STM32 dual-core applications with Keil MDK q r m KEIL

AN 338, Summer 2021,V 1.0

keil-feedback@arm.com

Abstract

STM32CubeMX and Keil MDK work together seamlessly. This manual explains how to create projects that utilize
STM32CubeMX together with Arm Keil MDK, which provides Device Family Packs (DFP) for the STM32 device
series. This works out-of-the-box for single-core applications. However, for dual-core applications additional
steps are required to create two pVision projects, one for each core.

This application note shows these steps and introduces a Bash script that can be used to create the pVision
projects from the output of STM32CubeMX.

Contents
LY o1 1 T ST P PSSP PPPPPRRP 1
T} (oo [V T 4T] o ISP PP PP PPPPPRPPP 2
=T = To OIS PP T PUTPPRRPPUPPN 2
Step 1: Create a project in STM32CUBEMX.....coooiii i, 2
SEArt iN STMB2CUDEMX ...oeeiieiieeeee ettt ettt e e sttt e e st e sttt e s sanb et e e smb e e e e e aanreeeesnreeeesanneee 2
RESUIT. .ttt ettt ettt e e st e e s e bttt e e s bt e e s ea bt e e e a et e e e et e e e e b b et e e s n b e et e e e nr et e e e b et e e e anreee s 4
Step 2: Create basic dual-core projects in ViSioNccoooeiiiiiiii 5
Step 2a: Prepare the generation script and project template ... 5
SEEP 22 RUN TNE SCIIP .oeiiiiiiiiiiiiiiiiiiiieeeie ettt ettt et e et ettt eeeeeeeeee e eeee s e asae s s s s assssssssasssssssasssesesssssssssssssssssssssnsasnsnnnnnnns 5
RESUIL. ettt ettt e e sttt e e e bttt e e s b bt et e s ea bt e e s a et e e e a b et e e s e b b et e e e a b e et e e e nr et e e enraeeeeaabreeens 5
Step 3: Configure the basic UViSion Projectscccoeeeeeiiiiii 6
Step 3a: Configure the basic Cortex-M7 UViSiON PrOJECTuuiiiiiiiiiiiiiiiiiieiieieeiiirererereeereereererrrrrerrrrrrrrr————————.. 6
Step 3b: Configure the basic Cortex-M4 UViSiON PrOJECEuuuuiiiiiiiieiiririeerireretttrrrrrrrrrrrrrrerrrrrrrr———————————————————. 6
Step 4: Develop the applications for each core ... 7
Step 4a: Develop the Cortex-M7 LViSION PrOJECEuuuuiiiiiiiiiiiiieitieeeeetrteeeteerrreererrereerrrrereererr....——————————————————. 7
Step 4b: Develop the CorteX-M4 PViSION PrOJECTuuuuuiiiiiiiiiiiiieiterteeterreeerrerrreererrereererrerere.rrrerer——.———————.. 7
Step 5: Flash the appliCations.......ccoeeeeeeeee e 7
Step 6: Debug the applicationsccooeeeeeeee e 8
Step 6a: Debug the CorteX-M7 apPPliCatiONciiiiiiiiiiiiiiieieeeeieeieeeeeeeeeeeeeeeeereeeeeereeseassrsessssssrsssssssssssssssrssssssrnnnes 8
Step 6b: Debug the Cortex-M4 aPPliCAtioNuviiiiiiiiiiiiiiiiieeeeieeeieeeeeeeeeerreeeeeeeeeeereeesraesesssssesssssssrrssrssrsessssrarnes 9
Ny CcY ool BT o TU =4 o To 1 d o JF= T o] o] I Tor= Y o) o 3PP PPPPPPPPPRt 9
Step 7: Modify the STM32CUBEMX PrOJECTcoeeeeeeeeeeeee e 9
(6013 ol [V oo FA U PPPPPPPPPPPOt 9
AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. Al rights reserved

1 www.keil.com/appnotes/docs/apnt_338.asp

https://www.keil.com/pack/doc/STM32Cube/html/index.html

Introduction

This application note explains how to create an STM32 dual-core application using STM32CubeMX and Keil MDK.
It is a step-by-step guide that shows an example using the STM32H745I-Discovery board from
STMicroelectronics that features the STM32745XIHx with an Arm Cortex-M4 and an Arm Cortex-M7 core.

