IL\J/ls[;Egr:(t—fri?E—STL with Arm FuSa RTS a rm KE ”.

AN326, Spring 2020, v1.0 keil-feedback@arm.com

The latest version of this document is here: www.keil.com/appnotes/docs/apnt 326.asp

Abstract

This application note demonstrates the integration of X-CUBE-STL Software Test Libraries for STM32 devices in
an application based on the Arm Functional Safety Run-Time System (FuSa RTS).

In this example, the STM32F413ZH device (on Nucleo-F413ZH board) is used as the target hardware. However,
the analysis and principles are mostly universal and can be similarly applied to other STM32 devices.

Prerequisites
To reproduce the example describedin this application notes the following components are required:
Components from Arm:

o Arm FuSa RTS for Cortex-M4 core: run-time system for functional safety applications. It includes
FuSa RTXRTOS, FuSa CMSIS-Core, FuSa C library, and FuSa Event Recorder.

o Arm Compiler for functional safety: safety-qualified C/C++ compiler for Arm devices. Required for
use by Arm FuSa RTS.

o Keil::STM32F4xx_DFP: Device Family Pack (DFP) for STM32F4 devices. Among other items, contains
startupand system files used by the application.

o Arm Keil MDK: IDE and debugger used for project development and debug.

Components from ST:
o X-CUBE-STL-F4: Software test library for STM32F4 devices.

o STM32CubeProgrammer: programming utility for STM32 devices. In our example, itis used for ROM
CRC calculations.

Example project

The project ZIPfile is available for download on www.keil.com/appnotes/docs/apnt 326.asp. Download
the ZIPfile, unzip it, and double-click the Project.uvprojx file to open it in pVision.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

1 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp
http://www.keil.com/appnotes/docs/apnt_326.asp
http://www.keil.com/appnotes/docs/apnt_291.asp
https://www.keil.com/fusa-rts
https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation/6-6-ltm/version-6-6-2
https://www.keil.com/dd2/Pack/#/Keil.STM32F4xx_DFP
http://www2.keil.com/mdk5/
https://www.st.com/en/embedded-software/x-cube-stl.html
https://www.st.com/en/development-tools/stm32cubeprog.html
www.keil.com/appnotes/docs/apnt_326.asp

Contents

LY o1 - (o1 ST P PO PTTPRRRE 1
=T =T 0 LU Ty) = PPN 1
L gl d ol [§ ot o] W PP PP 3
Scope Of the aPPlICATION NOTE ...e.niiiiii et e e et e e e et e et e e et e e e s e eaaneeens 3
STIM32 X-CUBE-STL OVEIVIEW ... eeeeieii ittt ettt et eens 3
AP FUSA RTS OVEIVIEW ...ttt ittt ettt ettt et et e e e et e e st et b et e e st e ean s e e e eaeeneanseanens 4
Integration of X-CUBE-STL WIth FUSA RTS ittt e et e e e e e ae et e et e et e e eaneees 5
X-CUBE-STLCoUs and FuSa RTS OPEIatioNcieuuiiiiiiiiieiii ettt ettt e ettt e e e e e e e et s e e e e ea e eannes 5
STL user constraints and FUSa RTS OPeratioN........ciuiiiiiiii e ans 5
Y11= < YT S 5
INEEITUPT MANAGEMENT ...ttt et et e et e et ea et e et e et ea e et et e ee e eneaneneaeneanens 5
FuSa RTS user requirements and STL OPEIration iueiiiieii ettt e et e ee e e et e eei e e eanaees 6
Add X-CUBE-STL tests t0a FUSA RTS PrOJECTcvnieiiiii i e e e et e et e et et e e e ens 7
o o T T ot A = U o 7
Add X-CUBE-STL files 10 the ProjeCT .. uuiiniiiie e e e e e et e et e e e e e e r e e e ae e eaaas 7
Configurations for the flash MemMOry teSt. ..o e 8
Configurations fOr RAIM MEMOIY TESt.....uuiie it eii e ee e e et ee e e e e et e et e et e et e e et e e e e e et e et esnneaneanaees 8
Add support for Arm COMPIIEE B.... .. ettt e e e et e et et e e et e e et e e e s e s e s e sesetaataaanns 9
Implement STLtests inthe applicationoe i e e e e e e 9
Create STL test eXeCUtioN MOTUIE.t et e e e e eees 10
Create USEr SVC CallS ...ttt et e e et et e e e e e 12
Create an RTX thread for STL teSES .. .uuu it e e e e e ees 14
EXecution iN Thread MOGEiireiiie e et et e e e e 15
Analyze X-CUBE-STL integration iN IMDKiuiiiii e e e e e e et et e e eaaeaaas 16
(o) f<Totd ol 1 1=V] =1 (o] o F R 16
ObSErved SYSTEM BERAVIONu ittt e e et e e et e e et e e e e et e eaa s 17

