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Abstract 
 

Summary 
The Arm Confidential Compute Architecture (CCA) Security Model (SM) defines the security requirements and the 
essential security properties of the CCA isolation architecture. These security properties are required to deploy 
applications protected by this architecture, with confidence in its underlying implementation. 

The CCA SM is concerned with required security properties, expressed as robustness rules. Technical 
requirements for CCA hardware and firmware components identified by the CCA SM are specified in separate 
technical specifications. 

 
Purpose of this document 
An owner of an application deployed for Arm CCA must be able to: 

• Establish the trustworthiness of an underlying implementation of Arm CCA 

• Protect application assets if that trustworthiness determination can change  

This document defines the foundation for establishing that trust by:   

• Defining the security guarantee provided by Arm CCA 

• Defining the underlying security capabilities that applications protected by Arm CCA can rely upon  

• Providing technical input for deploying applications protected by Arm CCA within a wider ecosystem  

• Establishing common technical definitions and terminology 

 
Target audience for this document 
Security communities in application development, application hosting, firmware development, silicon design and 
manufacture, and end product design and manufacture, for products and services related to Arm CCA. 
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Document outline 
Section 1: Overview 

Sets out context, and the CCA security guarantee. 
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Defines how Arm CCA can be deployed in the context of an ecosystem, and identifies associated roles. 
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PE. 
 

Section 5: CCA identity management 
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Section 7: Protected memory 
Security requirements for protecting off-chip memory. 

 
Section 8: CCA firmware boot 

Defines a CCA boot architecture and associated security requirements. 
 

Section 9: CCA attestation 
Defines a CCA attestation architecture and associated security requirements. 
 

Section 10: CCA firmware updates 
Defines a CCA firmware update architecture and associated security requirements. 

 
Section 11: CCA security lifecycle management 

A CCA system may be in a fully trusted state or in states of degrees of trustworthiness. This chapter 
defines the CCA security lifecycle and rules for how it can be managed. 
 

Section 12: Cryptographic recommendations 
General recommendations and guidance for cryptography in a CCA enabled system. 
 

Section 13: Appendix A: Rule history 
Change history and management of rules defined in this specification. 
 

Section 14: Appendix B: External threat model 

Not up to date, will be revised or removed in a later version of this document. 
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Conventions 

Cryptographic terminology 
This document assumes general familiarity with cryptographic concepts and methods. 

In the context of cryptography, the following English words have special meaning in this document: 

Term Description Information 

Temporal freshness A contribution that is different on each 
transaction. 

Temporal freshness typically involves a monotonic 
counter with a scope defined by some session. For 
example, a monotonic counter reset at boot or at the 
start of a protocol session. 

In some cases statistical uniqueness may be used (a 
random number). For example, when the scope is wider 
than a boot session, or wider than a system, and a 
counter might not be feasible. 

Boot freshness A contribution that is at least 
randomly different following each 
system reset. 

For example, a random boot seed generated on each 
boot. Or a hash including a monotonic hardware 
counter incremented on each boot. 

Location freshness A contribution that is different 
depending on memory location. 

Typically a memory address. 

Encryption 

Decryption 

Encryption is a cryptographic 
operation that is used to provide 
confidentiality for sensitive 
information, and decryption is the 
inverse operation. 

Prevents visibility of data to 
unauthorized parties. 

In this document: 

1. Data encryption is done using symmetric encryption 
algorithms 

2. Key wrapping may use either symmetric or 
asymmetric encryption algorithms, depending on 
context 

Hash function A hash function is a one-way function 
that maps an arbitrary length string to 
a numerical value, such that: 

• The value returned for a 
given string is always the 
same 

• Any bit change in the input 
results in a randomly 
different output value 

A hash function may be used to create a “finger print” 
for a data string.  

The properties of a hash function are such that it is not 
possible (in practice highly improbable) to derive the 
original data from a known hash value. 

Hash functions are used, for example, for integrity 
protection or for deriving keys and identities. 

Integrity protection Integrity protection is a cryptographic 
operation preventing undetected 
modification of data by unauthorized 
parties, either in storage or in transit. 

Depending on context, integrity protection may be 
provided by: 

1. Locally stored hash values (hash locking, hash 
chaining, hash trees) 

2. A message authentication code (MAC) using 
symmetric keys 

3. A digital signature using asymmetric keys 
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Term Description Information 

Replay protection Provide assurance of data freshness. 

Prevents replay of older data sets. 

Typically requires integrity protection together with 
freshness. The type of freshness required depends on 
context and determines the scope of replay protection. 

Source 
authentication 

Provide assurance of the source of 
data. 

Prevents data being supplied by an 
unauthorized party. 

A digital signature or a MAC can also provide assurance 
about the origin of data. 

 

Typographical conventions 
The typographical conventions are: 

italic 
Introduces special terminology, and denotes citations. 

bold 

Denotes signal names, and is used for terms in descriptive lists, where appropriate. 
monospace 

Used for source code examples. 

Also used in the main text for source code examples. 
SMALL CAPITALS 

Used for some common terms such as IMPLEMENTATION DEFINED. 

Used for a few terms that have specific technical meanings. 

Red text 

Indicates an open issue. 

Blue text 

Indicates a link. This can be 

• A cross-reference to another location within the document 

• A URL, for example http://infocenter.arm.com 

Rules-based writing 
This specification consists of a set of individual content items. A content item is classified as one of the following: 

• Rule 

• Information 

• Rationale 

• Implementation note 

Rules are normative statements. An implementation that is compliant with this specification must conform to all 
Rules in this specification that apply to that implementation. 
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Rules must not be read in isolation. Where a particular feature is specified by multiple Rules, these are generally 
grouped into sections and subsections that provide context. Where appropriate, these sections begin with a 
short introduction. 

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an 
implementation is compliant. 

Content items other than Rules are informative statements. These are provided as an aid to understanding this 
specification. 

 

Content item rendering 
Content items in this document are identified by paragraph formatting: 

[R0123] This is a rule statement. 

This statement is informational, providing rationale, information and context for rules. 

This statement is highlighted to explicitly call out a property that is out of scope in the current version of 
the CCA architecture. These properties are called out because they have only been deemed out of scope 
of current CCA minimal requirements. They may be considered in future releases of CCA. 

This is an editorial note to readers. It will be removed at final release of the document. 

Content item identifiers 
Each rule may have an associated identifier that is unique within the context of this specification. 

Identifiers have the following form: 

Rnnnn 

Where: 

• “nnnn” is a four digit rule identifier unique within this document, allowing referencing individual rules 

Example: 

[R0123] This is a rule statement. 

After this specification reaches beta status, a given content item has the same identifier across subsequent 
versions of the specification. 

Used and deprecated content identifiers are tracked in Appendix A: Rule history. 

Feedback 
Arm welcomes feedback on its documentation. 

Feedback on this book 
If you have comments on the content of this book, send an e-mail to arm.newmore-feedback@arm.com.  
Give: 

• The title (Arm CCA Security Model). 

• The number and release. 

• The page numbers to which your comments apply. 

• The rule identifiers to which your comments apply, if applicable. 

mailto:arm.newmore-feedback@arm.com
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• A concise explanation of your comments. 

Arm also welcomes general suggestions for additions and improvements. 

Open issues 

Key Description 
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1 Overview 

1.1 Introduction 
Arm Confidential Compute Architecture (CCA) is an architecture that provides protected execution environments 
called Realms.  

The purpose of a Realm is to provide an environment for confidential computing.  

In addition to privilege-based isolation provided by the standard Arm architecture, a Realm receives protections 
operating in the opposite direction – resources allocated to a Realm are also protected against access by higher 
privileged agents. This includes software or firmware executing at a higher exception level as well as hardware 
agents such as DMA agents. 

1.2 Problem statement 
Software on complex modern systems operates in an environment of mutual distrust. For example: 

• Application owners who do not trust each other, hosted on the same system 

• Application owners have to trust the hosting environment 

• A hosting environment has to trust applications not to attempt to compromise the host, or other 
applications 

• Platform security services do not trust the hosting environment or applications 

Existing isolation architectures, such as a hypervisor, protect the hosting environment from applications by 
preventing these from accessing resources that are private to the hosting environment. However, applications 
are not protected from the hosting environment. 

Similarly, TrustZone can protect secure services from non-secure services, but does not protect applications from 
secure services. 

CCA introduces additional boundaries protecting resources based on ownership, regardless of privilege level. It 
has been designed to meet the following overall security goals: 

• Minimal chain of trust 

An application only needs to trust itself, and the part of the system delivering the CCA security 
guarantee. 

For example, an application does not need to trust hosting software such as a hypervisor, nor any non-
CCA hardware agents, regardless of privilege level. 

• Attestable trust 

A user of an application deployed as a Realm on a CCA enabled system can attest the trustworthiness of 
the application, as well as the trustworthiness of all CCA firmware and all hardware agents involved in 
delivering the CCA security guarantee. 

• Certifiable 

The implementation of the CCA security guarantee is contained within an minimal set of hardware and 
CCA firmware components that can be developed, certified, and verified. 
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1.3 CCA security guarantee 
Arm CCA has been designed to provide specific security guarantees to both Realms and to the hosting 
environment.  

The guarantees, of course, assume a correct implementation of CCA. The system hardware and firmware 
features required to provide assurance about the trustworthiness of an implementation of CCA, and the security 
of Realm assets, are the main topics of this specification. 

1.3.1 Security guarantee to Realm Owner 
A Realm Owner represents the owner of Realm policy. 

In the context of CCA, Realm policy includes the conditions under which a Realm can access assets protected by 
a Realm on behalf of the Realm Owner itself, or on behalf of users of the Realm. Including, for example, Realm 
creation policy and attestation policy. 

Guarantee Description Notes 

Confidentiality and integrity Realm memory content and execution 
context cannot be accessed or modified 
by: 

1. Other Realms 

2. Non-CCA software, firmware, and 
hardware 

For example, a Realm is protected from: 

• Other Realms 

• Any software in the hosting 
environment, for example a 
hypervisor 

• All software in TrustZone running 
in the Secure state 

• Secure or non-secure DMA agents 

Minimal chain of trust Both the Realm owner and a user of a 
Realm only need to trust CCA firmware 
and hardware.  

For example, a Realm does not need to 
trust: 

• Other Realms 

• Any software in the hosting 
environment, for example a 
hypervisor  

• Any software in TrustZone running 
in the Secure state 

Attestable trust A user of a Realm is able to attest the 
trustworthiness of the Realm, and of CCA 
firmware and hardware. 

 

 

Protection of persistent 
Realm assets 

Persistent Realm assets can only be 
accessed by a Realm if the Realm and CCA 
firmware and hardware are in a 
trustworthy state. 

Trustworthiness is subject to policy 
controlled by the owner of the Realm. 

1.3.2 Security guarantee to a hosting environment 
A hosting environment in this context represents non-CCA software, firmware, and hardware on a system 
hosting a Realm, including policy. 
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Guarantee Description Notes 

Management and 
availability of resources 

The hosting environment has full control 
of resource allocation, including memory 
allocation, scheduling, and NS devices. 

Including resources allocated to Realms. 

System policy For example, the hosting environment 
power management policy and other 
system policies. 

 

CCA may enforce that system policies are 
safe and do not compromise the CCA 
security guarantee. 

Realm creation policy The hosting environment can create a 
Realm in any state, including an 
untrustworthy state such as debug by 
host. 

The state of a Realm is reflected in CCA 
attestation, which cannot be affected by the 
hosting environment. 

Realm creation policy and Realm state are 
out of scope of this document. 