Prerequisites
To run through the application note, you need to install the following software:

e STM32CubeMX, v6.3.0 or above
e MDKV5.35 or above
e Git for Windows, 2.32.0 or above (to run the Bash script on your Windows machine)

Also, you need these two files (from the apnt_338.zip file) to generate the uVision projects:

e Project template file DualCore CMx.cprj
e Project generation script gen BasicDualCorePproject.sh

Initialization scripts help you to load the projects during debugging and to start a debug session:
. Flash_CM4.ini
. Flash_CM7.ini
® Debug CM4.ini

Step 1: Create a project in STM32CubeMX
Note:

The following NVIC settings are required if you want to use Keil RTX5 in your applications. If you do not require
an RTOS, they can be omitted.

Start in STM32CubeMX

e Use either Start My project from MCU or Start My project from ST Board. This application note’s
screenshots are using the STM32H745XIHx device on the STM32H745XI-Disco board.
o Configure used peripherals on the Pinout & Configuration tab:
o System Core:
Same settings for NVIC1 and NVIC2 on the NVIC tab:
= System service call via SWI! instruction: enabled, Preemption Priority 14, SubPriority O
= Pendable request for system service: enabled, Preemption Priority 15, SubPriority O
= Time base: System tick timer: enabled, Preemption Priority 15, SubPriority O
@ Code generation

Priority Group [1 Sort by Premption Priority and Sub Priority [Sort by interrupts names

Search Q) Show |available interrupts ~ | Force DMA channels Interrupts
NWVIC2 Interrupt Table Preemption Priority Sub Priority
Mon maskable interrupt 0
Hard fault interrupt : 0
Memory management fault 0 0
Pre-fetch fault, memory access fault 0 0
Undefined instruction or illegal state 0 0
ISystem service call via SWI instruction 14 0 I
'Debug monitor 0 0
Pendable request for system senvice 15 0
Time base: System tick timer 15 0
AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

2 www.keil.com/appnotes/docs/apnt_338.asp

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.keil.com/demo/eval/arm.htm
https://git-scm.com/download/win

Same settings for NVIC1 and NVIC2 on the Code generation tab:

= System service call via SWIl instruction: uncheck Generate IRQ handler
= Pendable request for system service: uncheck Generate IRQ handler
= Time base: uncheck Generate IRQ handler

& Code generation

Enabled interrupt table B Sclect for init se... O Generate IRQ handler |Call HAL hand. .
MNon maskable interrupt

Hard fault interrupt

Memory management fault

Pre-fetch fault, memory access fault
Undefined instruction or illegal state
System senice call via SWI instruction
Debug monitor

Pendable request for system senvice
Time base: System tick timer
e Configure the clock settings on the Clock Configuration tab as required by your project.
e Configure project setting on the Project Manager tab:
o Project:
= Project Name: e.g.: DualCore
= Toolchain/ IDE: MDK-ARM
= Min Version: V5.27

Pinout & Configuration Clock Configuration Project Manager

O
|
O
|
O
|
|
O
|

BO0O00OO0O0OOon

Project Settings

Project Name
‘DuaICnre |

Project Location

\C:\F'rojects |

Dual Core Boot Mode
‘Eluth CPUs booting at once |

Project

Application Structure
‘Advanced v | [J Do not generate the main()

Toolchain Folder Location
\C:\Projects\DuaICore\

Toolchain / IDE Min Version
IMDK-ARM | [vsa | [Generate Under Root

o Code Generator (stay with default values)
= Copy all used libraries into the project folder
= Keep User Code when re-generating

= Delete previously generated Files when not re-generated
Pinout & Configuration Clock Configuration

