:

. If the Core power domain is powered up and DoubleLockStatus() == TRUE,
EDPRSR.{DLK,SPD,PU} is only permitted to read {UNKNOWN, 0, 0}.

. The definition of Exception Catch debug events is extended to include reset entry.

. All CONSTRAINED UNPREDICTABLE cases that generate Exception Catch debug events are
removed.

. Controls are added to EDECCR to control Exception Catch debug event generation on
exception return.

. All IMPLEMENTATION DEFINED control of external debug accesses to OSLAR EL1 is
removed.

. ExternalSecureNoninvasiveDebugEnabled() cannot override software controls of counting

attributable events in Secure state.
If FEAT Debugv8p2 is implemented, FEAT DoubleLock is OPTIONAL.

The fields that identify the presence of FEAT Debugv8p?2 are:

. ID_AA64DFRO_EL1.DebugVer and DBGDIDR.Version.

. ID DFRO _EL1.{CopSDbg, CopDbg} and ID DFRO0.{CopSDbg, CopDbg}.
. EDDEVARCH.ARCHID.

For more information, see:

. Exception Catch debug event on page H3-7391.

. EDPRSR.{DLK, SPD, PU} and the Core power domain on page H6-7446.

. Interaction with EL3 on page D7-2851.

. External access disabled on page H8-7468.

FEAT PCSRv8p2, PC Sample-based profiling

In Armv8.2, the control and implementation of the OPTIONAL PC Sample-based Profiling extension
is moved from ED*SR Debug registers to PM*SR registers in the Performance Monitors address
space. See Chapter H7 The PC Sample-based Profiling Extension.

The PC Sample-based Profiling Extension is an OPTIONAL feature. If it is implemented, an Arm8.2
implementation must also include FEAT PCSRv8p2.

If Secure EL2 and PC Sample-based Profiling are both implemented, FEAT PCSRv8p2 is
mandatory.

The following fields identify the presence of FEAT PCSRv8p2:

. EDDEVID.PCSample.

. DBGDEVID.PCSample.

. EDDEVID1.PCSROffset.

. DBGDEVID1.PCSROffset.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-83
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

. PMDEVID.PCSample.

FEAT_IESB, Implicit Error Synchronization event

FEAT IESB adds an implicit error synchronization event at exception entry and return, controlled
by the added SCTLR ELx.IESB fields. An IESB field is added to the ESR_ELx syndrome registers.

The implicit error synchronization events affect the same synchronizable asynchronous events that
are synchronized by the ESB instruction, see The Reliability, Availability, and Serviceability
Extension on page A2-108.

This feature is OPTIONAL in Armv8.2 implementations.
This feature is supported in AArch64 state only.
The ID_ AA64AMMFR2_ELI1.IESB field identifies the presence of FEAT IESB.
For more information, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification,
ARMVS, for the ARMvS-A architecture profile.
Extensions to the Arm Cryptographic Extensions

See the description of the FEAT SHAS512 and FEAT SM3 features in Armv8.2 extensions to the
Cryptographic Extension on page A2-72.

A2.5.2 Additional requirements of Armv8.2
The Armv8.2 architecture includes some mandatory changes that are not associated with a feature. These are:

Change to ACTLR2 and HCTLR?2 registers
In AArch32 state, the ACTLR2 and HACTLR?2 registers become mandatory.

Implementation of RAS Extension
The RAS Extension must be implemented, see The Reliability, Availability, and Serviceability
Extension on page A2-108.

An implementation of the Armv8.2 extension must comply with all of the additional requirements. Such an
implementation, when combined with the mandatory architectural features of Armv8.2, is also called an
implementation of the Armv8.2 architecture.

If FEAT PMUv3 is implemented, the feature FEAT PMUv3p4 is OPTIONAL in Armv8.2 implementations.

A2.5.3 Features added to the Armv8.2 extension in later releases

FEAT_EVT, Enhanced Virtualization Traps

FEAT EVT introduces additional traps for EL1 and ELO Cache controls. These traps are
independent of existing controls.

This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.2 implementations and is mandatory in Armv8.5.

ID AA64MMFR2 EL1.EVT identifies the presence of the AArch64 traps controls.

ID MMFR4 EL1.EVT and ID. MMFR4.EVT identify the presence of the AArch32 traps.

For more information, see:
HCR_EL2.{TTLBIS, TTLBOS, TICAB, TOCU, TID4}.
. HCR2.{TTLBIS, TICAB, TOCU, TID4}.

FEAT_DPB2, DC CVADP instruction

FEAT DPB2 allows two levels of cache clean to the Point of Persistence by:
. Redefining Point of Persistence, which changes the scope of DC CVAP.
. Defining a Point of Deep Persistence.

. Adding the DC CVADP System instruction.

This feature is supported in AArch64 state only.

A2-84 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

This feature is OPTIONAL in Armv8.2 implementations and is mandatory in Armv8.5
implementations.

The ID_AAG64ISAR1_EL1.DPB field identifies the presence of FEAT DPB2.

For further information, see Terminology for Clean, Invalidate, and Clean and Invalidate
instructions on page D4-2645.

FEAT BF16, AArch64 BFloat16 instructions

FEAT BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in AArch64 state.
This format supports:

. The BFloat16 floating-point data type.

. Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.
. Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.6 implementations.
The ID_AA64ISAR1_EL1.BF16 field identifies the presence of FEAT BF16.

When both Advanced SIMD and SVE are implemented, the ID_ AA64ISAR1_EL1.BF16 and
ID_AA64ZFR0O_EL1.BF16 fields must return the same value.

For further information, see:

. BFloatl6 floating-point format on page A1-48.

. BFloatl6 floating-point instructions on page C3-262.

. SIMD BFloatl6 on page C3-276.

. Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for

Armv8-A.
FEAT AA32BF16, AArch32 BFloat16 instructions

FEAT AA32BF16 supports the BFloat16, or BF16, 16-bit floating-point storage format in
AArch32 state. This format supports:

. The BFloat16 floating-point data type.
. Arithmetic instructions to accelerate dot products and matrix multiplications of BF16 values.
. Instructions to convert single-precision floating-point values to BF16 format.

This feature is supported in AArch32 state only.
This feature is OPTIONAL in Armv8.2 implementations.
The ID ISAR6_EL1.BF16 and ID ISAR6.BF16 fields identify the presence of FEAT AA32BF16.

For further information, see:

. BFloatl16 floating-point format on page A1-48.

. Advanced SIMD BFloatl6 instructions on page F2-4408.
. Floating-point data-processing on page F3-4449.

FEAT _ISMM, AArch64 Int8 matrix multiplication instructions

FEAT I8MM introduces integer matrix multiply-accumulate instructions and mixed sign dot
product instructions.

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.6 implementations.
The ID_AAG64ISAR1_EL1.ISMM field identifies the presence of FEAT I8MM.

When both Advanced SIMD and SVE are implemented, the ID_AA64ISAR1_EL1.I8MM and the
ID _AA64ZFRO_EL1.I8MM fields must return the same value.

For further information, see:
. SIMD dot product on page C3-275.
. SIMD matrix multiplication on page C3-277.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-85
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.5 The Armv8.2 architecture extension

. Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for
Armv8-A.
FEAT_AA32I8MM, AArch32 Int8 matrix multiplication instructions

FEAT AA32I8MM introduces integer matrix multiply-accumulate instructions and mixed sign dot
product instructions.

This feature is supported in AArch32 state only.
This feature is OPTIONAL in Armv8.2 implementations.

The ID_ISAR6_EL1.I8MM and ID ISAR6.ISMM fields identify the presence of
FEAT AA32I8MM.

For further information, see:

. Advanced SIMD dot product instructions on page F2-4407.

. Advanced SIMD matrix multiply instructions on page F2-4408.

A2.5.4 Features made OPTIONAL in Armv8.2 implementations

The features that have been made OPTIONAL in Armv8.2 implementations are:
. FEAT FlagM on page A2-91.

. FEAT LSE?2 on page A2-91.

. FEAT LRCPC2 on page A2-91.

A2-86 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension

A2.6 The Armv8.3 architecture extension

The Armv8.3 architecture extension adds both architectural features and additional requirements, see:
. Architectural features added by Armv8.3 on page A2-87.
. Additional requirements of Armv8.3 on page A2-89.

. Features added to the Armv8.3 extension in later releases on page A2-89.

A2.6.1 Architectural features added by Armv8.3

An implementation of the Armv8.3 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.3 architecture.

The Armv8.3 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_FCMA, Floating-point complex number instructions

FEAT FCMA introduces instructions for floating-point multiplication and addition of complex
numbers.

These instructions are added to the A64 and A32/T32 instruction sets.
This feature is mandatory in Armv8.3 implementations.

The half-precision versions of these instructions are implemented only if FEAT FP16 is
implemented. Otherwise they are UNDEFINED.

The fields that identify the presence of FEAT FCMA are:

. ID_AAG4ISAR]_EL1.FCMA.

. ID ISAR5 EL1.VCMA.

. ID ISAR5.VCMA.

For more information, see:

. SIMD complex number arithmetic on page C3-276.

. Advanced SIMD complex number arithmetic instructions on page F2-4407.

FEAT JSCVT, JavaScript conversion instructions

FEAT JSCVT introduces instructions that perform a conversion from a double-precision floating
point value to a signed 32-bit integer, with rounding to zero. For more information, see:

For the A64 instruction set
. FJCVTZS on page C7-1754.
For the A32/T32 instruction set
. VJCVT on page F6-5538.
These instructions are added to the A64 and A32/T32 instruction sets.
This feature is mandatory in Armv8.3 implementations.
The fields that identify the presence of FEAT JSCVT are:
. ID AA64ISAR1_EL1.JSCVT.
. ID:ISAR6_EL 1 .;SCVT.
. ID_ISAR6.JSCVT.
For more information, see:
. Floating-point conversion on page C3-257.
. About the A64 SIMD and floating-point instructions on page C7-1522.
. Advanced SIMD and floating-point instructions on page E1-4260.
. Floating-point data-processing instructions on page F2-4412.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-87
ID072021 Non-Confidential

Armv8-A Architecture Extensions

A2.6 The Armv8.3 architecture extension

FEAT LRCPC, Load-Acquire RCpc instructions

FEAT LRCPC introduces three instructions to support the weaker Release Consistency processor
consistent (RCpc) model that enables the reordering of a Store-Release followed by a Load-Acquire
to a different address:

. LDAPR on page C6-1048.

. LDAPRB on page C6-1050.

. LDAPRH on page C6-1052.

These instructions are added to the A64 instruction set.

The feature is mandatory in Armv8.3 implementations.

The ID_AA64ISAR1 _EL1.LRCPC field identifies the presence of FEAT LRCPC.
For more information, see:

. Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

. Load-Acquire/Store-Release on page C3-229.

FEAT NV, Nested virtualization support

FEAT NV provides support for a Guest Hypervisor to run in Non-secure EL1 and ensures that the
Guest Hypervisor is unaware that it is running at that Exception level. A Guest Hypervisor is
supported regardless of the value of HCR_EL2.E2H.

This feature is supported in AArch64 state only.

The feature is OPTIONAL in Armv8.3 implementations. This feature must be implemented if
FEAT NV2 is implemented.

The ID AA64AMMFR2 _EL1.NV field identifies the presence of FEAT NV.

For more information, see Nested virtualization on page D5-2793.

FEAT_CCIDX, Extended cache index

FEAT CCIDX introduces the following registers to allow caches to be described with greater
numbers of sets and greater associativity:

. A 64-bit format of CCSIDR_ELI.
. CCSIDR2 _ELI.
. CCSIDR2.

This feature is supported in both AArch64 and AArch32 states.
This feature is OPTIONAL in Armv8.3 implementations.

The following fields identify the presence of FEAT CCIDX:
. ID_AA64MMFR2 _EL1.CCIDX.

. ID_MMFR4 EL1.CCIDX.

. ID_MMFR4.CCIDX.

For more information, see:
. Possible formats of the Cache Size Identification Register, CCSIDR_EL1 on page D4-2639.

. Possible formats of the Cache Size Identification Registers, CCSIDR and CCSIDR2 on
page G4-6231.

FEAT_PAuth, Pointer authentication

FEAT PAuth adds functionality that supports address authentication of the contents of a register
before that register is used as the target of an indirect branch, or as a load.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.3 implementations.
The fields ID AA64ISAR1_EL1.{GPI, GPA, API, APA} identify the presence of FEAT PAuth.

For more information, see Pointer authentication in AArch64 state on page D5-2678.

A2-88

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension

A2.6.2 Additional requirements of Armv8.3

If FEAT PMUv3 is implemented, FEAT PMUv3p4 is OPTIONAL in Armv8.3 implementations.

A2.6.3 Features added to the Armv8.3 extension in later releases

FEAT _SPEvlpl, Armv8.3 Statistical Profiling Extensions

FEAT SPEvlpl adds an Alignment Flag in the Events packet and filtering on this event using
PMSEVFR_ELI, together with support for the profiling of Scalable Vector Extension operations.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations. An Armv8.5 implementation that includes
the Statistical Profiling Extension must include FEAT SPEvlipl.

The fields in ID_ AA64DFRO_EL1.PMSVer identify the presence of FEAT SPEvipl.

For more information, see Chapter D9 The Statistical Profiling Extension and Chapter D10
Statistical Profiling Extension Sample Record Specification.

FEAT DoPD, Debug over Powerdown

FEAT DoPD provides a debug programmers’ model where all debug and PMU registers are in the
Core power domain, all CTI registers are in the Debug power domain. Power control is provided by
a CoreSight Granular Power Requestor (GPR) component.

When the OPTIONAL powerup mechanism is implemented and this feature is implemented, the
debugger makes power control requests for the Core power domain using a CoreSight Class 0x9
ROM Table block, instead of using EDRCR.COREPURQ. EDRCR.COREPURQ is not
implemented. Refer to the ARM™ CoreSight Architecture Specification for more information.

This feature is OPTIONAL in Armv8.3 implementations.

When FEAT DoPD is implemented:

. FEAT DoubleLock is not implemented.

. FEAT Debugv8p2 must be implemented.

. If PC Sample-based profiling is implemented, FEAT PCSRv8p2 must be implemented.

. The optional Software Lock is not implemented by the architecturally defined debug
components in the PE Core power domain.

. If an ETMv4 PE Trace Unit is implemented, the ETM must implement:
— ETMv4.2 or later.
— The Unified Power Domain Model.

The fields that identify the presence of FEAT DoPD are:
. EDDEVID.DebugPower.
. CTIDEVARCH.REVISION.

For more information, see Chapter H6 Debug Reset and Powerdown Support.

FEAT PAuth2, Enhancements to pointer authentication

FEAT PAuth2 adds enhanced pointer authentication functionality that changes the mechanism by
which a PAC is added to the pointer.

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.3 implementations and mandatory in Armv8.6 implementations.

The ID_AA64ISAR1 _EL1.APA and ID_AA64ISAR1_ELI1.API fields identify the presence of
FEAT PAuth2.

For more information, see Pointer authentication in AArch64 state on page D5-2678.

FEAT_FPAC, Faulting on AUT* instructions

FEAT FPAC introduces faulting on an AUT+ instruction and, optionally, on the combined
instructions that perform pointer authentication. FEAT FPAC is added as a further extension to
FEAT PAuth2.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-89
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.6 The Armv8.3 architecture extension

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.3 implementations, and can be implemented only if
FEAT PAuth2 is implemented.

The ID_AA64ISAR1_EL1.APA and ID_AAG64ISAR1_EL1.API fields identify the presence of
FEAT_FPAC.

For more information, see Faulting on pointer authentication on page D5-2681.

A2-90 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension

A2.7 The Armv8.4 architecture extension

The Armv8.4 architecture extension adds architectural features, see Architectural features added by Armv8.4 on
page A2-91. It also adds features to earlier architecture extensions, see Features added to earlier extensions on
page A2-95.

A2.71 Architectural features added by Armv8.4

An implementation of the Armv8.4 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.4 architecture.

The Armv8.4 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:
FEAT_DIT, Data Independent Timing instructions

FEAT DIT provides independent timing for data processing instructions with the addition of the
PSTATE.DIT and CPSR.DIT fields.

This feature is supported in both AArch64 and AArch32 states.
This feature is mandatory in Armv8.4 implementations.

The following fields identify the presence of FEAT DIT:
. ID_AA64PFRO_EL1.DIT.

. ID_PFRO_EL1.DIT.

. ID_PFRO.DIT.

For more information, see:
. About PSTATE.DIT on page B1-123.
. About the DIT bit on page E1-4259.

FEAT_FlagM, Flag manipulation instructions v2
FEAT FlagM provides instructions which manipulate the PSTATE.{N,Z,C,V} flags.
These instructions are added to the A64 instruction set only.
This feature is OPTIONAL in Armv8.2 implementations.
This feature is mandatory in Armv8.4 implementations.
The ID_ AA64ISARO_ELI1.TS field identifies the presence of FEAT FlagM.

For more information, see Flag manipulation instructions on page C3-249.

FEAT LRCPC2, Load-Acquire RCpc instructions v2
FEAT LRCPC2 provides versions of LDAPR and STLR with a 9-bit unscaled signed immediate offset.
These instructions are added to the A64 instruction set only.
This feature is OPTIONAL in Armv8.2 implementations.
This feature is mandatory in Armv8.4 implementations.
The ID_AA64ISAR1_EL1.LRCPC field identifies the presence of FEAT LRCPC2.

For more information, see:

. Changes to single-copy atomicity in ArmvS8.4 on page B2-129.

. Non-exclusive Load-Acquire and Store-Release instructions on page C3-230.
. A64 instructions that are changed in Debug state on page H2-7349.

FEAT LSE2, Large System Extensions v2

FEAT LSE2 introduces changes to single-copy atomicity requirements for loads and stores, and
changes to alignment requirements for loads and stores.

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.2 implementations.

This feature is mandatory in Armv8.4 implementations.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-91
Non-Confidential

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension

The ID_ AA6AMMFR2_ELI1.AT field identifies the presence of FEAT LSE2.
For more information, see:
. Requirements for single-copy atomicity on page B2-128.
. Alignment of data accesses on page B2-160.
FEAT_TLBIOS, TLB invalidate instructions in Outer Shareable domain

FEAT TLBIOS provides TLBI maintenance instructions that extend to the Outer Shareable
domain.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The field ID_ AA64ISARO_EL1.TLB identifies the presence of FEAT TLBIOS.

For more information, see:

. TLB maintenance instruction syntax on page D5-2820.

FEAT _TLBIRANGE, TLB invalidate range instructions

FEAT TLBIRANGE provides TLBI maintenance instructions that apply to a range of input
addresses. FEAT TLBIRANGE being implemented implies that FEAT TLBIOS is implemented.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The field ID_ AA64ISARO_EL1.TLB identifies the presence of FEAT TLBIRANGE.

For more information, see:
. TLB maintenance instruction syntax on page D5-2820.

. TLB range maintenance instructions on page D5-2828.

FEAT_TTL, Translation Table Level

FEAT TTL provides the TTL field to indicate the level of translation table walk holding the leaf
entry for the address that is being invalidated. This field is provided in all TLB maintenance
instructions that take a VA or an IPA argument.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The field ID AA64MMFR2 EL1.TTL identifies the presence of FEAT TTL.

For more information, see:
. TLB maintenance instruction syntax on page D5-2820.

. TLB range maintenance instructions on page D5-2828.

FEAT_S2FWB, Stage 2 forced Write-Back

FEAT S2FWB reduces the requirement of additional cache maintenance instructions in systems
where the data Cacheability attributes used by the Guest operating system are different from those
expected by the Hypervisor.

This feature is supported in AArch64 state.
This feature is mandatory in Armv8.4 implementations that implement EL2.
The ID_ AA64AMMFR2 EL1.FWB field identifies the presence of FEAT S2FWB.

For more information, see:
. Memory region attributes on page D5-2776.
. The stage 2 memory region attributes, EL1&0 translation regime on page D5-2778.

FEAT_TTST, Small translation tables

FEAT TTST relaxes the lower limit on the size of translation tables, by increasing the maximum
permitted value of the T1SZ and TOSZ fields in TCR_EL1, TCR_EL2, TCR_EL3, VTCR_EL2 and
VSTCR_EL2.

This feature is supported in AArch64 state only.

A2-92 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension

This feature is mandatory if FEAT SEL2 is implemented.
This feature is OPTIONAL if FEAT SEL2 is not implemented.
The ID_ AA6AMMFR2_EL1.ST field identifies the presence of FEAT TTST.

For more information, see:
. Input address size on page D5-2691.
. Overview of the VMSAvS-64 address translation stages on page D5-2708.

FEAT BBM, Translation table break-before-make levels

FEAT BBM provides support to identify the requirements of hardware to have break-before-make
sequences when changing between block size for a translation.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations.

The ID_ AA64AMMFR2_EL1.BBM field identifies the presence of FEAT BBM.
For more information, see:

. Memory attribute fields in the VMSAvS-64 Translation Table format descriptors on
page D5-2746.

. Support levels for changing block size on page D5-2818.

FEAT_SEL2, Secure EL2

FEAT SEL2 permits EL2 to be implemented in Secure state. When Secure EL2 is enabled, a
translation regime is introduced that follows the same format as the other Secure translation
regimes.

This feature is not supported if EL2 is using AArch32.
This feature is mandatory in Armv8.4 implementations that implement both EL2 and Secure state.
The ID_AA64PFRO EL1.SEL2 field identifies the presence of FEAT SEL2.

For more information, see:
. Virtualization on page D1-2460.
. The VMSAvS-64 address translation system on page D5-2682.

FEAT _NV2, Enhanced nested virtualization support

FEAT NV?2 supports nested virtualization by redirecting register accesses that would be trapped to
EL1 and EL2 to access memory instead. The address of the memory access depends on information
held in introduced register, VNCR_EL2.

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.4 implementations.
The ID AA64AMMFR2 _EL1.NV field identifies the presence of FEAT NV2.

For more information, see Enhanced support for nested virtualization on page D5-2795.

FEAT _IDST, ID space trap handling

FEAT IDST causes all AArch64 read accesses to the feature ID space when exceptions are
generated to be reported in ESR_ELx using the EC code 0x18.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.4 implementations.
The ID_ AA6AMMFR2_ELI1.IDS field identifies the presence of FEAT IDST.

FEAT_CNTSC, Generic Counter Scaling

FEAT CNTSC adds a scaling register to the memory-mapped counter module that allows the
frequency of the counter that is generated to be scaled from the basic frequency reported in the
counter ID mechanisms.

This feature is supported in both AArch64 and AArch32 states.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-93
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension

This feature is OPTIONAL in Armv8.4 implementations.
The CNTID.CNTSC field identifies the presence of FEAT CNTSC.
For more information, see:

. CNTCR, Counter Control Register on page 15-7808.

FEAT _Debugv8p4, Debug v8.4
FEAT Debugv8p4 covers a selection of mandatory changes:

. The fields MDCR_EL3.{EPMAD, EDAD} control Non-secure access to the debug and
PMU registers. The bus Requester is responsible for other debug authentication.

. The Software Lock is obsolete.
. Non-invasive Debug controls are relaxed.
. Secure and Non-secure views of the debug registers are enabled.

This feature is mandatory if FEAT SEL2 is implemented.

The fields that identify the presence of FEAT Debugv8p4 are:

. ID_AA64DFRO_EL1.DebugVer.

. DBGDIDR. Version.

. ID DFRO_EL1.{CopSDbg, CopDbg}.

. ID_DFRO.{CopSDbg, CopDbg}.

. EDDEVARCH.ARCHID.

For more information, see:

. Definition and constraints of a debugger in the context of external debug on page H1-7334

. External debug interface register access permissions on page H8-7468

FEAT_TREF, Self-hosted Trace Extensions
FEAT TRF adds controls of trace in a self-hosted system through System registers.
The feature provides:

. Control of Exception levels and Security states where trace generation is prohibited.
. Control of whether an offset is used for the timestamp recorded with trace information.
. A context synchronization instruction TSB CSYNC which can be used to prevent reordering of

trace operation accesses with respect to other accesses of the same System registers.

Ifan ETM Architecture PE Trace Unit is implemented and the ETM PE Trace Unit includes System
register access to its control registers, this feature is mandatory. If a different PE Trace Unit is
implemented or the ETM PE Trace Unit does not include System register access to its control
registers, this feature is OPTIONAL.

The reset state of the PE has prohibited regions controlled by the feature and not the external
authentication signals. An external trace controller must override the internal controls before
enabling trace, including trace from reset. This is a change from previous trace architectures and is
not backwards-compatible.

The fields that identify the presence of FEAT TREF are:

. ID_AA64DFRO_ELI1.TraceFilt.

. ID_DFRO_ELI.TraceFilt.

. ID_DFRO.TraceFilt.

. EDDFR.TraceVer.

. ID_AA64DFRO_ELI1.TraceVer.

For more information, see:
. Chapter D3 AArch64 Self-hosted Trace.
. Chapter G3 AArch32 Self-hosted Trace.

FEAT_PMUv3p4, PMU Extensions v3.4
FEAT PMUv3p4 introduces the PMMIR EL1 and PMMIR registers.

A2-94 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.7 The Armv8.4 architecture extension

This feature is supported in both AArch64 and AArch32 states.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.4
implementation must include FEAT PMUv3p4.

The fields that identify the presence of FEAT PMUv3p4 are:

. ID_AA64DFRO_EL1.PMU Ver.

. ID_ DFRO_EL1.PerfMon.

. ID_DFRO.PerfMon.

. EDDFR.PMU Ver.

For more information, see PMU events and event numbers on page D7-2869.

FEAT _RASv1pl, RAS Extension v1.1
FEAT RASvlpl implements RAS System Architecture v1.1 and adds support for:
. Simplifications to ERR<n>STATUS.
. Additional ERR<n>MISC<m> registers.
. The OPTIONAL RAS Common Fault Injection Model Extension.
This feature is supported in both AArch64 and AArch32 states.
This feature is OPTIONAL in Armv8.2 implementations and mandatory in Armv8.4 implementations.
The following fields identify the complete or partial presence of FEAT RASvl1pl:
. ID_AA64PFRO_ELI1.RAS.
. ID_AA64PFR1_ELI.RAS frac.
. ID PFRO _ELI.RAS.
. ID_PFR2_EL1.RAS_frac.
. ID_PFRO.RAS.
. ID PFR2.RAS frac.
For more information, see:
. The Reliability, Availability, and Serviceability Extension on page A2-108.
. Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMVS, for the

ARMVS-A architecture profile.
FEAT_ DoubleFault, Double Fault Extension
FEAT DoubleFault provides two controls:
. SCR_EL3.EASE.
. SCR_EL3.NMEA.
This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.4 implementations if EL3 is implemented and EL3 uses
AArch64. Otherwise, it is not implemented.

This feature is implemented if ID AA64PFRO_EL1.RAS >= 0b0010 and the implementation

includes EL3 using AArch64.

For more information, see:

. The Reliability, Availability, and Serviceability Extension on page A2-108.

. Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMVS, for the
ARMVS-A architecture profile.

A2.7.2 Features added to earlier extensions

The existing functionality of OS Double Lock is added as a feature mnemonic in Armv8.0, see FEAT DoubleLock
on page A2-70.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-95
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension

A2.8 The Armv8.5 architecture extension

The Armv8.5 architecture extension adds architectural features and additional requirements, see:

Architectural features added by Armv8.5 on page A2-96.

Additional requirements of Armv8.5 on page A2-98.

Features added to earlier extensions on page A2-99.

Architectural requirements added to earlier extensions on page A2-99.

Features added to the Armv8.5 extension in later releases on page A2-99.

A2.8.1 Architectural features added by Armv8.5

An implementation of the Armv8.5 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.5 architecture.

The Armv8.5 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT FlagM2, Enhancements to flag manipulation instructions

FEAT FlagM2 provides instructions that convert between the PSTATE condition flag format used
by the FCMP instruction and an alternative format described in Relationship between ARM format
and alternative format PSTATE condition flags on page C6-874.

These instructions are added to the A64 instruction set only.

This feature is mandatory in Armv8.5 implementations.

The ID_AA64ISARO_EL1.TS field identifies the presence of FEAT FlagM2.
For more information, see:

. Flag manipulation instructions on page C3-249.

. Relationship between ARM format and alternative format PSTATE condition flags on
page C6-874.

FEAT _FRINTTS, Floating-point to integer instructions

FEAT FRINTTS provides instructions that round a floating-point number to an integral valued
floating-point number that fits in a 32-bit or 64-bit integer number range.

These instructions are added to the A64 instruction set only.

This feature requires SIMD&FP, and is mandatory in Armv8.5 implementations when SIMD&FP
is implemented.

The ID_AA64ISAR1_EL1.FRINTTS identifies the presence of FEAT FRINTTS.

For more information, see Floating-point round to integral value on page C3-258.

FEAT_ExS, Context synchronization and exception handling

FEAT ExS provides a mechanism to control whether exception entry and exception return are
context synchronization events. Fields in the SCTLR ELx registers enable and disable context
synchronization at exception entry and return at an Exception level.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.5 implementations.

The ID_ AA64AMMFRO _EL1.ExS identifies the presence of FEAT ExS.
For more information, see:

. SCTLR _ELI, System Control Register (ELI) on page D13-3621, SCTLR_EL2 and
SCTLR EL3.

. Context synchronization event on page Glossary-8678

FEAT_GTG, Guest translation granule size

FEAT GTG allows a hypervisor to support different granule sizes for stage 2 and stage 1
translation, and allows a nested hypervisor to determine what stage 2 granule sizes are available.

A2-96

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.5 implementations.

The ID AA64AMMFRO_EL1.{TGranl6 2, TGran64 2, TGran4 2} fields identify whether each of
the granule sizes is supported for stage 2 translation. The ID. AA64MMFRO_EL1.{TGranl16,
TGran64, TGran4} fields identify whether each of the granule sizes is supported for stage 1
translations.

For more information, see Memory translation granule size on page D5-2698.

FEAT_BTI, Branch Target Identification

FEAT BTI allows memory pages to be guarded against the execution of instructions that are not the

intended target of a branch. To do this, it introduces:

. The GP field, which denotes the blocks and pages in stage 1 translation tables that are
guarded pages.

. The PSTATE.BTYPE field, which is used to determine whether an access to a guarded
memory region will generate a Branch Target exception.

. The BTI instruction, which is used to guard against the execution of instructions that are not
the intended target of a branch.

This feature is supported in AArch64 state only.

This feature is mandatory in Armv8.5 implementations.

The ID_AA64PFR1_EL1.BT field identifies the presence of FEAT BTI.

For more information, see:

. Exception entry on page D1-2475.

. Synchronous exception types, routing and priorities on page D1-2489.

. VMSAvVS-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

. About PSTATE.BTYPE on page D5-2756.
. Effect of entering Debug state on PSTATE on page H2-7346.

FEAT_EOPD, Preventing ELO access to halves of address maps
FEAT EOPD prevents access at ELO to half of the addresses in the memory map.

This feature is supported in AArch64 state only. When EL1 is using AArch64 state, this feature
affects access to ELO, in either Execution state.

This feature is mandatory in Armv8.5 implementations.
Implementations that support FEAT EOPD must also support FEAT CSV3.
The ID AA64AMMFR2 EL1.EOPD field identifies presence of FEAT EOPD.

For more information, see:

. Preventing EL0 access to halves of the address map on page D5-2758.
. TCR_EL1.{EOPDO, EOPD1}.

. TCR_EL2.{EOPDO, EOPD1}.

FEAT RNG, Random number generator

FEAT RNG introduces the RNDR and RNDRRS registers. Reads to these registers return a 64-bit
random number. A read to RNDRRS will cause a reseeding of the random number before the
generation of the random number that is returned.

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.5 implementations.
The ID_ AA64ISARO_EL1.RNDR field identifies presence of FEAT RNG.

. Effect of random number generation instructions on Condition flags on page C6-874.

. Appendix K12 Random Number Generation.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-97
Non-Confidential

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension

FEAT MTE and FEAT MTE2, Memory Tagging Extension

FEAT MTE and FEAT MTE2 provide architectural support for runtime, always-on detection of
various classes of memory error to aid with software debugging to eliminate vulnerabilities arising
from memory-unsafe languages.

These features are supported in AArch64 state only.

These features are OPTIONAL in Armv8.5 implementations.

The ID_AA64PFR1_EL1.MTE field identifies the presence of FEAT MTE and FEAT MTE2.
For more information, see:

. Chapter D6 Memory Tagging Extension.

. Chapter B2 The AArch64 Application Level Memory Model.

. PMU events and event numbers on page D7-2869.

. Chapter D9 The Statistical Profiling Extension.

. Chapter H2 Debug State.

FEAT_PMUv3p5, PMU Extensions v3.5

FEAT PMUv3p5 extends event counters to 64-bit event counters, and adds mechanisms to disable
the cycle counter in Secure state and in EL2.

FEAT PMUv3p5 relaxes the behavior of PMCR.{IMP, IDCODE}, and deprecates use of these
fields.

This feature is supported in both AArch64 and AArch32 states.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.5
implementation must include FEAT_PMUv3p5.

The fields that identify the presence of FEAT PMUv3pS5 are:
. ID AA64DFRO_EL1.PMUVer.

. ID _DFRO_ELI1.PerfMon.

. ID_DFRO.PerfMon.

. EDDFR.PMU Ver.

For more information, see:

. Behavior on overflow on page D7-2855

. Controlling the PMU counters on page D7-2859.

. PMU events and event numbers on page D7-2869.

A2.8.2 Additional requirements of Armv8.5
The Armv8.5 architecture includes some mandatory changes that are not associated with a feature. These are:

Restrictions on effects of speculation

Further restrictions are placed on execution for:

. Execution prediction instructions that predict addresses or register values.
. Data loaded under speculation with a permission or domain fault.
. Any System register read under speculation to a register that is not architecturally accessible

from the current Exception level.

For more information, see:
. Restrictions on the effects of speculation on page B2-144.
. Restrictions on the effects of speculation on page E2-4297.

Changes to CTIDEVARCH, CTIDEVAFF0, and CTIDEVAFF1
CTIDEVARCH, CTIDEVAFFO0, and CTIDEVAFF1 must be implemented.

A2-98 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.8 The Armv8.5 architecture extension

Changes to the input channel gate function

If the Cross Trigger Matrix (CTM) is implemented, the input channel gate function must be
implemented.

Deprecation of EDPRCR.CWRR

EDPRCR.CWRR is deprecated.

Mandatory changes are also made to earlier architectural extensions, see Architectural requirements added to
earlier extensions on page A2-99.

A2.8.3 Features added to earlier extensions

The features that have been added to earlier architectural extensions are:

FEAT SB on page A2-68.

FEAT SSBS on page A2-68.

FEAT CSV2 on page A2-68.

FEAT CSV3 on page A2-69.

FEAT SPECRES on page A2-69.

FEAT CP15SDISABLE? on page A2-70.
FEAT EVT on page A2-84.

FEAT DPB?2 on page A2-84.

FEAT SPEvIpl on page A2-89.

FEAT DoPD on page A2-89.

A2.8.4 Architectural requirements added to earlier extensions

The additional architectural requirement that has been added to earlier extensions is Prefetch speculation protection
on page A2-71.

A2.8.5 Features added to the Armv8.5 extension in later releases

FEAT _MTE3, MTE Asymmetric Fault Handling

FEAT MTES3 introduces support for asymmetric Tag Check Fault handling.
This feature is OPTIONAL in Armv8.5 implementations.

This feature is mandatory from Armv8.7 when FEAT MTE2 is implemented.
This feature is supported in AArch64 state.

The ID_AA64PFR1_EL1.MTE field identifies the presence of FEAT MTES3.

For more information, see Chapter D6 Memory Tagging Extension.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-99
Non-Confidential

Armv8-A Architecture Extensions
A2.9 The Armv8.6 architecture extension

A2.9 The Armv8.6 architecture extension

The Armv8.6 architecture extension adds architectural features and additional requirements, see:
. Architectural features added by Armv8.6 on page A2-100.
. Additional requirements of Armv8.6 on page A2-101.

Features are also added to earlier architecture extensions, see Features added to earlier extensions on page A2-102.

A2.9.1 Architectural features added by Armv8.6

An implementation of the Armv8.6 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.6 architecture.

The Armv8.6 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_ECV, Enhanced Counter Virtualization
FEAT ECV enhances the Generic Timer architecture.
When executing in AArch64 state or AArch32 state, FEAT ECV provides:
. Self-synchronizing views of the virtual and physical timers in AArch64 and AArch32 state.
. The ability to scale the generation of the event stream.
When EL2 is using AArch64 state, FEAT ECV provides:
. An optional offset between the EL1 or ELO view of physical time, and the EL2 or EL3 view
of physical time.

. Traps configurable in CNTHCTL EL2 that trap ELO and EL1 access to the virtual counter
or timer registers, and accesses to the physical timer registers when they are accessed using
an EL02 descriptor.

The optional offset to views of physical time, and the configurable traps in CNTHCTL_EL2, both
apply to EL1 and ELO whether EL1 and ELO are in AArch64 state or AArch32 state.

This feature is mandatory in Armv8.6 implementations.

The ID AA64AMMFRO _EL1.ECYV field identifies the presence of FEAT ECV. The

ID PFR1 _EL1.GenTimer and ID_PFR1.GenTimer fields identify support for self-synchronized
counter views in AArch32 state.

For more information, see:

. Self-hosted trace timestamps on page D3-2631.

. The profiling data on page D9-2958.

. The AArch64 view of the Generic Timer on page D11-3012.

. The AArch32 view of the Generic Timer on page G6-6408.

FEAT_FGT, Fine Grain Traps

FEAT FGT introduces additional traps to EL2 of EL1 and ELO access to individual or small groups
of System registers and instructions, and traps to EL3 and EL2 of the Debug Communications
Channel registers. The traps are independent of existing controls.

This feature is supported in AArch64, and when EL1 is using AArch64, ELO accesses using
AArch32 are also trapped.

This feature is mandatory in Armv8.6 implementations.
The ID_ AA6AMMFRO_EL1.FGT field identifies the presence of FEAT FGT.

For more information, see:
. Traps to EL3 of EL2 accesses to fine-grained trap registers on page D1-2532.

. Traps to EL2 of ELO and EL1 accesses to the Debug Communications Channel registers on
page D1-2527.

. Traps to EL3 of EL2, EL1, and EL0 accesses to Debug Communication Channel registers on
page D1-2531.

A2-100 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.9 The Armv8.6 architecture extension

. Fine-grained traps to EL2 of EL0O and EL1 accesses to System registers on page D1-2525.

. Fine-grained traps to EL2 of ELO and EL1 accesses to the debug, trace, and PMU registers
on page D1-2525.

. Fine-grained Traps to EL2 of ELO and ELI accesses to instructions on page D1-2525.

. Fine-grained traps to EL2 of EL0O and ELI read accesses to Activity Monitors registers on
page D1-2520.

FEAT_TWED, Delayed Trapping of WFE

FEAT TWED introduces support for configurable delayed trapping of the WFE instruction.
This feature is supported in both AArch64 and AArch32 states.

This feature is OPTIONAL in Armv8.6 implementations.

The ID_ AA6AMMFRI1_EL1.TWED field identifies the presence of FEAT TWED.

For more information, see The Wait For Event and Wait for Event with Timeout instructions on
page D1-2537.

FEAT AMUv1pl, AMU Extensions v1.1

FEAT AMUvIpl introduces support for virtualization of Activity Monitors event counters, and
introduces controls to disable access to auxiliary event counters below the highest Exception level.

This feature is supported in AArch32 state and AArch64 state, if the hypervisor is using AArch64.

This feature is OPTIONAL in Armv8.6 implementations if the OPTIONAL FEAT AMUv1 is
implemented.

The fields ID_AAG64PFRO _EL1.AMU, ID_PFRO_EL1.AMU, and ID_PFRO.AMU identify the
presence of FEAT AMUvlpl.

For more information, see Chapter D8 The Activity Monitors Extension.

FEAT _MTPMU, Multi-threaded PMU Extensions

FEAT MTPMU introduces controls to disable PMEVTYPER<n> EL0.MT.

This feature requires at least one of EL2 and EL3. If neither is implemented, this feature is not
implemented.

If EL2 or EL3 is implemented, the feature is OPTIONAL if FEAT PMUvV3 is implemented.

Multithreaded Armv8.6 implementations with FEAT PMUv3 implemented must implement
FEAT MTPMU to enable any multithreaded event counting.

This feature is supported in both AArch64 and AArch32 states.

The fields ID_ AA64DFRO_EL1.MTPMU and ID DFR1.MTPMU identify the presence of
FEAT MTPMU.

For more information, see:

. Multithreaded implementations on page D7-2863.

. MDCR_EL3.MTPME, SDCR.MTPME, MDCR_EL2.MTPME, and HDCR.MTPME.
. Common event numbers on page D7-2876.

A2.9.2 Additional requirements of Armv8.6

The Armv8.6 architecture includes some mandatory changes that are not associated with a feature. These are:

Changes to the frequency of the physical counter

The frequency of CNTFRQ ELO is standardized to a frequency of 1GHz. This means that the
system counter must be implemented at 64 bits. For more information, see:

. The system counter on page D11-3010.
. The system counter on page G6-6406.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-101

Non-Confidential

Armv8-A Architecture Extensions
A2.9 The Armv8.6 architecture extension

A2.9.3 Features added to earlier extensions

The features that have been added to earlier architectural extensions are:
. FEAT DGH on page A2-70.

. FEAT ETS on page A2-70.

. FEAT BF16 on page A2-85.

. FEAT AA32BF16 on page A2-85.

. FEAT I8MM on page A2-85.

. FEAT AA32I8MM on page A2-86.

. FEAT PAuth2 on page A2-89.

. FEAT FPAC on page A2-89.

A2-102 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension

A2.10 The Armv8.7 architecture extension

The Armv8.7 architecture extension adds architectural features and additional requirements, see:
. Architectural features added by Armv8.7 on page A2-103.
. Additional requirements of Armv8.7 on page A2-106.

Features are also added to earlier architecture extensions, see Features added to earlier extensions on page A2-106.

A2.10.1 Architectural features added by Armv8.7

An implementation of the Armv8.7 extension must include all of the features that this section describes as
mandatory. Such an implementation is also called an implementation of the Armv8.7 architecture.

The Armv8.7 architecture extension adds the following architectural features, which are identified by the
architectural feature name and a short description of the feature:

FEAT_AFP, Alternate floating-point behavior

FEAT AFP allows alternate behavior for specified floating-point instructions including:

. Flushing of denormalized numbers to zero can be controlled separately on inputs and outputs.
. Alternate NaN propagation rules can apply.
. Output elements for specified scalar Advanced SIMD instructions can be determined using

alternate rules.
. Changes to floating-point exception generation.
This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.7 implementations that implement floating-point support.
The ID. AA6AMMFR1_EL1.AFP field identifies the presence of FEAT AFP.

For more information, see:

. Flushing denormalized numbers to zero on page A1-54.

. NaN handling and the Default NaN on page A1-57.

. Rounding on page A1-59.

. Floating-point exceptions and exception traps on page D1-2495.

FEAT_RPRES, Increased precision of Reciprocal Estimate and Reciprocal Square Root Estimate

FEAT RPRES allows an increase in the precision of the Reciprocal Estimate and Reciprocal Square
Root Estimate from an 8-bit mantissa to a 12-bit mantissa.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.7 implementations. This feature requires implementation of
FEAT_AFP.

The ID_AA64ISAR2 _EL1.RPRES field identifies the presence of FEAT RPRES.

For more information, see RecipEstimate() and RecipSqrtEstimate().

FEAT _LS64, FEAT _LS64_V, FEAT _LS64_ACCDATA, Support for 64 byte loads/stores
FEAT LS64 introduces support for atomic single-copy 64-byte loads and stores without return and
adds the following instructions:
. LD64B on page C6-1040.
. ST64B on page C6-1325.

FEAT LS64 V introduces support for atomic single-copy 64-byte stores with return and adds
ST64BV on page C6-1326.

This feature also introduces the ACCDATA_EL1 register.

FEAT LS64 introduces support for atomic single-copy 64-byte ELO stores with return and adds the
following:

. LD64B on page C6-1040.

. The ACCDATA_EL1 register.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-103
ID072021 Non-Confidential

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension

This feature is supported in AArch64 state only.
This feature is OPTIONAL in Armv8.7 implementations.

The ID_AA64ISAR1_EL1.LS64 field identifies the presence of FEAT LS64. FEAT LS64 V, and
FEAT LS64 ACCDATA.

For more information, see Single-copy atomic 64-byte load/store on page C3-238.

FEAT_WFxT and FEAT_WFxT2, WFE and WFI instructions with timeout

FEAT WFxXT introduces WFET and WFIT. These instructions support the generation of a local timeout
event to act as a wake-up event for the PE when the virtual count in CNTVCT_ELO equals or
exceeds the value supplied by the instruction for the first time.

FEAT WFxT2 adds a mechanism to report the register number that holds the timeout value in
ESR_ELx for trapped WFET and WFIT instructions.

These instructions are added to the A64 instruction set only.

FEAT WFXT is mandatory in Armv8.7 implementations. FEAT WFxT2 is OPTIONAL in Armv8.7
implementations.

Note
Arm deprecates not implementing FEAT WFxT2.

The ID AA64ISAR2_EL1.WFxT field identifies the presence of FEAT WFxT and FEAT WFxT2.
For more information, see:

. Instructions with register argument on page C3-218.

. WFET on page C6-1513.

. WFIT on page C6-1515.

. Wait for Event mechanism and Send event on page D1-2536.

. Wait For Interrupt on page D1-2540.

FEAT HCX, Support for the HCRX EL2 register

FEAT HCX introduces the Extended Hypervisor Configuration Register, HCRX EL2, that
provides configuration controls for virtualization in addition to those provided by HCR EL2,
including defining whether various operations are trapped to EL2.

This feature is supported in AArch64 state only.
This feature is mandatory in Armv8.7 implementations.
The ID AA64AMMFR1 EL1.HCX field identifies the presence of FEAT HCX.
For more information, see Configurable instruction enables and disables, and trap controls on
page D1-2510.
FEAT LPA2, Larger physical address for 4KB and 16KB translation granules
FEAT LPA2:

. Allows a larger VA space for each translation table base register of up to 52 bits when using
the 4KB or 16KB translation granules.

. Allows a larger intermediate physical address (IPA) and PA space of up to 52 bits when using
the 4KB or 16KB translation granules.

. Allows a level 0 block size where the block covers a 512GB address range for the 4KB
translation granule if the implementation supports 52 bits of PA.

. Allows a level 1 block size where the block covers a 64GB address range for the 16KB
translation granule if the implementation supports 52 bits of PA.

This feature is supported in AArch64 state only.

This feature is OPTIONAL in Armv8.7 implementations. This feature requires implementation of
FEAT LPA and FEAT LVA.

A2-104 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.10 The Armv8.7 architecture extension

The ID AA6GAMMFRO _EL1.{TGRAN4 2, TGRANI16 2, TGRAN4, TGRANI16} fields identify
the presence of FEAT LPA2.

For more information, see:
. VMSA address types and address spaces on page D5-2675.
. Address size configuration on page D5-2689.

. Extending addressing above 48 bits when using the 4KB or 16KB translation granule on
page D5-2696.

. VMSAvVS-64 translation table level -1, level 0, level 1, and level 2 descriptor formats on
page D5-2739.

. ArmvS8 translation table level 3 descriptor formats on page D5-2744.

FEAT_XS, XS attribute

FEAT XS introduces the XS attribute for memory to indicate that an access could take a long time
to complete. This feature provides variants of DSB instructions and TLB maintenance instructions,
the completion of which does not depend on the completion of memory accesses with the XS
attribute.

FEAT XS adds:
. A mechanism to define the XS attribute for memory.

. An optional nXS variant to the AArch64 DSB instruction and optional nXS qualifier to each
AArch64 TLBI instruction to handle memory accesses with the XS attribute.

. The FGTnXS bit to HCRX EL2 to determine the behavior of fine-grained traps in
HFGITR _EL2 for TLB maintenance instructions with the nXS qualifier.

. The FnXS bit to HCRX_EL2 to determine the behavior of pre-existing TLB maintenance
instructions in relation to the XS attribute.

This feature is supported in AArch64 state only, but the XS attribute also impacts AArch32 state
execution.

This feature is mandatory in Armv8.7 implementations.

The ID_ AA64ISAR1_EL1.XS field identifies the presence of FEAT XS.

For more information, see:

. Data Synchronization Barrier (DSB) on page B2-150.

. Attribute fields in stage 2 VMSAvS-64 Block and Page descriptors on page D5-2751.
. The stage 1 memory region attributes on page D5-2776.

. Ordering and completion of TLB maintenance instructions on page D5-2831.

. Data Synchronization Barrier (DSB) on page E2-4301.

. Overview of memory region attributes for stage 1 translations on page G5-6319.
. Ordering and completion of TLB maintenance instructions on page G5-6339.

FEAT PMUv3p7, Armv8.7 PMU extensions
FEAT PMUv3p7 adds the following features to the Performance Monitors Extension:
. PMU counters can be frozen when an event counter has an unsigned overflow.

. Event counters can be prohibited from counting events at EL3 without affecting the rest of
Secure state.

. The cycle counter can be prohibited from counting cycles at EL3 without affecting the rest
of Secure state.

This feature is supported in both AArch64 and AArch32 states.

The Performance Monitors Extension is an OPTIONAL feature, but if it is implemented, an Armv8.7
implementation must include FEAT PMUv3p7.

The fields that identify the presence of FEAT PMUv3p7 are:

. ID_AA64DFRO_EL1.PMU Ver.

. ID_DFRO_EL1.PerfMon.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-105
ID072021 Non-Confidential

Armv8-A Architecture Extensions

A2.10 The Armv8.7 architecture extension

A2.10.2

A2.10.3

ID_DFRO.PerfMon.
EDDFR.PMU Ver.

For more information, see:

Controlling the PMU counters on page D7-2859.

Freezing event counters on page D7-2860.

Common microarchitectural events on page D7-2884.

PMMIR _ELI, Performance Monitors Machine Identification Register on page D13-3974.

FEAT _SPEv1p2, Armv8.7 SPE features
FEAT SPEv1p2 adds the following features to the Statistical Profiling Extension, FEAT SPE:

Adds an inverse event filter control.

Adds controls to freeze the PMU event counters after an SPE buffer management event
occurs.

Adds a discard mode that allows all SPE data to be discarded rather than written to memory.

This feature is mandatory from Armv8.7 when FEAT SPE is implemented.

This feature is supported in AArch64 state.

FEAT SPEv1p2 optionally enables support for a packet for each taken branch that provides the
target address for the previous taken branch.

ID_AA64DFRO_EL1.PMSVer identifies the presence of FEAT SPEvIp2.

If FEAT SPEvl1p2 is implemented, PMSIDR EL1.PBT indicates support for the previous branch
target packet.

For more information, see:

.

Freezing event counters on page D7-2860.

Common event numbers on page D7-2876.

Filtering sample records on page D9-2956.

Last branch target on page D9-2959.

About the Statistical Profiling Extension Sample Records on page D10-2980.
Address packet on page D10-2983.

Additional requirements of Armv8.7

The Armv8.7 architecture includes some mandatory changes that are not associated with a feature. These are:

FEAT_ETS, Enhanced Translation Synchronization

All implementations of the Armv8.7 architecture are required to implement FEAT ETS.

For more information, see FEAT ETS on page A2-70.

Features added to earlier extensions

The features that have been added to earlier architectural extensions are:
. FEAT PAN3 on page A2-77.
. FEAT MTE3 on page A2-99

A2-106

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.11 The Performance Monitors Extension

A2.11 The Performance Monitors Extension

The Performance Monitors Extension, FEAT PMUV3, is an OPTIONAL extension but Arm strongly recommends
that Armv8-A implementations include version 3 of the Performance Monitors Extension.

ID_AA64DFRO_EL1.PMU Ver indicates whether the Performance Monitors Extension is implemented.
For more information, see Chapter D7 The Performance Monitors Extension.

Armv8.1 introduces the following architectural feature to the Performance Monitors Extension:
. FEAT PMUv3pl.

Armv8.4 introduces the following architectural feature to the Performance Monitors Extension:
. FEAT PMUv3p4.

Armv8.5 introduces the following architectural feature to the Performance Monitors Extension:
« FEAT PMUv3p5.

Armv8.6 introduces the following architectural feature to the Performance Monitors Extension:
. FEAT MTPMU.

Armv8.7 introduces the following architectural feature to the Performance Monitors Extension:
. FEAT PMUv3p7.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-107
Non-Confidential

Armv8-A Architecture Extensions
A2.12 The Reliability, Availability, and Serviceability Extension

A2.12

The Reliability, Availability, and Serviceability Extension

The RAS Extension, FEAT RAS, is a mandatory extension to the Armv8.2 architecture, and an OPTIONAL extension
to the Armv8.0 and the Armv8.1 architectures.

The RAS Extension improves the dependability of a system by providing:

. Reliability, that is, the continuity of correct service.

. Availability, that is, the readiness for correct service.

. Serviceability, that is, the ability to undergo modifications and repairs.

ID_AA64PFRO_EL1.RAS in AArch64 state, and ID_PFRO.RAS in AArch32 state, indicate whether the RAS
Extension is implemented.

The RAS Extension introduces a barrier instruction, the Error Synchronization Barrier (ESB), to the A32, T32, and
A64 instruction sets.

System registers introduced by the RAS Extension are described in:
. For AArch64, RAS registers on page D13-4091.
. For AArch32, RAS registers on page G8-7192.

In addition, the RAS Extension introduces a number of memory-mapped registers. These are described in the 4rm®
Reliability, Availability, and Serviceability (RAS) Specification, ARMVS, for the Armv8-A architecture profile.

Armv8.2 introduces the following architectural features to the RAS Extension:
. FEAT IESB.

Armv8.4 introduces the following architectural features to the RAS Extension:
« FEAT RASvlpl.
. FEAT DoubleFault.

A2-108

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.13 The Statistical Profiling Extension (SPE)

A2.13 The Statistical Profiling Extension (SPE)

The Statistical Profiling Extension, FEAT SPE, is an OPTIONAL extension introduced by the Armv8.2 architecture.
Implementation of the Statistical Profiling Extension requires implementation of at least Armv8.1 of the Armv8-A
architecture profile. The Statistical Profiling Extension is supported only in AArch64 state.

The Statistical Profiling Extension provides a non-invasive method of sampling software and hardware using
randomized sampling of either architectural instructions, as defined by the instruction set architecture, or by
microarchitectural operations.

ID_AA64DFRO_EL1.PMSVer indicates whether the Statistical Profiling Extension is implemented.
For more information, see Chapter D9 The Statistical Profiling Extension.

Armv8.3 introduces the following architectural feature to the SPE:
. FEAT SPEvlpl.

Armv8.7 introduces the following architectural feature to the SPE:
. FEAT SPEvip2.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-109
Non-Confidential

Armv8-A Architecture Extensions
A2.14 The Scalable Vector Extension (SVE)

A2.14 The Scalable Vector Extension (SVE)
The Scalable Vector Extension, FEAT SVE, is an OPTIONAL extension introduced by the Armv8.2 architecture.
SVE is supported in AArch64 state only.
The Scalable Vector Extension provides vector instructions that, primarily, support wider vectors than the Arm
Advanced SIMD instruction set. The Arm™ Architecture Reference Manual Supplement, The Scalable Vector
Extension (SVE), for Armv8-A describes the SVE.
ID AA64PFRO_ELI1.SVE indicates whether the Scalable Vector Extension is implemented.
The Scalable Vector Extension affects some AArch64 System registers, and those register changes are included in
this issue of this Manual, where they are identified as SVE features. SVE also introduces A Arch64 System registers,
but these do not appear in this manual. For more information about the System registers introduced by SVE, see the
Arm® Architecture Reference Manual Supplement, The Scalable Vector Extension (SVE), for Armv8-A.
The SVE and Advanced SIMD events are documented in Chapter D7 The Performance Monitors Extension.
The Scalable Vector Extension introduces the following System registers:
. ID AA64ZFRO _EL1.
. ZCR_EL1, and an EL2 alias of this register, ZCR_EL12.
« ZCR EL2.
« ZCR EL3.
The Scalable Vector Extension modifies the following existing System registers:
. CPACR _ELI.
. CPTR_EL2.
- CPTR EL3.
. ESR_ELx.
« ID _AAG4PFRO ELI.
« TCR ELL.
- TCR_EL2.

A2-110 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Armv8-A Architecture Extensions
A2.15 The Activity Monitors Extension (AMU)

A2.15 The Activity Monitors Extension (AMU)

The Activity Monitors Extension is an OPTIONAL extension introduced by the Armv8.4 architecture. AMU is
supported in AArch64 and AArch32 states.

The Activity Monitors Extension implements version 1 of the Activity Monitors architecture, FEAT AMUv1,
which provides a function similar to a subset of the existing Performance Monitors Extension functionality, intended
for system management use rather than debugging and profiling.

The Activity Monitors Extension implements a System register interface to the Activity Monitors registers, and
supports an optional external memory-mapped interface.

The fields that identify the presence of the Activity Monitors Extension are:
. ID_AA64PFRO_EL1.AMU.

. ID_PFRO_EL1.AMU.

« ID PFRO.AMU.

. EDPFR.AMU.

For more information, see Chapter D8 The Activity Monitors Extension.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. A2-111
Non-Confidential

Armv8-A Architecture Extensions
A2.16 The Memory Partitioning and Monitoring (MPAM) Extension

A2.16 The Memory Partitioning and Monitoring (MPAM) Extension
The MPAM Extension, FEAT MPAM, is an OPTIONAL extension introduced by the Armv8.4 architecture and
requires implementation of at least Armv8.2 of the Armv8-A architecture profile. MPAM is supported in AArch64
state only.
The MPAM Extension provides a framework for memory-system component controls that partition one or more of
the performance resources of the component.
The fields that identify the presence of the MPAM Extension are:
. ID AA64PFRO_EL1.MPAM.
. EDPFR.MPAM.
For more information, see ARM" Architecture Reference Manual Supplement, Memory System Resource
Partitioning and Monitoring (MPAM), for ARMvS-A.

A2-112 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

Part B

The AArch64 Application Level Architecture

Chapter B1
The AArch64 Application Level Programmers’ Model

. About the Application level programmers’model on page B1-116.
Registers in AArch64 Execution state on page B1-117.
Software control features and EL0 on page B1-122.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-115
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model

B1.1

About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of the system
information is needed to put the Application level programmers' model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege,
indicated by different Exception levels that number upwards from ELO to EL3. ELO corresponds to the lowest
privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at EL0O. For more information see Exception levels on page D1-2454.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When
an operating system supports execution at both EL1 and ELO0, an application usually runs unprivileged at ELO. This:

. Permits the operating system to allocate system resources to an application in a unique or shared manner.

. Provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives a reference
to the system level description.

Execution at any Exception level above ELO is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level
Programmers’ Model.

B1-116

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

B1.2 Registers in AArch64 Execution state

This section describes the registers and process state visible at ELO when executing in the AArch64 state. It includes
the following:

. Registers in AArch64 state on page B1-117
. Process state, PSTATE on page B1-118
. System registers on page B1-120

B1.2.1 Registers in AArch64 state
In the AArch64 application level view, an Arm processing element has:

R0-R30 31 general-purpose registers, RO to R30. Each register can be accessed as:
. A 64-bit general-purpose register named X0 to X30.
. A 32-bit general-purpose register named WO to W30.
See the register name mapping in Figure B1-1 on page B1-117.
63 32 31 0
Rn

< Wn
Xn

v.Y

A

Figure B1-1 General-purpose register naming

The X30 general-purpose register is used as the procedure call link register.

Note

In instruction encodings, the value 0b11111 (31) is used to indicate the ZR (zero register). This
indicates that the argument takes the value zero, but does not indicate that the ZR is implemented
as a physical register.

SP A 64-bit dedicated Stack Pointer register. The least significant 32 bits of the stack pointer can be
accessed using the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note

Stack pointer alignment to a 16-byte boundary is configurable at EL1. For more information see the
Procedure Call Standard for the Arm 64-bit Architecture.

PC A 64-bit Program Counter holding the address of the current instruction.
Software cannot write directly to the PC. It can only be updated on a branch, exception entry or
exception return.

Note

Attempting to execute an A64 instruction that is not word-aligned generates a PC alignment fault,
see PC alignment checking on page D1-2469.

Vo0-V31 32 SIMD&FP registers, VO to V31. Each register can be accessed as:
. A 128-bit register named QO to Q31.
. A 64-bit register named DO to D31.
. A 32-bit register named SO to S31.
. A 16-bit register named HO to H31.
. An 8-bit register named B0 to B31.
. A 128-bit vector of elements.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-117
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

B1.2.2

. A 64-bit vector of elements.

Where the number of bits described by a register name does not occupy an entire SIMD&FP
register, it refers to the least significant bits. See Figure B1-2 on page B1-118.

127 64 63 3231 1615 8 7 0
n
<+Bn—»
<+—Hn—>
< Sn >
< Dn >
< Qn >
Figure B1-2 SIMD and floating-point register naming
For more information about data types and vector formats, see Supported data types on page A1-40.
FPCR, FPSR Two SIMD and floating-point control and status registers, FPCR and FPSR.
See Registers for instruction processing and exception handling on page D1-2463 for more information on the
registers.
Pseudocode description of registers in AArch64 state
In the pseudocode functions that access registers:
. The assignment form is used for register writes.
. The non-assignment for register reads.
The uses of the X[] function are:
. Reading or writing X0-X30, using n to index the required register.
. Reading the zero register ZR, accessed as X[31].
Note
The pseudocode use of X[31] to represent the zero register does not indicate that hardware must implement this
register.
The AArch64 SP[] function is used to read or write the current SP.
The AArch64 PC[] function is used to read the PC.
The AArch64 V[] function is used to read or write the Advanced SIMD and floating-point registers VO-V31, using
a parameter n to index the required register.
The AArch64 Vpart[] function is used to read or write a part of one of V0-V31, using a parameter n to index the
required register, and a parameter part to indicate the required part of the register, see the function description for
more information.
The SP[1, PC[], V[1, and Vpart[] functions are defined in Chapter J1 Armv8 Pseudocode.
Process state, PSTATE

Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.

B1-118

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

The following PSTATE information is accessible at ELO:

The Condition flags

Flag-setting instructions set these. They are:

N

Negative Condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:

. 1 if the result is negative.
. 0 if the result is positive or zero.

Zero Condition flag. Set to:

. 1 if the result of the instruction is zero.

. 0 otherwise.

A result of zero often indicates an equal result from a comparison.

Carry Condition flag. Set to:

. 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.

. 0 otherwise.
Overflow Condition flag. Set to:

. 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.

. 0 otherwise.

Conditional instructions test the N, Z, C and V Condition flags, combining them with the Condition
code for the instruction to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Condition flags and related instructions on

page C6-873.

The exception masking bits

D

A
I
F

Debug exception mask bit. When ELO is enabled to modify the mask bits, this bit is
visible and can be modified. However, this bit is architecturally ignored at ELO.

SError interrupt mask bit.
IRQ interrupt mask bit.
FIQ interrupt mask bit.

For each bit, the values are:

0
1

Exception not masked.
Exception masked.

Access at ELO using AArch64 state depends on SCTLR_EL1.UMA. See Traps to ELI of ELO
accesses to the PSTATE.{D, A, I, F} interrupt masks on page D1-2514.

See Process state, PSTATE on page D1-2466 for the system level view of PSTATE.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-119

Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

Accessing PSTATE fields at ELO

At ELO using AArch64 state, PSTATE fields can be accessed using Special-purpose registers that can be directly
read using the MRS instruction and directly written using the MSR (register) instructions. Table B1-1 on

page B1-120 shows the Special-purpose registers that access the PSTATE fields that hold AArch64 state when the
PE is at ELO using AArch64. All other PSTATE fields do not have direct read and write access at ELO.

Table B1-1 Accessing PSTATE fields at ELO using MRS and MSR (register)

Special-purpose register PSTATE fields

NZCV N,Z,C,V

DAIF D,A,LF

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, I, F}. Table B1-2 on
page B1-120 shows the MSR (immediate) operands that can directly write to PSTATE.{D, A, I, F} when the PE is
at ELO using AArch64 state.

Table B1-2 Accessing PSTATE.{D, A, |, F} at EL0 using MSR (immediate)

Operand PSTATE fields Notes

DAIFSet D,A,ILF Directly sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClIr D,AILF Directly clears any of the PSTATE.{D, A, I, F} bits to 0

However, access to the PSTATE.{D, A, 1, F} fields at ELO using AArch64 state depends on SCTLR_EL1.UMA.
Traps to EL1 of ELO accesses to the PSTATE.{D, A, I, F} interrupt masks on page D1-2514.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects, are
guaranteed:

. Not to be visible to earlier instructions in the execution stream.
. To be visible to later instructions in the execution stream.

B1.2.3 System registers

System registers provide support for execution control, status and general system configuration. The majority of the

System registers are not accessible at ELO.

However, some System registers can be configured to allow access from software executing at EL0. Any access

from ELO to a System register with the access right disabled causes the instruction to behave as UNDEFINED. The

registers that can be accessed from ELO are:

Cache ID registers The CTR_ELO and DCZID ELO registers provide implementation parameters for ELO
cache management support.

Debug registers A Debug Communications Channel is supported by the MDCCSR_ELO, DBGDTR_ELO,
DBGDTRRX ELO and DBGDTRTX ELO registers.

Performance Monitors registers
The Performance Monitors Extension provides counters and configuration registers.
Software executing at EL1 or a higher Exception level can configure some of these registers
to be accessible at ELO.
For more details, see Chapter D7 The Performance Monitors Extension.

Activity Monitors registers
The Activity Monitors Extension provides counters and configuration registers. Software
executing at EL1 or a higher Exception level can configure these registers to be accessible
at ELO.

B1-120 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

For more details, see Chapter D8 The Activity Monitors Extension.

Thread ID registers The TPIDR ELO and TPIDRRO_ELO registers are two thread ID registers with different
access rights.

Timer registers In Armv8 the following operations are performed:
. Read access to the system counter clock frequency using CNTFRQ_ELDO.
. Physical and virtual timer count registers, CNTPCT_ELO and CNTVCT _ELO.

. Physical up-count comparison, down-count value and timer control registers,
CNTP_CVAL_ELO, CNTP_TVAL_ELO, and CNTP_CTL_ELO.

. Virtual up-count comparison, down-count value and timer control registers,
CNTV_CVAL _ELO,CNTV_TVAL ELO, and CNTV_CTL ELO.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-121
ID072021 Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

B1.3 Software control features and ELO

The following sections describe the ELO view of the Armv8 software control features:
. Exception handling on page B1-122

. Wait for Interrupt and Wait for Event on page B1-122

. The YIELD instruction on page B1-122

. Application level cache management on page B1-123

. Instructions relating to Debug on page B1-123

. About PSTATE.DIT on page B1-123

B1.3.1 Exception handling

In the Arm architecture, an exception causes a change of program flow. Execution of an exception handler starts, at
an Exception level higher than ELO, from a defined vector that relates to the exception taken.

Exceptions include:

. Interrupts.

. Memory system aborts.

. Exceptions generated by attempting to execute an instruction that is UNDEFINED.
. System calls.

. Secure monitor or Hypervisor traps.

. Debug exceptions.

Most details of exception handling are not visible to application level software, and are described in Chapter D1 The
AArch64 System Level Programmers’ Model.

The SVC instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to
make a system call to an operating system.

The BRK instruction generates a Breakpoint Instruction exception. This provides a mechanism for debugging
software using debugger executing on the same PE, see Breakpoint Instruction exceptions on page D2-2577.

Note

The BRK instruction is supported only in the A64 instruction set. The equivalent instruction in the T32 and A32
instruction sets is BKPT.

B1.3.2 Wait for Interrupt and Wait for Event

Issuing a WFI instruction indicates that no further execution is required until a WFI wake-up event occurs, see Wait
For Interrupt on page D1-2540. This permits entry to a low-power state.

Issuing a WFE instruction indicates that no further execution is required until a WFE wake-up event occurs, see Wait
for Event mechanism and Send event on page D1-2536. This permits entry to a low-power state.

B1.3.3 The YIELD instruction

The YIELD instruction provides a hint that the task performed by a thread is of low importance so that it could yield,
see YIELD on page C6-1519. This mechanism can be used to improve overall performance in a Symmetric
Multithreading (SMT) or Symmetric Multiprocessing (SMP) system.

Examples of when the YIELD instruction might be used include a thread that is sitting in a spin-lock, or where the
arbitration priority of the snoop bit in an SMP system is modified. The YIELD instruction permits binary
compatibility between SMT and SMP systems.

The YIELD instruction is a NOP hint instruction.

B1-122 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use for future migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.

B1.3.4 Application level cache management

A small number of cache management instructions can be enabled at ELO from higher levels of privilege using the
SCTLR_EL1 System register. Any access from ELO to an operation with the access right disabled causes the
instruction to behave as UNDEFINED.

About the available operations, see Application level access to functionality related to caches on page B2-156.

B1.3.5 Instructions relating to Debug

Exception handling on page B1-122 refers to the BRK instruction, which generates a Breakpoint Instruction
exception. In addition, in both AArch64 state and AArch32 state, the HLT instruction causes the PE to halt execution
and enter Debug state. This provides a mechanism for debugging software using a debugger that is external to the
PE, see Chapter H1 About External Debug.

Note

In AArch32 state, previous versions of the architecture defined the DBG instruction, that could provide a hint to the
debug system. In Armvs8, this instruction executes as a NOP. Arm deprecates the use of the DBG instruction.

B1.3.6 About PSTATE.DIT

When the value of PSTATE.DIT is 1:

. The instructions listed in DIT are required to have;

Timing which is independent of the values of the data supplied in any of its registers, and the values
of the NZCV flags.

— Responses to asynchronous exceptions which do not vary based on the values supplied in any of their
registers, or the values of the NZCV flags.

. All loads and stores must have their timing insensitive to the value of the data being loaded or stored.
Note
. The use of value prediction for load data values when PSTATE.DIT is set, is not compatible with the

requirement that the timing is insensitive to the data value being loaded.

. Arm recommends that the FEAT PAuth instructions do not have their timing dependent on the key value
used in the pointer authentication, regardless of the PSTATE.DIT bit.

. When the value of PSTATE.DIT is 0, the architecture makes no statement about the timing properties of any
instructions. However, it is likely that these instructions have timing that is invariant of the data in many
situations.

A corresponding DIT bit is added to PSTATE in AArch64 state, and to CPSR in AArch32 state.
On an exception that is taken from AArch64 state to AArch64 state, PSTATE.DIT is copied to SPSR_ELx.DIT.
On an exception that is taken from AArch32 state to AArch64 state, CPSR.DIT is copied to SPSR_ELx.DIT.

On an exception return from AArch64 state:
. SPSR_ELx.DIT is copied to PSTATE.DIT, when the target Exception level is in AArch64 state.
. SPSR_ELx.DIT is copied to CPSR.DIT, when the target Exception level is in AArch32 state.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B1-123
Non-Confidential

The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

PSTATE.DIT can be written and read at all Exception levels.

Note
. PSTATE.DIT is unchanged on entry into Debug state.

. PSTATE.DIT is not guaranteed to have any effect in Debug state.

B1-124 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Chapter B2
The AArch64 Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

About the Arm memory model on page B2-126.
Atomicity in the Arm architecture on page B2-128.
Definition of the Armv8 memory model on page B2-133.
Caches and memory hierarchy on page B2-155.
Alignment support on page B2-160.

Endian support on page B2-162.

Memory types and attributes on page B2-165.
Mismatched memory attributes on page B2-176.

Synchronization and semaphores on page B2-179.

Note

In this chapter, System register names usually link to the description of the register in Chapter D13 44rch64 System
Register Descriptions, for example. SCTLR_ELI.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

B2-125

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model

B2.1 About the Arm memory model

The Arm architecture is a weakly ordered memory architecture that permits the observation and completion of
memory accesses in a different order from the program order. The following sections of this chapter provide the
complete definition of the Armv8 memory model, this introduction is not intended to contradict the definition found
in those sections. In general, the basic principles of the Armv8 memory model are:

. To provide a memory model that has similar weaknesses to those found in the memory models used by
high-level programming languages such as C or Java. For example, by permitting independent memory
accesses to be reordered as seen by other observers.

. To avoid the requirement for multi-copy atomicity in the majority of memory types.

. The provision of instructions and memory barriers to compensate for the lack of multi-copy atomicity in the
cases where it would be needed.

. The use of address, data, and control dependencies in the creation of order so as to avoid having excessive
numbers of barriers or other explicit instructions in common situations where some order is required by the
programmer or the compiler.

. If FEAT MTE2 is implemented, the definitions of the memory model which apply to data accesses and data
apply to Allocation Tag accesses and Allocation tags.

This section contains:

. Addpress space on page B2-126.
. Memory type overview on page B2-126.

B2.1.1 Address space

Address calculations are performed using 64-bit registers. However, supervisory software can configure the top
eight address bits for use as a tag, as described in Address tagging in AArch64 state on page D5-2676. If this is done,
address bits[63:56]:

. Are not considered when determining whether the address is valid.
. Are never propagated to the program counter.