R [10 0= /2P 19
References and USefUl LINKS. ittt e e e et e et e een e et e e e e eenaaees 19
AN326 - Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

2 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

Introduction
Diagnostictests are commonly used in safety-related systems toreduce the effect of random hardware failures.

For many of its STM32 series, STMicroelectronics provides a safety-certified Self-Test Library (X-CUBE-STL) that
implements diagnostic tests covering processor unit, flashand RAM memories.

When using the STL library in a system with the Arm FuSa RTS, the mutualinterferences between both
components must be analyzed. It needs to be ensured that the assumed safety requirements defined by the
FuSa RTSas well as by X-CUBE-STL are satisfied.

This application note provides an example of using X-CUBE-STLin a FuSa RTS application. Itis structured as
follows:

o “Introduction” explains the structure and scope of the application note.

o “STM32 X-CUBE-STL overview” introduces X-CUBE-STL, whichis part of the STM32 Safety Design
Package.

e “ArmFuSa RTS overview” gives a brief overview of the Arm Run-Time System for Functional Safety.

e “Integration of X-CUBE-STL with FuSa RTS” introduces the approach of executing STL tests ina user SVC
handler and analyzes the interferences that FuSa RTS and X-CUBE-STL may have on each other in such
case.

e “Add X-CUBE-STL teststo a FuSa RTS project” describes the example project setup and goes through
the required implementation steps when using X-CUBE-STL in an existing FuSa RTS project.

e “Analyze X-CUBE-STL integration in MDK” shows how to analyze the STL operation using MDK
debugging capabilities.

Scope of the application note

This application note analyzes potential mutual impacts between the X-CUBE-STL self-test libraries andthe Arm
FuSa RTSand gives an example for their integration.

An STM32F413ZH device (on Nucleo-F413ZH board) is taken as a referenced platform and the corresponding X-
CUBE-STL-F4 and FuSa RTSfor Cortex-M4 software are usedin the integration example. However, the provided
analysis and described principles are mostly universaland can be similarly applied to other STM32 devices.

This application note is not part of the FuSa RTS Safety Package and does not show how to fulfill all conditions of
use as specified in the SMT32F4 safety manual [1].

The FuSa RTS Safety Package and the STM32 SIL Functional Safety Design Package are the main references for
the user implementing safety-related systems on the specific STM32 device.

STM32 X-CUBE-STL overview

STMicroelectronics provides SIL Functional Safety Design Packages for many of its STM32 device series. It
includes a device family safety manual [1], Failure-Modes Effects Analysis (FMEA) [2], Failure Mode and
Diagnostics Analysis (FMEDA)[3] and software tests library [6].

Section “3.7 Conditions of Use” in the STM32 F4 safety manual [1] lists safety mechanism requirements to be
applied tothe target device series. Among them are requirements CPU_SM_0, FLASH_SM_0, and RAM_SM_0
that highly recommend the use of software tests for detecting permanent faults in CPU, Flashand SRAM
memory respectively.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

3 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

To implement software tests, STMicroelectronics provides X-CUBE-STL — a safety-certified software-based
diagnostics suite for detecting random hardware failures on STM32 devices. The software test libraryis
application-independent and provides an API for executing selected tests as shown in the figure below.

User application
US;FEI; : Function return value User tests
APls : Test result value APls
|
1
STL
HALLL Y [Y User
STL scheduler parameters
STL STL STL
CPU Arm® core Flash memory SRAM
Test Module x Test Module Test Module
STM32 microcontroller
MEADDIOVE

X-CUBE-STLis supplied with its safety manual [5] that provides requirements for the correct execution of the
STL. It references the STL user guide [6] that additionally describes performance, constraints and the API.

Arm FuSa RTS overview

Arm’s Run-Time System for Functional Safety (FuSa RTS) is a set of safety-certified software components for

Cortex-M based devices. It contains the Real-Time Operation System (FuSa RTXRTOS), the processor abstraction
layer (FuSa CMSIS-Core), the FuSa Event Recorder and the FuSa C library. The system block diagram below shows
FuSa RTS components as blue blocks outlined with a red dotted line.