Project Manager

STM32Cube MCU packages and embedded software packs
® Copy all used libraries into the project folder

O Copy only the necessary library files

Project O Add necessary library files as reference in the toolchain project configuration file
rojec

¢ Generated files
[] Generate peripheral initialization as a pair of ".c/_h’ files per peripheral

[] Backup previously generated files when re-generating

Keep User Code when re-generating

Delete previously generated files when not re-generated

+HAL Settings
[Set all free pins as analog (to optimize the power consumption)

[J Enable Full Assert

Code Generator

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

3 www.keil.com/appnotes/docs/apnt_338.asp

e (Click on Generate Code:

GENERATE CODE

e C(Close this window:

MK Code Generation

The Code is successfully generated under :
C:/Projects/iDualCore

Project language - C

e (Close STM32CubeMX.

Result
When finished, you should have a folder named DualCore that contains:

CM4: Cortex-M4 core specific code

CM7: Cortex-M7 core specific code

Common: CM4/CM7 common code

Drivers: CMSIS (Device header files), HAL drivers

MDK-ARM: uVision Project with two targets: 'DualCore_CM7' for CM7, 'DualCore_CM4' for CM4
.mxproject: CubeMX project file

DualCore.ioc: CubeMX device configuration file

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

4 www.keil.com/appnotes/docs/apnt_338.asp

Step 2: Create basic dual-core projects in pVision
In this step, a Bash script is used to generate yVision projects from the output of STM32CubeMX.
Notes:

e Forthe use of the shell script a Bash environment is required (refer to Prerequisites).
e The generation script assumes that your Keil MDK installation directory is “C:/Keil_v5”. If your path is
different, please change line 7 of the script.

Step 2a: Prepare the generation script and project template

e Copy the script gen BasicDualCorePproject.sh and the project template DualCore CMx.cpr]
to the parent folder of the DualCore folder.

e Opengen BasicDualCorePproject.sh,DualCore CMx.cprj, and DualCore.ioc (from the
DualCore folder) in a text editor.

e InDualCore.ioc, search for Mcu.Name= and copy the name of the MCU (here “STM32H745XIHx").

e Ingen BasicDualCorePproject.sh, paste the MCU name at line 4 (devicename="").

e InDualCore CMx.cprj, paste the MCU name at line 13 (Dname="").

Step 2b: Run the script

e Open a Bash console in the folder with the gen BasicDualCorePproject. sh script.
e Execute the Bash script: . /gen BasicDualCorePproject.sh.
e C(Close the Bash console.

Note:

Full RTE support/benefit is only possible with single uVision project for a certain core! Run-time environment
component configurations are tailored for a certain core.

Result

Two basic Arm Cortex-M4 and Cortex-M7 applications using Keil RTX5 are created (startup only). The folders
CM4 and CM7 are at the same folder level as DualCore.

e The folder CM7 contains:
o CM7/Core/Inc:main.h, stm32h7xx hal conf.h, stm32h7xx it.h
o CM7/Core/Src:main.c, stm32h7xx _hal msp.c, stm32h7xx it.c
o MDK-ARM/DebugConfig: * .dbgconf
o MDK-ARM/Out: empty
o

MDK-ARM/RTE/Device/STM32H745ZITx_CM7: startup stm32h745xx.s,
system stm32h7xx.c

o MDK-ARM: DualCore cm7.uvoptx, DualCore cm7.uvprojx,
stm32h745xx flash CM7.sct, stm32h745xx sraml CM7.sct

e The folder CM4 contains:

o CM4/Core/Inc:main.h, stm32h7xx hal conf.h, stm32h7xx it.h
CM4/Core/Src:main.c, stm32h7xx hal msp.c, stm32h7xx it.c
MDK-ARM/DebugConfig: * . dbgconf
MDK-ARM/Out: empty

MDK-ARM/RTE/Device/STM32H745ZITx_CM4: startup stm32h745xx.s,
system stm32h7xx.c

O
O
O
O

o MDK-ARM: DualCore cm4.uvoptx, DualCore cmé.uvprojx,
stm32h745xx flash CM4.sct, stm32h745xx sraml CM4.sct

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

5 www.keil.com/appnotes/docs/apnt_338.asp

Step 3: Configure the basic puVision projects

Once the basic projects have been generated, it’s now time to configure them separately.

