

Using and Programming the I2C BUS Page 1 of 5

C Compiler • Real-Time OS • Simulator • Training • Evaluation Boards

Using and Programming the I2C BUS Application Note 153

June 8, 2000, Munich, Germany

by Keil Support, Keil Elektronik GmbH support.intl@keil.com ++49 89 456040-0

This Application Note describes programming of the I2C Bus for various devices. Included is the
debugging and simulation of I2C Bus Applications with the Keil µVision2 Debugger/Simulator.

Definitions and Documents
The I2C Bus is a two-wire BUS system defined by Philips beginning of the 1980’s. The I2C Bus is a bi-
directional and designed for simple but efficient control applications. It is widely used in embedded
systems to interface a microcontroller with peripherals.

The system is comprised of two lines, SCL (serial clock) and SDA (serial data) that carry information
between the IC’s connected to them. All devices connected to the bus can be master or slave devices.
Each device can be in one of the following modes:

� Idle Mode: device is in high-impedance state and waits for data.

� Master Transmitter Mode: the device transmits data to a slave receiver.

� Master Receiver Mode: the device receives data from a slave transmitter.

� Slave Receiver Mode: a number of data bytes are received from a master transmitter.

� Slave Transmitter Mode: a number of data bytes are transmitted to a master receiver.

The I2C standard is described in the I2C BUS SPECIFICATION that is available at the Philips web page
or the Keil Development Tools CD-ROM in the folder Datashts\Philips.

I2C Concepts
This application note describes the implementation of the I2C bus on 8051, 251 and 166 based devices.
The bus can be implemented in several different ways on a device.

� I2C serial port with hardware implemented Master and Slave functions (as in Philips
80C552, 558, ect and serveral AtmelWM devices)

� Combined SPI/I2C interface with hardware implemented Slave and software based Master
functions (as in Analog Devices ADuC812, ADuC824 and several other devices).

� Single bit hardware for software based Master and Slave support (as in Philips 8xC75x and
Philips LPC series, described in Philips AN422 available from the Philips Web page or the Keil
Development Tools CD-ROM folder AppNotes\Philips).

Using and Programming the I2C BUS Page 2 of 5

� Using the High-Speed Serial Interface of the Infineon 166/ST10 family for simulation of the I2C
bus. (Described in the Infineon AppNote AP1626 (RK has it)).

� Software based simulation of a I2C Bus Master device. This can be implemented in any 8051
or 166 device be using two un-used I/O pins as SCL and SDA pins. These I/O pins are
controlled by software only.

I2C Simulation
For efficient software testing is it not enough just to simulate the behavior of the I2C bus at bit-level.
Instead it must be possible to simulate also bus communication. Therefore µVision allows you:

� to review the bus activities and create data on the I2C bus in the I2C communication dialog.

� virtual simulation registers (VTREG) the can be used to review and enter data to the I2C bus.

� and write debug functions that simulate a device that is connected to the microcontroller. In this way
you can simulate your complete application rather than just a small piece of the bus communication.

I2C Dialog
µVision2 offers an tabbed dialog that shows you on the first page the controls and status of the I2C
interface and on the 2nd page a communication (similar to the CAN communication page see AN147).

I2C Hardware: this page allows you to review and modify the I2C settings trough hardware registers
and to show the current I2C Interface status

Using and Programming the I2C BUS Page 3 of 5

I2C Communication: this page allows you to review the data communication on the I2C bus and to
directly enter data on the I2C bus using the Message Generator

Virtual Simulation Registers (VTREG)
The µVision2 Debugger implements virtual simulation registers (VTREG) that can be used to review the
I2C communication on the Debugger command line level or within Debug and Signal functions. The
following registers are implemented:

VTREG Description

I2C_IN Data sent from the I2C peripherals to the the Microcontroller: Possible values in this register are:
 0xFFFF for IDLE or STOP condition
 0x0100 for START, initiates SLAVE transmit or receive on the microcontroller; next byte is slave address
 0x00 .. 0xFF any address or data byte transfer to the microcontroller.
 0xFF00 for ACK
 0xFF01 for NACK

I2C_OUT Data sent from the Microcontroller to the I2C peripherals. Possible values in this register are:
 0xFFFF for IDLE or STOP condition
 0x0100 for START, initiates MASTER transmit or receive on the microcontroller; next byte is slave address
 0x00 .. 0xFF any address or data byte transfer to the I2C peripherals.
 0xFF00 for ACK
 0xFF01 for NACK

I2C_CLK Clock Frequency in Slave Mode in Hz, i.e. 100000 for 100KHz transmission

µVision supports only the 8-bit address mode of the I2C bus. The 11-bit address modes are currently not
implemented and also not supported by the most microcontroller devices.