System boot state The system can be booted in any state, 
including a state that might compromise 
the delivery of the CCA security 
guarantee. 
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2 CCA ecosystem 

2.1 Ecosystem roles 

CCA platform

Realm

Realm Runtime 
Supply Chain CCA Supply Chain

CCA 
Components 

Runtime Boot

Realm Runtime

Realm Assets Realm 
Application

Hosting 
Envvironment

Hosting Provider

Service Provider Realm Owner

Reliant Party

Verifier

Provides CCA components

Provides CCA security guarantee

Manages
Realms

Uses Realm
application

Requests 
verification

Authorises

Provide verification data

Customer of

Manages customers

Manages host

Attests Realm

Realm Policy

Ecosystem governance Manage, use or affect a 
Realm

Deliver the CCA security 
guarantee

Realm Application 
Supply Chain

Provide Realm content

 
Figure 1. CCA ecosystem roles 

A generic CCA ecosystem is outlined in Figure 1. CCA ecosystem roles. It is not intended to be specific to any 
particular ecosystem or any particular application of Arm CCA. Its purpose is to identify generic roles involved in 
deploying CCA and applications in Realms in any ecosystem. 
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For example, in a datacenter context: 

• The hosting environment might be a physical server 

• The Realm might be a protected customer VM or a cloud service instance 

• The reliant party might be a remote client connecting to the Realm to perform some task. 

In a mobile client example:  

• The hosting environment might be a physical mobile device 

• The Realm might a protected client app, or an app service 

• The reliant party might be a remote service the Realm connects to in order to complete some task on 
behalf of a user of the mobile device. 

When these roles are referred to in this and other CCA specifications then they should be understood in the 
context defined here. 

Role Description Notes 

Host Physical device (hardware and software) a 
Realm is deployed on. 

For example, a datacenter server, or a 
mobile device. 

Hosting environment Non-CCA software, firmware, and 
hardware on a system hosting a Realm, 
including policy 

For example Hypervisor, and resource 
allocation policy. 

Realm An isolated region protected by the CCA 
security guarantee. 

 

Realm content Runtime code and data protected by the 
CCA security guarantee. 

 

Realm assets Secrets protected by a Realm For example, supplied to a Realm by the 
user of a service provided by the Realm. Or 
provisioned by a Realm Owner. 

May include runtime assets, as well as 
persistent assets.  

May include data, or code, or both. 

Realm Owner The owner of Realm policy.  

Realm runtime boot The only code executing in a Realm when 
it is first launched. 

Typically boot loader code. 

Realm runtime General runtime environment in a Realm. For example, a kernel and user space 
middleware. 

Realm application Application specific code within a Realm.  
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Role Description Notes 

Reliant party An end point making use of services 
provided by a Realm  or an endpoint 
providing a service to a Realm. 

 

For example: 

• A user client, accessing a cloud 
service deployed in a Realm 

• A banking service, interacting with 
a client application deployed in a 
Realm 

• A remote client, accessing a voice 
recognition service deployed in a 
Realm 

Hosting provider Provider of hosting services. For example, a datacenter operator. 

Service provider Operator of services deployed in Realms 
on behalf of customers. 

For example, a cloud service provider, or a 
mobile communications service provider. 

Supply chains Both Realm content and implementations 
of CCA components are expected to be 
provided through ecosystem specific 
supply chains. 

CCA does not define or restrict supply chain 
models. 

But to maintain the trustworthiness of a 
CCA deployment in an ecosystem 
appropriate governance and certification 
processes are required. 

Verifier To the determine the trustworthiness of a 
Realm, a client application needs access to 
a verification service able to interact with 
the supply chains to verify both Realm 
content and the underlying 
implementation of the CCA security 
guarantee. 
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2.2 Supply chain ecosystem 

CCA compliance

CCA specifier CCA Firmware 
developer

CCA Hardware 
Ddeveloper

CCA Hardware 
Platform 

Integrator

SoC 
Manufacturer

Distribution 
Chain

Security 
Provisioner

Manufacture 
Reporter

CCA Firmware 
distributor

CCA Firmware 
signer

CCA Platform 
Verifier

Verification data

Verification data

Ecosystem governance

Development and 
manufacture

CCA specifications and 
compliance

Debug 
Authoriser

 
Figure 2. CCA supply chain roles 

A generic CCA platform supply chain is outlined in Figure 2. CCA supply chain roles. It is not intended to be 
specific to any particular ecosystem or any particular manufacture or distribution model. Its purpose is to 
identify generic roles involved in developing and deploying a CCA platform in any ecosystem. 

CCA identifies a minimum set of security parameters that must be finalized before an instance of a CCA platform 
is used. CCA does not define how those parameters are provisioned in a supply chain. For example, at least some 
initial security provisioning is required at silicon manufacture. However, final security provisioning may take place 
at some later stage in the distribution chain or in an online activation process at point of use. 
In order to use a CCA platform, a verifier needs to establish the security lifecyle status, and revocation status, of 
the CCA platform hardware and firmware.  

The verifier needs to use manufacture status information about the hardware components that make up the 
CCA platform. For example, hardware may have been manufactured in a fully secured state. Or it may have been 
manufactured in a non-secured state for test and development purposes. Alternatively, device hardware may 
have been manufactured to market or customer specific requirements, such as local cryptography standards. 
Capturing the manufacture state is represented by a manufacture reporter role.  

The verifier also needs to use release information about all CCA platform firmware. For example, firmware may 
be released in a fully secured state, or it may contain revealing firmware level logging or debugging capabilities. 
Alternatively, a released CCA platform firmware component may have been revoked because of a security 
vulnerability. All CCA platform firmware is signed by firmware signers. Depending on supply chain requirements, 
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different CCA platform firmware components may be signed by different firmware signers. Capturing the state of 
all CCA firmware for a particular CCA platform is represented by a firmware distribution role. 

 

When these roles are referred to in this and other CCA specifications,they should be understood in the context 
defined here. 

Role Description Notes 

CCA specifier Specifies required security properties and 
security features of CCA components. May 
also define interfaces and formats where 
interoperability is required. 

Some components may be specified by Arm. 
Some may be ecosystem dependent and 
specified wholly or in part by ecosystem 
partners. 

Compliance is out of scope of this 
document. 

CCA firmware developer Developer of firmware for one or more 
CCA components. 

It is expected that different components 
may be developed by different ecosystem 
partners. 

CCA firmware signer Signer of firmware for one or more CCA 
components. 

All CCA firmware is signed and verified. 

CCA hardware developer Developer of system hardware for one or 
more CCA components. 

It is expected that different components 
may be developed by different ecosystem 
partners. 

CCA platform integrator Responsible for integration of 
components, possibly from multiple 
suppliers, into a CCA system platform with 
known security properties. 

Security properties here include robustness 
properties as well as functional security 
properties. 

SoC manufacturer Manufacturer of a physical SoC containing 
an integrated implementation of a CCA 
system platform with known security 
properties 

Security properties here include robustness 
properties as well as functional security 
properties. 

Distribution chain Distribution of SoC containing an 
integrated implementation of a CCA 
system platform. 

Including end product assembly and 
manufacture, end product distribution, and 
deployment of an end product by an end 
user. 

Security provisioner Provisions CCA security parameters on 
manufactured instances of physical SoC  
containing an integrated implementation 
of a CCA system platform with known 
security properties. 

 

Debug authorizer Responsible for implementing governance 
processes for enabling hardware or 
firmware debug of CCA components. 

Enabling debug features for CCA 
components can compromise the CCA 
security guarantee. Authorizing such debug 
must be controlled with appropriate 
ecosystem governance. 
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Role Description Notes 

Manufacture reporter Tracks manufactured physical SoC  
containing an integrated implementation 
of a CCA system platform with known 
security properties. 

Security properties here include 
manufacture status. For example, a CCA 
identity may have been manufactured in a 
fully secured state. Or it may have been 
manufactured in a non-secured state for 
test and development purposes. 

CCA firmware distributor Responsible for release management of 
CCA firmware with known security 
properties. 

Including version control, release status, 
and revocation status. 

Security properties here include robustness 
properties as well as functional security 
properties. 

CCA platform verifier A verification service able to interact with 
the supply chain to verify the CCA 
platform as part of Realm attestation. 
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2.3 Attestation model 
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Figure 3. Generic CCA attestation model 

The generic CCA  attestation model is outlined in Figure 3. Generic CCA attestation model.  
In this document, a basic group based attestation model is used to describe the principles and security 
properties of CCA attestation. But the model is general and adaptable to cover a range of possible deployment 
models. For example, CCA attestation can support individual or group based attestation. It can be deployed using 
simple identity management at manufacture. It can also be deployed using more complex identity management 
schemes, including online activation processes at point of use. 

CCA attestation is agnostic to choice of attestation protocol. CCA attestation is a token based model, leaving 
Realms free to implement any attestation protocol and bind that protocol to CCA attestation tokens. 

This document describes the underlying principles and common security properties of CCA attestation. It does 
not aim to describe all possible deployment models. 
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CCA attestation has been designed with the following goals: 

• Attestation protocol and use case independence, leaving Realm designers free to implement any 
attestation protocol required for their use case 

• Independent boot and attestation of Realms, as well as of updateable components of the CCA platform 

• Rooted in a hardware provisioned CCA platform attestation key (CPAK), identifying the security 
properties of immutable1 CCA system hardware 

CCA attestation is a token based model. It is defined in more detail in CCA attestation. This introduction section 
uses a remote attestation use case as an example to outline the general security elements and principles. Other 
use cases such as local attestation or delegated attestation can also be supported. 

The main purpose of attestation is for a Reliant Party to be able to establish a secure connection to an attested 
end point in a Realm, based on attested security properties of both the Realm itself and of the underlying CCA 
platform implementing the CCA security guarantee. 

An attested end point may represent, for example, a trusted service provided by the Realm, or a credential or 
key protected by the Realm. 

An attested end point is associated with an object record managed by the Realm. This typically includes 
negotiated security properties for the attestation protocol such as exchanged public keys or Diffie-Helman 
parameters, protocol freshness parameters, and identifiers for attested objects such as a key ID or a service ID. 

The CCA platform manages a Realm boot state and a CCA platform boot state. The Realm boot state represents 
attested Realm security configurations, and measurements of Realm content. The CCA platform boot state 
represents attested CCA platform security configurations, and measurements and identification of all CCA 
platform firmware.  

Security configurations include at least any Realm or CCA firmware deployment configurations that may affect 
the CCA security guarantee. 

For the purpose of this introduction, CCA attestation consists of a Realm attestation token capturing the Realm 
boot state, and a CCA platform attestation token capturing the CCA platform boot state. Tokens are expected to 
be defined in a standard format, such as the PSA token format [PSA Token]. 

A Realm can request a CCA attestation from the CCA platform. The Realm supplies a challenge as part of the 
request, typically a cryptographic hash of the associated object record for the attested end point. This challenge 
is included in the Realm attestation token, binding security state of the attested end point to a CCA attestation. 

The Realm attestation token is in turn hashlocked to the CCA platform attestation token. Finally the CCA 
platform attestation token is signed by CPAK. CPAK is typically provisioned in hardware by the CCA platform 
supply chain as part of a security provisioning process, or derived from other hardware provisioned secrets. See 
Supply chain ecosystem. 

The tokens get relayed by the attested end point to the reliant party. The reliant party interacts with a CCA 
platform verifier to verify CPAK and the attested security properties of all hardware and firmware of the CCA 
platform. To do this, the verifier needs access to hardware manufacture and firmware release management data 
as discussed in Supply chain ecosystem. 

The reliant party can then verify the Realm attestation token, hashlocked to the CCA platform attestation, with a 
Realm verifier with access to verification data from the Realm supply chain. 