FuSa RTX RTOS

FuSa CMSIS-Core
{Arm-Core specific)

Event
Recorder

FuSa

User Application code

Software test library
(STL)

Self-test code for
run-time verification

CMSIS-Core

(device-specific)

FuSa C library
Arm Cortex-M processor

AN326 — Using X-CUBE-STL with Arm FuSa RTS

Copyright © 2020 Arm Ltd. All rights reserved

www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp
https://www.st.com/en/embedded-software/x-cube-stl.html
https://www.keil.com/fusa-rts

Arm FuSa RTS doesn’t include a software test library (STL). According to the assumed safety requirement
UR_AP_3from FuSa RTS safety manual [4], the user application is responsible for running a self-test library to
detect hardware errors.

Integration of X-CUBE-STL with FuSa RTS
This section analyzes the assumptions of use for both products: X-CUBE-STL and FuSa RTS.

X-CUBE-STL CoUs and FuSa RTS operation

Section “5.2 Assumptions” in the X-CUBE-STL-F4 safety manual [5] lists the conditions of use (CoU_STL) that the
application must fulfill.

Relevant for the FuSa RTSis CoU_STL_7.|tstates that the end useris responsible toguarantee the correct
coexistence between the X-CUBE-STL-F4 and its application software according to the guidelines reportedin the
user guide [6], section “STL user constraints”. For X-CUBE-STL, any external code is part of the application
software and hence this CoU_STLalso applies to the FuSa RTS.

Section “STL user constraints and FuSa RTS operation” below analyzes how these constraints impact the
coexistence between STL and FuSa RTS.

It remains the end user’s responsibility to ensure that all CoU_STLs are fulfilled in the system.

STL user constraints and FuSa RTS operation

Section “4.3 STL user constraints” in the X-CUBE-STL user guide [6] describes potential interferences between
the application and the STL. Below are considerations for those constraints that have a direct impact on the
operation of FuSa RTS. If no information is given for a constraint, it means that this constraint has no impact on
FuSa RTS.

It stays the user’s responsibility to consider all conditions of use and guidelines when adding the STL to the
system.

Privilege-level

Subsection “4.3.1 Privileged-level” in [6] states that the STL must be executedin privileged mode, as otherwise
access totarget registersis not possible.

User threads in FuSa RTXRTOS can be configured to run either in privileged or non-privileged mode. However,
such configuration is applied for all user threads at once (see OS_PRIVILEGE_MODE described in FuSa RTX RTOS -
RTXv5 Implementation— Configure RTXv5 — Thread Configuration in [4]).

For safetyreasons, user threads should execute in non-privileged mode. The portions of the STL code that
requires privileged mode can be executedin the SVC exception handler.

According to section “4.1.1 Scheduler principle” in the STL user manual [6]: “the STL can be called under
interrupt context, but re-entrance is forbidden”. The SVC exception is not reentrant, and for STL execution this
alsoguarantees that there are no multiple calls to the STL at the same time from different threads. This
application note analyzes and explains this approach (calling the STL functions in SVC context) further.

Interrupt management

Section “4.3.6 Interrupt management” in [6] describes multiple interrupt-relatedinterferences that need to be
considered when using the STL. Below are considerations for those of them that are relevant for internal FuSa
RTS operation.

Interruptand CPUTMS8 / Interrupt and RAM March C-tests

By default, during some CPU TMs and RAM March C-tests maskthe STM32 interrupts and Cortex exceptions
with configurable priority. Users candisable this by activating STL_ENABLE _IT flag, but in such case correct STL
RAM test behavior is not warranted.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

5 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

In this application note, we consider only the case when ST_ENABLE_IT flag is deactivated and hence the STM32
interrupts and Cortex exceptions with configurable priority are masked by the STL.

The priorities assigned to system interrupts usedin FuSa RTXRTOS (SysTick, PendSV, and SVC) are describedin
the FuSa RTS safety manual [4], in the book “FuSa RTXRTOS”, section “RTXv5 Implementation”, subsections
“Create an RTX5 Project” and “Using Interrupts on Cortex-M”. SysTick and PendSV have the lowest priority while
SVC has a priority just above the lowest possible. Hence SVC cannot be interrupted by SysTick and PendSV, but
will be preempted by an interrupt with a higher priority.

