

Compiling with Clang for Windows on
Arm
Non-Confidential Issue 1.0
Copyright © 2021 Arm Limited (or its affiliates)
All rights reserved

102563

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 3

Compiling with Clang for Windows on Arm

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 6th August 2021 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

http://www.arm.com/company/policies/trademarks

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 4

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be
offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
email terms@arm.com.

https://developer.arm.com/
mailto:terms@arm.com

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 5

Contents

1 Overview ... 5

1.1 Before you begin ... 5

2 LLVM support for Arm-based devices .. 6

2.1 Native Windows on Arm 64-bit toolchain .. 6

2.2 Clang-cl support .. 6

2.3 Arm processor support ... 6

2.4 SPEC CPU 2017 CPU benchmark improvements ... 7

2.5 Out-of-line atomics for LSE deployment ... 8

2.6 Improved support for SVE and SVE2 intrinsics .. 8

2.7 SVE code-generation infrastructure ... 8

2.8 MVE optimizations ... 8

2.9 Debug support for SVE and SVE2 .. 9

3 Compiling PuTTY natively on WoA with Clang .. 10

4 Related information ... 12

5 Next steps .. 13

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 6

1 Overview
This guide introduces the features in LLVM 12 and the associated Clang release that help developers
for Arm-based devices. In particular, this guide examines how to use the native toolchain to compile
for Windows on Arm (WoA). The guide uses the example of compiling the popular open-source
PuTTY application for Windows on Arm.

The new LLVM toolchain variant for Windows on Arm means that developers can now develop and
compile a C/C++ application on a Windows on Arm laptop with a native AArch64 LLVM toolchain.
This native toolchain means that you can develop software for an Arm-based device on that device
itself, rather than cross-compiling on another host or using emulation to run an x86 build of Clang.

For Windows on Arm devices, using the native toolchain is much faster than running an x86 build of
Clang under emulation. Running under emulation restricts the use of modern compiler technologies
like link-time optimization. This is because the 32-bit toolchain supported under emulation can only
use 4GB of memory. Native binaries are AArch64 binaries and do not require emulation, speeding up
the entire process for developers.

1.1 Before you begin
To follow this tutorial, you need the following hardware and software:

• A Windows on Arm device

• LLVM 12.0.0 or higher, which is available from the LLVM download page.
The pre-built binary for Windows on Arm is LLVM-12.0.0-woa64.exe.

• Visual Studio, including the Arm build tools and the Desktop development with C++
workload. Follow the Visual Studio installation instructions in Building libraries for Windows
on Arm: Install Visual Studio.

• The Microsoft C Runtime Library, version 14.00.24234.1 or later, called
vcruntime140.dll. Microsoft distributes this runtime library as part of Microsoft Visual
C++ Redistributable for Visual Studio 2015, 2017 and 2019, available as vc_redist.arm64.exe.
For more information, see this Microsoft material: The latest supported Visual C++
downloads.

• Perl, for example Strawberry Perl or similar

• A file archive utility, for example 7-Zip or similar

• A make utility, for example GnuWin32 or similar

https://releases.llvm.org/12.0.0/docs/ReleaseNotes.html
https://releases.llvm.org/download.html
https://github.com/llvm/llvm-project/releases/download/llvmorg-12.0.0/LLVM-12.0.0-woa64.exe
https://developer.arm.com/documentation/102528/0100/Install-Visual-Studio
https://developer.arm.com/documentation/102528/0100/Install-Visual-Studio
https://aka.ms/vs/16/release/VC_redist.arm64.exe
https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0
https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0
https://strawberryperl.com/
https://www.7-zip.org/
http://gnuwin32.sourceforge.net/

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 7

2 LLVM support for Arm-based
devices
LLVM 12 provides improved support for Arm-based devices over previous versions.

This improved support includes the following features:

• A native Windows on Arm toolchain

• Support for new processors

• Performance improvements to a key CPU benchmark

Let’s look at each of these features in more detail.

2.1 Native Windows on Arm 64-bit toolchain
The LLVM toolchain variant for Windows on Arm means that you can now develop and compile a
C/C++ application on a Windows on Arm laptop with a native AArch64 LLVM toolchain.

Compiling on Windows on Arm devices using native Clang is faster than running an x86 build of Clang
through emulation. Arm and Linaro have independently confirmed that a typical compile time is twice
as fast using the native toolchain.

2.2 Clang-cl support
As part of the LLVM 12 release, LLVM supports clang-cl, a compatibility layer for Microsoft Visual
C++ (MSVC). This means that most developers can use clang-cl to compile their C/C++ applications
on Visual Studio/MSBuild on the Windows on Arm device, without needing to change the command
line.

You can use clang-cl.exe as a direct replacement for cl.exe, the MSVC compiler executable.
This allows you to easily modify projects that already use MSVC to use native compilation.

