D S TARE

C Compilers s Real-Time OS+ Smulators » Education ¢ Evaluation Boards

Implementing Display DLL’s for Application Note 144
User Defined Outputs

Nov 26, 2007, Munich, Germany
by Peter Holzer, Keil = An ARM Company support.intl @keil.com ++49 89 456040-0

The pVision Debugger supports an interface to display DLL's. Display DLL's can be used to present
task and other status information of rea -time operating systems. However the capahilities are not limited
to rea -time operating systems, every kind of statusinformation, i.e. the file table structure of smart card
operating systems can be displayed.

TID | Task Name | State | “'ait for Event | Sig | Timer | Stack |
0 init Deleted 0 0x31 Ox?F
1 command Funning 0 031 0x?F
2 clock “Waiting Timeout 0 (=25 0=F7
3 blinking Deleted 0 0x31 0xF9
4 lights “Waiting Signal & TimeQOut 0 034 0x=F3
5 keyread Wiaiting Timeout 0 001 0xFB
B get_escape Ready 0 0x31 0xFD

Example: RTX-51 Tiny Task List dialog

Select the User Display DLL within pVision

The DLL Driver Name for external Display DLL’sis stored in the file CAKEIL\TOOLS.INI. An new
driver isinstalled by adding the name and path to the C:\KEIL\TOOLS.INI file. Each CPU family hasits
own section in the TOOLS.INI file.

Examplefor a TOOLS.INI file:

[Lv2]
ORGANI ZATI ON=" Your conpany namne"

[C166]
PATH=" C: \ Kei | \ C166"
BOOKO=HLP\ RELEASE. TXT(" Rel ease Notes")

R:I'CBO=C: \ CMX\ BI N\ UV2CMX. DLL (" C\VX- 166")
RTOS1=C: \ RTXC\ UV2RTXC. DLL (" RTXC- 166")

[Co1]
PATH="C: \ Kei | \ C166"
RTOS0=C: \ MYDLL\ SMARTFI LE. DLL ("SmartCard File Systent')

The display DLL’s that should be used during system debugging can be selected in the Options for
Target - Target page under Operating System. At the time the uVision debugger is started, the display
DLL isautomatically loaded and initialized. The DLL dialog can be opened in the uVision menu under
Peripherals — DLL Defined Name. The RTOSh identifiers are used to register display dynamic link
libraries (dIl) where ‘'n’ isanumber in range 1 to 6.

Implementing Display DLL’sfor User Defined Outputs Page1 of 3

User Display DLL Interface Functions

A sample source code of auser display DLL can be found inthefile RTXTINY.CPP. Thefollowing
functions are used in context with the user display DLL interface.

Function:

Description:

BootDlI|

pio

void Fetchltem

SYM * FindPub

SYM * PubSymByVal

Generic pVision interface function to the Display DLL. Thisfunctioniscalled
from the pVision debugger with the following function codes:

nCode= 1. init call todisplay DLL. plisadatapointer to struct bom that
contains interface functions and data of the uVision debugger. The display DLL
may initilize the following pointers in the struct bom:

pMrtx address of menu array, see explanation below.

RtxUpdate address of update dialog function; called by pVision to update
theinformation in all open dialogs.

TaskRun address of _TaskRunning_ debug function. For a description of
the usage refer to the Getting Sarted and Creating Applications
User’s Guide, Chapter 8 RTX Kernel Aware Debugging.

nCode= 3: 2™init call to display DLL. plisadata pointer to struct dbgblk that
contains information about the target system and the debug environment.

nCode = 4. shut down call to display DLL. No further parameters passed. The
DLL must free all resources and close open dialogs.

Is apointer to struct bom that is passed with the BootDLL function call. The
filesBOM.H and COMTYP.H contain various definitions that are used within
the following functions. The struct bom contains the addresses the following
functions:

(UINT64 nAdr, TYP *tp, union v *pU)

Fetch CPU memory addressed by nAdr to unionv. The datatype (char, int, long,
...)isgiven by TYP *tp.