This means that STL tests that are called within the SVC context will postpone the execution of system interrupts
used by FuSa RTXRTOS (SysTick and PendSV). The interrupt masking performed within some of the STLtests has
no furtherimpact on the FuSa RTS timing behavior.

The application may use additional interrupts. The user shall analyze the impact of interrupt masking by STL on
the system behavior.

Interruptand general-purpose register

The X-CUBE-STLuser manual [6] in section 4.3.6 requires that during STL execution, the general-purpose
registers must be savedand restored in the STM32 interrupt and Cortex exceptions with configurable priority
service routine. As otherwise there is a risk that the STL reports false errors.

As described in the section above, SVC has a higher priority than other systeminterrupts used by FuSa RTXRTOS
(SysTick and PendSV) and will not be interrupted by them. Executing STLs within the SVC context already fulfills
this requirement.

The application may use other interrupts and it stays the responsibility of the end user to respect this
requirement in the system.

FuSa RTS user requirements and STL operation

Running STL tests ina user SVC handler may postpone the execution of the SysTick interrupt used by FuSa RTX
RTOS. The FuSa RTSsafety manual [4] has the following user requirement on this:

- UR_SYS_1:The user shall keep ISR short, worst nested ISR time shall be at least shorter than RTX SysTick
interrupt period.

To have the UR_SYS 1 satisfied, when STL tests are run in the SVC context, the user shall ensure that their
execution time is at least shorter than the configured RTX SysTick period.

The X-CUBE-STL user guide provides reference execution times for its API calls. CPU tests are relatively short but
Flash and RAM tests may require multiple milliseconds to cover the full memory range available on the device.
The STL APl allows to run the tests individually and test memory in blocks. Thus, the user can rely on this
approach and split memory test execution to fulfill the UR_SYS_1 requirement.

When UR_SYS 1isfulfilled, a SysTick interrupt that occurs during an SVC exception is postponed. The SysTick
interrupt handler is executed after the SVC exception and other interrupts with higher priorities complete their
execution.

If such a delay of SysTick execution is not desired by the system, the user canschedule the STL test execution at
the beginning of a SysTick period and keep it significantly shorter than the SysTick interval. The example in the
section “Create an RTX thread for STL tests” creates the thread that executes the STL with the highest priority.
Using the function osDelay function before an STL test call ensures that STL test is executed right after the
SysTick interrupt.

Additionally, FuSa RTS has the following timing requirement:

- UR_GGR_2: The user shall perform a scheduling analysis to ensure that threads meet their deadline.

It stays the responsibility of the user to analyze the impact of STL execution on other threads and ensure that
the thread deadlines are met.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

6 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

Add X-CUBE-STL tests to a FuSa RTS project

This chapter describes the steps for adding X-CUBE-STL tests inan existing FuSa RTS project. The implementation
follows the approach analyzed above in chapter “Integration of X-CUBE-STL with FuSa RTS".

The sections below first describe how the example projectis set up and how to add X-CUBE-STL files to it. Then
the STL configuration is explained and finally, an example implementation for the integrationis shown.

Project setup

The software setupis straightforward and requires that the software listed in the “Prerequisites” sectionis
installed on the PC.

We assumethat thereis already an existing application that uses FuSa RTS in an MDK project. In our example,
we use a simple Blinky application that runs on the STMicroelectronics Nucleo-F413ZH. It has 3 user threads: the
main thread, the LED toggling thread, and the button reading thread.

The FuSa RTS and the X-CUBE-STL components are independent of HAL and BSP. To keep the application
universal, no HAL and BSP components were usedin our example.

Add X-CUBE-STL files to the project

Section “5.5.2 Steps to build an application from scratch” in [6] provides the steps required for building a fresh
application with X-CUBE-STL.

