D &S AR

C Compilers * Real-Time OS * Simulators * Education * Evaluation Boards

Data Overlaying and Code Banking Application Note 149
with A51 Assembler Modules

Oct 29, 1999, Munich, Germany
by Keil Support, Keil Elektronik GmbH support.inti@keil.com ++49 89 456040-0

This Application Note describes the steps that are required to perform data overlaying and code
banking with assembler modules.

Data Overlaying

The BL51 Linker/Locater analyses the program structure of your application. Data segments that
are assigned to a function can be overlaid if the functions do not call each other. This data
overlaying technique is also known as compiled-time stack for variables and parameters.

Code Banking

For function calls into a different code bank, the BL51 Linker/Locater changes the target address
of CALL instructions and generates a call to a bank switch table. Therefore the linker needs to
distinguish between program code and constant segments.

NOTES

The BL51 linker/locater enables data overlaying and code banking only if at least one object module is
generated by the C51 Compiler. Therefore your project should contain on C51 source file that is
directly translated to an object file with the C51 compiler. In case that you do not have any C sources,
you may translate an empty file with C51.

If you are using code banking in your assembler program you must be aware that the bank switching
code might change some or the CPU registers. Please check carefully your bank switching routines to
determine the registers that are affected when a bank switch occurs. These registers depend on the
configuration of the L51 BANK.A51 module.

Segment Naming Conventions

For correct operation of above features the linker needs to know which parts of your program are
program code and which part belongs to constants. Also the function code must be connected to
local data segments that can be overlaid. This is done via the segment naming conventions
known from the C51 compiler.

Each segment name has a prefix that corresponds to the memory type used for the segment. The
prefix is enclosed in question marks (?). The following is a list of the standard segment name
prefixes:

Data Overlaying and Code Banking with A51 Assembler Modules Page 1 of 6

Segment Prefix Data Type Description

?PR? code Executable program code

?C0O? code Constant data in program memory

?XD? xdata External data memory

?DT? data Internal data memory

?ID? idata Indirectly-addressable internal data memory
?BI? bit Bit data in internal data memory

?BA? bdata Bit-addressable data in internal data memory
?PD? pdata Paged data in external data memory

Each function in a source module is assigned a separate code segment using the
?PR?function_name?module name naming convention. For example, the function error_check in the
file SAMPLE.C would result in a segment name of ?PR?ERROR _CHECK?SAMPLE.

Segments for local variables and function parameters that should be overlaid follow the above
conventions and have a different prefix depending upon the memory area in which the local variables are
stored. Enclosed are the conventions that should be used for program code and local overlay able data
segments. Data segments must be defined in A51 with the attribute OVERLAYABLE to enable data
overlaying.

Information Segment Type Segment Name ‘
Program code code ?PR?function_name?module_name

Local DATA variables data ?DT?function_name?module_name

Local IDATA variables data ?ID?function_name?module_name

Local XDATA variables data ?XD?function_name?module_name

Local PDATA variables data ?PD?function_name?module_name

Local BIT variables bit ?BI?function_name?module_name

Reset and Startup Code

The reset and startup code or your application must be structured the same way as the startup code of the
C51 compiler. The following shows the structure of this startup code:

?C_C51STARTUP SEGMENT CODE ; the code segment for the startup code
?STACK SEGMENT IDATA ; the segment that reserves stack space
EXTRN CODE (MAIN) ; the main (start) entry of your application

RSEG ?STACK ?STACK segment will be place at highest possible address

to get maximum available IDATA space. Therefore the DS 1

Ne Ne N N

DS 1 is typically a good choice. If you want to ensure that
you have at least 20H bytes free space, you may enter DS 20H.
CSEG AT O ; absolute segment for reset vector

LJMP STARTUP1 ; jump to your startup code

RSEG ?C_C51STARTUP ; relocateable segment for startup code
STARTUP1: MOV SP, #?STACK-1

LJMP MAIN ; jump to start of your application

END

Data Overlaying and Code Banking with A51 Assembler Modules Page 2 of 6

Interrupt Vectors

Each interrupt service routine has its own interrupt vector. For the linker it is important that you define
for each interrupt vector an own absolute segment using a CSEG statement. Relocatable sections of your
interrupt service routine should go into segment names using the 7PR? naming conventions.

Example:

CSEG AT 03H ; EXTO interrupt vector
SETB mybit ; interrupt function code
RETI

CSEG AT OBH ; Timer 0 interrupt vector

LJMP timerOisr

?PR?timer0?isr module SEGMENT CODE ; program code
RSEG ?PR?timer0?isr module

timerOisr: : ; put your program code here

RETI

END

Program Example

The following program example shows you the structure for a simple assembler program.