Supervisory software determines the valid address range. Attempting to access an address that is not valid generates
an MMU fault.

Simple sequential execution of instructions might overflow the valid address range. For more information, see
Virtual address space overflow on page D4-2635.

Memory accesses use the Mem[] function. This function makes an access of the required type. If supervisory software
configures the top eight address bits for use as a tag, the top eight address bits are ignored.

The AccType{} enumeration defines the different access types.

Note

. Chapter D4 The AArch64 System Level Memory Model and Chapter D5 The AArch64 Virtual Memory System
Architecture include descriptions of memory system features that are transparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also include pseudocode descriptions of these operations.

. For information on the pseudocode that relates to memory accesses, see Basic memory access on
page D4-2669, Unaligned memory access on page D4-2669, and Aligned memory access on page D4-2669.

B2.1.2 Memory type overview
Armv8 provides the following mutually-exclusive memory types:

Normal This is generally used for bulk memory operations, both read/write and read-only operations.

B2-126 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.1 About the Arm memory model

Device The Arm architecture forbids Speculative reads of any type of Device memory. This means Device
memory types are suitable attributes for read-sensitive Locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

. They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering on page B2-171.

. They preserve the access order and synchronization requirements for accesses to a single
peripheral. See Reordering on page B2-172.

. They indicate whether a write can be acknowledged other than at the end point. See Early
Write Acknowledgement on page B2-173.

For more information on Normal memory and Device memory, see Memory types and attributes on page B2-165.

Note

Earlier versions of the Arm architecture defined a single Device memory type and a Strongly-ordered memory type.
A Note in Device memory on page B2-169 describes how these memory types map onto the Armv8 memory types.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-127
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture

B2.2 Atomicity in the Arm architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The Arm architecture description refers to

two types of atomicity, single-copy atomicity and multi-copy atomicity. In the Armv8 architecture, the atomicity

requirements for memory accesses depend on the memory type, and whether the access is explicit or implicit. For
more information, see:

. Requirements for single-copy atomicity on page B2-128.

. Properties of single-copy atomic accesses on page B2-130.

. Multi-copy atomicity on page B2-130.

. Requirements for multi-copy atomicity on page B2-130.

. Concurrent modification and execution of instructions on page B2-130.

For more information about the memory types, see Memory type overview on page B2-126.

B2.2.1 Requirements for single-copy atomicity

For explicit memory effects generated from an Exception level the following rules apply:

. A read that is generated by a load instruction that loads a single general-purpose register and is aligned to the
size of the read in the instruction is single-copy atomic.

. A write that is generated by a store instruction that stores a single general-purpose register and is aligned to
the size of the write in the instruction is single-copy atomic.

. Reads that are generated by a Load Pair instruction that loads two general-purpose registers and are aligned
to the size of the load to each register are treated as two single-copy atomic reads, one for each register being
loaded.

. Writes that are generated by a Store pair instruction that stores two general-purpose registers and are aligned
to the size of the store of each register are treated as two single-copy atomic writes, one for each register being
stored.

. Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of 32-bit
quantities are single-copy atomic.

. When the Store-Exclusive of a Load-Exclusive/Store-Exclusive pair instruction using two 64-bit quantities
succeeds, it causes a single-copy atomic update of the entire memory location being updated.

Note
To atomically load two 64-bit quantities, perform a Load-Exclusive pair/Store-Exclusive pair sequence of
reading and writing the same value for which the Store-Exclusive pair succeeds, and use the read values from
the Load-Exclusive pair.

. Where translation table walks generate a read of a translation table entry, this read is single-copy atomic.

. For the atomicity of instruction fetches, see Concurrent modification and execution of instructions on
page B2-130.

. Reads to SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size of
the quantity being loaded are treated as single-copy atomic reads.

. Writes from SIMD and floating-point registers of a single 64-bit or smaller quantity that is aligned to the size
of the quantity being stored are treated as single-copy atomic writes.

. Element or Structure Reads to SIMD and floating-point registers of 64-bit or smaller elements, where each
element is aligned to the size of the element being loaded, have each element treated as a single-copy atomic
read.

. Element or Structure Writes from SIMD and floating-point registers of 64-bit or smaller elements, where
each element is aligned to the size of the element being stored, have each element treated as a single-copy
atomic store.

B2-128 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture

. Reads to SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated as
a pair of single-copy atomic 64-bit reads.

. Writes from SIMD and floating-point registers of a 128-bit value that is 64-bit aligned in memory are treated
as a pair of single-copy atomic 64-bit writes.

. When FEAT LS64 is implemented, a single-copy atomic load of a 64-byte value that is 64-byte aligned in
memory is treated as an atomic 64-byte read from the target address.

. When FEAT LS64 is implemented, a single-copy atomic store of a 64-byte value that is 64-byte aligned in
memory is treated as an atomic 64-byte write to the target address.

. For unaligned memory accesses, the single-copy atomicity is described in Alignment of data accesses on
page B2-160.
. The reads and writes of the two words or two double-words accessed by CASP instructions are single-copy

atomic at the size of the two words or double-words.

All other memory accesses are regarded as streams of accesses to bytes, and no atomicity between accesses to
different bytes is ensured by the architecture.

All accesses to any byte are single-copy atomic.

Note

In AArch64 state, no memory accesses from a DC ZVA have single-copy atomicity of any quantity greater than
individual bytes.

If, according to these rules, an instruction is executed as a sequence of accesses, exceptions, including interrupts,
can be taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are
returned from using their preferred return address, the instruction that generated the sequence of accesses is
re-executed, and so any access performed before the exception was taken is repeated. See also Taking an interrupt
or other exception during a multi-access load or store on page D1-2509.

Note

The exception behavior for these multiple access instructions means that they are not suitable for use for writes to
memory for the purpose of software synchronization.

Changes to single-copy atomicity in Armv8.4

Instructions that are introduced in FEAT LRCPC are single-copy atomic when the following conditions are true:
. All bytes being accessed are within the same 16-byte quantity aligned to 16 bytes.
. Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether they are single-copy atomic.

If FEAT LSE2 is implemented, all loads and stores are single-copy atomic when the following conditions are true:
. Accesses are unaligned to their data size but are aligned within a 16-byte quantity that is aligned to 16 bytes.
. Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

Otherwise it is IMPLEMENTATION DEFINED whether loads and stores are single-copy atomic.

IfFEAT LSE2 is implemented, LDP, LDNP, and STP instructions that load or store two 64-bit registers are single-copy
atomic when the following conditions are true:

. The overall memory access is aligned to 16 bytes.
. Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

If FEAT LSE2 is implemented, LDP, LDNP, and STP instructions that access fewer than 16 bytes are single-copy
atomic when the following conditions are true:

. All bytes being accessed are within a 16-byte quantity aligned to 16 bytes.
. Accesses are to Inner Write-Back, Outer Write-Back Normal cacheable memory.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-129
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture

B2.2.2

B2.2.3

B2.2.4

B2.2.5

Otherwise it is IMPLEMENTATION DEFINED whether LDP, LDNP, or STP instructions that access fewer than 16 bytes are
single-copy atomic.

Properties of single-copy atomic accesses

A memory access instruction that is single-copy atomic has the following properties:

1. For a pair of overlapping single-copy atomic store instructions, all of the overlapping writes generated by one
of the stores are Coherence-after the corresponding overlapping writes generated by the other store.

2. For a single-copy atomic load instruction L that overlaps a single-copy atomic store instruction Sy, if one of
the overlapping reads generated by L; Reads-from one of the overlapping writes generated by S,, then none
of'the overlapping writes generated by S, are Coherence-after the corresponding overlapping reads generated
by L].

For more information, see Definition of the Armv8 memory model on page B2-133.

Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

. All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

. A read of a location does not return the value of a write until all observers observe that write.

Note

Writes that are not coherent are not multi-copy atomic.

Requirements for multi-copy atomicity

For Normal memory, writes are not required to be multi-copy atomic.
For Device memory, writes are not required to be multi-copy atomic.

The Armv8 memory model is Other-multi-copy atomic. For more information, see External ordering constraints
on page B2-139.

Concurrent modification and execution of instructions

The Armv8 architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where each of the instruction before modification and the instruction after modification is one of a B, B. cond,
BL, BRK, CBNZ, CBZ, HVC, ISB, NOP, SMC, SVC, TBNZ or TBZ instruction.

For the B, B.cond, BL, BRK, CBNZ, CBZ, HVC, ISB, NOP, SMC, SVC, TBNZ and TBZ instructions, the architecture guarantees
that after modification of the instruction, behavior is consistent with execution of either:

. The instruction originally fetched.
. A fetch of the modified instruction.

For all other instructions, to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior, instruction
modifications must be explicitly synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.

2. To ensure that the modified instructions are observable, a PE that is writing the instructions must issue the
following sequence of instructions and operations:

B2-130

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a Tocation pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH
Note
. The DC CVAU operation is not required if the area of memory is either Non-cacheable or Write-Through
Cacheable.

. If the contents of physical memory differ between the mappings, changing the mapping of VAs to PAs
can cause the instructions to be concurrently modified by one PE and executed by another PE. If the
modifications affect instructions other than those listed as being acceptable for modification,
synchronization must be used to avoid UNPREDICTABLE or CONSTRAINED UNPREDICTABLE behavior.

3. In a multiprocessor system, the IC IVAU is broadcast to all PEs within the Inner Shareable domain of the PE
running this sequence. However, when the modified instructions are observable, each PE that is executing
the modified instructions must issue the following instruction to ensure execution of the modified
instructions:

ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses on page B2-158.

For information about memory accesses caused by instruction fetches, see Ordering relations on page B2-137.

B2.2.6 Possible implementation restrictions on using atomic instructions

In some implementations, and for some memory types, the properties of atomicity can be met only by functionality
outside the PE. Some system implementations might not support atomic instructions for all regions of the memory.
In particular, this can apply to:

. Any type of memory in the system that does not support hardware cache coherency.

. Device, Non-cacheable memory, or memory that is treated as Non-cacheable, in an implementation that does
support hardware cache coherency.

In such implementations, it is defined by the system:
. Whether the atomic instructions are atomic in regard to other agents that access memory.

. If the atomic instructions are atomic in regard to other agents that access memory, which address ranges or
memory types this applies to.

An implementation can choose which memory type is treated as Non-cacheable.
The memory types for which it is architecturally guaranteed that the atomic instructions will be atomic are:

. Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

. Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The architecture only requires that Conventional memory that is mapped in this way supports this functionality.

If the atomic instructions are not atomic in regard to other agents that access memory, then performing an atomic
instruction to such a location can have one or more of the following effects:

. The instruction generates a synchronous External abort.
. The instruction generates a System Error interrupt.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-131

ID072021

Non-Confidential

The AArch64 Application Level Memory Model
B2.2 Atomicity in the Arm architecture

. The instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data Abort Fault
status code of ESR_ELx.DFSC = 110101.

For the EL1&0 translation regime, if the atomic instruction is not supported because of the memory type that
is defined in the first stage of translation, or the second stage of translation is not enabled, then this exception
is a first stage abort and is taken to EL1. Otherwise, the exception is a second stage abort and is taken to EL2.

. The instruction is treated as a NOP.

. The instructions are performed, but there is no guarantee that the memory accesses were performed
atomically in regard to other agents that access memory. In this case, the instruction might also generate a
System Error interrupt.

B2-132 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Definition of the Armv8 memory model

This section describes observation and ordering in the Armv8 memory model. It contains the following subsections:
. Basic definitions on page B2-133.

. Dependency definitions on page B2-136.

. Ordering relations on page B2-137.

. Ordering constraints on page B2-138.
. Internal visibility requirement on page B2-139.
. External ordering constraints on page B2-139.

. Completion and endpoint ordering on page B2-141.

. Ordering of instruction fetches on page B2-143.

. Restrictions on the effects of speculation on page B2-144.
. Memory barriers on page B2-146.

. Limited ordering regions on page B2-154.

For more information about endpoint ordering of memory accesses, see Reordering on page B2-172.

In the Armv8 memory model, the Shareability memory attribute indicates the degree to which hardware must ensure
memory coherency between a set of observers, see Memory types and attributes on page B2-165.

The Armv8 architecture defines additional memory attributes and associated behaviors, which are defined in the
system level section of this manual. See:

. Chapter D4 The AArch64 System Level Memory Model.
. Chapter D5 The AArch64 Virtual Memory System Architecture.

See also Mismatched memory attributes on page B2-176.

Basic definitions

The Armv8 memory model provides a set of definitions that are used to construct conditions on the permitted
sequences of accesses to memory.
Observer
An Observer refers to a processing element or mechanism in the system, such as a peripheral device,
that can generate reads from, or writes to, memory.
Common Shareability Domain

For the purpose of this section, all Observers are assumed to belong to a Common Shareability
Domain. All read and write effects access only Normal memory locations in a Common Shareability
Domain, and excludes the situations described in Mismatched memory attributes on page B2-176.

Location
A Location is a byte that is associated with an address in the physical address space.
Note
It is expected that an operating system will present the illusion to the application programmer that
is consistent with a location also being considered as a byte that is associated with an address in the
virtual address space.
Effects

The Effects of an instruction can be:
. Register effects.

. Memory effects.

. Barrier effects.

. Tag effects.

. Branching effects.

ARM DDI 0487G.b

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-133
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Register effect

The effects of an instruction I; are said to appear in program order before the effects of an instruction
I, if and only if I occurs before I, in the order specified by the program. Each effect generated by
an instruction has a unique identifier, which characterizes it amongst the events generated by the
same instruction.

The Register effects of an instruction are register reads or register writes of that instruction. For an
instruction that accesses registers, a register read effect is generated for each register read by the
instruction and a register write effect is generated for each register written by the instruction. An
instruction may generate both read and write Register effects.

Memory effect

Tag effect

Tag-read

Tag-write

The Memory effects of an instruction are the memory reads or writes generated by that instruction.
For an instruction that accesses memory, a memory read effect is generated for each Location read
by the instruction and a memory write effect is generated for each Location written by the
instruction. An instruction may generate both read and write Memory effects.

The Tag effects of a Memory Tagging instruction are the memory read or write effects of that
instruction that affect tag locations.

A Tag-read is a read of a tag location generated by an LDG instruction.

A Tag-write is a write of a tag location generated by an STG instruction.

Tag-Check-read

A Tag-Check-read is a read of a tag location that is generated by a checked memory access. All other
reads and writes are considered Data accesses.

Branching effect

The Branching effects of an instruction are effects which correspond to a branching decision being
taken.

—— Note

Conditional and compare-and-swap instructions do not create Branching effects.

Intrinsic order

There is a per-instruction Intrinsic order relation that provides a partial order over the effects of that
instruction, according to the operation of that instruction.

The operation of an instruction is defined by the pseudocode in Chapter C6 464 Base Instruction
Descriptions.

Reads-from-register

The Reads-from-register relation couples register read and write effects to the same register such
that each register read effect is paired with exactly one register write effect in the execution of a
program. A register read effect R, Reads-from-register a register write effect W to the same register
if and only if R, takes its data from Wy. By construction Wi must be in program order before R,
and there must be no intervening write to the same register in program order between W and R,.

Reads-from
The Reads-from relation couples memory read and write effects to the same Location such that each
memory read effect is paired with exactly one memory write effect in the execution of a program.
A memory read effect R, from a Location Reads-from a memory write effect W to the same
Location if and only if R; takes its data from Wj.
B2-134 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Coherence order

There is a per-location Coherence order relation that provides a total order over all memory write
effects from all coherent Observers to that Location, starting with a notional memory write effect of
the initial value. The Coherence order of a Location represents the order in which memory write
effects to the Location arrive at memory.

Local read successor

A memory read effect R of a Location is the Local read successor of a memory write effect Wy
from the same Observer to the same Location if and only if W appears in program order before Ry
and there is not a memory write effect W3 from the same Observer to the same Location appearing
in program order between W and R,.

Local write successor

A memory write effect W, of a Location is a Local write successor of a memory read or write effect
RW; from the same Observer to the same Location if and only if RW; appears in program order
before W».

Coherence-after

A memory write effect W to a Location is Coherence-after another memory write effect Wy to the
same Location if and only if W is sequenced after W in the Coherence order of the Location.

A memory write effect W3 to a Location is Coherence-after a memory read effect R; of the same
location if and only if R; Reads-from a memory write effect W3 to the same Location and W5 is
Coherence-after W3.

Observed-by

A memory read or write effect RW from an Observer is Observed-by a memory write effect W,
from a different Observer if and only if W5 is coherence-after RW.

A memory write effect W from an Observer is Observed-by a memory read effect R, from a
different Observer if and only if R, Reads-from W.

Note
The Observed-by relation only relates Memory effects generated by different Observers.

Overlapping accesses
Two Memory effects overlap if and only if they access the same Location. Two instructions overlap
if and only if one or more of their generated Memory effects overlap.
Single-copy-atomic-ordered-before

A memory read effect Ry is Single-copy-atomic-ordered-before another memory read effect R if
and only if all of the following statements are true:

. R; and R, are memory read effects generated by the same instruction.
. R is not a Local read successor of a memory write effect.
. R; is a Local read successor of a memory write effect.

DMB FULL
ADMB FULL is a DMB with neither the LD or the ST qualifier.

Where this section refers to DMB without any qualification, then it is referring to all types of DMB.
Unless a specific shareability domain is defined, a DMB applies to the Common Shareability Domain.

All properties that apply to DMB also apply to the corresponding DSB.

Context synchronization instruction

A Context synchronization instruction is one of the following:

. An ISB instruction.
. An instruction that generates a synchronous exception.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-135

ID072021

Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

. An exception return instruction.
. A DCPS or DRPS instruction.

B2.3.2 Dependency definitions

Dependency through registers

A Dependency through registers from a first effect E; to a second effect E; exists within a PE if and
only if at least one of the following applies:

. E; is a register write effect W which has not been generated by a Store Exclusive, E; is a
register read effect R, and Ry Reads-from-register Wj.

. E; and E; have been generated by the same instruction and E; is before E; in the Intrinsic
order of that instruction.

. There is a Dependency through registers from E; to a third effect E3, and there is a
Dependency through registers from E; to E».
Address dependency

An Address dependency from a memory read effect R to a Memory effect RW; exists if and only if
there is a Dependency through registers from R; to a Register effect E3 generated by RW, and E3
affects the address part of RW», and either:

. RW; is a memory write effect W.

. RW; is a memory read effect R and there is no Branching effect D4 such that there is a
Dependency through registers from R to D4 and from Dy to Ry.

Note

An Address dependency exists from a memory read effect R to a Tag-Check-read R; if and only if
there is a Dependency through registers from R; to the address part of R.

Data dependency
A Data dependency from a memory read effect R to a memory write effect W exists if and only if
there is a Dependency through registers from R; to a Register effect E3 generated by W5, and E;3
affects the data part of W».

Control dependency
A Control dependency from a memory read effect R to a Memory effect RW, exists if and only if

either:

. There is a Dependency through registers from R; to a Branching effect B3 and Bs is in
program order before RW,.

. There is a Dependency through registers from R to the determination of a synchronous
exception on an instruction generating an effect RW3, and RW, appears in program order
after RWj3.

Note

This notion is under review. Arm’s intent is that a branch instruction between a read and a write,
where the branch condition is dependent on the read, will provide order, regardless of whether the
branch is taken. This only applies to branch instructions and not to conditional selection or other
conditional data processing instructions. A formal definition of this change will be issued soon as
an erratum to the Armv8 Architecture Reference Manual.

B2-136 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

B2.3.3 Ordering relations

Dependency-ordered-before

A dependency creates externally-visible order between a memory read effect and another Memory
effect generated by the same Observer. A memory read effect Ry is Dependency-ordered-before a
memory read or write effect RW from the same Observer if and only if Ry appears in program order
before RW; and any of the following cases apply:

. There is an Address dependency or a Data dependency from Rj to RW,.
. RW, is a memory write effect W, and there is a Control dependency from R; to W».

. RW, is a memory read effect R, generated by an instruction appearing in program order after
an instruction that generates a Context synchronization event E3, and there is a Dependency
through registers from R; to Es.

. RW; is a memory write effect W, appearing in program order after a memory read or write
effect RW3 and there is an Address dependency from R; to RWj3.

. RW, is a Local read successor R, of a memory write effect W3 and there is an Address
dependency or a Data dependency from R; to W3.

Atomic-ordered-before

Load-Exclusive and Store-Exclusive instructions provide some ordering guarantees, even in the
absence of dependencies. A memory read or write effect RW| is Atomic-ordered-before a memory
read or write effect RW, from the same Observer if and only if RW appears in program order before
RW, and either of the following cases apply:

. RW; is a memory read effect R; and RW, is a memory write effect W, such that Ry and W»
are generated by an atomic instruction or a successful Load-Exclusive/Store-Exclusive
instruction pair to the same Location.

. RW]| is a memory write effect W generated by an atomic instruction or a successful
Store-Exclusive instruction and RW; is a memory read effect R, generated by an instruction
with Acquire or AcquirePC semantics such that R, is a Local read successor of Wj.

For more information, see Synchronization and semaphores on page B2-179.

Barrier-ordered-before

Barrier instructions order prior Memory effects before subsequent Memory effects generated by the
same Observer. A memory read or write effect RW1 is Barrier-ordered-before a memory read or
write effect RW; from the same Observer if and only if RW1 appears in program order before RW;
and any of the following cases apply:

. RW] appears in program order before a DMB FULL that appears in program order before RW,.

. RW] is a memory write effect W; and is generated by an atomic instruction with both Acquire
and Release semantics.

. RW]| is a memory write effect W generated by an instruction with Release semantics and
RW; is a memory read effect Ry, except a Tag-Check-read, generated by an instruction with
Acquire semantics.

. RW] is a memory read effect R; and appears in program order before a DMB LD that appears
in program order before RW,.

. RW] is a memory read effect Ry, except a Tag-Check-read, and is generated by an instruction
with Acquire or AcquirePC semantics.
. RW] is a memory write effect Wi and RW; is a memory write effect W, appearing in
program order before a DMB ST that appears in program order before W».
. RW,; is a memory write effect W5 and is generated by an instruction with Release semantics.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-137

ID072021 Non-Confidential

The AArch64 Application Level Memory Model

B2.3 Definition of the Armv8 memory model

Tag-ordered-before

IfFEAT MTE2 is implemented, a Tag read R is Tag-ordered-before a memory read or write effect
Checked data access RW» generated by the same instruction if and only if all of the following apply:

R is in the Intrinsic order of that instruction before RW,.

Rj reads the Allocation Tag at a tag physical address and compares it with the physical
address Tag of the instruction. If the result of the comparison can cause a precise exception
and the result is negative, then RW; does not architecturally occur.

Tag-Location-Ordered

Tag-Check-reads R| and Ry are Tag-Location-Ordered if and only if all the following apply:

R is Tag-ordered-before a Checked data access RWs.
R, is Tag-ordered-before a Checked data access RW4.
RWj3 and RWy are to the same Location.

Locally-ordered-before

Dependencies, Local write successor, load/store-exclusive, atomic and barrier instructions can be
composed within an Observer to create externally-visible order. A memory read or write effect RW
is Locally-ordered-before a memory read or write effect RW; from the same Observer if and only if
any of the following cases apply:

B2.3.4 Ordering constraints

RW; is a memory write effect Wi and RW, is a memory write effect W that is equal to or
generated by the same instruction as a Local write successor of RWj.

RW]| is Dependency-ordered-before RW».
RW, is Atomic-ordered-before RW5.
RW, is Barrier-ordered-before RW».

RW] is Tag-ordered-before RW,.

RW] is Locally-ordered-before a memory read or write effect that is Locally-ordered-before
RW,.

The Armv8 memory model is described as being Other-multi-copy atomic. The definition of Other-multi-copy

atomic is as follows:

Other-multi-copy atomic

In an Other-multi-copy atomic system, it is required that a memory write effect from an Observer,
if observed by a different Observer, is then observed by all other Observers that access the Location
coherently. It is, however, permitted for an Observer to observe its own writes prior to making them
visible to other observers in the system.

The Other-multi-copy atomic property of the Armv8 memory model is enforced by placing constraints on the
possible executions of a program. Those executions that meet the constraints given by the ordering model are said
to be Architecturally well-formed. An implementation that is executing a program is only permitted to exhibit
behavior consistent with an Architecturally well-formed execution.

Architecturally well-formed

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and
any of the three alternative External ordering constraints.

B2-138 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

B2.3.5 Internal visibility requirement

For a memory read or write effect RW| that appears in program order before a memory read or write effect RW; to
the same Location:

. Where one or more of the following statements is true:
— RW; is not a Tag-Check-read.
— RW is not a Tag-Check-read.
— RW| and RWj; are both Tag-Check-reads R and R, that are Tag-Location-Ordered.

. The Internal visibility requirement requires that exactly one of the following statements is true:
— RW,; is a memory write effect W that is Coherence-after RWj.
— RW] is a memory write effect Wi, RW> is a memory read effect R, and either:
— R, Reads-from Wj.
— Ry Reads-from a memory write effect that is Coherence-after Wj.
— RW| and RW; are both reads Ry, Ry, R; Reads-from a memory write effect W3 and either:
— R, Reads-from W3.

— Ry Reads-from a memory write effect that is Coherence-after W3.

Informally, if a Memory effect M| from an Observer appears in program order before a Memory effect M, from the
same Observer, then M; will be seen to occur before M, by that Observer.

B2.3.6 External ordering constraints

The Armv8 memory model offers the following three alternative representations of the External ordering
constraint:

. External visibility requirement.
. External completion requirement.
. External global completion requirement.

An Architecturally well-formed execution must satisfy both the Internal visibility requirement and one of the three
alternative representations in the External ordering constraints.

External visibility requirement

Ordered-before

An arbitrary pair of Memory effects is ordered if it can be linked by a chain of ordered accesses
consistent with external observation. A memory read or write effect RW is Ordered-before a
memory read or write effect RW, if and only if any of the following cases apply:

. RW]| is Observed-by a memory read or write effect RW3 which is generated by the same
instruction as RW,.

. RW] is Locally-ordered-before RW5.
. RW]| is Ordered-before a memory read or write effect that is Ordered-before RW,.
For a memory read or write effect RW; from an Observer that is Ordered-before a memory read or write effect RW,

from a different Observer, the External visibility requirement requires that RW; is not Observed-by RW;. This
means that an Architecturally well-formed execution must not exhibit a cycle in the Ordered-before relation.

Informally, if a Memory effect M from an Observer appears in program order before a Memory effect M, from the
same Observer, then M; will be seen to occur before M, by all Observers in the system.

Completes-before order

The Completes-before order is a total order that corresponds to the order in which Memory effects complete within
the system. The following effects constitute a single entry in the Completes-before order:

. Writes from the same instruction.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-139
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

. Reads from the same instruction which read from external writes.
. Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Completes-before order.

Completes-before
A memory read or write effect RW; Completes-before a memory read or write effect RW, if and
only if RW; appears in the Completes-before order before RW».

Deriving Reads-from and Coherence order from the Completes-before order

The Completes-before order can be used to resolve the Reads-from and Coherence order relations
for every memory access in the system as follows:

. For a memory read effect R; of a memory location by an Observer, then:

— If'there is a memory write effect W5 to the same Location from the same Observer and
all of the following are true:

— Wy appears in program order before R;.
— R Completes-before W.

— There are no writes to the Location appearing in program order between W5 and
R then R| Reads-from W>.

— Otherwise, Ry Reads-from its closest preceding write in the Completes-before order to
the same Location. If no such write exists, then R; Reads-from the initial value of the
memory location.

. The Coherence order of writes to a memory location is the order in which those writes appear
in the Completes-before order. The final value of each memory location is therefore
determined by the final write to each Location in the Completes-before order. If no such write
exists for a given Location, the final value is the initial value of that Location.

External completion requirement

A memory read or write effect RW| Completes-before a memory read or write effect RW» if and

only if any of the following statements are true:

. RW] is Locally-ordered-before RW5.

. RW; is a memory read effect R; and RW; is a memory read effect R, and R is
Single-copy-atomic-ordered-before Rj.

Globally-completes-before order

The Globally-completes-before order is a total order that corresponds to the order in which Memory effects
globally-complete within the system. The following effects constitute a single entry in the
Globally-completes-before order:

. Writes from the same instruction.
. Reads from the same instruction which read from external writes.
. Reads from the same instruction which read from the same internal write.

All other reads constitute distinct entries in the Globally-completes-before order.

Globally-completes-before

A memory read or write effect RW; Globally-completes-before a memory read or write effect RW»,
if and only if RW; appears in the Globally-completes-before order before RW,.

B2-140 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Deriving Reads-from and Coherence order from the Globally-completes-before order

The Globally-completes-before order can be used to resolve the Reads-from and Coherence order
relations for every memory access in the system as follows:

. A memory read effect Rj of a memory location by an Observer Reads-from its closest
preceding write in the Globally-completes-before order to the same Location. If no such write
exists, then Ry Reads-from the initial value of the memory location.

. The Coherence order of writes to a memory location is the order in which those writes appear
in the Globally-completes-before order. The final value of each memory location is therefore
determined by the final write to each Location in the Globally-completes-before order. If no
such write exists for a given Location, the final value is the initial value of that Location.

External global completion requirement

The External global completion requirement requires that a memory read or write effect RW
Globally-completes-before a memory read or write effect RW; if and only if any of the following
statements are true:
. RW; is Locally-ordered-before RW, and either:
— RW] is a memory write effect.
— RW] is a memory read effect R; and either:
— Ry isnota Local read successor of a memory write effect.
— Ry isaLocal read successor of a memory write effect that is
Locally-ordered-before RW».

. RW; is a memory read effect R; and RW; is a memory read effect R, and R is
Single-copy-atomic-ordered-before R;.

B2.3.7 Completion and endpoint ordering

Interaction between Observers in a system is not restricted to communication via shared variables in coherent
memory. For example, an Observer could configure an interrupt controller to raise an interrupt on another Observer
as a form of message passing. These interactions typically involve an additional agent, which defines the instruction
sequence that is required to establish communication links between different Observers. When these forms of
interaction are used in conjunction with shared variables, a DSB instruction can be used to enforce ordering between

them.

For all memory, the completion rules are defined as:

A memory read effect R to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an Observer within the shareability domain will be Coherence-after
R;.

— Any translation table walks associated with R; are complete for that shareability domain.
A memory write effect W to a Location is complete for a shareability domain when all of the following are
true:

— Any write to the same Location by an Observer within the shareability domain will be Coherence-after
Wi.

— Any read to the same Location by an Observer within the shareability domain will either Reads-from
W or Reads-from a memory write effect that is Coherence-after Wj.

— Any translation table walks associated with the write are complete for that shareability domain.
A translation table walk is complete for a shareability domain when the memory accesses, including the

updates to translation table entries, associated with the translation table walk are complete for that
shareability domain, and the TLB is updated.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-141
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

. A cache maintenance instruction is complete for a shareability domain when the memory effects of the
instruction are complete for that shareability domain, and any translation table walks that arise from the
instruction are complete for that shareability domain.

. A TLB invalidate instruction is complete when all memory accesses using the TLB entries that have been
invalidated are complete.

The completion of any cache or TLB maintenance instruction includes its completion on all PEs that are affected
by both the instruction and the DSB operation that is required to guarantee visibility of the maintenance instruction.

Note

These completion rules mean that, for example, a cache maintenance instruction that operates by VA to the PoC
completes only after memory at the PoC has been updated.

Additionally, for Device-nGnRnE memory, a read or write of a Location in a Memory-mapped peripheral that
exhibits side-effects is complete only when the read or write both:

. Can begin to affect the state of the Memory-mapped peripheral.
. Can trigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Note

This requirement for Device-nGnRnE memory is consistent with the memory access having reached the peripheral
endpoint.

Peripherals

This section defines a Memory-mapped peripheral and the total order of reads and writes to a peripheral which is
defined as the Peripheral coherence order:

Memory-mapped peripheral

A Memory-mapped peripheral occupies a memory region of IMPLEMENTATION DEFINED size and
can be accessed using load and store instructions. Memory effects to a Memory-mapped peripheral
can have side-effects, such as causing the peripheral to perform an action. Values that are read from
addresses within a Memory-mapped peripheral might not correspond to the last data value written
to those addresses. As such, Memory effects to a Memory-mapped peripheral might not appear in
the Reads-from or Coherence order relations.

Peripheral coherence order

The Peripheral coherence order of a Memory-mapped peripheral is a total order on all reads and
writes to that peripheral.

Note

The Peripheral coherence order for a Memory-mapped peripheral signifies the order in which
accesses arrive at the endpoint.

For a memory read or write effect RW; and a memory read or write effect RW, to the same
peripheral, then RW; will appear in the Peripheral coherence order for the peripheral before RW; if
either of the following cases apply:

. RW| and RW; are accesses using Non-cacheable or Device attributes and RW| is
Ordered-before RW>.

. RW,; and RW; are accesses using Device-nGnRE or Device-nGnRnE attributes, with the
same XS attribute value, and RW; appears in program order before RW».

B2-142 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Note

When FEAT XS is implemented, if accesses marked with the Device-nGnRE or Device-nGnRnE
attributes are within the same Memory-mapped peripheral, but the XS attribute is not the same on
those accesses, the order of arrival at the endpoint is not defined by the architecture.

Out-of-band-ordered-before

A memory read or write effect RW| is Out-of-band-ordered-before a memory read or write effect
RW, if and only if either of the following cases apply:

. RW appears in program order before a DSB instruction that begins an IMPLEMENTATION
DEFINED instruction sequence indirectly leading to the generation of RW,.

. RW]| is Ordered-before a memory read or write effect RW3 and RWj3 is
Out-of-band-ordered-before RW».

If a Memory effect M is Out-of-band-ordered-before a memory read or write effect My, then M is
seen to occur before M, by all Observers.
Note

Arm expects that, in most systems with early acknowledgments, those acknowledgments will come from a point at
or after the point that establishes global visibility. This is expected in such systems to enable the acknowledgments
to be used as part of the mechanisms to implement the ordering requirements of the Arm memory model.

B2.3.8 Ordering of instruction fetches

For two memory locations A and B, if A has been written to and been made coherent with the instruction fetches of
the shareability domain, before an update to B by an observer in the same shareability domain, then the instruction
stream of each observer in the shareability domain will not see the updated value of B without also seeing the
updated value of A.

A write has been made coherent with an instruction fetch of a shareability domain when:

CTR_ELO0.{DIC, IDC} == {0, 0}
The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_EL0.{DIC, IDC} == {1, 0}
The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR_ELO0.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_ELO0.{DIC, IDC} == {1, 1}
The write is complete for the shareability domain.

Note

Microarchitecturally, this means that these situations cannot both be true in an implementation:

. After delays in fetching from memory, the instruction queue can have entries written into it out of order.

. For an implementation:

When CTR_ELO0.DIC == 0, if there is an outstanding entry in the instruction queue, then later entries
in the instruction queue are not impacted by the IC IVAU instructions of a different core.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-143
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

— When CTR_ELO0.DIC == 1, if there is a write to the location that is held in the queue when there is an
outstanding entry in the instruction queue for an older entry, then the instruction queue does not have
entries invalidated from it.

B2.3.9 Restrictions on the effects of speculation

This section covers restrictions on speculation effects, including:

Restrictions on the effects of speculation on page B2-144.
Speculative Store Bypass Safe (SSBS) on page B2-145.
Restrictions on exploitative control of speculative execution on page B2-145.

Restrictions on the effects of speculation from Armv8.5 on page B2-145.

Restrictions on the effects of speculation

The Arm architecture places certain restrictions on the effects of speculation. These are:

Each load from a location using a particular VA after an exception return that is a Context synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception exit.

Each load from a location using a particular VA after an exception entry that is a Context synchronization
event will not speculatively read an entry from earlier in the coherence order for the location being loaded
from than the entry generated by the latest store to that location using the same VA before the exception entry.

Any load from a location using a particular VA before an exception entry that is a Context synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
entry.

Any load from a location using a particular VA before an exception return that is a Context synchronization
event will not speculatively read data from a store to the same location using the same VA after the exception
exit.

When data is loaded under speculation with a Translation fault, it cannot be used to form an address, generate
condition codes, or generate SVE predicate values to be used by other instructions in the speculative
sequence.

When data is loaded under speculation from a location without a translation for the translation regime being
speculated in, the data cannot be used to form an address, generate condition codes, or generate SVE
predicate values to be used by other instructions in the speculative sequence.

Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the micro-architectural state.

Changes to Special-purpose registers can occur speculatively.

Execute-never controls apply to speculative instruction fetching. See Access permissions for instruction
execution on page D5-2760.

Note

The prohibition of using data loaded under speculation with faults to form addresses, condition codes or SVE
predicate values does not prohibit the use of value predicted data from such locations for such purposes, so long as
the training of the data value prediction was from the hardware defined context that is using the prediction. A
consequence of this is that training of value prediction cannot be based on data loaded under speculation with a
translation or Permission fault.

B2-144

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Speculative Store Bypass Safe (SSBS)

When FEAT SSBS is implemented, PSTATE.SSBS is a control that can be set by software to indicate whether
hardware is permitted to use, in a manner that is potentially speculatively exploitable, a speculative value in a
register that has been loaded from memory using a load instruction that speculatively read the location being loaded
from, where the entry that is speculatively read is from earlier in the coherence order than the entry generated by
the latest store to that location using the same virtual address as the load instruction.

A speculative value in a register is used in a potentially speculatively exploitable manner if it is used to form an
address, generate condition codes, or generate SVE predicate values to be used by other instructions in the
speculative sequence or if the execution timing of any other instructions in the speculative sequence is a function of
the data loaded under speculation.

When the value of PSTATE.SSBS is 0, hardware is not permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

When the value of PSTATE.SSBS is 1, hardware is permitted to use speculative register values in a potentially
speculatively exploitable manner if the speculative read that loads the register is from earlier in the coherence order
than the entry generated by the latest store to that location using the same virtual address as the load instruction.

Note

. If speculation is permitted, then cache timing side channels can lead to addresses being derived using reads
of address values that have been speculatively loaded from memory to a register.

. Software written for architectures from Armv8.0 to Armv8.4 will set SPSR_ELx.SSBS to 0. This means that
PSTATE.SSBS will not set, so hardware will not be permitted to use speculative loads with outstanding
memory disambiguation issues for any subsequent speculative memory accesses if there is any possibility of
those subsequent memory accesses creating a cache timing side channel.

Restrictions on exploitative control of speculative execution

The execution of some code (codel) can exploitatively control speculative execution of some other code (code2) if
and only if all of the following apply:

. The actions of codel can influence the speculative execution of code2 to cause an irreversible change to the
microarchitectural state of the PE that is indicative of some architectural state accessible to the execution
context of code2.

. Codel has control in determining the choice of the architecture state that causes the irreversible change to the
microarchitectural state.

. The irreversible changes to the microarchitectural state of the PE can be measured by code executing in an
execution context other than that of code2 to allow the retrieval of the architectural state in a computationally
feasible manner.

Restrictions on the effects of speculation from Armv8.5
From Armv8.5, there are some further restrictions on the effects of speculation in addition to those in Armv8.0:

. Data loaded under speculation with a permission or domain fault cannot be used to form an address, to
generate condition codes, or to generate SVE predicate values to be used by other instructions in the
speculative sequence.

. Any System register read under speculation to a register that is not architecturally accessible from the current
Exception level cannot be used to form an address, to generate condition codes, or to generate SVE predicate
values to be used by other instructions in the speculative sequence.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-145
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Note

As the effects of speculation are not architecturally visible, this restriction requires that the effect of any
speculation cannot give rise to side channels that will leak the values of memory locations, System registers,
or Special-purpose registers to a level of privilege that would otherwise not be able to determine those values.

. Code running in one hardware-defined context cannot exploitatively control speculative execution of code in
a different hardware-defined context as a result of the behavior of any execution prediction resources that
predict address or register values. In the case of this definition, the hardware-defined context is determined
by:

— The Exception level.

— The Security state.

— When executing at EL1, if EL2 is implemented and enabled in the current Security state, the VMID.
— When executing at EL0, whether the EL1&0 or the EL2&0 translation regime is in use.

— When executing at ELO and using the EL1&0 translation regime, the address space identifier (ASID)
and, if EL2 is implemented and enabled in the current Security state, the VMID.

— When executing at ELO and using the EL2&0 translation regime, the ASID.

— When in AArch64 state, the current SCXTNUM_ELx value if SCXTNUM_ELx is implemented and
the hardware identifies that SCXTNUM _ELx is part of the context. Where SCXTNUM_ELx is not
included as part of the hardware-indicated context, an implementation can further identify that branch
targets trained for branches situated at one address can control speculative execution of branches
situated at different addresses only in a hard-to-determine way.

Note

— The definition of “hard-to-determine manner” is left open to implementations. Examples could include
the complete separation of prediction resources, or the isolation of the predictions using a
cryptographic or pseudo-random mechanism to separate each context.

— The architecture does not require that prediction resources that simply predict the direction of a branch
are separated in this way.

. Changes to System registers must not occur speculatively in a way that can affect a speculative memory
access that can cause a change to the micro-architectural state.

. Changes to Special-purpose registers can occur speculatively.

Note
If SCR_EL3.EEL2 is changed, in order to remove all VMID tagging from Secure EL1 and Secure ELO entries, each
prediction resource should be invalidated by software for:
. Secure ELO for all ASID and VMID values.
. Secure EL1 for all VMID values.

B2.3.10 Memory barriers
Memory barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization
events by a PE with respect to retiring load/store instructions. The memory barriers defined by the Armv8
architecture provide a range of functionality, including:
. Ordering of load/store instructions.
. Completion of load/store instructions.
. Context synchronization.
The following subsections describe the Armv8 memory barrier instructions:
. Instruction Synchronization Barrier (ISB) on page B2-147
. Data Memory Barrier (DMB) on page B2-147.
. Data Synchronization Barrier (DSB) on page B2-150.
B2-146 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

. Speculation Barrier (SB) on page B2-148.

. Consumption of Speculative Data Barrier (CSDB) on page B2-148.

. Speculative Store Bypass Barrier (SSBB) on page B2-148.

. Profiling Synchronization Barrier (PSB CSYNC) on page B2-149.

. Physical Speculative Store Bypass Barrier (PSSBB) on page B2-149.

. Trace Synchronization Barrier (TSB CSYNC) on page B2-149

. Shareability and access limitations on the data barrier operations on page B2-151.
. Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

. LoadLOAcquire, StoreLORelease on page B2-153.

Note

Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache maintenance and memory management instructions that in general are only available
when software execution is at EL1 or higher.

DMB and DSB instructions affect reads and writes to the memory system generated by load/store instructions and data
or unified cache maintenance instructions being executed by the PE.

Instruction Synchronization Barrier (ISB)

An ISB instruction ensures that all instructions that come after the ISB instruction in program order are fetched from
the cache or memory after the ISB instruction has completed. Using an ISB ensures that the effects of
context-changing operations executed before the ISB are visible to the instructions fetched after the ISB instruction.
Examples of context-changing operations that require the insertion of an ISB instruction to ensure the effects of the
operation are visible to instructions fetched after the ISB instruction are:

. Completed cache and TLB maintenance instructions.
. Changes to System registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

The pseudocode function for the operation of an ISB is InstructionSynchronizationBarrier().

See also Memory barriers on page D4-2671.

Data Memory Barrier (DMB)

The DMB instruction is a memory barrier instruction that ensures the relative order of memory accesses before the
barrier with memory accesses after the barrier. The DMB instruction does not ensure the completion of any of the
memory accesses for which it ensures relative order.

The full definition of the DMB instruction is covered formally in the Definition of the Armv8 memory model on
page B2-133 and this introduction to the DMB instruction is not intended to contradict that section.

The basic principle of a DMB instruction is to introduce order between memory accesses that are specified to be
affected by the DMB options supplied as arguments to the DMB instruction. The DMB instruction ensures that all
affected memory accesses by the PE executing the DMB instruction that appear in program order before the DMB
instruction and those which originate from a different PE, to the extent required by the DMB options, which have
been Observed-by the PE before the DMB instruction is executed, are Observed-by each PE, to the extent required by
the DMB options, before any affected memory accesses that appear in program order after the DMB instruction are
Observed-by that PE.

The use of a DMB instruction creates order between the Memory effects of instructions as described in the definition
of Barrier-ordered-before.

The DMB instruction only affects memory accesses and the operation of data cache and unified cache maintenance
instructions, see 464 Cache maintenance instructions on page D4-2648. It has no effect on the ordering of any other
instructions executing on the PE.

The pseudocode function for the operation of a DMB instruction is DataMemoryBarrier().

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-147
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Speculation Barrier (SB)

An SB instruction is a memory barrier that prevents speculative execution of instructions until after the barrier has
completed when those instructions could be observed through side-channels.

Until the barrier completes, the speculative execution of any instruction appearing later in the program order than
the barrier:

. Cannot be performed to the extent that such speculation can be observed through side-channels as a result of
control flow speculation or data value speculation.

. Can be performed when predicting that a instruction that could generate an exception does not generate an
exception.

Speculative execution of an SB instruction:

. Cannot be as a result of control flow speculation.

. Cannot be as a result of data value speculation.

. Can be as a result of predicting that an instruction that could generate an exception does not generate an
exception.

An SB instruction can complete when:
. It is known that it is not speculative.

. All the predicted data values generated by instructions appearing in program order before the SB instruction
have their predicted values confirmed.

Note

The SB instruction has no effect on the use of prediction resources to predict the instruction stream that is being
fetched, so long as the prediction of the instruction stream is not informed by data taken from the register outputs
of the speculative execution of instructions appearing in program order after the SB instruction.

Consumption of Speculative Data Barrier (CSDB)

The CSDB instruction is a memory barrier instruction that controls speculative execution and data value prediction.
This includes:

. Data value predictions of any instructions.

. PSTATE.{N,Z,C,V} predictions of any instructions other than conditional branch instructions appearing in
program order before the CSDB that have not been architecturally resolved.

. Predictions of SVE predication state for any SVE instructions.
For purposes of the definition of CSDB, PSTATE. {N,Z,C,V} is not considered a data value. This definition permits:
. Control flow speculation before and after the CSDB instruction.

. Speculative execution of conditional data processing instructions after the CSDB instruction, unless they use
the results of data value or PSTATE. {N,Z,C,V} predictions of instructions appearing in program order before
the CSDB instruction that have not been architecturally resolved.

Speculative Store Bypass Barrier (SSBB)

The SSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
virtual address under certain conditions.

B2-148

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

The semantics of the Speculative Store Bypass Barrier are:

. When a load to a location appears in program order after the SSBB instruction, then the load does not
speculatively read an entry earlier in the coherence order for that location than the entry generated by the
latest store satisfying all of the following conditions:

— The store is to the same location as the load.
— The store uses the same virtual address as the load.
— The store appears in program order before the SSBB instruction.

. When a load to a location appears in program order before the SSBB instruction, then the load does not
speculatively read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.
— The store uses the same virtual address as the load.
— The store appears in program order after the SSBB instruction.

Profiling Synchronization Barrier (PSB CSYNC)

The PSB CSYNC instruction is a memory barrier that ensures that all existing profiling data for the current PE has been
formatted, and profiling buffer addresses have been translated such that all writes to the profiling buffer have been
initiated. A following DSB instruction completes when the writes to the profiling buffer have completed.

If the Statistical Profiling Extension is not implemented, this instruction executes as a NOP.

Physical Speculative Store Bypass Barrier (PSSBB)

The PSSBB instruction is a memory barrier that prevents speculative loads from bypassing earlier stores to the same
physical address under certain conditions.

The semantics of the Physical Speculative Store Bypass Barrier are:

. When a load to a location appears in program order after the PSSBB instruction, then the load does not
speculatively read an entry earlier in the coherence order for that location than the entry generated by the
latest store satistying all of the following conditions:

— The store is to the same location as the load.
— The store appears in program order before the PSSBB instruction.

. When a load to a location appears in program order before the PSSBB instruction, then the load does not
speculatively read data from any store satisfying all of the following conditions:

— The store is to the same location as the load.
— The store appears in program order after the PSSBB instruction.

Note

The effect of this barrier applies to accesses to the same location even if they are accessed with different virtual
addresses and from different Exception levels.

Trace Synchronization Barrier (TSB CSYNC)

The TSB CSYNC instruction is a memory barrier instruction that preserves the relative order of memory accesses to
System registers due to trace operations and other memory accesses to the same registers.

A trace operation is an operation of the PE Trace Unit generating trace for an instruction when FEAT TRF is
implemented and enabled.

A TSB CSYNC instruction is not required to execute in program order with respect to other instructions. This includes
being reordered with respect to other trace instructions. One or more Context synchronization events are required
to ensure that TSB CSYNC instruction is executed in the necessary order.

Iftrace is generated between a Context synchronization event and a TSB CSYNC operation, these trace operations may
be reordered with respect to the TSB CSYNC operation, and therefore may not be synchronized.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-149
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

The following situations are synchronized using a TSB CSYNC operation:

. A direct write B to a System register is ordered after an indirect read or indirect write of the same register by
a trace operation of a traced instruction A, if all of the following are true:

— Adis executed in program order before a Context synchronization event C.
— Cisin program order before a TSB CSYNC operation T.
— Bis executed in program order after T.

. A direct read B of a System register is ordered after an indirect write to the same register by a trace operation
of a traced instruction A if all the following are true:

— Adisexecuted in program order before a Context synchronization event C1.

— Cl is in program order before TSB CSYNC operation T.

— T is executed in program order before a second Context synchronization event C2.
— Bisexecuted in program order after C2.

A TSB CSYNC operation is not needed to ensure a direct write B to a System register is ordered before an indirect read
or indirect write of the same register by a trace operation of a traced instruction A, if all the following are true:

. A is executed in program order after a Context synchronization event C.
. B is executed in program order before C.

The pseudocode function for the operation of a TSB CSYNC instruction is TraceSynchronizationBarrier().

Data Synchronization Barrier (DSB)

A DSB instruction is a memory barrier that ensures that memory accesses that occur before the DSB instruction have
completed before the completion of the DSB instruction. In doing this, it acts as a stronger barrier than a DMB and
all ordering that is created by a DMB with specific options is also generated by a DSB with the same options.

Execution of a DSB instruction:

. At EL2 ensures that any memory accesses caused by Speculative translation table walks from the EL1&0
translation regime have been observed.

. At EL3 ensures that any memory accesses caused by speculative translation table walks from the EL2,
EL1&0 or EL2&0 translation regimes have been observed.

For more information, see Use of out-of-context translation regimes on page D5-2697.
A DSB instruction executed by a PE, PEe, completes when all of the following apply:

. All explicit memory effects of the required access types appearing in program order before the DSB are
complete for the set of observers in the required shareability domain.

. If the required access types of the DSB is reads and writes, the following instructions issued by PEe before the
DSB are complete for the required shareability domain:

— All cache maintenance instructions.
— All TLB maintenance instructions.
— All PSB CYNC instructions.

. When FEAT XS is implemented, if the required access types of the DSB is reads and writes, completion of
the DSB instruction with the nXS qualifier executed by a PE, PEe, ensures that:

— All previous TLBInXS maintenance operations generated by AArch64 TLB maintenance instructions
with the nXS qualifier executed by PEe are finished for all PEs in the shareability domain of the DSB
instruction.

— All previous TLBInXS maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL1 by PEe when HCRX EL2.FnXS is 1 are finished for all PEs in the
shareability domain of the DSB instruction.

B2-150 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Completion of the DSB instruction with the nXS qualifier executed by a PE, PEe, does not ensure that:

— All previous TLB maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL1 by PEe when HCRX EL2.FnXS is 0 are finished for all PEs in the
shareability domain of the DSB instruction.

— All previous TLB maintenance operations generated by AArch32 or AArch64 TLB maintenance
instructions executed at EL2 or EL3 by PEe are finished for all PEs in the shareability domain of the
DSB instruction.

In addition, no instruction that appears in program order after the DSB instruction can alter any state of the system or
perform any part of its functionality until the DSB completes other than:

. Being fetched from memory and decoded.

. Reading the general-purpose, SIMD and floating-point, Special-purpose, or System registers that are directly
or indirectly read without causing side-effects.

If FEAT MTE2 is implemented, on completion of a DSB instruction operating over the Non-shareable domain, all
updates to TFSR_ELx.TFx or TFSREO_EL1.TFx due to Tag Check fails caused by accesses for which the DSB
operates will be complete. For more information on FEAT MTE2, see Chapter D6 Memory Tagging Extension.

When FEAT XS is implemented and HCRX EL2.FnXS is 1, an AArch64 DSB instruction executed at EL1 or ELO
behaves in the same way as the corresponding DSB instruction with the nXS qualifier executed at EL1 or ELO.

The pseudocode function for the operation of a DSB is DataSynchronizationBarrier().

See also:
. Memory barriers on page D4-2671.
. Ordering and completion of TLB maintenance instructions on page D5-2831.

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions take an argument that specifies:
. The shareability domain over which the instruction must operate. This is one of:
— Full system.
— Outer Shareable.
— Inner Shareable.
— Non-shareable.
Full system applies to all the observers in the system and, as such, encompasses the Inner and Outer Shareable
domains of the processor.
Note

The distinction between Full system and Outer Shareable is only applicable for Normal Non-cacheable
memory accesses and Device memory accesses.

. The accesses for which the instruction operates. This is one of:
— Read and write accesses, both before and after the barrier instruction.
— Write accesses only, before and after the barrier instruction.
— Read accesses before the barrier instruction, and read and write accesses after the barrier instruction.

Note
This form of a DMB or DSB instruction can be described as a load-load/store barrier.

For more information on whether an access is before or after a barrier instruction, see Data Memory Barrier (DMB)
on page B2-147 or Data Synchronization Barrier (DSB) on page B2-150.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-151
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

Table B2-1 on page B2-152 shows how these options are encoded in the <option> field of the instruction:

Table B2-1 Encoding of the DMB and DSB <option> parameter

Accesses

Shareability domain

Before the barrier After the barrier Full system Outer Shareable Inner Shareable Non-shareable

Reads and writes Reads and writes SY OSH ISH NSH
Writes Writes ST OSHST ISHST NSHST
Reads Reads and writes LD OSHLD ISHLD NSHLD

See the instruction descriptions for more information:
. DMB on page C6-1013.
. DSB on page C6-1016.

Note

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system
operation, see /SB on page C6-1039.

Load-Acquire, Load-AcquirePC, and Store-Release

Armv8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores. These
instructions support the Release Consistency sequentially consistent (RCsc) model. In addition, FEAT LRCPC
provides Load-AcquirePC instructions. The combination of Load-AcquirePC and Store-Release can be use to
support the weaker Release Consistency processor consistent (RCpc) model.

The full definitions of the Load-Acquire and Load-AcquirePC instructions are covered formally in the Definition of
the Armv8 memory model on page B2-133. This introduction to the Load-Acquire and Load-AcquirePC instructions
is not intended to contradict that section.

The basic principle of both Load-Acquire and Load-AcquirePC instructions is to introduce order between:
. The memory access generated by the Load-Acquire or Load-AcquirePC instruction.

. The memory accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction,
such that the memory access generated by the Load-Acquire or Load-AcquirePC instruction is Observed-by
each PE to the extent that the PE is required to observe the access coherently, before any of the memory
accesses appearing in program order after the Load-Acquire or Load-AcquirePC instruction are Observed-by
that PE to the extent that the PE is required to observe the accesses coherently.

The use of a Load-Acquire or Load-AcquirePC instruction creates order between the Memory effects of instructions
as described in the definition of Barrier-ordered-before.

The full definition of the Store-Release instruction is covered formally in the Definition of the Armv8 memory model
on page B2-133 and this introduction to the Store-Release instruction is not intended to contradict that section.

The basic principle of a Store-Release instruction is to introduce order between the following:

. A set of memory accesses, RWx, that are generated by the PE executing the Store-Release instruction and
that appear in program order before the Store-Release instruction, together with those that originate from a
different PE to the extent that the PE is required to observe them coherently, Observed-by the PE before
executing the Store-release.

. The memory access generated by the Store-Release (Wrel), such that all of the memory accesses, RWx, are
Observed-by each PE to the extent that the PE is required to observe those accesses coherently, before Wrel
is Observed-by that PE to the extent that the PE is required to observe that access coherently.

B2-152

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

The use of a Store-Release instruction creates order between the Memory effects of instructions as described in the
definition of Barrier-ordered-before.

Where a Load-Acquire appears in program order after a Store-Release, the memory access generated by the
Store-Release instruction is Observed-by each PE to the extent that PE is required to observe the access coherently,
before the memory access generated by the Load-Acquire instruction is Observed-by that PE, to the extent that the
PE is required to observe the access coherently. In addition, the use of a Load-Acquire, Load-AcquirePC or a
Store-Release instruction on accesses to a Memory-mapped peripheral introduces order between the Memory
effects of the instructions that access that peripheral, as described in the definition of Peripheral coherence order.

Load-Acquire, Load-AcquirePC and Store-Release, other than Load-Acquire Exclusive Pair and
Store-Release-Exclusive Pair, access only a single data element. This access is single-copy atomic. The address of
the data object must be aligned to the size of the data element being accessed, otherwise the access generates an
Alignment fault.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The address supplied to
the instructions must be aligned to twice the size of the element being loaded, otherwise the access generates an
Alignment fault.

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Note

. Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.
— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

. The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the
explicit DMB instruction.

LoadLOAcquire, StoreLORelease

For each PE, the Non-secure physical memory map is divided into a set of LORegions using a table that is held
within the PE. Any PA in the Non-secure memory map can be a member of one LORegion. If a PA is assigned to
more than one LORegion, then an implementation might treat it as if it has been assigned to fewer LORegions than
that have been specified. A PA in the Secure physical memory map cannot be a member of any LORegion. For more
information, see Limited ordering regions on page B2-154.

Armv8.1 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores that apply
in relation to the defined LORegions. The new variants of the Load-Acquire and Store-Release instructions are
LoadLOAcquire and StoreLORelease. See LoadLOAcquire/StoreLORelease on page C3-231.

For all memory types, these instructions have the following ordering requirements:

. LoadLOAcquire has the same semantics as Load-Acquire except that the memory accesses affected lie within
the same LORegion as the address of the memory access generated by the LoadLOAcquire instruction. See
Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

. StoreLORelease has the same semantics as Store-Release except that the memory accesses affected lie within
the same LORegion as the address of the memory access generated by the StoreLORelease instruction. See
Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

In addition, for accesses to Memory-mapped peripherals:

. LoadLOAcquire has the same semantics as Load-Acquire except that the affected Memory effects of
instructions that access the peripheral lie within the same LORegion as the address of the memory access
generated by the LoadLOAcquire instruction. See Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-153
Non-Confidential

The AArch64 Application Level Memory Model
B2.3 Definition of the Armv8 memory model

. StoreLORelease has the same semantics as Store-Release except that the affected Memory effects of
instructions that access the peripheral lie within the same LORegion as the address of the memory access
generated by the StoreLORelease instruction. See Load-Acquire, Load-AcquirePC, and Store-Release on
page B2-152.

Note

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB instruction.

B2.3.11 Limited ordering regions

Armv8.1 introduces limited ordering regions (LORegions), which allow large systems to perform special
load-acquire and store-release instructions that provide order between the memory accesses to a region of the PA
map as observed by a set of observers.

This feature is supported in AArch64 state only.

Specification of the LORegions

The LORegions are defined in the Non-secure physical memory map using a set of LORegion descriptors. The
number of LORegion descriptors is IMPLEMENTATION DEFINED, and can be discovered by reading the LORID EL1
register.

Each LORegion descriptor consists of:
. A tuple of the following values:
— A Start Address.
— An End Address.
— An LORegion Number.
. Valid bit which indicates whether that LORegion descriptor is valid.

A memory location lies within the LORegion identified by the LORegion Number if the PA lies between the Start
Address and the End Address, inclusive. The Start Address must be defined to be aligned to 64KB and the End
Address must be defined as the top byte of a 64KB block of memory.

The LORegion descriptors are programmed using the LORSA EL1, LOREA EL1, LORN_EL1, and LORC_EL1
registers in the System register space. These registers only describe memory addresses in the Non-secure memory
map. These registers are UNDEFINED if accessed when SCR_EL3.NS = 0.

If a LoadLOAcquire or a StoreLORelease does not match with any LORegion, then:

. The LoadLOAcquire will behave as a Load-Acquire, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

. The StoreLORelease will behave as a Store-Release, and will be ordered in the same way with respect to all
accesses, independent of their LORegions.

Note

If no LORegions are implemented, then the LoadLOAcquire and StoreLORelease will therefore behave as a
Load-Acquire and Store-Release.

A new access type AccType_LIMITEDORDERED has been added for these limited ordering instructions to be identified.

B2-154 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy

B2.4 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. Armv8 defines the application level interface to the memory
system, including a hierarchical memory system with multiple levels of cache. This section describes an application
level view of this system. It contains the subsections:

. Introduction to caches on page B2-155.

. Memory hierarchy on page B2-155.

. Application level access to functionality related to caches on page B2-156
. Implication of caches for the application programmer on page B2-157.

. Preloading caches on page B2-159.

B2.4.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:
. Main memory address information, commonly known as a tag.
. The associated data.

Caches increase the average speed of a memory access. Caching takes account of two principles of locality:

Spatial locality

An access to one Location is likely to be followed by accesses to adjacent Locations. Examples of
this principle are:

. Sequential instruction execution.
. Accessing a data structure.
Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a
cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the
cache line loaded from memory. Armv8 permits different cache topologies and access policies, provided they
comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:
. Memory accesses can occur at times other than when the programmer would expect them.
. A data item can be held in multiple physical locations.

B2.4.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overall performance, an Armv8 memory system can include multiple levels of cache in a hierarchical memory
system that exploits this trade-off between size and latency. Figure B2-1 on page B2-156 shows an example of such
a system in an Armv8-A system that supports virtual addressing.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-155
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy

Device
» Addre§s Physical address:
translation
Virtual
address
System configuration
and control v
PE, { \ A 4 Level 3
AArch64 state »/ Level 1 Lga\/;:ez Cache
%30 Cache
Instruction < < < Level 4
N N fetch 1 X DSRAM‘ SRIAM» for example,
torage-class memory card,
X0 «—Data—> «——> | o« || ,| memory disyk

Figure B2-1 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processing element, as
shown in Figure B2-1 on page B2-156.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches that are located at the levels closest
to the main memory. Memory coherency for cache topologies can be defined using the conceptual points Point of
Unification (PoU), Point of Coherency (PoC), Point of Persistence (PoP), and Point of Deep Persistence (PoDP).

For more information, including the definitions of PoU, PoC, PoP, and PoDP, see About cache maintenance in
AArch64 state on page D4-2644.

IfFEAT MTE2 is implemented, the behavior of cache maintenance instructions is modified. For more information,
see Allocation Tags on page D6-2841.

The cacheability and shareability memory attributes
Cacheability and shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This attribute defines whether memory locations are allowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer Cacheability locations.

Shareability This attribute defines whether memory locations are shareable between different agents in a system.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
the location is coherent for all agents in that domain. Shareability is defined independently for Inner
and Outer Shareability domains.

For more information about Cacheability and Shareability, see Memory types and attributes on page B2-165.

B2.4.3 Application level access to functionality related to caches

As indicated in About the Application level programmers’model on page B1-116, the application level corresponds
to execution at ELO. The architecture defines a set of cache maintenance instructions that software can use to
manage cache coherency. Software executing at a higher Exception level can enable use of some of this
functionality from ELO, as follows:

When the value of SCTLR_EL1.UCI is 1
Software executing at ELO can access:

. The data cache maintenance instructions, DC CVAU, DC CVAC, DC CVAP, DC CVADP, and DC CIVAC.
See The data cache maintenance instruction (DC) on page D4-2650.

B2-156 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy

. The instruction cache maintenance instruction IC IVAU. See The instruction cache
maintenance instruction (IC) on page D4-2650.

Attempted execution of these instructions might generate a Permission fault as described in
Permission fault on page D5-2801.

When the value of SCTLR_EL1.UCT is 1
Software executing at ELO can access the cache type register. See CTR_ELO.

When the value of SCTLR_EL1.DZE is 1

Software executing at ELO can access the data cache zero instruction DC ZVA. See Data cache zero
instruction on page D4-2661.

The SCTLR_ELI1.{UCI, UCT, DZE} control fields are only accessible by software executing at EL1 or higher.
When HCR_EL2.{E2H, TGE} == 1 the controls {UCI, UCT and DZE} are found in SCTLR EL2.

This functionality is UNDEFINED at ELO when the value of the corresponding SCTLR_EL1 control field is 0, see:
. Traps to ELI of ELO execution of cache maintenance instructions on page D1-2514.

. Traps to ELI of ELO accesses to the CTR_ELQ on page D1-2514.

. Traps to EL1 of ELO execution of DC ZVA instructions on page D1-2514.

B2.4.4 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become
visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

. When memory locations are updated by other agents in the system that do not use hardware management of
coherency.
. When memory updates made from the application software must be made visible to other agents in the

system, without the use of hardware management of coherency.
For example:

. In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

. In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

. By not using the caches in situations where coherency issues can arise. This can be achieved by:
— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.
— Not enabling caches in the system.

. By using cache maintenance instructions to manage the coherency issues in software. See Application level
access to functionality related to caches on page B2-156.

. By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory on
page B2-167 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page B2-166.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-157
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy

Note

The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations, the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

Note

Not all these mechanisms are directly available to software operating at ELO and might involve interaction with
software operating at a higher Exception level.

Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

. The PE might have fetched the instructions from memory at any time since the last Context synchronization
event on that PE.

. Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being refetched from memory. In the absence of a Context synchronization event, there
is no limit on the number of times such an instruction might be executed without being refetched from
memory.

The Arm architecture requires the hardware to ensure coherency between instruction caches and memory, even for
locations of shared memory. A write has been made coherent with an instruction fetch of a shareability domain
when:

CTR_ELO0.{DIC, IDC} == {0, 0}

The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_ELO0.{DIC, IDC} == {1, 0}
The location written to has been cleaned to the Point of unification (PoU) from the data cache, and
that clean is complete for the shareability domain.

CTR_ELO0.{DIC, IDC} == {0, 1}

The write is complete for the shareability domain. Subsequently the location has been invalidated
to the Point of unification (PoU) from the instruction cache, and that invalidation is complete for
the shareability domain.

CTR_ELO0.{DIC, IDC} == {1, 1}

The write is complete for the shareability domain.

If software requires coherency between instruction execution and memory, it must manage this coherency using
Context synchronization events and cache maintenance instructions. The following code sequence can be used to
allow a PE to execute code that the same PE has written.

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a Tocation pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH ; Ensure completion of the invalidations
ISB ; Synchronize the fetched instruction stream
B2-158 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.4 Caches and memory hierarchy

Note

. If this sequence is not executed between writing data to a location and executing the instruction at that
location, the lack of coherency between instruction caches and memory means that the instructions that are
executed might be the old instruction or the updated instruction, and which is used can arbitrarily vary during
execution. It must not be assumed by software, before the synchronization sequence is executed, that when
the updated instruction has been seen, the old instruction will not be seen again.

. For Non-cacheable or Write-Through accesses, the clean data cache by VA instruction is not required.
However, the invalidate instruction cache instruction is required because the Armv8-A AArch64 architecture
allows Non-cacheable accesses to be held in an instruction cache. See Non-cacheable accesses and
instruction caches on page D4-2643.

. This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The Armv§ architecture limits the set of instructions that can be executed by one thread
of execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions on page B2-130.

. The system software controls whether these cache maintenance instructions are available to the application
level by setting SCTLR_EL1.UCI.

B2.4.5 Preloading caches

The Arm architecture provides memory system hints PRFM, LDNP, and STNP that software can use to communicate the
expected use of memory locations to the hardware. The memory system can respond by taking actions that are
expected to speed up the memory accesses if they occur. The effect of these memory system hints is
IMPLEMENTATION DEFINED. Typically, implementations use this information to bring the data or instruction
locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operations might, under exceptional circumstances, generate an asynchronous External abort,
which is taken using an SError interrupt exception. For more information, see ISS encoding for an exception from
a Data Abort on page D13-3172.

PrefetchHint{} defines the prefetch hint types.

The Hint_Prefetch() function signals to the memory system that memory accesses of the type hint to or from the
specified address are likely to occur in the near future. The memory system might take some action to speed up the
memory accesses when they do occur, such as preloading the specified address into one or more caches as indicated
by the innermost cache level target and non-temporal hint stream.

For more information on PRFM and load/store instructions that provide hints to the memory system, see Prefetch
memory on page C3-235 and Load/store SIMD and floating-point non-temporal pair on page C3-233.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-159
Non-Confidential

The AArch64 Application Level Memory Model
B2.5 Alignment support

B2.5

B2.5.1

B2.5.2

Alignment support

This section describes alignment support. It contains the following subsections:
. Instruction alignment on page B2-160.

. Alignment of data accesses on page B2-160.

Instruction alignment

A64 instructions must be word-aligned.

Attempting to fetch an instruction from a misaligned location results in a PC alignment fault. See PC alignment
checking on page D1-2469.

Alignment of data accesses

An unaligned access to any type of Device memory causes an Alignment fault.

Unaligned accesses to Normal memory

The behavior of unaligned accesses to Normal memory is dependent on all of the following:
. The instruction causing the memory access.

. The memory attributes of the accessed memory.

. The value of SCTLR_ELx.{A, nAA}.

. Whether or not FEAT LSE2 is implemented.

Load or Store of Single or Multiple registers

For all instructions that load or store single or multiple registers, but not Load-Exclusive, Store-Exclusive,
Load-Acquire/Store-Release and Atomic instructions, if the address that is accessed is not aligned to the size of the
data element being accessed, then:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR _ELx.A applicable to the current Exception level is 0:
. An unaligned access is performed.

. If FEAT LSE2 is not implemented, the access is not guaranteed to be single-copy atomic except at the byte
access level.

. If FEAT LSE2 is implemented:

— Ifall the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal
Inner Write-Back, Outer Write-Back Cacheable memory, the memory access is single-copy atomic.
For a Load-Pair or Store-Pair, including load non-temporal pair, instructions the entire memory access
will be single-copy atomic.

— Ifall the bytes of the memory accessed do not lie within a 16-byte quantity aligned to 16 bytes or the
access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory the access is not
guaranteed to be single-copy atomic except at the byte access level.

For these instructions, the definition of an unaligned access is based on the size of the accessed elements, not the
overall size of the memory access. This affects SIMD element and structure loads and stores, and also load/store
pair instructions.

Load-Exclusive/ Store-Exclusive and Atomic instructions

For Load-Exclusive/Store-Exclusive, and Atomic instructions including those with acquire or acquire-release
semantics:

When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.

When the value of SCTLR_ELx.A applicable to the current Exception level is 0:

B2-160

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.5 Alignment support

If FEAT LSE2 is not implemented, these instructions generate an Alignment fault if the address being accessed is
not aligned to the size of the data structure being accessed.

If FEAT LSE2 is implemented, then:

. If all the bytes of the memory access lie within a 16-byte quantity aligned to 16 bytes and are to Normal Inner
Write-Back, Outer Write-Back Cacheable memory, an unaligned access is performed.

. If all the bytes of the memory access do not lie within a 16-byte quantity aligned to 16-bytes, or the memory
access is not to Normal Inner Write-Back, Outer Write-Back Cacheable memory, then it is a CONSTRAINED
UNPREDICTABLE choice of either of the following:

— Anunaligned access is performed meeting all of the semantics of the instruction.

— An Alignment fault is generated.
Where memory access is performed, then it is single-copy atomic.
For these instructions, the definition of an unaligned access is based on the overall access size.
If FEAT LS64 is implemented, when a single-copy atomic 64-byte instruction accesses a memory location that is
not aligned to 64 bytes, an Alignment fault always occurs, regardless of the value of SCTLR ELx.A.
Non-atomic Load-Acquire/Store-Release instructions
For Load-Acquire/Store-Release instructions which do not have exclusive or atomic behaviors:
When the value of SCTLR_ELx.A applicable to the current Exception level is 1, an Alignment fault is generated.
When the value of SCTLR _ELx.A applicable to the current Exception level is 0:

IfFEAT LSE2 is notimplemented, then these instructions generate an Alignment fault if the address being accessed
is not aligned to the size of the data structure being accessed.

If FEAT LSE2 is implemented, then:

. If the memory access is not to Normal Inner Write-Back or Outer Write-Back Cacheable memory, then it is
a CONSTRAINED UNPREDICTABLE choice of either of the following:
— Anunaligned access is performed meeting all of the semantics of the instruction.
— An Alignment fault is generated.

. If all of the bytes of the memory access do not lie within a 16-byte quantity aligned to 16 bytes then the
following applies:
— If SCTLR_ELx.nAA applicable to the current Exception level is 0 an Alignment fault is generated.

— If SCTLR_ELx.nAA applicable to the current Exception level is 1 then an unaligned access is
performed which is not guaranteed to be single-copy atomic except at the byte access level.