We use a simple Blinky project describedin the section “Project setup”, that uses FuSa RTS already:
Project

- The X-CUBE-STL libraries, source and header files are available " % Project Binky

in the X-CUBE-STL installation folder 5 5 Debug
<X-CUBE-STL>\Middlewares\STM32_Safety STL\.Justcopy .03 Sou A% Options for Target Debug'.. Alt=F7
the STM32_Safety STL folder to the root of your project. . Ef,: £ *:dn :gf:?r’mm -
- Next, in the pVision Project window, right-click on the Target 5 ;TU: Open Map File
name (for example Debug)and then Add Group.Giveitan
appropriate name, for example, STM32_Safety STL.
- Right-clickthe new group and add existing files to 21-Ld 5TM32 Safeby STI !
it. The following files are needed: = @ %ard 5. & Options for Group 'STM32_Safety_STL ... Alt=F7
- Src\stl_user_param_template.c : o EE“S' Add Mew Item to Group ‘STM32_Safety STL'...
. Src\st/_uti/.c . @ CMSIS T Add Existing Files to Group 'STM32_Safety_STL'...
_ LIb\STL_IIbG ﬁ irq_¢ Remove Group 'STM32_Safety STL and its Files

(o
- Bydefault, uVision assumes that files with .a extensions are

. . Opticns for File 'STL Lib.a'
assembler files and processes them accordingly. However, L opt

STL_lib.a is a library file. To handle it correctly, we need to Propettes |
specify its type manually. In the Project window, right-click the path: [\5TH3Z_Sefety TG\ TL_Lb 3
STL_lib.a file and select its Options.. Inthe File Type drop-down Fie Type: [Torry T =
menu, select Library file. Click OK. Size: |C Source file
’ .iss_eml:-!-,' language file
- Open the Options for target.. and goto the C/C++ (AC6) tab: last change: (Cbiectfie
Text Document file

e Inthe Preprocessor Symbols area, add the device family to
the Define field. Inour example, it is “STM32F413xx”.

e Add the path.\STM32_Safety STL\Incfolder to Include Paths.

Preprocessor Symbols

5 include [\STNI32_Safety_STL\nc
Define: [STM32F413xx Paths

1 lemd miom m

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

7 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

Configurations for the flash memory test
For flash memory tests, X-CUBE-STL relies on pre-calculated CRC values over the firmware image that shall be
storedin a dedicated memory area at the end of the ROM. STM32 Programmer tool can be usedto add a
corresponding segment with CRC values into a firmware file.
The ROM address ranges must be consistentin the STM32 Programmer, the scatter-loading file and the STL
configuration file st/_user_param.c.
e The STM32 Programmer may be called in MDK using the after build setting. Goto Options for Target...
and select the Usertab. In the After Build/Rebuild section, enable Run #1 add a call to
STM32CubeProgrammer command-line interface:

=--After Build/Rebuild |
[¥ Run =1 |C:"-.ST"-.STM32CubEProgrammer"-.bin"-.STMBE_Programmer_CLI.exe -5l "STM32F413ZH/Project.axf" 0x8000000 0x08180000 Cx-133|

[~ Run#2 J Mot Specified [|
X-CUBE-STL user guide [6] provides additional details about flash memory tests and CRC tool setup.

Note that the STM32 Programmer calculates CRC only over the actually occupied flasharea. Hence, an
STL flash test will fail if executed outside of this area.

e According to Step 4 from Section “5.5.2 Steps to build an application from scratch” in [6], the user shall
check the configuration file st/_user_param.c and potentially update ROM parameters. Inour example

for STM32F413xx devices this stays as:

#define STL ROM START ADDR (0x08000000UL) /* customizable */
#define STL ROM END ADDR (0x0817FFFFUL) /* customizable */ /* 1536 Kbytes */

e ROMareais specified in the scatter file. Section “Configurations for RAM memory test” below provides
the complete scatter file used in our example project.

e |nour example, the firmwareimage is just above the 47 KB, so we can test 48 flash sections as shown in
section “Create an RTX thread for STL tests”.

Configurations for RAM memory test

X-CUBE-STL requires a backup buffer in RAM to execute the C-MarchRAM tests. The linker script shall specify a
smallRAM section named “backup_buffer_section” for this.

To access the scatter file in a uVision project, go to Options for Target... dialog, select the Linker taband then
click the Edit... button next to the Scatter File line.

The following linker script is used in the example application:

hhkhkhkk kA dhhkh kA A xkxhhkhkhkrx Ak dkhhhkhkhkxrhkhkhkhhkrhkkxhkhkkkhkhhxkxkhkhkkhkkkhkxkxkkkkkx

*** Scatter-Loading Description File ***
EIR R I S I I R I I S I I S R I I R I R S I I I b I I b R I Ik b S I S I S A b S S 2 I

LR _IROM1 0x08000000 0x00180000 { ; load region size region
ER TIROM1 0x08000000 0x00180000 { ; load address = execution address
*.0 (RESET, +First)
* (InRootSSSections)
.ANY (+RO)
}