Finally, the reliant party can now verify the negotiated security state for the connection, as represented by the 
object record hashlocked to the Realm attestation. For example, negotiated public keys or Diffie-Helman 

 
1 Immutable here means it cannot change on a secured system. See CCA security lifecycle management. 
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parameters, protocol freshness state, and so on. This negotiated security state can then be used to establish a 
point to point attested secure connection between the reliant party and the attested end point in the Realm. 
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3 CCA overview 

3.1 Elements of CCA 
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Figure 4. Elements of CCA 

The high-level CCA architecture is outlined in Figure 4. Elements of CCA. 

At the hardware level, the CCA system security domain includes all system hardware components that may affect 
the delivery of the CCA security guarantee. 

[R0001] Hardware agents not directly involved in delivering the CCA security guarantee cannot directly affect 
components in the CCA system security domain. 

Firmware and software on application PE are split into four Worlds separated by World protection boundaries. A 
World represents a system security state and associated private resources – such as memory, registers, and 
devices – which are only accessible when a requester is in that state.  

1. Root world – responsible for enforcing the protection boundaries between Worlds 

2. Secure world – all TrustZone firmware 

3. Realm world – all Realms 

4. Normal world – all other hosting environment software and firmware 
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[R0002] Realm world memory and execution context cannot be affected by Normal world or Secure world. 
Secure world memory and execution context cannot be affected by Normal world or Realm world. 

Root world memory and execution context cannot be affected by any other world. 

Normal world memory and execution context is not afforded any security guarantee by CCA. 

Monitor security domain (MSD) represents the highest privilege application PE firmware on a CCA enabled 
system.  

[R0003] Only Monitor firmware can directly access hardware in the CCA system security domain. 

Monitor firmware is responsible for enforcing World isolation protection boundaries.  

Realm Management security domain (RMSD) represents the highest privileged firmware within Realm world, 
responsible for enforcing the CCA security guarantee between Realms in Realm world. 

3.2 CCA platform 
The CCA platform is a collective term used to identify all hardware and firmware components involved in 
delivering the CCA security guarantee. Hence, all hardware and firmware components on a CCA enabled system 
that a Realm is required to trust. 

This includes: 

• CCA system security domain 

• Monitor security domain 

• Realm Management security domain 

3.2.1 CCA system security domain 
CCA system security domain consists of all elements of the system architecture that may affect the CCA security 
guarantee. This includes: 

• Application PE initial boot code – for example, a boot ROM 

• Shielded locations – for example, tamper resistant fuses storing CCA hardware provisioned assets 

• Isolation hardware – all system hardware agents involved in enforcing CCA isolation policies, for example 
MMU or MPU 

• Trusted subsystems – isolated and self-contained execution environments with their own firmware, 
separate from the application PE 

For example, a host for CCA Hardware Enforced Security (CCA HES) (see Hardware enforced security) or a 
power management subsystem. 

• Invasive subsystems – for example, debug or diagnostics interfaces 

3.2.2 Monitor security domain 
Monitor security domain represents all firmware executing in Root world on application PE. It mplements the 
CCA security guarantee between worlds. 

Monitor security domain must be trusted by both Realm world and Secure world. 

3.2.3 Realm Management security domain 
Realm Management security domain represents all firmware executing in Realm world on application PE. It 
implements the CCA security guarantee between Realms within Realm world. 
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Realm Management security domain must be trusted by Realms. 

3.3 Relationship to system platform security services 
A system may provide platform security services not related to CCA. For example: 

• Identity management, such as subscriber identity 

• Key storage and key management not related to CCA 

• Platform measuring and attestation 

• Biometrics and user authentication 

CCA does not rely on any such services for its own security. They are not discussed in this document. 

Two specific platform security services may intersect with CCA depending on implementation and are mentioned 
here for context only: 

• Security provisioning  

• Platform attestation 

Platform security and platform attestation is typically implemented in dedicated trusted subsystems, including 
standards such as [Titan] and [Cerberus].  

3.3.1 Security Provisioning 
A security provisioning agent represents any features in support of provisioning secrets, for example for 
provisioning SIM or TPM identities. 

CCA also requires hardware provisioned assets for providing the CCA security guarantee, see CCA identity 
management. 
Security provisioning processes are expected to be ecosystem specific, and may occur at any stage, or 
combination of stages, in a device supply chain. For example: 

• At silicon manufacture 

• As part of device activation at the end of device manufacture 

• As part of an online activation process by a device owner 

CCA does not define or restrict what security provisioning processes are used or how they are designed. 

3.3.2 Platform attestation 
Platform attestation is a common feature of modern complex devices with multiple platform security 
subsystems. Each individual platform security subsystem may implement its own secure boot process, but does 
not in itself provide an overall security boot state of the platform as a whole. 

In general, platform attestation consists of a dedicated trusted subsystem capable of independently measuring 
the critical boot stages of all platform security components, and provides an overall platform security 
attestation.  

Platform attestation is transparent to the platform security subsystems it measures. 

The result of a platform attestation may be used in several ways. For example: 

• Enforce local device policy  

• Provide independent proof of the overall security state of a system to a remote platform verifier 

For example, enable a Cloud hosting provider to enforce policy in a datacenter.  
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Measurements taken as part of the platform boot process may also be used in key derivations. For example, it 
may be used to protect user data against unauthorized firmware. 

Platform attestation does not replace local security processes within individual platform security subsystems. 
Instead it attempts to enforce global policy across multiple mutually distrusting platform security subsystems. 

CCA does not define or restrict platform attestation processes, and does not rely on platform attestation for its 
own security processes. 
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4 Hardware enforced security  
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Figure 5. CCA hardware enforced security 

[R0004] Arm strongly recommends that all implementations of CCA utilize hardware enforced security (CCA HES). 

The remainder of this document assumes a CCA HES enabled system. 

CCA HES is a tenant of a trusted subsystem – a CCA HES Host. See Figure 5. CCA hardware enforced security. It re-
locates the following Monitor security domain services away from application PE. These services involve all 
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operations directly affecting initial measurements for CCA, and all operations directly affecting CCA hardware 
provisioned parameters. In particular: 

• CCA platform attestation 

• Tracking of CCA boot state 

• CCA security lifecycle management 

• CCA enforced key derivations (future CCA use cases) 

In addition, the following hardware elements of the CCA platform domain are moved to the CCA HES Host: 

• Shielded locations 

The main motivations include: 

• Reduce exposure of root secrets to application PE side-channels 

Especially on complex systems with a large number of application PE sharing a complex memory 
subsystem. 

• Reduce exposure to mis-reporting of attestation state 

In particular the boot measurements and boot state of CCA in case of a vulnerability compromising Root 
world and the Monitor security domain. 

[R0005] CCA HES can only be deployed on a dedicated trusted subsystem, or as a tenant on a multi-tenant 
trusted subsystem.  

A trusted subsystem provides a hardware isolated execution environment for sensitive security services, 
implementing its own boot processes and security lifecycle management. See Trusted subsystems. 

[R0006] A trusted subsystem hosting CCA HES services also hosts all shielded locations used by CCA.  

[R0007] Only CCA HES can have direct access to those locations. 

CCA HES provides the following services and interfaces to application PE: 

• CCA platform attestation service 

• Interface to capture Monitor firmware measurements as measured by PE initial boot code, and 
associated Monitor firmware identity metadata 

• Interface to capture Realm Management firmware measurements as measured by Monitor firmware 
and associated Realm Management firmware identity metadata 

[R0008] Only Monitor security domain, and PE initial boot, can directly access CCA HES from an application PE. 

CCA HES provides the following services and interfaces to other trusted subsystems in the CCA system security 
domain 

• Interface to capture individual Trusted subsystem firmware measurements as measured by each trusted 
subsystem, and associated Trusted subsystem firmware identity metadata  

[R0009] Interfaces to trusted subsystems in the CCA system security domain can only be directly accessed from 
CCA system security domain. 

CCA HES, and the CCA HES host,  implement the following private services: 

• Cryptographic services 

• Interfaces to capture CCA HES host firmware measurements taken by the CCA HES host itself as part of 
its own boot process and associated CCA HES host firmware identity metadata 
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[R0010] Measurements taken by the CCA HES host cover at least all firmware, executing in the context of the 
CCA HES host, which may affect the CCA security guarantee. 

Interfaces to capture measurements take the form of registers with hash extend and lock semantics. 

[R0011] Measurement registers are reset to a known state following system reset.  

[R0012] The value of a measurement register is a hash value, which can only be extended. It is not possible to 
modify the value of a measurement register other than by extending it. 

[R0013] Once locked, a measurement register cannot be updated again until following system reset. System 
reset is the only way to reset a measurement register.  

The primary purpose of CCA HES is to build up a boot state of all parts of a system that may affect the CCA 
security guarantee, enabling CCA platform attestation. CCA HES does not itself calculate those measurements. 
For example, CCA HES trusts immutable PE initial boot to measure Monitor firmware as part of application PE 
boot on a secured system. Likewise, CCA HES trusts the immutable initial boot processes of other trusted 
subsystems in the CCA system security domain. 

To guarantee correct reporting of measurements CCA HES enforces the security lifecycle state of the CCA system 
security domain. 

[R0014] No part of the CCA system security domain can boot in a non-secured state without authorization from 
CCA HES. Including trusted subsystems and application PE. 
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5 CCA identity management 
This specification defines a set of secrets and public identifiers that may be used in determining the 
trustworthiness of a CCA deployment, and to protect CCA assets. 

They are listed here for reference. 

This document uses the term parameter to mean any CCA specific key, seed, identifier or version information 
either provisioned in CCA system security domain, or derived from hardware provisioned parameters.  

 

5.1 Hardware provisioned parameters 
An immutable parameter is a parameter that cannot change. 

A CCA hardware provisioned parameter is an immutable parameter provisioned in CCA system security domain. 

A shielded location is an on-chip NV storage location with a degree of tamper resistance. 

A private parameter holds a secret value, such as a secret key. 

A public parameter holds a value that is not secret, such as a public key or identifier.  

[R0018] CCA hardware provisioned parameters are only stored in shielded locations. 

[R0019] CCA hardware provisioned parameters are immutable on a secured device. 

[R0020] Private CCA hardware provisioned parameters can only be directly accessed by CCA HES (see Hardware 
enforced security). 

Minimum CCA hardware provisioned parameters include: 

Parameter Description Secret 

HUK Hardware unique symmetric key. It represents a randomly unique 
seed for each manufactured instance of a CCA enabled system. 

Yes 

GUK Group unique symmetric key. It represents a randomly unique seed 
that may be shared with some group of manufactured CCA enabled 
systems with the same immutable hardware security properties. 

Yes 

[R0021] HUK is randomly generated at manufacture. 

[R0022] HUK can only be accessed by CCA HES at any point in the security lifecycle of the system.  

For example, HUK must not be collected at manufacture, or stored outside the system. HUK may be used, for 
example, as a seed for deriving root keys for sealing or secure storage use cases. 

[R0023] GUK is at least randomly unique for some group of manufactured instances of a CCA enabled system, all 
with the same CCA security properties. 

[R0024] GUK can only be accessed by CCA HES, other than temporarily at security provisioning. 

For example, GUK can be stored temporarily outside the system for the purpose of manufacture provisioning, 
but must not be collected or stored persistently outside the system. 

GUK may be used, for example, as a root seed for deriving anonymised keys. 
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5.2 Derived parameters 
Derived parameter is not stored persistently, but derived as part of the boot process. This table summarises the 
most important derived parameters for CCA.  

[R0155] Private derived CCA parameters owned by CCA HES can only be directly accessed by CCA HES (see 
Hardware enforced security). 

[R0156] Private derived CCA parameters owned by another CCA security domain cannot be directly accessed by 
any less trusted security domain. 