(char *name)

Returns the symbol information for a given public symbol name. A null pointer
isreturned if the search fails.

(UINT64 nVal, DWORD nMask)

Returns the symbol information for a given value nVal. nMask denotesthe
symbol table to search for. For example, nMask = F66_LOC searches for
function entries or assembler labels. F66_VAR searches for data symbols. A
null pointer is returned if the search fails.

Implementing Display DLL’sfor User Defined Outputs Page 2 of 3

Function:

DWORD ReadMem
DWORD WriteMem

Description:
(DWORD nAdr, DWORD nMany, BYTE *vp)

Read or Write to CPU memory at address nAdr. nMany is the number of bytes
to transfer. vp isapointer to the buffer. ThisfunctionsreturnsaOif OK,
otherwise the address is return where no memory access was possible.

Menu Structure

The uVision Display interface allows you to implement several menu entries under the pVision
peripheral menu include pop-up menus. The following lists the struct defintions that are used to define
menu items. All definitions arein the file BOM .H.

#defi ne DLGD struct D gDat
struct D gDat { /1 every dialog has it's own structure
i Open; /] auto reopen dialog (pos := 'rc')
HW\D hw; // Hand of Dial og
BOOL (CALLBACK *wp) (HWND hw, U NT nsg, WPARAM wp, LPARAM I p);

RECT rc;
voi d (*Update) (void);
void (*Kill) (DLGD *pM;

/] Position rectangle
/'l Update dial og content
/1 Kill dialog

voi d *vp; /] reserved for C++ Dialogs (D g *this)
IiE
#def i ne DYM struct DynaMN
struct DynaM { /! Menu item data structure
int nDel i m /1 Menu tenplate delimter: 1=normal entry, 2=popup entry,
-1=end of nmenu, -2=end of popup entry
char *szText; /1 Menu item text
voi d (*fp) (DYM *pM; /1 function to be activated on nmenu sel ection
nl D; /1 uv2 assigned | D_xxxx
DWORD nDl gl d; // Dialog ID
DLGD *pD g; // link to dialog attributes
Ji;

Example for a user defined menu:

DLGD TaskDi g[] = { /1l must not use 'const' here !

/1i OQpen Hwnd Dig Proc. Rect: -1 := default Updat e Fct Kill Fct
{ 0, NULL, NULL, { -1, -1, -1, -1, }, TaskUpdate, TaskKill 1},

IE

DLG Int0D g[] = { /'l must not use 'const' here !

/1i Open Hwnd Dig Proc. Rect: -1 := default Updat e Fct Kill Fct
{ 0, NULL, NULL, { -1, -1, -1, -1, }, IntOUpdate, IntOKill },

IE

DLG Int0D g[] = { /'l must not use 'const' here !

/1i Open Hwnd Dig Proc. Rect: -1 := default Updat e Fct Kill Fct
{ 0, NULL, NULL, { -1, -1, -1, -1, }, IntOUpdate, IntOKill },

IE

DYM nmy_nenu [] = {

/I nDel i m szText fp nl D nDl gl d pDl g

{ 1, "&Task Table" , TaskDi sp, 0, IDD TASK, &TaskDig }, // Task Tabl e display
{ 2, "&nterrupts” , NULL, 0, O, NULL }, // Interupt pop-up menu
{ 1, "Interpt. &" , IntODi sp, 0, IDD_INTO, & ntODig }, // Interupt-0 display
{ 1, "Interpt. &" , IntlDi sp, 0, IDD INT1, & ntiDig }, // Interupt-0 display
{ -2, NULL , NULL, 0, O, NULL }, // End of Port-Goup
{ -1, NULL , NULL, 0, O, NULL }, // End of Table

}

A sample dialog project for the RTX Tiny debug DLL’sis available in source form as Microsoft Visual
C .NET-2005 project and can be freely modified. This code can be used freely without any license and
royalty issues.

Implementing Display DLL’sfor User Defined Outputs Page 3 of 3