In this case, the architecture does no define the order of the different transactions of the access defined by the
single instructions relative to each other.

Note
. Unaligned accesses typically take additional cycles to complete compared to a naturally-aligned access.
. An operation that is not single-copy atomic above the byte level can abort on any memory access that it makes

and can abort on more than one access. This means that an unaligned access that occurs across a page
boundary can generate an abort on either side of the page boundary.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-161
ID072021 Non-Confidential

The AArch64 Application Level Memory Model

B2.6 Endian support

Endian support

B2.6

General description of endianness in the Arm architecture on page B2-162 describes the relationship between

endianness and memory addressing in the Arm architecture.

The following subsections then describe the endianness schemes supported by the architecture:

Instruction endianness on page B2-163.

Data endianness on page B2-163.

Endianness of memory-mapped peripherals on page B2-164.

General description of endianness in the Arm architecture

B2.6.1

This section only describes memory addressing and the effects of endianness for data elements up to quadwords of

128 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure B2-2 on page B2-162 shows, for big-endian and little-endian memory systems, the

relationship between:

The quadword at address A.

The doubleword at address A and A+8.

The words at addresses A, A+4, A+8, and A+12.

The halfwords at addresses A, A+2, A+4, A+6, A+8, A+10, A+12, and A+14.

The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, A+7, A+8, A+9, A+10, A+11, A+12, A+13,

A+14, and A+15.

The terms in Figure B2-2 on page B2-162 have the following definitions:

Byte at address A.

B A
HW_A

Halfword at address A.
Most significant byte.

MSByte
LSByte

Least significant byte.

Big-endian memory system

» LSByte

Incrementing byte address

MSByte

Quadword at address A

Doubleword at address A+8

HW_A+14

Word at address A+12

HW_A+12

+12|B_A+13[B_A+14|B_A+15

HW_A+10

Word at address A+8

HW_A+8

Doubleword at address A

HW_A+6

Word at address A+4

HW_A+4

HW_A+2

Word at address A

HW_A

Little-endian memory system

LSByte

Incrementing byte address

MSByte <

Quadword at address A

Doubleword at address A

Word at address A

B

HW_A

HW_A+2

Word at address A+4

HW_A+4

HW_A+6

Doubleword at address A+8

Word at address A+8

HW_A+8

B_A+9|B_A+8|B_A+7B_A+6|B_A+5|B_A+4|B_A+3|B_A+2|B_A+1

10

HW_A+10

Word at address A+12

HW_A+12

HW_A+14

Figure B2-2 Endianness relationships

ARM DDI 0487G.b

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

B2-162

ID072021

Non-Confidential

The AArch64 Application Level Memory Model
B2.6 Endian support

The big-endian and little-endian mapping schemes determine the order in which the bytes of a quadword,
doubleword, word, or halfword are interpreted. For example, a load of a word from address 0x1000 always results
in an access to the bytes at memory locations 0x1000, 0x1001, 9x1002, and 0x1003. The endianness mapping scheme
determines the significance of these 4 bytes.

B2.6.2 Instruction endianness

In Armv8-A, A64 instructions have a fixed length of 32 bits and are always little-endian.

B2.6.3 Data endianness
SCTLR_EL1.EQE, configurable at EL1 or higher, determines the data endianness for execution at EL0.
The data size used for endianness conversions:

. Is the size of the data value that is loaded or stored for SIMD and floating-point register and general-purpose
register loads and stores.

. Is the size of the data element that is loaded or stored for SIMD element and data structure loads and stores.
For more information, see Endianness in SIMD operations on page B2-163.

Note

This means the Armv8 architecture introduces a requirement for 128-bit endian conversions.

Instructions to reverse bytes in a general-purpose register or a SIMD and floating-point
register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table B2-2 on page B2-163 shows the instructions that provide this functionality:

Table B2-2 Byte reversal instructions

Function Instructions Notes

Reverse bytes in 32-bit word or words? REV32 For use with general-purpose registers

Reverse bytes in whole register REV For use with general-purpose registers

Reverse bytes in 16-bit halfwords REV16 For use with general-purpose registers

Reverse elements in doublewords, vector REV64 For use with SIMD and floating-point registers
Reverse elements in words, vector REV32 For use with SIMD and floating-point registers
Reverse elements in halfwords, vector REV16 For use with SIMD and floating-point registers

a. Can operate on multiple words.

Endianness in SIMD operations

SIMD element load/store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. This information is used to load and store data correctly in both big-endian and little-endian
systems.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-163
ID072021 Non-Confidential

The AArch64 Application Level Memory Model

B2.6 Endian support

For example:

LD1 {V0@.4H}, [X1]

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the
endianness configuration, as shown in Figure B2-3 on page B2-164. Therefore, the order of the elements in the
registers is the same regardless of the endianness configuration.

64-bit register containing four 16-bit elements

D[15:8] | D[7:0] | C[15:8] | C[7:0] | B[15:8] | B[7:0] | A[15:8] | A[7:0]
L)
A
RN -
0 [A[7:0] 0 [A[15:8]
1[AN5:8] 1[A[7:0]
2 [B[7:0] 2 [B[15:8]
3 [B[15:8] U 3 [B[7:0]
4 |CI7:0] LD1 {VO.4H}, [X1] LD1 {VO.4H}, [x1] | 4 [C[15:8]
5 [Cl15:8] S [CI7:0]
6 [D[7:0] 6 [D[15:8]
7 [D[15:8] 7 [DI7:0]
— N—
Memory system with Memory system with
little-endian addressing (LE) big-endian addressing (BE)

Figure B2-3 SIMD byte order example

The BigEndian() pseudocode function determines the current endianness of the data.

The BigEndianReverse() pseudocode function reverses the endianness of a bitstring.

The BigEndian() and BigEndianReverse() functions are defined in Chapter J1 Armv8 Pseudocode.

B2.6.4 Endianness of memory-mapped peripherals

All memory-mapped peripherals defined in the Arm architecture must be little-endian.

Peripherals to which this requirement applies include:

Memory-mapped register interfaces to a debugger, or to a Cross Trigger Interface, see Chapter H8 About the
External Debug Registers.

The memory-mapped register interface to the system level implementation of the Generic Timer, see
Chapter 12 System Level Implementation of the Generic Timer.

A memory-mapped register interface to the Performance Monitors, see Chapter 13 Recommended External
Interface to the Performance Monitors.

A memory-mapped register interface to the Activity Monitors, see Chapter 14 Recommended External
Interface to the Activity Monitors.

Memory-mapped register interfaces to an Arm Generic Interface Controller, see the ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0.

The memory-mapped register interface to an Arm trace component. See, for example, the ARM® Embedded
Trace Macrocell Architecture Specification, ETMv4.

B2-164

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

B2.7 Memory types and attributes

In Armv§ the ordering of accesses for addresses in memory, referred to as the memory order model, is defined by
the memory attributes. The following sections describe this model:

Normal memory on page B2-165.
Device memory on page B2-169.

Memory access restrictions on page B2-174.

B2.7.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware is permitted
by the architecture to perform Speculative data read accesses to these locations, regardless of the access permissions
for these locations.

The Normal memory type has the following properties:

A write to a memory location with the Normal attribute completes in finite time.

Writes to a memory location with the Normal memory type that is either Non-cacheable or Write-Through

cacheable for both the Inner and Outer cacheability must reach the endpoint for that location in the memory
system in finite time. Two writes to the same location, where at least one is using the Normal memory type,
might be merged before they reach the endpoint unless there is an ordered-before relationship between the

two writes.

Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

There is no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register load/store instructions. See Multi-register loads and stores that access Normal memory on
page B2-169.

Note

The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side-effects.
— Repeated read accesses return the last value written to the resource being read.
— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.

— Accesses can be merged before accessing the target memory system.

Normal memory allows speculative reads and may be affected by intermediate buffering and forwarding of
data. If non-idempotent memory locations are mapped as Normal memory, the following may occur:

— Memory accesses return UNKNOWN values.

— UNPREDICTABLE effects on memory-mapped peripherals.

An instruction that generates a sequence of accesses as described in Atomicity in the Arm architecture on
page B2-128 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore, one or more of the memory locations

might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

For accesses to Normal memory, a DMB instruction is required to ensure the required ordering.

The following sections describe the other attributes for Normal memory:

Shareable Normal memory on page B2-166.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-165
Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

. Non-shareable Normal memory on page B2-167.
. Cacheability attributes for Normal memory on page B2-167.

See also:

. Multi-register loads and stores that access Normal memory on page B2-169.
. Atomicity in the Arm architecture on page B2-128.

. Memory barriers on page B2-146.

. Concurrent modification and execution of instructions on page B2-130.

Shareable Normal memory

A Normal memory location has a Shareability attribute that is one of:

. Inner Shareable, meaning it applies across the Inner Shareable shareability domain.

. Outer Shareable, meaning it applies across both the Inner Shareable and the Outer Shareable shareability
domains.

. Non-shareable.

The shareability attributes define the data coherency requirements of the location, that hardware must enforce. They
do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between
data and instruction accesses on page B2-158.

Note

. System designers can use the shareability attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software developers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEs in a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different processing elements.

. This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner
Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory
The Arm architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:

. Each observer is only a member of a single Inner Shareability domain.
. Each observer is only a member of a single Outer Shareability domain.
. All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.

This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not
required to be a proper subset.

Note

. Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

. The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.
B2-166 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

The details of the use of the shareability attributes are system-specific. Example B2-1 on page B2-167 shows how
they might be used.

Example B2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

. In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses
to memory locations with the Inner Shareable attribute.

. However, between the two clusters, the caches:
— Are not required to be coherent for data accesses that have only the Inner Shareable attribute.
— Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable shareability domain.

For shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account of
the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single PE.

Alocation in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Cacheability attributes for Normal memory

In addition to being Outer Shareable, Inner Shareable or Non-shareable, each region of Normal memory is assigned
a Cacheability attribute that is one of:

. Write-Through Cacheable.
. Write-Back Cacheable.
. Non-cacheable.

Also, for Write-Through Cacheable and Write-Back Cacheable Normal memory regions:
. A region might be assigned cache allocation hints for read and write accesses.

. It is IMPLEMENTATION DEFINED whether the cache allocation hints can have an additional attribute of
Transient or Non-transient.

For more information, see Cacheability, cache allocation hints, and cache transient hints on page D4-2640.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-167
Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

A memory location can be marked as having different cacheability attributes, for example when using aliases in a

VA to PA mapping:

. If the attributes differ only in the cache allocation hint, this does not affect the behavior of accesses to that
location.

. For other cases, see Mismatched memory attributes on page B2-176.

The cacheability attributes provide a mechanism of coherency control with observers that lie outside the shareability
domain of a region of memory. In some cases, the use of Write-Through Cacheable or Non-cacheable regions of
memory might provide a better mechanism for controlling coherency than the use of hardware coherency
mechanisms or the use of cache maintenance routines. To this end, the architecture requires the following properties
for Non-cacheable or Write-Through Cacheable memory:

. A completed write to a memory location that is Non-cacheable or Write-Through Cacheable for a level of
cache made by an observer accessing the memory system inside the level of cache is visible to all observers
accessing the memory system outside the level of cache without the need of explicit cache maintenance.

. A completed write to a memory location that is Non-cacheable for a level of cache made by an observer
accessing the memory system outside the level of cache is visible to all observers accessing the memory
system inside the level of cache without the need of explicit cache maintenance.

. For accesses to Normal memory that is Non-cacheable, a DMB instruction introduces a Barrier-ordered-before
relation on all accesses to a single peripheral or block of memory that is of IMPLEMENTATION DEFINED size.
For more information, see Ordering relations on page B2-137.

Note

Implementations can use the cache allocation hints to indicate a probable performance benefit of caching. For
example, a programmer might know that a piece of memory is not going to be accessed again and would be better
treated as Non-cacheable. The distinction between memory regions with attributes that differ only in the cache
allocation hints exists only as a hint for performance.

For Normal memory, the Arm architecture provides cacheability attributes that are defined independently for each

of two conceptual levels of cache, the inner and the outer cache. The relationship between these conceptual levels

of cache and the implemented physical levels of cache is IMPLEMENTATION DEFINED, and can differ from the

boundaries between the Inner and Outer Shareability domains. However:

. Inner refers to the innermost caches, meaning the caches that are closest to the PE, and always includes the
lowest level of cache.

. No cache that is controlled by the Inner cacheability attributes can lie outside a cache that is controlled by the
Outer cacheability attributes.

. An implementation might not have any outer cache.

Example B2-2 on page B2-168, Example B2-3 on page B2-169, and Example B2-4 on page B2-169 describe the
possible ways of implementing a system with three levels of cache, level I (L1) to level 3 (L3).

Note
. L1 cache is the level closest to the PE, see Memory hierarchy on page B2-155.
. When managing coherency, system designs must consider both the inner and outer cacheability attributes, as

well as the shareability attributes. This is because hardware might have to manage the coherency of caches
at one conceptual level, even when another conceptual level has the Non-cacheable attribute.

Example B2-2 Implementation with two inner and one outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. The Inner cacheability attribute applied to L1 and L2 cache.
. The Outer cacheability attribute applied to L3 cache.

B2-168 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

Example B2-3 Implementation with three inner and no outer cache levels

Implement the three levels of cache in the system, L1 to L3, with the Inner cacheability attribute applied to L1, L2,
and L3 cache. Do not use the Outer cacheability attribute.

Example B2-4 Implementation with one inner and two outer cache levels

Implement the three levels of cache in the system, L1 to L3, with:
. The Inner cacheability attribute applied to L1 cache.
. The Outer cacheability attribute applied to L2 and L3 cache.

Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more SIMD&FP registers from an Exception level, there is no
requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load or store instructions.

B2.7.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects,
or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

The attributes for Armv8 Device memory are:
Gathering Identified as G or nG, see Gathering on page B2-171.
Reordering Identified as R or nR, see Reordering on page B2-172.

Early Write Acknowledgement
Identified as E or nE, see Early Write Acknowledgement on page B2-173.

The Armv8 Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early Write Acknowledgement.

Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.

Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriers is required to order accesses to Device-nGRE memory.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

Armv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that Speculative accesses to Device-GRE memory is
forbidden.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-169
Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

As the list of types shows, these additional attributes are hierarchical. For example, a memory location that
permits Gathering must also permit Reordering and Early Write Acknowledgement.

The architecture does not require an implementation to distinguish between each of these memory types and
Arm recognizes that not all implementations will do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

All of these memory types have the following properties:

Speculative data accesses are not permitted to any memory location with any Device memory attribute. This
means that each memory access to any Device memory type must be one that would be generated by a simple
sequential execution of the program.

The following exceptions to this apply:

— Reads generated by the SIMD and floating-point instructions can access bytes that are not explicitly
accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that
contains at least one byte that is explicitly accessed by the instruction.

— For Device memory with the Gathering attribute, reads generated by the LDNP instructions are
permitted to access bytes that are not explicitly accessed by the instruction, provided that the bytes
accessed are in a 128-byte window, aligned to 128-bytes, that contains at least one byte that is
explicitly accessed by the instruction.

— Where a load or store instruction performs a sequence of memory accesses, as opposed to one
single-copy atomic access as defined in the rules for single-copy atomicity, these accesses might occur
multiple times as a result of executing the load or store instruction. See Properties of single-copy
atomic accesses on page B2-130.

Note

— Aninstruction that generates a sequence of accesses as described in Atomicity in the Arm architecture
on page B2-128 might be abandoned as a result of an exception being taken during the sequence of
accesses. On return from the exception, the instruction is restarted, and therefore, one or more of the
memory locations might be accessed multiple times. This can result in repeated accesses to a location
where the program only defines a single access. For this reason, Arm strongly recommends that no
accesses to Device memory are performed from a single instruction that spans the boundary of a
translation granule or which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observers is prohibited for all memory types.

A write to a memory location with any Device memory type completes in finite time.

If a value that would be returned from a read of a memory location with the Device memory type changes
without an explicit memory write effect by an observer, this change must also be globally observed for all
observers in the system in finite time. Such a change might occur in a peripheral location that holds status
information.

Data accesses to memory locations are coherent for all observers in the system, and correspondingly are
treated as being Outer Shareable.

A memory location with any Device memory attribute cannot be allocated into a cache.

Writes to a memory location with any Device memory attribute must reach the endpoint for that address in
the memory system in finite time. Two writes of Device memory type to the same location might be merged
before they reach the endpoint, unless both writes have the non-Gathering attribute or there is an
ordered-before relationship between the two writes.

B2-170

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

. For accesses to any Device memory type, a DMB instruction introduces a Barrier-ordered-before relation on all
accesses to a single peripheral or block of memory that is of implementation defined size. For more
information, see Ordering relations on page B2-137.

. If a memory location is not capable of supporting unaligned memory accesses, then an unaligned access to
that memory location generates an Alignment fault at the first stage of translation that defined the location as
being Device.

. If a memory location is capable of supporting unaligned memory accesses, and such a memory location is
marked as Device, then it is IMPLEMENTATION DEFINED whether an unaligned access to that memory location
generates an Alignment fault at the first stage of translation that defined the location as being Device.

. Hardware does not prevent speculative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as execute-never for all Exception levels.

Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must also be marked as execute-never for
all Exception levels. Failure to mark a memory location with any Device memory attribute as execute-never
for all Exception levels is a programming error.

Note

In the EL1&0 translation regime in systems where HCR_EL2.TGE==1 and HCR_EL2.DC==0, any Alignment
fault that results from the fact that all locations are treated as Device is a fault at the first stage of translation. This
causes ESR_EL2.ISS[24] to be 0.

See also Memory access restrictions on page B2-174.

The memory types for translation table walks cannot be defined as any Device memory type within the TCR_ELx.
For the EL1&0 translation regime, the memory accesses made during a stage 1 translation table walk are subject to
a stage 2 translation, and as a result of this second stage of translation, the accesses from the first stage translation
table walk might be made to memory locations with any Device memory type. These accesses might be made
speculatively. When the value of the HCR_EL2.PTW bit is 1, a stage 2 Permission fault is generated if a first stage
translation table walk is made to any Device memory type.

Note

In general, making a translation table walk to any Device memory type is the result of a programming error.

For an instruction fetch from a memory location with the Device attribute that is not marked as execute-never for
the current Exception level, an implementation can either:

. Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.
. Take a Permission fault.

Gathering

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

. Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

. Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
a single memory transaction on an interconnect.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-171
Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

Note

This also applies to writebacks from the cache, whether caused by a Natural eviction or as a result of a cache
maintenance instruction.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

. The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.

. All accesses occur at their single-copy atomic sizes, except that there is no requirement for the memory
system beyond the PE to be able to identify the single-copy atomic sizes accessed by multi-register load/store
instructions that generate more than one single-copy atomic access. See Multi-register loads and stores that
access Device memory on page B2-174.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not
permitted.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

. A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— The accesses are not separated by a DMB or DSB barrier that affects both of the accesses.

— The accesses are not separated by other ordering constructions that require that the accesses are in
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

. The Arm architecture only defines programmer visible behavior. Therefore, gathering can be performed if a
programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the non-Gathering attribute.

An implementation is not permitted to perform an access with the non-Gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

Reordering
In the Device memory attribute:

R Indicates that the location has the Reordering attribute. Accesses to the location can be reordered
within the same rules that apply to accesses to Normal Non-cacheable memory. All memory types
with the Reordering attribute have the same ordering rules as accesses to Normal Non-cacheable
memory, see Ordering relations on page B2-137.

nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

——— Note

Some interconnect fabrics, such as PCle, perform very limited reordering, which is not important
for the software usage. It is outside the scope of the Arm architecture to prohibit the use of a
non-Reordering memory type with these interconnects.

B2-172 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple
sequential execution of the program. That is, the accesses appear in program order. This ordering applies to all
accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of
Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.

Note

. The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee
provided by the DMB instruction.

. The Arm architecture only defines programmer visible behavior. Therefore, reordering can be performed if
a programmer cannot tell whether reordering has occurred.

. The non-Reordering property is only required by the architecture to apply the order of arrival of accesses to
a single memory-mapped peripheral of an IMPLEMENTATION DEFINED size, and is not required to have an
impact on the order of observation of memory accesses to SDRAM. For this reason, there is no effect of the
non-Reordering attribute on the ordering relations between accesses to different locations described in
Ordering relations on page B2-137 as part of the formal definition of the memory model.

. If the same memory location is mapped with different aliases, and different attribute values, these are a type
of mismatched attribute. The different attributes could be:
— A different Reordering attribute value.
— Addifferent Device memory attribute value.
— When FEAT XS is implemented, a different XS attribute value.

For information about the effects of accessing memory with mismatched attributes, see Mismatched memory
attributes on page B2-176.

An implementation:

. Is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements
specified by the non-Reordering attribute.

. Is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the
relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal
memory, between:

. Accesses to one physical address with the non-Reordering attribute and accesses to a different physical
address with the Reordering attribute.

. Access to one physical address with the non-Reordering attribute and access to a different physical address
to Normal memory.

. Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED size.

The non-Reordering attribute has no effect on the ordering of cache maintenance instructions, even if the memory
location specified in the instruction has the non-Reordering attribute.

Early Write Acknowledgement

In the Device memory attribute:
E Indicates that the location has the Early Write Acknowledgement attribute.
nE Indicates that the location has the No Early Write Acknowledgement attribute.

If the No Early Write Acknowledgement attribute is assigned for a Device memory location:

. For memory system endpoints where the system architecture in which the PE is operating requires that
acknowledgement of a write comes from the endpoint, it is guaranteed that:

— Only the endpoint of the write access returns a write acknowledgement of the access.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-173
Non-Confidential

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

B2.7.3

— No earlier point in the memory system returns a write acknowledgement.

. For memory system endpoints where the system architecture in which the PE is operating does not require
that acknowledgement of a write comes from the endpoint, the acknowledgement of a write is not required
to come from the endpoint.

Note

A write with the No Early Write Acknowledgement attribute assigned for a Device memory location is not expected
to generate an abort in any situation where the equivalent write to the same location without the No Early Write
Acknowledgement attribute assigned does not generate an abort.

This means that a DSB barrier instruction, executed by the PE that performed the write to the No Early Write
Acknowledgement Location, completes only after the write has reached its endpoint in the memory system.

Peripherals are an example of system endpoints that require that the acknowledgement of a write comes from the
endpoint.

Note

. The Early Write Acknowledgement attribute only affects where the endpoint acknowledgement is returned
from, and does not affect the ordering of arrival at the endpoint between accesses, which is determined by
either the Device Reordering attribute, or the use of barriers to create order.

. The areas of the physical memory map for which write acknowledgement from the endpoint is required is
outside the scope of the Arm Architecture definition and must be defined as part of the system architecture
in which the PE is operating. In particular, regions of memory handled as PCle configuration writes are
expected to support write acknowledgement from the endpoint.

. Arm recognizes that not all areas of a physical memory map will be capable of supporting write
acknowledgement from the endpoint. In particular, Arm expects that regions of memory handled as posted
writes under PCle will not support write acknowledgement from the endpoint.

. For maximum software compatibility, Arm strongly recommends that all peripherals for which standard
software drivers expect that the use of a DSB instruction will determine that a write has reached its endpoint
are placed in areas of the physical memory map that support write acknowledgement from the endpoint.

Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register and generate more than one single-copy
atomic access for that load or store, there is no requirement for the memory system beyond the PE to be able to
identify the single-copy atomic sizes accessed by these load or store instructions.

For all instructions that load or store more than one general-purpose register, the order in which the registers are
accessed is not defined by the architecture. This applies even to accesses to any type of Device memory.

For all instructions that load or store one or more SIMD and floating-point or SVE registers, and generate more than
one single-copy atomic access for that load or store, there is no requirement for the memory system beyond the PE
to be able to identify the single-copy atomic sizes accessed by these load or store instructions, even for access to
any type of Device memory.

Memory access restrictions

The following restrictions apply to memory accesses:

. For two explicit memory reads to any two adjacent bytes in memory, p and p+1, generated by the same
instruction, and for two explicit writes to any two adjacent bytes in memory, p and p+1, that are generated
by the same instruction:

— The bytes p and p+1 must have the same memory type and Shareability attributes, otherwise the
results are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned load or store that
spans the boundary between Normal memory and Device memory is CONSTRAINED UNPREDICTABLE.

B2-174

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.7 Memory types and attributes

— Except for possible differences in the cache allocation hints, Arm deprecates having different
cacheability attributes for bytes p and p+1.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or Shareability attributes on page K1-8413.

. If the accesses of an instruction that causes multiple accesses to any type of Device memory cross an address
boundary that corresponds to the smallest implemented translation granule, then behavior is CONSTRAINED
UNPREDICTABLE, and Crossing a peripheral boundary with a Device access on page K1-8414 describes the
permitted behaviors. For this reason, it is important that an access to a volatile memory device is not made
using a single instruction that crosses an address boundary of the size of the smallest implemented translation
granule.

Note

— The boundary referred to is between two Device memory regions that are both of the size of the
smallest implemented translation granule and aligned to the size of the smallest implemented
translation granule.

— This restriction means it is important that an access to a volatile memory device is not made using a
single instruction that crosses an address boundary of the size of the smallest implemented translation
granule.

— Arm expects this restriction to constrain the placing of volatile memory devices in the system memory
map, rather than expecting a compiler to be aware of the alignment of memory accesses.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-175
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.8 Mismatched memory attributes

B2.8 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D5 The AArch64

Virtual Memory System Architecture.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a

common definition of all of the following attributes of that location:

. Memory type: Device-nGnRnE, Device-nGnRE, Device-nGRE, Device-GRE or Normal.

. Shareability.

. Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

. When FEAT XS is implemented, XS attribute.

Collectively these are referred to as memory attributes.

IfFEAT MTE?2 is implemented, accesses to a location which use a common definition of the memory attributes but

the Tagged attribute of that location differs do not cause a mismatched access to occur.

Note

In this document, the terms location and memory location refer to any byte within the current coherency granule

and are used interchangeably.

When a memory Location is accessed with mismatched attributes, the only software visible effects are one or more

of the following:

. Uniprocessor semantics for reads and writes to that memory Location might be lost. This means:

— Aread of the memory Location by one agent might not return the value most recently written to that
memory Location by the same agent.

— Multiple writes to the memory Location by one agent with different memory attributes might not be
ordered in program order.

. There might be a loss of coherency when multiple agents attempt to access a memory Location.

. There might be a loss of properties derived from the memory type, as described in later bullets in this section.

. If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
Location do not use consistent memory attributes, the Exclusives monitor state becomes UNKNOWN.

. Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of

Device memory that are additional to the properties of Normal memory:

. Prohibition of Speculative read accesses.

. Prohibition on Gathering.

. Prohibition on reordering.

For the following situations, when a physical memory Location is accessed with mismatched attributes, a more

restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. Any agent that reads that memory Location using the same common definition of the Memory type,
Shareability and Cacheability attributes is guaranteed to access it coherently, to the extent required by that
common definition of the memory attributes, only if all the following conditions are met:

. All writes are performed to an alias of the memory Location that uses the same definition of the
Memory type, Shareability and Cacheability attributes.
. Either:
— Inthe EL1&0 translation regime, HCR_EL2.MIOCNCE has a value of 0.
— Al aliases with write permission have the Inner Cacheability attribute the same as the Outer
Cacheability attribute.
B2-176 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.8 Mismatched memory attributes

. Either:

— All writes are performed to an alias of the memory Location that has Inner Cacheability and
Outer Cacheability attributes both as Non-cacheable.

— Allaliases to amemory Location use a definition of the Shareability attributes that encompasses
all the agents with permission to access the Location.

2. The possible software-visible effects caused by mismatched attributes for a memory Location are defined
more precisely if all of the mismatched attributes define the memory Location as one of:
. Any Device memory type.
. Inner Non-cacheable, Outer Non-cacheable Normal memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

. Possible loss of properties derived from the memory type when multiple agents attempt to access the
memory Location.

. Possible reordering of memory transactions to the same memory Location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory Location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1. If the mismatched attributes for a memory location all assign the same shareability attribute to a Location that
has a cacheable attribute, any loss of uniprocessor semantics, ordering, or coherency within a shareability
domain can be avoided by use of software cache management. To do so, software must use the techniques
that are required for the software management of the ordering or coherency of cacheable Locations between
agents in different shareability domains. This means:

. Before writing to a cacheable Location not using the Write-Back attribute, software must invalidate,
or clean, a Location from the caches if any agent might have written to the Location with the
Write-Back attribute. This avoids the possibility of overwriting the Location with stale data.

. After writing to a cacheable Location with the Write-Back attribute, software must clean the Location
from the caches, to make the write visible to external memory.

. Before reading the Location with a cacheable attribute, software must invalidate, or clean and
invalidate, the Location from the caches, to ensure that any value held in the caches reflects the last
value made visible in external memory.

. Executing a DMB barrier instruction, with scope that applies to the common shareability of the accesses,
between any accesses to the same cacheable Location that use different attributes.

In all cases:

. Location refers to any byte within the current coherency granule.

. A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.

. In the sequences outlined in this section, all cache maintenance instructions and memory transactions

must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address, see Ordering and completion of data and instruction cache instructions on
page D4-2656.

Note

With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneously to bytes that are in the same Location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-177
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.8 Mismatched memory attributes

2. If the mismatched attributes for a Location mean that multiple cacheable accesses to the Location might be
made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are
guaranteed only if:

. Software running on a PE cleans and invalidates a Location from cache before and after each read or
write to that Location by that PE.

. A DMB barrier with scope that covers the full shareability of the accesses is placed between any accesses
to the same memory Location that use different attributes.

Note
The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a Location,
and the accesses from the different agents have different memory attributes associated with the Location, the
Exclusives monitor state becomes UNKNOWN.

Arm strongly recommends that software does not use mismatched attributes for aliases of the same Location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

Note

As described in Non-cacheable accesses and instruction caches on page D4-2643, a non-cacheable access is
permitted to be cached in an instruction cache, despite the fact that a non-cacheable access is not permitted to be
cached in a unified cache. Despite this, when cacheable and non-cacheable aliases exist for memory which is
executable, these must be treated as mismatched aliases to avoid coherency issues from the data or unified caches
that might hold entries that will be brought into the instruction caches.

B2-178

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

B2.9 Synchronization and semaphores

Armv8 provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives applies to accesses to both Normal
memory and to any type of Device memory.

Note

Use of the Armv8 synchronization primitives scales for multiprocessing system designs.

Table B2-3 on page B2-179 shows the synchronization primitives and the associated CLREX instruction.

Table B2-3 Synchronization primitives and associated instruction, A64 instruction set

Transaction size Additional semantics Load-Exclusive2 Store-Exclusive2 Othera

Byte - LDXRB STXRB -
Load-Acquire/Store-Release LDAXRB STLXRB -

Halfword - LDXRH STXRH -
Load-Acquire/Store-Release ~ LDAXRH STLXRH -

Register® - LDXR STXR -
Load-Acquire/Store-Release LDAXR STLXR -

Pairb - LDXP STXP -
Load-Acquire/Store-Release LDAXP STLXP -

None Clear-Exclusive - - CLREX

a. Instruction in the A64 instruction set.

b. Aregister instruction operates on a doubleword if accessing an X register, or on a word if accessing a W register
A pair instruction operates on two doublewords if access X registers, or on two words if accessing W registers.

Except for the row showing the CLREX instruction, the two instructions in a single row are a
Load-Exclusive/Store-Exclusive instruction pair. The model for the use of a Load-Exclusive/Store-Exclusive
instruction pair accessing a non-aborting memory address x is:

. The Load-Exclusive instruction reads a value from memory address x.

. The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page B2-185. A
Store-Exclusive instruction to any address in the marked block clears the marking.

Note

In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive
instruction.

The following sections give more information:

. Exclusive access instructions and Non-shareable memory locations on page B2-180.
. Exclusive access instructions and Shareable memory locations on page B2-181.

. Marking and the size of the marked memory block on page B2-185.

. Context switch support on page B2-186.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-179
Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

. Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-186.
. Use of WFE and SEV instructions by spin-locks on page B2-189.

B2.9.1 Exclusive access instructions and Non-shareable memory locations

For memory locations for which the shareability attribute is Non-shareable, the exclusive access instructions rely

on a local Exclusives monitor, or local monitor, that marks any address from which the PE executes a

Load-Exclusive instruction. Any non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify

any address is guaranteed to clear the marking.

A Load-Exclusive instruction performs a load from memory, and:

. The executing PE marks the physical memory address for exclusive access.

. The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

. If the address of the Store-Exclusive instruction is the same as the address that has been
marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.

. A status value is returned to a register:

— If'the store took place, the status value is 0.
— Otherwise, the status value is 1.

. The local monitor of the executing PE transitions to the Open Access state.

When an Exclusives monitor is in the Exclusive Access state, the monitor is set.

If the local monitor is in the Open Access state

. No store takes place.

. A status value of 1 is returned to a register.

. The local monitor remains in the Open Access state.

When an Exclusives monitor is in the Open Access state, the monitor is clear.

The Store-Exclusive instruction defines the register to which the status value is returned.

When a PE writes using any instruction other than a Store-Exclusive instruction:

. If the write is to a PA that is not marked as Exclusive Access by its local monitor and that local monitor is in
the Exclusive Access state, it is IMPLEMENTATION DEFINED whether the write affects the state of the local
monitor.

. If the write is to a PA that is marked as Exclusive Access by its local monitor, it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED whether a store to a marked PA causes a mark in the local monitor to be cleared if

that store is by an observer other than the one that caused the PA to be marked.

B2-180 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

Figure B2-4 on page B2-181 shows the state machine for the local monitor and the effect of each of the operations
shown in the figure.

LoadExc1(x) LoadExc1(x)

| L[]
Open Exclusive

|—> Access Access
T s

StoreExc1(x) Store(Marked_address)* Store(Marked_address)*
Store(x) Store(!Marked_address)* Store(!Marked_address)*
CLREX StoreExcl(Marked_address)
StoreExcl1(!Marked_address)
CLREX

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExcT1 represents any Load-Exclusive instruction
StoreExc1 represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.
Figure B2-4 Local monitor state machine diagram

For more information about marking, see Marking and the size of the marked memory block on page B2-185.

Note

For the local monitor state machine, as shown in Figure B2-4 on page B2-181:

. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any PA, but instead treats any access as matching the address of the
previous Load-Exclusive instruction.

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.
. The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,

to have any effect on the local monitor.

. It is IMPLEMENTATION DEFINED whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExc] is from another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure B2-4 on page B2-181.

An implementation must ensure that:

. The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Figure B2-4 on page B2-181.

. Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure B2-4 on page B2-181 must not indefinitely delay forward progress of execution.
B2.9.2 Exclusive access instructions and Shareable memory locations

In the context of this section, a shareable memory location is a memory location that has, or is treated as if it has, a
Shareability attribute of Inner Shareable or Outer Shareable.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-181
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

For shareable memory locations, exclusive access instructions rely on:

. A local monitor for each PE in the system, that marks any address from which the PE executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory locations on page B2-180, except that for shareable memory any Store-Exclusive is then subject to
checking by the global monitor if it is described in that section as doing at least one of the following:

— Updating memory.
— Returning a status value of 0.

The local monitor can ignore accesses from other PEs in the system.

. A global monitor that marks a PA as exclusive access for a particular PE. This marking is used later to
determine whether a Store-Exclusive to that address that has not been failed by the local monitor can occur.
Any successful write to the marked block by any other observer in the shareability domain of the memory
location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold at least one marked block.
— Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for a single marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is UNPREDICTABLE or
CONSTRAINED UNPREDICTABLE, see Load-Exclusive and Store-Exclusive instruction usage restrictions on
page B2-186.

Note

The global monitor can either reside within the PE, or exist as a secondary monitor at the memory interfaces. The
IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined
into a single unit, provided that the unit performs the global monitor and local monitor functions defined in this
manual.

For shareable memory locations, in some implementations and for some memory types, the properties of the global
monitor require functionality outside the PE. Some system implementations might not implement this functionality
for all locations of memory. In particular, this can apply to:

. Any type of memory in the system implementation that does not support hardware cache coherency.

. Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:

. Whether the global monitor is implemented.
. If the global monitor is implemented, which address ranges or memory types it monitors.
Note

If FEAT MTE2 is implemented, it is IMPLEMENTATION DEFINED whether a global monitor monitors access to the
Tag PA space. For more information, see Chapter D6 Memory Tagging Extension.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a system
might define at least one location of memory, of at least the size of the translation granule, in the system memory
map to support the global monitor for all Arm PEs within a common Inner Shareable domain. However, this is not
an architectural requirement. Therefore, architecturally-compliant software that requires mutual exclusion must not
rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software algorithm such as
Lamport’s Bakery algorithm to achieve mutual exclusion.

B2-182 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for
which it is architecturally guaranteed that a global Exclusives monitor is implemented are:

. Inner Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

. Outer Shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The architecture only requires that Conventional memory mapped in this way supports this functionality.

If the global monitor is not implemented for an address range or memory type, then performing a Load-Exclusive
or a Store-Exclusive instruction to such a location has one or more of the following effects:

. The instruction generates an External abort.

. The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Data Abort
Fault status code of ESR_ELx.DFSC = 110101.
If the IMPLEMENTATION DEFINED MMU fault is generated for the EL1&0 translation regime then:

— If'the fault is generated because of the memory type defined in the first stage of translation, or if the
second stage of translation is disabled, then this is a first stage fault and the exception is taken to EL1.

— Otherwise, the fault is a second stage fault and the exception is taken to EL2.

The priority of this fault is IMPLEMENTATION DEFINED.
. The instruction is treated as a NOP.

. The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

. The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN. In this case, if the store exclusive instruction is a store exclusive pair of
64-bit quantities, then the two quantities being stored might not be stored atomically.

. The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by Arm PEs is
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

. Some address ranges.
. Some memory types.

Operation of the global Exclusives monitor

A Load-Exclusive instruction from shareable memory performs a load from memory, and causes the PA of the
access to be marked as exclusive access for the requesting PE. This access can also cause the exclusive access mark
to be removed from any other PA that has been marked by the requesting PE.

Note

The global monitor only supports a single outstanding exclusive access to shareable memory per PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.
A Store-Exclusive instruction performs a conditional store to memory:

. The store is guaranteed to succeed only if the PA accessed is marked as exclusive access for the requesting
PE and both the local monitor and the global monitor state machines for the requesting PE are in the
Exclusive Access state. In this case:

— Astatus value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-183
Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

— Ifthe address accessed is marked for exclusive access in the global monitor state machine for any other
PE, then that state machine transitions to Open Access state.

. If no address is marked as exclusive access for the requesting PE, the store does not succeed:
— Astatus value of 1 is returned to a register to indicate that the store failed.
— The global monitor is not affected and remains in Open Access state for the requesting PE.

. If a different PA is marked as exclusive access for the requesting PE, it is IMPLEMENTATION DEFINED whether
the store succeeds or not:

— If'the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The
state machine for accesses to shareable memory by PE(n) can respond to all the shareable memory accesses visible
to it. This means that it responds to:

. Accesses generated by PE(n).

. Accesses generated by the other observers in the shareability domain of the memory location. These accesses
are identified as (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

A global monitor:
. In the Exclusive Access state is set.
. In the Open Access state is clear.

Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Mechanisms

for entering a low-power state on page D1-2536.

Figure B2-5 on page B2-185 shows the state machine for PE(n) in a global monitor.

B2-184

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

LoadExc1(x,n) LoadExc1(x,n)

| v | J
Open Exclusive

|—> Access Access
1 all

CLREX(n) StoreExcl(Marked_address, 'n)t StoreExcl(Marked_address, 'n)t
CLREX(!n) Store(Marked_address, !n) Store(!Marked_address,n)
LoadExc1(x, !n) StoreExc1(Marked_address,n)* StoreExc1(Marked_address,n)*
StoreExc1(x,n) StoreExcl(!Marked_address,n)* StoreExcl(!Marked_address,n)*

StoreExcl1(x, !'n) Store(Marked_address,n)* Store(Marked_address,n)*
Store(x,n) CLREX(n)* CLREX(n)*
Store(x, !'n) StoreExc1(!Marked_address, !'n)
Store(!Marked_address, !n)
CLREX(!'n)

$StoreExcl1(Marked_address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcT1 represents any Load-Exclusive instruction
StoreExc]1 represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.

Figure B2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system
For more information about marking, see Marking and the size of the marked memory block on page B2-185.

Note

For the global monitor state machine, as shown in Figure B2-5 on page B2-185:

. The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

. Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors are in the exclusive state. For this reason, Figure B2-5 on
page B2-185 only shows how the operations by (!n) cause state transitions of the state machine for PE(n).

. A Load-Exclusive instruction can only update the marked shareable memory address for the PE issuing the
Load-Exclusive instruction.

. When the global monitor is in the Exclusive Access state, it is IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.
. It is IMPLEMENTATION DEFINED:

— Whether a modification to a Non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state.

— Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor
to transition from Open Access to Exclusive Access state.

B2.9.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a Load-Exclusive instruction is executed, a marked block of size 24 bytes is created by ignoring the least
significant bits of the memory address. A marked address is any address within this marked block. The size of the
marked memory block is called the Exclusives reservation granule. The Exclusives reservation granule is
IMPLEMENTATION DEFINED in the range 4-512 words.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-185
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

Note
This definition means that the Exclusives reservation granule is:
. 4 words in an implementation where a is 4.
. 512 words in an implementation where a is 11.

For example, in an implementation where a is 4, a successful LDXRB of address 0x341B4 defines a marked block using
bits[47:4] of the address. This means that the four words of memory from 0x341B0 to 0x341BF are marked for
exclusive access.

In some implementations the CTR identifies the Exclusives reservation granule, see CTR _ELO. Otherwise, software
must assume that the maximum Exclusives reservation granule, 512 words, is implemented.
B2.9.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.

B2.9.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDXP/STXP pair or a LDXR/STXR pair. To support different implementations of these functions, software must follow the
notes and restrictions given here.

The following notes describe the use of a LoadExc1/StoreExc] instruction pair, to indicate the use of any of the
Load-Exclusive/Store-Exclusive instruction pairs shown in Table B2-3 on page B2-179. In this context, a
LoadExc1/StoreExc] pair comprises two instructions in the same thread of execution:

. The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusivelLocal()
function. If the target VA of a StoreExc] is different from the VA of the preceding LoadExc] instruction in the
same thread of execution, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExc] either passes or fails, the status value returned by the StoreExcl is UNKNOWN, and the
states of the local and global monitors for that PE are UNKNOWN.

Note
This means the StoreExc] might pass for some instances of a LoadExc1/StoreExc] pair with mismatched
addresses, and fail for other instances of a LoadExc1/StoreExc] pair with mismatched addresses.

— The data at the address accessed by the LoadExc1, and at the address accessed by the StoreExcl, is
UNKNOWN.

This means software can rely on a LoadExc1/StoreExcl pair to eventually succeed only if the LoadExcl and the
StoreExc] are executed with the same VA.

. An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a StoreExc] instruction is the same as the transaction size of the preceding
LoadExc] instruction executed in that thread. If the transaction size of a StoreExc1 instruction is different from
the preceding LoadExc] instruction in the same thread of execution, behavior can be CONSTRAINED
UNPREDICTABLE with the following behavior:

— The StoreExc]1 either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

B2-186 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

Note
This means the StoreExc] might pass for some instances of a LoadExc1/StoreExc1 pair with mismatched
transaction sizes, and fail for other instances of a LoadExc1/StoreExc] pair with mismatched transaction
sizes.

— The block of data of the size of the larger of the transaction sizes used by the LoadExc1/StoreExcl pair
at the address accessed by the LoadExc1/StoreExc] pair, is UNKNOWN.

This means software can rely on a LoadExc1/StoreExc] pair to eventually succeed only if the LoadExcl and the
StoreExcl have the same transaction size.

An implementation of the LoadExc1 and StoreExc1 instructions can require that, in any thread of execution,
the StoreExc] instruction accesses the same number of registers as the preceding LoadExc] instruction
executed in that thread. If the StoreExc] instruction accesses a different number of registers than the preceding
LoadExc1 instruction in the same thread of execution, behavior is CONSTRAINED UNPREDICTABLE. As a result,
software can rely on an LoadExc1/StoreExc1 pair to eventually succeed only if they access the same number
of registers. For more information, see CONSTRAINED UNPREDICTABLE behavior when
Load-Exclusive/Store-Exclusive access a different number of registers on page B2-189.

An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the Tag Checked property of a memory access due to a StoreExc1 instruction is the same as the
Tag Checked property of a memory access by the preceding LoadExc] instruction executed in that thread. If
the Tag Checked property of memory accesses due to a LoadExc1/StoreExcl pair in the same thread of
execution differ, behavior can be CONSTRAINED UNPREDICTABLE with the following behavior:

— The StoreExc] either passes or fails, and the status value returned by the StoreExc1 is UNKNOWN.
Note

This means the StoreExc1 might pass for some instances of such a LoadExc1/StoreExc] pair, and fail for
other instances of such a LoadExc1/StoreExc] pair.

— The data at the address accessed by the LoadExcl/StoreExcl pair is UNKNOWN.

This means software can rely on a LoadExc1/StoreExc1 pair to eventually succeed only if the memory is
accessed with the same Tag Checked property.

LoadExc1/StoreExc] loops are guaranteed to make forward progress only if, for any LoadExc1/StoreExcl loop
within a single thread of execution, the software meets all of the following conditions:

1 Between the Load-Exclusive and the Store-Exclusive, there are no explicit memory effects,
preloads, direct or indirect System register writes, address translation instructions, cache or TLB
maintenance instructions, exception generating instructions, exception returns, or indirect
branches.

2 Between the Store-Exclusive returning a failing result and the retry of the corresponding
Load-Exclusive:

. There are no stores or PRFM instructions to any address within the Exclusives reservation
granule accessed by the Store-Exclusive.

. There are no loads or preloads to any address within the Exclusives reservation granule
accessed by the Store-Exclusive that use a different VA alias to that address.

. There are no direct or indirect System register writes, address translation instructions,
cache or TLB maintenance instructions, exception generating instructions, exception
returns, or indirect branches.

. All loads and stores are to a block of contiguous virtual memory of not more than 512
bytes in size.

The Exclusives monitor can be cleared at any time without an application-related cause, provided that such
clearing is not systematically repeated so as to prevent the forward progress in finite time of at least one of
the threads that is accessing the Exclusives monitor. However, it is permissible for the LoadExc1/StoreExc]

loop not to make forward progress if a different thread is repeatedly doing any of the following in a tight loop:

— Performing stores to a PA covered by the Exclusives monitor.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-187
Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

Prefetching with intent to write to a PA covered by the Exclusives monitor.

— Executing data cache clean, data cache invalidate, or data cache clean and invalidate instructions to a
PA covered by the Exclusives monitor.

— Executing instruction cache invalidate all instructions.
Executing instruction cache invalidate by VA instructions to a PA covered by the Exclusives monitor.

— Executing TLB maintenance to a PA covered by the Exclusives monitor.

. Implementations can benefit from keeping the LoadExc1 and StoreExc1 operations close together in a single
thread of execution. This minimizes the likelihood of the Exclusives monitor state being cleared between the
LoadExc] instruction and the StoreExc] instruction. Therefore, for best performance, Arm strongly
recommends a limit of 128 bytes between LoadExc1 and StoreExc] instructions in a single thread of execution.

. The architecture sets an upper limit of 2048 bytes on the Exclusives reservation granule that can be marked
as exclusive. For performance reasons, Arm recommends that objects that are accessed by exclusive accesses
are separated by the size of the Exclusives reservation granule. This is a performance guideline rather than a
functional requirement.

. After taking a Data Abort exception, the state of the Exclusives monitors is UNKNOWN.

. For the memory location accessed by a LoadExc1/StoreExc] pair, if the memory attributes for a StoreExcl
instruction are different from the memory attributes for the preceding LoadExc1 instruction in the same thread
of execution, behavior is CONSTRAINED UNPREDICTABLE. Where this occurs because the translation of the
accessed address changes between the LoadExc1 instruction and the StoreExcl instruction, the CONSTRAINED
UNPREDICTABLE behavior is as follows:

The StoreExcl either passes or fails, and the status value returned by the StoreExcl is UNKNOWN.

Note
This means the StoreExc1 might pass for some instances of a LoadExc1/StoreExcl pair with changed
memory attributes, and fail for other instances of a LoadExc1/StoreExc] pair with changed memory
attributes.

— The data at the address accessed by the StoreExc1 is UNKNOWN.

Note

Another bullet point in this list covers the case where the memory attributes of a LoadExc1/StoreExc1 pair
differ as a result of using different VAs with different attributes that point to the same PA.

. The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
Exclusives monitor that is in the Exclusive Access state is CONSTRAINED UNPREDICTABLE, and the instruction
might clear the monitor, or it might leave it in the Exclusive Access state. For address-based maintenance
instructions, this also applies to the monitors of other PEs in the same shareability domain as the PE executing
the cache maintenance instruction, as determined by the shareability domain of the address being maintained.

Note

Arm strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

. If the mapping of the VA to PA is changed between the LoadExc] instruction and the STREX instruction, and
the change is performed using a break-before-make sequence as described in Using break-before-make when
updating translation table entries on page D5-2818, if the StoreExc] is performed after another write to the
same PA as the StoreExcl, and that other write was performed after the old translation was properly
invalidated and that invalidation was properly synchronized, then the StoreExc1 will not pass its monitor
check.

Note
The TLB invalidation will clear either the local or global monitor.
The PA will be checked between the LoadExc] and StoreExcl.

B2-188 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

. The Exclusive Access state for an address accessed by a PE can be lost as a result of a PFRM PST+ instruction
to the same PA executed by another PE. This means that a very high rate of repeated PFRM PSTx accesses to a
memory location might impede the forward progress of another PE.

. If FEAT MTE2 is implemented, and if a Tag Unchecked store exclusive instruction would not perform the
store and return a status value of 1, it is CONSTRAINED UNPREDICTABLE whether:
— The instruction is a Tag Checked access,
— The instruction is an Tag Unchecked access.

For more information, see Chapter D6 Memory Tagging Extension.

Note

In the event of repeatedly-contending LoadExc1/StoreExc] instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

CONSTRAINED UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive
access a different number of registers

As stated in this section, an implementation can require that the instructions of a Load-Exclusive/Store-Exclusive
pair access the same number of registers. In such an implementation, this means behavior is CONSTRAINED
UNPREDICTABLE if, in a single thread of execution, either:

. An LDXP instruction of two 32-bit quantities is followed by an STXR instruction of one 64-bit quantity at the
same address.

. An LDXR instruction of one 64-bit quantity is followed by an STXP instruction of two 32-bit quantities at the
same address.

In these cases, the CONSTRAINED UNPREDICTABLE behavior must be one of:
. The STXP or STXR instruction generates an external Data Abort.

. The STXP or STXR instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Data
Abort Fault status code of ESR_ELx.DFSC = 0b110101.

. The STXP or STXR instruction always fails, returning a status of 1.
. The STXP or STXR instruction always passes, returning a status of 0.
. This STXP or STXR instruction has the same pass or fail behavior that it would have had if the instruction had

used the same size and number of registers as the preceding LDXR or LDXP instruction.

B2.9.6 Use of WFE and SEV instructions by spin-locks

Armv8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, and SEVL, that can assist
with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock.
These instructions can be used at the application level, but a complete understanding of what they do depends on a
system level understanding of exceptions. They are described in Wait for Event mechanism and Send event on
page D1-2536. However, in Armv8, when the global monitor for a PE changes from Exclusive Access state to Open
Access state, an event is generated.

Note

This is equivalent to issuing an SEVL instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. B2-189
ID072021 Non-Confidential

The AArch64 Application Level Memory Model
B2.9 Synchronization and semaphores

B2-190 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Part C

The AArch64 Instruction Set

Chapter C1

The A64 Instruction Set

This chapter describes the A64 instruction set. It contains the following sections:

About the A64 instruction set on page C1-194.

Structure of the A64 assembler language on page C1-195.
Address generation on page C1-202.

Instruction aliases on page C1-205.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C1-193

The A64 Instruction Set
C1.1 About the A64 instruction set

C1.1 About the A64 instruction set

The A64 instruction set is the instruction set supported in the AArch64 Execution state.

All A64 instructions have a width of 32 bits. The A64 encoding structure breaks down into the following functional

groups:

. A miscellaneous group of branch instructions, exception generating instructions, and System instructions.

. Data-processing instructions associated with general-purpose registers. These instructions are supported by
two functional groups, depending on whether the operands:

— Are all held in registers.
— Include an operand with a constant immediate value.

. Load and store instructions associated with the general-purpose register file and the SIMD and floating-point
register file.

. SIMD and scalar floating-point data-processing instructions that operate on the SIMD and floating-point
registers.

The encoding hierarchy within a functional group breaks down as follows:

. A functional group consists of a set of related instruction classes. 464 instruction set encoding on
page C4-284 provides an overview of the instruction encodings in the form of a list of instruction classes
within their functional groups.

. An instruction class consists of a set of related instruction forms. Instruction forms are documented in one of
two alphabetic lists:

— The load, store, and data-processing instructions associated with the general-purpose registers,
together with those in the other instruction classes. See Chapter C6 A64 Base Instruction Descriptions.

— Theload, store, and data-processing instructions associated with the SIMD and floating-point support.
See Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

. An instruction form might support a single instruction syntax. Where an instruction supports more than one
syntax, each syntax is an instruction variant. Instruction variants can occur because of differences in:
— The size or format of the operands.

— The register file used for the operands.

— The addressing mode used for load/load/store memory operands.

Instruction variants might also arise as the result of other factors.

Instruction variants are described in the instruction description for the individual instructions.

A64 instructions have a regular bit encoding structure:

. 5-bit register operand fields at fixed positions within the instruction. For general-purpose register operands,
the values 0-30 select one of 31 registers. The value 31 is used as a special case that can:

— Indicate use of the current stack pointer, when identifying a load/store base register or in a limited set
of data-processing instructions. See The stack pointer registers on page D1-2463.

— Indicate the value zero when used as a source register operand.

— Indicate discarding the result when used as a destination register operand.

For SIMD and floating-point register access, the value used selects one of 32 registers.

. Immediate bits that provide constant data-processing values or address offsets are placed in contiguous
bitfields. Some computed values in instruction variants use one or more immediate bitfields together with the
secondary encoding bitfields.

All encodings that are not fully defined are described as unallocated. An attempt to execute an unallocated

instruction is UNDEFINED, unless the behavior is otherwise defined in this Manual.

C1-194 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

C1.2 Structure of the A64 assembler language

The following sections describe the A64 assembler syntax:

General requirements on page C1-195.
Common syntax terms on page C1-195.
Instruction Mnemonics on page C1-197.
Condition code on page C1-197.
Register names on page C1-198.

Cc1.21 General requirements

The letter W denotes a general-purpose register holding a 32-bit word, and X denotes a general-purpose register
holding a 64-bit doubleword.

An A64 assembler recognizes both uppercase and lowercase variants of the instruction mnemonics and register
names, but not mixed case variants. An A64 disassembler can output either uppercase or lowercase mnemonics and
register names. Program and data labels are case-sensitive.

The A64 assembly language does not require the # character to introduce constant immediate operands, but an
assembler must allow immediate values introduced with or without the # character.

In Example C1-1 on page C1-197, the sequence //is used as a comment leader and A64 assemblers are encouraged
to accept this syntax.

C1.2.2 Common syntax terms

The following syntax terms are used frequently throughout the A64 instruction set description.

UPPER

{1

alb

I+

uimmn

simmn

SP

Wn

WSP

WZR

Xn

Text in upper-case letters is fixed. Text in lower-case letters is variable. This means that register
name Xn indicates that the X is required, followed by a variable register number, for example X29.

Any text enclosed by angle braces, <>, is a value that the user supplies. Subsequent text might
supply additional information.

Any item enclosed by curly brackets, { }, is optional. A description of the item and how its presence
or absence affects the instruction is normally supplied by subsequent text. In some cases curly
braces are actual symbols in the syntax, for example when they surround a register list. These cases
are called out in the surrounding text.

Any items enclosed by square brackets, [], constitute a list of alternative characters. A single one
of the characters can be used in that position and the subsequent text describes the meaning of the
alternatives. In some case the square brackets are part of the syntax itself, such as addressing modes
or vector elements. These cases are called out in the surrounding text.

Alternative words are separated by a vertical bar, |, and can be surrounded by parentheses to delimit
them. For example, U(ADD|SUB)W represents UADDW or USUBW.

This indicates an optional + or - sign. If neither is used then + is assumed.

An n-bit unsigned, positive, immediate value.

An n-bit two’s complement, signed immediate value, where » includes the sign bit.
See Register names on page C1-198.

See Register names on page C1-198.

See Register names on page C1-198.

See Register names on page C1-198.

See Register names on page C1-198.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-195
Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

XZR See Register names on page C1-198

C1-196 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

C1.23

Instruction Mnemonics

The A64 Instruction Set

C1.2 Structure of the A64 assembler language

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions all have different opcodes.
However, the programmer must only remember one mnemonic, as the assembler automatically chooses the correct

opcode based on the operands. The disassembler follows the same procedure in reverse.

Example C1-1 ADD instructions with different opcodes

ADD W@, W1, W2
ADD X0, X1, X2

ADD X0, X1, W2, SXTW

ADD X0, X1, #42

// add 32-bit register
// add 64-bit register

// add 64-bit extended register

// add 64-bit immediate

C1.2.4

Condition code

The A64 ISA has some instructions that set Condition flags or test Condition codes or both. For information about
instructions that set the Condition flags or use the condition mnemonics, see Condition flags and related instructions
on page C6-873.

Table C1-1 on page C1-197 shows the available Condition codes.

Table C1-1 Condition codes

cond Mnemonic Meaning (integer) Meaning (floating-point)2 Condition flags
0000 EQ Equal Equal 7Z==

0001 NE Not equal Not equal or unordered Z==

0010 CSorHS Carry set Greater than, equal, or unordered ==

0011 CCorlLO Carry clear Less than C==

0100 MI Minus, negative Less than N==

0101 PL Plus, positive or zero Greater than, equal, or unordered N ==

0110 VS Overflow Unordered V==

0111 VC No overflow Ordered V=

1000 HI Unsigned higher Greater than, or unordered C=1&&Z==
1001 LS Unsigned lower or same Less than or equal (C==1 && Z ==0)
1010 CGE Signed greater than or equal Greater than or equal N=V

1011 LT Signed less than Less than, or unordered NI=V

1100 T Signed greater than Greater than Z=0&&N=V
1101 LE Signed less than or equal Less than, equal, or unordered (Z=0&&N==V)
1116 AL Always Always Any

1111 Nvb Always Always Any

a.

Unordered means at least one NaN operand.

b. The Condition code NV exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is

identical to AL.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C1-197

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

C1.2.5

Register names

This section describes the AArch64 registers. It contains the following subsections:

General-purpose register file and zero register and stack pointer on page C1-198.
SIMD and floating-point register file on page C1-199.

SIMD and floating-point scalar register names on page C1-199.

SIMD vector register names on page C1-199.

SIMD vector element names on page C1-200.

General-purpose register file and zero register and stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the
instruction register fields with values 0-30. In a general-purpose register field the value 31 represents either the
current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size,
32 bits or 64 bits, and the data size of the instruction.

When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read
and cleared to zero on a write.

Table C1-2 on page C1-198 shows the qualified names for registers, where # is a register number 0-30.

Table C1-2 Naming of general-purpose registers, the zero register, and the stack pointer

Name Size Encoding Description

Wn 32bits 0-30 General-purpose register 0-30

Xn 64 bits 0-30 General-purpose register 0-30

WZR 32bits 31 Zero register

XZR 64 bits 31 Zero register

WSP 32 bits 31 Current stack pointer

SP 64 bits 31 Current stack pointer

This list gives more information about the instruction arguments shown in Table C1-2 on page C1-198:

The names Xn and Wn both refer to the same general-purpose register, Rn.
There is no register named W31 or X31.

The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as a read or write of the current stack pointer. When instructions
do not interpret this operand encoding as the stack pointer, use of the name SP is an error.

The name WSP represents the current stack pointer in a 32-bit context.

The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as returning zero when read or discarding the result when written.
When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error.

The name WZR represents the zero register in a 32-bit context.

The architecture does not define a specific name for general-purpose register R30 to reflect its role as the link
register on procedure calls. However, an A64 assembler must always use W30 and X30 for this purpose, and
additional software names might be defined as part of the Procedure Call Standard, see Procedure Call
Standard for the Arm 64-bit Architecture.

C1-198

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

SIMD and floating-point register file

The 32 registers in the SIMD and floating-point register file, VO-V31, hold floating-point operands for the scalar
floating-point instructions, and both scalar and vector operands for the SIMD instructions. When they are used in a
specific instruction form, the names must be further qualified to indicate the data shape, that is the data element size
and the number of elements or lanes within the register. A similar requirement is placed on the general-purpose
registers. See General-purpose register file and zero register and stack pointer on page C1-198.

Note

The data type is described by the instruction mnemonics that operate on the data. The data type is not described by
the register name. The data type is the interpretation of bits within each register or vector element, whether these
are integers, floating-point values, polynomials, or cryptographic hashes.

SIMD and floating-point scalar register names

SIMD and floating-point instructions that operate on scalar data only access the lower bits of a SIMD and
floating-point register. The unused high bits are ignored on a read and cleared to 0 on a write.

Table C1-3 on page C1-199 shows the qualified names for accessing scalar SIMD and floating-point registers. The
letter n denotes a register number between 0 and 31.

Table C1-3 SIMD and floating-point scalar register names

Size Name
8 bits Bn
16 bits Hn
32 bits Sn
64 bits Dn
128 bits Qn

SIMD vector register names

If a register holds multiple data elements on which arithmetic is performed in a parallel, SIMD, manner, then a
qualifier describes the vector shape. The vector shape is the element size and the number of elements or lanes. If the
element size in bits multiplied by the number of lanes does not equal 128, then the upper 64 bits of the register are
ignored on a read and cleared to zero on a write.

Table C1-4 on page C1-199 shows the SIMD vector register names. The letter n denotes a register number between
0 and 31.

Table C1-4 SIMD vector register names

Shape Name

8 bits x 8 lanes Vn. 8B

8 bits X 16 lanes Vn.16B

16 bits x 4 lanes Vn.4H

16 bits x 8 lanes Vn.8H

32 bits x 2 lanes Vn.2S

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-199
Non-Confidential

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Table C1-4 SIMD vector register names (continued)

Shape Name

32 bits X 4 lanes Vn.4S

64 bits x 1 lane Vn.1D

64 bits X 2 lanes Vn.2D

SIMD vector element names

Appending a constant, zero-based element index to the register name inside square brackets indicates that a single
element from a SIMD and floating-point register is used as a scalar operand. The number of lanes is not represented,
as it is not encoded in the instruction and can only be inferred from the index value.

Table C1-5 on page C1-200 shows the vector register names and the element index. The letter i denotes the element
index.

Table C1-5 Vector register names with element index

Size Name

8 bits Vn.B[i]

16 bits ~ Vn.H[i]

32 bits Vn.S[i]

64 bits Vn.D[1]

An assembler must accept a fully qualified SIMD register name if the number of lanes is greater than the index
value. See SIMD vector register names on page C1-199. For example, an assembler must accept all of the following
forms as the name for the 32-bit element in bits [63:32] of the SIMD and floating-point register V9:

V9.S[1] //standard disassembly
V9.25[1] //optional number of Tanes
V9.4S[1] //optional number of lanes

Note

The SIMD and floating-point register element name Vn.S[0] is not equivalent to the scalar SIMD and floating-point
register name Sn. Although they represent the same bits in the register, they select different instruction encoding
forms, either the vector element or the scalar form.

SIMD vector register list

Where an instruction operates on multiple SIMD and floating-point registers, for example vector load/store
structure and table lookup operations, the registers are specified as a list enclosed by curly braces. This list consists
of either a sequence of registers separated by commas, or a register range separated by a hyphen. The registers must
be numbered in increasing order, modulo 32, in increments of one. The hyphenated form is preferred for
disassembly if there are more than two registers in the list and the register number are increasing. The following
examples are equivalent representations of a set of four registers V4 to V7, each holding four lanes of 32-bit elements:

{ V4.4S - V7.4S } //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S } //alternative representation

SIMD vector element list

Registers in a list can also have a vector element form. For example, the LD4 instruction can load one element into
each of four registers, and in this case the index is appended to the list as follows:

{ V4.5 - V7.5 }[3] //standard disassembly

C1-200

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 Instruction Set
C1.2 Structure of the A64 assembler language

{ V4.4S, V5.4S, V6.4S, V7.4S }[3] //alternative with optional number of Tlanes

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-201
ID072021 Non-Confidential

The A64 Instruction Set
C1.3 Address generation

C1.3 Address generation

The A64 instruction set supports 64-bit virtual addresses (VAs). The valid VA range is determined by the following
factors:

. The size of the implemented virtual address space.
. Memory Management Unit (MMU) configuration settings.

Limits on the VA size mean that the most significant bits of the virtual address do not hold valid address bits. These
unused bits can hold:

. A tag, see Address tagging in AArch64 state on page D5-2676.

. IfFEAT PAuth is implemented, a Pointer authentication code (PAC), see Pointer authentication in AArch64
state on page D5-2678.

For more information on memory management and address translation, see Chapter D5 The AArch64 Virtual
Memory System Architecture.
C1.31 Register indexed addressing

The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling
of the index by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within
an index register, followed by optional scaling.

C1.3.2 PC-relative addressing
The A64 instruction set has support for position-independent code and data addressing:

. PC-relative literal loads have an offset range of + 1IMB.

. Process state flag and compare based conditional branches have a range of = 1MB. Test bit conditional
branches have a restricted range of + 32KB.

. Unconditional branches, including branch and link, have a range of + 128MB.
PC-relative load/store operations, and address generation with a range of + 4GB can be performed using two
instructions.

C1.3.3 Load/store addressing modes

Load/store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-6 on page C1-202
shows the assembler syntax for the complete set of load/store addressing modes.

Table C1-6 A64 Load/store addressing modes

Offset
Addressing Mode
Immediate Register Extended Register

Base register only (no offset) [base{, #0}] - -

Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XT(X|W) {#imm}]
Pre-indexed [base, #imm]! - -

Post-indexed [base], #imm [base], Xma -

Literal (PC-relative) Tabel - -

a. The post-indexed by register offset mode can be used with the SIMD load/store structure instructions described in
Load/store Vector on page C3-233. Otherwise the post-indexed by register offset mode is not available.

C1-202 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 Instruction Set
C1.3 Address generation

Some types of load/store instruction support only a subset of the load/store addressing modes listed in Table C1-6
on page C1-202. Details of the supported modes are as follows:

. Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.

. Pre-indexed addressing means that the address is the sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.

. Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

. Literal addressing means that the address is the value of the 64-bit program counter for this instruction plus
a 19-bit signed word offset. This means that it is a 4 byte aligned address within +1MB of the address of this
instruction with no offset. Literal addressing can only be used for loads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific
to individual toolchains.

. An immediate offset can be unsigned or signed, and scaled or unscaled, depending on the type of load/store
instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of load/store instruction and the transfer
size.

Table C1-7 on page C1-203 shows the offset and the type of load/store instruction.

Table C1-7 Immediate offsets and the type of load/store instruction

Offset bits Sign Scaling Write-Back Load/store type
0 - - - Exclusive/acquire/release
7 Signed Scaled Optional Register pair
9 Signed Unscaled Optional Single register
12 Unsigned Scaled No Single register
. A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled

by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to log(transfer_size). The
SXTX extend/shift option is functionally equivalent to LSL, but the LSL option is preferred in source code.

. An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to logy(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

. Generating an address lower than the value in the base register requires a negative signed immediate offset
or a register offset holding a negative value.

. When stack alignment checking is enabled by system software and the base register is the SP, the current
stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific load/store instruction
requires this. SP cannot be used as a register offset.

Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to
a general-purpose register or, in most cases, to the current stack pointer.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-203
ID072021 Non-Confidential

The A64 Instruction Set
C1.3 Address generation

Table C1-8 on page C1-204 shows the arithmetic instructions that can compute addressing modes.

Table C1-8 Arithmetic instructions to compute addressing modes

Offset
Addressing Form
Immediate Register Extended Register
Base register (no MOV Xd|SP, base - -
offset)
Base plus offset ADD Xd|SP, base, ADD <Xd|SP>, base, ADD <Xd|SP>, base, Wm,(S|U)XT(W|H|B|X)
#imm Xm{, LSL#imm} {#imm}
or
SUB Xd|SP, base,
#imm

Pre-indexed - - -

Post-indexed - - _

Literal (PC-relative) ADR Xd, Tabel - -

Note

. For the 64-bit base plus register offset form, the UXTX mnemonic is an alias for the LSL shift option, but LSL is
preferred for disassembly. Similarly the SXTX extend/shift option is functionally equivalent to the LSL option,
but the LSL option is preferred in source code.

. To calculate a base plus immediate offset the ADD instructions defined in Arithmetic (immediate) on
page C3-242 accept an unsigned 12-bit immediate offset, with an optional left shift by 12. This means that a
single ADD instruction cannot support the full range of byte offsets available to a single register load/store with
a scaled 12-bit immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To
calculate an address with a byte offset that requires more than 12 bits it is necessary to use two ADD
instructions. The following example shows this:

ADD Xd, base, #(imm & OxFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

. To calculate a base plus extended register offset, the ADD instructions defined in Arithmetic (extended register)
on page C3-248 provide a superset of the addressing mode that also supports sign-extension or
zero-extension of a byte or halfword value with any shift amount between 0 and 4, for example:

ADD Xd, base, Wm, SXTW #3 // Xd = base + (SignExtend(Wm) LSL 3)
ADD Xd, base, Wm, UXTH #4 // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)

. If the same extended register offset is used by more than one load/store instruction, then, depending on the
implementation, it might be more efficient to calculate the extended and scaled intermediate result just once,
and then reuse it as a simple register offset. The extend and scale calculation can be performed using the SBFIZ
and UBFIZ bitfield instructions defined in Bitfield move on page C3-244, for example:

SBFIZ Xd, Xm, #3, #32 //Xd = “Wm, SXTW #3”
UBFIZ Xd, Xm, #4, #16 //Xd = “Wm, UXTH #4”

C1-204 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 Instruction Set
C1.4 Instruction aliases

C1.4 Instruction aliases

Some instructions have an associated architecture alias that is used for disassembly of the encoding when the
associated conditions are met. Architecture alias instructions are included in the alphabetic lists of instruction types
and clearly presented as an alias form in descriptions for the individual instructions.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C1-205
ID072021 Non-Confidential

The A64 Instruction Set
C1.4 Instruction aliases

C1-206 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Chapter C2
About the A64 Instruction Descriptions

This chapter describes the instruction descriptions contained in Chapter C6 A64 Base Instruction Descriptions and
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

It contains the following sections:

. Understanding the A64 instruction descriptions on page C2-208.
. General information about the A64 instruction descriptions on page C2-211.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-207

ID072021 Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Cc21 Understanding the A64 instruction descriptions
Each instruction description in Chapter C6 and Chapter C7 has the following content:
L. Atitle.
2. An introduction to the instruction.
3. The instruction encoding or encodings.
4. Any alias conditions.
S. A list of the assembler symbols for the instruction.
6. Pseudocode describing how the instruction operates.
7. Notes, if applicable.
The following sections describe each of these.

Cc211 The title
The title of an instruction description includes the base mnemonic for the instruction.
If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the
title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used
when an operand is an immediate value in one instruction form, but is a register in another form.
For example, in Chapter C6 there are the following titles for different forms of the ADD instruction:
. ADD (extended register) on page C6-880.
. ADD (immediate) on page C6-883.
. ADD (shifted register) on page C6-885.

C2.1.2 An introduction to the instruction
This briefly describes the function of the instruction. The introduction is not a complete description of the
instruction, and it is not definitive. If there is any conflict between it and the more detailed information that follows
it, the more detailed information takes priority.

C2.1.3 The instruction encoding or encodings
This shows the instruction encoding diagram, or if the instruction has more than one encoding, shows all of the
encoding diagrams. Each diagram has a subheading.
For example, for load and store instructions, the subheadings might be:
. Post-index.
. Pre-index.
. Unsigned offset.
Each diagram numbers the bits from 31 to 0. The diagram for an instruction at address 4 shows, from left to right,
the bytes at addresses 4+3, 4+2, A+1, and 4.
There might be variants of an encoding, if the assembler syntax prototype differs depending on the value in one or
more of the encoding fields. In this case, each variant has a subheading that describes the variant and shows the
distinguishing field value or values in parentheses. For example, in Chapter C6 there are the following subheadings
for variants of the ADC instruction encoding:
. 32-bit variant (sf = 0).
. 64-bit variant (sf = 1).
The assembler syntax prototype for an encoding or variant of an encoding shows how to form a complete assembler
source code instruction that assembles to the encoding. Unless otherwise stated, the prototype is also the preferred
syntax for a disassembler to disassemble the encoding to. Disassemblers are permitted to omit optional symbols that
represent the default value of a field or set of fields, to produce more readable disassembled code, provided that the
output re-assembles to the same encoding.