 

Parameter Description Private Ownership  Source 

Derivation root 
keys for Monitor 
security domain 

Virtual HUK/GUK, derived 
uniquely for Monitor security 
domain at boot. 

Yes Monitor security 
domain 

PE initial boot, or CCA HES 

Derivation root 
keys for Realm 
Management 
security domain 

Virtual HUK/GUK, derived 
uniquely for Realm 
Management security 
domain at boot. 

Yes Realm 
Management 
security domain 

Monitor security domain 

CCA platform 
attestation key 
(CPAK) 

Asymmetric attestation key 
for the CCA platform. 
Identifies the immutable 
security properties of the 
CCA system security domain. 

Yes, 
private 
portion 

CCA HES Typically derived from GUK, or 
equivalent1. 

CPAK ID Public identifier for CPAK No CCA HES Hash of public part of CPAK 

Uniquely identifies the immutable 
hardware security properties of a 
CCA platform. 

 

 

 

 
1 Direct derivation of IAK is used in this document as a simple generic workflow for deriving a CCA initial 
attestation key, and as such it represents a minimal implementation. 
More complex workflows including, for example, online activation flows, one time keys, and so on, can be 
supported if required. Such flows are ecosystem specific and not discussed in this document. 
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6 CCA system security domain 
The CCA system security domain represents all system hardware components that may directly affect the CCA 
security guarantee. 

[R0026] CCA hardware in CCA system security domain can only be directly accessed by Monitor security domain. 

6.1 On-chip memory 
On a secured system, on-chip memory is any volatile memory location not accessible outside the system 
boundary. 

[R0027] Ownership of on-chip memory is enforced at least along world isolation protection boundaries. 

World ownership of on-chip memory may be, for example, statically assigned at boot, or dynamically assigned at 
runtime by Monitor security domain. 

6.2 Isolated locations 
An isolated location is a non-volatile storage location that on a secured system is not accessible outside the 
system boundary. 

For example:  

• An inseparable secure element (SE) 

• An on-chip one-time programmable (OTP) memory device 

• On-chip flash 

6.3 Shielded locations 
A shielded location is an isolated location designed and used for the purpose of storing secrets. 

[R0028] A shielded location provides tamper resistant storage. 

Examples of attacks to consider include: 

• Passive and active probing 

• Glitching 

• Hardware sidechannel attacks, including power or frequency analysis 

• Software sidechannel attacks 

• Environmental attacks, including energy, radiation, and temperature 

The degree of tamper resistance required is deployment and ecosystem specific and out of scope of this 
specification. Individual ecosystems may define more specific certification profiles. 

6.4 Immutable initial boot code  
The CCA boot process relies on a verified boot process, which starts with immutable initial boot code. See CCA 
firmware boot.  
Immutable initial boot code is stored within the CCA system security domain using, for example, on-chip ROM, 
on-chip OTP, or locked on-chip flash.  
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Combination storage can also be used, such as an on-chip ROM in the CCA system security domain combined 
with a hashlocked image from external storage. 

 

6.5 Power management 

6.5.1 System reset 
The term system reset is used to describe a complete system reset, including any trusted subsystems. 

[R0029] All CCA system security domain components are reset following a system reset and start in a fresh state. 

This includes, for example, all trusted subsystems and memory protection hardware. 

[R0030] Following system reset, all non-persistent CCA runtime state or data is either reset or rendered 
unusable. 

Arm recommends that this is achieved by resetting root keys for protected memory, ensuring the system is in a 
fresh state and that any volatile data from before the reset cannot be retrieved by unauthorized agents. See 
Protected memory. 

6.5.2 Software initiated system reset 
Software initiated system reset is any action taken by an application PE to reset CCA firmware running in 
Monitor security domain.  

[R0031] A software initiated system reset results in the same actions being taken as following a hardware 
initiated system reset. 

Failing to reset all CCA system security domain may compromise the CCA security guarantee. For example, 
failure to reset memory encryption may expose the contents of memory previously allocated to a Realm. 
Restarting execution from PE initial Boot is not sufficient. 

[R0032] Any software initiated system reset can only be initiated by Root world.  

Realm world, Secure world, or Normal world cannot directly initiate a software initiated system reset. They must 
go through root world to initiate a system reset. 

Realm world, secure world, or Normal world may perform a software initiated reset within their own domains. 

6.5.3 System reset initiated by a trusted subsystem 

[R0033] CCA HES host is the only trusted subsystem able to directly initiate a system reset. 

6.5.4 System hibernation 
The term system hibernation is used to describe a system reset event that can preserve enough state to restart 
execution from a known point prior to the reset. 

System hibernation is not supported by the current release of CCA, and is only included here for reference. 

System hibernation is an optional feature. If supported, hibernation typically involves hibernation code saving 
runtime state to persistent storage before powering down the system. On system reset, boot code is then able 
to detect and restore the previously saved state as part of the boot process. 
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[R0034] The runtime state of a system that has been hibernated and then restored is indistinguishable from if 
the hibernation event never took place. 

[R0035] Any stored CCA and Realm state is protected, including privacy, integrity, and replay protection. 

[R0036] The security logic for entering and exiting a system hibernation state can only be implemented within 
the Monitor domain. 

Ephemeral state might not survive hibernation. For example, network connections may have been lost. 

System hibernation typically requires on-chip trusted storage, at least for a small amount of root metadata. 

General power management code, including the decision whether to hibernate or not, may be implemented 
outside the Monitor security domain. For example by Normal world or Secure world. 

An example implementation of system hibernation may be based on the following conceptual flow: 

1. Normal world system software pages out all memory allocated to Realms in Realm world using CCA 
protected paging (not defined in this document) 

2. Normal world system software pages out all remaining memory allocated to RMM using CCA protected 
paging, leaving only a small hibernation state stored by RMM in a shielded location 

3. Normal world system software pages out Monitor data structures using Monitor protected paging, 
leaving only a small hibernation state stored by Monitor in a shielded location 

4. Monitor initiates power off 

System restore follows in reverse order following system power-on and reset. 

6.5.5 System suspend 
The term system suspend is used to describe any low-power state in which the system has not been fully reset or 
power-cycled, but in which most resources have been suspended. In particular, protected external memory is 
maintained in system suspend. 

System suspend is an optional feature. If supported, suspend typically involves: 

• Suspend code ensuring orderly suspend of the current execution state  

• Power management hardware halting and powering down system resources, maintaining only a small 
internal power management state and keeping DDR refreshed to maintain the runtime state of the 
system 

On resume, power management hardware resumes system resources and suspend code ensures an orderly 
resumption of the suspended execution state.  

[R0038] The runtime state of a system that has been suspended and then restored is indistinguishable from if 
the hibernation event never took place. 

Ephemeral state might not survive system suspend. For example, network connections may have been lost. 

[R0039] The suspend state is protected, as far as possible, including privacy, integrity, and replay protection. 

System suspend typically relies on external memory protection to protect its suspend state and will typically only 
offer the same level of protection as that implemented by the system for external memory at runtime. See 
Protected memory. 

[R0040] The security logic for entering and exiting a system suspend state can only be implemented within the 
Monitor domain. 

General power management code, including the decision whether to suspend the system or not, may be 
implemented outside the Monitor security domain. For example, by Normal world or Secure world. 
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6.6 Isolation hardware 
Isolation hardware includes all hardware agents enforcing CCA protection boundaries. For example, MMU or 
MPU. 

6.7 Trusted subsystems 
A trusted subsystem is an isolated hardware subsystem with: 

• A private execution environment not accessible to any other system agent 

• Private resources not accessible to any other hardware or firmware agent on the system 

• Its own Trusted subsystem firmware 

• Its own boot process 

 

[R0041] On a secured system, a trusted subsystem is isolated from all other hardware agents, including all 
invasive subsystems. 

A trusted subsystem is responsible for its own boot process. A trusted subsystem running unauthorized firmware 
may compromise the CCA security guarantee. 

[R0042] All trusted subsystems support a verified boot process, see CCA firmware boot. 

The trustworthiness of a Realm depends on the trustworthiness of the CCA platform on the system the Realm is 
deployed on. This includes the trustworthiness of all trusted subsystems in the CCA system security domain. 

[R0043] All trusted subsystems are attestable, see CCA attestation. 

A trusted subsystem is responsible for its own security lifecycle management. As such a trusted subsystem may 
represent a root of trust in its own right. 

[R0141] A trusted subsystem may delegate its security lifecycle management to another trusted subsystem. 

For example, a power management subsystem may delegate its security lifecycle management to a CCA HES 
host. 

[R0044] On a secured system, Arm recommends that all debug capabilities are permanently disabled on all 
trusted subsystems. 

A trusted subsystem may be single tenant or multi-tenant. On a multi-tenant system more than one security 
service may be present. 

[R0045] In the case of multi-tenancy, each tenant is isolated from all other tenants and is guaranteed its own 
private resources. 

Examples of trusted subsystems may include: 

• A dedicated security processor 

• A power management controller, such as a system control processor (SCP) 

• A Secure Enclave (SEn)  
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6.8 Invasive subsystems 
Invasive subsystems include any system feature or interface that might compromise the CCA security guarantee, 
such as: 

• External debug interface 

• Boundary scan interface 

• RAS and other fault detection and recovery technologies 

• Power management, including entering and exiting system suspend and system hibernation states 

[R0046] CCA HES moderates all invasive subsystems and ensures the CCA security guarantee is not 
compromised. 

For example, enabling external debug can only be done following a system reset and must be reflected in 
attestation. Similarly, a RAS error detection event must not compromise CCA protection boundaries. 
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7 Protected memory 
Many Realm and CCA assets are held in external memory. 

This section discusses mitigations against memory based attacks. 

7.1 General threat model 
The following is a summary of general threats to be considered in relation to external memory. 

Direct memory access: An unauthorized agent on the same system attempts to directly access the contents of 
memory allocated to a different world, or to a Realm. 

Probing: An attacker attempts to physically access the contents of memory allocated to a world, or to a Realm. 
For example using hardware probes, or recording devices such as NVDIMM. 

Replay: An attacker attempts to physically replay previously captured memory content. For example, to revert a 
Realm to an early known state, or to replay content captured from one Realm into memory allocated to a 
different Realm.  

Leakage: An attacker gains access to the contents of memory allocated to a world or a Realm, for example 
through misconfigurations or errors in the implementation of the CCA platform. 

Software based sidechannels: For example timing attacks, or row-hammer style indirect memory corruption 
attacks 

7.2 Possible mitigations 
The following table enumerates possible mitigations that may be deployed to address some or all of the main 
classes of memory attacks  and their associated essential properties. 

Mitigation Properties Mitigates against Information 

Boot freshness Memory encryption is 
randomly re-seeded on 
boot. 

Content allocated to Realms 
being available following a 
system reset. 

 

Location freshness Memory encryption is 
unique per memory 
location, 

The same content plaintext 
resulting in the same 
ciphertext for all memory 
locations. 

For example, including location as 
part of an encryption tweak or IV. 

CCA isolation Enforces access control 
boundaries for memory 
allocated to worlds, and 
to Realms within Realm 
world. 

Direct memory access 
between worlds, and 
between Realms in Realm 
world. 

Assuming correct configuration. 

Physical protection External memory has a 
degree of tamper 
resistance. 

Probing – read, modify 

Replay 

For example, in-package memory. 
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Mitigation Properties Mitigates against Information 

World unique 
encryption 

Memory is uniquely 
encrypted per world and 
location. 

Probing – read 

Leakage across world 
boundaries 

Replay of contents captured 
from one world  into a 
different world 

Memory contents remain 
protected even if unauthorized 
access is gained across a world 
boundary. 

Realm unique 
encryption 

Memory is uniquely 
encrypted per Realm and 
per location. 

