
 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 1 of 10 Revision date: 8-Nov-01

OVERVIEW
This application note demonstrates programming and simulation of the on-chip CAN interface of
the Atmel WM T89C51CC01. The T89C51CC01 integrates a full CAN controller that can be
programmed and tested using the Keil 8051 development tools.

This application note provides sample source code that can be compiled using the Keil C51
compiler. To test the program you may use the µVision2 debugger/simulator that is part of the
Keil DK51 or PK51 package. Even the Keil PK51 Evaluation Version that is available at
www.keil.com can be used, since the program of this sample CAN application fits into the
limitations of the evaluation version. You may adapt the sample CAN application and re-use it
for your own programs.

This application note gives you a detailed insight into the usage of the on-chip CAN controller.
The sample CAN application uses several different methods to transmit and receive CAN
objects:

• Simple send and receive routines that use status polling.

• Interrupt driven send and receive routines.

• Request remote frames and automatically reply to remote frames.

The CAN (Controller Area Network) is a serial bus originally developed for use in automobiles.
It is finding additional applications in other areas such as factory automation. The physical layer
is usually a differential twisted wire pair. This application note assumes some familiarity with
CAN and its associated terminology. Introduction documents on CAN can be accessed through
links on the Keil web site (www.keil.com/can).

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 2 of 10 Revision date: 8-Nov-01

HARDWARE
The sample CAN application can be executed on a single chip device that uses only a few
external hardware components. This single chip hardware is shown in the schematic below.

The sample CAN application uses the hardware components as follows:

• The CAN connector is used to connect the board to a CAN bus.

• The push buttons S1 and S2 trigger the outgoing CAN messages.

• The two LEDs signal the status of one of the incoming CAN messages.

• The analog inputs provide input for the remote frames.

• The RS232 connector is used to output text messages.

• The switch S5 configures the CAN ID’s so that two identical boards can be connected
together.

The functions are described in detail under “Re-use of the sample CAN application” on page 4.

If you do not want to create such a system, you may use the µVision2 simulator to test the sample
CAN application without real hardware.

Another alternative is to use pre-build boards, like the PHYTEC PhyCORE T89C51CC01. This
standard hardware provides all components needed for running the sample CAN application.
Compared to single chip hardware shown before, you need a few software modifications since
LEDs and switches are connected to memory mapped I/O ports rather than direct 8051 Port I/O
lines.

The sample CAN application that we are supplying, is configured for the PHYTEC PhyCORE
T89C51CC01.

The picture below shows the PHYTEC PhyCORE T89C51CC01 board. To provide input for
the A/D converter we have connected four photo transistors to the A/D inputs.

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 3 of 10 Revision date: 8-Nov-01

CAN Bus
Interface

RS232
Interface

Atmel W&M
89C51CC01
with
on-chip CAN

Photo
Transistors
connected to
A/D inputs 0 - 3

Push Buttons S1 & S2
DIP Switch S5; both
accessed via memory
mapped I/O spaced.

LEDs D1 & D2;
accessed via
memory mapped
I/O space.

To run the sample CAN application you may use two identical hardware boards that are
connected via CAN Bus. For text output, each hardware board might be connected to a PC with
terminal emulation or a real terminal. The complete hardware is shown below:

 CAN Bus

RS232 RS232

1st PHYTEC PhyCORE Board 2nd PHYTEC PhyCORE Board

 Terminal Terminal

T89C51
CC01

T89C51
CC01

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 4 of 10 Revision date: 8-Nov-01

USING THE SOFTWARE
The push buttons S1 and S2 trigger outgoing CAN messages. Any status change of these buttons
is transmitted via CAN object 1 to the opposite CAN board. In addition, the push buttons are
used to generate additional messages that are listed in the table below:

Button Description

Press S1 The application will send a long text string over channel 3 in interrupt mode.

Press S2 The application sends a remote frame request over channel 5.

Channel 1sends the status of the switches S1 & S2 in polling mode.

The two LEDs signal the status of the push buttons S1 and S2 of the opposite CAN board.

The A/D input values AIN0-AIN3 are captured and stored to the automatic reply message object
for the remote frame mode. If button S2 on the opposite controller is pressed, this data is
requested.

The RS232 connector is used to output text messages. Text messages are the text strings, that are
send when pressing S1or S2. The switch S2 displays the A/D values.

The switch S5 configures the CAN ID’s so that two identical boards can be connected together.
If the DIP switch is set to a logical 1, the CAN initialization routine in CAN_DRV.C inverts the
lowest bit of all CAN message object ID’s.

SOURCE FILES
The following table gives you an overview of the files that are included in this application note:

You can build the project within µVison2 with the following commands:

• Open the project file CAN_CC01.UV2 with Project – Open Project.

Filename Description

CAN_CC01.UV2
CAN_CC01.OPT

µVision2 project file that allows you to built and test the sample CAN application.

MAIN.C Includes the main routine and calls the CAN interface routines.