2.3 Arm processor support
LLVM 12 adds support for the following processors:

• Arm Neoverse V1

• Arm Neoverse N2

• Arm Cortex-A78C

• Arm Cortex-R82

• Fujitsu A64FX

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/native-clang-for-windows-on-arm
https://www.linaro.org/news/linaro-arm-and-qualcomm-collaborate-to-enable-native-llvm-for-windows-10-on-arm/

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 8

Use the Clang -mcpu command-line option to compile for a specific processor. When you specify the
-mcpu option, the compiler automatically uses the appropriate architectural features for the
specified processor, optimizing code performance accordingly.

The following table specifies the command-line option for each of the new target processors:

Table 1 Clang command-line options for targeting new processors

Processor Clang command-line option

Arm Neoverse V1 -mcpu=neoverse-v1

Arm Neoverse N2 -mcpu=neoverse-n2

Arm Cortex-A78C -mcpu=cortex-a78c

Arm Cortex-R82 -mcpu=cortex-r82

Fujitsu A64FX -mcpu=a64fx

2.4 SPEC CPU 2017 CPU benchmark improvements
LLVM 12 adds new generic vectorization optimizations that improve performance on the SPEC CPU
2017 Integer 525.x264_r benchmark. On Arm Neoverse N1 hardware, there is a 25% improvement
for this individual benchmark, and an overall 2% improvement in the SPEC CPU 2017 INT score.

Other optimizations in LLVM 12 that contribute to improved benchmark scores include the following:

• LLVM identifies SAD pattern and combines UDADDV instructions to generate vector addition
operations.

• LLVM now supports epilogue vectorization.

The following chart shows the performance improvement of LLVM 12 compared to LLVM 11 over
several different benchmarks:

https://llvm.org/docs/Vectorizers.html#epilogue-vectorization

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 9

2.5 Out-of-line atomics for LSE deployment
Armv8.1-A introduced AArch64 Large System Extensions (LSE), which provide more efficient atomic
instructions for large multiprocessor systems.

LLVM 12 adds the new Clang option -moutline-atomics, which detects at runtime whether the
processor supports LSE. If LSE is supported, the compiler uses the new atomic instructions if possible.
For processors without LSE support, the compiler uses Armv8.0-A LL/SC loops. This behavior mirrors
similar support that is available within the GNU family of projects.

2.6 Improved support for SVE and SVE2 intrinsics
LLVM 11 was the first LLVM release to add vector-length agnostic Scalable Vector Extensions (SVE)
intrinsics support. LLVM 12 adds vector-length specific ACLE support and improves vector-length-
agnostic support.

2.7 SVE code-generation infrastructure
LLVM 12 introduces the ability to vectorize certain loops using width-agnostic SVE auto-
vectorization.

For example, consider the following loop, which is adapted from the set of loops in the updated Test
Suite for Vectorising Compilers, TSVC_2:
void s000(double * __restrict a, double * __restrict b) {
 unsigned LEN_1D = 1024;
#pragma clang loop vectorize_width(2, scalable) interleave(disable) unroll(disable)
 for (int i = 0; i < LEN_1D; i++) {
 a[i] = b[i] + 1;
 }
}

The #pragma clang loop vectorize_width(2, scalable) code enables SVE auto-
vectorization. This code tells LLVM to attempt to vectorize the loop using a scalable vectorization
width of two lanes.

You can learn more about width-agnostic SVE auto-vectorization in Arm’s recent Linaro Connect
presentation: SVE and SVE2 in LLVM.

2.8 MVE optimizations
M-Profile Vector Extension (MVE) is an extension of the Armv8.1-M architecture. MVE is designed to
give a significant performance improvement for machine learning and digital signal processing
workloads on processors for embedded devices, such as Arm Cortex-M55.

LLVM 12 includes optimizations to vectorization and code quality for MVE, leading to significant
improvements to both performance and code size for a range of workloads. In particular, LLVM can
now fully utilize the capabilities of MVE to allow tail-predicated vectorization of reduction loops.

https://github.com/UoB-HPC/TSVC_2/blob/master/src/tsvc.c
https://github.com/UoB-HPC/TSVC_2/blob/master/src/tsvc.c
https://connect.linaro.org/resources/lvc21/lvc21-309/

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 10

2.9 Debug support for SVE and SVE2
LLDB now has full support for debugging SVE and SVE2 applications, including dynamic size update
of SVE registers.

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 11

3 Compiling PuTTY natively on WoA
with Clang
This section of the guide describes how to use Clang to compile and build an application for Windows
on Arm. The example application used in this tutorial is PuTTY, an open-source SSH and telnet client.
We use PuTTY as an example because it is well known, widely used, and freely available.

LLVM 12 includes support for native compilation on Windows for Arm (WoA). This support means we
can compile the application natively on the WoA device itself, rather than cross-compiling on a
different machine.