Probing – read 

Leakage across Realm 
boundaries 

Replay of contents captured 
from one Realm into a 
different Realm 

May affect cache performance. 

Realm controlled 
encryption 

Memory allocated to a 
Realm is encrypted using 
keys supplied by the 
Realm. 

Same as Realm unique 
encryption. 

Can support memory mapped 
storage, such as storage class 
memory. Including across Realm 
restarts. 

Integrity protection Memory contents are 
integrity checked. 

Probing – modify 

Software based side-
channels – modify 

Memory contents cannot be 
modified undetected. 

Affects system performance. 

Introduces a memory overhead 
for storing metadata. 

Integrity protection 
with temporal 
freshness 

Adds temporal freshness 
to integrity protection. 

Probing – modify 

Replay – any 

Software based side-
channels – modify 

Requires integrity protection. 

Increases memory overhead. 

Encryption with 
temporal freshness 

Adds temporal freshness 
to world or Realm unique 
encryption. 

Probing – read, modify 

Leakage – no additional 
protection 

Replay - any 

Each memory write adds unique 
freshness to the encryption, such 
as a nonce counter value. 

Requires similar overhead as 
integrity and replay protection. 

 

7.3 Use of external memory by CCA 
A trusted subsystem is a private on-chip execution environment. It must be able to execute independently from 
other CCA components. Trusted subsystems provide essential security services and need the most protection for 
both their code and data. They typically also need to be fully operational early in the boot process when only on-
chip memory is available. 

[R0146] Trusted subsystems, including CCA HES host, can only use private on-chip memory and do not use 
external memory. 
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Root world firmware, including Monitor, is the most trusted CCA component on application PE. It enforces CCA 
security guarantees for not just Realm world, but also for Secure world and for itself.  

It is expected to be small enough to feasibly fit in on-chip memory, and typically needs to be available early in 
the boot process when only on-chip memory is available. 

Monitor manages a granule protection table (GPT) data structure to enforce world isolation security guarantees 
(see [RME]). This data structure is too large to fit in on-chip memory, so use of external memory is required. 
Because this structure is critical to CCA, additional hardware enforced error detection protection is provided 
regardless of external memory encryption (see [RME]). 

[R0147] Monitor code executes entirely from on-chip memory. 
[R0148] External memory used for GPT has hardware enforced error detection (see [RME]) in addition to 
external memory encryption. 

It is expected that Monitor data structures that affect the CCA security guarantee, other than GPT, can feasibly 
use on-chip memory.  

Some large or unbounded EL3 structures, such as scalable vector extension (SVE) structures, may require 
external memory. For any such structures that may affect the CCA security guarantee Monitor should implement 
additional integrity protection. For example, storing a hash in on-chip memory. 

[R0149] Any monitor data that may affect the CCA security guarantee, other than GPT, is either held in on-chip 
memory, or in external memory but with additional integrity protection. 

CCA firmware in Realm world – including Realm Management Monitor (RMM) – is expected to use external 
memory for both code and data.  

[R0150] External memory used by RMM is protected to at least the same level as the maximum protection 
offered to Realms. 

Implementations may choose to go further. However, from a CCA isolation threat model point of view, RMM 
only needs to be protected at least as well as the most protected Realm.  

[R0151] RMM firmware is expected to employ appropriate defensive programming techniques to minimise 
exposure to side-channel and memory corruption attacks. 

Without integrity protected external memory, both RMM and Realms may be exposed to memory corruption 
attacks. An example is Rowhammer.  

Additional sidechannel attacks to consider for all CCA firmware include, for example, timing attacks.  

Where feasible, appropriate defensive programming techniques should be employed as mitigations. 

7.4 External memory initialization 
External memory initialization is hardware dependent and in general out of scope of this specification and of 
CCA. 

For example, external memory may be initialized by a power management trusted subsystem early in the boot 
process. Or it can be initialized by secure world firmware later in the boot process. Or in some cases, external 
memory may be discovered and initialized dynamically at runtime. 

[R0152] Monitor can claim a section of external memory at boot for holding GPT. 
[R0153] External memory cannot be allocated to Realm world or Secure world until the GPT has been initialized 
by Monitor. 
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The exact mechanism for claiming memory for holding GPT is implementation defined, but once claimed the 
memory is locked by monitor to Root world and so protected by CCA isolation from then on. 

External memory protection, and other hardware configurations such as clock and power, should be kept within 
stable bounds. Where any such configurations are accessible to non-CCA firmware, protections should be put in 
place to prevent the system to be configured in an unstable state that might be exploited to bypass CCA security 
guarantees. 

[R0154] It is only possible to configure hardware to a stable state. 

For example, such configurations may be made available to non-CCA firmware via a trusted subsystem that can 
enforce policy on chosen values. Or such configurations can be restricted to Monitor (EL3) only, and then 
exposed through Monitor mediated interfaces to non-CCA firmware. 

7.5 Assets 
The following table enumerates CCA assets, and details that require external memory protection. 

Component Asset Description Used from Protected by 

Trusted 
subsystem 

Initial boot code First code executing 
following reset. 

Private on-chip ROM or 

Locked on-chip memory 

Hardware isolation. 

Physical protection. 

 Trusted subsystem 
firmware 

Trusted subsystem 
firmware loaded at 
boot. 

Private on-chip memory 

CCA hardware 
provisioned 
parameters 

CCA hardware 
provisioned seeds, 
keys and identities. 

Private storage or 

Private on-chip memory 

Runtime assets Examples: CCA root 
seeds and secrets. 

CCA initial boot state. 

Private on-chip memory 

Application PE 
initial boot 

Initial boot code 
and data 

Examples: Verification 
or decryption keys. 

Private on-chip ROM or 
locked on-chip memory 

Hardware isolation. 

Physical protection 

Monitor Runtime code and 
data 

 On-chip memory Hardware isolation. 

Physical protection. 

Granule 
protection table 
(GPT) 

See [RME]. External memory GPT error detection 
(enforced by MMU). 

Memory protection. 

Realm 
Management 

Runtime code and 
data 

 External memory Memory protection. 

RMM translation 
tables 

See [RMM]. External memory 

Realm boot state Not defined in this 
document. 

External memory 
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Component Asset Description Used from Protected by 

Runtime code and 
data 

 External memory 

Realm Runtime code and 
data. 

 External memory Memory protection 

 Persistent Realm 
assets 

 External storage  

7.6 Baseline memory protection profile 
This section defines the minimum required memory protection for the current version of CCA. It is targeted at 
deployments where physical attack on host hardware is deemed out of scope of the deployment threat model. 

[R0047] World unique encryption with boot freshness and location freshness is provided. 

This meets the threat model as follows: 

Threat Tamper resistant external memory External memory without tamper 
resistance 

Direct memory access CCA isolation CCA isolation 

Probing Yes Yes 

Replay Yes No 

Leakage Across World boundaries Across World boundaries 

Software-based 
sidechannels 

No No 

 

7.7 Memory scrubbing 
In addition to encryption, memory scrubbing is also required to ensure confidentiality of Realm data. 

[R0125] Memory re-allocated from one Realm to a different Realm is always be scrubbed. 

Without either Realm unique encryption, or encryption with temporal freshness, data can leak from one Realm 
to another if the memory content is not scrubbed.  

[R0126] Arm recommends that memory is scrubbed when it is re-allocated from Normal world to Realm world. 

Scrubbing in this case prevents normal world from choosing values used to populate memory locations allocated 
to a Realm.  

In the absence of either Realm unique encryption, or encryption with temporal freshness, the hosting 
environment can, for a given location, choose pairs of {[value written before re-allocation], [value seen by a 
Realm after allocation]}. It can do this regardless of world unique encryption.  

[R0127] Arm recommends that memory is scrubbed when it is re-allocated from Realm world to Normal world. 

In this case, direct data leak is prevented by world unique encryption. Normal world can only see scrambled 
data. 
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But without temporal freshness in the encryption then, for a given location, the same plaintext will always result 
in the same ciphertext. 

[R0128] Arm recommends that scrubbing is implemented by either writing random data, or writing unique data 
sourced from a monotonic counter, or equivalent. 

Scrubbing can be lazy. For example, only performed immediately before a page is first accessed by a recipient of 
memory. 

7.8 Additional memory protection 
Implementations may implement stronger memory protection, if required. 

Arm may define additional memory protection profiles in later releases of CCA covering other deployment threat 
models and use cases. 

For example, Realm unique encryption adds protection against leakage across Realm boundaries. It also protects 
against replay of content captured from one Realm into a different Realm. 

Realm controlled encryption, a variation on Realm unique encryption, can support memory mapped storage use 
cases, such as storage class memory. It can also support sharing memory mapped storage between multiple 
instances of a Realm to Realm Owner policy. 

Integrity protection with temporal freshness prevents all forms of modification and replay of memory content, 
including capture and replay of Realm Management memory content, as well memory corruption. 

All of the above methods directly impact system performance. Integrity protection and temporal freshness also 
introduces memory overhead for storing memory protection state. 
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8 CCA firmware boot 
This section defines requirements and a generic flow for booting CCA firmware into an attestable state. 

Requirements for booting secure world firmware, and normal world  firmware and software, are out of scope of 
this specification. 

CCA firmware includes: 

• Application PE firmware for Monitor security domain and Realm Management security domain 

• CCA HES firmware, and trusted subsystem firmware for the CCA HES host 

• Trusted subsystem firmware for all other trusted subsystems within CCA system security domain 

Implementations of the CCA platform should comply with [Boot PSG]. 

8.1 Verified boot 
Loading unauthorized CCA firmware can compromise the CCA security guarantee. 

[R0048] A secured system can only load authorized CCA firmware. 

Verified boot is rooted in initial boot code. This applies to each trusted subsystem in the CCA system security 
domain, as well as to application PE boot. 

[R0049] On application PE, and on each trusted subsystem, the only code running immediately after release 
from reset is boot code. 

[R0157] At least CCA HES host initial boot code is immutable on a secured system. 

[R0158] Arm recommends that all initial boot code is immutable on a secured system. 

[R0159] Initial boot code that is not immutable is always measured by CCA HES host, and included in CCA 
platform attestation 

Immutable here means that, on a secured system, executing initial boot code always results in the same actions 
taken, and always leaves the system in a defined state.  

Immutable initial boot code forms the start of the trust chain for the CCA platform. It is trusted implicitly and as 
such is not measured and attested directly. Instead it is considered part of the CCA system security domain, and 
the security properties of immutable initial boot code can be identified completely by the CCA platform 
attestation identity. See CCA attestation. 

Making all initial boot code immutable maintains separation of boot paths and supply chains for different 
components of the CCA platform, such as trusted subsystems and application PE, and can simplify the 
verification process.  

Depending on ecosystem requirements, updates of some initial boot code may be required. For example, to 
allow migration of a system to future security algorithms. In this case, those initial boot code components are 
not immutable and must instead be measured and verified at boot, and declared as part of CCA platform 
attestation. This model provides more flexibility for future system updates, but may create more dependencies 
and complexity in the supply chain and in the attestation verification chain. 

Regardless, initial boot code for at least the CCA HES host must always be immutable on a secured system. It is 
the root for either guaranteeing the immutability of, or measuring and attesting, initial boot code for other 
components of the CCA platform. 

Initial boot code can be stored and instantiated in different ways. For example, initial boot code may be held in 
on-chip ROM or locked on-chip storage. Or it may be held partially in ROM, and partially in a hash locked image 
in external storage. 
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Another implementation example may see the CCA HES host boot from its own private ROM. It may then 
instantiate initial boot code for other trusted subsystems, as well as for application PE. For example, by loading 
hash locked (or measured, verified and attested) images into on-chip memory before releasing trusted 
subsystems and application PE from reset. 