C2-208 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describes the operation of the instruction. See Pseudocode describing how the instruction operates on page C2-210.

C21.4 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an
alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

Arm recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

C2.1.5 A list of the assembler symbols for the instruction

The Assembler symbols subsection of the instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use, if any.

In assembler syntax prototypes, the following conventions are used:

<> Angle brackets. Any symbol enclosed by these is a name or a value that the user supplies. For each
symbol, there is a description of what the symbol represents. The description usually also specifies
which encoding field or fields encodes the symbol.

{1} Brace brackets. Any symbols enclosed by these are optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

This usually precedes a numeric constant. All uses of # are optional in A64 assembler source code.
Arm recommends that disassemblers output the # where the assembler syntax prototype includes it.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, the characters shown are used as part of a meta-language to define the architectural
assembler syntax for an instruction encoding or alias, but have no architecturally defined significance in the input
to an assembler or in the output from a disassembler.

The following symbol conventions are used:

<Xn> The 64-bit name of a general-purpose register (X0-X30) or the zero register (XZR).

<Wn> The 32-bit name of a general-purpose register (W0-W30) or the zero register (WZR).
<Xn|SP> The 64-bit name of a general-purpose register (X0-X30) or the current stack pointer (SP).
<Wn|WSP> The 32-bit name of a general-purpose register (W0-W30) or the current stack pointer (WSP).

<Bn>, <Hn>, <Sn>, <Dn>, <Qn>
The 8, 16, 32, 64 or 128-bit name of a SIMD and floating-point register in a scalar context as
described in section Register names on page C1-198.

<Vn> The name of a SIMD and floating-point register name in a vector context as described in Register
names on page C1-198.

If the description of a symbol specifies that the symbol is a register, the description might also specify that the range
of permitted registers is extended or restricted. It also specifies any differences from the default rules for such fields.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-209
Non-Confidential

About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Note

Register names on page C1-198 provides the A64 register names.

C2.1.6 Pseudocode describing how the instruction operates
The Operation subsection of the instruction description contains this pseudocode.
It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note

For a description of Arm pseudocode, see Appendix K14 Arm Pseudocode Definition. This appendix also describes
the execution model for an instruction.

C2.1.7 Notes, if applicable

If applicable, other notes about the instruction appear under additional subheadings.

C2-210 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

C2.2 General information about the A64 instruction descriptions

This section provides general information about the A64 instruction descriptions. Some of this information also
applies to System register descriptions, for example the terms defined in Fixed values in AArch64 instruction and
System register descriptions on page C2-211 apply to the AArch64 descriptions throughout this manual. The
following subsections provide this information:

. Execution of instructions in debug state on page C2-211.
. Fixed values in AArch64 instruction and System register descriptions on page C2-211.
. Modified immediate constants in A64 instructions on page C2-212.

C2.21 Execution of instructions in debug state

In general, except for the instructions described in Debug state on page C3-218, the A64 instruction descriptions do
not indicate any differences in the behavior of the instruction if it is executed in Debug state. For this information,
see Executing instructions in Debug state on page H2-7349.

Note

For many instructions, execution is unchanged in Debug state. Executing instructions in Debug state on
page H2-7349 identifies these instructions,

C2.2.2 Fixed values in AArch64 instruction and System register descriptions

This section summarizes the terms used to describe fixed values in AArch64 register and instruction descriptions.
The Glossary gives full descriptions of these terms, and each entry in this section includes a link to the
corresponding Glossary entry.

Note

In register descriptions, the meaning of some bits depends on the PE state. This affects the definitions of RESO and
RES1, as shown in the Glossary.

The following terms are used to describe bits or fields with fixed values:
RAZ Read-As-Zero. See Read-As-Zero (RAZ).

In diagrams, a RAZ bit can be shown as 0.
(0), RESO Reserved, Should-Be-Zero (SBZ) or RESO.

In instruction encoding diagrams, and sometimes in other descriptions, (@) indicates an SBZ bit. If
the bit is set to 1, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

. The instruction is UNDEFINED.

. The instruction is treated as a NOP.

. The instruction executes as if the value of the bit was 0.

. Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (0)(0) (@) or as
(000).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RESO. See the Glossary definition of RESO for more information.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RESO fields,

The (@) and RESO descriptions can be applied to bits or bitfields that are read-only, or are write-only.
The Glossary definitions cover these cases.

RAO Read-As-One. See Read-As-One (RAO).
In diagrams, a RAO bit can be shown as 1.
(1), RES1 Reserved, Should-Be-One (SBO) or RESI.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C2-211
ID072021 Non-Confidential

About the A64 Instruction Descriptions

C2.2 General information about the A64 instruction descriptions

In instruction encoding diagrams, and sometimes in other descriptions, (1) indicates an SBO bit. If
the bit is set to 0, behavior is CONSTRAINED UNPREDICTABLE, and must be one of the following:

. The instruction is UNDEFINED.

. The instruction is treated as a NOP.
. The instruction executes as if the value of the bit was 1.
. Any destination registers of the instruction become UNKNOWN.

This notation can be expanded for fields, so a three-bit field can be shown as either (1)(1)(1) or as
(111).

In register diagrams, but not in the A64 encoding and instruction descriptions, bits or fields can be
shown as RES1. See the Glossary definition of RES1 for more information.

Note
Some of the System instruction descriptions in this chapter are based on the field description of the
input value for the instruction. These are register descriptions and therefore can include RES1 fields,

The (1) and RES1 descriptions can be applied to bits or bitfields that are read-only, or are write-only.
The Glossary definitions cover these cases.

C2.2.3 Modified immediate constants in A64 instructions

It contains the following subsections:

. Modified immediate constants in A64 floating-point instructions on page C2-212.

Modified im

mediate constants in A64 floating-point instructions

Table C2-1 on page C2-212 shows the immediate constants available in FMOV (scalar, immediate) and FMOV (vector,
immediate) floating-point instructions.

Table C2-1 A64 Floating-point modified immediate constants

Data type immediate Constant?2

F16 abcdefgh aBbbcdef gh000000
F32 abcdefgh aBbbbbbc defgh000 00000000 00000000
F64 abcdefgh aBbbbbbb bbcdefgh 00 0 000 0

a. Inthis column, B=NOT(b). The bit pattern represents the floating-point number (—1)S x 2¢xp x mantissa, where

g =

The immediate

UInt(a), exp =UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

value shown in the table is either:

. The value of the imm8 field for an FMOV (scalar, immediate) instruction, see FMOV (scalar, immediate) on
page C7-1824.

. The value obtained by concatenating the a:b:c:d:e:f:g:h fields for an FMOV (vector, immediate) instruction,
see FMOV (vector, immediate) on page C7-1817.

C2-212 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

Table C2-2 on page C2-213 shows the floating-point constant values encoded in the b:c:d:e: f:g:h fields of the FMOV

(vector, immediate) instruction.

Table C2-2 Floating-point constant values

bed
efgh

000 001 010 011 100 101 110 111
0000 2.0 4.0 8.0 16.0 0.125 0.25 0.5 1.0
0001 2.125 425 85 17.0 0.1328125 0.265625 0.53125 1.0625
0010 2.25 4.5 9.0 18.0 0.140625 0.28125 0.5625 1.125
0011 2375 475 95 19.0 0.1484375 0.296875 0.59375 1.1875
0100 2.5 5.0 10.0 20.0 0.15625 0.3125 0.625 1.25
0101 2.625 525 10.5 21.0 0.1640625 0.328125 0.65625 1.3125
0110 2.75 5.5 11.0 22.0 0.171875 0.34375 0.6875 1.375
0111 2.875 575 11.5 23.0 0.1796875 0.359375 0.71875 14375
1000 3.0 6.0 120 240 0.1875 0.375 0.75 1.5
1001 3.125 6.25 125 25.0 0.1953125 0.390625 0.78125 1.5625
1010 3.25 6.5 13.0 26.0 0.203125 0.40625 0.8125 1.625
1011 3375 6.75 135 27.0 0.2109375 0.421875 0.84375 1.6875
1100 3.5 7.0 14.0 28.0 0.21875 0.4375 0.875 1.75
1101 3.625 725 145 29.0 0.2265625 0.453125 0.90625 1.8125
1110 3.75 7.5 15.0 30.0 0.234375 0.46875 0.9375 1.875
1111 3.875 7.75 155 31.0 0.2421875 0.484375 0.96875 1.9375

Operation of modified immediate constants, floating-point instructions

For an A64 floating-point instruction that uses a modified immediate constant, the operation described by the

VFPExpandImm() pseudocode function returns the value of the immediate constant.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C2-213

About the A64 Instruction Descriptions
C2.2 General information about the A64 instruction descriptions

C2-214 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Chapter C3

A64 Instruction Set Overview

This chapter provides an overview of the A64 instruction set. It contains the following sections:

Branches, Exception generating, and System instructions on page C3-216.
Loads and stores on page C3-224.

Data processing - immediate on page C3-242.

Data processing - register on page C3-247.

Data processing - SIMD and floating-point on page C3-255.

For a structured breakdown of instruction groups by encoding, see Chapter C4 A64 Instruction Set Encoding.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C3-215

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

C31 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and System instructions. It contains the following

subsections:

. Conditional branch on page C3-216.

. Unconditional branch (immediate) on page C3-216.

. Unconditional branch (register) on page C3-217.

. Exception generation and return on page C3-217.

. System register instructions on page C3-218.

. System instructions on page C3-218.

. Hint instructions on page C3-219.

. Barriers and CLREX instructions on page C3-219.

. Pointer authentication instructions on page C3-220.

For information about the encoding structure of the instructions in this instruction group, see Branches, Exception

Generating and System instructions on page C4-289.

Note

Software must:

. Use only BLR or BL to perform a nested subroutine call when that subroutine is expected to return to the
immediately following instruction, that is, the instruction with the address of the BLR or BL instruction
incremented by four.

. Use only RET to perform a subroutine return, when that subroutine is expected to have been entered by a BL
or BLR instruction.

. Use only B, BR, or the instructions listed in Table C3-1 on page C3-216 to perform a control transfer that is
not a subroutine call or subroutine return described in this Note.

C3.1.1 Conditional branch

Conditional branches change the flow of execution depending on the current state of the Condition flags or the value

in a general-purpose register. See Table C1-1 on page C1-197 for a list of the Condition codes that can be used for

cond.

Table C3-1 on page C3-216 shows the Conditional branch instructions.

Table C3-1 Conditional branch instructions

Mnemonic Instruction Branch offset range from the PC See

B.cond Branch conditionally +1MB B.cond on page C6-920

(BNZ Compare and branch if nonzero £1MB CBNZ on page C6-954

(BZ Compare and branch if zero +IMB CBZ on page C6-955

TBNZ Test bit and branch if nonzero +32KB TBNZ on page C6-1485

TBZ Test bit and branch if zero +32KB TBZ on page C6-1486
C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an

immediate offset with a range of £+128MB to the value of the program counter that fetched the instruction. The BL

instruction also writes the address of the sequentially following instruction to general-purpose register, X30.
C3-216 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Table C3-2 on page C3-217 shows the Unconditional branch instructions with an immediate branch offset.

Table C3-2 Unconditional branch instructions (immediate)

Mnemonic Instruction Immediate branch offset range from the PC See

B Branch unconditionally ~+128MB B on page C6-921

BL Branch with link +128MB BL on page C6-934
C3.1.3 Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program
counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially
following instruction to general-purpose register X30. The RET instruction behaves identically to BR, but provides an
additional hint to the PE that this is a return from a subroutine. Table C3-3 on page C3-217 shows Unconditional
branch instructions that jump directly to an address held in a general-purpose register.

Table C3-3 Unconditional branch instructions (register)

Mnemonic Instruction See

BLR Branch with link to register ~ BLR on page C6-935
BR Branch to register BR on page C6-938
RET Return from subroutine RET on page C6-1282

C3.1.4 Exception generation and return

This section describes the following exceptions:
. Exception generating on page C3-217.

. Exception return on page C3-218.

. Debug state on page C3-218.

Exception generating

Table C3-4 on page C3-217 shows the Exception generating instructions.

Table C3-4 Exception generating instructions

Mnemonic Instruction See

BRK Breakpoint Instruction BRK on page C6-941

HLT Halt Instruction HLT on page C6-1034

HVC Generate exception targeting Exception level 2~ HVC on page C6-1035

SMC Generate exception targeting Exception level 3~ SMC on page C6-1316

SvC Generate exception targeting Exception level 1~ SVC on page C6-1470
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-217

ID072021 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Exception return

Table C3-5 on page C3-218 shows the Exception return instructions.

Table C3-5 Exception return instructions

Mnemonic Instruction See

ERET Exception return using current ELR and SPSR ERET on page C6-1026

Debug state

Table C3-6 on page C3-218 shows the Debug state instructions.

Table C3-6 Debug state instructions

Mnemonic Instruction See

DCPS1 Debug switch to Exception level 1~ DCPS! on page C6-1009
DCPS2 Debug switch to Exception level 2~ DCPS2 on page C6-1010
DCPS3 Debug switch to Exception level 3~ DCPS3 on page C6-1011
DRPS Debug restore PE state DRPS on page C6-1015

C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-7 on page C3-218 shows the System register instructions.

Table C3-7 System register instructions

Mnemonic Instruction See
MRS Move System register to general-purpose register MRS on page C6-1236
MSR Move general-purpose register to System register ~ MSR (register) on page C6-1240
Move immediate to PE state field MSR (immediate) on page C6-1237
C3.1.6 Instructions with register argument

For detailed information about instructions with register argument, see Chapter C6 464 Base Instruction
Descriptions. Table C3-8 on page C3-218 shows the instructions with register argument.

Table C3-8 Instructions with register argument

Mnemonic Instruction See
WFET Wait for event with Timeout WFET on page C6-1513
WFIT Wait for interrupt with Timeout ~ WFIT on page C6-1515

C3.1.7 Systeminstructions

For detailed information about the System instructions, see Chapter C5 The A64 System Instruction Class.

C3-218 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview

C3.1 Branches, Exception generating, and System instructions

Table C3-9 on page C3-219 shows the System instructions.

Table C3-9 System instructions

Mnemonic Instruction

See

SYS System instruction SYS on page C6-1482

SYSL System instruction with result ~ SYSL on page C6-1484

IC Instruction cache maintenance /C on page C6-1036 and Table C5-1 on page C5-399

DC Data cache maintenance DC on page C6-1007 and Table C5-1 on page C5-399

AT Address translation AT on page C6-911 and Table C5-3 on page C5-401

TLBI TLB Invalidate TLBI on page C6-1487 and Table C5-4 on page C5-402
C3.1.8 Hint instructions

Table C3-10 on page C3-219 shows the Hint instructions.

Table C3-10 Hint instructions

Mnemonic Instruction See

NOP No operation NOP on page C6-1254
YIELD Yield hint YIELD on page C6-1519
WFE Wait for event WFE on page C6-1512
WFI Wait for interrupt WFT on page C6-1514
SEV Send event SEV on page C6-1312
SEVL Send event local SEVL on page C6-1313
HINT Unallocated hint HINT on page C6-1032
DCH Data Gathering Hint DGH on page C6-1012

C3.1.9 Barriers and CLREX instructions

Table C3-11 on page C3-219 shows the barrier and CLREX instructions.

Table C3-11 Barriers and CLREX instructions

Mnemonic Instruction See

CLREX Clear Exclusives monitor CLREX on page C6-970
DMB Data memory barrier DMB on page C6-1013
DSB Data synchronization barrier DSB on page C6-1016
ISB Instruction synchronization barrier ~ /SB on page C6-1039

For more information about DSB, DMB, and ISB, see Memory barriers on page B2-146.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-219

ID072021 Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Table C3-12 on page C3-220 shows the speculation and synchronization barriers. If these instructions are not
implemented, then these instructions execute as a NOP.

Table C3-12 Speculation and synchronization barriers

Mnemonic Instruction See

CSDB Consumption of Speculative Data Barrier ~ CSDB on page C6-994

ESB Error synchronization barrier ESB on page C6-1028

PSB CSYNC Profiling synchronization barrier PSB CSYNC on page C6-1278
PSSBB Physical Speculative Store Bypass Barrier ~ PSSBB on page C6-1279

SB Speculation Barrier SB on page C6-1298

SSBB Speculative Store Bypass Barrier SSBB on page C6-1322

TSB CSYNC Trace Synchronization Barrier TSB CSYNC on page C6-1490

For more information about:
. CSDB, PSSBB, SB, SSBB, TSB CSYNC, see Memory barriers on page B2-146.

. ESB, see the Arm® Reliability, Availability, and Serviceability (RAS) Specification, ARMVS, for the ARMvS-A
architecture profile.

. PSB CSYNC, see Chapter D9 The Statistical Profiling Extension.

C3.1.10 Pointer authentication instructions
FEAT PAuth adds support for pointer authentication, see Pointer authentication in AArch64 state on page D5-2678.
This functionality includes the A64 instructions described in this section. These instructions fall into two groups,
see:
. Basic pointer authentication instructions on page C3-220.
. Combined instructions that include pointer authentication on page C3-222.
Basic pointer authentication instructions
Each of these instructions only performs an operation that supports pointer authentication.
Table C3-13 on page C3-220 shows the instructions that add a Pointer Authentication Code (PAC) to the address in
a register:
Table C3-13 Instructions that add a PAC
Mnemonic Instruction See
PACIASP Add PAC to instruction address using APIAKey EL1 and SP PACIA, PACIA1716, PACIASP,. PACIAZ,
PACIZA on page C6-1264
PACIAZ Add PAC to instruction address using APIAKey EL1 and zero
PACIA1716 Add PAC to instruction address X17 using APIAKey EL1 and X16
PACIBSP Add PAC to instruction address using APIBKey EL1 and SP PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB on page C6-1267
PACIBZ Add PAC to instruction address using APIBKey EL1 and zero
PACIB1716 Add PAC to instruction address X17 using APIBKey EL1 and X16
PACIA Add PAC to instruction address using APIAKey ELI, registers PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA on page C6-1264
C3-220 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview

C3.1 Branches, Exception generating, and System instructions

Table C3-13 Instructions that add a PAC (continued)

Mnemonic Instruction See
PACDA Add PAC to data address using APDAKey ELI, registers PACDA, PACDZA on page C6-1261
PACIB Add PAC to instruction address using APIBKey EL1, registers PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB on page C6-1267
PACDB Add PAC to data address using APDBKey ELI1, registers PACDB, PACDZB on page C6-1262
PACIZA Add PAC to instruction address using APIAKey EL1, register and zero PACIA, PACIA1716, PACIASP, PACIAZ,
PACIZA on page C6-1264
PACDZA Add PAC to data address using APDAKey ELI1, register and zero PACDA, PACDZA on page C6-1261
PACIZB Add PAC to instruction address using APIBKey EL1, register and zero PACIB, PACIB1716, PACIBSP, PACIBZ,
PACIZB on page C6-1267
PACDZB Add PAC to data address using APDBKey EL]I, register and zero PACDB, PACDZB on page C6-1262
PACGA Add generic PAC using APGAKey EL1, registers PACGA on page C6-1263
Table C3-14 on page C3-221 shows the instructions that authenticate a PAC in a register:
Table C3-14 Instructions that authenticate a PAC
Mnemonic Instruction See
AUTIASP Authenticate PAC for instruction address using APIAKey EL1 and SP AUTIA, AUTIA1716, AUTIASP,
AUTIAZ, AUTIZA on page C6-915
AUTIAZ Authenticate PAC for instruction address using APIAKey EL1 and zero
AUTIA1716 Authenticate PAC for instruction address X17 using APIAKey EL1 and X16
AUTIBSP Authenticate PAC for instruction address using APIBKey EL1 and SP AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB on page C6-917
AUTIBZ Authenticate PAC for instruction address using APIBKey EL1 and zero
AUTIB1716 Authenticate PAC for instruction address X17 using APIBKey EL1 and X16
AUTIA Authenticate PAC for instruction address using APIAKey EL1, registers AUTIA, AUTIAL716, AUTIASP,
AUTIAZ, AUTIZA on page C6-915
AUTDA Authenticate PAC for data address using APDAKey ELI, registers AUTDA, AUTDZA on
page C6-913
AUTIB Authenticate PAC for instruction address using APIBKey ELI1, registers AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZB on page C6-917
AUTDB Authenticate PAC for data address using APDBKey EL1, registers AUTDB, AUTDZB on
page C6-914
AUTIZA Authenticate PAC for instruction address using APIAKey ELI1, register and ~ AUTIA, AUTIA1716, AUTIASP,

Z€ro

AUTIAZ, AUTIZA on page C6-915

ARM DDI 0487G.b

ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-221

Non-Confidential

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Table C3-14 Instructions that authenticate a PAC (continued)

Mnemonic Instruction See
AUTDZA Authenticate PAC for data address using APDAKey ELI, register and zero =~ AUTDA, AUTDZA on
page C6-913
AUTIZB Authenticate PAC for instruction address using APIBKey EL1, register and AUTIB, AUTIB1716, AUTIBSP,
Zero AUTIBZ, AUTIZB on page C6-917
AUTDZB Authenticate PAC for data address using APDBKey ELI1, register and zero AUTDB, AUTDZB on
page C6-914
Table C3-15 on page C3-222 shows the instructions that strip a PAC from a register, without performing any
authentication:
Table C3-15 Instructions that strip a PAC
Mnemonic Instruction See
XPACLRI Strip instruction address PAC from LR~ XPACD, XPACI, XPACLRI on page C6-1517
XPACT Strip instruction address PAC, register
XPACD Strip data address PAC, register
Combined instructions that include pointer authentication
Each of these instructions combines a pointer authentication with another operation that uses the authenticated
pointer. Table C3-16 on page C3-222 shows these instructions:
Table C3-16 Combined pointer authentication instructions
Mnemonic Instruction See
RETAA Authenticate PAC for LR using APIAKey ELI and SP, and return RETAA, RETAB on
page C6-1283
RETAB Authenticate PAC for LR using APIBKey EL1 and SP, and return
BRAA Authenticate PAC using APIAKey EL1 (registers), and branch BRAA, BRAAZ, BRAB,
BRABZ on page C6-939
BRAB Authenticate PAC using APIBKey EL1 (registers), and branch
BLRAA Authenticate PAC using APIAKey EL1 (registers), and branch with link BLRAA, BLRAAZ,
BLRAB, BLRABZ on
BLRAB Authenticate PAC using APIBKey EL1 (registers), and branch with link page C6-936
BRAAZ Authenticate PAC using APIAKey EL1 (register and zero), and branch BRAA, BRAAZ, BRAB,
BRABZ on page C6-939
BRABZ Authenticate PAC using APIBKey EL1 (register and zero), and branch
BLRAAZ Authenticate PAC using APIAKey EL1 (register and zero), and branch with link BLRAA, BLRAAZ,
BLRAB, BLRABZ on
BLRABZ Authenticate PAC using APIBKey EL1 (register and zero), and branch with link page C6-936
ERETAA Authenticate PAC for ELR using APIAKey EL1 and SP, and exception return ERETAA, ERETAB on
page C6-1027
ERETAB Authenticate PAC for ELR using APIBKey EL1 and SP, and exception return
LDRAA Authenticate PAC for data address using APDAKey ELI (register and zero) and Load =~ LDRAA, LDRAB on
page C6-1113
LDRAB Authenticate PAC for data address using APDBKey EL1 (register and zero) and Load
C3-222 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-223
ID072021 Non-Confidential

A64 Instruction Set Overview

C3.2 Loads and stores

C3.2 Loads and stores

This section describes the load/store instructions. It contains the following subsections:
. Load/store register on page C3-224.

. Load/store register (unscaled offset) on page C3-225.

. Load/store pair on page C3-226.

. Load/store non-temporal pair on page C3-227.

. Load/store unprivileged on page C3-228.

. Load-Exclusive/Store-Exclusive on page C3-228.

. Load-Acquire/Store-Release on page C3-229.

. LoadLOAcquire/StoreLORelease on page C3-231.

. Load/store scalar SIMD and floating-point on page C3-231.
. Load/store Vector on page C3-233.

. Prefetch memory on page C3-235.

. Atomic instructions on page C3-236.

. Memory Tagging instructions on page C3-240.

The requirements for the alignment of data memory accesses are strict, for more information see A/ignment of data
accesses on page B2-160.

The additional control bits SCTLR_ELx.SA and SCTLR EL1.SAO control whether the stack pointer must be
quadword aligned when used as a base register. See SP alignment checking on page D1-2469. Using a misaligned
stack pointer generates an SP alignment fault exception.

For information about the encoding structure of the instructions in this instruction group, see Loads and Stores on
page C4-298.

Note

In some cases, load/store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See AArch64
CONSTRAINED UNPREDICTABLE behaviors on page K1-8408.

C3.2.1 Load/store register

The load/store register instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
. Base plus a 64-bit register offset, optionally scaled.

. Base plus a 32-bit extended register offset, optionally scaled.

. Pre-indexed by an unscaled 9-bit signed immediate offset.
. Post-indexed by an unscaled 9-bit signed immediate offset.
. PC-relative literal for loads of 32 bits or more.

See also Load/store addressing modes on page C1-202.

If a Load instruction specifies writeback and the register being loaded is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs the load using the specified addressing mode and the base register becomes

UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address
might be corrupted so that the instruction cannot be repeated.

If a Store instruction performs a writeback and the register that is stored is also the base register, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.

C3-224

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

C3.2.2

. The instruction is treated as a NOP.

A64 Instruction Set Overview
C3.2 Loads and stores

. The instruction performs the store to the designated register using the specified addressing mode, but the
value stored is UNKNOWN.

Table C3-17 on page C3-225 shows the load/store register instructions.

Table C3-17 Load/store register instructions

Mnemonic Instruction See
LDR Load register (register offset) LDR (register) on page C6-1111
Load register (immediate offset) LDR (immediate) on page C6-1106
Load register (PC-relative literal) LDR (literal) on page C6-1109
LDRB Load byte (register offset) LDRB (register) on page C6-1118
Load byte (immediate offset) LDRB (immediate) on page C6-1115
LDRSB Load signed byte (register offset) LDRSB (register) on page C6-1129
Load signed byte (immediate offset) LDRSB (immediate) on page C6-1125
LDRH Load halfword (register offset) LDRH (register) on page C6-1123
Load halfword (immediate offset) LDRH (immediate) on page C6-1120
LDRSH Load signed halfword (register offset) LDRSH (register) on page C6-1135
Load signed halfword (immediate offset) LDRSH (immediate) on page C6-1131
LDRSW Load signed word (register offset) LDRSW (register) on page C6-1141
Load signed word (immediate offset) LDRSW (immediate) on page C6-1137
Load signed word (PC-relative literal) LDRSW (literal) on page C6-1140
STR Store register (register offset) STR (register) on page C6-1386
Store register (immediate offset) STR (immediate) on page C6-1383
STRB Store byte (register offset) STRB (register) on page C6-1391
Store byte (immediate offset) STRB (immediate) on page C6-1388
STRH Store halfword (register offset) STRH (register) on page C6-1396

Store halfword (immediate offset)

STRH (immediate) on page C6-1393

Load/store register (unscaled offset)

The load/store register instructions with an unscaled offset support only one addressing mode:

. Base plus an unscaled 9-bit signed immediate offset.

See Load/store addressing modes on page C1-202.

The load/store register (unscaled offset) instructions are required to disambiguate this instruction class from the
load/store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit
immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:

. In the range 0-255, inclusive.

. Naturally aligned to the access size.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C3-225

A64 Instruction Set Overview
C3.2 Loads and stores

Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a
load/store instruction, for example LDR, is required to encode an unambiguous offset using the unscaled 9-bit offset
form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the
generation of the unscaled 9-bit form by using one of the mnemonics in Table C3-18 on page C3-226. Arm
recommends that a disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but
unambiguous offsets can be output using a load/store single register mnemonic, for example, LDR.

Table C3-18 on page C3-226 shows the load/store register instructions with an unscaled offset.

Table C3-18 Load/store register (unscaled offset) instructions

Mnemonic Instruction See

LDUR Load register (unscaled offset) LDUR on page C6-1190
LDURB Load byte (unscaled offset) LDURB on page C6-1192
LDURSB Load signed byte (unscaled offset) LDURSB on page C6-1194
LDURH Load halfword (unscaled offset) LDURH on page C6-1193
LDURSH Load signed halfword (unscaled offset) LDURSH on page C6-1196
LDURSW Load signed word (unscaled offset) LDURSW on page C6-1198
STUR Store register (unscaled offset) STUR on page C6-1434
STURB Store byte (unscaled offset) STURB on page C6-1436
STURH Store halfword (unscaled offset) STURH on page C6-1437

C3.2.3 Load/store pair

The load/store pair instructions support the following addressing modes:
. Base plus a scaled 7-bit signed immediate offset.

. Pre-indexed by a scaled 7-bit signed immediate offset.

. Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

If a Load Pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the loads using the specified addressing mode and the register that is loaded takes

an UNKNOWN value.

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all of the loads using the specified addressing mode, and the base register becomes

UNKNOWN. In addition, if an exception occurs during the instruction, the base address might be corrupted so
that the instruction cannot be repeated.

C3-226 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.2 Loads and stores

If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the stores of the registers indicated by the specified addressing mode, but the

value stored for the base register is UNKNOWN.

Table C3-19 on page C3-227 shows the load/store pair instructions.

Table C3-19 Load/store pair instructions

Mnemonic Instruction See

LDP Load Pair LDP on page C6-1099
LDPSW Load Pair signed words ~ LDPSW on page C6-1103
STP Store Pair STP on page C6-1380

C3.24 Load/store non-temporal pair

The load/store non-temporal pair instructions support only one addressing mode:
. Base plus a scaled 7-bit signed immediate offset.
See Load/store addressing modes on page C1-202.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a Load Non-temporal Pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, the memory accesses can be observed in any order by the other observers within
the shareability domain of the memory addresses being accessed.

If a Load Non-Temporal Pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the loads using the specified addressing mode and the register that is loaded takes

an UNKNOWN value.

Table C3-20 on page C3-227 shows the load/store non-temporal pair instructions.

Table C3-20 Load/store non-temporal pair instructions

Mnemonic Instruction See

LDNP Load Non-temporal Pair ~ LDNP on page C6-1097

STNP Store Non-temporal Pair ~ STNP on page C6-1378
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-227

ID072021

Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores

C3.2.5 Load/store unprivileged
The load/store unprivileged instructions support only one addressing mode:
. Base plus an unscaled 9-bit signed immediate offset.
See Load/store addressing modes on page C1-202.

The access permissions that apply to accesses made at ELO apply to the memory accesses made by a load/store
unprivileged instruction that is executed either:

. At EL1 when the Effective value of PSTATE.UAO is 0.

. At EL2 when both the Effective value of HCR_EL2.{E2H, TGE} is {1, 1} and the Effective value of
PSTATE.UAO is 0.

Otherwise, memory accesses made by a load/store unprivileged instruction are subject to the access permissions that
apply to the Exception level at which the instruction is executed. These are the permissions that apply to the
corresponding load/store register instruction, see Load/store register on page C3-224.

Note

This means that when the value of PSTATE.UAO is 1 the access permissions for a load/store unprivileged
instruction are always the same as those for the corresponding load/store register instruction.

Table C3-21 on page C3-228 shows the load/store unprivileged instructions.

Table C3-21 Load-Store unprivileged instructions

Mnemonic Instruction See
LDTR Load unprivileged register LDTR on page C6-1164
LDTRB Load unprivileged byte LDTRB on page C6-1166
LDTRSB Load unprivileged signed byte LDTRSB on page C6-1170
LDTRH Load unprivileged halfword LDTRH on page C6-1168
LDTRSH Load unprivileged signed halfword ~ LDTRSH on page C6-1172
LDTRSW Load unprivileged signed word LDTRSW on page C6-1174
STTR Store unprivileged register STTR on page C6-1416
STTRB Store unprivileged byte STTRB on page C6-1418
STTRH Store unprivileged halfword STTRH on page C6-1420
C3.2.6 Load-Exclusive/Store-Exclusive

The Load-Exclusive/Store-Exclusive instructions support only one addressing mode:
. Base register with no offset.
See Load/store addressing modes on page C1-202.

The Load-Exclusive instructions mark the physical address being accessed as an exclusive access. This exclusive
access mark is checked by the Store-Exclusive instruction, permitting the construction of atomic read-modify-write
operations on shared memory variables, semaphores, mutexes, and spinlocks. See Synchronization and semaphores
on page B2-179.

C3-228 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.2 Loads and stores

If FEAT LSE2 is not implemented then:.

. The Load-Exclusive/Store-Exclusive instructions other than Load-Exclusive pair and Store-Exclusive pair
require natural alignment, and an unaligned address generates an Alignment fault.

. Memory accesses generated by Load-Exclusive pair or Store-Exclusive pair instructions must be aligned to
the size of the pair, otherwise the access generates an Alignment fault.

For more information on alignment requirements and behaviors see Load-Exclusive/ Store-Exclusive and
Atomic instructions on page B2-160.

When a Store-Exclusive pair succeeds, it causes a single-copy atomic update of the entire memory location being
stored to.

Table C3-22 on page C3-229 shows the Load-Exclusive/Store-Exclusive instructions.

Table C3-22 Load-Exclusive/Store-Exclusive instructions

Mnemonic Instruction See

LDXR Load Exclusive register LDXR on page C6-1201
LDXRB Load Exclusive byte LDXRB on page C6-1203
LDXRH Load Exclusive halfword ~ LDXRH on page C6-1204
LDXP Load Exclusive pair LDXP on page C6-1199
STXR Store Exclusive register STXR on page C6-1441
STXRB Store Exclusive byte STXRB on page C6-1443
STXRH Store Exclusive halfword ~ STXRH on page C6-1445
STXP Store Exclusive pair STXP on page C6-1438

C3.2.7 Load-Acquire/Store-Release
The Load-Acquire, Load-AcquirePC, and Store-Release instructions support only one addressing mode:
. Base register with no offset.
See Load/store addressing modes on page C1-202.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions can remove the requirement to use the explicit
DMB memory barrier instruction. For more information about the ordering of Load-Acquire, Load-AcquirePC, and
Store-Release, see Load-Acquire, Load-AcquirePC, and Store-Release on page B2-152.

The Load-Acquire, Load-AcquirePC, and Store-Release instructions other than Load-Acquire pair and
Store-Release pair require natural alignment, and an unaligned address generates an Alignment fault. Memory
accesses generated by Load-Acquire pair or Store-Release pair instructions must be aligned to the size of the pair,
otherwise the access generates an Alignment fault.

A Store-Release Exclusive instruction only has the Release semantics if the store is successful.

Armv8.1 adds more instructions with load-acquire and store-release mechanisms, see
LoadLOAcquire/StoreLORelease on page C3-231.

FEAT LRCPC2 introduces changes to the alignment requirements of Load-Acquire/Store-Release instructions.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-229
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-23 on page C3-230 shows the Non-exclusive Load-Acquire/Store-Release instructions.

Table C3-23 Non-exclusive Load-Acquire and Store-Release instructions

Mnemonic

Instruction

See

LDAPR

Load-Acquire RCpc Register

LDAPR on page C6-1048

LDAPRB

Load-Acquire RCpc Register Byte

LDAPRB on page C6-1050

LDAPRH

Load-Acquire RCpc Register Halfword

LDAPRH on page C6-1052

LDAPUR

Load-Acquire RCpc Register (unscaled)

LDAPUR on page C6-1054

LDAPURB

Load-Acquire RCpc Register Byte (unscaled)

LDAPURB on page C6-1056

LDAPURH

LDAPURSB

Load-Acquire RCpc Register Halfword (unscaled)

Load-Acquire RCpc Register Signed Byte (unscaled) 32-bit

LDAPURH on page C6-1058

LDAPURSB on page C6-1060

LDAPURSB

Load-Acquire RCpc Register Signed Byte (unscaled) 64-bit

LDAPURSB on page C6-1060

LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) 32-bit

LDAPURSH on page C6-1062

LDAPURSH

Load-Acquire RCpc Register Signed Halfword (unscaled) 64-bit

LDAPURSH on page C6-1062

LDAPURSW

Load-Acquire RCpc Register Signed Word (unscaled)

LDAPURSW on page C6-1064

LDAR

LDARB

Load-Acquire Register

Load-Acquire Byte

LDAR on page C6-1066

LDARB on page C6-1068

LDARH

Load-Acquire Halfword

LDARH on page C6-1069

STLR

Store-Release Register

STLR on page C6-1358

STLRB

Store-Release Byte

STLRB on page C6-1360

STLRH

Store-Release Halfword

STLRH on page C6-1361

STLUR

STLURB

Store-Release Register (unscaled)

Store-Release Register Byte (unscaled)

STLUR on page C6-1362

STLURB on page C6-1364

STLURH

Store-Release Register Halfword (unscaled)

STLURH on page C6-1366

Table C3-24 on page C3-230 shows the Exclusive Load-Acquire/Store-Release instructions.

Table C3-24 Exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAXR Load-Acquire Exclusive register LDAXR on page C6-1072
LDAXRB Load-Acquire Exclusive byte LDAXRB on page C6-1074
LDAXRH Load-Acquire Exclusive halfword LDAXRH on page C6-1075
LDAXP Load-Acquire Exclusive pair LDAXP on page C6-1070
STLXR Store-Release Exclusive register STLXR on page C6-1371

C3-230

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-24 Exclusive Load-Acquire and Store-Release instructions (continued)

Mnemonic Instruction See

STLXRB Store-Release Exclusive byte STLXRB on page C6-1374
STLXRH Store-Release Exclusive halfword STLXRH on page C6-1376
STLXP Store-Release Exclusive pair STLXP on page C6-1368

C3.2.8 LoadLOAcquire/StoreLORelease

The LoadLOAcquire/StoreLORelease instructions support only one addressing mode:
. Base register with no offset.

See Load/store addressing modes on page C1-202.

The LoadLOAcquire/StoreLORelease instructions can remove the requirement to use the explicit DMB memory
barrier instruction. For more information about the ordering of LoadLOAcquire/StoreLORelease, see
LoadLOAcquire, StoreLORelease on page B2-153.

The LoadLOAcquire/StoreLORelease instructions require natural alignment, and an unaligned address generates an
Alignment fault.

Table C3-25 on page C3-231 shows the LoadLOAcquire/StoreLORelease instructions.

Table C3-25 LoadLOAcquire and StoreLORelease instructions

Mnemonic Instruction See

LDLARB LoadLOAcquire byte LDLARB on page C6-1093
LDLARH LoadLOAcquire halfword ~ LDLARH on page C6-1094
LDLAR LoadLOAcquire register LDLAR on page C6-1095
STLLRB StoreLORelease byte STLLRB on page C6-1354
STLLRH StoreLORelease halfword ~ STLLRH on page C6-1355
STLLR StoreLORelease register STLLR on page C6-1356

C3.2.9 Load/store scalar SIMD and floating-point

The load/store scalar SIMD and floating-point instructions operate on scalar values in the SIMD and floating-point
register file as described in SIMD and floating-point scalar register names on page C1-199. The memory addressing
modes available, described in Load/store addressing modes on page C1-202, are identical to the general-purpose
register load/store instructions, and like those instructions permit arbitrary address alignment unless strict alignment
checking is enabled. However, unlike the load/store instructions that transfer general-purpose registers, load/store
scalar SIMD and floating-point instructions make no guarantee of atomicity, even when the address is naturally
aligned to the size of the data.

Load/store scalar SIMD and floating-point register

The load/store scalar SIMD and floating-point register instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus unscaled 9-bit signed immediate offset.
. Base plus 64-bit register offset, optionally scaled.
. Base plus 32-bit extended register offset, optionally scaled.
. Pre-indexed by an unscaled 9-bit signed immediate offset.
. Post-indexed by an unscaled 9-bit signed immediate offset.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-231

ID072021

Non-Confidential

A64 Instruction Set Overview

C3.2 Loads and stores

. PC-relative literal for loads of 32 bits or more.
For more information on the addressing modes, see Load/store addressing modes on page C1-202.

Note

The unscaled 9-bit signed immediate offset address mode requires its own instruction form, see Load/store scalar
SIMD and floating-point register (unscaled offset) on page C3-232.

Table C3-26 on page C3-232 shows the load/store instructions for a single SIMD and floating-point register.

Table C3-26 Load/store single SIMD and floating-point register instructions

Mnemonic Instruction See

LDR

Load scalar SIMD&FP register (register offset) LDR (register, SIMD&FP) on page C7-1976

Load scalar SIMD&FP register (immediate offset) LDR (immediate, SIMD&FP) on page C7-1970

Load scalar SIMD&FP register (PC-relative literal) LDR (literal, SIMD&FP) on page C7-1974

STR

Store scalar SIMD&FP register (register offset) STR (register, SIMD&FP) on page C7-2294

Store scalar SIMD&FP register (immediate offset) STR (immediate, SIMD&FP) on page C7-2290

Load/store scalar SIMD and floating-point register (unscaled offset)

The load /store scalar SIMD and floating-point register instructions support only one addressing mode:
. Base plus an unscaled 9-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

The load/store scalar SIMD and floating-point register (unscaled offset) instructions are required to disambiguate
this instruction class from the load/store single SIMD and floating-point instruction forms that support an
addressing mode of base plus a scaled, unsigned 12-bit immediate offset. This is similar to the load/store register
(unscaled offset) instructions, that disambiguate this instruction class from the load/store register instruction, see
Load/store register (unscaled offset) on page C3-225.

Table C3-27 on page C3-232 shows the load/store SIMD and floating-point register instructions with an unscaled
offset.

Table C3-27 Load/store SIMD and floating-point register instructions

Mnemonic Instruction See
LDUR Load scalar SIMD&FP register (unscaled offset) LDUR (SIMD&FP) on page C7-1979
STUR Store scalar SIMD&FP register (unscaled offset) STUR (SIMD&FP) on page C7-2297

Load/store SIMD and floating-point register pair

The load/store SIMD and floating-point register pair instructions support the following addressing modes:
. Base plus a scaled 7-bit signed immediate offset.

. Pre-indexed by a scaled 7-bit signed immediate offset.

. Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

C3-232

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.2 Loads and stores

If a Load pair instruction specifies the same register for the two registers that are being loaded, then behavior is
CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all of the loads using the specified addressing mode and the register being loaded

takes an UNKNOWN value.

Table C3-28 on page C3-233 shows the load/store SIMD and floating-point register pair instructions.

Table C3-28 Load/store SIMD and floating-point register pair instructions

Mnemonic Instruction See
LDP Load pair of scalar SIMD&FP registers LDP (SIMD&FP) on page C7-1966
STP Store pair of scalar SIMD&FP registers ~ STP (SIMD&FP) on page C7-2287

Load/store SIMD and floating-point non-temporal pair

The load/store SIMD and floating-point non-temporal pair instructions support only one addressing mode:
. Base plus a scaled 7-bit signed immediate offset.

See also Load/store addressing modes on page C1-202.

The load/store non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition, there is an exception to the usual memory ordering rules. If an address dependency exists between two
memory reads, and a load non-temporal pair instruction generated the second read, then in the absence of any other
barrier mechanism to achieve order, those memory accesses can be observed in any order by the other observers
within the shareability domain of the memory addresses being accessed.

If a load non-temporal pair instruction specifies the same register for the two registers that are being loaded, then
behavior is CONSTRAINED UNPREDICTABLE and one of the following behaviors must occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the loads using the specified addressing mode and the register that is loaded takes

an UNKNOWN value.

Table C3-29 on page C3-233 shows the load/store SIMD and floating-point Non-temporal pair instructions.

Table C3-29 Load/store SIMD and floating-point non-temporal pair instructions

Mnemonic Instruction See
LDNP Load pair of scalar SIMD&FP registers ~ LDNP (SIMD&FP) on page C7-1964
STNP Store pair of scalar SIMD&FP registers ~ STNP (SIMD&FP) on page C7-2285

C3.2.10 Load/store Vector

The Vector load/store structure instructions support the following addressing modes:
. Base register only.
. Post-indexed by a 64-bit register.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-233
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores

. Post-indexed by an immediate, equal to the number of bytes transferred.

Load/store vector instructions, like other load/store instructions, allow any address alignment, unless strict
alignment checking is enabled. If strict alignment checking is enabled, then alignment checking to the size of the
element is performed. However, unlike the load/store instructions that transfer general-purpose registers, the
load/store vector instructions do not guarantee atomicity, even when the address is naturally aligned to the size of

the element.

Load/store structures

Table C3-30 on page C3-234 shows the load/store structure instructions. A post-increment immediate offset, if

present, must be 8, 16, 24, 32, 48, or 64, depending on the number of elements transferred.

Table C3-30 Load/store multiple structures instructions

Mnemonic Instruction See

LD1 Load single 1-element structure to one lane of one register LD1 (single structure) on page C7-1927
Load multiple 1-element structures to one register or to two, LD1 (multiple structures) on page C7-1923
three, or four consecutive registers

LD2 Load single 2-element structure to one lane of two consecutive ~ LD2 (single structure) on page C7-1937
registers
Load multiple 2-element structures to two consecutive registers LD2 (multiple structures) on page C7-1934

LD3 Load single 3-element structure to one lane of three consecutive ~ LD3 (single structure) on page C7-1947
registers
Load multiple 3-element structures to three consecutive LD3 (multiple structures) on page C7-1944
registers

LD4 Load single 4-element structure to one lane of four consecutive LD4 (single structure) on page C7-1957
registers
Load multiple 4-element structures to four consecutive registers LD4 (multiple structures) on page C7-1954

ST1 Store single 1-element structure from one lane of one register STI (single structure) on page C7-2260
Store multiple 1-element structures from one register, or from ST1 (multiple structures) on page C7-2256
two, three, or four consecutive registers

ST2 Store single 2-element structure from one lane of two ST2 (single structure) on page C7-2267

consecutive registers

Store multiple 2-element structures from two consecutive
registers

ST2 (multiple structures) on page C7-2264

ST3 Store single 3-element structure from one lane of three ST3 (single structure) on page C7-2274
consecutive registers
Store multiple 3-element structures from three consecutive ST3 (multiple structures) on page C7-2271
registers

ST4 Store single 4-element structure from one lane of four ST4 (single structure) on page C7-2281
consecutive registers
Store multiple 4-element structures from four consecutive ST4 (multiple structures) on page C7-2278
registers

C3-234 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

C3.2.11

A64 Instruction Set Overview
C3.2 Loads and stores

Load single structure and replicate

Table C3-31 on page C3-235 shows the Load single structure and replicate instructions. A post-increment
immediate offset, if present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32, depending on the number of elements
transferred.

Table C3-31 Load single structure and replicate instructions

Mnemonic Instruction See

LDIR Load single 1-element structure and replicate to all lanes of one register LDIR on page C7-1931
LD2R Load single 2-element structure and replicate to all lanes of two registers LD2R on page C7-1941
LD3R Load single 3-clement structure and replicate to all lanes of three registers ~ LD3R on page C7-1951
LD4R Load single 4-clement structure and replicate to all lanes of four registers ~ LD4R on page C7-1961

Prefetch memory

The Prefetch memory instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
. Base plus a 64-bit register offset. This can be optionally scaled by 8-bits, for example LSL#3.

. Base plus a 32-bit extended register offset. This can be optionally scaled by 8-bits.

. PC-relative literal.

The prefetch memory instructions signal to the memory system that memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory access when they do occur, such as preloading the specified address into one or more caches. Because
these signals are only hints, it is valid for the PE to treat any or all prefetch instructions as a NOP.

Because they are hints to the memory system, the operation of a PRFM instruction cannot cause a synchronous
exception. However, a memory operation performed as a result of one of these memory system hints might in
exceptional cases trigger an asynchronous event, and thereby influence the execution of the PE. An example of an
asynchronous event that might be triggered is an SError interrupt.

A PRFM instruction can only have an effect on software visible structures, such as caches and translation lookaside
buffers associated with memory locations that can be accessed by reads, writes, or execution as defined in the
translation regime of the current Exception level.

A PRFM instruction is guaranteed not to access Device memory.

A PRFM instruction using a PLI hint must not result in any access that could not be performed by the PE speculatively
fetching an instruction. Therefore, if all associated MMUs are disabled, a PLI hint cannot access any memory
location that cannot be accessed by instruction fetches.

The PRFM instructions require an additional <prfop> operand to be specified, which must be one of the following:
PLDLIKEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM
PSTLIKEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM
PLILIKEEP, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM

<prfop> is defined as <type><target><policy>.

Here:
<type> Is one of:
PLD Prefetch for load.
PST Prefetch for store.
PLI Preload instructions.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-235

ID072021

Non-Confidential

A64 Instruction Set Overview
C3.2 Loads and stores

<target> Is one of:
L1 Level 1 cache.
L2 Level 2 cache.
L3 Level 3 cache.
<policy> Is one of:
KEEP Retained or temporal prefetch, allocated in the cache normally.
STRM Streaming or non-temporal prefetch, for data that is used only once.

PRFUM explicitly uses the unscaled 9-bit signed immediate offset addressing mode, as described in Load/store
register (unscaled offset) on page C3-225.

Table C3-32 on page C3-236 shows the Prefetch memory instructions.

Table C3-32 Prefetch memory instructions

Mnemonic Instruction See

PRFM Prefetch memory (register offset) PRFM (register) on page C6-1274

Prefetch memory (immediate offset) ~ PRFM (immediate) on page C6-1270

Prefetch memory (PC-relative offset) PRFM (literal) on page C6-1272

PRFUM Prefetch memory (unscaled offset) PRFUM on page C6-1276

C3.2.12 Atomic instructions
The atomic instructions perform atomic read and write operations on a memory location such that the architecture
guarantees that no modification of that memory location by another observer can occur between the read and the
write defined by that instruction.
This section describes the following operations:
. Atomic memory operations on page C3-236.
. Single-copy atomic 64-byte load/store on page C3-238.
. Swap on page C3-239.
. Compare and Swap on page C3-239.
Atomic memory operations
The atomic memory operation instructions support only one addressing mode:
. Base register only.
See also Load/store addressing modes on page C1-202.
For the purpose of permission checking, and for watchpoints, all of the Atomic memory operation instructions are
treated as performing both a load and a store.
If FEAT LSE2 is not implemented then the LD<OP> and ST<OP> instructions require natural alignment, and an
unaligned address generates an Alignment fault. For more information on alignment requirements and behaviors
see Load-Exclusive/ Store-Exclusive and Atomic instructions on page B2-160.
The instructions are provided with ordering options, which map to the acquire and release definitions used in the
Armv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release
instructions regarding multi-copy atomicity. These operations map to the acquire and release definitions, and are
counted as Load-Acquire and Store-Release operations respectively.
For the LD<OP> instructions, where the source and destination registers are the same, if the instruction generates a
synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

C3-236 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.2 Loads and stores

The ST<OP> instructions, and LD<OP> instructions where the destination register is WZR or XZR, are not regarded as
doing a read for the purpose of a DMB LD barrier.

Table C3-33 Atomic memory operation instructions

Mnemonic Instruction See
LDADD Atomic add LDADD, LDADDA, LDADDAL, LDADDL on page C6-1045
LDADDB Atomic add on byte LDADDB, LDADDAB, LDADDALB, LDADDLB on page C6-1041
LDADDH Atomic add on halfword LDADDH, LDADDAH, LDADDALH, LDADDLH on page C6-1043
LDCLR Atomic bit clear LDCLR, LDCLRA, LDCLRAL, LDCLRL on page C6-1080
LDCLRB Atomic bit clear on byte LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB on page C6-1076
LDCLRH Atomic bit clear on halfword LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH on page C6-1078
LDEOR Atomic exclusive OR LDEOR, LDEORA, LDEORAL, LDEORL on page C6-1087
LDEORB Atomic exclusive OR on byte LDEORB, LDEORAB, LDEORALB, LDEORLB on page C6-1083
LDEORH Atomic exclusive OR on halfword LDEORH, LDEORAH, LDEORALH, LDEORLH on page C6-1085
LDSET Atomic bit set LDSET, LDSETA, LDSETAL, LDSETL on page C6-1147
LDSETB Atomic bit set on byte LDSETB, LDSETAB, LDSETALB, LDSETLB on page C6-1143
LDSETH Atomic bit set on halfword LDSETH, LDSETAH, LDSETALH, LDSETLH on page C6-1145
LDMAX Atomic signed maximum LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL on page C6-1154
LDMAXB Atomic signed maximum on byte LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB on page C6-1150
LDMAXH Atomic signed maximum on halfword LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH on

page C6-1152
LDMIN Atomic signed minimum LDSMIN, LDSMINA, LDSMINAL, LDSMINL on page C6-1161
LDMINB Atomic signed minimum on byte LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB on page C6-1157
LDMINH Atomic signed minimum on halfword LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH on page C6-1159
LDUMAX Atomic unsigned maximum LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL on page C6-1180
LDUMAXB Atomic unsigned maximum on byte LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB on

page C6-1176
LDUMAXH Atomic unsigned maximum on halfword LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH on

page C6-1178
LDUMIN Atomic unsigned minimum LDUMIN, LDUMINA, LDUMINAL, LDUMINL on page C6-1187
LDUMINB Atomic unsigned minimum on byte LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB on page C6-1183
LDUMINH Atomic unsigned minimum on halfword LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH on

page C6-1185
STADD Atomic add, without return STADD, STADDL on page C6-1334
STADDB Atomic add on byte, without return STADDB, STADDLB on page C6-1330
STADDH Atomic add on halfword, without return STADDH, STADDLH on page C6-1332
STCLR Atomic bit clear, without return STCLR, STCLRL on page C6-1340

ARM DDI 0487G.b

1D072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C3-237

A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-33 Atomic memory operation instructions (continued)

Mnemonic Instruction See
STCLRB Atomic bit clear on byte, without return STCLRB, STCLRLB on page C6-1336
STCLRH Atomic bit clear on halfword, without STCLRH, STCLRLH on page C6-1338
return
STEOR Atomic exclusive OR, without return STEOR, STEORL on page C6-1346
STEORB Atomic exclusive OR on byte, without STEORB, STEORLB on page C6-1342
return
STEORH Atomic exclusive OR on halfword, without ~ STEORH, STEORLH on page C6-1344
return
STSET Atomic bit set, without return STSET, STSETL on page C6-1402
STSETB Atomic bit set on byte, without return STSETB, STSETLB on page C6-1398
STSETH Atomic bit set on halfword, without return ~ STSETH, STSETLH on page C6-1400
STMAX Atomic signed maximum, without return STSMAX, STSMAXL on page C6-1408
STMAXB Atomic signed maximum on byte, without ~ STSMAXB, STSMAXLB on page C6-1404
return
STMAXH Atomic signed maximum on halfword, STSMAXH, STSMAXLH on page C6-1406
without return
STMIN Atomic signed minimum, without return STSMIN, STSMINL on page C6-1414
STMINB Atomic signed minimum on byte, without ~ STSMINB, STSMINLB on page C6-1410
return
STMINH Atomic signed minimum on halfword, STSMINH, STSMINLH on page C6-1412
without return
STUMAX Atomic unsigned maximum, without STUMAX, STUMAXL on page C6-1426
return
STUMAXB Atomic unsigned maximum on byte, STUMAXB, STUMAXLB on page C6-1422
without return
STUMAXH Atomic unsigned maximum on halfword, STUMAXH, STUMAXLH on page C6-1424
without return
STUMIN Atomic unsigned minimum, without return ~ STUMIN, STUMINL on page C6-1432
STUMINB Atomic unsigned minimum on byte, STUMINB, STUMINLB on page C6-1428
without return
STUMINH Atomic unsigned minimum on halfword, STUMINH, STUMINLH on page C6-1430
without return
Single-copy atomic 64-byte load/store
If FEAT LS64 is implemented, the following instructions are implemented.
The single-copy atomic 64-byte load/store instructions support one addressing mode:
. Base register only.
See also Load/store addressing modes on page C1-202.
C3-238 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.2 Loads and stores

The memory location accessed by the instructions is required to be aligned on a 64-byte boundary, otherwise an
Alignment fault occurs.

When the instructions access a memory type for an enabled translation stage that is not one of the following, a data
abort for that translation stage occurs:

. Normal Inner Non-cacheable, Outer Non-cacheable.
. Device-GRE.

. Device-nGRE.

. Device-nGnRE.

. Device-nGnRnE.

Table C3-34 Single-copy atomic 64-byte load/store instructions

Mnemonic Instruction See

LD64B Single-copy atomic 64-byte load LD64B on page C6-1040
ST64B Single-copy atomic 64-byte store without return ST64B on page C6-1325
ST64BV Single-copy atomic 64-byte store with return ST64BV on page C6-1326
ST64BVO Single-copy atomic 64-byte ELO store with return ~ ST64BV0 on page C6-1328

Swap

The swap instructions support only one addressing mode:
. Base register only.

See also Load/store addressing modes on page C1-202.

For the purpose of permission checking, and for watchpoints, all of the Swap instructions are treated as performing
both a load and a store.

If FEAT LSE2 is not implemented then the SWP instructions require natural alignment, and an unaligned address
generates an Alignment fault. For more information on alignment requirements and behaviors see Load-Exclusive/
Store-Exclusive and Atomic instructions on page B2-160.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
Armv8-A architecture. The atomic instructions with release semantics have the same rules as Store-Release
instructions regarding multi-copy atomicity.

For the SWP instructions, where the source and destination registers are the same, if the instruction generates a
synchronous Data Abort, then the source register is restored to the value it held before the instruction was executed.

Table C3-35 Swap instructions

Mnemonic Instruction See

SWP Swap SWP, SWPA, SWPAL, SWPL on page C6-1475

SWPB Swap byte SWPB, SWPAB, SWPALB, SWPLB on page C6-1471
SWPH Swap halfword SWPH, SWPAH, SWPALH, SWPLH on page C6-1473

Compare and Swap

The Compare and Swap instructions support only one addressing mode:
. Base register only.

See also Load/store addressing modes on page C1-202.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-239
Non-Confidential

A64 Instruction Set Overview

C3.2 Loads and stores

For the purpose of permission checking, and for watchpoints, all of the Compare and Swap instructions are treated
as performing both a load and a store.

If FEAT LSE?2 is not implemented then:
. The CAS instructions require natural alignment.

. The CASP instructions require alignment to the total size of the memory being accessed.

For more information on alignment requirements and behaviors see Load-Exclusive/ Store-Exclusive and
Atomic instructions on page B2-160.

The instructions are provided with ordering options, which map to the acquire and release definitions used in the
Armv8-A architecture. If a compare and swap instruction does not perform a store, then the instruction does not
have release semantics, regardless of the instruction ordering options.

The atomic instructions with release semantics have the same rules as Store-Release instructions regarding
multi-copy atomicity.

For the CAS and CASP instructions, the architecture permits that a data read clears any Exclusives monitors associated
with that location, even if the compare subsequently fails. If these instructions generate a synchronous Data Abort,
the registers which are compared and loaded are restored to the values held in the registers before the instruction
was executed.

Table C3-36 Compare and swap instructions

Mnemonic Instruction See

CAS Compare and swap CAS, CASA, CASAL, CASL on page C6-951

CASB Compare and swap byte CASB, CASAB, CASALB, CASLB on page C6-944
CASH Compare and swap halfword ~ CASH, CASAH, CASALH, CASLH on page C6-946
CASP Compare and swap pair CASP, CASPA, CASPAL, CASPL on page C6-948

C3.2.13 Memory Tagging instructions

If FEAT MTE is implemented, the following instructions are implemented.

Table C3-37 on page C3-240 shows the Memory Tagging Extension Tag generation instructions.

Table C3-37 Tag generation instructions

Mnemonic Instruction See

ADDG Add immediate value to Logical Address Tag ADDG on page C6-887
GMI Tag Mask Insert GM]I on page C6-1031
IRG Random Logical Address Tag generation IRG on page C6-1037
SUBG Subtract immediate value to Logical Address Tag SUBG on page C6-1459

Table C3-38 on page C3-240 shows the Memory Tagging Extension Pointer Arithmetic instructions.

Table C3-38 Pointer Arithmetic

Mnemonic Instruction See
SUBP(S) Subtract address and set flags SUBPS on page C6-1461
C3-240 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-39 on page C3-241 shows the Memory Tagging Extension Tag setting instructions.

Table C3-39 Tag setting instructions

Mnemonic Instruction See

STG Store Allocation Tag to granule STG on page C6-1348
STZG Store Allocation Tag to granule Zeroing STZG on page C6-1449
ST2G Store Allocation Tag to two granules ST2G on page C6-1323
STZ2G Store Allocation Tag to two granules Zeroing S7Z2G on page C6-1447
STGP Store Allocation Tag to memory STGP on page C6-1351

Table C3-40 on page C3-241 shows the Memory Tagging Extension Tag getting instructions.

Table C3-40 Tag getting instructions

Mnemonic Instruction See

LDG Load Allocation Tag LDG on page C6-1090

If FEAT MTE2 is implemented, all of the FEAT MTE instructions are implemented, plus the following
instructions.

Table C3-41 on page C3-241 shows the Memory Tagging Extension Bulk Allocation Tag access instructions.

Table C3-41 Bulk Allocation Tag access

Mnemonic Instruction See

LDGM Load an IMPLEMENTATION DEFINED number of Allocation Tags LDGM on page C6-1091

STGM Store an IMPLEMENTATION DEFINED number of Allocation Tags ~ STGM on page C6-1350

STZGM Store Allocation Tag to granule Zeroing Multiple STZGM on page C6-1451
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-241

ID072021 Non-Confidential

A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.3 Data processing - immediate
This section describes the instruction groups for data processing with immediate operands. It contains the following
subsections:
. Arithmetic (immediate) on page C3-242.
. Logical (immediate) on page C3-242.
. Move (wide immediate) on page C3-243.
. Move (immediate) on page C3-243.
. PC-relative address calculation on page C3-244.
. Bitfield move on page C3-244.
. Bitfield insert and extract on page C3-245
. Extract register on page C3-245.
. Shift (immediate) on page C3-245.
. Sign-extend and Zero-extend on page C3-246.
For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Immediate on page C4-284.
C3.31 Arithmetic (immediate)
The Arithmetic (immediate) instructions accept a 12-bit unsigned immediate value, optionally shifted left by 12 bits.
The Arithmetic (immediate) instructions that do not set Condition flags can read from and write to the current stack
pointer. The flag setting instructions can read from the stack pointer, but they cannot write to it.
Table C3-42 on page C3-242 shows the Arithmetic instructions with an immediate offset.
Table C3-42 Arithmetic instructions with an immediate
Mnemonic Instruction See
ADD Add ADD (immediate) on page C6-883
ADDS Add and set flags ADDS (immediate) on page C6-891
SUB Subtract SUB (immediate) on page C6-1455
SUBS Subtract and set flags ~ SUBS (immediate) on page C6-1466
cmp Compare CMP (immediate) on page C6-982
CMN Compare negative CMN (immediate) on page C6-976
C3.3.2 Logical (immediate)
The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern
viewed as a vector of identical elements of size e =2, 4, 8, 16, 32 or, 64 bits. Each element contains the same
sub-pattern, that is a single run of 1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then rotated by 0 to (e -
1) bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.
Note
Values that consist of only zeros or only ones cannot be described in this way.
The Logical (immediate) instructions that do not set the Condition flags can write to the current stack pointer, for
example to align the stack pointer in a function prologue.
C3-242 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.3 Data processing - immediate

Note

Apart from ANDS, and its TST alias, Logical (immediate) instructions do not set the Condition flags. However, the
final results of a bitwise operation can be tested by a CBZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-43 on page C3-243 shows the Logical immediate instructions.

Table C3-43 Logical immediate instructions

Mnemonic Instruction See

AND Bitwise AND AND (immediate) on page C6-897
ANDS Bitwise AND and set flags ~ ANDS (immediate) on page C6-901
EOR Bitwise exclusive OR EOR (immediate) on page C6-1022
ORR Bitwise inclusive OR ORR (immediate) on page C6-1257
TST Test bits TST (immediate) on page C6-1491

C3.33 Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned
position in the destination register. The value of the other bits in the destination register depends on the variant used.
The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-44 on page C3-243 shows the Move (wide immediate) instructions.

Table C3-44 Move (wide immediate) instructions

Mnemonic Instruction See

MovZ Move wide with zero MOVZ on page C6-1234
MOVN Move wide with NOT ~ MOVN on page C6-1232
MOVK Move wide with keep ~ MOVK on page C6-1230

C3.34 Move (immediate)

The Move (immediate) instructions are aliases for a single MOVZ, MOVN, or ORR (immediate with zero register),
instruction to load an immediate value into the destination register. An assembler must permit a signed or unsigned
immediate, as long as its binary representation can be generated using one of these instructions, and an assembler
error results if the immediate cannot be generated in this way. On disassembly, it is unspecified whether the
immediate is output as a signed or an unsigned value.

If there is a choice between the MOVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must
prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with
zero register) MOVZ, and MOVN, as a MOV mnemonic except that the underlying instruction must be used when:

. ORR has an immediate that can be generated by a MOVZ or MOVN instruction.
. A MOWN instruction has an immediate that can be encoded by MOVZ.
. MOVZ #@ or MOVN #0 have a shift amount other than LSL #0.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-243
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.3.5

C3.3.6

Table C3-45 on page C3-244 shows the Move (immediate) instructions.

Table C3-45 Move (immediate) instructions

Mnemonic Instruction See

Mov Move (inverted wide immediate) MOV (inverted wide immediate) on page C6-1222

Move (wide immediate) MOV (wide immediate) on page C6-1224

Move (bitmask immediate) MOV (bitmask immediate) on page C6-1226

PC-relative address calculation

The ADR instruction adds a signed, 21-bit immediate to the value of the program counter that fetched this instruction,
and then writes the result to a general-purpose register. This permits the calculation of any byte address within
+1MB of the current PC.

The ADRP instruction shifts a signed, 21-bit immediate left by 12 bits, adds it to the value of the program counter with
the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the
calculation of the address at a 4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or
a load/store instruction with a 12-bit immediate offset, this allows for the calculation of, or access to, any address
within +4GB of the current PC.

Note

The term page used in the ADRP description is short-hand for the 4KB memory region, and is not related to the virtual
memory translation granule size.

Table C3-46 on page C3-244 shows the instructions used for PC-relative address calculations are as follows:

Table C3-46 PC-relative address calculation instructions

Mnemonic Instruction See

ADRP Compute address of 4KB page at a PC-relative offset ~ 4ADRP on page C6-896

ADR Compute address of label at a PC-relative offset. ADR on page C6-895

Bitfield move

The Bitfield move instructions copy a field of constant width from bit 0 in the source register to a constant bit
position in the destination register, or from a constant bit position in the source register to bit 0 in the destination
register. The remaining bits in the destination register are set as follows:

. For BFM, the remaining bits are unchanged.
. For UBFM the lower bits, if any, and upper bits, if any, are set to zero.

. For SBFM, the lower bits, if any, are set to zero, and the upper bits, if any, are set to a copy of the
most-significant bit in the copied field.

C3-244

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.3 Data processing - immediate

Table C3-47 on page C3-245 shows the Bitfield move instructions.

Table C3-47 Bitfield move instructions

Mnemonic Instruction See

BFM Bitfield move BFM on page C6-926
SBFM Signed bitfield move SBFM on page C6-1305
UBFM Unsigned bitfield move (32-bit) UBFM on page C6-1496

C3.3.7 Bitfield insert and extract

The Bitfield insert and extract instructions are implemented as aliases of the Bitfield move instructions. Table C3-48
on page C3-245 shows the Bitfield insert and extract aliases.

Table C3-48 Bitfield insert and extract instructions

Mnemonic Instruction See

BFC Bitfield insert clear BFC on page C6-922
BFI Bitfield insert BFT on page C6-924
BFXIL Bitfield extract and insert low BFXIL on page C6-928
SBFIZ Signed bitfield insert in zero SBFIZ on page C6-1303
SBFX Signed bitfield extract SBFX on page C6-1308
UBFIZ Unsigned bitfield insert in zero UBFIZ on page C6-1494
UBFX Unsigned bitfield extract UBFX on page C6-1499

C3.3.8 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from
a constant bit position within a double-width value formed by the concatenation of a pair of source registers to a
destination register.

Table C3-49 on page C3-245 shows the Extract (immediate) instructions.

Table C3-49 Extract register instructions

Mnemonic Instruction See

EXTR Extract register from pair ~ EXTR on page C6-1029

C3.3.9 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register
instructions. The shift or rotate amount must be in the range 0 to one less than the register width of the instruction,
inclusive.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-245
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.3 Data processing - immediate

Table C3-50 on page C3-246 shows the aliases that can be used as immediate shift and rotate instructions.

Table C3-50 Aliases for immediate shift and rotate instructions

Mnemonic Instruction See
ASR Arithmetic shift right ~ ASR (immediate) on page C6-907
LSL Logical shift left LSL (immediate) on page C6-1207
LSR Logical shift right LSR (immediate) on page C6-1213
ROR Rotate right ROR (immediate) on page C6-1292
C3.3.10 Sign-extend and Zero-extend
The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions.
Table C3-51 on page C3-246 shows the aliases that can be used as zero-extend and sign-extend instructions.
Table C3-51 Zero-extend and sign-extend instructions
Mnemonic Instruction See
SXTB Sign-extend byte SXTB on page C6-1477
SXTH Sign-extend halfword SXTH on page C6-1479
SXTW Sign-extend word SXTW on page C6-1481
UXTB Unsigned extend byte UXTB on page C6-1510
UXTH Unsigned extend halfword ~ UXTH on page C6-1511
C3-246 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview
C3.4 Data processing - register

C34 Data processing - register

This section describes the instruction groups for data processing with all register operands. It contains the following
subsections:

. Arithmetic (shifted register) on page C3-247.

. Arithmetic (extended register) on page C3-248.
. Arithmetic with carry on page C3-249.

. Flag manipulation instructions on page C3-249.
. Logical (shifted register) on page C3-249.

. Move (register) on page C3-250.

. Shift (register) on page C3-250.

. Multiply and divide on page C3-251.

. CRC32 on page C3-252.

. Bit operation on page C3-253.

. Conditional select on page C3-253.

. Conditional comparison on page C3-254.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Register on page C4-332.

C3.4.1 Arithmetic (shifted register)

The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value
before performing the arithmetic operation. The register width of the instruction controls whether the new bits are
fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, and LSR accept an immediate shift amount in the range 0 to one less than the register
width of the instruction, inclusive.

Omitting the shift operator implies LSL #0, which means that there is no shift. A disassembler must not output LSL
#0. However, a disassembler must output all other shifts by zero.

The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended
register) on page C3-248 for arithmetic instructions that can operate on the current stack pointer.

Table C3-52 on page C3-247 shows the Arithmetic (shifted register) instructions.

Table C3-52 Arithmetic (shifted register) instructions

Mnemonic Instruction See
ADD Add ADD (shifted register) on page C6-885
ADDS Add and set flags ADDS (shifted register) on page C6-893
SUB Subtract SUB (shifted register) on page C6-1457
SUBS Subtract and set flags ~ SUBS (shifted register) on page C6-1468
CMN Compare negative CMN (shifted register) on page C6-978
cvp Compare CMP (shified register) on page C6-984
NEG Negate NEG (shifted register) on page C6-1246
NEGS Negate and set flags NEGS on page C6-1248

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-247

ID072021 Non-Confidential

A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.2

Arithmetic (extended register)

The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second
source register value, followed by an optional left shift by a constant amount of 1-4, inclusive.

The extended shift is described by the mandatory extend operator SXTB, SXTH, SXTW, UXTB, UXTH, or UXTW. This is
followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A
disassembler must not output a shift amount of zero.

For 64-bit instruction forms, the additional operators UXTX and SXTX use all 64 bits of the second source register with
an optional shift. In that case, Arm recommends UXTX as the operator. If and only if at least one register is SP, Arm
recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the
operator and the shift amount can be omitted. UXTW and SXTW both use all 32 bits of the second source register with
an optional shift. In that case Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

For 32-bit instruction forms, the operators UXTW and SXTW both use all 32 bits of the second source register with an
optional shift. In that case, Arm recommends UXTW as the operator. If and only if at least one register is WSP, Arm
recommends use of the LSL operator name, rather than UXTW, and when the shift amount is also zero then both the

operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either
the destination register and the first source register. The flag setting variants only permit the stack pointer to be used
as the first source register.

In the 64-bit form of these instructions, the final register operand is written as Wm for all except the UXTX/LSL and SXTX
extend operators. For example:

CMP X4, W5, SXTw
ADD X1, X2, W3, UXTB #2
SuB SP, SP, X1 // SUB SP, SP, X1, UXTX #0

Table C3-53 on page C3-248 shows the Arithmetic (extended register) instructions.

Table C3-53 Arithmetic (extended register) instructions

Mnemonic Instruction See

ADD Add ADD (extended register) on page C6-880

ADDS Add and set flags ADDS (extended register) on page C6-888

SUB Subtract SUB (extended register) on page C6-1452

SUBS Subtract and set flags ~ SUBS (extended register) on page C6-1463

CMN Compare negative CMN (extended register) on page C6-974

cMP Compare CMP (extended register) on page C6-980

C3-248

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.3 Arithmetic with carry

The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the
calculation. They do not support shifting of the second source register.