To compile PuTTY on a Windows on Arm device:

1. Start a Windows command prompt with Start > cmd.

2. Create a folder to use for the build, for example C:\putty, and move into that folder:
mkdir C:\putty
cd C:\putty

3. Download the Putty source archive and save it in your build folder.

The Putty source archive is the file putty-src.zip, labeled as Windows source archive in the
Source code section of the downloads page.

The downloads page also provides pre-compiled Windows on Arm binaries. Because the aim of this
tutorial is to demonstrate native compilation, we want to download the Windows source files rather
than a pre-compiled binary.

4. Extract the Putty source archive putty-src.zip into the build folder, using 7-Zip or a similar
file archive utility.

To use 7-Zip, right-click the zip file in the build folder, and click 7-Zip > Extract Here.

5. Run the Perl script mkfiles.pl to automatically generate the makefiles and folders used by the
build process:
perl mkfiles.pl

The script generates makefiles for several different compilers. The makefile that we will use is
Makefile.clangcl, which uses the Clang compiler.

6. Run the Visual Studio batch file to configure Command Prompt for Developers, to automatically
configure your environment to compile for Arm-based targets:
cmd /k ""C:\Program Files (x86)\Microsoft Visual
Studio\2019\Community\VC\Auxiliary\Build\vcvarsall.bat"" x64_arm64

7. Move to the windows subdirectory in the build folder:
cd windows

8. Use the GnuWin32 make utility, or similar, to build the PuTTY application, as shown by the
following command:
C:\GnuWin32\bin\make.exe Platform=arm64 -f Makefile.clangcl all

https://www.chiark.greenend.org.uk/%7Esgtatham/putty/latest.html

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 12

The following options control the build process:

• Platform=arm64 specifies that the build target is a 64-bit Arm-based system.

• -f Makefile.clangcl specifies that the build process uses the Clang compiler.

• all directs the build process to compile all components of the PuTTY application.

When the build process completes, there will be a new executable putty.exe in the windows
subdirectory in the build folder. This is the natively compiled PuTTY application. Double-click it to run
and check that it works on your Windows on Arm device.

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 13

4 Related information
Here are some resources related to material in this guide:

• Clang documentation

• Compiling on Arm for Arm: New native LLVM toolchain on Windows on Arm

• GnuWin32

• The LLVM Compiler Infrastructure

• LLVM download page

• Microsoft resources:

o Install Visual Studio

o Microsoft Visual Studio documentation

o The latest supported Visual C++ downloads

o Visual Studio on Arm-powered devices

o visualstudio.microsoft.com

o Windows 10 on Arm documentation

• PuTTY: a free SSH and Telnet client

• Strawberry Perl

• What is new in LLVM12 for Arm?

• Windows on Arm portal on developer.arm.com

https://clang.llvm.org/docs/index.html
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/native-llvm-toolchain-on-windows-on-arm
http://gnuwin32.sourceforge.net/
https://llvm.org/
https://releases.llvm.org/download.html
https://docs.microsoft.com/en-us/visualstudio/install/install-visual-studio?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/?view=vs-2019
https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0
https://docs.microsoft.com/en-us/visualstudio/install/visual-studio-on-arm-devices?view=vs-2019
https://visualstudio.microsoft.com/
https://docs.microsoft.com/en-us/windows/arm/
https://www.chiark.greenend.org.uk/%7Esgtatham/putty/
https://strawberryperl.com/
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/llvm12-for-arm
https://developer.arm.com/solutions/os/windows-on-arm

Compiling with Clang for Windows on Arm 102563
Issue 1.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 13

5 Next steps
This guide introduced the new Clang features which help to support Arm devices, and showed you
how to use Clang to natively compile the PuTTY application for a Windows on Arm device.

As we have seen, compiling applications natively for Windows on Arm with Clang is not difficult. If you
are compiling an existing application, most of the work is likely to be investigating how the current
build process works. When you understand the build process, adapting it for Windows on Arm is
straightforward.

You can apply the same process and techniques to build your own application for Windows on Arm.

As a next step, you could try building a different application for Windows on Arm. You could try
another open-source application, or create a library of your own.

You can also learn more about Windows on Arm by visiting our Windows on Arm portal .

https://developer.arm.com/solutions/os/windows-on-arm

	1 Overview
	1.1 Before you begin

	2 LLVM support for Arm-based devices
	2.1 Native Windows on Arm 64-bit toolchain
	2.2 Clang-cl support
	2.3 Arm processor support
	2.4 SPEC CPU 2017 CPU benchmark improvements
	2.5 Out-of-line atomics for LSE deployment
	2.6 Improved support for SVE and SVE2 intrinsics
	2.7 SVE code-generation infrastructure
	2.8 MVE optimizations
	2.9 Debug support for SVE and SVE2

	3 Compiling PuTTY natively on WoA with Clang
	4 Related information
	5 Next steps