[R0050] If all or part of initial boot code is instantiated in on-chip memory then other trusted subsystems or 
application PE cannot modify that code before it has been executed. 

For example, on-chip memory holding initial boot code for a trusted subsystem, or for application PE, may be 
write protected until it has been executed. 

Each measured and attested CCA firmware image must be associated with  firmware identity metadata, and a 
firmware payload.  

Signed identity metadata constitutes an authorization to load and execute the firmware on a CCA system, and 
must be verified as issued by a trusted source. For example, immutable initial boot code can verify a signer 
against a hardware provisioned boot verification key. Later stage firmware can verify a signer against embedded 
verification keys. 

[R0051] CCA firmware identity metadata is cryptographically bound to an associated CCA firmware payload. 

Typically a hashlock based on a payload measurement. 

[R0052] CCA firmware identity metadata is signed by a firmware signer 

[R0053] Signed firmware identity metadata includes at least expected measurement of the CCA firmware 
payload, firmware version information, and a signer identity. 

[R0054] A CCA firmware payload can only be executed if the firmware identity metadata can be verified as 
authorized by a trusted source. 

Firmware identity metadata may be delivered as part of a single firmware image together with the firmware 
payload, or it may be delivered as a separate firmware authorization as part of a firmware update protocol. 

Signature verification can take place on every boot. It can also take place when a firmware update is first 
installed and executed, if the image is then hashlocked locally for subsequent boot events. 

The expected measurement is used to verify an actual firmware payload measurement, calculated at boot.  

[R0055] An image can only be loaded if its actual measurement, as calculated at boot, is the same as its expected 
measurement as defined in the signed firmware identity metadata. 

Version information is included in attestation. It can also be used for firmware anti-rollback. 

The signer identity is included in attestation, and may be used by the boot process to identify an appropriate 
verification key for an image. 

Version information and signer identity may also be used in CCA key derivations. For example, to support local 
secure storage implementations within the CCA platform itself, or to support local secure storage within Realms. 
CCA derived keys can also be used for sharing Realm assets across multiple Realm instances, to Realm Owner 
policy. Such use cases are out of scope of the current version of this document but may be considered in future 
versions. 
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CCA firmware images and signed identity metadata loaded from off-chip storage require additional verification. 
Verifying and executing an image in protected memory rather than external storage prevents substitution 
attacks. Verifying size and copying to a known size buffer prevents overflow attacks. 

[R0056] CCA firmware is never executed from off-chip storage, only from on-chip memory or protected external 
memory (see Protected memory). 

[R0057] Signed CCA firmware identity metadata is not verified in off-chip storage, only in on-chip memory or 
protected external memory (see Protected memory). 

[R0058] The amount of memory required for loading signed CCA firmware identity metadata must be known and 
verified before the identity metadata is copied into on-chip memory or protected external memory (see 
Protected memory). 

[R0059] The amount of memory required for the image payload must be known and verified before it is copied 
into on-chip memory or protected external memory (see Protected memory). 

[R0060] The required memory is allocated and available before data is copied from external storage. 

For example, the signed firmware identity data and the firmware payload may be combined into a single image 
of a fixed maximum size. An implementation can then ensure that a fixed buffer of at least that size is always 
available before copying. 

Alternatively, the signed firmware identity metadata may be fixed size and include the size of the payload. The 
identity metadata can then be copied into a fixed buffer and verified there, and then a second dynamic buffer 
can be allocated based on a verified payload size. 

[R0131] Data from external storage cannot be copied beyond the bounds of a receiving buffer. 

This prevents buffer overflow attacks. 

[R0132] It is not possible to copy data that is never verified from external storage to a receiving buffer. 

This prevents malicious insertion of “gadgets” into trusted memory, which might be exploited by later code. 

For example, all copied firmware identity metadata should always be verified against a signature. All copied 
firmware payload data should always be included in the payload measurement calculation and verified against 
signed firmware identity metadata. 

[R0133] If any part of the copy process or the verification process fails then all copied data is erased from 
receiving buffers. 

This too prevents malicious insertion of “gadgets” into trusted memory, which might be exploited by later code. 

8.2 Image formats and signing schemes 
Recommended algorithms and key sizes for image signing can be found in Cryptographic recommendations. 

Recommended signing schemes and image formats can be found in [Boot PSG], and in Arm Trusted Firmware 
(TF-A) reference code. 

8.3 Anti-rollback 
Rolling back CCA firmware to some earlier version with known vulnerabilities may compromise the CCA security 
guarantee. 

[R0061] Arm recommends that anti-rollback is implemented in the CCA boot process. 

In general, anti-rollback consists of: 
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• One or more monotonic counters tracking approved versions of CCA firmware 

• A policy for when to update counters following a CCA firmware update 

• A recovery policy 

For example, an implementation may choose to update counters following a certain number of successful boot 
events, based on check points and watchdog timers in the boot process. Alternatively, an implementation may 
only update counters following explicit signalling from an update service.  

In either case, the implementation may allow recovery by fallback to a last known good version before then. 
Alternatively, an implementation may only allow recovery by fallback to a previously installed version following 
an explicit roll-back authorization. 

Policies are out of scope of this specification.  

8.4 Off-line boot 

[R0062] CCA can be booted on a system without communicating with remote systems. 

For example, much of the early CCA boot process takes place before network communications may be possible. 
Alternatively, on devices where network connections cannot be guaranteed, such as mobile clients.  

[R0063] Implementations of CCA cache firmware identity metadata following firmware updates. 

[R0064] Caching firmware identity metadata cannot compromise boot guarantees, such as anti-rollback 
protection. 

[R0065] Cached firmware identity metadata can only be stored in isolated locations. 

Cached firmware identity metadata allows a system to boot without a network connection. 

8.5 CCA HES firmware boot flow 
CCA HES represents a set of core CCA services hosted on a trusted subsystem, a CCA HES host, off application PE.  

A trusted subsystem is an isolated execution environment, which must implement its own verified boot process, 
independent of application PE and any other hardware agents. 
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Figure 6. Conceptual CCA HES firmware boot flow 
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A conceptual boot flow for a trusted subsystem hosting CCA HES services is outlined in Figure 6. Conceptual CCA 
HES firmware boot flow. It is intended to illustrate the general security properties, rather than any particular 
implementation of such a flow. 

The CCA HES host is a trusted subsystem.  

The CCA HES platform represents all hardware elements private to the CCA HES host.   

Runtime firmware represents local generic services such as crypto, scheduling, storage, and local isolation.  

CCA HES firmware represents all CCA specific firmware, providing CCA HES services. 

Other tenants represent any non-CCA tenants co-hosted with CCA HES on a multi-tenant subsystem. 

[R0066] On a secured system, only verified Trusted subsystem firmware can be loaded on a trusted subsystem. 

 

[R0067] All Trusted subsystem firmware loaded is measured and verified as outlined in CCA firmware boot. 
[R0068] Measurements are tracked by hash registers with lock and extend semantics, enforced by the CCA HES 
host. 

[R0069] In the case of a multitenant host, Arm recommends that CCA measurements are tracked and stored 
separately from measurements of other tenants. 

[R0070] The result of the boot process is a Trusted subsystem boot state, including all actual measurements 
taken during the boot process, as well as associated firmware metadata as outlined in CCA firmware boot. 

Arm recommends that hardware hash extend registers are used to track measurements taken during the boot 
process of the CCA HES host and CCA HES firmware. Firmware registers implemented by CCA HES host firmware 
can be used to track other measurements. 

8.6 CCA system security domain boot process 
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Figure 7. Conceptual CCA system security domain boot process 

Following system reset, the CCA system security domain will be measured as outlined in Figure 7. Conceptual 
CCA system security domain boot process. This is a conceptual flow to illustrate how the security properties of 
the CCA system security domain are established, rather than any actual implementation or actual boot 
sequence. 

CCA HES is responsible for collating a CCA hardware boot state. 

[R0071] The result of the CCA system boot process is a CCA System Boot State including: measurements of 
trusted subsystem firmware for each trusted subsystem, including CCA HES host firmware, and associated 
firmware identity metadata as outlined in CCA firmware boot. 



ARM-DEN-0096 Copyright © 2020-21 Arm Limited or its affiliates. All rights reserved.  Page 52 
A.a  Non-confidential 

 

[R0072] Each trusted subsystem implements its own verified boot flow following the general principles outlined 
in CCA firmware boot. 
[R0130] CCA HES provides a service to track and store measurements taken by other trusted subsystems 
following system reset. 

[R0073] Measurements are tracked by hash registers with lock and extend semantics, enforced by CCA HES. 

For measurements taken by other trusted subsystems, CCA HES may implement software managed hash extend 
registers. 

8.7 Application PE boot process 
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Figure 8. Application PE conceptual boot process 

A conceptual application PE boot process is outlined in Figure 8. Application PE conceptual boot process. It is 
intended to illustrate the general security properties of the application PE boot process, rather than any 
particular implementation. 

[R0074] On a secured system, only verified CCA firmware can be loaded on an application PE. 
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The CCA system security domain includes immutable PE initial boot code. 

[R0075] PE initial boot code is immutable code executing on application PE immediately following system reset. 

[R0076] Only PE initial boot code can execute on application PE immediately following system reset. 

The PE initial boot code is responsible for initial system configuration, and for loading Monitor firmware in Root 
world.  

[R0077] All Monitor firmware in Root world is loaded in on-chip memory only. 

[R0078] Once monitor firmware has been initialized then firmware for other worlds may be loaded. 

Loading Secure world and Normal world is out of scope of this specification. 

It is expected that some system initialization may be performed by Secure world or Normal world, such as 
external memory initialization. This may require checkpoints or interaction between Monitor and either Secure 
world or Normal world. Such interactions are out of scope of this specification. 

[R0079] All Monitor firmware loaded by PE initial boot is measured and verified as outlined in Verified boot. 
[R0080] CCA HES provides a service to track and store measurements taken by PE initial boot. 

Monitor security domain is responsible for loading and measuring Realm management firmware. 

[R0081] Realm management firmware can be loaded in protected external memory. 
[R0082] All Realm management firmware is measured and verified as outlined in Verified boot. 
[R0083] CCA HES provides a service to track and store Realm management firmware measurements taken by 
Monitor. 

 

[R0084] Measurements are tracked by hash registers with lock and extend semantics, enforced by CCA HES. 

[R0085] The result of the boot process is a CCA platform boot state, including all actual measurements affecting 
the CCA security guarantee, taken during the application PE boot process by PE initial boot and Monitor, as well 
as associated CCA firmware identity metadata as outlined in Verified boot. 

For measurements taken by application PE firmware, CCA HES may implement software managed hash extend 
registers. 

8.8 Robustness 

[R0086] All aspects of the CCA boot process must be robust against hardware and software attacks designed to 
circumvent the boot process, which might allow an attacker to run unauthorized code or to modify established 
boot states. 

Examples include resistance against power and timing attacks (“glitching” or clock attacks), and resistance 
against attacks designed to reveal secrets such as image decryption keys (if used). The latter may include, for 
example, active or passive probing, or sidechannels such as power and timing analysis.  

The degree of robustness required is deployment and ecosystem specific and out of scope of this specification. 
Individual ecosystems may define more specific protection profiles. 



ARM-DEN-0096 Copyright © 2020-21 Arm Limited or its affiliates. All rights reserved.  Page 54 
A.a  Non-confidential 

9 CCA attestation 
CCA attestation allows a user of a service provided by a Realm – a reliant party – to determine the 
trustworthiness of the Realm, and of the implementation of the CCA platform . 

A reliant party can be  

• a remote client – remote attestation 

• a local client on the same system – local attestation 

Most of CCA attestation is defined in terms of remote attestation.  