Table C3-54 on page C3-249 shows the Arithmetic with carry instructions

Table C3-54 Arithmetic with carry instructions

Mnemonic Instruction See
ADC Add with carry ADC on page C6-876
ADCS Add with carry and set flags ADCS on page C6-878
SBC Subtract with carry SBC on page C6-1299
SBCS Subtract with carry and set flags SBCS on page C6-1301
NGC Negate with carry NGC on page C6-1250
NGCS Negate with carry and set flags NGCS on page C6-1252
C3.44 Flag manipulation instructions

The Flag manipulation instructions set the value of the NZCV condition flags directly.

The instructions SETF8 and SETF16 accept one source register and set the NZV condition flags based on the value of
the input register. The instruction RMIF accepts one source register and two immediate values, rotating the first
source register using the first immediate value and setting the NZCV condition flags masked by the second
immediate value.

The instructions XAFLAG and AXFLAG convert PSTATE condition flags between the FCMP instruction format and an
alternative format. See Table C6-1 on page C6-874 for more information.

Table C3-55 on page C3-249 shows the Flag manipulation instructions.

Table C3-55 Flag manipulation instructions

Mnemonic Instruction See

AXFLAG Convert from FCMP comparison format to the alternative format AXFLAG on page C6-919

CFINV Invert value of the PSTATE.C bit CFINV on page C6-964

RMIF Rotate, mask insert flags RMIF on page C6-1291

SETF8 Evaluation of 8-bit flags SETFS8, SETF16 on page C6-1311
SETF16 Evaluation of 16-bit flags SETFS, SETF16 on page C6-1311
XAFLAG Convert from alternative format to FCMP comparison format XAFLAG on page C6-1516

C3.45 Logical (shifted register)

The Logical (shifted register) instructions apply an optional shift operator to the second source register value before
performing the main operation. The register width of the instruction controls whether the new bits are fed into the
intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, LSR, and ROR accept a constant immediate shift amount in the range 0 to one less than
the register width of the instruction, inclusive.

Omitting the shift operator and amount implies LSL #0, which means that there is no shift. A disassembler must not
output LSL #0. However, a disassembler must output all other shifts by zero.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-249
Non-Confidential

A64 Instruction Set Overview
C3.4 Data processing - register

Note

Apart from ANDS, TST, and BICS the logical instructions do not set the Condition flags, but the final result of a bit
operation can usually directly control a (BZ, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-56 on page C3-250 shows the Logical (shifted register) instructions.

Table C3-56 Logical (shifted register) instructions

Mnemonic Instruction See
AND Bitwise AND AND (shifted register) on page C6-899
ANDS Bitwise AND and set flags ANDS (shifted register) on page C6-903
BIC Bitwise bit clear BIC (shifted register) on page C6-930
BICS Bitwise bit clear and set flags ~ BICS (shifted register) on page C6-932
EON Bitwise exclusive OR NOT EON (shifted register) on page C6-1020
EOR Bitwise exclusive OR EOR (shifted register) on page C6-1024
ORR Bitwise inclusive OR ORR (shifted register) on page C6-1259
MVN Bitwise NOT MVN on page C6-1244
ORN Bitwise inclusive OR NOT ORN (shifted register) on page C6-1255
TST Test bits TST (shifted register) on page C6-1492
C3.4.6 Move (register)
The Move (register) instructions are aliases for other data processing instructions. They copy a value from a
general-purpose register to another general-purpose register or the current stack pointer, or from the current stack
pointer to a general-purpose register.
Table C3-57 MOV register instructions
Mnemonic Instruction See
MoV Move register MOV (register) on page C6-1228
Move register to SP or move SP to register MOV (to/from SP) on page C6-1221
C3.4.7 Shift (register)
In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the
register size. The register width of the instruction controls whether the new bits are fed into the result on a right shift
or rotate at bit[63] or bit[31].
Table C3-58 on page C3-250 shows the Shift (register) instructions.
Table C3-58 Shift (register) instructions
Mnemonic Instruction See
ASRV Arithmetic shift right variable ~ ASRV on page C6-909
C3-250 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.4 Data processing - register

Table C3-58 Shift (register) instructions (continued)

Mnemonic Instruction See

LSLV Logical shift left variable LSLV on page C6-1209
LSRV Logical shift right variable LSRV on page C6-1215
RORV Rotate right variable RORYV on page C6-1296

However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases
described in Shift (immediate) on page C3-245.

Table C3-59 on page C3-251 shows the aliases for Shift (register) instructions.

Table C3-59 Aliases for Variable shift instructions

Mnemonic Instruction See

ASR Arithmetic shift right ~ ASR (register) on page C6-905
LSL Logical shift left LSL (register) on page C6-1205
LSR Logical shift right LSR (register) on page C6-1211
ROR Rotate right ROR (register) on page C6-1294

C3.4.8 Multiply and divide

This section describes the instructions used for integer multiplication and division. It contains the following

subsections:
. Multiply on page C3-251.
. Divide on page C3-252.

Multiply

The Multiply instructions write to a single 32-bit or 64-bit destination register, and are built around the fundamental
four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A

64-bit to 128-bit widening multiple can be constructed with two instructions, using SMULH or UMULH to generate the
upper 64 bits. Table C3-60 on page C3-251 shows the Multiply instructions.

Table C3-60 Multiply integer instructions

Mnemonic Instruction See

MADD Multiply-add MADD on page C6-1217
MSUB Multiply-subtract MSUB on page C6-1241
MNEG Multiply-negate MNEG on page C6-1219
MUL Multiply MUL on page C6-1243
SMADDL Signed multiply-add long SMADDL on page C6-1314
SMSUBL Signed multiply-subtract long SMSUBL on page C6-1318
SMNEGL Signed multiply-negate long SMNEGL on page C6-1317
SMULL Signed multiply long SMULL on page C6-1321
SMULH Signed multiply high SMULH on page C6-1320

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C3-251

A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.9

Table C3-60 Multiply integer instructions (continued)

Mnemonic Instruction See

UMADDL Unsigned multiply-add long UMADDL on page C6-1503
UMSUBL Unsigned multiply-subtract long ~ UMSUBL on page C6-1506
UMNEGL Unsigned multiply-negate long UMNEGL on page C6-1505
UMULL Unsigned multiply long UMULL on page C6-1509
UMULH Unsigned multiply high UMULH on page C6-1508

Divide
The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be

computed as (numerator - (quotient x denominator)), using the MSUB instruction.

If a signed integer division (INT_MIN / -1) is performed where INT_MIN is the most negative integer value
representable in the selected register size, then the result overflows the signed integer range. No indication of this
overflow is produced and the result that is written to the destination register is INT_MIN.

A division by zero results in a zero being written to the destination register, without any indication that the division
by zero occurred.

Table C3-61 on page C3-252 shows the Divide instructions.

Table C3-61 Divide instructions

Mnemonic Instruction See

SDIV Signed divide SDIV on page C6-1310

upIv Unsigned divide ~ UDIV on page C6-1502

CRC32

The CRC32 instructions operate on the general-purpose register file to update a 32-bit CRC value from an input value
comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32, and CRC32C, that support two
commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the values is reversed as part of the operation.

When bits[19:16] of ID__AA64ISARO_EL1 are set to 0b0001, the CRC instructions are implemented.
These instructions are OPTIONAL in an Armv8.0 implementation.

All implementations of Armv8.1 architecture and later are required to implement the CRC32 instructions.

Table C3-62 on page C3-252 shows the CRC instructions.

Table C3-62 CRC32 instructions

Mnemonic

Instruction See

CRC32B

CRC-32 sum from byte CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

CRC32H

CRC-32 sum from halfword CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

CRC32wW

CRC32X

CRC-32 sum from word CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

CRC-32 sum from doubleword CRC32B, CRC32H, CRC32W, CRC32X on page C6-990

C3-252

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

C3.4.10

C3.4.11

A64 Instruction Set Overview
C3.4 Data processing - register

Table C3-62 CRC32 instructions (continued)

Mnemonic Instruction See

CRC32CB CRC-32C sum from byte CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992
CRC32CH CRC-32C sum from halfword CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992
CRC32CW CRC-32C sum from word CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992
CRC32CX CRC-32C sum from doubleword =~ CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-992

Bit operation

Table C3-63 on page C3-253 shows the Bit operation instructions.

Conditional select

Table C3-63 Bit operation instructions

Mnemonic Instruction See

CLS Count leading sign bits CLS on page C6-971

CLz Count leading zero bits CLZ on page C6-973
RBIT Reverse bit order RBIT on page C6-1280
REV Reverse bytes in register REV on page C6-1284
REV16 Reverse bytes in halfwords ~ REV16 on page C6-1286
REV32 Reverse bytes in words REV32 on page C6-1288
REV64 Reverse bytes in register REV64 on page C6-1290

The Conditional select instructions select between the first or second source register, depending on the current state
of the Condition flags. When the named condition is true, the first source register is selected and its value is copied
without modification to the destination register. When the condition is false the second source register is selected

and its value might be optionally inverted, negated, or incremented by one, before writing to the destination register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional
select instructions.

Table C3-64 on page C3-253 shows the Conditional select instructions.

Table C3-64 Conditional select instructions

Mnemonic Instruction See

CSEL Conditional select CSEL on page C6-995
CSINC Conditional select increment ~ CSINC on page C6-1001
CSINV Conditional select inversion CSINV on page C6-1003
CSNEG Conditional select negation CSNEG on page C6-1005
CSET Conditional set CSET on page C6-997
CSET™ Conditional set mask CSETM on page C6-999

ARM DDI 0487G.b

ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C3-253

A64 Instruction Set Overview
C3.4 Data processing - register

Table C3-64 Conditional select instructions (continued)

Mnemonic Instruction See

CINC Conditional increment CINC on page C6-966
CINV Conditional invert CINV on page C6-968
CNEG Conditional negate CNEG on page C6-987

C3.4.12 Conditional comparison

The Conditional comparison instructions provide a conditional select for the NZCV Condition flags, setting the
flags to the result of an arithmetic comparison of its two source register values if the named input condition is true,
or to an immediate value if the input condition is false. There are register and immediate forms. The immediate form
compares the source register to a small 5-bit unsigned value.

Table C3-65 on page C3-254 shows the Conditional comparison instructions.

Table C3-65 Conditional comparison instructions

Mnemonic Instruction See

CCMN Conditional compare negative (register) CCMN (register) on page C6-958

CCMN Conditional compare negative (immediate) ~CCMN (immediate) on page C6-956

cemp Conditional compare (register) CCMP (register) on page C6-962

ceMp Conditional compare (immediate) CCMP (immediate) on page C6-960
C3-254 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5 Data processing - SIMD and floating-point

This section describes the instruction groups for data processing with SIMD and floating-point register operands.

Common features of SIMD instructions on page C3-255 gives general information about SIMD instructions.

The following subsections describe the scalar floating-point data processing instructions:

Floating-point move (register) on page C3-256.
Floating-point move (immediate) on page C3-256.
Floating-point conversion on page C3-257.
Floating-point round to integral value on page C3-258.
Floating-point multiply-add on page C3-260.
Floating-point arithmetic (one source) on page C3-260.
Floating-point arithmetic (two sources) on page C3-260.
Floating-point minimum and maximum on page C3-260.
Floating-point comparison on page C3-261.
Floating-point conditional select on page C3-262.
BFloatl16 floating-point instructions on page C3-262.

The following subsections describe the SIMD data processing instructions:

SIMD move on page C3-262

SIMD arithmetic on page C3-262.

SIMD compare on page C3-266.

SIMD widening and narrowing arithmetic on page C3-267.
SIMD table lookup on page C3-276.

SIMD by element arithmetic on page C3-270.

SIMD permute on page C3-271.

SIMD immediate on page C3-271.

SIMD shift (immediate) on page C3-272.

SIMD floating-point and integer conversion on page C3-273.
SIMD reduce (across vector lanes) on page C3-274.

SIMD pairwise arithmetic on page C3-275.

SIMD dot product on page C3-275.

SIMD table lookup on page C3-276.

SIMD complex number arithmetic on page C3-276.

SIMD BFloatl6 on page C3-276.

SIMD matrix multiplication on page C3-277.

The Cryptographic Extension on page C3-278.

For information about the encoding structure of the instructions in this instruction group, see Data Processing --
Scalar Floating-Point and Advanced SIMD on page C4-342.

For information about the floating-point exceptions, see Floating-point exceptions and exception traps on
page D1-2495.

C3.51 Common features of SIMD instructions

A number of SIMD instructions come in three forms:

Wide Indicated by the suffix W. The element width of the destination register and the first source operand
is double that of the second source operand.
Long Indicated by the suffix L. The element width of the destination register is double that of both source
operands.
Narrow Indicated by the suffix N. The element width of the destination register is half that of both source
operands.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-255

ID072021

Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

In addition, each vector form of the instruction is part of a pair, with a second and upper half suffix of 2, to identify
the variant of the instruction:

. Where a SIMD operation widens or lengthens a 64-bit vector to a 128-bit vector, the instruction provides a
second part operation that can extract the source from the upper 64 bits of the source registers.

. Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the instruction provides a second-part
operation that can pack the result of a second operation into the upper part of the same destination register.

Note

This is referred to as a lane set specifier.

C3.5.2 Floating-point move (register)

The Floating-point move (register) instructions copy a scalar floating-point value from one register to another
register without performing any conversion.

Some of the Floating-point move (register) instructions overlap with the functionality provided by the Advanced
SIMD instructions DUP, INS, and UMOV. However, Arm recommends using the FMOV instructions when operating on
scalar floating-point data to avoid the creation of scalar floating-point code that depends on the availability of the
Advanced SIMD instruction set.

Table C3-66 on page C3-256 shows the Floating-point move (register) instructions.

Table C3-66 Floating-point move (register) instructions

Mnemonic

Instruction See

FMOV

Floating-point move register without conversion FMOYV (register) on page C7-1819

Floating-point move to or from general-purpose register without conversion ~ FMOV (general) on page C7-1821

C3.5.3 Floating-point move (immediate)

The Floating-point move (immediate) instructions convert a small constant immediate floating-point value into a
half-precision, single-precision, or double-precision scalar floating-point value in a SIMD and floating-point
register.

The floating-point constant can be specified either in decimal notation, such as 12.0 or -1.2el, or as a string
beginning with 0x followed by a hexadecimal representation of the IEEE 754 half-precision, single-precision, or
double-precision encoding. Arm recommends that a disassembler uses the decimal notation, provided that this
displays the value precisely.

Note

When FEAT FP16 is not implemented, the only half-precision instructions that are supported are floating-point
conversions between half-precision, single-precision, and double-precision.

The floating-point value must be expressible as (+ n/16 x 2r), where # is an integer in the range 16 <n <31 and r is
an integer in the range of -3 <r <4, that is a normalized binary floating-point encoding with one sign bit, four bits
of fraction, and a 3-bit exponent.

Table C3-67 on page C3-256 shows the Floating-point move (immediate) instruction:

Table C3-67 Floating-point move (immediate) instruction

Mnemonic Instruction See

FMOV Floating-point move immediate ~ FMOV (scalar, immediate) on page C7-1824

C3-256

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

C3.5.4 Floating-point conversion
The following subsections describe the conversion of floating-point values:
. Convert floating-point precision on page C3-257.
. Convert between floating-point and integer or fixed-point on page C3-257.
Convert floating-point precision
These instructions convert a floating-point scalar with one precision to a floating-point scalar with a different
precision, using the current rounding mode as specified by FPCR.RMode.
Table C3-68 on page C3-257 shows the Floating-point precision conversion instruction.
Table C3-68 Floating-point precision conversion instruction
Mnemonic Instruction See
FCVT Floating-point convert precision (scalar) FCV'T on page C7-1681
Convert between floating-point and integer or fixed-point
These instructions convert a floating-point scalar in a SIMD and floating-point register to or from a signed or
unsigned integer or fixed-point value in a general-purpose register. For a fixed-point value, a final immediate
operand indicates that the general-purpose register holds a fixed-point number and fbits indicates the number of
bits after the binary point. fbits is in the range 1- 32 inclusive for a 32-bit general-purpose register name, and 1-64
inclusive for a 64-bit general-purpose register name.
These instructions can cause the following floating-point exceptions:
Invalid Operation
Occurs if the floating-point input is a NaN, infinity, or a numerical value that cannot be represented
in the destination register. An out of range integer or fixed-point result is saturated to the size of the
destination register.
Inexact Occurs if the numeric result that differs from the input value.
Input Denormal
Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero on page A1-54 and Input Denormal exceptions on page D1-2495.
Table C3-69 on page C3-257 shows the Floating-point and fixed-point conversion instructions.
Table C3-69 Floating-point and integer or fixed-point conversion instructions
Mnemonic Instruction See
FCVTAS Floating-point scalar convert to signed integer, rounding to nearest with tiesto ~ FCVTAS (scalar) on page C7-1686
away (scalar form)
FCVTAU Floating-point scalar convert to unsigned integer, rounding to nearest with ties ~ FCVTAU (scalar) on page C7-1691
to away (scalar form)
FCVTMS Floating-point scalar convert to signed integer, rounding toward minus infinity ~ FCVTMS (scalar) on page C7-1698
(scalar form)
FCVTMU Floating-point scalar convert to unsigned integer, rounding toward minus FCVTMU (scalar) on
infinity (scalar form) page C7-1703
FCVTNS Floating-point scalar convert to signed integer, rounding to nearest with tiesto ~ FCVTNS (scalar) on page C7-1710

even (scalar form)

ARM DDI 0487G.b

ID072021

Non-Confidential

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-257

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-69 Floating-point and integer or fixed-point conversion instructions (continued)

Mnemonic Instruction See
FCVTNU Floating-point scalar convert to unsigned integer, rounding to nearest with ties ~ FCVTNU (scalar) on page C7-1715
to even (scalar form)
FCVTPS Floating-point scalar convert to signed integer, rounding toward positive FCVTPS (scalar) on page C7-1720
infinity (scalar form)
FCVTPU Floating-point scalar convert to unsigned integer, rounding toward positive FCVTPU (scalar) on page C7-1725
infinity (scalar form)
FCVTZS Floating-point scalar convert to signed integer, rounding toward zero (scalar FCVTZS (scalar, integer) on
form) page C7-1738
Floating-point convert to signed fixed-point, rounding toward zero (scalar FCVTZS (scalar, fixed-point) on
form) page C7-1736
FCVTZU Floating-point scalar convert to unsigned integer, rounding toward zero (scalar ~ FCVTZU (scalar, integer) on
form) page C7-1748
Floating-point scalar convert to unsigned fixed-point, rounding toward zero FCVTZU (scalar, fixed-point) on
(scalar form) page C7-1746
FICVTZS Floating-point Javascript convert to signed fixed-point, rounding toward zero ~ FJCVTZS on page C7-1754
SCVTF Signed integer scalar convert to floating-point, using the current rounding SCVTF (scalar, integer) on
mode (scalar form) page C7-2064
Signed fixed-point convert to floating-point, using the current rounding mode ~ SCVTF (scalar, fixed-point) on
(scalar form) page C7-2062
UCVTF Unsigned integer scalar convert to floating-point, using the current rounding UCVTF (scalar, integer) on
mode (scalar form) page C7-2343
Unsigned fixed-point convert to floating-point, using the current rounding UCVTF (scalar, fixed-point) on
mode (scalar form) page C7-2341
C3.5.5 Floating-point round to integral value
The following subsections describe instructions which round a floating-point number to an integral valued
floating-point number in the same format:
. Floating-point round to an integer of the same size as the register on page C3-258
. Floating-point round to 32-bit or 64-bit integer on page C3-259
Floating-point round to an integer of the same size as the register
The following instructions round a floating-point value to an integer floating-point value of the same size.
For these instructions:
. A zero input gives a zero result with the same sign.
. An infinite input gives an infinite result with the same sign.
. A NaN is propagated as in normal floating-point arithmetic.
These instructions can cause the following floating-point exceptions:
Invalid Operation
Occurs in response to a floating-point input of a signaling NaN.
Inexact, FRINTX instruction only
Occurs if the result is numeric and does not have the same numerical value as the input.
C3-258 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Input Denormal

Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero on page Al1-54 and Input Denormal exceptions on page D1-2495.

Table C3-70 on page C3-259 shows the Floating-point round to integer instructions.

Table C3-70 Floating-point round to integer instructions

Mnemonic Instruction See
FRINTA Floating-point round to integer, to nearest with ties to away FRINTA (scalar) on page C7-1879
FRINTI Floating-point round to integer, using current rounding mode FRINTI (scalar) on page C7-1883
FRINTM Floating-point round to integer, toward minus infinity FRINTM (scalar) on page C7-1887
FRINTN Floating-point round to integer, to nearest with ties to even FRINTN (scalar) on page C7-1891
FRINTP Floating-point round to integer, toward positive infinity FRINTP (scalar) on page C7-1895
FRINTX Floating-point round to integer exact, using current rounding mode FRINTX (scalar) on page C7-1899
FRINTZ Floating-point round to integer, toward zero FRINTZ (scalar) on page C7-1903
Floating-point round to 32-bit or 64-bit integer
The following instructions are present if FEAT FRINTTS is implemented, The instructions round to a value that
fits in a 32-bit integer or a 64-bit integer size, and use either round towards zero or the ambient rounding model.
Invalid Operation
Forced to be the most negative integer representable in the target size, and occurs in response to a
floating-point input of a signaling NaN, an infinite input, or an out of range input.
Inexact
Occurs if the result is numeric and does not have the same numerical value as the input.
Input Denormal
Can occur when zero replaces a double-precision or single-precision denormal input, see Flushing
denormalized numbers to zero on page A1-54 and Input Denormal exceptions on page D1-2495.
Table C3-71 on page C3-259 shows the Floating-point round to 32-bit or 64-bit integer instructions.
Table C3-71 Floating-point round to integer instructions
Mnemonic Instruction See
FRINT32X Floating-point round to 32-bit integer, using current rounding model ~ FRINT32X (scalar) on page C7-1863
FRINT32Z Floating-point round to 32-bit integer, toward zero FRINT32Z (scalar) on page C7-1867
FRINT64X Floating point round to 64-bit integer using current rounding model ~ FRINT64X (scalar) on page C7-1871
FRINT64Z Floating point round to 64-bit integer, toward zero FRINT64Z (scalar) on page C7-1875
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-259

ID072021

Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.6 Floating-point multiply-add

Table C3-72 on page C3-260 shows the Floating-point multiply-add instructions that require three source register

operands.
Table C3-72 Floating-point multiply-add instructions
Mnemonic Instruction See
FMADD Floating-point scalar fused multiply-add FMADD on page C7-1755
FMSUB Floating-point scalar fused multiply-subtract FMSUB on page C7-1826
FNMADD Floating-point scalar negated fused multiply-add FNMADD on page C7-1847
FNMSUB Floating-point scalar negated fused multiply-subtract =~ FNMSUB on page C7-1849
C3.5.7 Floating-point arithmetic (one source)
Table C3-73 on page C3-260 shows the Floating-point arithmetic instructions that require a single source register
operand.
Table C3-73 Floating-point arithmetic instructions with one source register
Mnemonic Instructions See
FABS Floating-point scalar absolute value ~ FABS (scalar) on page C7-1618
FNEG Floating-point scalar negate FNEG (scalar) on page C7-1845
FSQRT Floating-point scalar square root FSORT (scalar) on page C7-1913
C3.5.8 Floating-point arithmetic (two sources)
Table C3-74 on page C3-260 shows the Floating-point arithmetic instructions that require two source register
operands.
Table C3-74 Floating-point arithmetic instructions with two source registers
Mnemonic Instruction See
FADD Floating-point scalar add FADD (scalar) on page C7-1630
FDIV Floating-point scalar divide FDIV (scalar) on page C7-1752
FMUL Floating-point scalar multiply FMUL (scalar) on page C7-1834
FNMUL Floating-point scalar multiply-negate ~ FNMUL (scalar) on page C7-1851
FSUB Floating-point scalar subtract FSUB (scalar) on page C7-1917
C3.5.9 Floating-point minimum and maximum

The min(x,y) and max(x,y) operations return a quiet NaN when either x or y is NaN.

As described in Flushing denormalized numbers to zero on page A1-54, if flushing denormalized inputs to zero is
enabled, denormal operands are flushed to zero before comparison, and if the result of the comparison is the flushed
value, then a zero value is returned. Where both x and y are zero, or denormal values flushed to zero, with different
signs, then +0.0 is returned by max() and -0.0 by min().

C3-260 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

The minNum(x,y) and maxNum(x,y) operations follow the IEEE 754-2008 standard and return the numerical operand
when one operand is numerical and the other a quiet NaN. Apart from this additional handling of a single quiet NaN
the result is then identical to min(x,y) and max(x,y).

Table C3-75 on page C3-261 shows the Floating-point instructions that can perform floating-point minimum and
maximum operations.

Table C3-75 Floating-point minimum and maximum instructions

Mnemonic Instruction See

FMAX Floating-point scalar maximum FMAX (scalar) on page C7-1759
FMAXNM Floating-point scalar maximum number ~ FMAXNM (scalar) on page C7-1763
FMIN Floating-point scalar minimum FMIN (scalar) on page C7-1779
FMINNM Floating-point scalar minimum number ~ FMINNM (scalar) on page C7-1783

C3.5.10 Floating-point comparison

These instructions set the NZCV Condition flags in PSTATE, based on the result of a comparison of two operands.
If the floating-point comparisons are unordered, where one or both operands are a form of NaN, the C and V bits
are set to 1 and the N and Z bits are cleared to 0.

Note

The NZCYV flags in the FPSR are associated with AArch32 state. The A64 floating-point comparison instructions
do not change the Condition flags in the FPSR.

For the conditional Floating-point comparison instructions, if the condition is TRUE, the flags are updated to the
result of the comparison, otherwise the flags are updated to the immediate value that is defined in the instruction
encoding.

The quiet compare instructions generate an Invalid Operation floating-point exception if either of the source
operands is a signaling NaN. The signaling compare instructions generate an Invalid Operation floating-point
exception if either of the source operands is any type of NaN.

Note

If FEAT FlagM2 is implemented, instructions AXFLAG and XAFLAG convert between the PSTATE condition
flag format used by the FCMP instruction and an alternative format. See FEAT FlagM on page A2-91 for more
information.

Table C3-76 on page C3-261 shows the Floating-point comparison instructions.

Table C3-76 Floating-point comparison instructions

Mnemonic Instruction See

FCmMp Floating-point quiet compare FCMP on page C7-1675

FCMPE Floating-point signaling compare FCMPE on page C7-1677

FCCMp Floating-point conditional quiet compare FCCMP on page C7-1638

FCCMPE Floating-point conditional signaling compare =~ FCCMPE on page C7-1640
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-261

ID072021 Non-Confidential

A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

C3.5.11 Floating-point conditional select
Table C3-77 on page C3-262 shows the Floating-point conditional select instructions.
Table C3-77 Floating-point conditional select instructions
Mnemonic Instruction See
FCSEL Floating-point scalar conditional select ~FCSEL on page C7-1679
C3.5.12 BFloat16 floating-point instructions
The BFloat16 floating-point instructions are provided by FEAT BF16. The instructions to convert single-precision
floating-point values to BF16 format give a more accurate conversion than a simple truncation of F32 to BF16 by
removing the least significant 16 bits of the fraction. They also honor the settings of FPCR.
Table C3-78 on page C3-262 shows these instructions.
Table C3-78 BFloat16 floating-point instructions
Mnemonic Instruction See
BFCVT BFloat16 floating-point convert from single-precision to BFloat16 format (scalar) BFCVT on page C7-1545
C3.5.13 SIMD move
The functionality of some data movement instructions overlaps with that provided by the scalar floating-point FMOV
instructions described in Floating-point move (register) on page C3-256.
Table C3-79 on page C3-262 shows the SIMD move instructions.
Table C3-79 SIMD move instructions
Mnemonic Instruction See
DuP Duplicate vector element to vector or scalar DUP (element) on page C7-1603
DuP Duplicate general-purpose register to vector DUP (general) on page C7-1606
INSa Insert vector element from another vector element INS (element) on page C7-1919
Insert vector element from general-purpose register INS (general) on page C7-1921
MOV Move vector element to vector element MOV (element) on page C7-1991
Move general-purpose register to vector element MOV (from general) on page C7-1993
Move vector element to scalar MOV (scalar) on page C7-1989
Move vector element to general-purpose register MOV (to general) on page C7-1996
umov Unsigned move vector element to general-purpose register ~ UMOV on page C7-2376
SMov Signed move vector element to general-purpose register SMOV on page C7-2143
a. Disassembles as MOV.
C3.5.14 SIMD arithmetic
Table C3-80 on page C3-263 shows the SIMD arithmetic instructions.
C3-262 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-80 SIMD arithmetic instructions

Mnemonic Instruction See
ADD Add (vector and scalar form) ADD (vector) on page C7-1527
AND Bitwise AND (vector form) AND (vector) on page C7-1541
BIC Bitwise bit clear (register) (vector form) BIC (vector, register) on

page C7-1559
BIF Bitwise insert if false (vector form) BIF on page C7-1561
BIT Bitwise insert if true (vector form) BIT on page C7-1563
BSL Bitwise select (vector form) BSL on page C7-1565
EOR Bitwise exclusive OR (vector form) EOR (vector) on page C7-1608
FABD Floating-point absolute difference (vector and scalar form) FABD on page C7-1613
FADD Floating-point add (vector form) FADD (vector) on page C7-1628
FDIV Floating-point divide (vector form) FDIV (vector) on page C7-1750
FMAX Floating-point maximum (vector form) FMAXP (vector) on page C7-1773
FMAXNM Floating-point maximum number (vector form) FMAXNM (vector) on page C7-1761
FMIN Floating-point minimum (vector form) FMIN (vector) on page C7-1777
FMINNM Floating-point minimum number (vector form) FMINNM (vector) on page C7-1781
FMLA Floating-point fused multiply-add (vector form) FMLA (vector) on page C7-1801
FMLAL, Floating-point fused multiply-add long (vector form) FMLAL, FMLAL? (vector) on
FMLAL2 page C7-1805
FMLS Floating-point fused multiply-subtract (vector form) FMLS (vector) on page C7-1811
FMLSL, Floating-point fused multiply-subtract long (vector form) FMLSL, FMLSL? (vector) on
FMLSL2 page C7-1815
FMUL Floating-point multiply (vector form) FMUL (vector) on page C7-1832
FMULX Floating-point multiply extended (vector and scalar form) FMULX on page C7-1840
FRECPS Floating-point reciprocal step (vector and scalar form) FRECPS on page C7-1856
FRSQRTS Floating-point reciprocal square root step (vector and scalar form) FRSQRTS on page C7-1908
FSUB Floating-point subtract (vector form) FSUB (vector) on page C7-1915
MLA Multiply-add (vector form) MLA (vector) on page C7-1983
MLS Multiply-subtract (vector form) MLS (vector) on page C7-1987
MUL Multiply (vector form) MUL (vector) on page C7-2003
MOV Move vector register (vector form) MOV (vector) on page C7-1995
ORN Bitwise inclusive OR NOT (vector form) ORN (vector) on page C7-2013
ORR Bitwise inclusive OR (register) (vector form) ORR (vector, register) on

page C7-2017
PMUL Polynomial multiply (vector form) PMUL on page C7-2019

ARM DDI 0487G.b
1D072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C3-263

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-80 SIMD arithmetic instructions (continued)

Mnemonic Instruction See
SABA Signed absolute difference and accumulate (vector form) SABA on page C7-2038
SABD Signed absolute difference (vector form) SABD on page C7-2042
SHADD Signed halving add (vector form) SHADD on page C7-2088
SHSUB Signed halving subtract (vector form) SHSUB on page C7-2097
SMAX Signed maximum (vector form) SMAX on page C7-2120
SMIN Signed minimum (vector form) SMIN on page C7-2126
SQADD Signed saturating add (vector and scalar form) SQADD on page C7-2152
SQDMULH Signed saturating doubling multiply returning high half (vector and SODMULH (vector) on page C7-2171
scalar form)
SQRSHL Signed saturating rounding shift left (register) (vector and scalar form) SORSHL on page C7-2198
SQRDMLAH Signed saturating rounding doubling multiply accumulate returning SORDMLAH (vector) on
high half page C7-2184
SQRDMLSH Signed saturating rounding doubling multiply subtract returning high ~ SORDMLSH (vector) on
half page C7-2190
SQRDMULH Signed saturating rounding doubling multiply returning high half SORDMULH (vector) on
(vector and scalar form) page C7-2196
SQSHL Signed saturating shift left (register) (vector and scalar form) SOSHL (register) on page C7-2209
SQSuB Signed saturating subtract (vector and scalar form) SOSUB on page C7-2220
SRHADD Signed rounding halving add (vector form) SRHADD on page C7-2228
SRSHL Signed rounding shift left (register) (vector and scalar form) SRSHL on page C7-2233
SSHL Signed shift left (register) (vector and scalar form) SSHL on page C7-2241
SUB Subtract (vector and scalar form) SUB (vector) on page C7-2299
UABA Unsigned absolute difference and accumulate (vector form) UABA on page C7-2317
UABD Unsigned absolute difference (vector form) UABD on page C7-2321
UHADD Unsigned halving add (vector form) UHADD on page C7-2349
UHSUB Unsigned halving subtract (vector form) UHSUB on page C7-2351
UMAX Unsigned maximum (vector form) UMAX on page C7-2353
UMIN Unsigned minimum (vector form) UMIN on page C7-2359
UQADD Unsigned saturating add (vector and scalar form) UQADD on page C7-2383
UQRSHL Unsigned saturating rounding shift left (register) (vector and scalar UQRSHL on page C7-2385
form)
UQSHL Unsigned saturating shift left (register) (vector and scalar form) UQSHL (register) on page C7-2393
UQsuB Unsigned saturating subtract (vector and scalar form) UQSUB on page C7-2398
C3-264 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-80 SIMD arithmetic instructions (continued)

Mnemonic Instruction See
URHADD Unsigned rounding halving add (vector form) URHADD on page C7-2404
URSHL Unsigned rounding shift left (register) (vector and scalar form) URSHL on page C7-2406
USHL Unsigned shift left (register) (vector and scalar form) USHL on page C7-2419
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-265

ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.15 SIMD compare
The SIMD compare instructions compare vector or scalar elements according to the specified condition and set the
destination vector element to all ones if the condition holds, or to zero if the condition does not hold.
Note
Some of the comparisons, such as LS, LE, LO, and LT, can be made by reversing the operands and using the
opposite comparison, HS, GE, HI, or GT.
Table C3-81 on page C3-266 shows that SIMD compare instructions.
Table C3-81 SIMD compare instructions
Mnemonic Instruction See
CMEQ Compare bitwise equal (vector and scalar form) CMEQ (register) on page C7-1571
Compare bitwise equal to zero (vector and scalar form) CMEQ (zero) on page C7-1573
CMHS Compare unsigned higher or same (vector and scalar form) CMHS (register) on page C7-1591
CMGE Compare signed greater than or equal (vector and scalar form) CMGE (register) on page C7-1576
Compare signed greater than or equal to zero (vector and scalar form) CMGE (zero) on page C7-1579
CMHI Compare unsigned higher (vector and scalar form) CMHI (register) on page C7-1588
MeT Compare signed greater than (vector and scalar form) CMGT (register) on page C7-1582
Compare signed greater than zero (vector and scalar form) CMGT (zero) on page C7-1585
CMLE Compare signed less than or equal to zero (vector and scalar form) CMLE (zero) on page C7-1594
CMLT Compare signed less than zero (vector and scalar form) CMLT (zero) on page C7-1597
MTST Compare bitwise test bits nonzero (vector and scalar form) CMTST on page C7-1599
FCMEQ Floating-point compare equal (vector and scalar form) FCMEQ (register) on page C7-1642
Floating-point compare equal to zero (vector and scalar form) FCMEQ (zero) on page C7-1646
FCMGE Floating-point compare greater than or equal (vector and scalar form) FCMGE (register) on page C7-1649
Floating-point compare greater than or equal to zero (vector and scalar form) FCMGE (zero) on page C7-1653
FCMGT Floating-point compare greater than (vector and scalar form) FCMGT (register) on page C7-1656
Floating-point compare greater than zero (vector and scalar form) FCMGT (zero) on page C7-1660
FCMLE Floating-point compare less than or equal to zero (vector and scalar form) FCMLE (zero) on page C7-1669
FCMLT Floating-point compare less than zero (vector and scalar form) FCMLT (zero) on page C7-1672
FACGE Floating-point absolute compare greater than or equal (vector and scalar form) FACGE on page C7-1620
FACGT Floating-point absolute compare greater than (vector and scalar form) FACGT on page C7-1624
C3-266 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.16 SIMD widening and narrowing arithmetic
For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.
Table C3-82 on page C3-267 shows the SIMD widening and narrowing arithmetic instructions.
Table C3-82 SIMD widening and narrowing arithmetic instructions
Mnemonic Instruction See
ADDHN, ADDHN2 Add returning high, narrow (vector form) ADDHN, ADDHN?2 on page C7-1529
PMULL, PMULL2 Polynomial multiply long (vector form) PMULL, PMULL? on page C7-2021
See also The Cryptographic Extension on
page C3-278
RADDHN, RADDHN2 Rounding add returning high, narrow (vector form) RADDHN, RADDHN? on page C7-2023
RSUBHN, RSUBHN2 Rounding subtract returning high, narrow (vector form) RSUBHN, RSUBHN? on page C7-2036

SABAL, SABAL2

Signed absolute difference and accumulate long (vector form) SABAL, SABAL?2 on page C7-2040

SABDL, SABDL2 Signed absolute difference long (vector form) SABDL, SABDL?2 on page C7-2044

SADDL, SADDL2 Signed add long (vector form) SADDL, SADDL?2 on page C7-2048

SADDW, SADDW2 Signed add wide (vector form) SADDW, SADDW?2 on page C7-2054

SMLAL, SMLAL2 Signed multiply-add long (vector form) SMLAL, SMLAL?2 (vector) on page C7-2135
SMLSL, SMLSL2 Signed multiply-subtract long (vector form) SMLSL, SMLSL?2 (vector) on page C7-2140

SMULL, SMULL2 Signed multiply long (vector form) SMULL, SMULL? (vector) on page C7-2148

SQDMLAL, Signed saturating doubling multiply-add long (vector and scalar ~ SODMLAL, SODMLAL? (vector) on
SQDMLAL2 form) page C7-2158

SQDMLSL, Signed saturating doubling multiply-subtract long (vector and SODMLSL, SODMLSL?2 (vector) on
SQDMLSL2 scalar form) page C7-2165

SQDMULL, Signed saturating doubling multiply long (vector and scalar SODMULL, SODMULL? (vector) on
SQDMULL2 form) page C7-2176

SSUBL, SSUBL2 Signed subtract long (vector form) SSUBL, SSUBL?2 on page C7-2252
SSUBW, SSUBW2 Signed subtract wide (vector form) SSUBW, SSUBW?2 on page C7-2254
SUBHN, SUBHN2 Subtract returning high, narrow (vector form) SUBHN, SUBHN2 on page C7-2301

UABAL, UABAL2

Unsigned absolute difference and accumulate long (vector form) UABAL, UABAL?2 on page C7-2319

UABDL, UABDL2 Unsigned absolute difference long (vector form) UABDL, UABDL?2 on page C7-2323
UADDL, UADDL2 Unsigned add long (vector form) UADDL, UADDL? on page C7-2327
UADDW, UADDW2 Unsigned add wide (vector form) UADDW, UADDW?2 on page C7-2333
UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLAL? (vector) on page C7-2368
UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL?2 (vector) on page C7-2373
UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL? (vector) on page C7-2381
USUBL, USUBL2 Unsigned subtract long (vector form) USUBL, USUBL?2 on page C7-2433
USUBW, USUBW2 Unsigned subtract wide (vector form) USUBW, USUBW?2 on page C7-2435

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-267

ID072021

Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.17 SIMD unary arithmetic
For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.
Table C3-83 on page C3-268 shows the SIMD unary arithmetic instructions.
Table C3-83 SIMD unary arithmetic instructions
Mnemonic Instruction See
ABS Absolute value (vector and scalar form) ABS on page C7-1525
CLS Count leading sign bits (vector form) CLS (vector) on page C7-1567
Lz Count leading zero bits (vector form) CLZ (vector) on page C7-1569
CNT Population count per byte (vector form) CNT on page C7-1601
FABS Floating-point absolute (vector form) FABS (vector) on page C7-1616
FCVTL, FCVTL2 Floating-point convert to higher precision long (vector form) FCVTL, FCVTL2 on
page C7-1693
FCVTN, FCVIN2 Floating-point convert to lower precision narrow (vector form) FCVTN, FCVTIN2 on
page C7-1705
FCVTXN, Floating-point convert to lower precision narrow, rounding to odd (vectorand ~ FCVTXN, FCVTXN2 on
FCVTXN2 scalar form) page C7-1727
FNEG Floating-point negate (vector form) FNEG (vector) on page C7-1843
FRECPE Floating-point reciprocal estimate (vector and scalar form) FRECPE on page C7-1853
FRECPX Floating-point reciprocal exponent (scalar form) FRECPX on page C7-1859
FRINT32X Floating-point round to 32-bit integer, using current rounding mode (vector FRINT32X (vector) on
form) page C7-1861
FRINT32Z Floating-point round to 32-bit integer, toward zero (vector form) FRINT32Z (vector) on
page C7-1865
FRINT64X Floating-point round to 64-bit integer, using current rounding mode (vector FRINT64X (vector) on
form) page C7-1869
FRINT64Z Floating-point round to 64-bit integer, toward zero (vector form) FRINT64Z (vector) on
page C7-1873
FRINTA Floating-point round to integer, to nearest with ties to away (vector form) FRINTA (vector) on page C7-1877
FRINTI Floating-point round to integer, using current rounding mode (vector form) FRINTI (vector) on page C7-1881
FRINTM Floating-point round to integer, toward minus infinity (vector form) FRINTM (vector) on
page C7-1885
FRINTN Floating-point round to integer, to nearest with ties to even (vector form) FRINTN (vector) on
page C7-1889
FRINTP Floating-point round to integer, toward positive infinity (vector form) FRINTP (vector) on
page C7-1893
FRINTX Floating-point round to integer exact, using current rounding mode (vector FRINTX (vector) on
form) page C7-1897
FRINTZ Floating-point round to integer, toward zero (vector form) FRINTZ (vector) on page C7-1901
FRSQRTE Floating-point reciprocal square root estimate (vector and scalar form) FRSORTE on page C7-1905
C3-268 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-83 SIMD unary arithmetic instructions (continued)

Mnemonic Instruction See

FSQRT Floating-point square root (vector form) FSOQRT (vector) on page C7-1911
MVN Bitwise NOT (vector form) MVN on page C7-2005

NEG Negate (vector and scalar form) NEG (vector) on page C7-2009
NOT Bitwise NOT (vector form) NOT on page C7-2011

RBIT Bitwise reverse (vector form) RBIT (vector) on page C7-2026
REV16 Reverse elements in 16-bit halfwords (vector form) REV16 (vector) on page C7-2028
REV32 Reverse elements in 32-bit words (vector form) REV32 (vector) on page C7-2030
REV64 Reverse elements in 64-bit doublewords (vector form) REV64 on page C7-2032

SADALP Signed add and accumulate long pairwise (vector form) SADALP on page C7-2046
SADDLP Signed add long pairwise (vector form) SADDLP on page C7-2050

SQABS Signed saturating absolute value (vector and scalar form) SOABS on page C7-2150

SQNEG Signed saturating negate (vector and scalar form) SONEG on page C7-2179

SQXTN, SQXTN2

Signed saturating extract narrow (vector form)

SOXTN, SOXTN2 on
page C7-2222

SQXTUN, Signed saturating extract unsigned narrow (vector and scalar form) SOXTUN, SOXTUN2 on
SQXTUN2 page C7-2225

SUQADD Signed saturating accumulate of unsigned value (vector and scalar form) SUQADD on page C7-2305
SXTL, SXTL2 Signed extend long SXTL, SXTL2 on page C7-2307
UADALP Unsigned add and accumulate long pairwise (vector form) UADALP on page C7-2325
UADDLP Unsigned add long pairwise (vector form) UADDLP on page C7-2329

UQXTN, UQXTN2

Unsigned saturating extract narrow (vector form)

UQXTN, UQXTN?2 on
page C7-2400

URECPE Unsigned reciprocal estimate (vector form) URECPE on page C7-2403
URSQRTE Unsigned reciprocal square root estimate (vector form) URSQRTE on page C7-2411
USQADD Unsigned saturating accumulate of signed value (vector and scalar form) USQADD on page C7-2428
UXTL, UXTL2 Unsigned extend long UXTL, UXTL2 on page C7-2437
XTN, XTN2 Extract narrow (vector form) XTN, XTN2 on page C7-2444

ARM DDI 0487G.b

1D072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C3-269

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.18 SIMD by element arithmetic
For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.
Table C3-84 on page C3-270 shows the SIMD by element arithmetic instructions.
Table C3-84 SIMD by element arithmetic instructions
Mnemonic Instruction See
FMLA Floating-point fused multiply-add (vector and scalar form) FMLA (by element) on page C7-1797

FMLAL, FMLAL2

Floating-point fused multiply-add long (vector form)

FMLAL, FMLAL? (by element) on
page C7-1803

FMLS

Floating-point fused multiply-subtract (vector and scalar form)

FMLS (by element) on page C7-1807.

FMLSL, FMLSL2

Floating-point fused multiply-subtract long (vector form)

FMLSL, FMLSL?2 (by element) on
page C7-1813

FMUL Floating-point multiply (vector and scalar form) FMUL (by element) on page C7-1828
FMULX Floating-point multiply extended (vector and scalar form) FMULX (by element) on page C7-1836
MLA Multiply-add (vector form) MLA (by element) on page C7-1981
MLS Multiply-subtract (vector form) MLS (by element) on page C7-1985
MUL Multiply (vector form) MUL (by element) on page C7-2001

SMLAL, SMLAL2

Signed multiply-add long (vector form)

SMLAL, SMLAL? (by element) on
page C7-2132

SMLSL, SMLSL2

Signed multiply-subtract long (vector form)

SMLSL, SMLSL?2 (by element) on
page C7-2137

SMULL, SMULL2

Signed multiply long (vector form)

SMULL, SMULL? (by element) on
page C7-2145

SQDMLAL, Signed saturating doubling multiply-add long (vector and scalar form) SODMLAL, SODMLAL?2 (by element) on

SQDMLAL2 page C7-2154

SQDMLSL, Signed saturating doubling multiply-subtract long (vector form) SODMLSL, SODMLSL?2 (by element) on

SQDMLSL2 page C7-2161

SQDMULH Signed saturating doubling multiply returning high half (vector and SODMULH (by element) on page C7-2168
scalar form)

SQDMULL, Signed saturating doubling multiply long (vector and scalar form) SODMULL, SODMULL? (by element) on

SQDMULL?2 page C7-2173

SQRDMLAH Signed saturating rounding doubling multiply accumulate returning SORDMLSH (by element) on page C7-2187
high half

SQRDMLSH Signed saturating rounding doubling multiply subtract returning high ~ SORDMLSH (vector) on page C7-2190
half

SQRDMULH Signed saturating rounding doubling multiply returning high half SORDMULH (by element) on page C7-2193
(vector and scalar form)

C3-270 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-84 SIMD by element arithmetic instructions (continued)

Mnemonic Instruction See

UMLAL, UMLAL2 ~ Unsigned multiply-add long (vector form) UMLAL, UMLAL? (by element) on
page C7-2365

UMLSL, UMLSL2 ~ Unsigned multiply-subtract long (vector form) UMLSL, UMLSL?2 (by element) on
page C7-2370

UMULL, UMULL2 ~ Unsigned multiply long (vector form) UMULL, UMULL? (by element) on
page C7-2378

C3.5.19 SIMD permute

Table C3-85 on page C3-271 shows the SIMD permute instructions.

Table C3-85 SIMD permute instructions

Mnemonic Instruction See

EXT Extract vector from a pair of vectors ~ EXT on page C7-1611
TRN1 Transpose vectors (primary) TRNI on page C7-2313
TRN2 Transpose vectors (secondary) TRN2 on page C7-2315
uzpr1 Unzip vectors (primary) UZPI on page C7-2439
uzp2 Unzip vectors (secondary) UZP2 on page C7-2441
ZIP1 Zip vectors (primary) ZIP1 on page C7-2446
Z1P2 Zip vectors (secondary) ZIP2 on page C7-2448

C3.5.20 SIMD immediate

Table C3-86 on page C3-271 shows the SIMD immediate instructions.

Table C3-86 SIMD immediate instructions

Mnemonic Instruction See

BIC Bitwise bit clear immediate BIC (vector, immediate) on page C7-1557
FMOV Floating-point move immediate FMOV (vector, immediate) on page C7-1817
MOVI Move immediate MOVI on page C7-1998

MVNI Move inverted immediate MVNI on page C7-2006

ORR Bitwise inclusive OR immediate ~ ORR (vector, immediate) on page C7-2015

C3.5.21 SIMD shift (immediate)

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-255.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-271
ID072021 Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-87 on page C3-272 shows the SIMD shift immediate instructions.

Table C3-87 SIMD shift (immediate) instructions

Mnemonic

Instruction

See

RSHRN, RSHRN2

Rounding shift right narrow immediate (vector form)

RSHRN, RSHRN2 on page C7-2034

SHL Shift left immediate (vector and scalar form) SHL on page C7-2090
SHLL, SHLL2 Shift left long (by element size) (vector form) SHLL, SHLL?2 on page C7-2093
SHRN, SHRN2 Shift right narrow immediate (vector form) SHRN, SHRN2 on page C7-2095
SLI Shift left and insert immediate (vector and scalar form) SLI on page C7-2099
SQRSHRN, Signed saturating rounded shift right narrow immediate (vector and scalar ~ SORSHRN, SORSHRN2 on
SQRSHRN2 form) page C7-2200
SQRSHRUN, Signed saturating shift right unsigned narrow immediate (vector and SORSHRUN, SORSHRUN? on
SQRSHRUN2 scalar form) page C7-2203
SQSHL Signed saturating shift left immediate (vector and scalar form) SOSHL (immediate) on

page C7-2206
SQSHLU Signed saturating shift left unsigned immediate (vector and scalar form) SOSHLU on page C7-2211

SQSHRN, SQSHRN2

Signed saturating shift right narrow immediate (vector and scalar form)

SOSHRN, SOSHRN?2 on
page C7-2214

SQSHRUN, Signed saturating shift right unsigned narrow immediate (vector and SOSHRUN, SOSHRUNZ on
SQSHRUN2 scalar form) page C7-2217

SRI Shift right and insert immediate (vector and scalar form) SRI on page C7-2230

SRSHR Signed rounding shift right immediate (vector and scalar form) SRSHR on page C7-2235
SRSRA Signed rounding shift right and accumulate immediate (vector and scalar ~ SRSRA on page C7-2238.

form)

SSHLL, SSHLL2

Signed shift left long immediate (vector form)

SSHLL, SSHLL? on page C7-2244

SSHR Signed shift right immediate (vector and scalar form) SSHR on page C7-2246
SSRA Signed integer shift right and accumulate immediate (vector and scalar SSRA on page C7-2249

form)
SXTL, SXTL2 Signed integer extend (vector only) SXTL, SXTL?2 on page C7-2307
UQRSHRN, Unsigned saturating rounded shift right narrow immediate (vector and UQRSHRN, UQRSHRN?Z on
UQRSHRN2 scalar form) page C7-2387
UQSHL Unsigned saturating shift left immediate (vector and scalar form) UQSHL (immediate) on

UQSHRN, UQSHRN2

URSHR

URSRA

USHLL, USHLL2

Unsigned saturating shift right narrow immediate (vector and scalar form)

Unsigned rounding shift right immediate (vector and scalar form)

Unsigned integer rounding shift right and accumulate immediate (vector
and scalar form)

Unsigned shift left long immediate (vector form)

page C7-2390

UQSHRN, UQSHRN2 on
page C7-2395

URSHR on page C7-2408

URSRA on page C7-2412

USHLL, USHLL? on page C7-2422

C3-272

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-87 SIMD shift (immediate) instructions (continued)

Mnemonic Instruction See

USHR Unsigned shift right immediate (vector and scalar form) USHR on page C7-2424

USRA Unsigned shift right and accumulate immediate (vector and scalar form) USRA on page C7-2430

UXTL, UXTL2 Unsigned integer extend (vector only) UXTL, UXTL2 on page C7-2437
C3.5.22 SIMD floating-point and integer conversion

The SIMD floating-point and integer conversion instructions generate the Invalid Operation floating-point
exception in response to a floating-point input of NaN, infinity, or a numerical value that cannot be represented
within the destination register. An out of range integer or a fixed-point result is saturated to the size of the destination
register. A numeric result that differs from the input raises the Inexact floating-point exception.

Table C3-88 on page C3-273 shows the SIMD floating-point and integer conversion instructions.

Table C3-88 SIMD floating-point and integer conversion instructions

Mnemonic Instruction See

FCVTAS Floating-point convert to signed integer, rounding to nearest with ties ~ FCVTAS (vector) on page C7-1683
to away (vector and scalar form)

FCVTAU Floating-point convert to unsigned integer, rounding to nearest with FCVTAU (vector) on page C7-1688
ties to away (vector and scalar form)

FCVTMS Floating-point convert to signed integer, rounding toward minus FCVTMS (vector) on page C7-1695
infinity (vector and scalar form)

FCVTMU Floating-point convert to unsigned integer, rounding toward minus FCVTMU (vector) on page C7-1700
infinity (vector and scalar form)

FCVTNS Floating-point convert to signed integer, rounding to nearest with ties ~ FCVTNS (vector) on page C7-1707
to even (vector and scalar form)

FCVTNU Floating-point convert to unsigned integer, rounding to nearest with FCVTNU (vector) on page C7-1712
ties to even (vector and scalar form)

FCVTPS Floating-point convert to signed integer, rounding toward positive FCVTPS (vector) on page C7-1717
infinity (vector and scalar form)

FCVTPU Floating-point convert to unsigned integer, rounding toward positive FCVTPU (vector) on page C7-1722
infinity (vector and scalar form)

FCVTZS Floating-point convert to signed integer, rounding toward zero (vector ~ FCVTZS (vector, integer) on
and scalar form) page C7-1733
Floating-point convert to signed fixed-point, rounding toward zero FCVTLZS (vector, fixed-point) on
(vector and scalar form) page C7-1730

FCVTZU Floating-point convert to unsigned integer, rounding toward zero FCVTZU (vector, integer) on

(vector and scalar form)

page C7-1743

Floating-point convert to unsigned fixed-point, rounding toward zero,
(vector and scalar form)

FCVTZU (vector, fixed-point) on
page C7-1740

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C3-273

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-88 SIMD floating-point and integer conversion instructions (continued)

Mnemonic Instruction See

SCVTF Signed integer convert to floating-point (vector and scalar form) SCVTF (vector, integer) on
page C7-2059

Signed fixed-point convert to floating-point (vector and scalar form) SCVTF (vector, fixed-point) on
page C7-2056

UCVTF Unsigned integer convert to floating-point (vector and scalar form) UCVTF (vector, integer) on
page C7-2338

Unsigned fixed-point convert to floating-point (vector and scalar form) UCVTF (vector, fixed-point) on
page C7-2335

C3.5.23 SIMD reduce (across vector lanes)

The SIMD reduce (across vector lanes) instructions perform arithmetic operations horizontally, that is across all
lanes of the input vector. They deliver a single scalar result.

Table C3-89 on page C3-274 shows the SIMD reduce (across vector lanes) instructions.

Table C3-89 SIMD reduce (across vector lanes) instructions

Mnemonic Instruction See
ADDV Add (across vector) ADDYV on page C7-1535
FMAXNMV Floating-point maximum number (across vector) FMAXNMYV on page C7-1769
FMAXV Floating-point maximum (across vector) FMAXV on page C7-1775
FMINNMV Floating-point minimum number (across vector) FMINNMYV on page C7-1789
FMINV Floating-point minimum (across vector) FMINYV on page C7-1795
SADDLV Signed add long (across vector) SADDLYV on page C7-2052
SMAXV Signed maximum (across vector) SMAXYV on page C7-2124
SMINV Signed minimum (across vector) SMINV on page C7-2130
UADDLV Unsigned add long (across vector) UADDLYV on page C7-2331
UMAXV Unsigned maximum (across vector) UMAXV on page C7-2357
UMINV Unsigned minimum (across vector) UMINYV on page C7-2363
C3-274 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.24 SIMD pairwise arithmetic
The SIMD pairwise arithmetic instructions perform operations on pairs of adjacent elements and deliver a vector
result.
Table C3-90 on page C3-275 shows the SIMD pairwise arithmetic instructions.
Table C3-90 SIMD pairwise arithmetic instructions
Mnemonic Instruction See
ADDP Add pairwise (vector and scalar form) ADDP (vector) on page C7-1533
ADDP (scalar) on page C7-1531
FADDP Floating-point add pairwise (vector and scalar form) FADDP (vector) on page C7-1634
FADDP (scalar) on page C7-1632
FMAXNMP Floating-point maximum number pairwise (vector and scalar form) FMAXNMP (vector) on page C7-1767
FMAXNMP (scalar) on page C7-1765
FMAXP Floating-point maximum pairwise (vector and scalar form) FMAXP (vector) on page C7-1773
FMAXP (scalar) on page C7-1771
FMINNMP Floating-point minimum number pairwise (vector and scalar form) FMINNMP (vector) on page C7-1787
FMINNMP (scalar) on page C7-1785
FMINP Floating-point minimum pairwise (vector and scalar form) FMINP (vector) on page C7-1793
FMINP (scalar) on page C7-1791
SMAXP Signed maximum pairwise SMAXP on page C7-2122
SMINP Signed minimum pairwise SMINP on page C7-2128
UMAXP Unsigned maximum pairwise UMAXP on page C7-2355
UMINP Unsigned minimum pairwise UMINP on page C7-2361
C3.5.25 SIMD dot product
FEAT DotProd provides SIMD instructions that perform the dot product of the four 8-bit subelements of the 32-bit
elements of one vector with the four 8-bit subelements of a second vector. It provides two forms of the instructions,
each with signed and unsigned versions:
Vector form The dot product is calculated for each element of the first vector with the corresponding element of
the second vector.
Indexed form The dot product is calculated for each element of the first vector with the element of the second
vector that is indicated by the index argument to the instruction.
Note
That is, a single element from the second vector is used, and the dot product is calculated between
each element of the first vector and this single element from the second vector.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-275

ID072021

Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-91 on page C3-276 shows the SIMD dot product instructions.

Table C3-91 SIMD dot product

Mnemonic Instruction See

SDoT Signed dot product (vector form) SDOT (vector) on page C7-2068
uboT Unsigned dot product (vector form) UDOT (vector) on page C7-2347
SDOT Signed dot product (indexed form) SDOT (by element) on page C7-2066
uboT Unsigned dot product (indexed form) UDOT (by element) on page C7-2345
uspoT Mixed sign integer dot product (vector form)? USDOT (vector) on page C7-2415

Mixed sign integer dot product by indexed quaduplett ~ USDOT (by element) on page C7-2417

SUDOT Mixed sign integer dot product by indexed quadupletz SUDOT (by element) on page C7-2303

a. This instruction is supported when FEAT I8MM is implemented.

C3.5.26 SIMD table lookup

Table C3-92 on page C3-276 shows the SIMD table lookup instructions.

Table C3-92 SIMD table lookup instructions

Mnemonic Instruction See
TBL Table vector lookup TBL on page C7-2309
TBX Table vector lookup extension ~ 7BX on page C7-2311

C3.5.27 SIMD complex number arithmetic

FEAT FCMA provides SIMD instructions that perform arithmetic on complex numbers held in element pairs in
vector registers, where the less significant element of the pair contains the real component and the more significant
element contains the imaginary component.

These instructions provide double-precision and single-precision versions. If FEAT FP16 is implemented they also
provide half-precision versions, otherwise the half-precision encodings are UNDEFINED.

Table C3-93 on page C3-276 shows the FEAT FCMA SIMD instructions.

Table C3-93 SIMD complex number arithmetic

Mnemonic Instruction See

FCADD Floating-point complex add FCADD on page C7-1636

FCMLA Floating-point complex multiply accumulate (vector form) FCMLA on page C7-1666

FCMLA Floating-point complex multiply accumulate (indexed form) FCMLA (by element) on page C7-1663

A pair of FCMLA instructions can be used to perform a complex number multiplication. This is demonstrated in
Complex multiplication on page K10-8512.

C3.5.28 SIMD BFloat16

The SIMD BFloat16 instructions are provided by FEAT BF16.

C3-276 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

These instructions perform an implicit conversion of vectors of BF16 input values to IEEE 754 single-precision
floating-point format, combined with an N-way dot product calculation that accumulates the products into a vector
of single-precision accumulators.

All of these instructions perform arithmetic with fixed behaviors, irrespective of the values of FPCR. These
behaviors are:

. Exceptional floating-point conditions produce the expected IEEE 754 default result, but do not modify the
cumulative floating-point exception flags in FPSR, and cannot cause a trapped floating-point exception.

. Multiplication and addition operations are always chained and never fused. Multiplication that overflows
cannot be brought back into range by a fused addition.

Note

The fractional part of the product of two BF16 inputs can be exactly represented in single-precision format,
see BFloatl6 floating-point format on page A1-48.

Table C3-94 on page C3-277 shows these instructions.

Table C3-94 BFloat16 SIMD instructions

Mnemonic Instruction See
BFDOT BFloat16 floating-point dot product (vector and indexed forms) BFDOT (vector) on page C7-1550
BFDOT (by element) on page C7-1548
BFMMLA BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix =~ BFMMLA on page C7-1556
BFMLALB BFloat16 floating-point widening multiply-add long bottom (vector =~ BFMLALB, BFMLALT (vector) on
and indexed forms) page C7-1554
BFMLALB, BEFMLALT (by element) on
page C7-1552
BFMLALT BFloat16 floating-point widening multiply-add long top (vectorand ~ BFMLALB, BFMLALT (vector) on
index forms) page C7-1554
BFMLALB, BEFMLALT (by element) on
page C7-1552
BFCVTN, Floating-point convert from single-precision to BFloat16 format BFCVIN, BFCVTN2 on page C7-1546
BFCVTN2 (vector form)
C3.5.29 SIMD matrix multiplication

These instructions are provided by FEAT I8MM, and include integer matrix multiply-accumulate instructions.

The matrix multiply-accumulate instructions delimit source and destination vectors into segments. Within each

segment:

. The first source vector matrix is organized in row-by-row order.

. The second source vector matrix is organized in a column-by-column order.
. The destination vector matrix is organized in row-by-row order.

One matrix multiplication is performed per segment.

ARM DDI 0487G.b

ID072021

Non-Confidential

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

C3-277

A64 Instruction Set Overview
C3.5 Data processing - SIMD

and floating-point

Table C3-95 on page C3-278 shows these instructions.

Table C3-95 Matrix multiply SIMD instructions

Mnemonic Instruction See
SMMLA Widening 8-bit signed integer matrix multiply-accumulate into 2x2 matrix SMMLA (vector) on page C7-2142
UMMLA Widening 8-bit unsigned integer matrix multiply-accumulate into 2x2 matrix =~ UMMLA (vector) on page C7-2375
USMMLA Widening 8-bit mixed sign integer matrix multiply-accumulate into 2x2 matrix =~ USMMLA (vector) on page C7-2427
C3.5.30 The Cryptographic Extension
The instructions provided by the OPTIONAL Armv8.0 Cryptographic Extension use the SIMD and floating-point
register file. For more information about the functions they provide see:
. Announcing the Advanced Encryption Standard.
. The Galois/Counter Mode of Operation.
. Announcing the Secure Hash Standard.
Table C3-96 on page C3-278 shows the Armv8.0 Cryptographic Extension instructions.
Table C3-96 Cryptographic Extension instructions
Mnemonic Instruction See
AESD AES single round decryption ~ AESD on page C7-1537
AESE AES single round encryption AESE on page C7-1538
AESIMC AES inverse mix columns AESIMC on page C7-1539
AESMC AES mix columns AESMC on page C7-1540
PMULL Polynomial multiply long PMULL, PMULL?2 on page C7-20212
SHA1C SHA1 hash update (choose) SHA1C on page C7-2070
SHATH SHAI fixed rotate SHAIH on page C7-2071
SHAIM SHA1 hash update (majority) SHAIM on page C7-2072
SHA1P SHAT1 hash update (parity) SHAIP on page C7-2073
SHA1SUO SHAI1 schedule update 0 SHAISUO on page C7-2074
SHA1SU1 SHAI1 schedule update 1 SHAISUI on page C7-2075
SHA256H SHA256 hash update, part 1 SHA256H on page C7-2077
SHA256H2 SHA256 hash update, part 2 SHA256H?2 on page C7-2076
SHA256SU@ SHA256 schedule update 0 SHA2565U0 on page C7-2078
SHA256SU1 SHA256 schedule update 1 SHA2565U1 on page C7-2079
a. The Cryptographic Extension adds the variant of the instruction that operates on two
64-bit polynomials.
See The Armv8 Cryptographic Extension on page A2-72 for information about the permitted implementation
options for the Cryptographic Extension.
C3-278 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Armv8.2 extensions to the Cryptographic Extension

Armv8.2 supports the following OPTIONAL extensions to the Cryptographic Extension:
. FEAT SHA512, SHA2-512 functionality on page C3-279.

. FEAT SHA3, SHA3 functionality on page C3-279.

. FEAT SM3, SM3 functionality on page C3-280.

. FEAT SM4, SM4 functionality on page C3-281.

FEAT_SHA512, SHA2-512 functionality

FEAT SHAS512 provides instructions to accelerate the SHA-2 hash algorithm using a digest that is larger than 256
bits. The relevant standards are SHA-384, SHA-512, SHA-512|224 and SHA-512|256. These are all based on the
SHA-512 computation, and therefore this set of instructions is described as the SHAS512 instructions.

Implementation of FEAT SHAS512 requires the implementation of the SHA1 and SHA2-256 instructions from the
Armv8.0 Cryptographic Extension.
Note

Implementation of FEAT SHAS512 does not require the implementation of the AES instructions, and the 64-bit
polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.

When FEAT SHAS512 is implemented, the value of ID__ AA64ISARO_EL1.SHA2 is 0b0010, indicating support for
the SHAS512 instructions.

Table C3-97 on page C3-279 shows the FEAT SHAS512 instructions:

Table C3-97 FEAT_SHA512 instructions

Mnemonic Instruction See
SHAS512H SHAS512 Hash update part 1 ~ SHA512H on page C7-2081
SHA512H2 SHAS512 Hash update part 2 ~ SHA512H2 on page C7-2083

SHA5125U0 SHAS512 Schedule Update 0 SHA512SU0 on page C7-2085

SHA512SU1 SHAS512 Schedule Update 1 ~ SHA512SU1 on page C7-2086

Use of the SHAS5 12 instructions on page K10-8514 shows an example of the use of these instructions to calculate a
SHAS512 hash iteration. This example code is not part of the architectural definition of these instructions.

FEAT_SHA3, SHAS3 functionality

FEAT SHA3 provides instructions to accelerate the SHA-3 hash algorithm. This set of instructions is described as
the SHA3 instructions.

Note

Implementation of FEAT SHAS3 does not require the implementation of the AES instructions, and the 64-bit
polynomial variants of the PMULL instructions, from the Armv8.0 Cryptographic Extension.

When FEAT SHA3 is implemented, the value of ID__AA64ISARO _EL1.SHA3 is 0b0001, indicating support for the
SHA3 instructions.

Table C3-98 on page C3-280 shows the FEAT SHA3 instructions. The SHA-3 hash algorithm is based on a running
digest of 1600 bytes, arranged as a five by five array of 64-bit registers. The Arm acceleration of these instructions
is based on mapping the 25 64-bit values into 25 vector registers, with each 64-bit value occupying the same 64-bit
element in each vector. A series of transformations is performed on these registers as part of a round of the SHA-3
hash calculation.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-279
Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

The SIMD nature of the vector registers means the acceleration can compute two parallel SHA3 hash calculations,
where one calculation is performed using the zeroth 64-bit element of each vector, and the other calculation is
performed using the first 64-bit element of each vector.

To provide acceleration where the SIMD calculation is not required, the instructions provide variants that operate
only on the zeroth 64-bit elements. These are provided as a power optimization.

Table C3-98 FEAT_SHAS3 instructions

Mnemonic Instruction See

EOR3 Three-way Exclusive OR EOR3 on page C7-1610
RAX1 Rotate and Exclusive OR RAXI on page C7-2025
XAR Exclusive OR and Rotate XAR on page C7-2443
BCAX Bit Clear and Exclusive OR ~ BCAX on page C7-1543

Use of the SHA3 instructions on page K10-8515 shows an example of the use of these instructions to calculate the
combined theta, phi, rtho and chi operations of a SHA3 iteration. This example code is not part of the architectural
definition of these instructions.

FEAT_SM3, SM3 functionality

FEAT SM3 provides instructions to accelerate the SM3 hash algorithm, the standard Chinese hash algorithm. These
are described as the SM3 instructions.

FEAT SM3 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and
independently of FEAT SHAS512.

Note

This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the
FEAT SM3 functionality.

When FEAT SM3 is implemented, the value of ID_AA64ISARO_EL1.SM3 is 0b0001, indicating support for the
SM3 instructions.

Table C3-99 on page C3-280 shows the FEAT SM3 instructions. The SM3 algorithm computes a digest of 256 bits,
that can be held in two vector registers. The SM3 instructions include instructions to accelerate the computation of
the hash and the schedule update.

Note

The SM3 instruction names refer to intermediate variables defined as part of the SM3 Cryptographic Hash
Algorithm specification.

Table C3-99 FEAT_SMS3 instructions

Mnemonic Instruction See

SM3SS1 SM3 SS1 calculation SM3SS1 on page C7-2106

SM3TT1A SM3 TT1 calculation, part A SM3TTIA on page C7-2108

SM3TT1B SM3 TT1 calculation, part B SM3TTI1B on page C7-2110

SM3TT2A SM3 TT?2 calculation, part A SM3TT24 on page C7-2112
C3-280 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-99 FEAT_SM3 instructions (continued)

Mnemonic Instruction See

SM3TT2B SM3 TT?2 calculation, part B SM3TT2B on page C7-2114

SM3PARTW1 SM3 PARTW calculation, part 1 ~ SM3PARTW1I on page C7-2102

SM3PARTW2 SM3 PARTW calculation, part 1~ SM3PARTW?2 on page C7-2104

Use of the SM3 instructions on page K10-8516 shows an example of the use of these instructions to generate an
SM3 hash. This example code is not part of the architectural definition of these instructions.

FEAT_SM4, SM4 functionality

FEAT SM4 provides instruction to accelerate the SM4 encryption algorithm, the standard Chinese encryption
algorithm. This set of instructions is described as the SM4 instructions.

FEAT SM4 can be implemented independently of any part of the Armv8.0 Cryptographic Extension, and
independently of FEAT SHA3.

Note

This means that Armv8.2 permits an implementation of the Cryptographic Extension that provides only the
FEAT SM4 functionality.

When FEAT SM4 is implemented, the value of ID_ AA64ISARO_EL1.SM4 is 0b0001, indicating support for the
SM4 instructions.

Table C3-100 on page C3-281 shows the FEAT SM4 instructions. The SM4 algorithm is 128-bit wide block cipher.
The SM4E instruction accelerates a single round of encryption or decryption, and the SM4EKEY instruction accelerates
a single round of key generation:

Table C3-100 FEAT_SM4 instructions

Mnemonic Instruction See

SM4E SM4 Encrypt SM4E on page C7-2116

SM4EKEY SM4 Key SM4EKEY on page C7-2118

Use of the SM4 instructions on page K10-8518 shows an example of the use of these instructions to perform SM4
encryption and decryption. This example code is not part of the architectural definition of these instructions.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C3-281
Non-Confidential

A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3-282 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Chapter C4
A64 Instruction Set Encoding

This chapter describes the encoding of the A64 instruction set. It contains the following section:
. A64 instruction set encoding on page C4-284.

In this chapter:

. In the decode tables, an entry of - for a field value means the value of the field does not affect the decoding.
. In the decode diagrams, a shaded field indicates that the bits in that field are not used in that level of decode.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-283

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

C4.1 A64 instruction set encoding

The A64 instruction encoding is:

|31 29 28| 25 24 0|
| | op0 | |

Table C4-1 Main encoding table for the A64 instruction set

Decode fields
Decode group or instruction page

op0

0000 Reserved on page C4-284.

0001 Unallocated.

0010 SVE instructions. See The Scalable Vector Extension (SVE) on page A2-110.
0011 Unallocated.

100x Data Processing -- Immediate on page C4-284.

101x Branches, Exception Generating and System instructions on page C4-289.

x1x0 Loads and Stores on page C4-298.

x101 Data Processing -- Register on page C4-332.

x111 Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

C4.11 Reserved

This section describes the encoding of the Reserved group. The encodings in this section are decoded from 464
instruction set encoding on page C4-284.

|31 29 28| 25 24| | 16/15 0]
[opo | 0000 | op1 | |

Table C4-2 Encoding table for the Reserved group

Decode fields
Decode group or instruction page

op0 op1

000 000000000 UDF

000 0001xxxxx Unallocated.
=000 - Unallocated.