Using and Programming the I2C BUS Page 4 of 5

Simulating a Device connected to the I2C Bus
With specific signal functions the user can implement hardware components that are connected to the I2C
bus. The following example shows a signal function that simulates an I2C Memory (256 bytes) like the
Philips PCF8570.

The I2C Memory Slave address is set trough the SADR variable. Example:
SADR = 0x3F // I2C Memory Slave Address

The signal function is invoked from the command window as:
I2Cmemory()

The I2C Memory is mapped to the memory region V:0 .. V:0xFF.

Once the simulator detects a START condition in the I2C_OUT VTReg, the next byte will be interpreted
as address byte. This address byte contains the 7-bit Slave address in bits 7 .. 1 and in bit 0 the direction
(0 = Write, 1 = Read). If the Slave Memory is addressed the Memory sends an ACK back to the
Microcontroller. If the direction bit was “1” (Memory Read) the Microcontroller reads data bytes from
the Memory (from the current address which is automatically incremented after each read byte) trough
the I2C_IN VTReg. Microcontorller sends an ACK to the Memory after each byte if more data bytes
should be read or an NACK if this is the last data byte read. If the direction bit was “0” (Memory Write)
the Microcontroller sends first a byte with the new Memory address (Memory must return an ACK) and
then sends data bytes which will be written to the Memory (to current address which is auto incremented
after each written byte). Memory must return an ACK after each received byte.
// Simulation of I2C Memory (Slave): like Philips PCF8570 (256 byte I2C RAM)

MAP V:0,V:0xFF READ WRITE // Map User Memory region

DEFINE int SADR // Slave Address

signal void I2CMEMORY (void) {
unsigned long adr;

adr = V:0;
while (1) {
wwatch (I2C_OUT); // Wait for data from Microcontroller
while (I2C_OUT == 0x0100) { // START detected
wwatch (I2C_OUT); // Wait for data from Microcontroller
if (I2C_OUT > 0xFF) continue;
if ((I2C_OUT >> 1) != SADR) continue; // test if Slave is addressed
I2C_IN = 0xFF00; // ACK to Microcontroller
if (I2C_OUT & 1) { // Slave Read
while (1) {
I2C_IN = _RBYTE(adr); // Read Byte from Memory
adr++; // Increment Address
wwatch (I2C_OUT); // Wait for ACK from Microcontroller
if (I2C_OUT != 0xFF00) break;

}
}
else { // Slave Write
wwatch (I2C_OUT); // Wait for data from Microcontroller
if (I2C_OUT > 0xFF) continue;
adr = I2C_OUT | V:0; // Set Memory Address
I2C_IN = 0xFF00; // ACK to Microcontroller
while (1) {
wwatch (I2C_OUT); // Wait for data from Microcontroller
if (I2C_OUT > 0xFF) break;
_WBYTE (adr, I2C_OUT); // Store Byte in Memory
adr++; // Increment Address
I2C_IN = 0xFF00; // ACK to Microcontroller

}
}

}
}

}

Using and Programming the I2C BUS Page 5 of 5

Application Examples

I2C serial port with hardware implemented Master and Slave functions
Enclosed is an example that shows you how to use the I2C bus with a Byte orientated Hardware. As
example CPU we have used a Philips 8xC591 device.

The µVision2 project “I2CEEPROM” includes a 591 I2C demonstration of reading and writing to a serial
EEPROM (for the Phytec Development Board with 87C591 phyCORE module) and also the signal
function that simulates an I2C EEPROM Memory (4k bytes).

Single-bit Hardware for Software-Based Master and Slave support
Enclosed is an example that shows you how to use the I2C bus with a Single Bit Hardware. As example
CPU we have used a Philips LPC device.

The µVision2 project “Master” includes I2C Single Master Routines for the 87LPC764 (taken from
Philips AN422 - 8XC751 as I2C Bus Master) and also the signal function that simulates an I2C Memory
(256 bytes).

	Definitions and Documents
	I2C Concepts
	I2C Simulation
	I2C Dialog
	Virtual Simulation Registers (VTREG)
	Simulating a Device connected to the I2C Bus

	Application Examples
	I2C serial port with hardware implemented Master and Slave functions
	Single-bit Hardware for Software-Based Master and Slave support