Startup Code

MACRO ASSEMBLER A51 V6.00
OBJECT MODULE PLACED IN .\start.OBJ
ASSEMBLER INVOKED BY: C:\Keil\C51\BIN\A51.EXE .\start.a5l

SET (SMALL) DEBUG EP

LOC OBJ LINE SOURCE
1 ?C_C51STARTUP SEGMENT CODE ;
2 ?STACK SEGMENT IDATA ;
3 EXTRN CODE (MAIN) ;
4
-—-- 5 RSEG ?STACK A
6 ; to get maximum available IDATA
0000 7 DS 1
8
S=== 9 CSEG AT O A
0000 020000 F 10 LJMP STARTUP1 A
-———— 11 RSEG ?C_C51STARTUP ;
0000 758100 F 12 STARTUP1: MOV SP, #?STACK-1
0003 020000 F 13 LJMP MAIN A
14
15 END
Module 1

MACRO ASSEMBLER A51 V6.00
OBJECT MODULE PLACED IN .\modulel.OBJ

the code segment for the startup code
the segment that reserves stack space
entry of your application

?STACK at highest possible address

space. Therefore the DS 1

absolute segment for reset vector
jump to your startup code
relocateable segment for startup code

jump to start of your application

ASSEMBLER INVOKED BY: C:\Keil\C51\BIN\A51.EXE .\modulel.a51 SET(SMALL) DEBUG EP

LOC OBJ LINE SOURCE

1 ; Module 1 of your application

2

3 PUBLIC main

4 EXTRN CODE (func2)

5

6 ?PR?main?modulel SEGMENT CODE
-——- 7 RSEG ?PR?main?modulel
0000 120000 F 8 main: CALL funcl
0003 120000 F 9 CALL func2

Data Overlaying and Code Banking with A51 Assembler Modules

Page 3 of 6

0006 80F8 10 SJMP main

11
12 ?PR?funcl?modulel SEGMENT CODE
13 ?DT? funcl?modulel SEGMENT DATA OVERLAYABLE ; belongs to funcl
14
-—— 15 RSEG ?DT?funcl?modulel
0000 16 funcl var: DS 10 ; space for local variables in funcl
17
-—— 18 RSEG ?PR?funcl?modulel
0000 F500 F 19 funcl: MOV funcl var,A
0002 22 20 RET
21
22 END

Module 2

MACRO ASSEMBLER A51 V6.00
OBJECT MODULE PLACED IN .\module2.OBJ
ASSEMBLER INVOKED BY: C:\Keil\C51\BIN\A51.EXE .\module2.a51 SET(SMALL) DEBUG EP

LOC OBJ LINE SOURCE
1 ; Module 2 of your application
2
3 PUBLIC func2
4
5 ?PR?func2?module2 SEGMENT CODE
6 ?DT? func2?module2 SEGMENT DATA OVERLAYABLE ; belongs to func2
7
-—— 8 RSEG ?DT?func2?module2
0000 9 func2_ var: DS 5 ; space for local variables in funcl
10
-—— 11 RSEG ?PR?func2?module2
0000 F500 F 12 func2: MOV func2 var,A
0002 22 13 RET
14
15 ?BI?module2 SEGMENT BIT
-—— 16 RSEG ?BI?module2
0000 17 mybit: DBIT 1
18
-—— 19 CSEG AT 03H ; EXTO interrupt vector
0003 D200 F 20 SETB mybit ; interrupt function code
0005 32 21 RETI
22
-——- 23 CSEG AT OBH ; Timer 0 interrupt vector
000B 020000 F 24 LJMP timerOisr
25
26 ?BI?timer0?isr module SEGMENT BIT OVERLAYABLE ; bit segment
---- 27 RSEG ?BI?timer0?isr module
0000 28 isrbit: DBIT 1
29
30 ?PR?timer0?isr module SEGMENT CODE ; program code
---- 31 RSEG ?PR?timer0?isr module
32
0000 33 timerOisr: ; put your program code here
0000 D200 F 34 SETB isrbit ; interrupt function code
0002 32 35 RETI
36
37 END

Dummy C Module to Enable Data Overlaying and Code Banking

C51 COMPILER 6.00, COMPILATION OF MODULE DUMMY
OBJECT MODULE PLACED IN .\dummy.OBJ
COMPILER INVOKED BY: C:\Keil\C51\BIN\C51.EXE .\dummy.c OBJECTEXTEND DEBUG

stmt level source
1 /* this is a dummy C51 file to enable
2 BL51 overlay and banking features */

Data Overlaying and Code Banking with A51 Assembler Modules Page 4 of 6

BL51 Linker/Locater Memory Map File (*.M51)

This file shows the memory structure of your application. Within this map file you find the OVERLAY

MAP that shows you the program structure as seen by the linker/locater.