Local attestation follows the same basic process and flow but differs in how verification is performed, and in 
what security guarantees can be provided. 

The desired result of successful attestation is typically a secure point to point connection between an attested 
end point in the Realm, and the reliant party. A Realm can implement more than one attested end point. 

An attestation protocol can be, for example, an SSL-style negotiated session or a Diffie-Helman key negotiation. 

Attestation protocols are out of scope of CCA. CCA attestation is designed to enable Realms to implement any 
attestation protocol. 

CCA attestation is a token based model that binds metadata specific to the attested end point to the attested 
boot state of a Realm, and the attested boot state of the underlying implementation of the CCA platform. 
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9.1 Base attestation flow 
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Figure 9. Basic CCA attestation flow 

The basic CCA attestation flow is outlined in Figure 9. Basic CCA attestation flow. 

A Realm requests a Realm attestation from Realm Managed security domain. The request includes a Realm 
challenge. For example, a hash of protocol metadata.  

Realm Management security domain is responsible for maintaining a Realm boot state for each Realm. A Realm 
boot state defines content measurements and security configurations for a Realm. It is not defined in this 
document. 

[R0087] The Realm boot state is combined with the Realm challenge into a Realm attestation token. 

This creates a cryptographic binding (hash lock) of the service specific metadata and the Realm attestation. 

Realm Management security domain then requests a CCA platform attestation. The request includes an RMM 
challenge. 
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[R0088] The RMM challenge is calculated as a hash of the Realm attestation token. 

In a CCA HES enabled implementation of CCA, the attestation request is passed through Monitor security domain 
to CCA HES. 

CCA HES holds boot state for the CCA HES host itself, for the CCA system security domain (including all trusted 
subsystems), and for CCA application PE firmware. 

[R0089] The CCA platform boot state is combined with the RMM token challenge into a CCA platform 
attestation. 

[R0090] The CCA platform attestation is a collection of attestation tokens for the CCA HES host, for each trusted 
subsystem in the CCA system security domain, for the immutable implementation of CCA system security 
domain, and for CCA application PE firmware for Monitor and Realm Management security domains 
respectively. 

[R0129] Each token carries its own set of measurements as established during the boot process. 

[R0091] The CCA platform attestation is signed by the CCA platform attestation key (CPAK) (see CCA identity 
management) 

This creates a cryptographic binding (hash lock) of the Realm attestation token to the CCA platform attestation. 

9.2 Token formats and signing schemes 

[R0092] All attestation tokens are instances of a PSA attestation token.  

A PSA attestation token is a standard compact format based on IETF Entity Attestation Token (EAT) and Remote 
Attestation Procedures (RATS). See [PSA Token]. 

[R0093] Remote attestation requires an asymmetric signing scheme. 

For general recommendations about algorithms and key sizes, see Cryptographic recommendations. 

9.3 Privacy preserving attestation 
Privacy preserving attestation in this context relates to preventing tracking or inference, such as: 

• Use a Realm attestation to link a Realm (or a device user) to a device unique identifier 

• Use Realm attestation to infer that two Realm instances are on the same physical device 

[R0025] Arm recommends that as a minimum IAK is derived or provisioned uniquely for a group of 
implementations with the same security properties, rather than for unique instance. 

Other more complex schemes may be deployed, such as provisioned or derived one-time CPAK.  

Such schemes are ecosystem specific and out of scope of this specification. 

9.4 Delegated Realm attestation 
Delegated attestation is out of scope of the current version of CCA and only mentioned here for completeness. 

The basic attestation model described above requires a full roundtrip from Realm to CCA HES on every Realm 
attestation requests. 

In deployments with a high frequency of Realm attestation requests, such as a datacenter deployment with 
frequent incoming client connections, this model may not scale. 



ARM-DEN-0096 Copyright © 2020-21 Arm Limited or its affiliates. All rights reserved.  Page 57 
A.a  Non-confidential 

As an alternative, the Realm Management security domain can derive one or more Realm attestation key (RAK) 
at boot. RAK can also be attested at boot – key attestation – binding a hash of the RAK public key to the CCA 
platform attestation.  

This allows the CCA platform attestation to be cached at the Realm Management security domain level. 
Subsequent Realm attestation requests can now be signed directly at the Realm Management security domain 
level without requiring a roundtrip to CCA HES. 

To maintain privacy preservation properties, RAK derivation should follow a similar pattern to CPAK derivation. 
See Privacy preserving attestation. 

9.5 Local attestation 
Local attestation is out of scope of the current version of CCA and only mentioned here for completeness. 

Local attestation is one element of supporting off-line use cases where the reliant party is located on the same 
system as the attested end point, and the reliant party might not itself have access to a remote verification 
service. 

An example pattern may be as follows: 

1. An interactive application is deployed in a Realm 

2. The application makes use of third party media processing IP, itself deployed as a local service in a 
different Realm 

3. When the application is first installed it goes through an activation process, including remote attestation 
of both the application Realm and the Realm providing the third party service 

4. If successful, the application is provisioned with metadata, allowing it to operate locally without external 
interaction (off-line use) as long as the attested state of itself, the third party service, and the CCA 
platform do not change 

To completely support this kind of use case requires:  

• Local attestation 

• CCA derived Realm binding keys for local protection of persistent Realm assets – not defined in this 
document 

CCA derived binding keys guarantee that a Realm can only access persistent data if both the Realm itself and the 
underlying implementation of the CCA platform are in a trustworthy state. 

Local attestation itself provides a reduced attestation guarantee. It proves that a pair or a group of Realms were 
instantiated on the same system, and in the same security state – i.e. it guarantees the original pairing or 
grouping of Realms from the activation process. But local attestation in itself provides no guarantee about the 
trustworthiness of the underlying implementation of the CCA platform. 

Local attestation follows the same basic flow as remote attestation, but with the following extensions: 

• The attestation tokens are signed with a local attestation key which can only be verified locally on the 
same system, for example a symmetric key derived at boot 

• A CCA service is provided for verification of local attestations 

A local attestation typically uses symmetric signing rather than asymmetric. 
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10 CCA firmware updates 

10.1 Remote update 

Arm welcomes feedback on firmware update requirements for CCA. 

In general, a CCA firmware update process can be described as: 

1. A CCA firmware update client communicates with a remote update service using a firmware update 
protocol. 

2. The CCA firmware update client triggers a copy of downloaded CCA firmware to a temporary staging 
location 

3. A reset occurs, and the update is used as part of the boot process 

[R0134] Arm recommends that firmware update protocol metadata is signed and verified, independently of 
firmware signing and firmware verification. 

Choice of firmware update protocol is out of scope of CCA. For example, a firmware update protocol may include 
security features such as targeting of updates, and anti-rollback counter controls. Those features may include 
protocol level firmware update control messages, in addition to a firmware payload. 

A firmware update client should verify that a CCA firmware update, or a CCA firmware update control message, 
comes from an authorized update source. Source in this case is typically different from an image signer. For 
example, an image may be signed by a CCA firmware distributor, whereas the update process may be controlled 
separately by a service provider or a hosting provider. 

An update is only effected after reset. The scope of the reset may vary depending on the scope of an update.  

Example CCA firmware update scopes include: 

Root update: Affects Monitor security domain, or a trusted subsystem in the CCA system security domain 

Realm world update: Only affects Realm world 

RMM update: Only affects a CCA component within Realm world 

In this document, the term performing an update is used to describe the process of verifying, installing and 
executing an update after it has been made available to CCA firmware by a firmware update client. Updates 
affect the trustworthiness of CCA, and it is the responsibility of CCA firmware to ensure that only authorized 
updates are performed.  

Firmware updates can only be performed by a more trusted security domain, or by the most trusted component 
within a security domain. 

[R0142] A Root update can only be performed by the CCA HES host. 

[R0143] A Realm world update can be performed by Monitor. 

[R0144] An RMM update can be performed by RMM. 

A Root update requires a full system reset. A Realm world update only requires a reset of Realm world.  

An RMM update may only require a reset of RMM and not a full reset of all Realms. Such live updates of Realm 
world are out of scope of the current CCA release but may be addressed in later releases. 

[R0094] At least the validity of an update is always verified as part of performing an update.  

Depending on ecosystem requirements, a valid update may be any update that is signed correctly and meets 
anti-rollback policy. Or a system may require explicit update authorization through a secure firmware update 
protocol before an update can be performed.  
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A staging location is typically general purpose external storage. Depending on ecosystem requirements, 
additional integrity controls may be required to prevent unauthorized substitution. For example, a requirement 
might be using a local hashlocking scheme, or implementing an anti-replay mechanism in any explicit update 
authorization messages. 

 

  

[R0098] The amount of memory required at least for loading signed CCA firmware identity metadata must be 
known and verified before the identity metadata is copied to the staging area. 

[R0135] The amount of memory required for the image payload must be known and verified before it is copied 
into on-chip memory or protected external memory. 

[R0136] The required memory is allocated and available before data is copied from external storage. 

For example, the signed firmware identity metadata and the firmware payload may be combined into a single 
image of a fixed maximum size. An implementation can then ensure that a fixed buffer of at least that size is 
always available before copying. 

Alternatively, the signed firmware identity metadata may be fixed size, and include the size of the payload. The 
identity metadata can then be copied into a fixed buffer and verified there, and then a second dynamic buffer 
can be allocated based on a verified payload size. 

[R0137] Data cannot be copied beyond the bounds of a staging area. 

This prevents buffer overflow attacks. 

[R0099] Following reset, the relevant part of the boot process detects the available update and attempts to load 
it in the normal way. 

The system must remain attestable following any update. 

A system is always attestable following a Root update as it requires a full system reset. It does not alter the boot 
state of the system, as attested to a reliant party, at runtime. 

Following a Realm world update, Realm world is reset including all Realms, ensuring that Realms launched after 
the update are attested against the new Realm world state.  

In the case of a live RMM update, the boot state of the system has changed at runtime, compared to that 
attested to a reliant party up to the point the update is effected. The capability of RMM to perform a live update 
must be reflected in the original attestation to a reliant party. For example, included as part of a service level 
agreement with a hosting provider against firmware versions and measurements, or against signed firmware 
identity metadata. 

In the case of a live RMM update, there is no reliable way to update the state of any already attested Realms. 
Hence why the capability of performing a live update must form part of the contract of the original attestation. 

However, any attestation request following a live RMM update must reflect the new state of the CCA platform. 

Likewise in the case of a live RMM update, the changed state following the update may affect CCA derived Realm 
keys. 

Live RMM updates, and CCA derived Realm keys, are out of scope of the current release of CCA. They may be 
addressed in later CCA releases. 

[R0101] A reliant party is able to determine if an implementation of the CCA platform is capable of world 
updates, or Realm world incremental updates. 
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10.2 Local update 
A local update is one that requires physical access to the system. For example, a USB update, an update over a 
serial link, or a rescue loader feature in the boot process.  

The general process, and its security properties, should be the same as in the case of a remote update.  

For example, a USB or serial link update can be viewed as a different transport for a firmware update protocol. 

Or a rescue loader can be viewed as a special case of a CCA firmware update client. 

10.3 Robustness 

[R0100] Any CCA firmware update mechanism must be robust against update failures. 

Anti-rollback and recovery should be managed as defined in CCA firmware boot. 
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11 CCA security lifecycle management 
In this document, a secured CCA enabled system is one where the implementation of the CCA platform is in a 
trustworthy state.  

A CCA enabled system may be in a non-secured state for a number of reasons, such as: 

• During manufacture assembly, test and provisioning processes 

• During supply chain provisioning processes 

• During debug, diagnostic and repair stages 

The security lifecycles of Secure world and Normal world are out of scope of CCA, and of this document.  