C4.1.2 Data Processing -- Inmediate

This section describes the encoding of the Data Processing -- Immediate group. The encodings in this section are
decoded from 464 instruction set encoding on page C4-284.

C4-284 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 2928] 2625 (2322 | 0]
| [100 | opo | |

Table C4-3 Encoding table for the Data Processing -- Inmediate group

Decode fields
Decode group or instruction page

op0

00x PC-rel. addressing on page C4-285

010 Add/subtract (immediate) on page C4-285

011 Add/subtract (immediate, with tags) on page C4-286
100 Logical (immediate) on page C4-286

101 Move wide (immediate) on page C4-287

110 Bitfield on page C4-288

111 Extract on page C4-288

PC-rel. addressing

This section describes the encoding of the PC-rel. addressing instruction class. The encodings in this section are
decoded from Data Processing -- Immediate on page C4-284.

|31 30 29 28|27 26 25 2423 | | | | 5 4| 0]
[oplimmio] 1 0 0 0 0] immhi | Rd |

Decode fields
Instruction page

op
0 ADR
1 ADRP

Add/subtract (immediate)

This section describes the encoding of the Add/subtract (immediate) instruction class. The encodings in this section
are decoded from Data Processing -- Immediate on page C4-284.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-285
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28|27 26 25 24[23 22 21 | | | 109 | 5 4| 0]
[sflop[S]1 0 0 0 1 0]sh] imm12 | Rn | Rd |

Decode fields
Instruction page
sf op S

0 0 0 ADD (immediate) - 32-bit variant

0 0 1 ADDS (immediate) - 32-bit variant

0 1 0 SUB (immediate) - 32-bit variant

0 1 1 SUBS (immediate) - 32-bit variant

1 0 0 ADD (immediate) - 64-bit variant

1 0 1 ADDS (immediate) - 64-bit variant

1 1 0 SUB (immediate) - 64-bit variant

1 1 1 SUBS (immediate) - 64-bit variant

Add/subtract (immediate, with tags)

This section describes the encoding of the Add/subtract (immediate, with tags) instruction class. The encodings in
this section are decoded from Data Processing -- Immediate on page C4-284.

3130 29 28[27 26 25 24[23 2221 | 16[151413 | 109 | 5 4| 0
[sflop[s[1 0 0 0 1 1]02] uimmé [op3 [uimm4 | Rn | Rd |

Decode fields
Instruction page Feature
sf op S 02

_ - - 1 Unallocated. -

0 - - 0 Unallocated. -
1 - 1 0 Unallocated. -
1 0 o 0 ADDG FEAT MTE
1 1 o 0 SUBG FEAT MTE

Logical (immediate)

This section describes the encoding of the Logical (immediate) instruction class. The encodings in this section are
decoded from Data Processing -- Immediate on page C4-284.

C4-286 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28|27 26 25 24[23 22 21 | 16/15 | 109 | 5 4| 0]
[sflopc |1 0 0 1 0 O[N] immr | imms | Rn | Rd |

Decode fields
Instruction page
sf opc N

0 - 1 Unallocated.

0 00 0 AND (immediate) - 32-bit variant

0 01 0 ORR (immediate) - 32-bit variant

0 10 0 EOR (immediate) - 32-bit variant

0 11 0 ANDS (immediate) - 32-bit variant

1 00 - AND (immediate) - 64-bit variant
1 01 - ORR (immediate) - 64-bit variant
1 10 - EOR (immediate) - 64-bit variant
1 11 - ANDS (immediate) - 64-bit variant

Move wide (immediate)
This section describes the encoding of the Move wide (immediate) instruction class. The encodings in this section

are decoded from Data Processing -- Immediate on page C4-284.

31 30 29 28|27 26 25 24|23 22 21 20| \ \ \ 5 4| 0
[sfl opc[1 0 0 1 0 1] hw | imm16 | Rd |

Decode fields
Instruction page
sf opc hw

- 01 - Unallocated.

0 - 1x Unallocated.

0 00 0x MOVN - 32-bit variant

0 10 0x MOVZ - 32-bit variant

0 11 0x MOVK - 32-bit variant

1 00 - MOVN - 64-bit variant

1 10 - MOVZ - 64-bit variant

1 11 - MOVK - 64-bit variant
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-287

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Bitfield

This section describes the encoding of the Bitfield instruction class. The encodings in this section are decoded from
Data Processing -- Immediate on page C4-284.

|31 30 29 28|27 26 25 24[23 22 21 | 16/15 | 109 | 5 4| 0]
[sflopc |1 0 0 1 1 O[N] immr | imms | Rn | Rd |

Decode fields
Instruction page
sf opc N

- 11 - Unallocated.

0 - 1 Unallocated.

0 00 0 SBFM - 32-bit variant

0 01 0 BFM - 32-bit variant

0 10 0 UBFM - 32-bit variant

1 - 0 Unallocated.

1 00 1 SBFM - 64-bit variant

1 01 1 BFM - 64-bit variant

1 10 1 UBFM - 64-bit variant

Extract

This section describes the encoding of the Extract instruction class. The encodings in this section are decoded from
Data Processing -- Immediate on page C4-284.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/15 | 109 | 5 4| 0]
[sflop21][1 0 0 1 1 1[N]oo] Rm | imms | Rn | Rd |

Decode fields
Instruction page
sf op21 N o0 imms

- x1 - - - Unallocated.
- 00 -1 - Unallocated.
- 1x - - - Unallocated.
0 - - - Ixxxxx Unallocated.
0 - 1 - - Unallocated.
0 00 0 0 oxxxxx EXTR - 32-bit variant
1 - 0 - - Unallocated.
1 00 1 0 - EXTR - 64-bit variant
C4-288 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

C41.3

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Branches, Exception Generating and System instructions

This section describes the encoding of the Branches, Exception Generating and System instructions group. The
encodings in this section are decoded from A64 instruction set encoding on page C4-284.

|31 2928] 2625 |

12]11 | 5 4| 0]

[opo | 101 |

op2 |

Table C4-4 Encoding table for the Branches, Exception Generating and System instructions

group

Decode fields

Decode group or instruction page

op0 op1 op2

010 OXXXXXXXXXXXXX = Conditional branch (immediate) on page C4-290
010 IXXXXXXXXXXXXX - Unallocated.

110 DOXXXXXXXXXXXX - Exception generation on page C4-290

110 010000000x000x - Unallocated.

110 010000000x001x - Unallocated.

110 0100000010000x - Unallocated.

110 0100000010001x - Unallocated.

110 01000000110000 - Unallocated.

110 01000000110001 - System instructions with register argument on page C4-291
110 01000000110010 11111 Hints on page C4-292

110 01000000110010 != 11111 Unallocated.

110 01000000110011

Barriers on page C4-293

110 01000001xx000x

Unallocated.

110 01000001xx001x

110 0100000xxx0100

Unallocated.

PSTATE on page C4-293

110 0100000xxx0101 - Unallocated.
110 0100000xxx011x - Unallocated.
110 0100000xxx1xXX - Unallocated.

110 0100XQLXXXXXXX

System instructions on page C4-294

110 0100XLXXXXXXXX

110 01OLXXXXXXXXXX

System register move on page C4-294

Unallocated.

110 DLLIXXXXXXXXXXX

Unallocated.

110 IXXXXXXXXXXXXX

Unconditional branch (register) on page C4-295

x00 -

Unconditional branch (immediate) on page C4-297

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C4-289

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Table C4-4 Encoding table for the Branches, Exception Generating and System instructions
group (continued)

Decode fields
Decode group or instruction page

op0 op1 op2

x01 OXXXXXXXXXXXXX = Compare and branch (immediate) on page C4-298
x01 IXXXXXXXXXXXXX - Test and branch (immediate) on page C4-298

x11 - - Unallocated.

Conditional branch (immediate)

This section describes the encoding of the Conditional branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

31 30 29 28|27 26 25 24(23 \ \ \ \ 5 4|3 0|
[01 0101 0] imm19 [o0] cond |

Decode fields
Instruction page

o1 o0

0 0 B.cond

0 1 Unallocated.
1 - Unallocated.

Exception generation

This section describes the encoding of the Exception generation instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions on page C4-289.

131 30 29 2827 26 25 2423 21 20| \ \ \ 54/ 21 0]
[11010100[] opc | imm16 [op2 | LL |

Decode fields
Instruction page
opc op2 LL

- 001 - Unallocated.
- 01x - Unallocated.
- 1xx - Unallocated.

000 000 00 Unallocated.

000 000 01 SvC

000 000 10 HVC

C4-290 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

opc op2 LL
000 000 11 SMC
001 000 x1 Unallocated.
001 000 00 BRK
001 000 1x Unallocated.
010 000 x1 Unallocated.
010 000 00 HLT
010 000 1x Unallocated.
011 000 01 Unallocated.
011 000 1x Unallocated.
100 000 - Unallocated.
101 000 00 Unallocated.
101 000 01 DCPS1
101 000 10 DCPS2
101 000 11 DCPS3
110 000 - Unallocated.
111 000 - Unallocated.

System instructions with register argument

This section describes the encoding of the System instructions with register argument instruction class. The
encodings in this section are decoded from Branches, Exception Generating and System instructions on

page C4-289.

131 30 29 28|27 26 25 24[23 22 21 20|19 18 17 16/15 14 13 12|11 8|7

5 4|

0]

[1101010100000011000 1] CRm

| op2 |

Rt |

Decode fields

Instruction page Feature

CRm op2
= 0000 - Unallocated. -
0000 000 WFET FEAT WFxT
0000 001 WFIT FEAT WFxT
0000 01x Unallocated. -
0000 1xx Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-291

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Hints

This section describes the encoding of the Hints instruction class. The encodings in this section are decoded from

Branches, Exception Generating and System instructions on page C4-289.

|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11

817

543 2 1 0]

[1101010100000011001 0]

[op2 [1 1 1 1 1]

Decode fields

Instruction page Feature
CRm op2
- - HINT -
0000 000 NOP -
0000 001 YIELD -
0000 010 WFE -
0000 011 WFI -
0000 100 SEV -
0000 101 SEVL -
0000 110 DGH FEAT DGH
0000 111 XPACD, XPACI, XPACLRI FEAT PAuth
0001 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA1716 variant FEAT PAuth
0001 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB1716 variant FEAT PAuth
0001 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA1716 variant FEAT PAuth
0001 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB1716 variant FEAT PAuth
0010 000 ESB FEAT RAS
0010 001 PSB CSYNC FEAT SPE
0010 010 TSB CSYNC FEAT TRF
0010 100 CSDB -
0011 000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIAZ variant FEAT PAuth
0011 001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIASP variant FEAT PAuth
0011 010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBZ variant FEAT PAuth
0011 011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIBSP variant FEAT PAuth
0011 100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIAZ variant FEAT PAuth
0011 101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIASP variant FEAT PAuth
0011 110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBZ variant FEAT PAuth
0011 111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIBSP variant FEAT PAuth
0100 xx0 BTI FEAT BTI

C4-292

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b

ID072021

Barriers

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

This section describes the encoding of the Barriers instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions on page C4-289.

|31 30 29 28|27 26 25 24|23 22 21 20/19 18 17 16]15 14 13 12|11 817 5 4] 0]
[1101010100000011001 1] CRm | op2 | Rt |

Decode fields

Instruction page Feature

CRm op2 Rt

- 000 - Unallocated. -

- 001 = 11111 Unallocated. -

- 010 11111 CLREX -

- 100 11111 DSB - Encoding -

- 101 11111 DMB -

- 110 11111 ISB -

- 111 = 11111 Unallocated. -

- 111 11111 SB -

XX0X 001 11111 Unallocated. -

xx10 001 11111 DSB - Encoding FEAT XS

xx11 001 11111 Unallocated. -

0001 011 - Unallocated. -

001x 011 - Unallocated. -

01xx 011 - Unallocated. -

Ixxx 011 - Unallocated. -

PSTATE

This section describes the encoding of the PSTATE instruction class. The encodings in this section are decoded from
Branches, Exception Generating and System instructions on page C4-289.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C4-293

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28(27 26 25 24/23 22 21 20[19 18 16/15 14 13 12|11 817 5 4 0|
[1101010100000[op1 [o0100[CRm | op2 | Rt |

Decode fields
Instruction page Feature
opl op2 Rt

- - = 11111 Unallocated. -

- - 11111 MSR (immediate) -

000 @00 11111 CFINV FEAT FlagM
000 001 11111 XAFLAG FEAT FlagM2
000 010 11111 AXFLAG FEAT FlagM2

System instructions

This section describes the encoding of the System instructions instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions on page C4-289.

131 30 29 28/27 26 25 24/23 22 21 20[19 18 16[15 12[11 817 5 4 0|
[1101010100[L[o1] opt | CRn [CRm | op2 | Rt |

Decode fields
Instruction page

L
0 SYS
1 SYSL

System register move

This section describes the encoding of the System register move instruction class. The encodings in this section are
decoded from Branches, Exception Generating and System instructions on page C4-289.

31 30 29 28/27 26 25 24(23 22 21 20[19 18 1615 12]11 817 5 4| 0
[1 10101010 0[L[1]o0f opt | CRn | CRm [op2 | Rt |

Decode fields
Instruction page

L
0 MSR (register)
1 MRS
C4-294 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Unconditional branch (register)

This section describes the encoding of the Unconditional branch (register) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

|31 30 29 28|27 26 25 24| 21 20| 16/15 | 109 | 5 4| 0]
[110101 1] opc | op2 [op3 [Rn [op4 |

Decode fields
Instruction page Feature

opc op2 op3 Rn op4

- 1= 11111 - - - Unallocated. -

0000 11111 000000 - 1= 00000 Unallocated. -

0000 11111 000000 - 00000 BR -

0000 11111 000001 - - Unallocated. -

0000 11111 000010 - 1= 11111 Unallocated. -

0000 11111 000010 - 11111 BRAA, BRAAZ, BRAB, BRABZ - Key A, zero FEAT PAuth
modifier variant

0000 11111 000011 - = 11111 Unallocated. -

0000 11111 000011 - 11111 BRAA, BRAAZ, BRAB, BRABZ - Key B, zero FEAT PAuth
modifier variant

0000 11111 0001xx - - Unallocated. -

0000 11111 001xxx - - Unallocated. -

0000 11111 01xxxX - - Unallocated. -

0000 11111 IXXXXX - - Unallocated. -

0001 11111 000000 - 1= 00000 Unallocated. -

0001 11111 000000 - 00000 BLR -

0001 11111 000001 - - Unallocated. -

0001 11111 000010 - = 11111 Unallocated. -

0001 11111 000010 - 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A, zero FEAT PAuth
modifier variant

0001 11111 000011 - = 11111 Unallocated. -

0001 11111 000011 - 11111 BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B, zero FEAT PAuth
modifier variant

0001 11111 0001xx - - Unallocated. -

0001 11111 001xxx - - Unallocated. -

0001 11111 01xxxX - - Unallocated. -

0001 11111 IXXXXX - - Unallocated. -

0010 11111 000000 - 1= 00000 Unallocated. -

ARM DDI 0487G.b

ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C4-295

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

opc op2 op3 Rn op4

0010 11111 000000 - 00000 RET -

0010 11111 000001 - - Unallocated. -

0010 11111 000010 1= 11111 = 11111 Unallocated. -

0010 11111 000010 11111 11111 RETAA, RETAB - RETAA variant FEAT PAuth
0010 11111 000011 1= 11111 = 11111 Unallocated. -

0010 11111 000011 11111 11111 RETAA, RETAB - RETAB variant FEAT PAuth
0010 11111 0001xx - - Unallocated. -

0010 11111 001xxx - - Unallocated. -

0010 11111 01xxxX - - Unallocated. -

0010 11111 IXXXXX - - Unallocated. -

0011 11111 - - - Unallocated. -

0100 11111 000000 1= 11111 = 00000 Unallocated. -

0100 11111 000000 1= 11111 00000 Unallocated. -

0100 11111 000000 11111 1= 00000 Unallocated. -

0100 11111 000000 11111 00000 ERET -

0le0 11111 000001 - - Unallocated. -

0100 11111 000010 1= 11111 = 11111 Unallocated. -

0100 11111 000010 1= 11111 11111 Unallocated. -

0100 11111 000010 11111 = 11111 Unallocated. -

0100 11111 000010 11111 11111 ERETAA, ERETAB - ERETAA variant FEAT_ PAuth
0100 11111 000011 1= 11111 = 11111 Unallocated. -

0100 11111 000011 1= 11111 11111 Unallocated. -

0100 11111 000011 11111 = 11111 Unallocated. -

0100 11111 000011 11111 11111 ERETAA, ERETAB - ERETAB variant FEAT PAuth
0100 11111 0001xx - - Unallocated. -

0100 11111 001xxx - - Unallocated. -

0le0 11111 01xxxX - - Unallocated. -

0100 11111 IXXXXX - - Unallocated. -

0101 11111 1= 000000 - - Unallocated. -

0101 11111 000000 1= 11111 = 00000 Unallocated. -

0101 11111 000000 1= 11111 00000 Unallocated. -

0101 11111 000000 11111 1= 00000 Unallocated. -

C4-296 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

opc op2 op3 Rn op4

0101 11111 000000 11111 00000 DRPS -

011x 11111 - - - Unallocated. -

lee0 11111 00000x - - Unallocated. -

le00 11111 000010 - - BRAA, BRAAZ, BRAB, BRABZ - Key A, register FEAT PAuth
modifier variant

le00 11111 000011 - - BRAA, BRAAZ, BRAB, BRABZ - Key B, register FEAT PAuth
modifier variant

leo0 11111 0001xx - - Unallocated. -

le00 11111 001xxx - - Unallocated. -

le00 11111 01xxxX - - Unallocated. -

le00 11111 IXXXXX - - Unallocated. -

le01 11111 00000x - - Unallocated. -

1001 11111 000010 - - BLRAA, BLRAAZ, BLRAB, BLRABZ - Key A, FEAT PAuth
register modifier variant

1001 11111 000011 - - BLRAA, BLRAAZ, BLRAB, BLRABZ - Key B, FEAT PAuth
register modifier variant

lee1 11111 0001xx - - Unallocated. -

lee1 11111 001xxx - - Unallocated. -

1001 11111 01xxXX - - Unallocated. -

1001 11111 IXXXXX - - Unallocated. -

101x 11111 - - - Unallocated. -

11xx 11111 - - - Unallocated. -

Unconditional branch (immediate)

This section describes the encoding of the Unconditional branch (immediate) instruction class. The encodings in
this section are decoded from Branches, Exception Generating and System instructions on page C4-289.

131 30 29 2827 26 25

0]

lop[0 0 1 0 1]

imm26

Decode fields

Instruction page

op
0 B
1 BL

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C4-297

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Compare and branch (immediate)

This section describes the encoding of the Compare and branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

31 30 29 28[27 26 25 24[23 \ \ \ \ 5 4| 0|
[sflo 1 1 0 1 0]op] imm19 | Rt |

Decode fields
Instruction page

sf op

0 0 CBZ - 32-bit variant
0 1 CBNZ - 32-bit variant
1 0 CBZ - 64-bit variant

1 1 CBNZ - 64-bit variant

Test and branch (immediate)

This section describes the encoding of the Test and branch (immediate) instruction class. The encodings in this
section are decoded from Branches, Exception Generating and System instructions on page C4-289.

|31 30 29 28|27 26 25 2423 [19 18 | | | 5 4| 0]
[b5[0 1 1 0 1 1]op] b40 | imm14 | Rt |

Decode fields
Instruction page

op
0 TBZ
1 TBNZ

C4.1.4 Loads and Stores

This section describes the encoding of the Loads and Stores group. The encodings in this section are decoded from
A64 instruction set encoding on page C4-284.

C4-298 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

131

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

28|27 26 25 24|23 2221 | 16|15 1211110 9 | 0]

op0

[1] [oJop2] |

op3 | [op4 | |

op1 Q

Table C4-5 Encoding table for the Loads and Stores group

Decode fields

Decode group or instruction page

op0 op1 op2 op3 op4
0x00 0 00 Ixxxxx - Compare and swap pair on page C4-300
0x00 1 00 000000 - Advanced SIMD load/store multiple structures on page C4-300
0x00 1 01 OXXXXX - Advanced SIMD load/store multiple structures (post-indexed) on page C4-302
0x00 1 0x Ixxxxx - Unallocated.
0x00 1 10 x00000 - Advanced SIMD load/store single structure on page C4-303
0x00 1 11 - - Advanced SIMD load/store single structure (post-indexed) on page C4-306
0x00 1 x0 xIxxxx - Unallocated.
0x00 1 x0 XXIxxx - Unallocated.
0x00 1 X0 XxxIxx - Unallocated.
0x00 1 X0 XXXx1x - Unallocated.
0x00 1 x0 xxxxx1 - Unallocated.
0x01 0 1x Ixxxxx - Unallocated.
1001 0 1x Ixxxxx - Unallocated.
1101 o 1x IXxXxx - Load/store memory tags on page C4-309
1x00 0 00 Ixxxxx - Load/store exclusive pair on page C4-310
1xe0 1 - - - Unallocated.
xx00 0 00 OXXXXX - Load/store exclusive register on page C4-310
xx00 0 01 OXXXXX - Load/store ordered on page C4-311
xx00 0 01 Ixxxxx - Compare and swap on page C4-312
xx00 0 1x - - Unallocated.
xx01 0 1x Oxxxxx 00 LDAPR/STLR (unscaled immediate) on page C4-313
xx01 1 1x Oxxxxx 00 Unallocated.
xx01 - 0x - - Load register (literal) on page C4-314
xx10 - 00 - - Load/store no-allocate pair (offset) on page C4-314
xx10 - 01 - - Load/store register pair (post-indexed) on page C4-315
xx10 - 10 - - Load/store register pair (offset) on page C4-315
xx10 - 11 - - Load/store register pair (pre-indexed) on page C4-316
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-299

1D072021

Non-Confidential

A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

Table C4-5 Encoding table for the Loads and Stores group (continued)

Decode fields

Decode group or instruction page

op0 op1 op2 op3 op4

xx11 - 0x Oxxxxx 00 Load/store register (unscaled immediate) on page C4-317
xx11 - 0x Oxxxxx 01 Load/store register (immediate post-indexed) on page C4-318
xx11 - 0x Oxxxxx 10 Load/store register (unprivileged) on page C4-319

xx11 - 0x Oxxxxx 11 Load/store register (immediate pre-indexed) on page C4-320
xx11 - 0x Ixxxxx 00 Atomic memory operations on page C4-321

xx11 - 0x Ixxxxx 10 Load/store register (register offset) on page C4-329

xx11 - 0x Ixxxxx x1 Load/store register (pac) on page C4-330

xx11 - 1x - - Load/store register (unsigned immediate) on page C4-331

Compare and swap pair

This section describes the encoding of the Compare and swap pair instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

|31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 | 109 | 5 4| 0|

[0]sz[o 0 1 0 0 0 ofL[1] Rs |o0] Rt2 | Rn | Rt |

Decode fields

Instruction page Feature

sz L o0 Rt2

- - - 1= 11111 Unallocated. -

0 0 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASP variant FEAT LSE
0 0 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPL variant FEAT LSE
0 1 0 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPA variant FEAT LSE
0 1 1 11111 CASP, CASPA, CASPAL, CASPL - 32-bit CASPAL variant FEAT LSE
1 0 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASP variant FEAT LSE
1 0 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPL variant FEAT LSE
1 1 0 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPA variant FEAT LSE
1 1 1 11111 CASP, CASPA, CASPAL, CASPL - 64-bit CASPAL variant FEAT LSE

Advanced SIMD load/store multiple structures

This section describes the encoding of the Advanced SIMD load/store multiple structures instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

C4-300

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

131 30 29 28|27 26 25 24/23 22 21 20|19 18 17 16]15

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

121110 9 | 5 4] 0]

[o]aJo 0 1 1 0 0 of[L[o 0 0 0 0 O] opcode | size | Rn [Rt |

Decode fields

L opcode

Instruction page

0 0000 ST4 (multiple structures)
0 0001 Unallocated.
0 0010 ST1 (multiple structures) - Four registers variant
0 0011 Unallocated.
0 0100 ST3 (multiple structures)
0 0101 Unallocated.
0 0110 ST1 (multiple structures) - Three registers variant
0 0111 ST1 (multiple structures) - One register variant
0 1000 ST2 (multiple structures)
0 1001 Unallocated.
0 1010 ST1 (multiple structures) - Two registers variant
0 1011 Unallocated.
0 11xx Unallocated.
1 0000 LD4 (multiple structures)
1 0001 Unallocated.
1 0010 LD1 (multiple structures) - Four registers variant
1 0011 Unallocated.
1 0100 LD3 (multiple structures)
1 0101 Unallocated.
1 0110 LDI (multiple structures) - Three registers variant
1 0111 LD1 (multiple structures) - One register variant
1 1000 LD2 (multiple structures)
1 1001 Unallocated.
1 1010 LD1 (multiple structures) - Two registers variant
1 1011 Unallocated.
1 11xx Unallocated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-301

1D072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD load/store multiple structures (post-indexed)

This section describes the encoding of the Advanced SIMD load/store multiple structures (post-indexed) instruction
class. The encodings in this section are decoded from Loads and Stores on page C4-298.

131 30 29 28|27 26 25 24[23 22 21 20| 16]15 1211110 9 | 5 4] 0]

[o]aJo 0 1 1 0 0 1]L]0]

Rm [opcode]size[Rn [Rt |

Decode fields

Instruction page

L Rm opcode
0 - 0001 Unallocated.
0 - 0011 Unallocated.
0 - 0101 Unallocated.
0 - 1001 Unallocated.
0 - 1011 Unallocated.
0 - 11xx Unallocated.
0 1= 11111 0000 ST4 (multiple structures) - Register offset variant
0 1= 11111 0010 ST1 (multiple structures) - Four registers, register offset variant
0 1= 11111 0100 ST3 (multiple structures) - Register offset variant
0 1= 11111 0110 ST1 (multiple structures) - Three registers, register offset variant
0 1= 11111 o111 ST1 (multiple structures) - One register, register offset variant
0 1= 11111 1000 ST2 (multiple structures) - Register offset variant
0 1= 11111 1010 ST1 (multiple structures) - Two registers, register offset variant
0 11111 0000 ST4 (multiple structures) - Immediate offset variant
0 11111 0010 ST1 (multiple structures) - Four registers, immediate offset variant
0 11111 0100 ST3 (multiple structures) - Immediate offset variant
0 11111 0110 ST1 (multiple structures) - Three registers, immediate offset variant
0 11111 0111 ST1 (multiple structures) - One register, immediate offset variant
0 11111 1000 ST2 (multiple structures) - Immediate offset variant
0 11111 1010 ST1 (multiple structures) - Two registers, immediate offset variant
1 - 0001 Unallocated.
1 - 0011 Unallocated.
1 - 0101 Unallocated.
1 - 1001 Unallocated.
1 - 1011 Unallocated.
1 - 11xx Unallocated.
C4-302 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

L Rm opcode

1 1= 11111 0000 LD4 (multiple structures) - Register offset variant

1 1= 11111 0010 LD1 (multiple structures) - Four registers, register offset variant

1 1= 11111 0100 LD3 (multiple structures) - Register offset variant

1 !=11111 o110 LDI (multiple structures) - Three registers, register offset variant

1 1= 11111 0111 LDI (multiple structures) - One register, register offset variant

1 1= 11111 1000 LD2 (multiple structures) - Register offset variant

1 1= 11111 1010 LD1 (multiple structures) - Two registers, register offset variant

1 1111 0000 LD4 (multiple structures) - Immediate offset variant

1 11111 0010 LDI (multiple structures) - Four registers, immediate offset variant
1 11111 0100 LD3 (multiple structures) - Immediate offset variant

1 11111 0110 LDI (multiple structures) - Three registers, immediate offset variant
1 11111 0111 LD1 (multiple structures) - One register, immediate offset variant
1 11111 1000 LD2 (multiple structures) - Immediate offset variant

1 1111 1010 LDI (multiple structures) - Two registers, immediate offset variant

Advanced SIMD load/store single structure

This section describes the encoding of the Advanced SIMD load/store single structure instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

131 30 29 28|27 26 25 24]23 22 21 2019 18 17 16/15 13 12(1110 9 | 5 4] 0|

[o]alo 0 1 1 0 1 o]L[R]0o 0 0 0 0fopcode[s]size | Rn [Rt |

Decode fields

Instruction page

L R opcode S size
0 - 1 - - Unallocated.
0 0 000 - - ST1 (single structure) - 8-bit variant
0 0 o1 - - ST3 (single structure) - 8-bit variant
0 0 o010 - x0 ST1 (single structure) - 16-bit variant
0 0 010 - x1 Unallocated.
0 0 o011 - X0 ST3 (single structure) - 16-bit variant
0 0 o011 - x1 Unallocated.
0 0 100 - 00 ST1 (single structure) - 32-bit variant
0 0 1lo@ - Ix Unallocated.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-303

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

L R opcode size

0 0 100 01 ST1 (single structure) - 64-bit variant

0 0 100 01 Unallocated.

0 0 101 00 ST3 (single structure) - 32-bit variant

0 0 101 10 Unallocated.

0 0 101 01 ST3 (single structure) - 64-bit variant

0 0 101 11 Unallocated.

0 0 101 x1 Unallocated.

0 1 000 - ST2 (single structure) - 8-bit variant

0 1 o0l - ST4 (single structure) - 8-bit variant

0 1 olo x0 ST2 (single structure) - 16-bit variant

e 1 o010 x1 Unallocated.

0 1 011 x0 ST4 (single structure) - 16-bit variant

0 1 11 x1 Unallocated.

0 1 100 00 ST2 (single structure) - 32-bit variant

0 1 1e@ 10 Unallocated.

0 1 100 01 ST2 (single structure) - 64-bit variant

0 1 1@ 11 Unallocated.

0 1 100 x1 Unallocated.

0 1 101 00 ST4 (single structure) - 32-bit variant

0 1 101 10 Unallocated.

0 1 101 01 ST4 (single structure) - 64-bit variant

0 1 101 11 Unallocated.

e 1 101 x1 Unallocated.

1 0 000 - LD1 (single structure) - 8-bit variant

1 o 01 - LD3 (single structure) - 8-bit variant

1 o o010 x0 LD1 (single structure) - 16-bit variant

1 0 o010 x1 Unallocated.

1 0 o011 x0 LD3 (single structure) - 16-bit variant

1 0 o011 x1 Unallocated.

1 0 100 00 LD1 (single structure) - 32-bit variant

1 0 100 1x Unallocated.

1 o 100 01 LD1 (single structure) - 64-bit variant
C4-304 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

L R opcode size
1 0 100 01 Unallocated.
1 o 101 00 LD3 (single structure) - 32-bit variant
1 o 101 10 Unallocated.
1 o 101 01 LD3 (single structure) - 64-bit variant
1 0 101 11 Unallocated.
1 0 101 x1 Unallocated.
1 0 110 - LDIR
1 o 110 - Unallocated.
1 0 111 - LD3R
1 o 111 - Unallocated.
1 1 000 - LD2 (single structure) - 8-bit variant
1 1 01 - LD4 (single structure) - 8-bit variant
1 1 o10 x0 LD2 (single structure) - 16-bit variant
1 1 o010 x1 Unallocated.
1 1 o1 x0 LD4 (single structure) - 16-bit variant
1 1 o1 x1 Unallocated.
1 1 100 00 LD2 (single structure) - 32-bit variant
1 1 100 10 Unallocated.
1 1 100 01 LD2 (single structure) - 64-bit variant
1 1 10 11 Unallocated.
1 1 100 x1 Unallocated.
1 1 101 00 LD4 (single structure) - 32-bit variant
1 1 101 10 Unallocated.
1 1 101 01 LD4 (single structure) - 64-bit variant
1 1 101 11 Unallocated.
1 1 101 x1 Unallocated.
1 1 110 - LD2R
1 1 110 - Unallocated.
1 1 111 - LD4R
1 1 111 - Unallocated.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-305

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD load/store single structure (post-indexed)

This section describes the encoding of the Advanced SIMD load/store single structure (post-indexed) instruction
class. The encodings in this section are decoded from Loads and Stores on page C4-298.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 1312[1110 9 | 5 4| 0|
[o]aJo 0 1 1 0 1 1]L[R] Rm [opcode [S| size | Rn [Rt |

Decode fields
Instruction page

L R Rm opcode S size
o - - 11x - - Unallocated.
e 0 - 010 - x1 Unallocated.
o 0 - 011 - x1 Unallocated.
o 0 - 100 - Ix Unallocated.
e 0 - 100 1 o1 Unallocated.
e o - 101 - 10 Unallocated.
e o - 101 0 11 Unallocated.
e 0 - 101 1 x1 Unallocated.
0 0 1= 11111 000 - - ST1 (single structure) - 8-bit, register offset variant
0 0 1= 11111 001 - - ST3 (single structure) - 8-bit, register offset variant
o 0 1= 11111 010 - x0 ST1 (single structure) - 16-bit, register offset variant
0 o !=11111 011 - X0 ST3 (single structure) - 16-bit, register offset variant
0 0 1= 11111 100 - 00 ST1 (single structure) - 32-bit, register offset variant
0 o !=11111 100 0 o1 ST1 (single structure) - 64-bit, register offset variant
0 0 1= 11111 101 - 00 ST3 (single structure) - 32-bit, register offset variant
0 0 1= 11111 101 0 o1 ST3 (single structure) - 64-bit, register offset variant
0 o0 11111 000 - - ST1 (single structure) - 8-bit, immediate offset variant
0 o0 11111 001 - - ST3 (single structure) - 8-bit, immediate offset variant
0 o 11111 010 - X0 ST1 (single structure) - 16-bit, immediate offset variant
0 o0 11111 011 - X0 ST3 (single structure) - 16-bit, immediate offset variant
0 0 11111 100 - 00 ST1 (single structure) - 32-bit, immediate offset variant
0 0 11111 100 0 o1 ST1 (single structure) - 64-bit, immediate offset variant
0 o0 11111 101 - 00 ST3 (single structure) - 32-bit, immediate offset variant
0 o 11111 101 0 o1 ST3 (single structure) - 64-bit, immediate offset variant
e 1 - 010 - x1 Unallocated.
o 1 - 011 - x1 Unallocated.
C4-306 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page

L R Rm opcode S size

o 1 - 100 - 10 Unallocated.

e 1 - 100 0 11 Unallocated.

e 1 - 100 1 x1 Unallocated.

e 1 - 101 - 10 Unallocated.

o 1 - 101 0 11 Unallocated.

o 1 - 101 1 x1 Unallocated.

0 1 1= 11111 000 - - ST2 (single structure) - 8-bit, register offset variant

0 1 1= 11111 o001 - - ST4 (single structure) - 8-bit, register offset variant

0 1 1= 11111 010 - X0 ST2 (single structure) - 16-bit, register offset variant

0 1 1= 11111 o011 - X0 ST4 (single structure) - 16-bit, register offset variant

0 1 I=11111 100 - 00 ST2 (single structure) - 32-bit, register offset variant

0 1 1= 11111 100 0 o1 ST2 (single structure) - 64-bit, register offset variant

0 1 1= 11111 101 - 00 ST4 (single structure) - 32-bit, register offset variant

0 1 1= 11111 101 0 o1 ST4 (single structure) - 64-bit, register offset variant

0 1 11111 000 - - ST2 (single structure) - 8-bit, immediate offset variant

0 1 11111 001 - - ST4 (single structure) - 8-bit, immediate offset variant

0 1 11111 010 - X0 ST2 (single structure) - 16-bit, immediate offset variant

0 1 11111 011 - x0 ST4 (single structure) - 16-bit, immediate offset variant

0 1 11111 100 - 00 ST2 (single structure) - 32-bit, immediate offset variant

0 1 11111 100 0 o1 ST2 (single structure) - 64-bit, immediate offset variant

0 1 11111 101 - 00 ST4 (single structure) - 32-bit, immediate offset variant

0 1 11111 101 0 o1 ST4 (single structure) - 64-bit, immediate offset variant

1 0 - 010 - x1 Unallocated.

1 0 - 011 - x1 Unallocated.

1 0 - 100 - 1x Unallocated.

1 0 - 100 1 o1 Unallocated.

1 0 - 101 - 10 Unallocated.

1 0 - 101 0 11 Unallocated.

1 0 - 101 1 x1 Unallocated.

1 0 - 110 1 - Unallocated.

1 0 - 111 1 - Unallocated.

1 0 1= 11111 000 - - LDI1 (single structure) - 8-bit, register offset variant
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-307

1D072021 Non-Confidential

A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

Decode fields

Instruction page

L R Rm opcode S size

1 0 1= 11111 001 - - LD3 (single structure) - 8-bit, register offset variant

1 0 1= 11111 010 - x0 LDI1 (single structure) - 16-bit, register offset variant

1 0 1= 11111 o011 - X0 LD3 (single structure) - 16-bit, register offset variant

1 0 1= 11111 100 - 00 LD1 (single structure) - 32-bit, register offset variant

1 0 !=11111 100 0 o1 LDI (single structure) - 64-bit, register offset variant

1 0 1= 11111 101 - 00 LD3 (single structure) - 32-bit, register offset variant

1 0 1= 11111 101 0 o1 LD3 (single structure) - 64-bit, register offset variant

1 0 1= 11111 110 0 - LDIR - Register offset variant

1 0 1= 11111 111 [/ LD3R - Register offset variant

1 o 11111 000 - - LD1 (single structure) - 8-bit, immediate offset variant

1 o 11111 001 - - LD3 (single structure) - 8-bit, immediate offset variant

1 o 11111 010 - x0 LD1 (single structure) - 16-bit, immediate offset variant

1 o 11111 011 - x0 LD3 (single structure) - 16-bit, immediate offset variant

1 o 11111 100 - 00 LDI1 (single structure) - 32-bit, immediate offset variant

1 o 11111 100 0 o1 LD1 (single structure) - 64-bit, immediate offset variant

1 o 11111 101 - 00 LD3 (single structure) - 32-bit, immediate offset variant

1 o 11111 101 0 o1 LD3 (single structure) - 64-bit, immediate offset variant

1 o 11111 110 [/ LDIR - Immediate offset variant

1 o 11111 111 [/ LD3R - Immediate offset variant

1 1 - 010 - x1 Unallocated.

1 1 - 011 - x1 Unallocated.

1 1 - 100 - 10 Unallocated.

1 1 - 100 0 11 Unallocated.

1 1 - 100 1 x1 Unallocated.

1 1 - 101 - 10 Unallocated.

1 1 - 101 0 11 Unallocated.

1 1 - 101 1 x1 Unallocated.

1 1 - 110 1 - Unallocated.

1 1 - 111 1 - Unallocated.

1 1 1= 11111 000 - - LD2 (single structure) - 8-bit, register offset variant

1 1 1= 11111 001 - - LD4 (single structure) - 8-bit, register offset variant

1 1 1= 11111 010 - x0 LD2 (single structure) - 16-bit, register offset variant
C4-308 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

L R Rm opcode S size

1 1 1= 11111 011 - x0 LD4 (single structure) - 16-bit, register offset variant

1 1 1= 11111 100 - 00 LD2 (single structure) - 32-bit, register offset variant

1 1 1= 11111 100 0 o1 LD2 (single structure) - 64-bit, register offset variant

1 1 1= 11111 101 - 00 LD4 (single structure) - 32-bit, register offset variant

1 1 !=11111 101 0 o1 LD4 (single structure) - 64-bit, register offset variant

1 1 1= 11111 110 [/ LD2R - Register offset variant

1 1 1= 11111 111 [/ LD4R - Register offset variant

1 1 1111 000 - - LD2 (single structure) - 8-bit, immediate offset variant
1 1 1111 001 - - LD4 (single structure) - 8-bit, immediate offset variant
1 1 1111 010 - X0 LD2 (single structure) - 16-bit, immediate offset variant
1 1 1111 011 - X0 LD4 (single structure) - 16-bit, immediate offset variant
1 1 11111 100 - 00 LD2 (single structure) - 32-bit, immediate offset variant
1 1 11111 100 0 o1 LD2 (single structure) - 64-bit, immediate offset variant
1 1 1111 101 - 00 LD4 (single structure) - 32-bit, immediate offset variant
1 1 1111 101 0 o1 LD4 (single structure) - 64-bit, immediate offset variant
1 1 1111 110 0 - LD2R - Immediate offset variant

1 1 11111 111 0 - LD4R - Immediate offset variant

Load/store memory tags

This section describes the encoding of the Load/store memory tags instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

131 30 29 28|27 26 25 24|23 22 21 20| \

121110 9 | 5 4 0]

[1 101100 1][opc[1]

imm9

[op2 [Rn [Rt |

Decode fields

Instruction page Feature

opc imm9 op2

00 - 01 STG - Encoding FEAT MTE

00 - 10 STG - Encoding FEAT MTE

00 - 11 STG - Encoding FEAT MTE

00 000000000 00 STZGM FEAT MTE2
01 - 00 LDG FEAT MTE

01 - 01 STZG - Encoding FEAT MTE

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-309

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
opc imm9 op2
01 - 10 STZG - Encoding FEAT MTE
01 - 11 STZG - Encoding FEAT MTE
10 - 01 ST2G - Encoding FEAT MTE
10 - 10 ST2G - Encoding FEAT MTE
10 - 11 ST2G - Encoding FEAT MTE
10 = 000000000 00 Unallocated. -
10 000000000 00 STGM FEAT MTE2
11 - 01 STZ2G - Encoding FEAT MTE
11 - 10 STZ2G - Encoding FEAT MTE
11 - 11 STZ2G - Encoding FEAT MTE
11 I= 000000000 00 Unallocated. -
11 000000000 00 LDGM FEAT MTE2

Load/store exclusive pair

This section describes the encoding of the Load/store exclusive pair instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/15 14 | 109 | 5 4| 0]
[1]szlo 0 1 0 0 0 ofL[1] Rs |oo] R2 | Rn | Rt |

Decode fields
Instruction page
sz L o0

0 0 0 STXP - 32-bit variant

0 0 1 STLXP - 32-bit variant

0 1 0 LDXP - 32-bit variant

0 1 1 LDAXP - 32-bit variant
1 0 0 STXP - 64-bit variant

1 0 1 STLXP - 64-bit variant

1 1 0 LDXP - 64-bit variant

1 1 1 LDAXP - 64-bit variant

Load/store exclusive register

This section describes the encoding of the Load/store exclusive register instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

C4-310 ARM DDI 0487G.b

ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 14 | 109 | 5 4| 0|
[size]o 0 1 0 0 0 0fL]0] Rs o0 Rt2 | Rn | Rt |

Decode fields
Instruction page
size L o0

00 0 0 STXRB

00 0 1 STLXRB

00 1 0 LDXRB

00 1 1 LDAXRB

01 o 0 STXRH

01 0 1 STLXRH

01 1 0 LDXRH

01 1 1 LDAXRH

10 0 0 STXR - 32-bit variant

10 0 1 STLXR - 32-bit variant

10 1 0 LDXR - 32-bit variant

10 1 1 LDAXR - 32-bit variant

11 0 0 STXR - 64-bit variant

11 0 1 STLXR - 64-bit variant

11 1 0 LDXR - 64-bit variant

11 1 1 LDAXR - 64-bit variant

Load/store ordered

This section describes the encoding of the Load/store ordered instruction class. The encodings in this section are
decoded from Loads and Stores on page C4-298.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 14 | 109 | 5 4| 0|
[size]o 0 1 0 0 0 1[L]0] Rs o0 Rt2 | Rn | Rt |

Decode fields
Instruction page Feature
size L o0

00 0 0 STLLRB FEAT LOR

00 0 1 STLRB -

00 1 0 LDLARB FEAT_LOR

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-311
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Compare and swap

Decode fields

Instruction page Feature

size L o0

00 1 1 LDARB -

01 0 0 STLLRH FEAT LOR
01 0 1 STLRH -

01 1 0 LDLARH FEAT LOR
01 1 1 LDARH -

10 0 0 STLLR - 32-bit variant ~ FEAT LOR
10 0 1 STLR - 32-bit variant -

10 1 0 LDLAR - 32-bit variant FEAT LOR
10 1 1 LDAR - 32-bit variant -

11 0 0 STLLR - 64-bit variant ~ FEAT LOR
11 0 1 STLR - 64-bit variant -

11 1 0 LDLAR - 64-bit variant FEAT LOR
11 1 1 LDAR - 64-bit variant -

This section describes the encoding of the Compare and swap instruction class. The encodings in this section are
decoded from Loads and Stores on page C4-298.

|31 30 29 28(27 26 25 24|23 22 21 20| 16/15 14 | 109 | 5 4| 0]
[size]o 0 1 0 0 0 1[L[1] Rs [o0] Rt2 | Rn | Rt |
Decode fields
Instruction page Feature
size L o0 Rt2
- - - 1= 11111 Unallocated. -
00 0 0 11111 CASB, CASAB, CASALB, CASLB - CASB variant FEAT LSE
00 0 1 11111 CASB, CASAB, CASALB, CASLB - CASLB variant FEAT LSE
00 1 0 11111 CASB, CASAB, CASALB, CASLB - CASAB variant FEAT LSE
00 1 1 11111 CASB, CASAB, CASALB, CASLB - CASALB variant ~ FEAT LSE
01 o 0 11111 CASH, CASAH, CASALH, CASLH - CASH variant FEAT LSE
01 0 1 11111 CASH, CASAH, CASALH, CASLH - CASLH variant FEAT LSE
01 1 0 11111 CASH, CASAH, CASALH, CASLH - CASAH variant FEAT LSE
01 1 1 11111 CASH, CASAH, CASALH, CASLH - CASALH variant FEAT LSE
10 o 0 11111 CAS, CASA, CASAL, CASL - 32-bit CAS variant FEAT LSE

C4-312

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size L o0 Rt2

10 0 1 11111 CAS, CASA, CASAL, CASL - 32-bit CASL variant FEAT LSE
10 1 0 11111 CAS, CASA, CASAL, CASL - 32-bit CASA variant FEAT LSE
10 1 1 11111 CAS, CASA, CASAL, CASL - 32-bit CASAL variant FEAT LSE
11 0 0 11111 CAS, CASA, CASAL, CASL - 64-bit CAS variant FEAT LSE
11 0 1 11111 CAS, CASA, CASAL, CASL - 64-bit CASL variant FEAT LSE
11 1 0 11111 CAS, CASA, CASAL, CASL - 64-bit CASA variant FEAT LSE
11 1 1 11111 CAS, CASA, CASAL, CASL - 64-bit CASAL variant FEAT LSE

LDAPR/STLR (unscaled immediate)

This section describes the encoding of the LDAPR/STLR (unscaled immediate) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

31 30 29 28|27 26 25 24(23 22 21 20| \ 1211110 9 | 5 4| 0
[size][o 1 1 0 0 1]opc|o] imm9 [0 of Rn | Rt |

Decode fields

Instruction page Feature

size opc

00 00 STLURB FEAT_LRCPC2
00 01 LDAPURB FEAT LRCPC2
00 10 LDAPURSB - 64-bit variant FEAT LRCPC2
00 11 LDAPURSB - 32-bit variant FEAT LRCPC2
01 00 STLURH FEAT_LRCPC2
01 01 LDAPURH FEAT_LRCPC2
01 10 LDAPURSH - 64-bit variant FEAT LRCPC2
01 11 LDAPURSH - 32-bit variant FEAT _LRCPC2
10 00 STLUR - 32-bit variant FEAT LRCPC2
10 01 LDAPUR - 32-bit variant FEAT LRCPC2
10 10 LDAPURSW FEAT_LRCPC2
10 11 Unallocated. -

11 00 STLUR - 64-bit variant FEAT_LRCPC2
11 01 LDAPUR - 64-bit variant FEAT LRCPC2
11 10 Unallocated. -

11 11 Unallocated. -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-313

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Load register (literal)

This section describes the encoding of the Load register (literal) instruction class. The encodings in this section are
decoded from Loads and Stores on page C4-298.

31 30 29 28[27 26 25 24[23 \ \ \ \ 5 4| 0
[opc [0 1 1]v]o o] imm19 | Rt |

Decode fields
Instruction page

opc \")

00 0 LDR (literal) - 32-bit variant

00 1 LDR (literal, SIMD&FP) - 32-bit variant
01 0 LDR (literal) - 64-bit variant

01 1 LDR (literal, SIMD&FP) - 64-bit variant
10 0 LDRSW (literal)

10 1 LDR (literal, SIMD&FP) - 128-bit variant
11 0 PRFM (literal)

11 1 Unallocated.

Load/store no-allocate pair (offset)

This section describes the encoding of the Load/store no-allocate pair (offset) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

3130 29 28[27 26 25 24[23 2221 | 115 14 | 109 | 5 4| 0
[opc[1 0 1]v[o 0 ofL] imm7 | Rt2 | Rn | Rt |

Decode fields
Instruction page
opc V L

00 0 0 STNP - 32-bit variant

00 0 1 LDNP - 32-bit variant

00 1 0 STNP (SIMD&FP) - 32-bit variant

00 1 1 LDNP (SIMD&FP) - 32-bit variant

01 0 - Unallocated.

01 1 0 STNP (SIMD&FP) - 64-bit variant

01 1 1 LDNP(SIMD&FP) - 64-bit variant

10 0 0 STNP - 64-bit variant

10 0 1 LDNP - 64-bit variant

C4-314 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

Load/store register pair (post-indexed)

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

opc V L

10 1 0 STNP(SIMD&FP) - 128-bit variant
10 1 1 LDNP (SIMD&FP) - 128-bit variant
11 - - Unallocated.

This section describes the encoding of the Load/store register pair (post-indexed) instruction class. The encodings
in this section are decoded from Loads and Stores on page C4-298.

|31 30 29 28(27 26 25 24|23 2221 | |15 14 | 109 | 5 4| 0]
[opc[1 0 1]v]o 0 1]L] imm?7 | Rt2 | Rn | Rt |

Decode fields

Instruction page Feature

opc V L

00 0 0 STP - 32-bit variant -

00 0 1 LDP - 32-bit variant -

00 1 0 STP (SIMD&FP) - 32-bit variant -

00 1 1 LDP(SIMD&FP)- 32-bit variant -

01 0 0 STGP FEAT MTE

01 0 1 LDPSW -

01 1 0 STP (SIMD&FP) - 64-bit variant -

01 1 1 LDP (SIMD&FP) - 64-bit variant -

10 0 0 STP - 64-bit variant -

10 0 1 LDP - 64-bit variant -

10 1 @ STP(SIMD&FP)- 128-bit variant -

10 1 1 LDP (SIMD&FP) - 128-bit variant -

11 - - Unallocated. -

Load/store register pair (offset)

This section describes the encoding of the Load/store register pair (offset) instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
ID072021 Non-Confidential

C4-315

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 2827 26 25 2423 22 21 | 115 14 | 109 | 5 4| 0|
[opc[1 0 1]v]o 1 ofL] imm7 | Rt2 | Rn | Rt |

Decode fields
Instruction page Feature
opc V L

00 0 0 STP - 32-bit variant -

00 0 1 LDP - 32-bit variant -

00 1 @ STP(SIMD&FP)- 32-bit variant -

00 1 1 LDP(SIMD&FP)- 32-bit variant -

01 0 0 STGP FEAT MTE

01 0 1 LDPSW -

01 1 0 STP (SIMD&FP) - 64-bit variant -

01 1 1 LDP (SIMD&FP) - 64-bit variant -

10 0 0 STP - 64-bit variant -

10 0 1 LDP - 64-bit variant -

10 1 0 STP (SIMD&FP) - 128-bit variant -

10 1 1 LDP (SIMD&FP) - 128-bit variant -

11 - - Unallocated. -

Load/store register pair (pre-indexed)

This section describes the encoding of the Load/store register pair (pre-indexed) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

|31 30 29 28|27 26 25 24[23 22 21 | |15 14 | 109 | 5 4| 0]
[opc [1 0 1]v]o 1 1]L] imm7 | Rt2 | Rn | Rt |

Decode fields
Instruction page Feature
opc V L

00 0 0 STP - 32-bit variant -

00 0 1 LDP - 32-bit variant -

00 1 0 STP (SIMD&FP) - 32-bit variant -

00 1 1 LDP (SIMD&FP) - 32-bit variant -

01 0 0 STGP FEAT MTE

01 0 1 LDPSW -

C4-316 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page Feature
opc V L

01 1 @ STP(SIMD&FP)- 64-bit variant -

01 1 1 LDP (SIMD&FP) - 64-bit variant -

10 0 0 STP - 64-bit variant -

10 0 1 LDP - 64-bit variant -

10 1 @ STP(SIMD&FP)- 128-bit variant -

10 1 1 LDP(SIMD&FP)- 128-bit variant -

11 - - Unallocated. -

Load/store register (unscaled immediate)

This section describes the encoding of the Load/store register (unscaled immediate) instruction class. The encodings
in this section are decoded from Loads and Stores on page C4-298.

31 30 29 28|27 26 25 24(23 22 21 20| \ 1211110 9 | 5 4| 0
[size[1 1 1]v[o 0] opc 0] imm9 [0 of Rn | Rt |

Decode fields
Instruction page
size V opc

x1 1 1x Unallocated.

00 0 00 STURB

00 0 o1 LDURB

00 0 10 LDURSB - 64-bit variant

00 0 11 LDURSB - 32-bit variant

0 1 @ STUR (SIMD&FP) - 8-bit variant

00 1 01 LDUR (SIMD&FP) - 8-bit variant

00 1 10 STUR (SIMD&FP) - 128-bit variant

00 1 1 LDUR (SIMD&FP) - 128-bit variant

01 0 00 STURH

01 0 o1 LDURH

01 0 10 LDURSH - 64-bit variant

01 0 11 LDURSH - 32-bit variant

01 1 o0 STUR (SIMD&FP) - 16-bit variant

01 1 o LDUR (SIMD&FP) - 16-bit variant

1x 0 11 Unallocated.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-317
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

size V opc

1x 1 1x Unallocated.

10 0 00 STUR - 32-bit variant

10 0 o1 LDUR - 32-bit variant

10 0 10 LDURSW

10 1 00 STUR (SIMD&FP) - 32-bit variant
10 1 o1 LDUR (SIMD&FP) - 32-bit variant
11 0 00 STUR - 64-bit variant

11 0 o1 LDUR - 64-bit variant

11 0 10 PRFUM

11 1 00 STUR (SIMD&FP) - 64-bit variant
11 1 o1 LDUR (SIMD&FP) - 64-bit variant

Load/store register (immediate post-indexed)

This section describes the encoding of the Load/store register (immediate post-indexed) instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

131 30 29 28|27 26 25 24|23 22 21 20| \

1211110 9 | 5 4 0|

[size[1 1 1]v[o 0] opc 0] imm9

[0 1] Rn [Rt |

Decode fields

Instruction page

size V opc
x1 1 1x Unallocated.
00 0 00 STRB (immediate)
00 0 o1 LDRB (immediate)
00 0 10 LDRSB (immediate) - 64-bit variant
00 0 11 LDRSB (immediate) - 32-bit variant
00 1 00 STR (immediate, SIMD&FP) - 8-bit variant
00 1 o1 LDR (immediate, SIMD&FP) - 8-bit variant
00 1 10 STR (immediate, SIMD&FP) - 128-bit variant
00 1 1 LDR (immediate, SIMD&FP) - 128-bit variant
01 0 00 STRH (immediate)
01 0 o1 LDRH (immediate)
01 0 10 LDRSH (immediate) - 64-bit variant
C4-318 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

size V opc

01 0 11 LDRSH (immediate) - 32-bit variant

01 1 o0 STR (immediate, SIMD&FP) - 16-bit variant
01 1 e LDR (immediate, SIMD&FP) - 16-bit variant
1x 0 11 Unallocated.

1x 1 Ix Unallocated.

10 0 00 STR (immediate) - 32-bit variant

10 0 o1 LDR (immediate) - 32-bit variant

10 0 10 LDRSW (immediate)

10 1 o0 STR (immediate, SIMD&FP) - 32-bit variant
10 1 e LDR (immediate, SIMD&FP) - 32-bit variant
11 0 00 STR (immediate) - 64-bit variant

11 0 o1 LDR (immediate) - 64-bit variant

11 0 10 Unallocated.

11 1 o0 STR (immediate, SIMD&FP) - 64-bit variant
11 1 0 LDR (immediate, SIMD&FP) - 64-bit variant

Load/store register (unprivileged)

This section describes the encoding of the Load/store register (unprivileged) instruction class. The encodings in this

section are decoded from Loads and Stores on page C4-298.

|31 30 29 28(27 26 25 24/23 22 21 20| | 121110 9 | 5 4| 0]
[size[1 1 1]v]o o] opc o] imm9 [1 o] Rn | Rt |
Decode fields
Instruction page
size V opc
- 1 - Unallocated.
00 0 00 STTRB
00 0 o1 LDTRB
00 0 10 LDTRSB - 64-bit variant
00 0 11 LDTRSB - 32-bit variant
01 0 00 STTRH
01 0 o1 LDTRH
01 0 10 LDTRSH - 64-bit variant
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-319

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Load/store register (immediate pre-indexed)

Decode fields
Instruction page
size V opc

01 0 11 LDTRSH - 32-bit variant

1x 0 11 Unallocated.

10 0 00 STTR - 32-bit variant

10 0 01 LDTR - 32-bit variant

10 0 10 LDTRSW

11 0 00 STTR - 64-bit variant

11 0 01 LDTR - 64-bit variant

11 0 10 Unallocated.

This section describes the encoding of the Load/store register (immediate pre-indexed) instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

|31 30 29 28|27 26 25 24|23 22 21 20|

121110 9 | 5 4| 0

|size|1 1 1|V|0 0|opc|0|

imm9

[1 1] Rn | Rt |

Decode fields

size V opc

Instruction page

x1 1 Ix Unallocated.

00 0 00 STRB (immediate)

00 0 o1 LDRB (immediate)

00 0 10 LDRSB (immediate) - 64-bit variant

00 0 11 LDRSB (immediate) - 32-bit variant

00 1 00 STR (immediate, SIMD&FP) - 8-bit variant

00 1 e LDR (immediate, SIMD&FP) - 8-bit variant

00 1 10 STR (immediate, SIMD&FP) - 128-bit variant

00 1 1 LDR (immediate, SIMD&FP) - 128-bit variant

01 0 00 STRH (immediate)

01 0 o1 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant

01 0 11 LDRSH (immediate) - 32-bit variant

01 1 o0 STR (immediate, SIMD&FP) - 16-bit variant

01 1 o LDR (immediate, SIMD&FP) - 16-bit variant
C4-320 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

Atomic memory operations

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

size V opc

1x 0 11 Unallocated.

1x 1 1x Unallocated.

10 0 00 STR (immediate) - 32-bit variant

10 0 o1 LDR (immediate) - 32-bit variant

10 0 10 LDRSW (immediate)

10 1 00 STR (immediate, SIMD&FP) - 32-bit variant
10 1 o LDR (immediate, SIMD&FP) - 32-bit variant
11 0 00 STR (immediate) - 64-bit variant

11 0 o1 LDR (immediate) - 64-bit variant

11 0 10 Unallocated.

11 1 00 STR (immediate, SIMD&FP) - 64-bit variant
11 1 o LDR (immediate, SIMD&FP) - 64-bit variant

This section describes the encoding of the Atomic memory operations instruction class. The encodings in this
section are decoded from Loads and Stores on page C4-298.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/1514 12/1110 9 | 5 4| 0]
[size[1 1 1]v[o o]A[R[1] Rs 03] opc [0 o] Rn | Rt |
Decode fields
Instruction page Feature
size V A Rs o3 opc
- 0 - - 1 11x Unallocated. -
- [/ - 1 100 Unallocated. -
- o 0 - 1 001 Unallocated. -
- o 0 - 1 010 Unallocated. -
- o 0 - 1 011 Unallocated. -
- o 0 - 1 101 Unallocated. -
- 0 1 - 1 001 Unallocated. -
- 0 1 - 1 010 Unallocated. -
- 0 1 - 1 011 Unallocated. -
- 0 1 - 1 101 Unallocated. -
- 0 1 - 1 001 Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-321

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A Rs 03 opc

- 0 1 - 1 010 Unallocated. -

- 0 1 - 1 011 Unallocated. -

- 0 1 - 1 100 Unallocated. -

- 0 1 - 1 101 Unallocated. -

- 1 - - - - Unallocated. -

00 0 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDB FEAT LSE
variant

00 0 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRB FEAT LSE
variant

00 0 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORB FEAT LSE
variant

00 0 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETB variant FEAT LSE

00 0 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB - FEAT LSE
LDSMAXB variant

00 0 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - FEAT LSE
LDSMINB variant

00 0 0 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB - FEAT LSE
LDUMAXB variant

00 0 0 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB - FEAT LSE
LDUMINB variant

00 0 0 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPB variant FEAT LSE

00 0 0 - 1 001 Unallocated. -

00 0 0 - 1 010 Unallocated. -

00 0 0 - 1 011 Unallocated. -

00 0 0 - 1 101 Unallocated. -

00 0 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDLB FEAT _LSE
variant

00 0 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRLB FEAT LSE
variant

00 0 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORLB FEAT LSE
variant

00 0 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETLB FEAT LSE
variant

00 0 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB - FEAT LSE
LDSMAXLB variant

00 0 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - FEAT LSE
LDSMINLB variant

C4-322 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A R Rs o3 opc

00 0 0 1 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB - FEAT LSE
LDUMAXLB variant

00 0 0 1 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB - FEAT LSE
LDUMINLB variant

00 0 0 1 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPLB variant FEAT LSE

00 0 1 0 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - LDADDAB FEAT LSE
variant

00 0 1 0 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRAB FEAT LSE
variant

00 0 1 0 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORAB FEAT LSE
variant

00 0 1 0 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETAB FEAT LSE
variant

00 0 1 0 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB - FEAT LSE
LDSMAXAB variant

00 0 1 0 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - FEAT LSE
LDSMINAB variant

00 0 1 0 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB - FEAT LSE
LDUMAXAB variant

00 0 1 0 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB - FEAT LSE
LDUMINAB variant

00 0 1 0 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPAB variant FEAT LSE

00 0 1 0 - 1 100 LDAPRB FEAT LRCPC

00 0 1 1 - 0 000 LDADDB, LDADDAB, LDADDALB, LDADDLB - FEAT LSE
LDADDALRB variant

00 0 1 1 - 0 001 LDCLRB, LDCLRAB, LDCLRALB, LDCLRLB - LDCLRALB FEAT LSE
variant

00 0 1 1 - 0 010 LDEORB, LDEORAB, LDEORALB, LDEORLB - LDEORALB FEAT LSE
variant

00 0 1 1 - 0 011 LDSETB, LDSETAB, LDSETALB, LDSETLB - LDSETALB FEAT LSE
variant

00 0 1 1 - 0 100 LDSMAXB, LDSMAXAB, LDSMAXALB, LDSMAXLB - FEAT LSE
LDSMAXALB variant

00 0 1 1 - 0 101 LDSMINB, LDSMINAB, LDSMINALB, LDSMINLB - FEAT LSE
LDSMINALRB variant

00 0 1 1 - 0 110 LDUMAXB, LDUMAXAB, LDUMAXALB, LDUMAXLB - FEAT LSE
LDUMAXALB variant

00 0 1 1 - 0 111 LDUMINB, LDUMINAB, LDUMINALB, LDUMINLB - FEAT LSE
LDUMINALRB variant

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-323

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A Rs o3 opc

00 0 1 - 1 000 SWPB, SWPAB, SWPALB, SWPLB - SWPALB variant FEAT LSE

01 0 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - LDADDH FEAT LSE
variant

01 0 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRH FEAT LSE
variant

01 0 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORH FEAT LSE
variant

01 0 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETH FEAT LSE
variant

01 0 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH - FEAT LSE
LDSMAXH variant

01 0 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - FEAT LSE
LDSMINH variant

01 0 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH - FEAT LSE
LDUMAXH variant

01 0 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH - FEAT LSE
LDUMINH variant

01 0 0 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPH variant FEAT LSE

01 0 0 - 1 001 Unallocated. -

01 0 0 - 1 010 Unallocated. -

01 0 0 - 1 011 Unallocated. -

01 0 0 - 1 101 Unallocated. -

01 0 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH -LDADDLH FEAT LSE
variant

01 0 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRLH FEAT LSE
variant

01 0 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORLH FEAT LSE
variant

01 0 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETLH FEAT LSE
variant

01 0 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH - FEAT LSE
LDSMAXLH variant

01 0 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - FEAT LSE
LDSMINLH variant

01 0 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH - FEAT LSE
LDUMAXLH variant

01 0 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH - FEAT LSE
LDUMINLH variant

C4-324 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A R Rs 03 opc

01 0 0 1 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPLH variant FEAT LSE

01 0 1 0 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH-LDADDAH FEAT LSE
variant

01 0 1 0 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRAH FEAT LSE
variant

01 0 1 0 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORAH FEAT LSE
variant

01 0 1 0 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETAH FEAT LSE
variant

01 0 1 0 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH - FEAT LSE
LDSMAXAH variant

01 0 1 0 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - FEAT LSE
LDSMINAH variant

01 0 1 0 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH - FEAT LSE
LDUMAXAH variant

01 0 1 0 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH - FEAT LSE
LDUMINAH variant

01 0 1 0 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPAH variant FEAT LSE

01 0 1 0 - 1 100 LDAPRH FEAT LRCPC

01 0 1 1 - 0 000 LDADDH, LDADDAH, LDADDALH, LDADDLH - FEAT LSE
LDADDALH variant

01 0 1 1 - 0 001 LDCLRH, LDCLRAH, LDCLRALH, LDCLRLH - LDCLRALH FEAT LSE
variant

01 0 1 1 - 0 010 LDEORH, LDEORAH, LDEORALH, LDEORLH - LDEORALH FEAT LSE
variant

01 0 1 1 - 0 011 LDSETH, LDSETAH, LDSETALH, LDSETLH - LDSETALH FEAT LSE
variant

01 0 1 1 - 0 100 LDSMAXH, LDSMAXAH, LDSMAXALH, LDSMAXLH - FEAT LSE
LDSMAXALH variant

01 0 1 1 - 0 101 LDSMINH, LDSMINAH, LDSMINALH, LDSMINLH - FEAT LSE
LDSMINALH variant

01 0 1 1 - 0 110 LDUMAXH, LDUMAXAH, LDUMAXALH, LDUMAXLH - FEAT LSE
LDUMAXALH variant

01 0 1 1 - 0 111 LDUMINH, LDUMINAH, LDUMINALH, LDUMINLH - FEAT LSE
LDUMINALH variant

01 0 1 1 - 1 000 SWPH, SWPAH, SWPALH, SWPLH - SWPALH variant FEAT LSE

10 0 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADD FEAT LSE
variant

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-325

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A Rs o3 opc

10 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLR FEAT LSE
variant

10 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEOR FEAT LSE
variant

10 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSET variant FEAT LSE

10 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit FEAT LSE
LDSMAX variant

10 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit LDSMIN FEAT LSE
variant

10 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit FEAT LSE
LDUMAX variant

10 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit FEAT LSE
LDUMIN variant

10 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWP variant FEAT LSE

10 0 0 - 1 001 Unallocated. -

10 0 0 - 1 010 Unallocated. -

10 0 0 - 1 011 Unallocated. -

10 0 0 - 1 101 Unallocated. -

10 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDL FEAT LSE
variant

10 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRL FEAT LSE
variant

10 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORL FEAT LSE
variant

10 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETL variant FEAT LSE

10 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit FEAT LSE
LDSMAXL variant

10 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit FEAT LSE
LDSMINL variant

10 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit FEAT LSE
LDUMAXL variant

10 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit FEAT LSE
LDUMINL variant

10 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPL variant FEAT LSE

10 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDA FEAT LSE
variant

10 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRA FEAT LSE
variant

C4-326 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A R Rs o3 opc

10 0 1 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORA FEAT LSE
variant

10 0 1 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETA variant FEAT LSE

10 0 1 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit FEAT LSE
LDSMAXA variant

10 0 1 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit FEAT LSE
LDSMINA variant

10 0 1 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit FEAT LSE
LDUMAXA variant

10 0 1 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit FEAT LSE
LDUMINA variant

10 0 1 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPA variant FEAT LSE

10 0 1 0 - 1 100 LDAPR - 32-bit variant FEAT LRCPC

10 0 1 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 32-bit LDADDAL FEAT LSE
variant

10 0 1 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 32-bit LDCLRAL FEAT LSE
variant

10 0 1 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 32-bit LDEORAL FEAT LSE
variant

10 0 1 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 32-bit LDSETAL FEAT LSE
variant

10 0 1 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 32-bit FEAT LSE
LDSMAXAL variant

10 0 1 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 32-bit FEAT LSE
LDSMINAL variant

10 0 1 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 32-bit FEAT LSE
LDUMAXAL variant

10 0 1 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 32-bit FEAT LSE
LDUMINAL variant

10 0 1 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 32-bit SWPAL variant FEAT LSE

11 0 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADD FEAT LSE
variant

11 0 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLR FEAT LSE
variant

11 0 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEOR FEAT LSE
variant

11 0 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSET variant FEAT LSE

11 0 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit FEAT LSE
LDSMAX variant

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-327

1D072021 Non-Confidential

A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A Rs o3 opc

11 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit LDSMIN FEAT LSE
variant

11 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit FEAT LSE
LDUMAX variant

11 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit FEAT LSE
LDUMIN variant

11 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWP variant FEAT LSE

11 0 0 - 1 010 ST64BV0 FEAT LS64 V

11 0 0 - 1 011 ST64BV FEAT LS64 V

11 0 0 11111 1 001 ST64B FEAT LS64

11 0 0 11111 1 101 LD64B FEAT LSo64

11 0 0 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDL FEAT LSE
variant

11 0 0 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRL FEAT LSE
variant

11 0 0 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORL FEAT LSE
variant

11 0 0 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETL variant FEAT LSE

11 0 0 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit FEAT LSE
LDSMAXL variant

11 0 0 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit FEAT LSE
LDSMINL variant

11 0 0 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit FEAT LSE
LDUMAXL variant

11 0 0 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit FEAT LSE
LDUMINL variant

11 0 0 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPL variant FEAT LSE

11 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDA FEAT LSE
variant

11 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRA FEAT LSE
variant

11 0 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORA FEAT LSE
variant

11 0 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETA variant FEAT LSE

11 0 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit FEAT LSE
LDSMAXA variant

11 0 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit FEAT LSE
LDSMINA variant

C4-328 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

size V A Rs o3 opc

11 0 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit FEAT LSE
LDUMAXA variant

11 0 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit FEAT LSE
LDUMINA variant

11 0 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPA variant FEAT LSE

11 0 1 - 1 100 LDAPR - 64-bit variant FEAT LRCPC

11 0 1 - 0 000 LDADD, LDADDA, LDADDAL, LDADDL - 64-bit LDADDAL FEAT LSE
variant

11 0 1 - 0 001 LDCLR, LDCLRA, LDCLRAL, LDCLRL - 64-bit LDCLRAL FEAT LSE
variant

11 0 1 - 0 010 LDEOR, LDEORA, LDEORAL, LDEORL - 64-bit LDEORAL FEAT LSE
variant

11 0 1 - 0 011 LDSET, LDSETA, LDSETAL, LDSETL - 64-bit LDSETAL FEAT LSE
variant

11 0 1 - 0 100 LDSMAX, LDSMAXA, LDSMAXAL, LDSMAXL - 64-bit FEAT LSE
LDSMAXAL variant

11 0 1 - 0 101 LDSMIN, LDSMINA, LDSMINAL, LDSMINL - 64-bit FEAT LSE
LDSMINAL variant

11 0 1 - 0 110 LDUMAX, LDUMAXA, LDUMAXAL, LDUMAXL - 64-bit FEAT LSE
LDUMAXAL variant

11 0 1 - 0 111 LDUMIN, LDUMINA, LDUMINAL, LDUMINL - 64-bit FEAT LSE
LDUMINAL variant

11 0 1 - 1 000 SWP, SWPA, SWPAL, SWPL - 64-bit SWPAL variant FEAT LSE

Load/store register (register offset)

This section describes the encoding of the Load/store register (register offset) instruction class. The encodings in
this section are decoded from Loads and Stores on page C4-298.

|31 30 29 28(27 26 25 24(23 22 21 20| 16/15 1312[1110 9 | 5 4] 0]
[size [1 1 1]v][o 0] opc [1] Rm | option [s[1 0] Rn [Rt |

Decode fields

Instruction page

size V opc option

x1 1 Ix - Unallocated.