Step 3a: Configure the basic Cortex-M7 uVision project
Go to the CM7 folder.

= Double-click the DualCore_cm7.uvprojx file in the MDK-ARM folder:
o & Go to Project — Manage — Run-Time Environment:
= Check settings under CMSIS:CMIS RTOS2 (API): used RTOS and used RTOS variant.
= Check if Compiler:Event Recorder is enabled.
= Device:STM32Cube HAL: add additional HAL modules if required.

W Manage Run-Time Environment

Software Component Sel. Variant Version Description
4 Board Support STM32H743|~ | 1.1.0 STMicroelectronics STM32H7431-EVAL Board =]
= ’ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE [v 5.5.0 CMSIS-CORE for Cortex-M. SC000, SC300. ARMwE-M, ARME.1-M
¥ DSP [~ Source 1.9.0-dev | CMSIS-DSP Library for Cortex-M, SCO00, and SC300
¥ NN Lib [3.0.0 CMSIS-NN Neural Metwork Library
4 RTOS (API) 1.0.0 CMSIS-RTOS API for Cortex-M. SCO00. and SC300
£-4p RIOS2 (API) 2.1.3 CMSIS-RTOS API for Cortex-M. SCO00, and SC300
¥ FreeRTOS [Cortex-M 1031 CMSIS-RTOS2 implementation for Cortex-M based on FreeRTOS
¥ Keil RTX3 [v Source ~|5.53 CMSIS-RTOS2 RTXS for Cortex-h, SCO00, SCI00. ARMvE-M. ARWYE1-M (Source)
’ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
ER 2 Compiler ARM Compiler| 1.6.0 LCompiler Extensions for ARM Compiler 5 and ARM Compiler &
¥ Event Recorder [v DAP 1.4.0 Event Recerding and Compenent Viewer via Debug Access Port (DAP
’ 170 Retarget Input/Qutput
‘ Data Exchange Data exchange or data formatter
’ Data Processing Software Components for Data Processing
= ’ Device Startup, System Setup
¥ Startup [v 1.80 System Startup for STMicreelectronics STM32HT Series
=] ’ 5TM32Cube HAL 5TM32Fdwx Hardware Abstraction Layer (HAL) Drivers
L [~ 1.8.0 Analog-to-digital converter (ADC) HAL driver
¥ CEC [~ 1.8.0 Consumer Electronics Contrel (CEC) HAL driver b
¥ COMP [~ 1.8.0 Comparator (COMP) HAL driver
W CORDIC [~ 1.8.0 Trigonometric functions acceleration (CORDIC) HAL driver
¥ CRC [~ 1.80 CRC calculation unit (CRC) HAL driver
¥ CRYP [~ 1.8.0 Cryptographic processor (CRYP) HAL driver
¥ Common [w 1.80 Common HAL driver
¥ Cortex [vw 1.8.0 Cortex HAL driver
¥ DAC [~ 1.8.0 Digital-to-analog converter (DAC) HAL driver
W DCMI [~ 1.80 Digital camera interface (DCMI) HAL driver
¥ DFSDM [1.8.0 Digital Filter for Sigma-Delta Medulaters (DFSDM) HAL driver
¥ DMAZD [~ 1.8.0 Chrom-Art Accelerator (DMAZD) HAL driver
@ nhan e 1an MRAA Famtraller (MRAAY HAL drivrar

_ " Click OK to close RTE window.
o &~ Go to Project — Options for Target — Debug, and select the ST-Link Debugger:

W Options for Target 'Target 1'

Device] Target] Output] Listing] User l C,-"CH] Asm] Linker Debug l Lkilities]

(" Use Simulator with restrictions Settings | LOMVEEN (S T-Link Debugger Settings

[Limit Speed to Real-Time

Save the project and exit uVision.