It is expected that Normal world or Secure world debug and diagnostics can be enabled without affecting the 
CCA security guarantee. 

11.1 Firmware enabled debug 
CCA firmware is all firmware that may affect the CCA security guarantee, including application PE firmware and 
trusted subsystem firmware. 

[R0103] The trustworthiness of CCA firmware is always attestable. 

On a secured system, CCA will only load authorized CCA firmware at boot. 

Capabilities of CCA firmware, including capabilities that may compromise the CCA security guarantee, are always 
reflected in signed firmware identity metadata, captured in boot states and included in CCA platform attestation. 

[R0104] Capabilities that may compromise the CCA security guarantee include any capabilities that may reveal 
CCA assets or affect the execution flow of CCA firmware or Realms.  

Examples of a capabilities which may compromise the CCA security guarantee include debug capabilities, such as 
self-hosted debug and remote debug, or revealing diagnostics. 

Only the capabilities of CCA firmware are attested. Whether such capabilities are actually used or not at runtime 
is not attested.  

For example, debug capable CCA firmware may implement additional authorization steps, such as additional 
authorization processes for accessing remote debug or revealing diagnostics. But the attested property is that 
such capabilities exist, not whether they are actually used or not. 

[R0105] A reliant party is always able to determine the full capabilities of CCA firmware from boot state reflected 
in CCA platform attestation.  

A reliant party can achieve this through directly verifying CCA firmware measurements. Alternatively, it can be 
achieved through verifying signed CCA firmware identity metadata and trusted  firmware signers. 

The current release of CCA does not support CCA derived Realm keys, nor any CCA key derivations for use by 
CCA firmware outside of CCA HES. 

Such key derivations may be added in future releases.  At that point additional rules for CCA firmware enabled 
debug will be required to ensure that debug enabled CCA firmware cannot derive the same keys as secured CCA 
firmware. Such rules may mandate Signer ID and security versioning in firmware identity metadata for use in 
CCA key derivations. 
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11.2 CCA system security lifecycle 
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Figure 10. Conceptual CCA system security lifecycle 

The CCA system security domain will go through a security lifecycle as outlined in Figure 10. Conceptual CCA 
system security lifecycle.  

Actual implementations may have additional sub-states, in particular in the provisioning process, in support of 
more complex supply chain and deployment models.  

CCA does not restrict or limit actual provisioning processes other than that the final end result should have the 
attestable properties described here. 

For the purpose of defining the attestable properties of a CCA enabled system, the simpler model is used in this 
document. 

The lifecycle starts with manufacture and testing of a CCA enabled system. At this stage the system has no 
attestation identity and any security features of the system may be disabled and bypassed. 

The next step is provisioning of CCA hardware provisioned parameters. 

[R0106] The system goes through security lock-down before security provisioning, such that it can only run 
authorized CCA firmware, and that external diagnostics and debug interfaces have been disabled or locked such 
that CCA hardware provisioned parameters are not exposed. 
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For example, on a CCA HES enabled system it may be sufficient to only disable CCA HES host debug in order to 
protect CCA hardware provisioned parameters. Locking the whole system is recommended, and may be required 
to protect non-CCA security features. 

Once provisioning is complete, the lifecycle can move to a secured state. Once a system is in a secured state it 
can also be enrolled with an implementation verifier, allowing a reliant party to verify Realms deployed on the 
system. 

[R0107] The provisioning process is only complete once the system has gone through provisioning lockdown for 
all CCA hardware parameters, such that they have been successfully provisioned and that their values are 
immutable. 

Immutable here means hardware provisioned CCA parameters do not change for the full duration of the CCA 
security lifecycle.  

Some implementations may support hardware recovery schemes, for example allowing a system to assume a 
new identity following a re-provisioning process at a repair center. For the purpose of the CCA platform security 
lifecycle, this equates to decommissioning the previous identity and then starting the new identity in a security 
provisioning state. 

The system can in principle be attested in the CCA security provisioning state as soon as it is able to derive a valid 
CPAK. But a system in this state should not be trusted as it may not be fully provisioned or fully locked down yet. 
For the same reason, the system should not be enrolled with a verifier until it is in the secured state. 

From secured state, the system can move to a state that enables diagnostics or debug that may break the CCA 
security guarantee. This can be done either by loading debug capable CCA firmware  or by enabling an external 
debug or diagnostic interface. 

For a system to remain attestable, its attested state cannot change at runtime.  

[R0108] Both CCA firmware enabled debug and external debug can only be enabled following system reset, 
before initial boot code has been completed. 

[R0109] On a secured system only CCA HES can enable an external debug or diagnostic interface. 

[R0110] External debug or diagnostic interfaces can only be enabled following explicit authorization. 

[R0111] The authorization can only be issued by a trusted source, verified by CCA HES. 

CCA does not mandate any particular hardware level debug authorization protocol. But any such protocol should 
be cryptographically at least as secure as CCA verified boot. 

Debug states can be recoverable, or irreversible.  

A recoverable debug state is one where the system can be returned to the secured state. Irreversible debug is 
one where it cannot. 

[R0112] A system can only be returned to the secured state following system reset. 

[R0113] CCA HES ensures all debug interfaces have been closed, and that only authorized CCA firmware can be 
loaded, before returning a system to a secured state. 

 

[R0114] Realm Management debug state represents any external or CCA firmware debug capability that only 
affects Realm world. 

 Realm Management debug is both attestable and recoverable. 

[R0115] Root debug state represents any external or CCA firmware debug capability that affects Monitor security 
domain and CCA system security domain. 
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On a CCA HES enabled CCA system, this state remains both attestable and recoverable. 

[R0116] Decommissioned state represents any external or CCA firmware debug capability that affects CCA HES. 

[R0117] Arm recommends that all debug capabilities affecting CCA HES are permanently disabled on a CCA 
secured system. 

[R0118] Before entering decommissioned state, at least private CCA hardware provisioned parameters are put 
permanently beyond use. 

The decommissioned state is un-attestable, and irreversible.  

[R0124] For a decommissioned system, the CCA attestation identity must be revoked for the purpose of 
attestation, and cannot be recovered or reused. 

 

The current release of CCA does not support CCA derived Realm keys, nor any CCA key derivations for use by 
CCA firmware outside of CCA HES. 

Such key derivations may be added in future releases.  At that point additional rules for enabling external debug 
will be required to ensure that the same keys cannot be derived in a debug state as in the secured state. For 
example, by including the CCA platform security lifecycle state in CCA key derivations. 

11.3 Reprovisioning 
Strictly, the CCA system security lifecycle defines the lifecycle of immutable CCA system security domain 
properties. This includes the security properties of immutable initial boot code, hardware provisioned 
parameters, as well as the security properties of immutable hardware elements of the CCA system security 
domain. 

The immutable properties of the CCA system security domain constitute the most fundamental root of trust for a 
CCA enabled system. 

[R0138] Immutable properties are attested indirectly by the CCA platform attestation key and identity. 

This means those properties, and the associated CCA platform attestation key, must remain immutable in any 
attestable state of the CCA system security lifecycle. 

Entering any un-attestable state may revoke or void any immutable security claims, and the trustworthiness of 
the CCA platform cannot be determined by a verifier. 

[R0139] Immutable CCA system security domain properties can only be modified in either a provisioning state, or 
in an implementation specific recovery process following decommissioning. 

Any change to immutable properties constitutes a reprovisioning event as the CCA platform attestation key and 
identity must be changed to reflect the new immutable security properties. 

This includes the case where the change is the CCA platform attestation key and identity themselves (renewal). 
Typically following an upgrade to security algorithms, or following recovery of a compromised CCA platform key. 

[R0140] Any reprovisioning event always revokes any previous CCA platform attestation key and identity, and a 
new CCA platform attestation key and identity is issued.  

Arm CCA does not define provisioning, reprovisioning, or recovery processes. These are implementation and 
ecosystem specific and out of scope of this specification. 
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11.4 Trusted subsystems and CCA HES 
It is expected that trusted subsystems will follow the same pattern and rules as the main CCA system security 
lifecycle. 

[R0145] A trusted subsystem may delegate its security lifecycle management to another trusted subsystem. 

For example, a power management subsystem may delegate its security lifecycle management to a CCA HES 
host. 

[R0119] No CCA trusted subsystem is affected by Root debug. 

[R0120] Any external or CCA firmware enabled debug capability affecting any CCA trusted subsystem can only be 
enabled following system reset. 

[R0121] Any external or CCA firmware enabled debug capability affecting any CCA trusted subsystem can only be 
enabled by CCA HES. 

[R0122] Arm recommends that all debug capabilities affecting CCA HES are permanently disabled on a CCA 
secured system. 

  



ARM-DEN-0096 Copyright © 2020-21 Arm Limited or its affiliates. All rights reserved.  Page 66 
A.a  Non-confidential 

12 Cryptographic recommendations 

12.1 Cryptographic algorithms and key sizes 
Required cryptographical algorithms and key sizes may vary depending on use case, and by market and 
geographic region. 

As a general recommendation, in the absence of specific requirements by application, protection profile, or 
regulation, CCA devices should be designed to comply with NIST recommendations, or CNSS Advisory 
Memorandum Information Assurance 02-15, or local equivalents depending on target region. 

See: 

https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines 

http://www.cnss.gov/CNSS/issuances/Memoranda.cfm 

12.2 Post-quantum readiness 
In line with current general guidance, such as https://www.ncsc.gov.uk/whitepaper/preparing-for-quantum-
safe-cryptography, post-quantum safe cryptography is not currently included in recommendations for CCA 
implementations at this point in time.  

Implementations may choose to adopt such algorithms if required for a market. 

All use of cryptography in CCA can be updated with CCA firmware updates, except immutable initial boot code. 

[R0123] Arm recommends that, wherever possible, implementations of CCA implement an upgrade path to post-
quantum safe cryptography. 

12.3 Guidance 
The following tables outline general recommendations for algorithms and key sizes in a CCA implementation. 

12.3.1 Recommended parameter sizes 

Parameter type Sizes Information 

Public identifier 512 bits Typically a hash of a public key or a certificate. 

Arm does not recommend using truncated 
hashes for public identifiers. 

Counter values used as unique 
identifiers 

64 bits  

Seeds used for symmetric key 
derivations 

256 bits  

Symmetric keys 256 bits AES-256 

Asymmetric keys RSA: 3072 bits 

ECC: 384 bits 

RSA 3072 

ECC Curve-P384 

 

https://csrc.nist.gov/Projects/Cryptographic-Standards-and-Guidelines
http://www.cnss.gov/CNSS/issuances/Memoranda.cfm
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12.3.2 Recommended algorithms 

Operation Algorithm Information 

General encryption AES-256  

Hash function SHA-512 NIST SP 800-107 

Signing – RSA option RSA-PKCS#1 v2.2 

RFC 8017, FIPS PUB 186-4 

RSASSA-PSS 3072 

EMSA-PSS 

SHA-512 

Signing – ECC option ECDSA 

RFC 6979, FIPS PUB 186-4 

Curve P-384 

SHA-512 

Signing- Symmetric HMAC-SHA512 

RFC 2104, NIST SP 800-107 

 

512 bits 

Arm does not recommend truncating HMAC. 

Key derivations NIST SP 800-108 

Counter mode 

HMAC-SHA512 

RFC 2104, NIST SP 800-107 

 

12.3.3 Memory protection 

Operation Algorithm Information 

Encryption QARMA-128 with a 256-bit key 

AES-128-XEX with two 
independent 128-bit keys 
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13 Appendix A: Rule history 

13.1 Last used identifier 
Unique identifier: R0159 

13.2 New identifiers since last major release 
 

13.3 Deprecated identifiers since last major release 
R0037, R0096, R0097, R0102. 
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