00 0 00 1= 011 STRB (register) - Extended register variant

00 0 00 011 STRB (register) - Shifted register variant

00 0 o1 = 011 LDRB (register) - Extended register variant

ARM DDI 0487G.b

ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C4-329

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page
size opc option
00 01 011 LDRB (register) - Shifted register variant
00 10 = 011 LDRSB (register) - 64-bit with extended register offset variant
00 10 011 LDRSB (register) - 64-bit with shifted register offset variant
00 11 = 011 LDRSB (register) - 32-bit with extended register offset variant
00 11 011 LDRSB (register) - 32-bit with shifted register offset variant
00 00 1= 011 STR (register, SIMD&FP)
00 00 011 STR (register, SIMD&FP)
00 01 = 011 LDR (register, SIMD&FP)
00 01 011 LDR (register, SIMD&FP)
00 10 - STR (register, SIMD&FP)
00 11 - LDR (register, SIMD&FP)
01 00 - STRH (register)
01 01 - LDRH (register)
01 10 - LDRSH (register) - 64-bit variant
01 11 - LDRSH (register) - 32-bit variant
01 00 - STR (register, SIMD&FP)
01 01 - LDR (register, SIMD&FP)
1x 11 - Unallocated.
1x 1x - Unallocated.
10 00 - STR (register) - 32-bit variant
10 01 - LDR (register) - 32-bit variant
10 10 - LDRSW (register)
10 00 - STR (register, SIMD&FP)
10 01 - LDR (register, SIMD&FP)
11 00 - STR (register) - 64-bit variant
11 01 - LDR (register) - 64-bit variant
11 10 - PRFM (register)
11 00 - STR (register, SIMD&FP)
11 01 - LDR (register, SIMD&FP)

Load/store register (pac)

This section describes the encoding of the Load/store register (pac) instruction class. The encodings in this section
are decoded from Loads and Stores on page C4-298.

C4-330

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28|27 26 25 24|23 22 21 20| \ 1211109 | 5 4| 0|
[size[1 1 1]v]o o[m[s]1] imm9 [w]1] Rn | Rt |
Decode fields
Instruction page Feature
size vV M W
=11 - - - Unallocated. -
11 o o 0 LDRAA, LDRAB - Key A, offset variant FEAT PAuth
11 [/ 1 LDRAA, LDRAB - Key A, pre-indexed variant ~FEAT PAuth
11 0 1 0 LDRAA, LDRAB - Key B, offset variant FEAT PAuth
1 0 1 1 LDRAA, LDRAB - Key B, pre-indexed variant FEAT PAuth
11 1 - - Unallocated. -

Load/store register (unsigned immediate)

This section describes the encoding of the Load/store register (unsigned immediate) instruction class. The
encodings in this section are decoded from Loads and Stores on page C4-298.

131 30 29 28|27 26 25 24/23 22 21

109 | 5 4 0]

[size [1 1 1]v]o 1] opc |

imm12 | Rn | Rt |

Decode fields

Instruction page

size V opc

x1 1 Ix Unallocated.

00 0 00 STRB (immediate)

00 0 o1 LDRB (immediate)

00 0 10 LDRSB (immediate) - 64-bit variant

00 0 11 LDRSB (immediate) - 32-bit variant

00 1 00 STR (immediate, SIMD&FP) - 8-bit variant
00 1 o1 LDR (immediate, SIMD&FP) - 8-bit variant
00 1 10 STR (immediate, SIMD&FP) - 128-bit variant
00 1 1 LDR (immediate, SIMD&FP) - 128-bit variant
01 0 00 STRH (immediate)

01 0 o1 LDRH (immediate)

01 0 10 LDRSH (immediate) - 64-bit variant

01 0 11 LDRSH (immediate) - 32-bit variant

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C4-331

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page
size V opc

01 1 00 STR (immediate, SIMD&FP) - 16-bit variant

01 1 e LDR (immediate, SIMD&FP) - 16-bit variant

1x 0 11 Unallocated.

1x 1 1x Unallocated.

10 0 00 STR (immediate) - 32-bit variant

10 0 o1 LDR (immediate) - 32-bit variant

10 0 10 LDRSW (immediate)

10 1 o0 STR (immediate, SIMD&FP) - 32-bit variant

10 1 e LDR (immediate, SIMD&FP) - 32-bit variant

11 0 00 STR (immediate) - 64-bit variant

11 0 o1 LDR (immediate) - 64-bit variant

11 0 10 PRFM (immediate)

11 1 00 STR (immediate, SIMD&FP) - 64-bit variant

11 1 o1 LDR (immediate, SIMD&FP) - 64-bit variant

C4.1.5 Data Processing -- Register

This section describes the encoding of the Data Processing -- Register group. The encodings in this section are
decoded from A64 instruction set encoding on page C4-284.

|31 30 29 2827 25 24| 21 20| 16/15 | 109 | 0]
LI LT [101 [op2] I op3 I |

op0 J
op1

Table C4-6 Encoding table for the Data Processing -- Register group

Decode fields
Decode group or instruction page
op0 op1 op2 op3

0 1 0110 - Data-processing (2 source) on page C4-333
1 1 0110 - Data-processing (1 source) on page C4-334
- 0 Oxxx - Logical (shifted register) on page C4-336
- 0 Ixx0 - Add/subtract (shifted register) on page C4-337
- 0 Ixx1 - Add/subtract (extended register) on page C4-338
- 1 0000 000000 Add/subtract (with carry) on page C4-338
- 1 0000 000011 Unallocated.
C4-332 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Table C4-6 Encoding table for the Data Processing -- Register group (continued)

Decode fields
Decode group or instruction page
op0 op1 op2 op3

- 1 0000 0001xx Unallocated.

- 1 0000 001xxx Unallocated.

- 1 0000 x00001 Rotate right into flags on page C4-339

- 1 0000 xx0010 Evaluate into flags on page C4-339

- 1 0010 xxxx0x Conditional compare (register) on page C4-340

- 1 0010 xxxx1x Conditional compare (immediate) on page C4-340
- 1 0100 - Conditional select on page C4-341

- 1 oxx1l - Unallocated.

- 1 Ixxx - Data-processing (3 source) on page C4-341

Data-processing (2 source)

This section describes the encoding of the Data-processing (2 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

|31 30 29 28|27 26 25 24|23 22 21 20| 16/15 | 109 | 5 4| 0]
[sflo[s][1 1 0101 1 0] Rm | opcode | Rn | Rd |

Decode fields
Instruction page Feature
sf S opcode

- - 000001 Unallocated. -

- - 011xxx Unallocated. -

- - IXXXXX Unallocated. -

- 0 00011x Unallocated. -

- 0 001101 Unallocated. -

- 0 00111x Unallocated. -

- 1 00001x Unallocated. -

- 1 0001xx Unallocated. -

- 1 001xxx Unallocated. -

- 1 0Lxxxx Unallocated. -

0 - 000000 Unallocated. -

0 0 000010 UDIV - 32-bit variant -

0 0 000011 SDIV - 32-bit variant -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-333
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page Feature
sf S opcode

0 0 00010x Unallocated. -

0 0 001000 LSLV - 32-bit variant -

0 0 001001 LSRYV - 32-bit variant -

0 0 001010 ASRYV - 32-bit variant -

0 0 001011 RORYV - 32-bit variant -

0 0 001100 Unallocated. -

0 0 010x11 Unallocated. -

0 0 010000 CRC32B, CRC32H, CRC32W, CRC32X - CRC32B variant -

0 0 0le00l CRC32B, CRC32H, CRC32W, CRC32X - CRC32H variant -

0 0 010010 CRC32B, CRC32H, CRC32W, CRC32X - CRC32W variant -

0 0 010100 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CB variant

0 0 0le101 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CH variant -

0 0 010110 CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CW variant -

1 0 000000 SUBP FEAT MTE

1 0 000010 UDIV - 64-bit variant -

1 0 000011 SDIV - 64-bit variant -

1 0 000100 IRG FEAT_MTE

1 0 000101 GMI FEAT MTE

1 0 001000 LSLV - 64-bit variant -

1 0 001001 LSRYV - 64-bit variant -

1 0 001010 ASRYV - 64-bit variant -

1 0 001011 RORYV - 64-bit variant -

1 0 001100 PACGA FEAT_PAuth

1 0 010xx0 Unallocated. -
1 0 010x0x Unallocated. -

1 0 010011 CRC32B, CRC32H, CRC32W, CRC32X - CRC32X variant -

1 0 o101l CRC32CB, CRC32CH, CRC32CW, CRC32CX - CRC32CX variant -

1 1 000000 SUBPS FEAT_MTE

Data-processing (1 source)

This section describes the encoding of the Data-processing (1 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

C4-334 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28|27 26 25 24[23 22 21 20| 16/15 | 109 | 5 4| 0]
[sf[1]s]1 1 0 1 01 1 0] opcode2 | opcode | Rn [Rd |
Decode fields
Instruction page Feature

sf S opcode2 opcode Rn

- - - 1XXXXX - Unallocated. -
- - xxxIx - - Unallocated. -
- - XX1Xx - - Unallocated. -
- - X1xxx - - Unallocated. -
- - Ixxxx - - Unallocated. -
- 0 00000 00011x - Unallocated. -
- 0 00000 001xxx - Unallocated. -
- 0 00000 01xXXXX - Unallocated. -
- 1 - - - Unallocated. -
0 - 00001 - - Unallocated. -
0 0 00000 000000 - RBIT - 32-bit variant -
0 0 00000 000001 - REV16 - 32-bit variant -
0 0 00000 000010 - REV - 32-bit variant -
0 0 00000 000011 - Unallocated. -
0 0 00000 000100 - CLZ - 32-bit variant -
0 0 00000 000101 - CLS - 32-bit variant -
1 0 00000 000000 - RBIT - 64-bit variant -
1 0 00000 000001 - REV16 - 64-bit variant -
1 0 00000 000010 - REV32 -
1 0 00000 000011 - REV - 64-bit variant -
1 0 00000 000100 - CLZ - 64-bit variant -
1 0 00000 000101 - CLS - 64-bit variant -
1 0 0000l 000000 - PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIA variant ~ FEAT PAuth
1 0 0000l 000001 - PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIB variant FEAT PAuth
1 0 0000l 000010 - PACDA, PACDZA - PACDA variant FEAT PAuth
1 0 00001 000011 - PACDB, PACDZB - PACDB variant FEAT PAuth
1 0 ooool 000100 - AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIA FEAT_ PAuth
variant
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-335

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
sf S opcode2 opcode Rn
1 0 00001 000101 - AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIB FEAT PAuth
variant
1 0 00001 000110 - AUTDA, AUTDZA - AUTDA variant FEAT PAuth
1 0 00001 000111 - AUTDB, AUTDZB - AUTDB variant FEAT PAuth
1 0 00001 001000 11111 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA - PACIZA variant FEAT PAuth
1 0 00001 001001 11111 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB - PACIZB variant FEAT PAuth
1 0 00001 001010 11111 PACDA, PACDZA - PACDZA variant FEAT PAuth
1 0 00001 001011 11111 PACDB, PACDZB - PACDZB variant FEAT PAuth
1 0 00001 001100 11111 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA - AUTIZA FEAT PAuth
variant
1 0 00001 001101 11111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB - AUTIZB FEAT PAuth
variant
1 0 00001 001110 11111 AUTDA, AUTDZA - AUTDZA variant FEAT PAuth
1 0 00001 001111 11111 AUTDB, AUTDZB - AUTDZB variant FEAT PAuth
1 0 00001 010000 11111 XPACD, XPACI, XPACLRI - XPACI variant FEAT PAuth
1 0 00001 010001 11111 XPACD, XPACI, XPACLRI - XPACD variant FEAT PAuth
1 0 oo00l 01001x - Unallocated. -
1 0 00001 0101xx - Unallocated. -
1 0 00001 011xxx - Unallocated. -
Logical (shifted register)
This section describes the encoding of the Logical (shifted register) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.
|31 30 29 28|27 26 25 24[23 22 21 20| 16/15 | 109 | 5 4| 0]
[sfl opc JO 1 0 1 ofshift[N] Rm [imm6 [Rn [Rd |
Decode fields
Instruction page
sf opc N immé6
0 - - Ixxxxx Unallocated.
0 00 0 - AND (shifted register) - 32-bit variant
0 00 1 - BIC (shifted register) - 32-bit variant
0 01 0 - ORR (shifted register) - 32-bit variant
0 01 1 - ORN (shifted register) - 32-bit variant
C4-336 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

sf opc N immé6

0 10 0 - EOR (shifted register) - 32-bit variant
0 10 1 - EON (shifted register) - 32-bit variant
0 11 0 - ANDS (shifted register) - 32-bit variant
0 11 1 - BICS (shifted register) - 32-bit variant
1 00 0 - AND (shifted register) - 64-bit variant
1 00 1 - BIC (shifted register) - 64-bit variant

1 01 0 - ORR (shifted register) - 64-bit variant
1 01 1 - ORN (shifted register) - 64-bit variant
1 10 0 - EOR (shifted register) - 64-bit variant

1 10 1 - EON (shifted register) - 64-bit variant
1 11 0 - ANDS (shifted register) - 64-bit variant
1 11 1 - BICS (shifted register) - 64-bit variant

Add/subtract (shifted register)

This section describes the encoding of the Add/subtract (shifted register) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/15 | 109 | 5 4| 0]
[sflop[s]o 1 0 1 1]shift[0] Rm | imm6 [Rn [Rd |
Decode fields
Instruction page
sf op S shift immé6
- - - u - Unallocated.
0 - - - Ixxxxx Unallocated.
0 0 0 - - ADD (shifted register) - 32-bit variant
0 0 1 - - ADDS (shifted register) - 32-bit variant
0 1 0 - - SUB (shifted register) - 32-bit variant
0 1 1 - - SUBS (shifted register) - 32-bit variant
1 0 0 - - ADD (shifted register) - 64-bit variant
1 0 1 - - ADDS (shifted register) - 64-bit variant
1 1 0 - - SUB (shifted register) - 64-bit variant
1 1 1 - - SUBS (shifted register) - 64-bit variant

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C4-337

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Add/subtract (extended register)

This section describes the encoding of the Add/subtract (extended register) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

|31 30 29 28|27 26 25 24(23 22 21 20| 16/15 1312/ 109 | 5 4] 0
|sf|op|S|0 101 1| opt |1| Rm | option | imm3 | Rn | Rd |

Decode fields
Instruction page
sf op S opt imm3

- - - - 1x1 Unallocated.

- - - - 11x Unallocated.

- - - x1 - Unallocated.

- - - Ix - Unallocated.

0 0 0 00 - ADD (extended register) - 32-bit variant
0o 0 1 00 - ADDS (extended register) - 32-bit variant
0 1 0 00 - SUB (extended register) - 32-bit variant

0 1 1 00 - SUBS (extended register) - 32-bit variant
1 0 0 00 - ADD (extended register) - 64-bit variant
1 0 1 00 - ADDS (extended register) - 64-bit variant
1 1 0 00 - SUB (extended register) - 64-bit variant

1 1 1 00 - SUBS (extended register) - 64-bit variant

Add/subtract (with carry)

This section describes the encoding of the Add/subtract (with carry) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

31 30 29 28|27 26 25 24(23 22 21 20| 1611514 1312[1110 9 | 5 4| 0
[sflop[s][1 1 0 1 0 0 0 0] Rm [0 0000 O] Rn | Rd |

Decode fields
Instruction page
sf op S

0 0 0 ADC - 32-bit variant

0 0 1 ADCS - 32-bit variant

0 1 0 SBC - 32-bit variant

0 1 1 SBCS - 32-bit variant

1 0 0 ADC - 64-bit variant

C4-338 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page
sf op S

1 0 1 ADCS - 64-bit variant

1 1 0 SBC - 64-bit variant

1 1 1 SBCS - 64-bit variant

Rotate right into flags

This section describes the encoding of the Rotate right into flags instruction class. The encodings in this section are
decoded from Data Processing -- Register on page C4-332.

131 30 29 28/27 26 25 24|23 22 21 20| 15141312[1110 9 | 5 43 0|
[sflop|s]1 1 0 1 0 0 0 0] imm6 [0 000 1] Rn [02] mask |

Decode fields
Instruction page Feature
sf op S o2

0 - - - Unallocated. -
1 0 0 - Unallocated. -
1 @ 1 0 RMIF FEAT FlagM

1 0 1 1 Unallocated. -

1 1 - - Unallocated. -

Evaluate into flags

This section describes the encoding of the Evaluate into flags instruction class. The encodings in this section are
decoded from Data Processing -- Register on page C4-332.

131 30 29 28/27 26 25 24|23 22 21 20| 15141312[1110 9 | 5 43 0|
[sflop|S]1 1 0 1 0 0 0 0] opcode2 [sz[o 0 1 0] Rn [03] mask |

Decode fields

Instruction page Feature

sf op S opcode2 sz 03 mask

0 0 0 - - - - Unallocated. -

0 0 1 = 000000 - - - Unallocated. -

0 0 1 000000 - 0 = 1101 Unallocated. -

0 0 1 000000 - 1 - Unallocated. -

0 0 1 000000 0 0 1101 SETFS8, SETF16 - SETFS variant FEAT FlagM

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-339

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
sf op S opcode2 sz 03 mask
0 0 1 000000 1 0 1101 SETF8, SETF16 - SETF16 variant FEAT FlagM
0 1 - - - - - Unallocated. -
1 - - - - - - Unallocated. -

Conditional compare (register)

This section describes the encoding of the Conditional compare (register) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

|31 30 29 28(27 26 25 24(23 22 21 20| 16/15 121110 9 | 5 4|3 0
|sf|op|S|1 101001 0| Rm | cond |0|02| Rn |03| nzcv |

Decode fields

Instruction page
sf op S 02 o3

_ - - - 1 Unallocated.

_ - - 1 - Unallocated.

- - 0 - - Unallocated.

0 0 1 0 0 CCMN (register) - 32-bit variant

0 1 1 0 0 CCMP (register) - 32-bit variant

1 0 1 0 0 CCMN (register) - 64-bit variant

1 1 1 0 0 CCMP (register) - 64-bit variant

Conditional compare (immediate)

This section describes the encoding of the Conditional compare (immediate) instruction class. The encodings in this
section are decoded from Data Processing -- Register on page C4-332.

31 30 29 28(27 26 25 24|23 22 21 20| 16|15 1201110 9 | 5 4[3 0l
[sflop[s[1 1 0 1 001 0] imm5 | cond [1]o2 Rn 03] nzev |

Decode fields

Instruction page
sf op S 02 o3

- - - - 1 Unallocated.

_ - - 1 - Unallocated.

- - 0 - - Unallocated.

0 0 1 0 0 CCMN (immediate) - 32-bit variant

C4-340 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page
sf op S 02 o3

0 1 1 0 0 CCMP (immediate) - 32-bit variant

1 0 1 0 0 CCMN (immediate) - 64-bit variant

1 1 1 0 0 CCMP (immediate) - 64-bit variant

Conditional select

This section describes the encoding of the Conditional select instruction class. The encodings in this section are
decoded from Data Processing -- Register on page C4-332.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 121110 9 | 5 4 0|
[sflop|s]1 1 0 1 0 1 0 0] Rm | cond [op2] Rn | Rd |

Decode fields
Instruction page
sf op S op2

_ - - 1x Unallocated.

- - 1 - Unallocated.

0 0 0 00 CSEL - 32-bit variant

0 0 0 01 CSINC - 32-bit variant

0 1 0 00 CSINYV - 32-bit variant

0 1 0 01 CSNEG - 32-bit variant

1 0 0 00 CSEL - 64-bit variant

1 0 0 01 CSINC - 64-bit variant

1 1 0 00 CSINYV - 64-bit variant

1 1 0 01 CSNEG - 64-bit variant

Data-processing (3 source)

This section describes the encoding of the Data-processing (3 source) instruction class. The encodings in this section
are decoded from Data Processing -- Register on page C4-332.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-341
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28|27 26 25 24[23 21 20| 16/15 14 | 109 | 5 4| 0]
[sflop54]1 1 0 1 1] op31 | Rm o0 Ra | Rn | Rd |

Decode fields
Instruction page
sf op54 op31 o0

- 00 010 1 Unallocated.

- 00 011 - Unallocated.

- 00 100 - Unallocated.

- 00 110 1 Unallocated.

- 00 111 - Unallocated.

- 01 - - Unallocated.

- 1x - - Unallocated.

0 00 000 0 MADD - 32-bit variant
0 00 000 1 MSUB - 32-bit variant
0 00 001 0 Unallocated.

0 00 001 1 Unallocated.

0 00 010 0 Unallocated.

0 00 101 0 Unallocated.

0 00 101 1 Unallocated.

0 00 110 0 Unallocated.

1 00 000 0 MADD - 64-bit variant
1 00 000 1 MSUB - 64-bit variant
1 00 001 0 SMADDL

1 00 001 1 SMSUBL

1 00 010 0 SMULH

1 00 101 0 UMADDL

1 00 101 1 UMSUBL

1 00 110 0 UMULH

C4.1.6 Data Processing -- Scalar Floating-Point and Advanced SIMD

This section describes the encoding of the Data Processing -- Scalar Floating-Point and Advanced SIMD group. The
encodings in this section are decoded from A64 instruction set encoding on page C4-284.

C4-342 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

|31

28[27

25 24(23 22 [19 18 | | 109

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

op0 [

111

[op1] op2] op3 l

Table C4-7 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group

Decode fields

Decode group or instruction page Feature

op0 op1 op2 op3

0000 Ox x101 00xxxxx10 Unallocated. -
0010 Ox x101 00xxxxx10 Unallocated. -
0100 Ox x101 00xxxxx10 Cryptographic AES on page C4-345 -
0101 Ox X0XX xxx0xxx00 Cryptographic three-register SHA on page C4-345 -
0101 Ox X0XX xxx0xxx10 Unallocated. -
0101 Ox x101 00xxxxx10 Cryptographic two-register SHA on page C4-346 -
0110 Ox x101 00xxxxx10 Unallocated. -
0111 Ox X0XX xxx0xxxx@ Unallocated. -
0111 Ox x101 00xxxxx10 Unallocated. -
01x1 00 00xx xxx0xxxx1 Advanced SIMD scalar copy on page C4-347 -
01x1 01 00xx xxx0xxxx1 Unallocated. -
01x1 Ox 0111 00xxxxx10 Unallocated. -
01x1 Ox 10xx xxx00xxx1 Advanced SIMD scalar three same FP16 on page C4-347 -
01x1 Ox 10xx xxx01xxx1 Unallocated. -
01x1 Ox 1111 00xxxxx10 Advanced SIMD scalar two-register miscellaneous FP16 on page C4-348 -
01x1 Ox X0XX xxx1xxxx@ Unallocated. -
01x1 Ox X0XX xxx1xxxxl Advanced SIMD scalar three same extra on page C4-349 -
01x1 Ox x100 00xxxxx10 Advanced SIMD scalar two-register miscellaneous on page C4-350 -
01x1 Ox x110 00xxxxx10 Advanced SIMD scalar pairwise on page C4-352 -
01x1 Ox x1xx Ixxxxxx1@ Unallocated. -
01x1 Ox X1xx x1xxxxx1@ Unallocated. -
01x1 Ox x1xx XXxxxxx00 Advanced SIMD scalar three different on page C4-352 -
01x1 Ox X1xx XXxxxxxx1 Advanced SIMD scalar three same on page C4-353 -
01x1 10 - xxxxxxxx1 Advanced SIMD scalar shift by immediate on page C4-355 -
01x1 11 - xxxxxxxx1 Unallocated. -
01x1 1x - xxxxxxxx@ Advanced SIMD scalar x indexed element on page C4-357 -
0x00 Ox X0XX xxx0xxx00 Advanced SIMD table lookup on page C4-358 -
0x00 Ox X0XX xxx0xxx10 Advanced SIMD permute on page C4-359 -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-343

1D072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Table C4-7 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group (continued)

Decode fields

Decode group or instruction page Feature

op0 op1 op2 op3

0x10 Ox X0XX Xxx0xxxx@ Advanced SIMD extract on page C4-360 -
0xx0 00 00xx xxx0xxxx1 Advanced SIMD copy on page C4-360 -
oxx0 01 00xx xxx0xxxx1 Unallocated. -
0xx0 Ox 0111 00xxxxx10 Unallocated. -
0xx@ Ox 10xx xxx00xxx1 Advanced SIMD three same (FP16) on page C4-361 -
0xx0 Ox 10xx xxx01xxx1 Unallocated. -
0xx0 Ox 1111 00xxxxx10 Advanced SIMD two-register miscellaneous (FP16) on page C4-362 -
0xx0 Ox X0XX xxx1xxxx@ Unallocated. -
0xx0 0x XOXX xxx1xxxxl Advanced SIMD three-register extension on page C4-363 -
0xx0 0x x100 00xxxxx10 Advanced SIMD two-register miscellaneous on page C4-365 -
0xx0 Ox x110 00xxxxx10 Advanced SIMD across lanes on page C4-367 -
0xx0 Ox X1xx Ixxxxxx1@ Unallocated. -
0xx0 Ox X1xx x1xxxxx1@ Unallocated. -
0xx0 Ox X1xx XXXxxxx00 Advanced SIMD three different on page C4-369 -
0xx0 0x X1xx xxxxxxxx1 Advanced SIMD three same on page C4-370 -
oxx0 10 0000 xxxxxxxx1 Advanced SIMD modified immediate on page C4-373 -
oxx0 10 1= 0000 xxxxxxxx1 Advanced SIMD shift by immediate on page C4-374 -
oxx0 11 - xxxxxxxx1 Unallocated. -
0xx0 1x - XXXXXxxx@ Advanced SIMD vector x indexed element on page C4-376 -
1100 00 10xx xxx10xxxx Cryptographic three-register, imm2 on page C4-378 -
1100 00 11xx xxx1x00xx Cryptographic three-register SHA 512 on page C4-378 -
1100 00 - xxx@xxxxx Cryptographic four-register on page C4-379 -
1100 01 00xx - XAR FEAT SHA3
1100 01 1000 0001000xx Cryptographic two-register SHA 512 on page C4-379 -
11x1 - - - Unallocated. -
Ixx@ 1x - - Unallocated. -
x0x1 Ox XOXX - Conversion between floating-point and fixed-point on page C4-380 -
x0x1 0x x1xx xxx000000 Conversion between floating-point and integer on page C4-381 -
x0x1 Ox X1xx xxx100000 Unallocated. -
x0x1 0x x1xx xxxx10000 Floating-point data-processing (1 source) on page C4-385 -
x0x1 0x X1xx xxxxx1000 Floating-point compare on page C4-387 -

C4-344 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Table C4-7 Encoding table for the Data Processing -- Scalar Floating-Point and Advanced SIMD group (continued)

Decode fields

Decode group or instruction page Feature
op0 op1 op2 op3
x0x1 0x x1xx xxxxxx100 Floating-point immediate on page C4-388 -
x0x1 Ox x1xx xxxxxxx01 Floating-point conditional compare on page C4-388 -
x0x1 Ox x1xx xxxxxxx10 Floating-point data-processing (2 source) on page C4-389 -
x0x1 0x x1xx xxxxxxx11 Floating-point conditional select on page C4-390 -
x0x1 1x - - Floating-point data-processing (3 source) on page C4-391 -

Cryptographic AES

This section describes the encoding of the Cryptographic AES instruction class. The encodings in this section are
decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28|27 26 25 24]23 22 21 2019 18 17 16| 121110 9 | 5 4|

0]

[01 00111 0[size][1 010 0] opcode [1 0] Rn |

Rd |

Decode fields

Instruction page

size opcode
- XIXXX Unallocated.
- 000xx Unallocated.
- 1XXXX Unallocated.
x1 - Unallocated.
00 00100 AESE
00 00101 AESD
00 00110 AESMC
00 00111 AESIMC
1x - Unallocated.

Cryptographic three-register SHA

This section describes the encoding of the Cryptographic three-register SHA instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C4-345

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28|27 26 25 24[23 22 21 20|

16]15 14

12/11 10 9

5 4|

[01 01111 0]size[o]

Rm

|0|opcode|0 O|

Rn

Cryptographic two-register SHA

Decode fields

Instruction page

size opcode

- 111 Unallocated.
x1 - Unallocated.
00 000 SHAI1C

00 001 SHAIP

00 010 SHAIM

00 011 SHA1SUO
00 100 SHA256H
00 101 SHA256H2
00 110 SHA256SU1
1x - Unallocated.

This section describes the encoding of the Cryptographic two-register SHA instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28|27 26 25 24[23 22 21 20|19 18 17 16|

121110 9

5 4|

0]

[01 01111 0]size[1 010 0]

opcode

[0]

Rn

Rd |

Decode fields

Instruction page

size opcode
- XX1xx Unallocated.
- X1xxx Unallocated.
- 1xxxx Unallocated.
x1 - Unallocated.
00 00000 SHAIH
00 00001 SHA1SU1
00 00010 SHA256SU0
00 00011 Unallocated.
1x - Unallocated.

C4-346

Non-Confidential

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD scalar copy

This section describes the encoding of the Advanced SIMD scalar copy instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 14 1110 9 | 5 4| 0|
[0 1Jopl1 1 11000 0[] imms Jo] imma [1] Rn | Rd |

Decode fields
Instruction page
op imm4

0 xxx1 Unallocated.
0 Xx1x Unallocated.
0 x1xx Unallocated.
0 0000 DUP (element)
0 Ixxx Unallocated.
1 - Unallocated.

Advanced SIMD scalar three same FP16

This section describes the encoding of the Advanced SIMD scalar three same FP16 instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28(27 26 25 24|23 22 21 20| 161151413 [1110 9 | 5 4 0l
[0 1]u]1 1 1 1 ofa]1 0] Rm [0 ofopcode 1] Rn | Rd |

Decode fields
Instruction page Feature
U a opcode

- - 110 Unallocated. -
- 1 o1 Unallocated. -
0 0 011 FMULX FEAT _FP16
0 0 100 FCMEQ (register) FEAT FP16
0 o0 101 Unallocated. -
0 o 111 FRECPS FEAT FP16
0 1 100 Unallocated. -
0 1 101 Unallocated. -
e 1 111 FRSQRTS FEAT _FP16
1 o o011 Unallocated. -
1 0 100 FCMGE (register) FEAT FP16
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-347

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page Feature
U a opcode

1 o 101 FACGE FEAT_FP16
1 o0 111 Unallocated. -
1 1 010 FABD FEAT FP16
1 1 100 FCMQT (register) FEAT FP16
1 1 101 FACGT FEAT_FP16
1 1 111 Unallocated. -

Advanced SIMD scalar two-register miscellaneous FP16

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous FP16 instruction
class. The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced
SIMD on page C4-342.

31 30 29 28/27 26 25 24(23 22 21 20|19 18 17 16| 121110 9 | 5 4| 0
[0 1]ul1 1 1 1 0]a]1 11 1 0 0] opcode [1 0] Rn | Rd |

Decode fields

Instruction page Feature
U a opcode
- - 00xxx Unallocated. -
- - 010xx Unallocated. -
- - 10xxx Unallocated. -

- - 1100x Unallocated. -

- - 11110 Unallocated. -

- 0 011xx Unallocated. -

- 0 11111 Unallocated. -

- 1 01111 Unallocated. -

- 1 11100 Unallocated. -

0 0 11010 FCVTNS (vector) FEAT FP16
0 0 11011 FCVTMS (vector) FEAT FP16
0 0 11100 FCVTAS (vector) FEAT FP16
0 0 11101 SCVTF (vector, integer) FEAT FP16
0 1 01100 FCMGT (zero) FEAT FP16
0 1 e1101 FCMEQ (zero) FEAT FP16
0 1 o1110 FCMLT (zero) FEAT FP16
C4-348 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

U a opcode

0 1 11010 FCVTPS (vector) FEAT FP16
0 1 11011 FCVTZS (vector, integer) FEAT _FP16
0 1 11101 FRECPE FEAT FPI16
0 1 11111 FRECPX FEAT FPI16
1 0 11010 FCVTNU (vector) FEAT FP16
1 o 11011 FCVTMU (vector) FEAT FP16
1 o 11100 FCVTAU (vector) FEAT FP16
1 o 11101 UCVTF (vector, integer) FEAT FP16
1 1 0lle0 FCMGE (zero) FEAT FPI16
1 1 1101 FCMLE (zero) FEAT FPI16

1 1 01110 Unallocated. -

1 1 11010 FCVTPU (vector) FEAT FP16
1 1 11011 FCVTZU (vector, integer) FEAT FP16
1 1 11101 FRSQRTE FEAT FPI16
11 11111 Unallocated. -

Advanced SIMD scalar three same extra

This section describes the encoding of the Advanced SIMD scalar three same extra instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 14 1110 9 | 5 4 0|
[0 1Jul1 1 1 1 osize[0] Rm [1] opcode [1] Rn | Rd |

Decode fields

Instruction page Feature

U opcode

- 001x Unallocated. -

- 01xx Unallocated. -

- 1xxx Unallocated. -

0 0000 Unallocated. -

0 0001 Unallocated. -

1 0000 SQRDMLAH (vector) FEAT RDM
1 0001 SQRDMLSH (vector) FEAT RDM

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-349

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD scalar two-register miscellaneous

This section describes the encoding of the Advanced SIMD scalar two-register miscellaneous instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16 121110 9 | 5 4| 0|
[0 1]Ju]1 1 1 1 0fsize[1 0 0 0 0] opcode [1 O] Rn | Rd |
Decode fields
Instruction page
U size opcode
- - 0000x Unallocated.
- - 00010 Unallocated.
- - 0010x Unallocated.
- - 00110 Unallocated.
- - 01111 Unallocated.
- - 1000x Unallocated.
- - 10011 Unallocated.
- - 10101 Unallocated.
- - 10111 Unallocated.
- - 1100x Unallocated.
- - 11110 Unallocated.
- 0x 011xx Unallocated.
- 0x 11111 Unallocated.
- Ix 10110 Unallocated.
- Ix 11100 Unallocated.
0 - 00011 SUQADD
0 - 00111 SQABS
0 - 01000 CMGT (zero)
0 - 01001 CMEQ (zero)
0 - 01010 CMLT (zero)
0 - 01011 ABS
0 - 10010 Unallocated.
0 - 10100 SQXTN, SQXTN2
0 0x 10110 Unallocated.
0 0x 11010 FCVTNS (vector)
C4-350 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

U size opcode
0 0x 11011 FCVTMS (vector)
0 0x 11100 FCVTAS (vector)
0 0x 11101 SCVTF (vector, integer)
0 1x 01100 FCMGT (zero)
0 1x 01101 FCMEQ (zero)
0 1x 01110 FCMLT (zero)
0 1x 11010 FCVTPS (vector)
0 1x 11011 FCVTZS (vector, integer)
0 1x 11101 FRECPE
0 1x 11111 FRECPX
1 - 00011 USQADD
1 - 00111 SQNEG
1 - 01000 CMGE (zero)
1 - 01001 CMLE (zero)
1 - 01010 Unallocated.
1 - 01011 NEG (vector)
1 - 10010 SQXTUN, SQXTUN2
1 - 10100 UQXTN, UQXTN2
1 0ox 10110 FCVTXN, FCVTXN2
1 ox 11010 FCVTNU (vector)
1 0x 11011 FCVTMU (vector)
1 ox 11100 FCVTAU (vector)
1 0x 11101 UCVTF (vector, integer)
1 1Ix 01100 FCMGE (zero)
1 Ix 01101 FCMLE (zero)
1 1Ix 01110 Unallocated.
1 1Ix 11010 FCVTPU (vector)
1 1Ix 11011 FCVTZU (vector, integer)
1 1x 11101 FRSQRTE
1 1Ix 11111 Unallocated.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-351

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD scalar pairwise

This section describes the encoding of the Advanced SIMD scalar pairwise instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28|27 26 25 24|23 22 21 20/19 18 17 16 121110 9 | 5 4| 0|
[0 1]Ju]1 1 1 1 0fsize[1 1 0 0 0] opcode [1 0] Rn | Rd |

Decode fields
Instruction page Feature
U size opcode

- - 00xxx Unallocated. -

- - 010xx Unallocated. -

- - 01110 Unallocated. -

- - 10xxx Unallocated. -

- - 1100x Unallocated. -

- - 11010 Unallocated. -

- - 111xx Unallocated. -

- 1x 01101 Unallocated. -

0 - 11011 ADDP (scalar) -
0 0x 01100 FMAXNMP (scalar) - Encoding FEAT FP16
0 0x 01101 FADDP (scalar) - Encoding FEAT FP16
0 0x 01111 FMAXP (scalar) - Encoding FEAT FP16
0 1x 01100 FMINNMP (scalar) - Encoding ~ FEAT FP16
0 1x 01111 FMINP (scalar) - Encoding FEAT FP16
1 - 11011 Unallocated. -
1 0x 01100 FMAXNMP (scalar) - Encoding -
1 ox 01101 FADDP (scalar) - Encoding -
1 ox 01111 FMAXP (scalar) - Encoding -
1 Ix 01100 FMINNMP (scalar) - Encoding -
1 Ix 01111 FMINP (scalar) - Encoding -

Advanced SIMD scalar three different

This section describes the encoding of the Advanced SIMD scalar three different instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

C4-352 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 121110 9 | 5 4| 0|
[0 1Jul1 1 1 1 ofsize[1] Rm | opcode [0 0] Rn | Rd |

Decode fields
Instruction page

U opcode

- 00xx Unallocated.

- 01xx Unallocated.

- 1000 Unallocated.

- 1010 Unallocated.

- 1100 Unallocated.

- 111x Unallocated.

0 1001 SQDMLAL, SQDMLAL2 (vector)
0 1011 SQDMLSL, SQDMLSL2 (vector)
0 1101 SQDMULL, SQDMULL2 (vector)
1 1001 Unallocated.

1 1011 Unallocated.

1 1101 Unallocated.

Advanced SIMD scalar three same

This section describes the encoding of the Advanced SIMD scalar three same instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28|27 26 25 24(23 22 21 20| 16[15 1110 9 | 5 4| 0l
[0 1]ul1 1 1 1 ofsize [1] Rm | opcode [1] Rn | Rd |

Decode fields
Instruction page
U size opcode

- - 00000 Unallocated.

- - 0001x Unallocated.

- - 00100 Unallocated.

- - 011xx Unallocated.

- - 1001x Unallocated.

- Ix 11011 Unallocated.
0 - 00001 SQADD
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-353

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page
U size opcode
0 - 00101 SQSUB
0 - 00110 CMGT (register)
0 - 00111 CMGE (register)
0 - 01000 SSHL
0 - 01001 SQSHL (register)
0 - 01010 SRSHL
0 - 01011 SQRSHL
0 - 10000 ADD (vector)
0 - 10001 CMTST
0 - 10100 Unallocated.
0 - 10101 Unallocated.
0 - 10110 SQDMULH (vector)
0 - 10111 Unallocated.
0 0x 11000 Unallocated.
0 ox 11001 Unallocated.
0 ox 11010 Unallocated.
0 ()% 11011 FMULX
0 0x 11100 FCMEQ (register)
0 0x 11101 Unallocated.
0 0x 11110 Unallocated.
0 () 11111 FRECPS
0 Ix 11000 Unallocated.
0 1x 11001 Unallocated.
0 Ix 11010 Unallocated.
0 Ix 11100 Unallocated.
0 Ix 11101 Unallocated.
0 Ix 11110 Unallocated.
0 1x 11111 FRSQRTS
1 - 00001 UQADD
1 - 00101 UQSUB
1 - 00110 CMHI (register)
1 - 00111 CMHS (register)

C4-354

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

U size opcode

1 - 01000 USHL

1 - 01001 UQSHL (register)
1 - 01010 URSHL

1 - 01011 UQRSHL

1 - 10000 SUB (vector)

1 - 10001 CMEQ (register)
1 - 10100 Unallocated.

1 - 10101 Unallocated.

1 - 10110 SQRDMULH (vector)
1 - 10111 Unallocated.

1 ox 11000 Unallocated.

1 0x 11001 Unallocated.

1 0x 11010 Unallocated.

1 ox 11011 Unallocated.

1 0x 11100 FCMGE (register)
1 0x 11101 FACGE

1 ox 11110 Unallocated.

1 0x 11111 Unallocated.

1 1Ix 11000 Unallocated.

1 1Ix 11001 Unallocated.

1 1x 11010 FABD

1 1Ix 11100 FCMGT (register)
1 1x 11101 FACGT

1 1Ix 11110 Unallocated.

1 1Ix 11111 Unallocated.

Advanced SIMD scalar shift by immediate

This section describes the encoding of the Advanced SIMD scalar shift by immediate instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

ID072021 Non-Confidential

C4-355

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29

28|27 26 25 24|23 22 [1918 16/15

1110 9 |

5 4|

[0 1]ul1 1 1 1 1 0]

immh | immb |

opcode

Rn

[1]

| R4 |

Decode fields

Instruction page

U immh opcode

- 1= 0000 00001 Unallocated.

- = 0000 00011 Unallocated.

- 1= 0000 00101 Unallocated.

- 1= 0000 00111 Unallocated.

- 1= 0000 01001 Unallocated.

- 1= 0000 01011 Unallocated.

- 1= 0000 01101 Unallocated.

- 1= 0000 01111 Unallocated.

- 1= 0000 101xx Unallocated.

- 1= 0000 110xx Unallocated.

- 1= 0000 11101 Unallocated.

- 1= 0000 11110 Unallocated.

- 0000 - Unallocated.

0 1= 0000 00000 SSHR

0 1= 0000 00010 SSRA

0 1= 0000 00100 SRSHR

0 !=0000 00110 SRSRA

0 1= 0000 01000 Unallocated.

0 1= 0000 01010 SHL

0 = 0000 01100 Unallocated.

0 1= 0000 01110 SQSHL (immediate)

0 1= 0000 10000 Unallocated.

0 1= 0000 10001 Unallocated.

0 !=0000 10010 SQSHRN, SQSHRN2

0 !=0000 10011 SQRSHRN, SQRSHRN2
0 1= 0000 11100 SCVTF (vector, fixed-point)
0 1= 0000 11111 FCVTLZS (vector, fixed-point)
1 !=0000 00000 USHR

C4-356

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

U immh opcode

1 1= 0000 00010 USRA

1 !=0000 00100 URSHR

1 1= 0000 00110 URSRA

1 1= 0000 01000 SRI

1 1= 0000 01010 SLI

1 1= 0000 01100 SQSHLU

1 1= 0000 01110 UQSHL (immediate)

1 !=0000 10000 SQSHRUN, SQSHRUN2

1 1= 0000 10001 SQRSHRUN, SQRSHRUN2
1 1= 0000 10010 UQSHRN, UQSHRN2

1 1= 0000 10011 UQRSHRN, UQRSHRN2

1 1= 0000 11100 UCVTF (vector, fixed-point)
1 1= 0000 11111 FCVTZU (vector, fixed-point)

Advanced SIMD scalar x indexed element

This section describes the encoding of the Advanced SIMD scalar x indexed element instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28|27 26 25 24(23 22 21 20|19 16/15 12/11 10 9 5 4| 0]
[0 1Jul1 1 1 1 1]size[LIM] Rm | opcode [H|O] | Rd |
Decode fields
Instruction page Feature

U size opcode

- - 0000 Unallocated. -
- - 0010 Unallocated. -
- - 0100 Unallocated. -
- - 0110 Unallocated. -
- - 1000 Unallocated. -
- - 1010 Unallocated. -
- - 1110 Unallocated. -
- o1 0001 Unallocated. -
- o1 0101 Unallocated. -

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C4-357

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

U size opcode

- o1 1001 Unallocated. -

0 - 0011 SQDMLAL, SQDMLAL?2 (by element) -

0 - 0111 SQDMLSL, SQDMLSL2 (by element) -

0 - 1011 SQDMULL, SQDMULL2 (by element) -

0 - 1100 SQDMULH (by element) -

0 - 1101 SQRDMULH (by element) -

0 - 1111 Unallocated. -

0 00 0001 FMLA (by element) - Encoding FEAT FP16
0 00 0101 FMLS (by element) - Encoding FEAT FP16
0 00 1001 FMUL (by element) - Encoding FEAT FP16
0 1x 0001 FMLA (by element) - Encoding -

0 1x 0101 FMLS (by element) - Encoding -

0 1x 1001 FMUL (by element) - Encoding -

1 - 0011 Unallocated. -

1 - 0111 Unallocated. -

1 - 1011 Unallocated. -

1 - 1100 Unallocated. -

1 - 1101 SQRDMLAH (by element) FEAT RDM
1 - 1111 SQRDMLSH (by element) FEAT RDM
1 00 0001 Unallocated. -

1 00 0101 Unallocated. -

1 o0 1001 FMULX (by element) - Encoding FEAT FP16
1 Ix 0001 Unallocated. -

1 1x 0101 Unallocated. -

1 Ix 1001 FMULX (by element) - Encoding -

Advanced SIMD table lookup

This section describes the encoding of the Advanced SIMD table lookup instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

C4-358

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28/27 26 25 24|23 22 21 20| 16/15141312/1110 9 | 5 4| 0|
[o]aJo 0 1 1 1 0o]op2]o0] Rm [0] len Jop[0 O] Rn | Rd |

Decode fields
Instruction page
op2 len op

x1 - - Unallocated.

00 00 0 TBL - Single register table variant

00 00 1 TBX - Single register table variant

00 01 0 TBL - Two register table variant

00 01 1 TBX - Two register table variant

00 10 0 TBL - Three register table variant

00 10 1 TBX - Three register table variant

00 11 0 TBL - Four register table variant

00 11 1 TBX - Four register table variant

1x - - Unallocated.

Advanced SIMD permute

This section describes the encoding of the Advanced SIMD permute instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28/27 26 25 24|23 22 21 20| 16/1514 12/1110 9 | 5 4 0]
[o]aJo 0 1 1 1 o]size 0] Rm [0] opcode [1 0] Rn | Rd |

Decode fields
Instruction page

opcode
000 Unallocated.
001 UZP1
010 TRN1
011 ZIP1
100 Unallocated.
101 uzZp2
110 TRN2
111 ZIP2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-359

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD extract

This section describes the encoding of the Advanced SIMD extract instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 14 1110 9 | 5 4| 0|
[o]a[1 0 1 1 1 0o]op2]o0] Rm [o] imm4 o] Rn | Rd |

Decode fields
Instruction page

op2

x1 Unallocated.
00 EXT

1x Unallocated.

Advanced SIMD copy

This section describes the encoding of the Advanced SIMD copy instruction class. The encodings in this section are
decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28|27 26 25 24|23 22 21 20| 16/15 14 11109 | 5 4| 0|
[o]Qlop[o 1 1 1 0 0 0 0] imms [o] imm4 [1] Rn | Rd |

Decode fields
Instruction page
Q op imm5 imm4

- - x0000 - Unallocated.

- 0 - 0000 DUP (element)

- 0 - 0001 DUP (general)

- 0 - 0010 Unallocated.

- 0 - 0100 Unallocated.

- 0 - 0110 Unallocated.

- 0 - Ixxx Unallocated.

0 0 - 0011 Unallocated.

0 0 - 0101 SMOV

0 0 - 0111 UMOV

0 1 - - Unallocated.

1 0 - 0011 INS (general)
C4-360 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page
Q op imm5 imm4

1 0 - 0101 SMOV

1 0 x1000 0111 UMOV

1 1 - - INS (element)

Advanced SIMD three same (FP16)

This section describes the encoding of the Advanced SIMD three same (FP16) instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28/27 26 25 24|23 22 21 20| 16/151413 [1110 9 | 5 4 0|
[o]aJufo 1 1 1 o]a[1 0] Rm [0 0] opcode [1] Rn | Rd |

Decode fields

Instruction page Feature

U a opcode

0 0 000 FMAXNM (vector) FEAT FP16
0 0 o0l FMLA (vector) FEAT FPI16
0 0 o010 FADD (vector) FEAT FP16
0 0 011 FMULX FEAT FP16
0 o 1o0 FCMEQ (register) FEAT FP16
0 o 101 Unallocated. -

0 o 110 FMAX (vector) FEAT FPI16
0 o 111 FRECPS FEAT FPI16
0 1 000 FMINNM (vector) FEAT _FP16
0 1 o0l FMLS (vector) FEAT FP16
0 1 010 FSUB (vector) FEAT FP16
0 1 o11 Unallocated. -

0 1 100 Unallocated. -

0o 1 101 Unallocated. -

0 1 110 FMIN (vector) FEAT FP16
0 1 111 FRSQRTS FEAT FP16
1 0o 000 FMAXNMP (vector) FEAT FP16
1 0 01 Unallocated. -

1 o 010 FADDP (vector) FEAT FPI16
1 0 o1l FMUL (vector) FEAT FP16

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-361

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

U a opcode

1 0 100 FCMGE (register) FEAT FP16
1 o 101 FACGE FEAT FP16
1 o 110 FMAXP (vector) FEAT FPI16
1 0 111 FDIV (vector) FEAT FPI16
1 1 000 FMINNMP (vector) FEAT_FP16
1 1 01 Unallocated. -

1 1 010 FABD FEAT FP16
1 1 o1l Unallocated. -

1 1 100 FCMGT (register) FEAT FP16
1 1 101 FACGT FEAT FPI16
1 1 110 FMINP (vector) FEAT FP16
1 1 111 Unallocated. -

Advanced SIMD two-register miscellaneous (FP16)

This section describes the encoding of the Advanced SIMD two-register miscellaneous (FP16) instruction class.
The encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28|27 26 25 24|23 22 21 20/19 18 17 16| 1201110 9 | 5 4] 0]
[o]aJulo 1 1 1 o]a]1 1 1 1 0 0] opcode [1 0] Rn | Rd |
Decode fields
Instruction page Feature
U a opcode
- - 00xxx Unallocated. -
- - 010xx Unallocated. -
- - 10xxx Unallocated. -
- - 11110 Unallocated. -
- 0 0llxx Unallocated. -
- 0 11111 Unallocated. -
- 1 11100 Unallocated. -
0 o 11000 FRINTN (vector) FEAT FP16
0 o 11001 FRINTM (vector) FEAT FP16
0 0 11010 FCVTNS (vector) FEAT FP16

C4-362

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

U a opcode

0 o 11011 FCVTMS (vector) FEAT FP16
0 0 11100 FCVTAS (vector) FEAT FP16
0 0 11101 SCVTF (vector, integer) FEAT FP16
0 1 01100 FCMGT (zero) FEAT FP16
0 1 ollel FCMEQ (zero) FEAT FP16
0 1 01110 FCMLT (zero) FEAT FP16
0 1 ellll FABS (vector) FEAT FP16
0 1 11000 FRINTP (vector) FEAT FP16
0 1 11001 FRINTZ (vector) FEAT FP16
0 1 11010 FCVTPS (vector) FEAT FP16
0 1 11011 FCVTLZS (vector, integer) FEAT FP16
0 1 11101 FRECPE FEAT FP16

0 1 11111 Unallocated. -

1 0 11000 FRINTA (vector) FEAT FP16
1 0o 1le0l FRINTX (vector) FEAT FP16
1 o 11010 FCVTNU (vector) FEAT FP16
1 0 11011 FCVTMU (vector) FEAT FP16
1 o 11100 FCVTAU (vector) FEAT FP16
1 o 11101 UCVTF (vector, integer) FEAT FP16
1 1 0l100 FCMGE (zero) FEAT FP16
1 1 oelle1 FCMLE (zero) FEAT FP16

1 1 01110 Unallocated. -

1 1 1111 FNEG (vector) FEAT FP16

1 1 11000 Unallocated. -

1 1 11001 FRINTI (vector) FEAT FP16
1 1 11010 FCVTPU (vector) FEAT FP16
1 1 11011 FCVTZU (vector, integer) FEAT FP16
1 1 11101 FRSQRTE FEAT_FP16
1 1 11111 FSQRT (vector) FEAT FP16

Advanced SIMD three-register extension

This section describes the encoding of the Advanced SIMD three-register extension instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-363
ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28(27 26 25 24/23 22 21 20| 16|15 14 11109 | 5 4] 0]
[o]aJufo 1 1 1 o]size 0] Rm [1] opcode [1] Rn [Rd |
Decode fields
Instruction page Feature
Q U size opcode
- - 0x 0011 Unallocated. -
- - 1 0011 Unallocated. -
- 0 - 0000 Unallocated. -
- 0 - 0001 Unallocated. -
- 0 - 0010 SDOT (vector) FEAT DotProd
- 0 - Ixxx Unallocated. -
- 0 10 0011 USDOT (vector) FEAT ISMM
- 1 - 0000 SQRDMLAH (vector) FEAT RDM
-1 - 0001 SQRDMLSH (vector) FEAT RDM
- 1 - 0010 UDOT (vector) FEAT DotProd
- 1 - 10xx FCMLA FEAT FCMA
- 1 - 11x0 FCADD FEAT FCMA
- 1 o0 1101 Unallocated. -
- 1 o0 1111 Unallocated. -
-1 01 1111 BFDOT (vector) FEAT BF16
- 1 1Ix 1101 Unallocated. -
- 1 10 0011 Unallocated. -
- 1 10 1111 Unallocated. -
- 1 11 1111 BFMLALB, BFMLALT (vector) FEAT BF16
0o - - 01xx Unallocated. -
o 1 o1 1101 Unallocated. -
1 - ox 01xx Unallocated. -
1 - Ix 011x Unallocated. -
1 o 10 0100 SMMLA (vector) FEAT ISMM
1 o 10 0101 USMMLA (vector) FEAT ISMM
1 1 o1 1101 BFMMLA FEAT BF16
1 1 10 0100 UMMLA (vector) FEAT I8MM
1 1 10 0101 Unallocated. -

Non-Confidential

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

ARM DDI 0487G.b

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Advanced SIMD two-register miscellaneous

This section describes the encoding of the Advanced SIMD two-register miscellaneous instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28(27 26 25 24/23 22 21 20|19 18 17 16 121110 9 | 5 4| 0]
[o]aJufo 1 1 1 o]size[1 0 0 0 0] opcode [1 0] Rn [Rd |
Decode fields
Instruction page Feature

U size opcode

- - 1000x Unallocated. -

- - 10101 Unallocated. -

- 0x 011xx Unallocated. -

- 1x 10111 Unallocated. -

- 1x 11110 Unallocated. -

- 1 10110 Unallocated. -

0 - 00000 REV64 -

0 - 00001 REV16 (vector) -

0 - 00010 SADDLP -

0 - 00011 SUQADD -

0 - 00100 CLS (vector) -

0 - 00101 CNT -

0 - 00110 SADALP -

0 - 00111 SQABS -

0 - 01000 CMGT (zero) -

0 - 01001 CMEQ (zero) -

0 - 01010 CMLT (zero) -

0 - 01011 ABS -

0 - 10010 XTN, XTN2 -

[/ 10011 Unallocated. -

0 - 10100 SQXTN, SQXTN2 -

0 0x 10110 FCVTN, FCVTN2 -

0 0x 10111 FCVTL, FCVTL2 -

0 0x 11000 FRINTN (vector) -

0 0x 11001 FRINTM (vector) -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-365

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

U size opcode

0 0x 11010 FCVTNS (vector) -

0 0x 11011 FCVTMS (vector) -

0 0x 11100 FCVTAS (vector) -

0 0x 11101 SCVTF (vector, integer) -

0 0x 11110 FRINT32Z (vector) FEAT FRINTTS
0 0x 11111 FRINT64Z (vector) FEAT FRINTTS
0 1x 01100 FCMGT (zero) -

0 1x 01101 FCMEQ (zero) -

0 1x 01110 FCMLT (zero) -

0 1Ix 01111 FABS (vector) -

0 1x 11000 FRINTP (vector) -

0 1x 11001 FRINTZ (vector) -

0 1x 11010 FCVTPS (vector) -

0 1x 11011 FCVTZS (vector, integer) -

0 1x 11100 URECPE -

0 1x 11101 FRECPE -

0 1x 11111 Unallocated. -

0 10 10110 BFCVTN, BFCVTN2 FEAT BF16
1 - 00000 REV32 (vector) -
1 - 00001 Unallocated. -
1 - 00010 UADDLP -
1 - 00011 USQADD -
1 - 00100 CLZ (vector) -
1 - 00110 UADALP -
1 - 00111 SQNEG -
1 - 01000 CMGE (zero) -
1 - 01001 CMLE (zero) -
1 - 01010 Unallocated. -
1 - 01011 NEG (vector) -
1 - 10010 SQXTUN, SQXTUN2 -
1 - 10011 SHLL, SHLL2 -
1 - 10100 UQXTN, UQXTN2 -
C4-366 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page Feature
U size opcode

1 ox 10110 FCVTXN, FCVTXN2 -

1 0x 10111 Unallocated. -

1 ox 11000 FRINTA (vector) -
1 ox 11001 FRINTX (vector) -
1 0x 11010 FCVTNU (vector) -
1 0x 11011 FCVTMU (vector) -
1 0x 11100 FCVTAU (vector) -
1 ox 11101 UCVTF (vector, integer) -
1 ox 11110 FRINT32X (vector) FEAT FRINTTS
1 ox 11111 FRINT64X (vector) FEAT FRINTTS
1 00 00101 NOT -
1 o1 00101 RBIT (vector) -

1 1x 00101 Unallocated. -

1 1Ix 01100 FCMGE (zero) -

1 1x 01101 FCMLE (zero) -

1 1x 01110 Unallocated. -

1 1Ix 01111 FNEG (vector) -

1 1x 11000 Unallocated. -

1 1Ix 11001 FRINTI (vector) -
1 Ix 11010 FCVTPU (vector) -
1 Ix 11011 FCVTZU (vector, integer) -
1 Ix 11100 URSQRTE -
1 1x 11101 FRSQRTE -
1 1Ix 11111 FSQRT (vector) -

1 10 10110 Unallocated. -

Advanced SIMD across lanes

This section describes the encoding of the Advanced SIMD across lanes instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-367
1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28|27 26 25 24|23 22 21 20/19 18 17 16 121110 9 | 5 4| 0|
[o]aJufo 1 1 1 0]size[1 1 0 0 0] opcode [1 0] Rn [Rd |

Decode fields
Instruction page Feature
U size opcode

- - 0000x Unallocated. -

- - 00010 Unallocated. -

- - 001xx Unallocated. -

- - 0100x Unallocated. -

- - 01011 Unallocated. -

- - 01101 Unallocated. -

- - 01110 Unallocated. -

- - 10xxx Unallocated. -

- - 1100x Unallocated. -

- - 111xx Unallocated. -

0 - 00011 SADDLV -
0 - 01010 SMAXV -
0 - 11010 SMINV -
0o - 11011 ADDV -
0 00 01100 FMAXNMV - Encoding FEAT FP16
0 @0 o111l FMAXV - Encoding FEAT FP16

0 01 01100 Unallocated. -

0 01 01111 Unallocated. -

0 10 01100 FMINNMYV - Encoding ~ FEAT FP16

0 10 01111 FMINYV - Encoding FEAT FPl16

0 11 01100 Unallocated. -

0 11 01111 Unallocated. -

1 - 00011 UADDLV -
1 - 01010 UMAXV -
1 - 11010 UMINV -
1 - 11011 Unallocated. -
1 0x 01100 FMAXNMYV - Encoding -
C4-368 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
U size opcode
1 0x 01111 FMAXYV - Encoding -
1 1Ix 01100 FMINNMYV - Encoding -
1 1Ix 01111 FMINV - Encoding -

Advanced SIMD three different

This section describes the encoding of the Advanced SIMD three different instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 121110 9 | 5 4 0|
[o]aufo 1 1 1 o]size[1] Rm | opcode [0 O] Rn | Rd |

Decode fields
Instruction page

U opcode
- 1111 Unallocated.
0 0000 SADDL, SADDL2
0 0001 SADDW, SADDW2
0 0010 SSUBL, SSUBL2
0 0011 SSUBW, SSUBW?2
0 0100 ADDHN, ADDHN2
0 0101 SABAL, SABAL2
0 0110 SUBHN, SUBHN2
0 0111 SABDL, SABDL2
0 1000 SMLAL, SMLAL?2 (vector)
0 1001 SQDMLAL, SQDMLAL2 (vector)
0 1010 SMLSL, SMLSL2 (vector)
0 1011 SQDMLSL, SQDMLSL2 (vector)
0 1100 SMULL, SMULL2 (vector)
0 1101 SQDMULL, SQDMULL2 (vector)
0 1110 PMULL, PMULL2
1 0000 UADDL, UADDL2
1 0001 UADDW, UADDW2
1 0010 USUBL, USUBL2
1 0011 USUBW, USUBW2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-369

ID072021 Non-Confidential

A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

Advanced SIMD three same

This section describes the encoding of the Advanced SIMD three same instruction class. The encodings in this

Decode fields

Instruction page

U opcode

1 0100 RADDHN, RADDHN2

1 0101 UABAL, UABAL2

1 0110 RSUBHN, RSUBHN2

1 0111 UABDL, UABDL2

1 1000 UMLAL, UMLAL2 (vector)
1 1001 Unallocated.

1 1010 UMLSL, UMLSL2 (vector)
1 1011 Unallocated.

1 1100 UMULL, UMULL2 (vector)
1 1101 Unallocated.

1 1110 Unallocated.

section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

|31 30 29 28(27 26 25 24/23 22 21 20| 16/15 1110 9 | 5 4| 0]
[oJaJufo 1 1 1 ofsize [1] Rm | opcode [1] Rn [Rd |

Decode fields

Instruction page Feature

U size opcode

0 - 00000 SHADD -

0 - 00001 SQADD -

0 - 00010 SRHADD -

0 - 00100 SHSUB -

0 - 00101 SQSUB -

0 - 00110 CMGT (register) -

[/ 00111 CMGE (register) -

0 - 01000 SSHL -

0 - 01001 SQSHL (register) -

0 - 01010 SRSHL -

0 - 01011 SQRSHL -

0 - 01100 SMAX -

C4-370

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

U size opcode

0 - 01101 SMIN -
0 - 01110 SABD -
0 - 01111 SABA -
0 - 10000 ADD (vector) -
0 - 10001 CMTST -
0 - 10010 MLA (vector) -
0 - 10011 MUL (vector) -
0 - 10100 SMAXP -
0 - 10101 SMINP -
0 - 10110 SQDMULH (vector) -
0 - 10111 ADDP (vector) -
0 0x 11000 FMAXNM (vector) -
0 0x 11001 FMLA (vector) -
0 0x 11010 FADD (vector) -
0 ox 11011 FMULX -
0 0x 11100 FCMEQ (register) -
0 0x 11110 FMAX (vector) -
0 0x 11111 FRECPS -
0 00 00011 AND (vector) -
0 00 11101 FMLAL, FMLAL2 (vector) - Encoding FEAT FHM
0 o1 00011 BIC (vector, register) -

0 01 11101 Unallocated. -

0 1Ix 11000 FMINNM (vector) -
0 1Ix 11001 FMLS (vector) -
0 1x 11010 FSUB (vector) -
0 1x 11011 Unallocated. -

0 1x 11100 Unallocated. -

0 1Ix 11110 FMIN (vector) -
0 1x 11111 FRSQRTS -
0 10 00011 ORR (vector, register) -
0 10 11101 FMLSL, FMLSL2 (vector) - Encoding ~ FEAT FHM
0 11 00011 ORN (vector) -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-371

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

size opcode

Instruction page

Feature

11 11101 Unallocated. -
- 00000 UHADD -
- 00001 UQADD -
- 00010 URHADD -
- 00100 UHSUB -
- 00101 UQSUB -
- 00110 CMHI (register) -
- 00111 CMHS (register) -
- 01000 USHL -
- 01001 UQSHL (register) -
- 01010 URSHL -
- 01011 UQRSHL -
- 01100 UMAX -
- 01101 UMIN -
- 01110 UABD -
- 01111 UABA -
- 10000 SUB (vector) -
- 10001 CMEQ (register) -
- 10010 MLS (vector) -
- 10011 PMUL -
- 10100 UMAXP -
- 10101 UMINP -
- 10110 SQRDMULH (vector) -
- 10111 Unallocated. -
0x 11000 FMAXNMP (vector) -
0x 11010 FADDP (vector) -
0x 11011 FMUL (vector) -
0x 11100 FCMGE (register) -
()% 11101 FACGE -
0x 11110 FMAXP (vector) -
0x 11111 FDIV (vector) -
00 00011 EOR (vector) -

C4-372

Non-Confidential

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
U size opcode
1 o0 11001 FMLAL, FMLAL2 (vector) - Encoding FEAT FHM
1 01 00011 BSL -

1 01 11001 Unallocated. -

1 1Ix 11000 FMINNMP (vector) -

1 Ix 11010 FABD -

1 1x 11011 Unallocated. -

1 1Ix 11100 FCMGT (register) -
1 1x 11101 FACGT -
1 1Ix 11110 FMINP (vector) -
1 Ix 11111 Unallocated. -
1 10 00011 BIT -
1 10 11001 FMLSL, FMLSL2 (vector) - Encoding ~ FEAT FHM
1 11 00011 BIF -

1 11 11001 Unallocated. -

Advanced SIMD modified immediate

This section describes the encoding of the Advanced SIMD modified immediate instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 1615 12(1110 9 8(7 6 5 4| 0|
[o]Qlop[o 1 1 1 1 0 0 0 0 0[]a[b]c| cmode [o2]1[d]e[f]g[n] Rd |

Decode fields

Instruction page Feature

Q op cmode 02

-0 OXXX 1 Unallocated. -
-0 0xx0 0 MOVI - 32-bit shifted immediate variant -
-0 0xx1 0 ORR (vector, immediate) - 32-bit variant -
- 0 10xx 1 Unallocated. -
-0 10x0 0 MOVI - 16-bit shifted immediate variant -
-0 10x1 0 ORR (vector, immediate) - 16-bit variant -
- 0 110x 0 MOVI - 32-bit shifting ones variant -
-0 110x 1 Unallocated. -
-0 1110 0 MOVI - 8-bit variant -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-373

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

Q op cmode 02

-0 1110 1 Unallocated. -

- 0 1111 0 FMOV (vector, immediate) - Single-precision variant -

- 0 1111 1 FMOV (vector, immediate) - Encoding FEAT FP16
-1 - 1 Unallocated. -

-1 0xx0 0 MVNI - 32-bit shifted immediate variant -

- 1 0xx1 0 BIC (vector, immediate) - 32-bit variant -

-1 10x0 0 MVNI - 16-bit shifted immediate variant -

- 1 10x1 0 BIC (vector, immediate) - 16-bit variant -

- 1 110x 0 MVNI - 32-bit shifting ones variant -

0 1 1110 0 MOVI - 64-bit scalar variant -

0 1 1111 0 Unallocated. -

1 1 1110 0 MOVI - 64-bit vector variant -

1 1 1111 0 FMOV (vector, immediate) - Double-precision variant -

Advanced SIMD shift by immediate

This section describes the encoding of the Advanced SIMD shift by immediate instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28|27 26 25 24|23 22 1918 16]15 11109 | 5 4| 0|
[o]a[ulo 1 1 1 1 o] 1=0000 [immb | opcode [1] Rn | Rd |
immh

Decode fields
Instruction page

U opcode

- 00001 Unallocated.
- 00011 Unallocated.
- 00101 Unallocated.
- 00111 Unallocated.
- 01001 Unallocated.
- 01011 Unallocated.
- 01101 Unallocated.
- 01111 Unallocated.
- 10101 Unallocated.
- 1011x Unallocated.

C4-374 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields
Instruction page

U opcode

- 110xx Unallocated.

- 11101 Unallocated.

- 11110 Unallocated.

0 00000 SSHR

0 00010 SSRA

0 00100 SRSHR

0 00110 SRSRA

0 01000 Unallocated.

0 01010 SHL

0 01100 Unallocated.