Step 3b: Configure the basic Cortex-M4 uVision project

Configure the Arm Cortex-M4 project in a similar way as Cortex-M7 in Step 3a: Configure the basic Cortex-M7
uVision project.

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

6 www.keil.com/appnotes/docs/apnt_338.asp

Step 4: Develop the applications for each core

Once configuration is done, the actual applications can be developed.

Step 4a: Develop the Cortex-M7 uVision project

e Adaptmain.cinfolder CM7/CM7/Core/Src

Adaptmain.h in folder CM7/CM7/Core/Inc

Check stm32h7xx_hal conf.h infolder CM7/CM7/Core/Inc

Add Arm Cortex-M7 application code

Adapt the uVision project in CM7/MDK-ARM/DualCore_cm7.uvprojx. For example, enable Event
Recorder Global Initialization in the RTX Config.h file and configure Event Recorder settings in
EventRecorderConf.h.

Step 4b: Develop the Cortex-M4 uVision project

Develop the Arm Cortex-M4 application in a similar way as Cortex-M7 in Step 4a: Develop the Cortex-M7 pVision
project.

Step 5: Flash the applications
Each core can be flashed with the corresponding uVision project:

e Flash the Arm Cortex-M4 image with the CM4/MDK-ARM/DualCore_cm4.uvprojx yVision project.
e Flash the Arm Cortex-M7 image with the CM7/MDK-ARM/DualCore_cm?7.uvprojx pVision project.

Both cores can also be flashed at once in a single uVision project. In this case, an initialization file is required:

e Flash CM7.ini for Arm Cortex-M7 uVision Project. Contains command to load Arm Cortex-M4 code.
e TFlash CM4.ini for Arm Cortex-M4 pVision Project. Contains command to load Arm Cortex-M7 code.

#KGoto Project — Options for Target — Utilities to add the Init File:

W. Options for Target ‘Target 1'

Device] Target] CILrtert] Listing] User] C.-"E-I—!-] Asm] Unker] Debug Ltilties
Corfigure Flash Menu Command

{* |Use Target Driver for Flash Programming ¥ Use Debug Driver

— Use Debug Driver — Settings | v Lpdate Target before Debugging

Init File: |..%..\Fash_CMd4.ini B Edit 1

Notes:

e After flash programming, a reset is required.
e Both INI scripts are delivered as part of the application note’s ZIP file.

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

7 www.keil.com/appnotes/docs/apnt_338.asp

Step 6: Debug the applications

You can either debug each application stand-alone or both applications at the same time using two pVision
windows.

Notes:

e You may disable 'Update Target before Debugging' if you like to differ between 'Flash' and 'Debug' steps.
e Copythe Debug CM4.1ini script from the application note’s ZIP file to the folder containing the CM4
and CM7 folders.

Step 6a: Debug the Cortex-M7 application

In this scenario, the Arm Cortex-M4 is running freely, and an ST-Link is used for debugging. The prerequisite is
that both applications are flashed (refer to Step 5: Flash the applications) and the project CM7/MDK-
ARM/DualCore_cm7.uvprojx is opened in pVision.

#KGoto Project — Options for Target — Debug to check the debug settings:

e Load Application at Startup must be checked
e Run to main() must be checked

W Options for Target ‘Target 1'

Device] Target] Output] Listing] User] CICH] Hfam] Linker Debug]Util'rties]

" Use Simulator with restrictions Settings {* Use: |ST—IJnk Debugger j Settings

[Limit Speed to Real-Time

Iv¥ Load Application at Startup [+ Run to main() ‘ ¥ Load Application at Startup v Run to main()
Initialization File: Initiglization File:

| B HE=

X Goto Project — Options for Target — Debug — ST-Link Debugger Settings:

e Connect: Normal
e Reset: Autodetect

e Reset after Connect must be checked.
Debug

Cornect & Reset Options
Connect: | Normal | Reset: |J’-'~.|_rt|:u:|etect j
[+ Reset after Connect [Stop after Resst

&} Go to Debug — Start/Stop Debug Session (Ctrl + F5). The Arm Cortex-M7 application is loaded and stops at
main (). Continue debugging as normal.