BL51 BANKED LINKER/LOCATER V4.00a, INVOKED BY:

C:\KEIL\C51\BIN\BL51.EXE modulel.obj, module2.obj, start.obj, dummy.obj TO appl49 RAMSIZE (256)

MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
modulel.obj (MODULEL)
module2.obj (MODULE2)
start.obj (START)
dummy .obj (DUMMY)

LINK MAP OF MODULE: appl49 (MODULE1)

TYPE BASE LENGTH RELOCATION SEGMENT NAME

* Kk kK Kk Kk k * DATA MEMORY * Kk kK Kk Kk k *

REG 0000H 0008H ABSOLUTE "REG BANK 0"
DATA 0008H 000AH UNIT _DATA GROUP
0012H 000EH *kk GAP *kk
BIT 0020H.0 0000H.1 UNIT ?BI?MODULE2
BIT 0020H.1 0000H.1 UNIT _BIT GROUP_
0020H.2 0000H.6 *k%k GAP ki
IDATA 0021H 0001H UNIT ?STACK

* Kk kK Kk Kk k * CODE MEMORY * kK k Kk Kk k *

CODE 0000H 0003H ABSOLUTE
CODE 0003H 0003H ABSOLUTE
CODE 0006H 0003H UNIT ?PR?FUNC1?MODULE1
0009H 0002H *%% GAP ***
CODE 000BH 0003H ABSOLUTE
CODE 000EH 0008H UNIT ?PR?MAIN?MODULE1
CODE 0016H 0006H UNIT ?C_C51STARTUP
CODE 001CH 0003H UNIT ?PR?FUNC2?MODULE2
CODE 001FH 0003H UNIT ?PR?TIMERO?ISR MODULE
OVERLAY MAP OF MODULE: appl49 (MODULEL)
SEGMENT BIT GROUP DATA GROUP
+--> CALLED SEGMENT START LENGTH START LENGTH
?PR?TIMERO?ISR MODULE 0020H.1 O0000H.1 = ----- = =-=-=---

*%% NEW ROOT ****kkkhkkhkhhkhkhkhhkhhhhhkhhkhhhhhkhhkhhhhhkhkhhhhhkhkhhkhhxd

?C_C51STARTUP ===== mmmeemmeee e
+--> ?PR?MAIN?MODULEL

?PR?MAIN?MODULEL -===-= —-=-= —---- —mme-
+--> ?PR?FUNC1?MODULE1l
+--> ?PR?FUNC2?MODULE2

?PR?FUNC1?MODULE1l = =-===-= —==== 0008H 000AH

?PR?FUNC2?MODULE2 = ===== =—==== 0008H 0005H

SYMBOL TABLE OF MODULE: appl49 (MODULE1)

VALUE TYPE NAME
------- MODULE MODULE1
C:000EH SEGMENT ?PR?MAIN?MODULE1

Data Overlaying and Code Banking with A51 Assembler Modules

Page 5 of 6

C:0006H SEGMENT
D:0008H SEGMENT
C:000EH PUBLIC
C:0006H SYMBOL
D:0008H SYMBOL
C:000EH LINE#
C:0011H LINE#
C:0014H LINE#
C:0006H LINE#
C:0008H LINE#
------- ENDMOD
------- MODULE
C:001CH SEGMENT
D:0008H SEGMENT
B:0020H.0 SEGMENT
B:0020H.1 SEGMENT
C:001FH SEGMENT
C:001CH PUBLIC
D:0008H SYMBOL
B:0020H.1 SYMBOL
B:0020H.0 SYMBOL
C:001FH SYMBOL
C:001CH LINE#
C:001EH LINE#
C:0003H LINE#
C:0005H LINE#
C:000BH LINE#
C:001FH LINE#
C:0021H LINE#
------- ENDMOD
------- MODULE
C:0016H SEGMENT
I:0021H SEGMENT
D:0081H SYMBOL
C:0016H SYMBOL
C:0000H LINE#
C:0016H LINE#
C:0019H LINE#
------- ENDMOD
------- MODULE
C:0000H SYMBOL
------- ENDMOD

LINK/LOCATE RUN COMPLETE.

0 WARNING(S),

?PR?FUNC1?MODULEL
?DT?FUNC1?MODULEL
MAIN

FUNC1

FUNC1 VAR

8

9

10

19

20

MODULEL

MODULE2
?PR?FUNC2?MODULE2
?DT?FUNC2?MODULE2
?BI?MODULE2

?BI?TIMERO?ISR MODULE
?PR?TIMERO?ISR MODULE

FUNC2
FUNC2_VAR
ISRBIT
MYBIT
TIMEROISR
12

13

20

21

24

34

35
MODULE2

START
?C_C51STARTUP
?STACK

SP

STARTUP1

10

12

13

START

DUMMY
_ICE DUMMY
DUMMY

0 ERROR(S)

Data Overlaying and Code Banking with A51 Assembler Modules

Page 6 of 6

	Segment Naming Conventions
	Reset and Startup Code
	Interrupt Vectors
	Program Example