CAN_DRV.C Includes the CAN interface routines and configures the message objects including the CAN ID’s for
the user application.

CAN_DRV.H Extern definitions for the CAN interface routines.

DEBUGGER.INI Debug-Script that defines functions for I/O Simulation.

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 5 of 10 Revision date: 8-Nov-01

 Translate and link the project with Project – Build Target. This generates object files,
listing files, and the executable program in absolute and Intel HEX format.

PROGRAMMING OF THE ON-CHIP FLASH ROM
The executable HEX file can be programmed into the on-chip flash memory of the T89C51CC01
with the FLIP flash tool. The FLIP flash tool is available along with documentation from the
Atmel W&M website (www.atmel-wm.com). The setup of the T89C51CC01 for flash
programming is described in the T89C51CC01 data sheet. The flash programming on the Phytec
board is enabled with Jumper JP2 in position 2+4.

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 6 of 10 Revision date: 8-Nov-01

SIMULATION WITH THE µVISION2 DEBUGGER
 Start the µVision2 simulator with Debug – Start/Stop Debug Session.

• µVision2 simulates the behavior of all on-chip peripherals. In case of the Atmel W&M
T89C51CC01, also the CAN controller is fully simulated. You can review the status by
using the Peripherals menu items.

• Peripherals – CAN opens the CAN dialog, that shows the CAN configuration, the CAN
channels, and the CAN messages that are transmitted via the CAN network.

 The project in this application note includes a Debugger.INI file. This file defines
µVision2 debug functions that provide simulation for CAN message I/O. The Debugger.INI
file is specified under Options for Target – Debug – Initialization File and therefore
automatically loaded at startup of the µVision2 simulator. This file defines also Toolbox
buttons that allow quick access to the debug functions. The Toolbox opens with View –
Toolbox and provides the following buttons:

Toolbox Button Description

Press S1 Simulates a pressed button S1 of the PHYTEC board

Press S2 Simulates a pressed button S2 of the PHYTEC board

Press Both Simulates two pressed buttons S1 and S2 of the PHYTEC board.

Send Switches = ON Simulate an incoming “Switches on” status message, which is send with CAN ID 101h;

Send Switches = OFF Simulate an incoming “Switches off” status message, which is send with CAN ID 101h;
Send Remote Frame Generates the reply frame for the remote frame, requested by ID 104h

Send 40-Byte String Send a 5*8 Bytes long string, which is received by buffered channel 3/4 in interrupt mode

Each toolbox button invokes a debug function that is defined in the Debugger.INI file. Details of the
 CAN simulation with µVision2 can be found in the Application Note 147, CAN Simulation in µVision2.

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 7 of 10 Revision date: 8-Nov-01

 When you execute the program with Debug – Go you can review the CAN traffic in the
CAN communication dialog page. By using the Toolbox buttons described above you can
generate CAN messages.

• You may use all features of the µVision2 debugger. You may single-step through the code
or set breakpoints. You can use the memory windows, the performance analyzer, the code
coverage feature, or just view some variables.

The content of the file DEBUGGER.INI is listed below. The functions of this file are available
during debugging. This .INI file is automatically loaded at start of a debug session since it is
specified under Options for Target – Debug.

/* ========================DEBUGGER.INI=============================
* Contains debug functions for the sample CAN project (App_Nt 165).
*
* - PressSwitch enables simulation of buttons on memory mapped I/O
* - CANMessage prints message information of send messages
* - SendInfo sends 8Byte messages on a arbitrary ID
* - SimTraffic simulates sending of messages in a short interval
*
* ===
*/

/*
* Simulate a 0.1 Second Click on Switch I/O Port (for S1 & S2)
*/
SIGNAL void PressSwitch (unsigned char v) {
unsigned char cx;

cx = _rbyte (X:0xFFA0); // get current value on I/O Port
_wbyte (X:0xFFA0, cx | v); // set I/O Port value for switch v
swatch (0.1); // press switch for 0.1 seconds
cx = _rbyte (X:0xFFA0); // get current value on I/O Port
_wbyte (X:0xFFA0, cx & (~v)); // reset I/O Port value switch v

}

/*
* Define Buttons for the toolbox with presets for PressSwitch
*/
define button "Press S1", "PressSwitch (1)"
define button "Press S2", "PressSwitch (2)"
define button "Press Both", "PressSwitch (3)"

/*
* Print the last message sent by the controller
*/
FUNC void CANmessage (void) {
switch (CAN0OUT) {
case 1: printf("\nSend Message (11-bit ID=%04X)", CAN0ID); break;
case 2: printf("\nSend Message (29-bit ID=%08X)", CAN0ID); break;
case 3: printf("\nRequest Message (11-bit ID=%04X)", CAN0ID); return;
case 4: printf("\nRequest Message (29-bit ID=%08X)", CAN0ID); return;