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved
8 www.keil.com/appnotes/docs/apnt_338.asp

Step 6b: Debug the Cortex-M4 application

In this scenario, the Arm Cortex-M7 is running freely, and an ST-Link is used for debugging. The prerequisite is
that both applications are flashed (refer to Step 5: Flash the applications) and the project CM4/MDK-
ARM/DualCore_cm4.uvprojx is opened in pVision.

K Goto Project — Options for Target — Debug to check the debug settings:

e Load Application at Startup must be checked
e Run to main() must be checked
e Initialisation File issetto . .\..\Debug CM4.ini

W Options for Target ‘Target 1'

Device] Target] OLrtert] Usting] |zer] CJEH] Asm] Linker Debug l Util'rties]

" Use Simulator with restrictions Settings {* Use: |ST—IJnk Debugger ﬂ Settings

[Limit Speed to Real-Time

I+ Load Application at Startup [+ Run to main() I+ Load Application at Startup lv Run to main()
Initialization File: Initialization File:

| JJ [\ \Debug_CM4 in J M

X Goto Project — Options for Target — Debug — ST-Link Debugger Settings:

e Connect: Normal
e Reset: Autodetect
e Reset after Connect must be checked.

@} Go to Debug — Start/Stop Debug Session (Ctrl + F5). The Arm Cortex-M4 application is loaded and stops at
main (). Continue debugging as normal.

Note: If you want to debug the Arm Cortex-M4 application from start then you must add a synchronization point
to the Arm Cortex-M4 startup, for example a busy loop, where the application loops until a debugger is
connected. With the debugger you can manipulate the PC to continue running after the synchronization point.

Step 6¢: Debug both applications

Start two pVision instances, one for each core (double-click CM7/MDK-ARM/DualCore_cm7.uvprojx and
CM4/MDK-ARM/DualCore_cm4.uvprojx).

e Check in both instances that the ST-Link setting 'Shareable ST-Link' is checked.

e First, start the Arm Cortex-M7 Debug session (refer to Step 6a: Debug the Cortex-M7 application)
e Run until the Arm Cortex-M4 is released and runs

e Then, start the Arm Cortex-M4 Debug session (refer to Step 6b: Debug the Cortex-M4 application)

Step 7: Modify the STM32CubeMX project

If required, open the STM32CubeMX project (DualCore.ioc in the DualCore folder) to make changes to the
STM32CubeMX code or configuration. Afterwards, merge the changes from the newly generated code to the
two derived MDK projects.

Conclusion

This application note showed how you can create dual-core projects for STM32 targets using STMicroelectronics’
STM32CubeMX and Keil MDK. A Bash script was introduced that creates the pVision projects from the generated
output of STM32CubeMX.

AN338 — STM32 dual-core applications with Keil MDK Copyright © 2021 Arm Ltd. All rights reserved

9 www.keil.com/appnotes/docs/apnt_338.asp

	Abstract
	Introduction
	Prerequisites
	Step 1: Create a project in STM32CubeMX
	Start in STM32CubeMX
	Result

	Step 2: Create basic dual-core projects in µVision
	Step 2a: Prepare the generation script and project template
	Step 2b: Run the script
	Result

	Step 3: Configure the basic µVision projects
	Step 3a: Configure the basic Cortex-M7 µVision project
	Step 3b: Configure the basic Cortex-M4 µVision project

	Step 4: Develop the applications for each core
	Step 4a: Develop the Cortex-M7 µVision project
	Step 4b: Develop the Cortex-M4 µVision project

	Step 5: Flash the applications
	Step 6: Debug the applications
	Step 6a: Debug the Cortex-M7 application
	Step 6b: Debug the Cortex-M4 application
	Step 6c: Debug both applications

	Step 7: Modify the STM32CubeMX project
	Conclusion