0 01110 SQSHL (immediate)

0 10000 SHRN, SHRN2

0 10001 RSHRN, RSHRN2

0 10010 SQSHRN, SQSHRN2

0 10011 SQRSHRN, SQRSHRN2

0 10100 SSHLL, SSHLL2

0 11100 SCVTF (vector, fixed-point)

0 11111 FCVTLZS (vector, fixed-point)

1 00000 USHR

1 00010 USRA

1 00100 URSHR

1 00110 URSRA

1 01000 SRI

1 01010 SLI

1 01100 SQSHLU

1 01110 UQSHL (immediate)

1 10000 SQSHRUN, SQSHRUN2

1 10001 SQRSHRUN, SQRSHRUN2

1 10010 UQSHRN, UQSHRN2

1 10011 UQRSHRN, UQRSHRN2
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-375

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page

U opcode

1 10100 USHLL, USHLL2

1 11100 UCVTF (vector, fixed-point)
1 11111 FCVTZU (vector, fixed-point)

Advanced SIMD vector x indexed element

This section describes the encoding of the Advanced SIMD vector x indexed element instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28|27 26 25 24|23 22 21 20/19 16|15 12/11 10 9 | 5 4| 0]
|0|Q|U|0 111 1|size|L|M| | opcode |H|O| Rn | Rd |
Decode fields
Instruction page Feature
U size opcode
- o1 1001 Unallocated. -
0 - 0010 SMLAL, SMLAL?2 (by element) -
0 - 0011 SQDMLAL, SQDMLAL?2 (by element) -
0 - 0110 SMLSL, SMLSL2 (by element) -
0 - 0111 SQDMLSL, SQDMLSL2 (by element) -
0 - 1000 MUL (by element) -
0 - 1010 SMULL, SMULL2 (by element) -
0 - 1011 SQDMULL, SQDMULL2 (by element) -
[/ 1100 SQDMULH (by element) -
[/ 1101 SQRDMULH (by element) -
[/ 1110 SDOT (by element) FEAT DotProd
0 0x 0000 Unallocated. -
0 0x 0100 Unallocated. -
0 00 0001 FMLA (by element) - Encoding FEAT FP16
0 00 0101 FMLS (by element) - Encoding FEAT FP16
0 00 1001 FMUL (by element) - Encoding FEAT FP16
0 00 1111 SUDOT (by element) FEAT ISMM
0 o1 0001 Unallocated. -
0 o1 0101 Unallocated. -

C4-376

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Non-Confidential

Instruction page Feature

U size opcode
0 o1 1111 BFDOT (by element) FEAT BF16
0 1x 0001 FMLA (by element) - Encoding -
0 1Ix 0101 FMLS (by element) - Encoding -
0 1Ix 1001 FMUL (by element) - Encoding -
0 10 0000 FMLAL, FMLAL2 (by element) - Encoding FEAT FHM
0 10 0100 FMLSL, FMLSL2 (by element) - Encoding ~ FEAT FHM
0 10 1111 USDOT (by element) FEAT ISMM
0 11 0000 Unallocated. -
0 11 0100 Unallocated. -
0 11 1111 BFMLALB, BFMLALT (by element) FEAT BF16
1 - 0000 MLA (by element) -
1 - 0010 UMLAL, UMLAL?2 (by element) -
1 - 0100 MLS (by element) -
1 - 0110 UMLSL, UMLSL2 (by element) -
1 - 1010 UMULL, UMULL2 (by element) -
1 - 1011 Unallocated. -
1 - 1101 SQRDMLAH (by element) FEAT RDM
1 - 1110 UDOT (by element) FEAT DotProd
1 - 1111 SQRDMLSH (by element) FEAT RDM
1 ox 1000 Unallocated. -
1 ox 1100 Unallocated. -
1 00 0001 Unallocated. -
1 00 0011 Unallocated. -
1 00 0101 Unallocated. -
1 00 0111 Unallocated. -
1 o0 1001 FMULX (by element) - Encoding FEAT FP16
1 o1 0xx1 FCMLA (by element) FEAT FCMA
1 Ix 1001 FMULX (by element) - Encoding -
1 10 0xx1 FCMLA (by element) FEAT FCMA
1 10 1000 FMLAL, FMLAL2 (by element) - Encoding FEAT FHM
1 10 1100 FMLSL, FMLSL2 (by element) - Encoding ~ FEAT FHM
1 1 0001 Unallocated. -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-377

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
U size opcode
1 11 0011 Unallocated. -
1 1 0101 Unallocated. -
1 1 0111 Unallocated. -
1 11 1000 Unallocated. -
1 1 1100 Unallocated. -

Cryptographic three-register, imm2

This section describes the encoding of the Cryptographic three-register, imm?2 instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 2827 26 25 24|23 22 21 20| 16/15141312[1110 9 | 5 4| 0|
[t1001 11001 0] Rm [1 0[imm2] | Rn | Rd |

I_l_l

opcode

Decode fields
Instruction page Feature

opcode
00 SM3TTI1A FEAT SM3
01 SM3TTI1B FEAT SM3
10 SM3TT2A FEAT SM3
11 SM3TT2B FEAT SM3

Cryptographic three-register SHA 512

This section describes the encoding of the Cryptographic three-register SHA 512 instruction class. The encodings
in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28/27 26 25 24(23 22 21 20| 161514 1312[1110 9 | 5 4| 0
[1t1001 11001 1] Rm [1]o]o o | Rn | Rd |

I_l_l

opcode

Decode fields
Instruction page Feature

O opcode

0 00 SHAS512H FEAT SHAS512

0 01 SHAS512H2 FEAT SHAS512

0 10 SHAS512SU1 FEAT SHAS512
C4-378 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
O opcode
0 11 RAX1 FEAT SHA3
1 00 SM3PARTW1 FEAT SM3
1 01 SM3PARTW2 FEAT SM3
1 10 SM4EKEY FEAT SM4
1 11 Unallocated. -

Cryptographic four-register

This section describes the encoding of the Cryptographic four-register instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28|27 26 25 24|23 22 21 20| 16/15 14 | 109 | 5 4| 0|
[1 1001110 0[0po] Rm [o] Ra | Rn | Rd |

Decode fields

Instruction page Feature
Opo0
00 EOR3 FEAT SHA3
01 BCAX FEAT SHA3
10 SM3SS1 FEAT SM3
11 Unallocated. -

Cryptographic two-register SHA 512

This section describes the encoding of the Cryptographic two-register SHA 512 instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 2827 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12[11 10 9 | 5 4| 0|
[t 1001110110000001000] | Rn | Rd |

I_l_l

opcode
Decode fields
Instruction page Feature
opcode
00 SHAS512SU0 FEAT SHAS12
01 SM4E FEAT SM4
1x Unallocated. -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-379

ID072021

Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Conversion between floating-point and fixed-point

This section describes the encoding of the Conversion between floating-point and fixed-point instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28|27 26 25 24(23 22 21 20/19 18 16|15 | 109 | 5 4| 0]
|sf[0 | S] 11110]ptype[0 b‘mode[opcode [scale [Rn [Rd |

Decode fields

Instruction page Feature
sf S ptype rmode opcode scale
- - - - 1xx - Unallocated. -
- - - x0 00x - Unallocated. -
- - - x1 01x - Unallocated. -
- - - 0x 00x - Unallocated. -
- - - 1x 01x - Unallocated. -
- - 10 - - - Unallocated. -
- 1 - - - - Unallocated. -
0 - - - - Oxxxxx Unallocated. -
0 o 00 00 010 - SCVTF (scalar, fixed-point) - 32-bit to single-precision variant -
0 0 00 00 011 - UCVTF (scalar, fixed-point) - 32-bit to single-precision -
variant
0 0 00 11 000 - FCVTLZS (scalar, fixed-point) - Single-precision to 32-bit -
variant
0 0 00 11 001 - FCVTZU (scalar, fixed-point) - Single-precision to 32-bit -
variant
0 0 o1 00 010 - SCVTEF (scalar, fixed-point) - 32-bit to double-precision -
variant
0 0 o1 00 011 - UCVTF (scalar, fixed-point) - 32-bit to double-precision -
variant
0 0 o1 11 000 - FCVTLZS (scalar, fixed-point) - Double-precision to 32-bit -
variant
0 0 o1 11 001 - FCVTZU (scalar, fixed-point) - Double-precision to 32-bit -
variant
0 0 11 00 010 - SCVTEF (scalar, fixed-point) - 32-bit to half-precision variant ~ FEAT FP16
0 0 11 00 011 - UCVTF (scalar, fixed-point) - 32-bit to half-precision variant ~ FEAT FP16
0 0 11 1 000 - FCVTZS (scalar, fixed-point) - Half-precision to 32-bit variant ~FEAT FP16
0 0 11 1 001 - FCVTZU (scalar, fixed-point) - Half-precision to 32-bit FEAT FP16
variant
1 o 00 00 010 - SCVTF (scalar, fixed-point) - 64-bit to single-precision variant -
C4-380 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
sf S ptype rmode opcode scale
1 0 00 00 011 - UCVTF (scalar, fixed-point) - 64-bit to single-precision -
variant
1 0 00 11 000 - FCVTLZS (scalar, fixed-point) - Single-precision to 64-bit -
variant
1 0 00 11 001 - FCVTZU (scalar, fixed-point) - Single-precision to 64-bit -
variant
1 0 o1 00 010 - SCVTEF (scalar, fixed-point) - 64-bit to double-precision -
variant
1 0 o1 00 011 - UCVTF (scalar, fixed-point) - 64-bit to double-precision -
variant
1 0 o1 11 000 - FCVTLZS (scalar, fixed-point) - Double-precision to 64-bit -
variant
1 0 o1 11 001 - FCVTZU (scalar, fixed-point) - Double-precision to 64-bit -
variant
1 0 11 00 010 - SCVTF (scalar, fixed-point) - 64-bit to half-precision variant =~ FEAT FP16
1 0 11 00 011 - UCVTF (scalar, fixed-point) - 64-bit to half-precision variant ~ FEAT FP16
1 0 11 1 000 - FCVTZS (scalar, fixed-point) - Half-precision to 64-bit variant FEAT FP16
1 0 11 1 001 - FCVTZU (scalar, fixed-point) - Half-precision to 64-bit FEAT FP16
variant

Conversion between floating-point and integer

This section describes the encoding of the Conversion between floating-point and integer instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
131 30 29 28/27 26 25 24/23 2221 20[19 18 16/15141312[1110 9 | 5 4| 0]
[sflo[s][1 1 1 1 o]ptype[1 fmode opcode [0 0 0 0 0 0] Rn | Rd |

Decode fields

Instruction page Feature

sf S ptype rmode opcode

- - - x1 01x Unallocated. -
- - - x1 10x Unallocated. -
- - - 1x 01x Unallocated. -
- - - 1x 10x Unallocated. -
- 0 10 - 0xx Unallocated. -
- 0 10 - 10x Unallocated. -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-381

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

sf S ptype rmode opcode

- 1 - - - Unallocated. -
0 0 00 x1 11x Unallocated. -
o 0 00 00 000 FCVTNS (scalar) - Single-precision to 32-bit variant -
o 0 00 00 001 FCVTNU (scalar) - Single-precision to 32-bit variant -
o 0 00 00 010 SCVTF (scalar, integer) - 32-bit to single-precision variant -
0 0 00 00 011 UCVTF (scalar, integer) - 32-bit to single-precision variant -
0 0 00 00 100 FCVTAS (scalar) - Single-precision to 32-bit variant -
0 0 00 00 101 FCVTAU (scalar) - Single-precision to 32-bit variant -
o 0 00 00 110 FMOV (general) - Single-precision to 32-bit variant -
o 0 00 00 111 FMOV (general) - 32-bit to single-precision variant -
o 0 00 01 000 FCVTPS (scalar) - Single-precision to 32-bit variant -
0 0 00 01 001 FCVTPU (scalar) - Single-precision to 32-bit variant -
0 0 00 1x 11x Unallocated. -
0 0 00 10 000 FCVTMS (scalar) - Single-precision to 32-bit variant -
o 0 00 10 001 FCVTMU (scalar) - Single-precision to 32-bit variant -
o 0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 32-bit variant -
o 0 00 11 001 FCVTZU (scalar, integer) - Single-precision to 32-bit variant -
0 0 o1 0x 11x Unallocated. -
0 0 o1 00 000 FCVTNS (scalar) - Double-precision to 32-bit variant -
0 0 o1 00 001 FCVTNU (scalar) - Double-precision to 32-bit variant -
0 0 o1 00 010 SCVTEF (scalar, integer) - 32-bit to double-precision variant -
0 0 o1 00 011 UCVTF (scalar, integer) - 32-bit to double-precision variant -
0 0 o1 00 100 FCVTAS (scalar) - Double-precision to 32-bit variant -
0 0 o1 00 101 FCVTAU (scalar) - Double-precision to 32-bit variant -
0 0 o1 01 000 FCVTPS (scalar) - Double-precision to 32-bit variant -
0 0 o1 01 001 FCVTPU (scalar) - Double-precision to 32-bit variant -
0 0 o1 10 000 FCVTMS (scalar) - Double-precision to 32-bit variant -
0 0 o1 10 001 FCVTMU (scalar) - Double-precision to 32-bit variant -
o o o1 10 11x Unallocated. -
0 0 o1 11 000 FCVTLZS (scalar, integer) - Double-precision to 32-bit variant -
0 0 o1 1 001 FCVTZU (scalar, integer) - Double-precision to 32-bit variant -
o o o1 11 110 FICVTZS FEAT JSCVT

C4-382 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

sf S ptype rmode opcode

0 0 o1 11 111 Unallocated. -

0 0 10 - 11x Unallocated. -

e o 11 00 000 FCVTNS (scalar) - Half-precision to 32-bit variant FEAT FP16
e o 11 00 001 FCVTNU (scalar) - Half-precision to 32-bit variant FEAT FP16
o o 11 00 010 SCVTF (scalar, integer) - 32-bit to half-precision variant FEAT FP16
0 0 11 00 011 UCVTEF (scalar, integer) - 32-bit to half-precision variant FEAT FP16
0 0 11 00 100 FCVTAS (scalar) - Half-precision to 32-bit variant FEAT FP16
0 0 11 00 101 FCVTAU (scalar) - Half-precision to 32-bit variant FEAT FP16
e o 11 00 110 FMOV (general) - Half-precision to 32-bit variant FEAT FP16
0 0 11 00 111 FMOV (general) - 32-bit to half-precision variant FEAT FP16
o o 11 01 000 FCVTPS (scalar) - Half-precision to 32-bit variant FEAT FP16
0 0 11 01 001 FCVTPU (scalar) - Half-precision to 32-bit variant FEAT FP16
0 0 11 10 000 FCVTMS (scalar) - Half-precision to 32-bit variant FEAT FP16
0 0 11 10 001 FCVTMU (scalar) - Half-precision to 32-bit variant FEAT FP16
e o 11 11 000 FCVTZS (scalar, integer) - Half-precision to 32-bit variant FEAT FP16
0 0 11 11 001 FCVTZU (scalar, integer) - Half-precision to 32-bit variant FEAT FP16
1 o o0 - 11x Unallocated. -

1 0 00 00 000 FCVTNS (scalar) - Single-precision to 64-bit variant -

1 0 00 00 001 FCVTNU (scalar) - Single-precision to 64-bit variant -

1 0 00 00 010 SCVTF (scalar, integer) - 64-bit to single-precision variant -

1 0 00 00 011 UCVTF (scalar, integer) - 64-bit to single-precision variant -

1 0 00 00 100 FCVTAS (scalar) - Single-precision to 64-bit variant -

1 o0 00 00 101 FCVTAU (scalar) - Single-precision to 64-bit variant -

1 0 00 01 000 FCVTPS (scalar) - Single-precision to 64-bit variant -

1 0 00 01 001 FCVTPU (scalar) - Single-precision to 64-bit variant -

1 0 00 10 000 FCVTMS (scalar) - Single-precision to 64-bit variant -

1 0 00 10 001 FCVTMU (scalar) - Single-precision to 64-bit variant -

1 o0 00 11 000 FCVTZS (scalar, integer) - Single-precision to 64-bit variant -

1 o0 00 11 001 FCVTZU (scalar, integer) - Single-precision to 64-bit variant -

1 0 o1 x1 11x Unallocated. -

1 0 o1 00 000 FCVTNS (scalar) - Double-precision to 64-bit variant -

1 0 o1 00 001 FCVTNU (scalar) - Double-precision to 64-bit variant -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-383

1D072021 Non-Confidential

A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

sf S ptype rmode opcode

1 0 o1 00 010 SCVTEF (scalar, integer) - 64-bit to double-precision variant -

1 0 o1 00 011 UCVTF (scalar, integer) - 64-bit to double-precision variant -

1 0 o1 00 100 FCVTAS (scalar) - Double-precision to 64-bit variant -

1 0 o1 00 101 FCVTAU (scalar) - Double-precision to 64-bit variant -

1 o0 o1 00 110 FMOV (general) - Double-precision to 64-bit variant -

1 0 o1 00 111 FMOV (general) - 64-bit to double-precision variant -

1 0 o1 01 000 FCVTPS (scalar) - Double-precision to 64-bit variant -

1 0 o1 01 001 FCVTPU (scalar) - Double-precision to 64-bit variant -

1 o o1 1x 11x Unallocated. -

1 0 o1 10 000 FCVTMS (scalar) - Double-precision to 64-bit variant -

1 0 o1 10 001 FCVTMU (scalar) - Double-precision to 64-bit variant -

1 0 o1 11 000 FCVTLZS (scalar, integer) - Double-precision to 64-bit variant -

1 0 o1 11 001 FCVTZU (scalar, integer) - Double-precision to 64-bit variant -

1 0 10 x0 11x Unallocated. -

1 0 10 01 110 FMOV (general) - Top half of 128-bit to 64-bit variant -

1 0 10 01 111 FMOV (general) - 64-bit to top half of 128-bit variant -

1 o 10 1x 11x Unallocated. -

1 0 11 00 000 FCVTNS (scalar) - Half-precision to 64-bit variant FEAT FP16
1 0 11 00 001 FCVTNU (scalar) - Half-precision to 64-bit variant FEAT FP16
1 0 11 00 010 SCVTF (scalar, integer) - 64-bit to half-precision variant FEAT FP16
1 o 1 00 011 UCVTF (scalar, integer) - 64-bit to half-precision variant FEAT FP16
1 o 1 00 100 FCVTAS (scalar) - Half-precision to 64-bit variant FEAT FP16
1 o 1 00 101 FCVTAU (scalar) - Half-precision to 64-bit variant FEAT FP16
1 0 11 00 110 FMOV (general) - Half-precision to 64-bit variant FEAT FP16
1 0 11 00 111 FMOV (general) - 64-bit to half-precision variant FEAT FP16
1 0 11 01 000 FCVTPS (scalar) - Half-precision to 64-bit variant FEAT FP16
1 0 11 01 001 FCVTPU (scalar) - Half-precision to 64-bit variant FEAT FP16
1 o 1 10 000 FCVTMS (scalar) - Half-precision to 64-bit variant FEAT FP16
1 o 1 10 001 FCVTMU (scalar) - Half-precision to 64-bit variant FEAT FP16
1 0 11 11 000 FCVTLZS (scalar, integer) - Half-precision to 64-bit variant FEAT FP16
1 0 11 1 001 FCVTZU (scalar, integer) - Half-precision to 64-bit variant FEAT FP16

C4-384

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Floating-point data-processing (1 source)

This section describes the encoding of the Floating-point data-processing (1 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
131 30 29 28/27 26 25 24|23 22 21 20| 15141312[1110 9 | 5 4 0|
[M[o]s]1 1 1 1 ofptype[1] opcode |1 0 0 0 0] Rn [Rd |

Decode fields

Instruction page Feature

M S ptype opcode

- - - IXXXXX Unallocated. -

- 1 - - Unallocated. -

0 0 00 000000 FMOV (register) - Single-precision variant -

0 0 00 000001 FABS (scalar) - Single-precision variant -

0 0 00 000010 FNEG (scalar) - Single-precision variant -

0 0 00 000011 FSQRT (scalar) - Single-precision variant -

0 o 00 000100 Unallocated. -

0 0 00 000101 FCVT - Single-precision to double-precision variant -

0 o 00 000110 Unallocated. -

0 0 00 000111 FCVT - Single-precision to half-precision variant -

0 0 00 001000 FRINTN (scalar) - Single-precision variant -

0 0 00 001001 FRINTP (scalar) - Single-precision variant -

0 o 00 001010 FRINTM (scalar) - Single-precision variant -

0 0 00 001011 FRINTZ (scalar) - Single-precision variant -

0 o 00 001100 FRINTA (scalar) - Single-precision variant -

0 0 00 001101 Unallocated. -

0 0 00 001110 FRINTX (scalar) - Single-precision variant -

0 0 00 001111 FRINTI (scalar) - Single-precision variant -

0 o 00 010000 FRINT32Z (scalar) - Single-precision variant FEAT FRINTTS
0 0 00 010001 FRINT32X (scalar) - Single-precision variant FEAT FRINTTS
0 0 00 010010 FRINT64Z (scalar) - Single-precision variant FEAT FRINTTS
0 0 00 010011 FRINT64X (scalar) - Single-precision variant FEAT FRINTTS
0 0 00 0101xx Unallocated. -

0 0 00 011xxx Unallocated. -

e o o1 000000 FMOV (register) - Double-precision variant -

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-385

1D072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
M S ptype opcode
0 0 o1 000001 FABS (scalar) - Double-precision variant -
0 0 o1 000010 FNEG (scalar) - Double-precision variant -
e o o1 000011 FSQRT (scalar) - Double-precision variant -
e o o1 000100 FCVT - Double-precision to single-precision variant -
0 o o1 000101 Unallocated. -
0 0 01 000110 BFCVT FEAT BF16
0 0 o1 000111 FCVT - Double-precision to half-precision variant -
0 0 o1 001000 FRINTN (scalar) - Double-precision variant -
e o o1 001001 FRINTP (scalar) - Double-precision variant -
e o o1 001010 FRINTM (scalar) - Double-precision variant -
0 0 o1 001011 FRINTZ (scalar) - Double-precision variant -
0 0 o1 001100 FRINTA (scalar) - Double-precision variant -
0 0 o1 001101 Unallocated. -
0 0 o1 001110 FRINTX (scalar) - Double-precision variant -
e o o1 001111 FRINTI (scalar) - Double-precision variant -
e o o1 010000 FRINT32Z (scalar) - Double-precision variant FEAT FRINTTS
0 o o1 010001 FRINT32X (scalar) - Double-precision variant FEAT FRINTTS
0 0 o1 010010 FRINT64Z (scalar) - Double-precision variant FEAT FRINTTS
0 0 o1 010011 FRINT64X (scalar) - Double-precision variant FEAT FRINTTS
0 0 o1 0101xx Unallocated. -
e o o1 011xxx Unallocated. -
0 o 10 OXXXXX Unallocated. -
0 0 11 000000 FMOV (register) - Half-precision variant FEAT FP16
0 0 11 000001 FABS (scalar) - Half-precision variant FEAT FP16
0 0 11 000010 FNEG (scalar) - Half-precision variant FEAT FP16
0 0 11 000011 FSQRT (scalar) - Half-precision variant FEAT FP16
0 0 11 000100 FCVT - Half-precision to single-precision variant -
0 o 11 000101 FCVT - Half-precision to double-precision variant -
0 o 11 00011x Unallocated. -
0 0 11 001000 FRINTN (scalar) - Half-precision variant FEAT FP16
0 0 11 001001 FRINTP (scalar) - Half-precision variant FEAT FP16
0 0 11 001010 FRINTM (scalar) - Half-precision variant FEAT FP16

C4-386

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

ARM DDI 0487G.b
ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

M S ptype opcode

0 0 11 001011 FRINTZ (scalar) - Half-precision variant FEAT FP16
0 0 1 001100 FRINTA (scalar) - Half-precision variant FEAT FP16
e o 11 001101 Unallocated. -

0 0 11 001110 FRINTX (scalar) - Half-precision variant FEAT FP16
0 o 11 001111 FRINTI (scalar) - Half-precision variant FEAT FPl16
0 0 11 Q1xxxx Unallocated. -

1 - - - Unallocated. -

Floating-point compare

This section describes the encoding of the Floating-point compare instruction class. The encodings in this section
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

31 30 29 28|27 26 25 24(23 22 21 20| 161514 1312[1110 9 | 5 4| 0
[MJo[s]1 1 1 1 o]ptype[1] Rm [op [1 0 0 O] Rn | opcode2 |

Decode fields
Instruction page Feature
M S ptype op opcode2

- - - - XXXx1 Unallocated. -
- - - - xxx1x Unallocated. -
- - - - XX1xx Unallocated. -
- - - x1 - Unallocated. -
- - - Ix - Unallocated. -
_ _ 10 - - Unallocated. -
- 1 - - - Unallocated. -
0 0 00 00 00000 FCMP -
0 0 00 00 01000 FCMP -
0 0 00 00 10000 FCMPE -
0 0 00 00 11000 FCMPE -
0 0 01 00 00000 FCMP -
0 0 01 00 01000 FCMP -
0 0 o1 00 10000 FCMPE -
0 0 01 00 11000 FCMPE -
0 0 11 00 00000 FCMP FEAT FP16
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-387

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
M S ptype op opcode2
0 0 11 00 01000 FCMP FEAT FP16
0 0 11 00 10000 FCMPE FEAT FP16
0 0 11 00 11000 FCMPE FEAT FP16
1 - - - - Unallocated. -

Floating-point immediate

This section describes the encoding of the Floating-point immediate instruction class. The encodings
are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

in this section

|31 30 29 28(27 26 25 24(23 22 21 20| | 1312[1110 9 | 5 4| 0]
[M[o]s]1 1 1 1 olptype] 1] imm8 [1 0 0] imm5s | Rd |

Decode fields

Instruction page Feature

M S ptype imm5

- - - xxxx1 Unallocated. -

- - - xxx1x Unallocated. -

- - - xx1xx Unallocated. -

- - - x1xxx Unallocated. -

- - - Ixxxx Unallocated. -

- - 1o - Unallocated. -

- 1 - - Unallocated. -

e 0 00 00000 FMOV (scalar, immediate) - Single-precision variant -

0 0 o1 00000 FMOV (scalar, immediate) - Double-precision variant -

0 0 11 00000 FMOV (scalar, immediate) - Half-precision variant FEAT FP16

1 - - - Unallocated. -

Floating-point conditional compare

This section describes the encoding of the Floating-point conditional compare instruction class. The encodings in
this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

C4-388

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b

ID072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

|31 30 29 28(27 26 25 24/23 22 21 20| 16]15 12]1110 9 | 5 4|3 0|
|M|0|S|1 111 0|ptype|1| Rm | cond |0 1| Rn |op| nzcv |
Decode fields
Instruction page Feature

M S ptype op

- - 10 - Unallocated. -
- 1 - - Unallocated. -
0 0 00 0 FCCMP - Single-precision variant -
0 0 00 1 FCCMPE - Single-precision variant -
0 0 o1 0 FCCMP - Double-precision variant -
0 0 o1 1 FCCMPE - Double-precision variant -
0 0 11 0 FCCMP - Half-precision variant FEAT FP16
0 o 11 1 FCCMPE - Half-precision variant FEAT FP16
1 - - - Unallocated. -

Floating-point data-processing (2 source)

This section describes the encoding of the Floating-point data-processing (2 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.

|31 30 29 28(27 26 25 24|23 22 21 20| 16/15 121110 9 | 5 4| 0]

[MJo[s]1 1 1 1 o]ptype[1] Rm | opcode [1 O] Rn | Rd |
Decode fields

Instruction page Feature
M S ptype opcode
- - - Ixx1 Unallocated. -
- - - 1x1x Unallocated. -
- - - 11xx Unallocated. -
- - 10 - Unallocated. -
- 1 - - Unallocated. -
0 0 00 0000 FMUL (scalar) - Single-precision variant -
0 0 00 0001 FDIV (scalar) - Single-precision variant -
0 0 00 0010 FADD (scalar) - Single-precision variant -
0 o 00 0011 FSUB (scalar) - Single-precision variant -
0 0 00 0100 FMAX (scalar) - Single-precision variant -
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-389

ID072021 Non-Confidential

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature

M S ptype opcode

0 0 00 0101 FMIN (scalar) - Single-precision variant -

0 0 00 0110 FMAXNM (scalar) - Single-precision variant -

0 0 00 0111 FMINNM (scalar) - Single-precision variant -

0 o 00 1000 FNMUL (scalar) - Single-precision variant -

0 0 01 0000 FMUL (scalar) - Double-precision variant -

0 0 o1 0001 FDIV (scalar) - Double-precision variant -

0 0 o1 0010 FADD (scalar) - Double-precision variant -

0 0 o1 0011 FSUB (scalar) - Double-precision variant -

6 o o1 0100 FMAX (scalar) - Double-precision variant -

0 0 o1 0101 FMIN (scalar) - Double-precision variant -

0 0 01 0110 FMAXNM (scalar) - Double-precision variant -

0 0 o1 0111 FMINNM (scalar) - Double-precision variant -

0 0 o1 1000 FNMUL (scalar) - Double-precision variant -

0 0 11 0000 FMUL (scalar) - Half-precision variant FEAT FP16
0 0 11 0001 FDIV (scalar) - Half-precision variant FEAT FP16
0 0 11 0010 FADD (scalar) - Half-precision variant FEAT FP16
0 0 11 0011 FSUB (scalar) - Half-precision variant FEAT FP16
0 0 11 0100 FMAX (scalar) - Half-precision variant FEAT FP16
0 0 11 0101 FMIN (scalar) - Half-precision variant FEAT FP16
0 0 11 0110 FMAXNM (scalar) - Half-precision variant FEAT FP16
0 0 11 0111 FMINNM (scalar) - Half-precision variant FEAT FP16
0 0 11 1000 FNMUL (scalar) - Half-precision variant FEAT FP16
1 - - - Unallocated. -

Floating-point conditional select

This section describes the encoding of the Floating-point conditional select instruction class. The encodings in this
section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on page C4-342.

C4-390 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

A64 Instruction Set Encoding
C4.1 A64 instruction set encoding

131 30 29 28/27 26 25 24|23 22 21 20| 16/15 121110 9 | 5 4| 0|
[(M[o]s]1 1 1 1 olptype]1] Rm | cond [1 1] Rn | Rd |

Decode fields

Instruction page Feature

M S ptype

- - 10 Unallocated. -

- 1 - Unallocated. -

0 0 00 FCSEL - Single-precision variant -

0 0 o1 FCSEL - Double-precision variant -

0 0 11 FCSEL - Half-precision variant FEAT FP16
1 - - Unallocated. -

Floating-point data-processing (3 source)

This section describes the encoding of the Floating-point data-processing (3 source) instruction class. The
encodings in this section are decoded from Data Processing -- Scalar Floating-Point and Advanced SIMD on

page C4-342.
|31 30 29 28|27 26 25 24|23 22 21 20| 16|15 14 | 109 | 5 4| 0|
[M[o]s]1 1 1 1 1]ptypelo] Rm o0 Ra | Rn | Rd |
Decode fields
Instruction page Feature
M S ptype o1 o0
_ - 10 - - Unallocated. -
- 1 - - - Unallocated. -
0 0 00 0 0 FMADD - Single-precision variant -
0 0 00 0 1 FMSUB - Single-precision variant -
0 0 00 1 0 FNMADD - Single-precision variant -
0 0 00 1 1 FNMSUB - Single-precision variant -
0 0 o1 0 0 FMADD - Double-precision variant -
0 0 o1 0 1 FMSUB - Double-precision variant -
0 0 o1 1 0 FNMADD - Double-precision variant -
0 0 o1 1 1 FNMSUB - Double-precision variant -
0 0 11 0 0 FMADD - Half-precision variant FEAT FP16
0 0 11 0 1 FMSUB - Half-precision variant FEAT FP16
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C4-391

ID072021 Non-Confidential

A64 Instruction Set Encoding

C4.1 A64 instruction set encoding

Decode fields

Instruction page Feature
M S ptype o1 o0
0 0 11 1 0 FNMADD - Half-precision variant FEAT FP16
0 0 11 1 1 FNMSUB - Half-precision variant FEAT FP16
1 - - - - Unallocated.

C4-392

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

ARM DDI 0487G.b
ID072021

Chapter C5

The A64 System Instruction Class

This chapter describes the A64 System instruction class, and the System instruction class encoding space, that is a
subset of the System registers encoding space. It contains the following sections:

The System instruction class encoding space on page C5-394.
Special-purpose registers on page C5-408.

A64 System instructions for cache maintenance on page C5-506.
A64 System instructions for address translation on page C5-567.
A64 System instructions for TLB maintenance on page C5-592.
A64 System instructions for prediction restriction on page C5-860.

See General information about the A64 instruction descriptions on page C2-211 for information about entries used
in the instruction encoding descriptions.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.
Non-Confidential

C5-393

The A64 System Instruction Class
C5.1 The System instruction class encoding space

C5.1 The System instruction class encoding space

Part of the A64 instruction encoding space is assigned to instructions that access the System register encoding space.
These instructions provide:

. Access to System registers, including the debug registers, that provide system control, and system status
information.

. Access to Special-purpose registers such as SPSR_ELx, ELR ELx, and the equivalent fields of the Process

State.
. The cache and TLB maintenance instructions and address translation instructions.
. Barriers and the CLREX instruction.
. Architectural hint instructions.

This section describes the general model for accessing this functionality.

Note

. See Fixed values in AArch64 instruction and System register descriptions on page C2-211 for information
about abbreviations used in the System instruction descriptions.

. In AArch32 state much of this functionality is provided through the System register interface described in
The AArch32 System register interface on page G1-6109. In AArch64 state, the parameters used to
characterize the System register encoding space are {op@, opl, CRn, CRm, op2}. These are based on the
parameters that characterize the AArch32 System register encoding space, which reflect the original
implementation of these registers, as described in Background to the System register interface on
page G1-6110. In Armv8, there is no particular significance to the naming of these parameters, and no
functional distinction between the opn parameters and the CRx parameters.

Principles of the System instruction class encoding on page C5-394 describes some general properties of these
encodings. System instruction class encoding overview on page C5-395 then describes the top-level encoding of
these instructions, and the following sections then describe the next level of the encoding hierarchy of System
instructions and Special-purpose registers:

. op0==0b00, architectural hints, barriers and CLREX, and PSTATE access on page C5-396.
. op0==0b01, cache maintenance, TLB maintenance, and address translation instructions on page C5-399.

. op0==0b11, Moves to and from Special-purpose registers on page C5-405.

For the description of the next level of encoding hierarchy of System registers, see:

. op0==0b10, Moves to and from debug and trace System registers on page D12-3021.

. op0==0b11, Moves to and from non-debug System registers, Special-purpose registers on page D12-3023.
. Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038.

C5.11 Principles of the System instruction class encoding

In Armv8, an encoding in the System instruction space is identified by a set of arguments, {op@, op1, CRn, CRm, op2}.
These form an encoding hierarchy, where:

op@ Defines the top-level division of the encoding space, see System instruction class encoding overview
on page C5-395.

opl Identifies the lowest Exception level at which the encoding is accessible, as follows:
Accessible at EL0 opl has the value 3.

Accessible at EL1 op1 has the value 0, 1, or 2. The value is the same as the opl value used to
access the equivalent AArch32 register.

Accessible at Secure EL1
opl has the value 7.

C5-394 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Accessible at EL2 opl has the value 4 or 5. The value 5 is used for the EL12 encodings that
access EL1 System registers used when FEAT VHE is implemented and
HCR _EL2.E2H is 1.

Accessible at EL3 opl has the value 6.

Arm strongly recommends that implementers adopt this use of opl when using the IMPLEMENTATION DEFINED
regions of the encoding space described in Reserved encodings for IMPLEMENTATION DEFINED registers on
page D12-3038.

C5.1.2 System instruction class encoding overview

The encoding of the System instruction class describes each instruction as being either:
. A transfer to a System register. This is a System instruction with the semantics of a write.
. A transfer from a System register. This is a System instruction with the semantics of a read.

A System instruction that initiates an operation operates as if it was making a transfer to a register.

In the AArch64 instruction set, the decode structure for the System instruction class is:

3130292827 262524232221201918 1615 12 11 87 54 0
110101010 0[L[op0[opt CRn CRm op2 Rt

The value of L indicates the transfer direction:
0 Transfer to System register.
1 Transfer from System register.

The op0 field is the top level encoding of the System instruction type. Its possible values are:

0b0o These encodings provide:
. Instructions with an immediate field for accessing PSTATE, the current PE state.
. The architectural hint instructions.
. Barriers and the CLREX instruction.

For more information about these encodings, see op0==0b00, architectural hints, barriers and
CLREX, and PSTATE access on page C5-396.

0b0o1 These encodings provide the cache maintenance, TLB maintenance, and address translation
instructions.

Note

These are equivalent to operations in the AArch32 (coproc==0b1111) encoding space.

For more information, see op0==0b01, cache maintenance, TLB maintenance, and address
translation instructions on page C5-399.

0b10 These encodings provide moves to and from:
. Legacy AArch32 System registers for execution environments, to provide access to these
registers from higher Exception levels that are using AArch64.
. Debug and trace registers.
Note

These are equivalent to the registers in the AArch32 (coproc==0b1110) encoding space.

For more information, see op0==0b10, Moves to and from debug and trace System registers on
page D12-3021.

0b11l These encodings provide:

. Moves to and from Non-debug System registers. The accessed registers provide system
control, and system status information.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-395
ID072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space

C5.1.3

Note
The accessed registers are equivalent to the registers in the AArch32 (coproc==0b1111)
encoding space.

. Access to Special-purpose registers.

For more information, see Instructions for accessing Special-purpose registers on page C5-405 and
Instructions for accessing non-debug System registers on page D12-3023.

UNDEFINED behaviors
In the System register instruction encoding space, the following principles apply:
. All unallocated encodings are treated as UNDEFINED.

. All encodings with L==1 and op0==0b0x are undefined, except for encodings in the area reserved for
implementation defined use, see Reserved encoding space for IMPLEMENTATION DEFINED instructions
on page C5-404.

For registers and operations that are accessible from a particular Exception level, any attempt to access those
registers from a lower Exception level is UNDEFINED.

If a particular Exception level:

. Defines a register to be RO, then any attempt to write to that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==0 is UNDEFINED.

. Defines a register to be WO, then any attempt to read from that register, at that Exception level, is UNDEFINED.
This means that any access to that register with L==1 is UNDEFINED.

For IMPLEMENTATION DEFINED encoding spaces, the treatment of the encodings is IMPLEMENTATION DEFINED, but
see the recommendation in Principles of the System instruction class encoding on page C5-394.

0p0==0b00, architectural hints, barriers and CLREX, and PSTATE access

The different groups of System register instructions with op@==00b00:
. Are identified by the value of CRn.
. Are always encoded with a value of 0b11111 in the Rt field.

The encoding of these instructions is:

3130292827262524232221201918 1615 12 11 87 54 0
110101010 0[L[0 O] opt CRn CRm op2 (11111

op0 Rt

The encoding of the CRn field is as follows:

0b0010 See Architectural hint instructions on page C5-396.

0b0011 See Barriers and CLREX on page C5-397.

0b0100 See Instructions for accessing the PSTATE fields on page C5-398.

Architectural hint instructions
Within the op@==0b00 encodings, the architectural hint instructions are identified by CRn having the value 0b0010. The
encoding of these instructions is:

3130292827 262524232221201918 1615 12 11 5 4 0
110101010 o0]ofoofo1 10010 Op<6:0> [1 1111

op0 op1 CRn CRm op2 Rt

The value of op<6:0>, formed by concatenating the CRm and op2 fields, determines the hint instruction as follows:
00000000 NOP instruction.

C5-396

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

0b0000001 YIELD instruction.

0b0000010 WFE instruction.

00000011 WFI instruction.

00000100 SEV instruction.

00000101 SEVL instruction.

0b0000110 DGH instruction.

0b0000111 XPACD, XPACI, XPACLRI instruction.

0b0001000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIA1716 variant.
0b0001010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIB1716 variant.
0b0001100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIA1716 variant.
0b0001110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIB1716 variant.
0b0010000 ESB instruction.

0b0010001 PSB CSYNC instruction.

0b0010010 TSB CSYNC instruction.

0b0010100 (CSDB instruction.

0b0011000 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIAZ variant.
0b0011001 PACIA, PACIA1716, PACIASP, PACIAZ, PACIZA instruction, PACIASP variant.
0b0011010 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBZ variant.
0b0011011 PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZB instruction, PACIBSP variant.
0b0011100 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIAZ variant.
0b0011101 AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIZA instruction, AUTIASP variant.
0b0011110 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBZ variant.
0b0011111 AUTIB, AUTIB1716, AUTIBSP, AUTIBZ, AUTIZB instruction, AUTIBSP variant.
0b0100xx0 BTI instruction.

These instructions are described in Chapter C6 464 Base Instruction Descriptions.

Note
. Instruction encodings with bits[4:0] not set to @b11111 are UNDEFINED.
. The operation of the A64 instructions for architectural hints are identical to the corresponding A32 and T32
instructions.

For more information about:
. The WFE, WFI, SEV, and SEVL instructions, see Mechanisms for entering a low-power state on page D1-2536.
. The YIELD instruction, see Software control features and ELO on page B1-122.

Barriers and CLREX

Within the op@==0b00 encodings, the barriers and CLREX instructions are identified by CRn having the value 0b@011.
The encoding of these instructions is:

3130292827262524232221201918 1615 12 11 87 54 0
110101010 o0f[ofoofo11[001 1] CRm op2 [1 1111
op0 op1 CRn Rt

The value of op2 determines the instruction, as follows.

0b0oo1 DSB instruction, Memory nXS barrier variant.
0b010 CLREX instruction.
0b100 DSB instruction, Memory barrier variant.
0b101 DMB instruction.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-397

ID072021

Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space

0b110 ISB instruction.
0b000, 0b011, 0b111 UNDEFINED.

These instructions are described in Chapter C6 464 Base Instruction Descriptions.

Note
. Instruction encodings with bits[4:0] not set to 0b11111 are UNDEFINED.
. The operation of the A64 instructions for barriers and CLREX are identical to the corresponding A32 and T32
instructions.

For more information about:
. The barrier instructions, see Memory barriers on page B2-146.
. The CLREX instruction, see Synchronization and semaphores on page B2-179.

Instructions for accessing the PSTATE fields

Within the op@==0b00 encodings, the instructions that can be used to modify PSTATE fields directly are identified
by CRn having the value 0b0100. The encoding of these instructions is:

3130292827 262524232221201918 1615 12 11 87 54 0
110101010 o0JoJoof opt [0 1 0 0] Imm4 op2 [1 1 1 11
op0 CRn CRm Rt

These instructions are:

CFINV ; Inverts the value of PSTATE.C

MSR DAIFSet, #Imm4 ; Used to set any or all of DAIF to 1

MSR DAIFCIr, #Imm4 ; Used to clear any or all of DAIF to @

MSR SPSel, #Imm4 ; Used to select the Stack Pointer, between SP_EL® and SP_ELx
MSR UAO, #Imm4 ; Used to set the value of PSTATE.UAO

MSR PAN, #Imm4 ; Used to set the value of PSTATE.PAN

MSR DIT, #Imm4 ; Used to set the value of PSTATE.DIT

MSR SSBS, #Imm4 ; Used to set the value of PSTATE.SSBS

MSR TCO, #Imm4 ; Used to set the value of PSTATE.TCO

The value of op2 selects the instruction form, which defines the constraints on the values of the opl and Imm4
arguments, as follows:

0p2==0b000 Selects the CFINV instruction.

0p2==0b011 Selects the MSR UAO instruction.

0p2==0b100 Selects the MSR PAN instruction.

0p2==0b101 Selects the MSR SPSel instruction.

0p2==0b001 Selects the MSR SSBS instruction.

0p2==0b010 Selects the MSR DIT instruction.

0p2==0b100 Selects the MSR TCO instruction.

op2==0b110 Selects the MSR DAIFSet instruction, that sets the specified PSTATE.{D, A, I, F} bits to 1.
op2==0b111 Selects the MSR DAIFClr instruction, that clears the specified PSTATE.{D, A, I, F} bits to 0.

All other combinations of opl and op2 are reserved, and the corresponding instructions are UNDEFINED.

Note
For PSTATE updates, instruction encodings with bits[4:0] not set to @b11111 are UNDEFINED.

Writes to PSTATE occur in program order without the need for additional synchronization. Changing
PSTATE.SPSel to use SP_ELO synchronizes any updates to SP_ELO0 that have been written by an MSR to SP_ELO,
without the need for additional synchronization.

C5-398

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

C5.1.4 op0==0b01, cache maintenance, TLB maintenance, and address translation instructions

The System instructions are encoded with op@==0b01. The different groups of System instructions are identified by
the values of CRn and CRm, except that some of this encoding space is reserved for IMPLEMENTATION DEFINED
functionality. The encoding of these instructions is:

3130292827262524232221201918 1615 12 11 87 54 0
110101010 0Jofo 1] opt CRn CRm op2 Xt
op0

The grouping of these instructions depending on the CRn and CRm fields is as follows:

CRn== The instruction group is determined by the value of CRm, as follows:
CRm=={1, 5} Instruction cache maintenance instructions.
See Cache maintenance instructions, and data cache zero operation on
page C5-399.
CRm==. Prediction restriction instructions.

See Prediction restriction instructions on page C5-400.

CRm== Data cache zero operation.

See Cache maintenance instructions, and data cache zero operation on

page C5-399.
CRm=={6, 10, 11, 12, 14}
Data cache maintenance instructions.

See Cache maintenance instructions, and data cache zero operation on
page C5-399.

CRm== See Address translation instructions on page C5-401.

CRn=={8,9} See TLB maintenance instructions on page C5-401.

CRn=={11, 15} See Reserved encoding space for IMPLEMENTATION DEFINED instructions on page C5-404.

Cache maintenance instructions, and data cache zero operation

Table C5-1 on page C5-399 lists the Cache maintenance instructions and their encodings. Instructions that take an
argument include Xt in the instruction syntax. For instructions that do not take an argument, the Xt field is encoded
as 0b11111. For these instructions, if the Xt field is not set to @b11111, it is CONSTRAINED UNPREDICTABLE whether:

. The instruction is UNDEFINED.
. The instruction behaves as if the Xt field is set to 0b11111.

Table C5-1 Cache maintenance instructions and data cache zero operation

Access instruction encoding

Instruction Notes
op0 op1 CRn CRm op2
IC IALLUIS 1 0 7 1 0 Accessible from EL1 or higher.
IC IALLU 5 0
ICIVAU, Xt 3 7 5 1 When SCTLR_EL1.UCI == 1, accessible from ELO or higher. Otherwise,
accessible from EL1 or higher.
ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-399

ID072021

Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-1 Cache maintenance instructions and data cache zero operation (continued)

Access instruction encoding

Instruction Notes
op0 op1 CRn CRm op2
DC IVAC, Xt 1 0 7 6 1 Accessible from EL1 or higher.
DCISW, Xt 2
DC CSW, Xt 10 2
DC CISW, Xt 14 2
DC CVAC, Xt 3 7 10 1 When SCTLR_EL1.UCI == 1, accessible from ELO or higher. Otherwise,
- accessible from EL1 or higher.
DC CVAU, Xt 11 1
DC CVAP, Xt 12 1
DC CIVAC, Xt 14 1
DC ZVA, Xt 1 3 7 4 1 When SCTLR_EL1.DZE == 1, accessible from ELO or higher. Otherwise,
accessible from EL1 or higher.
For more information about these instructions, see About cache maintenance in AArch64 state on page D4-2644 and
A64 Cache maintenance instructions on page D4-2648.
Prediction restriction instructions
Table C5-2 on page C5-400 lists the Prediction restriction instructions and their encodings. Instructions that take an
argument include Xt in the instruction syntax.
Table C5-2 Prediction restriction instructions
Prediction restriction encoding
Instruction Notes
op0 op1 CRn CRm op2
CFPRCTX, Xt 1 3 7 3 4 When FEAT SPECRES is implemented, accessible from ELO or higher.
CPPRCTX, Xt 5
DVP RCTX, Xt 7
For more information about these instructions, see Execution and data prediction restriction System instructions on
page D4-2663.
C5-400 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Address translation instructions

Table C5-3 on page C5-401 lists the Address translation instructions and their encodings. The syntax of the
instructions includes Xt, that provides the address to be translated.

Table C5-3 Address translation instructions

Access instruction encoding
Instruction Notes
op0 op1 CRn CRm op2

AT S1EIR, Xt 1 0 7 8 0 Accessible from EL1 or higher.
AT S1EIW, Xt 1

AT S1EOR, Xt 2

AT S1EOW, Xt 3

AT SIEIRP, Xt 9 0

AT SIEIWP, Xt 1

AT S1E2R, Xt 4 7 8 0 Accessible from EL2 or higher.
AT S1E2W, Xt 1

AT S12EIR, Xt 4

AT S12E1W, Xt 5

AT S12EOR, Xt 6

AT SI12E0W, Xt 7

AT S1E3R, Xt 6 7 8 0 Accessible only from EL3.

AT S1E3W, Xt 1

For more information about these instructions, see Address translation instructions on page D5-2735.

TLB maintenance instructions

Table C5-4 on page C5-402 lists the TLB maintenance instructions and their encodings. Instructions that take an
argument include Xt in the instruction syntax. For instructions that do not take an argument, the Xt field is encoded
as 0b11111. For these instructions, if the Xt field is not set to @b11111, it is CONSTRAINED UNPREDICTABLE whether:

. The instruction is UNDEFINED.
. The instruction behaves as if the Xt field is set to 0b11111.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-401
Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-4 TLB maintenance instructions

Access instruction encoding Notes
Instruction
op0 op1 CRn CRm op2

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, 1 0 8, 92 1 0 Accessible from EL1 or higher.
TLBI VAE1OS, TLBI VAE1OSNXS, Xt 1

TLBI ASIDE1OS, TLBI ASIDE1OSNXS, Xt 2

TLBI VAAE1OS, TLBI VAAEIOSNXS, Xt 3

TLBI VALE1OS, TLBI VALEIOSNXS, Xt 5

TLBI VAALE10S, TLBI VAALEIOSNXS, Xt 7

TLBI RVAELIS, TLBI RVAEIISNXS, Xt 2 1

TLBI RVAAEIIS, TLBI RVAAEIISNXS, Xt 3

TLBI RVALEIIS, TLBI RVALEIISNXS, Xt 5

TLBI RVAALEIIS, TLBI RVAALEIISNXS, Xt 7

TLBI VMALLELIS, TLBI VMALLE1ISNXS 3 0

TLBI VAELIS, TLBI VAEIISNXS, Xt 1

TLBI ASIDELIS, TLBI ASIDEIISNXS, Xt 2

TLBI VAAELIS, TLBI VAAEIISNXS, Xt 3

TLBI VALEIIS, TLBI VALEIISNXS, Xt 5

TLBI VAALEIIS, TLBI VAALEIISNXS, Xt 7

TLBI RVAE1OS, TLBI RVAEIOSNXS, Xt 5 1

TLBI RVAAE10S, TLBI RVAAEIOSNXS, Xt 3

TLBI RVALE10S, TLBI RVALE1OSNXS, Xt 5

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, Xt 7

TLBI RVAEIL, TLBI RVAEINXS, Xt 6 1

TLBI RVAAEI1, TLBI RVAAEINXS, Xt 3

TLBI RVALEI1, TLBI RVALEINXS, Xt 5

TLBI RVAALEI, TLBI RVAALEINXS, Xt 7

TLBI VMALLEI, TLBI VMALLEINXS 7 0

TLBI VAEIL, TLBI VAEINXS, Xt 1

C5-402 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-4 TLB maintenance instructions (continued)

Access instruction encoding Notes
Instruction
op0 op1 CRn CRm op2

TLBI ASIDEI, TLBI ASIDEINXS, Xt 1 0 8,9 7 2 Accessible from EL1 or higher.
TLBI VAAEIL, TLBI VAAEINXS, Xt 3

TLBI VALEIL, TLBI VALEINXS, Xt 5

TLBI VAALE1, TLBI VAALEINXS, Xt 7

TLBI IPAS2E1IS, TLBI IPAS2ETISNXS, Xt 4 8,9 0 1 Accessible from EL2 or higher.
TLBI RIPAS2EIIS, TLBI RIPAS2E1ISNXS, Xt 2

TLBI IPAS2LEIIS, TLBI IPAS2LEIISNXS, Xt 5

TLBI RIPAS2LELIS, TLBI RIPAS2LE1ISNXS, Xt 6

TLBI ALLE20S, TLBI ALLE20OSNXS 1 0

TLBI VAE20S, TLBI VAE20OSNXS, Xt 1
TLBIALLEIOS, TLBIALLEIOSNXS 4

TLBI VALE20S, TLBI VALE20OSNXS, Xt 5

TLBI VMALLSI12E10S, TLBI VMALLS12E10SNXS 6

TLBI RVAE2IS, TLBI RVAE2ISNXS, Xt 2 1

TLBI RVALE2IS, TLBI RVALE2ISNXS, Xt 5

TLBI ALLE2IS, TLBI ALLE2ISNXS 3 0

TLBI VAE2IS, TLBI VAE2ISNXS, Xt 1

TLBI ALLELIS, TLBI ALLEIISNXS 4

TLBI VALE2IS, TLBI VALE2ISNXS, Xt 5

TLBI VMALLSI2E1IS, TLBI VMALLSI12E1ISNXS 6

TLBI IPAS2E10S, TLBI IPAS2E1OSNXS, Xt 4 0

TLBI IPAS2EIL, TLBI IPAS2EINXS, Xt 1

TLBI RIPAS2E1, TLBI RIPAS2EINXS, Xt 2

TLBI RIPAS2E10S, TLBI RIPAS2E1OSNXS, Xt 3

TLBI IPAS2LE10S, TLBI IPAS2LE1IOSNXS, Xt 4
TLBIIPAS2LE1, TLBI IPAS2LEINXS, Xt 5

TLBI RIPAS2LEL, TLBI RIPAS2LEINXS, Xt 6

TLBI RIPAS2LE10S, TLBI RIPAS2LEIOSNXS, Xt 7

TLBI RVAE20S, TLBI RVAE20SNXS, Xt 5 1

TLBI RVALE20S, TLBI RVALE2OSNXS, Xt 5

TLBI RVAE2, TLBI RVAE2NXS, Xt 6 1

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-403

1D072021 Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-4 TLB maintenance instructions (continued)

Access instruction encoding Notes
Instruction
op0 op1 CRn CRm op2
TLBI RVALE2, TLBI RVALE2NXS, Xt 1 4 8,9 6 5 Accessible from EL2 or higher.
TLBI ALLE2, TLBI ALLE2NXS 7 0
TLBI VAE2, TLBI VAE2NXS, Xt 1
TLBIALLE1, TLBIALLEINXS 4
TLBI VALE2, TLBI VALE2NXS, Xt 5
TLBI VMALLS12E1, TLBI VMALLS12EINXS 6
TLBI ALLE3OS, TLBI ALLE3OSNXS 6 8,92 1 0 Accessible only from EL3.
TLBI VAE30S, TLBI VAE3OSNXS, Xt 1
TLBI VALE30S, TLBI VALE3OSNXS, Xt 5
TLBI RVAE3IS, TLBI RVAE3ISNXS, Xt 2 1
TLBI RVALE3IS, TLBI RVALE3ISNXS, Xt 5
TLBI ALLE3IS, TLBI ALLE3ISNXS 3 0
TLBI VAE3IS, TLBI VAE3ISNXS, Xt 1
TLBI VALE3IS, TLBI VALE3ISNXS, Xt 5
TLBI RVAE30S, TLBI RVAE30OSNXS, Xt 5 1
TLBI RVALE3OS, TLBI RVALE3OSNXS, Xt 5
TLBI RVAE3, TLBI RVAE3NXS, Xt 6 1
TLBI RVALE3, TLBI RVALE3NXS, Xt 5
TLBI ALLE3, TLBI ALLE3NXS 7 0
TLBI VAE3, TLBI VAE3NXS, Xt 1
TLBI VALE3, TLBI VALE3NXS, Xt 5

a. When FEAT XS is implemented, applies to the nXS variant of the TLB maintenance instruction.

For more information about these instructions, see TLB maintenance instructions on page D5-2819.

Reserved encoding space for IMPLEMENTATION DEFINED instructions

The A64 instruction set reserves the following encoding space for IMPLEMENTATION DEFINED instructions:

3130292827262524232221201918 1615 12 11 8 7 5 4 0
110101010 0JL]J0O 1] opt [1 x 1 1] CRm op2 Rt
op0 CRn
The value of L defines the use of Rt as follows:
0 Rt is an argument supplied to the instruction.
1 Rt is a result returned by the instruction.
C5-404 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

IMPLEMENTATION DEFINED instructions in this encoding space are accessed using the SYS and SYSL instructions, see
SYS on page C6-1482 and SYSL on page C6-1484.

See also Reserved encodings for IMPLEMENTATION DEFINED registers on page D12-3038.

C5.1.5 op0==0b11, Moves to and from Special-purpose registers

The instructions that move data to and from non-debug System registers are encoded with opd===0b11, except that
some of this encoding space is reserved for IMPLEMENTATION DEFINED functionality. The encoding of these
instructions is:

3130292827262524232221201918 16 15 12 11 87 54 0
1101010100[L[1 1] opt CRn CRm op2 | Rt
op0

Instructions for accessing Special-purpose registers

The value of CRn provides the next level of decode of these instructions. For Special-purpose registers, the value of
CRn is 4.

The A64 instructions for accessing Special-purpose registers are:

MSR <Special-purpose register>, Xt ; Write to Special-purpose register
MRS Xt, <Special-purpose register> ; Read from Special-purpose register

For these accesses, CRn has the value 4. The encoding for Special-purpose register accesses is:

3130292827262524232221201918 1615 12 11 87 54 0
110101010 0[L[1 1] opt [0 1 0 0] CRm op2 | Rt
op0 CRn

The full list of Special-purpose registers is in Table C5-5 on page C5-406. The characteristic of a Special-purpose
register is that all direct and indirect reads and writes to the register appear to occur in program order relative to
other instructions, without the need for any explicit synchronization.

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-405
Non-Confidential

The A64 System Instruction Class
C5.1 The System instruction class encoding space

Table C5-5 on page C5-406 lists the encodings for opl, CRm, and op2 fields for accesses to the Special-purpose
registers in AArch64.

Table C5-5 Special-purpose register accesses

Access instruction encoding
Register Notes
op0 op1 CRn CRm op2

SPSR_EL1 3 0 4 0 0 Accessible from EL1 or higher

ELR_ELI 1

SP_ELO 1 0 Accessible from EL1 or higher. If SP_ELO is the current stack pointer
then the access is UNDEFINED.

SPSel 2 0 Accessible from EL1 or higher.

CurrentEL 2 RO. Accessible from EL1 or higher.

PAN 3 Accessible from EL1 or higher.

UAO 4

NzZCV 3 4 2 0 Accessible from ELO or higher.

DAIF 1 Configurable whether accesses at ELO are permitted.

DIT 5 Accessible from ELO or higher.

SSBS 6

TCO 7

FPCR 4 0 Accessible from ELO or higher.

FPSR 1

DSPSR_ELO 5 0 Accessible only in Debug state, from ELO or higher.

DLR _ELO 1

SPSR_EL2 4 4 0 0 Accessible from EL2 or higher.

ELR _EL2 1

SP_EL1 1 0

SPSR irq 3 0

SPSR_abt 1

SPSR_und 2

SPSR_fiq 3

* ELI12 5 4 {0-15} {0-7} Reserved for EL2 aliases of EL1 Special-purpose registers, see
Table D5-49 on page D5-2792.

SPSR_EL3 3 6 4 0 0 Accessible from EL3 or higher.

ELR_EL3 1

SP_EL2 1 0

C5-406 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The A64 System Instruction Class
C5.1 The System instruction class encoding space

All direct and indirect reads and writes to Special-purpose registers appear to occur in program order relative to
other instructions.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-407
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

C5.2 Special-purpose registers

This section describes the following Special-purpose registers:

. CurrentEL, that holds PSTATE.EL, and that software can read to determine the current Exception level.
. DALIF, that holds the current PSTATE.{D, A, I, F} interrupt mask bits.

. DIT, that holds the PSTATE.DIT bit.

. ELR _ELLI, that holds the address to return to for an exception return from EL1.

. ELR_EL2, that holds the address to return to for an exception return from EL2.
. ELR_EL3, that holds the address to return to for an exception return from EL3.
. FPCR, that provides control of floating-point operation.

. FPSR, that provides floating-point status information.

. NZCV, that holds the PSTATE.{N, Z, C, V} condition flags.

. PAN, that holds the PSTATE.PAN state bit.

. SP_ELDO, that holds the stack pointer for ELO.

. SP_EL1, that holds the stack pointer for EL1.

. SP_EL2, that holds the stack pointer for EL2.

. SP_ELS3, that holds the stack pointer for EL3.

. SPSel, that holds PSTATE.SP, that at EL1 or higher selects the current SP.

. SPSR_abt, that holds process state on taking an exception to AArch32 Abort mode.
. SPSR_EL1, that holds process state on taking an exception to AArch64 EL1.

. SPSR_EL2, that holds process state on taking an exception to AArch64 EL2.

. SPSR_EL3, that holds process state on taking an exception to AArch64 EL3.

. SPSR_fiq, that holds process state on taking an exception to AArch32 FIQ mode.

. SPSR irq, that holds process state on taking an exception to AArch32 IRQ mode.

. SPSR_und, that holds process state on taking an exception to AArch32 Undefined mode.
. SSBS, that holds the PSTATE.SSBS bit.

. TCO, that holds the PSTATE.TCO bit.

. UAO, that holds the PSTATE.UAO bit.

The following registers are also Special-purpose registers:
. DLR_ELO, that holds the address to return to for a return from Debug state.
. DSPSR_ELO, that holds process state on entry to Debug state.

C5-408 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.2 Special-purpose registers

C5.21 CurrentEL, Current Exception Level

The CurrentEL characteristics are:

Purpose

Holds the current Exception level.
Configurations

There are no configuration notes.
Attributes

CurrentEL is a 64-bit register.

Field descriptions

63 32
RESO

31 4 3 2 1 0
.

RESO EL [RESO

Bits [63:4]
Reserved, RESO.
EL, bits [3:2]

Current Exception level. Possible values of this field are:

0b0o ELO.
0bo1 EL1.
0b10 EL2.
0b1l EL3.
When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of
0b10 in this field.

The reset behavior of this field is:

. This field resets to the highest implemented Exception level.

Bits [1:0]

Reserved, RESO.

Accessing CurrentEL

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CurrentEL

op0 op1 CRn CRm op2

Obll 0b000 0b0100 0bOO10 0bO10

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-409
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

return Zeros(60):'10"':Zeros(2);
else
return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then
return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then
return Zeros(60):PSTATE.EL:Zeros(2);

C5-410 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.2 Special-purpose registers

C5.2.2 DAIF, Interrupt Mask Bits

The DAIF characteristics are:

Purpose

Allows access to the interrupt mask bits.
Configurations

There are no configuration notes.
Attributes

DAIF is a 64-bit register.

Field descriptions

63 32
RESO

31 101 9 8 7 6 1 5 0
.

RESO D|IA|I RESO

|

Bits [63:10]

Reserved, RESO.

D, bit [9]
Process state D mask. The possible values of this bit are:

0bo Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are not masked.

obl Watchpoint, Breakpoint, and Software Step exceptions targeted at the current Exception
level are masked.

When the target Exception level of the debug exception is higher than the current Exception level,
the exception is not masked by this bit.

The reset behavior of this field is:

. On a Warm reset, this field resets to 1.

A, bit [8]
SError interrupt mask bit. The possible values of this bit are:
0bo Exception not masked.
obl Exception masked.
The reset behavior of this field is:

. On a Warm reset, this field resets to 1.

L, bit [7]
IRQ mask bit. The possible values of this bit are:
0bo Exception not masked.
0bl Exception masked.
The reset behavior of this field is:

. On a Warm reset, this field resets to 1.

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-411
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

F, bit [6]
FIQ mask bit. The possible values of this bit are:
0bo Exception not masked.
obl Exception masked
The reset behavior of this field is:
. On a Warm reset, this field resets to 1.
Bits [5:0]

Reserved, RESO.

Accessing DAIF

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DAIF

op0 op1 CRn CRm op2

Obll 0b0O11 0b0O100 0b0010 0bOO1

if PSTATE.EL == ELO then
if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '@' then
if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
else
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL1 then
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL2 then
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);
elsif PSTATE.EL == EL3 then
return Zeros(54):PSTATE.<D,A,I,F>:Zeros(6);

MSR DAIF, <Xt>

op0 op1 CRn CRm op2

Obll 0b0O11 0b0O100 0b0010 0bOO1

if PSTATE.EL == ELO then
if (EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') || SCTLR_EL1.UMA == '@' then
if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
AArch64.SystemAccessTrap(ELL, 0x18);
else
PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL1 then
PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL2 then
PSTATE.<D,A,I,F> = X[t]<9:6>;
elsif PSTATE.EL == EL3 then
PSTATE.<D,A,I,F> = X[t]<9:6>;

C5-412 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.2 Special-purpose registers

MSR DAIFSet, #<imm>

op0 op1 CRn op2

0b00 0b011 0b0100 0Obl10

MSR DAIFCIr, #<imm>

op0 op1 CRn op2

0b00 0b011 0b0100 Oblll

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-413
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

C5.2.3 DIT, Data Independent Timing

The DIT characteristics are:

Purpose
Allows access to the Data Independent Timing bit.

Configurations
This register is present only when FEAT DIT is implemented. Otherwise, direct accesses to DIT are
UNDEFINED.

Attributes

DIT is a 64-bit register.

Field descriptions

63 32
RESO

31 25,2423 0
RESO RESO

I—DIT

Bits [63:25]
Reserved, RESO.
DIT, bit [24]
Data Independent Timing.

0bo The architecture makes no statement about the timing properties of any instructions.
obl The architecture requires that:
. The timing of every load and store instruction is insensitive to the value of the

data being loaded or stored.

. For certain data processing instructions, the instruction takes a time which is
independent of:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.

. For certain data processing instructions, the response of the instruction to
asynchronous exceptions does not vary based on:

— The values of the data supplied in any of its registers.
— The values of the NZCV flags.

The data processing instructions affected by this bit are:

. All cryptographic instructions. These instructions are:

— AESD, AESE, AESIMC, AESMC, SHALC, SHALH, SHAIM, SHALP, SHAISU@, SHA1SUL, SHA256H,
SHA256H2, SHA2565U0, SHA2565U1, SHAS12H, SHA512H2, SHA5125U@, SHA512SUL, EOR3, RAXL,
XAR, BCAX, SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTWL, SM3PARTW2, SM4E, and

SM4EKEY.
. A subset of those instructions which use the general-purpose register file. These instructions
are:
— ADC, ADCS, ADD, ADDS, AND, ANDS, ASR, ASRV, BFC, BFI, BFM, BFXIL, BIC, BICS, CCMN, CCMP, CFINV,
CINC, CINV, CLS, CLZ, CMN, CMP, CNEG, CSEL, CSET, CSETM, CSINC, CSINV, CSNEG, EON, EOR, EXTR,
LSL, LSLV, LSR, LSRV, MADD, MNEG, MOV, MOVK, MOVN, MOVZ, MSUB, MUL, MVN, NEG, NEGS, NGC, NGCS,
C5-414 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential 1D072021

The A64 System Instruction Class
C5.2 Special-purpose registers

NOP, ORN, ORR, RBIT, RET, REV, REV16, REV32, REV64, RMIF, ROR, RORV, SBC, SBCS, SBFIZ, SBFM,
SBFX, SETF8, SETF16, SMADDL, SMNEGL, SMSUBL, SMULH, SMULL, SUB, SUBS, SXTB, SXTH, SXTW, TST,
UBFIZ, UBFM, UBFX, UMADDL, UMNEGL, UMSUBL, UMULH, UMULL, UXTB, and UXTH.

— If FEAT CRC32 is implemented, CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH,
CRC32CW, and CRC32CX.

. A subset of those instructions which use the SIMD&FP register file. These instructions are:

— ABS, ADD, ADDHN, ADDHN2, ADDP, ADDV, AND, BIC, BIF, BIT, BSL, CLS, CLZ, CMEQ, CMGE, CMGT, CMHI,
CMHS, CMLE, CMLT, CMTST, CNT, DUP, EOR, EXT, FCSEL, INS, MLA, MLS, MOV, MOVI, MUL, MVN, MVNT,
NEG, NOT, ORN, ORR, PMUL, PMULL, PMULL2, RADDHN, RADDHN2, RBIT, REVL6, REV32, RSHRN, RSHRN2,
RSUBHN, RSUBHN2, SABA, SABD, SABAL, SABAL2, SABDL, SABDL2, SADALP, SADDL, SADDL2, SADDLP,
SADDLY, SADDW, SADDW2, SHADD, SHL, SHLL, SHLL2, SHRN, SHRN2, SHSUB, SLI, SMAX, SMAXP, SMAXV,
SMIN, SMINP, SMINV, SMLAL, SMLAL2, SMLSL, SMLSL2, SMOV, SMULL, SMULL2, SRI, SSHL, SSHLL,
SSHLL2, SSHR, SSRA, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB, SUBHN, SUBHN2, SXTL, SXTL2, TBL, TBX,
TRNL, TRN2, UABA, UABAL, UABAL2, UABD, UABDL, UABDL2, UADALP, UADDL, UADDL2, UADDLP,
UADDLY, UADDW, UADDW2, UHADD, UHSUB, UMAX, UMAXP, UMAXV, UMIN, UMINP, UMINV, UMLAL, UMLAL2,
UMLSL, UMOV, UMLSL2, UMULL, UMULL2, USHL, USHLL, USHLL2, USHR, USRA, USUBL, USUBL2, USUBW,
USUBW2, UXTL, UXTL2, UZP1, UZP2, XTN, XTN2, ZIP1, and ZIP2.

Note

The architecture makes no statement about the timing properties when the PSTATE.DIT bit is not
set. However, it is likely that many of these instructions have timing that is invariant of the data in
many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer authentication instructions do not
have their timing dependent on the key value used in the pointer authentication in all cases,
regardless of the PSTATE.DIT bit.

The reset behavior of this field is:

. On a Warm reset, this field resets to 0.

Bits [23:0]

Reserved, RESO.

Accessing DIT

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, DIT

op0 op1 CRn CRm op2

0Obl1l 0bO11 0b0O100 0b0010 Obl01

if PSTATE.EL == ELO then

return Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL1 then

return Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL2 then

return Zeros(39):PSTATE.DIT:Zeros(24);
elsif PSTATE.EL == EL3 then

return Zeros(39):PSTATE.DIT:Zeros(24);

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-415
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

MSR DIT, <Xt>

op0 op1 CRn CRm op2

Obll 0b011 0b0100 0b0010 0b101

if PSTATE.EL == ELO then
PSTATE.DIT = X[t]<24>;
elsif PSTATE.EL == EL1 then
PSTATE.DIT = X[t]<24>;
elsif PSTATE.EL == EL2 then
PSTATE.DIT = X[t]<24>;
elsif PSTATE.EL == EL3 then
PSTATE.DIT = X[t]<24>;

MSR DIT, #<imm>

op0 op1 CRn op2

0b00 0b011 0b0100 0bO10

C5-416 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class

C5.24 ELR_EL1, Exception Link Register (EL1)

63

The ELR_EL1 characteristics are:

Purpose

When taking an exception to EL1, holds the address to return to.
Configurations

There are no configuration notes.
Attributes

ELR ELI is a 64-bit register.

Field descriptions

C5.2 Special-purpose registers

32
.

Return address

31
.

Return address

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

The reset behavior of this field is:

. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or
ELR EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL1

op0 op1

CRn CRm op2

Obll 0b000

0b0100 0b0000 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '@11' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NVI,NV> == '111' then
return NVMem[0x230];
else
return ELR_EL1;
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
return ELR_EL2;
else
return ELR_EL1;

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved.

Non-Confidential

C5-417

The A64 System Instruction Class
C5.2 Special-purpose registers

elsif PSTATE.EL == EL3 then
return ELR_EL1;

MSR ELR_EL1, <Xt>

op0 op1 CRn CRm op2

Obll 0b0OO0 0b0100 0bOOOO 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x230] = X[t];
else
ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
ELR_EL2 = X[t];
else
ELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
ELR_EL1 = X[t];

MRS <Xt>, ELR_EL12

op0 op1 CRn CRm op2

Obll 0bl101 0b0100 0b0OOOO 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
return NVMem[0x230];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
return ELR_EL1;
else
UNDEFINED;
elsif PSTATE.EL == EL3 then
if EL2Enabled() && 'ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return ELR_EL1;
else
UNDEFINED;

C5-418 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.2 Special-purpose registers

MSR ELR_EL12, <Xt>

op0 op1 CRn CRm op2

Obll 0bl101 0b0100 0b0OOOO 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
NVMem[0x230] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
ELR_EL1 = X[t];
else
UNDEFINED;
elsif PSTATE.EL == EL3 then
if EL2Enabled() && !'ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
ELR_EL1 = X[t];
else
UNDEFINED;

MRS <Xt>, ELR_EL2

op0 op1 CRn CRm op2

Obll 0b100 0b0100 0b000O 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
return ELR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL2 then
return ELR_EL2;
elsif PSTATE.EL == EL3 then
return ELR_EL2;

MSR ELR_EL2, <Xt>

op0 op1 CRn CRm op2

Obll 0b100 0b0100 0b0OOOO 0b0OO1

if PSTATE.EL == EL@ then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
ELR_ELL = X[t];

ARM DDI 0487G.b
ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-419
Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL2 then
ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
ELR_EL2 = X[t];

C5-420 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

C5.2.5

The A64 System Instruction Class
C5.2 Special-purpose registers

ELR_EL2, Exception Link Register (EL2)

63

The ELR_EL2 characteristics are:

Purpose
When taking an exception to EL2, holds the address to return to.
Configurations
AArch64 System register ELR EL2 bits [31:0] are architecturally mapped to AArch32 System
register ELR hyp[31:0].
This register has no effect if EL2 is not enabled in the current Security state.
Attributes

ELR_EL2 is a 64-bit register.

Field descriptions

32
.

Return address

31
.

Return address

Bits [63:0]
Return address.
An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from ELO, EL1, or EL2 to EL3
and AArch64 execution, the upper 32-bits of ELR _EL2 are either set to 0 or hold the same value
that they did before AArch32 execution. Which option is adopted is determined by an
implementation, and might vary dynamically within an implementation. Correspondingly software
must regard the value as being an UNKNOWN choice between the two values.

The reset behavior of this field is:

. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or
ELR ELL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL2

op0 op1 CRn CRm op2

Obll 0b100 0b0100 0b00OO 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
return ELR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

ARM DDI 0487G.b

ID072021

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-421
Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

else
UNDEFINED;
elsif PSTATE.EL == EL2 then
return ELR_EL2;
elsif PSTATE.EL == EL3 then
return ELR_EL2;

MSR ELR_EL2, <Xt>

op0 op1 CRn CRm op2

Obll 0b100 0b0100 0bOOOO 0bOO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
ELR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);
else
UNDEFINED;
elsif PSTATE.EL == EL2 then
ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then
ELR_EL2 = X[t];

MRS <Xt>, ELR_EL1

op0 op1 CRn CRm op2

Obll 0b000 0b0100 0b0OOOO 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == 'Q11' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x230];
else
return ELR_EL1;
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
return ELR_EL2;
else
return ELR_EL1;
elsif PSTATE.EL == EL3 then
return ELR_EL1;

C5-422 Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b
Non-Confidential 1D072021

The A64 System Instruction Class
C5.2 Special-purpose registers

MSR ELR_EL1, <Xt>

op0 op1 CRn CRm op2

Obll 0b000 0b0100 0b0OOOO 0b0OO1

if PSTATE.EL == ELO then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x230] = X[t];
else
ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then
ELR_EL2 = X[t];
else
ELR_EL1 = X[t];
elsif PSTATE.EL == EL3 then
ELR_EL1 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-423
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

C5.2.6

ELR_EL3, Exception Link Register (EL3)

63

The ELR_EL3 characteristics are:

Purpose

When taking an exception to EL3, holds the address to return to.

Configurations

This register is present only when EL3 is implemented. Otherwise, direct accesses to ELR _EL3 are

UNDEFINED.

Attributes
ELR EL3 is a 64-bit register.

Field descriptions

32
.

Return address

31

Return address

Bits [63:0]
Return address.
An exception return from EL3 using AArch64 makes ELR_EL3 become UNKNOWN.

The reset behavior of this field is:

. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing ELR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ELR_EL3

op0 op1 CRn CRm

op2

Obll 0b110 0b0100 0bOO0OO

0b001

if PSTATE.EL == ELO then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ELR_EL3;

C5-424

Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. ARM DDI 0487G.b

Non-Confidential

ID072021

The A64 System Instruction Class
C5.2 Special-purpose registers

MSR ELR_EL3, <Xt>

op0 op1 CRn CRm op2

Obll 0bl110 0b0100 0b00OO 0b0OO1

if PSTATE.EL == EL@ then

UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ELR_EL3 = X[t];

ARM DDI 0487G.b Copyright © 2013-2021 Arm Limited or its affiliates. All rights reserved. C5-425
ID072021 Non-Confidential

The A64 System Instruction Class
C5.2 Special-purpose registers

C5.2.7 FPCR, Floating-point Control Register

63

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

Configurations

Attributes

AArch64 System register FPCR bits [26:15] are architecturally mapped to AArch32 System register
FPSCR[26:15].

AArch64 System register FPCR bits [12:8] are architecturally mapped to AArch32 System register
FPSCR[12:8].

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

FPCR is a 64-bit register.

Field descriptions

32
.

RESO

31
.

2712625

24123 22321 20,1918 16115714 1312,;11,10; 9 | 8 7 3 2 1 0

RESO DN

FZ Len RESO RESO AH

AHPJ J J 7 L LIOE NEPJ LFIZ
RMode DZE

Bits [63:27]

AHP, bit [26]

DN, bit [25]

Stride OFE
F716 UFE
IDE IXE

Reserved, RESO.

Alternative half-precision control bit.
0bo IEEE half-precision format selected.
obl Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point
formats.

The data-processing instructions added as part of the FEAT FP16 extension always use the IEEE
half-precision format, and ignore the value of this bit.

The reset behavior of this field is:

. On a Warm reset, this field resets to an architecturally UNKNOWN value.

Default NaN use for NaN propagation.
0bo NaN operands propagate through to the ou