}
printf("\nMessage Length %d, Data: ", CAN0L);
printf("%02X %02X %02X %02X ", CAN0B0, CAN0B1, CAN0B2, CAN0B3);
printf("%02X %02X %02X %02X\n", CAN0B4, CAN0B5, CAN0B6, CAN0B7);

}

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 8 of 10 Revision date: 8-Nov-01

/*
* Set Breakpoint on CAN Output VTREG
*/
BS WRITE CAN0OUT, 1, "CANmessage()"

/*
* Send Information on any ID
*/
FUNC void SendInfo (unsigned long id, // message ID

unsigned char len, // message length
unsigned char val) { // 1. value byte

CAN0ID = id; // Set VTREG that keeps next ID
CAN0L = len; // Set VTREG with message length
CAN0B0 = val; // Set the data registers
CAN0B1 = val+1;
CAN0B2 = val+2;
CAN0B3 = val+3;
CAN0B4 = val+4;
CAN0B5 = val+5;
CAN0B6 = val+6;
CAN0B7 = val+7;
CAN0IN = 2; // Send message to simulated controller

}

/*
* Send 5 messages in short intervals on ID 103h
*/
SIGNAL void SimTraffic (void) {
int i;
for (i=0; i<=5; i++) {
SendInfo(0x103,8,'0'+(i*8)); // Send CAN message on ID 103h
swatch(0.00025); // wait 0.00025sec before next message is send

}
}

/*
* Define Buttons for the toolbox for easy access to SendInfo and SimTraffic
*/
define button "Send Switches = ON", "SendInfo(0x101,1,0x30)"
define button "Send Switches = OFF", "SendInfo(0x101,1,0x00)"
define button "Send Remote Frame", "SendInfo(0x104,8,0x00)"
define button "Simulate Reception Traffic", "SimTraffic()"

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 9 of 10 Revision date: 8-Nov-01

RE-USE OF THE SAMPLE CAN APPLICATION
The files candrv.h and candrv.c of this application note can be re-used in your own CAN
projects. The can driver provides the following functions:

Functions Description

CanInit Initialization of the CAN Controller.

CanSend Sends a message over a channel. The message length must not exceed channel definition

CanRead Reads a message received by a channel. The message length is specified in the channel definition.

CanSendIsr Interrupt driven Send Routine.

CanReadIsr Interrupt driven Receive Routine.
CanInterrupt The interrupt service routine for the CAN Controller.

The file candrv.c needs to be adapted for your application as described below:

• The section CAN ID definitions specifies the CAN message objects.

• The table id_typ needs entries for all CAN message objects.

• Under CAN baud rate calculation you can configure the baud rate of the CAN bus.

• In the function CanInit all CAN message objects need to be initialized.

• Adapt the interrupt driven CAN I/O routines to the requirements of your application.

• To add or remove interrupt driven CAN message objects, adapt the function CanInterrupt.

The include file can_drv.h enables you to access the functions of the file candrv.c in own source
files.

 Application Note

T89C51CC01 CAN Bus Programming and Simulation APNT_165

Page 10 of 10 Revision date: 8-Nov-01

CONCLUSION
This sample CAN application shows that the implementation of a CAN interface is
straightforward. The application note also shows most features of that T89C51CC01 CAN
controller. You may adapt this sample CAN application for your own software projects. You
may also convert this application software for other on-chip CAN controllers.

The Keil 8051 development tools allow you fast and reliable development of complete
applications. With the µVision2 simulator you can debug the application without real hardware.
µVision2 simulates the behavior of all on-chip peripherals, including complex peripherals like
the CAN controller and the A/D converter. In fact, this sample CAN application was completely
tested with the simulator before we checked it in real hardware.

This application note uses the µVision2 debug functions to simulate external hardware
components as well as CAN communication. Specific information on CAN simulation can be
found in Application Note 147 “CAN Simulation in µVison2”.

It is even possible to extend the build-in peripherals of uVision2 with custom define peripherals.
This is described in the Application Note 154 “Implementing µVision2 DLLs for Simulating
User Defined Hardware”.

Copyright © 2001 Keil Software, Inc. All rights reserved.

In the USA: In Europe:
Keil Software, Inc. Keil Elektronik GmbH
1501 10th Street, Suite 110 Bretonischer Ring 15
Plano, TC 75074 D-85630 Grasbrunn b. Munchen
USA Germany

Sales: 800-348-8051 Phone: (49) (089) 45 60 40 - 0
Phone: 972-312-1107 FAX: (49) (089) 46 81 62
FAX: 972-312-1159

E-mail: sales.us@keil.com Internet: http://www.keil.com/ E-mail: sales.intl@keil.com
 support.us@keil.com support.intl@keil.com

	OVERVIEW
	HARDWARE
	USING THE SOFTWARE
	SOURCE FILES
	PROGRAMMING OF THE ON-CHIP FLASH ROM
	SIMULATION WITH THE µVISION2 DEBUGGER
	RE-USE OF THE SAMPLE CAN APPLICATION
	CONCLUSION