RW_ IRAMI1 0x20000000 0x00050000{ ; RW data
* (backup buffer section)
}
RW IRAM2 +0 { ; RW data
.ANY (+RW +2I)
}
RW IRAM3 +0 UNINIT ({
EventRecorder.o (+21I)
}
RW TIRAM4 +0 UNINIT { ; RW data

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved
8 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp
https://www.st.com/en/development-tools/stm32cubeprog.html

.ANY (STACK)

}

RW_ IRAMS +0 { ; RW data
.ANY (HEAP)

}

Add support for Arm Compiler 6

Section “2.6 Other compatibilities” in [5] specifies that the main core of X-CUBE-STL-F4 has no dependencies to

the compiler used to build the final application software and that the user is free to select the compiler with no

constraints coming from the use of X-CUBE-STL-F4.

FuSa RTSrequires the use of the safety-qualified Arm Compiler 6 (v6.6.2). The X-CUBE-STL C files

stl_user_param_template.c andstl_util.c added to the project in the previous step need to be slightly modified

for Arm Compiler 6 support:

o Instl_user_param_template.c, extend the #elif defined line for (__ CC_ARM)and(__GNUC__)withArm
Compiler 6 defines. This ensures that the buffer STL_aRamTmBckUpBuf gets defined and correctly placed
into the backup_buffer _section in RAM.

Added code is highlighted in bold below. Splitting the code into multiline with “\” is not necessary. It is done
here to keep the code correct as full lines don’t fit in the document page.

#elif defined (__CC_ARM) || defined(_ GNUC_) || (defined (__ARMCC VERSION) && \
(__ ARMCC VERSION >= 6010050))
uint32 t STL aRamTmBckUpBuf [STL TM RAM BCKP BUF SZ]

__attrzbute__((section("backup_EufEer_gectign”)));
#endif

o Instl_util.c, there are three occurrences of #elif defined (__GNUC _) that need to be extended with Arm
Compiler 6 defines. This ensures that interrupt masking required by some STL tests gets correctly executed
with Arm Compiler 6.

#elif defined (_ GNUC_) || (defined (__ ARMCC_VERSION) && (__ ARMCC VERSION >= 6010050))
__asm("cpsid i" : : : "memory"):;

#endif

#elif defined (__GNUC_) || (defined (__ ARMCC_VERSION) && (__ ARMCC VERSION >= 6010050))
__asm("MRS %0, primask" : "=r" (result));

#endif

#elif defined (__GNUC_) || (defined (__ ARMCC_VERSION) && (__ ARMCC VERSION >= 6010050))
__asm("MSR primask, %0" : : "r" (MaskReg)):;

#endif

Implement STL tests in the application
After the X-CUBE-STL files are added to the project and configured we can start using them in the application.
This is done in the following steps that are described in detail in this subsection:
e First, in “Create STL test execution module” we create a new C file that implements the STL test
functions for CPU, ROM, and RAM testing. Those functions are expected to be called from the SVC

handler.
e Thenin “Create user SVC calls” the STL test functions are wrapped into user SVC calls.

e Finally, in “Create an RTXthread for STL tests” we implement a new user RTX thread that uses SVC calls
for STL execution.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved
9 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

Create STL test execution module

Correct STL test execution requires multiple API calls to the X-CUBE-STL library for scheduler initialization, test
configuration, execution and analysis of the results. Tosupport a modular application structure, we create a
new file st/_run.c that implements 3 test functions for running CPU, flashand RAM tests respectively. Those
functions perform necessary steps required for correct STL test execution. The functions then will be wrapped
into SVC calls and used in the application.

Additionally, an error handler function is presentstilErrorHandler (). Its contentis application-specificand is
out of scope for this application note.

The test functions are explained in detail below.
e CPU TM test function

To avoid code duplication, a single function st1cpuTMTest (uint32 t testNumber) isused for executing
CPU_TM_<testNumber> STLtest depending on the argument value. It isimplemented as follows:

#include "stdlib.h"
#include "stl user api.h"

/* Array with pointers to the API functions for corresponding STL CPU TM tests */
static STL Status t (*stlCpuTests[STL CPU TM MAX]) (STL TmStatus t *) = {
STL_SCH RunCpuTMl,
STL SCH RunCpuTMlL, // choose one test to run TMl or TMIL
STL SCH RunCpuTM2,
STL_ SCH RunCpuTM3,
STL_SCH RunCpuTM4,
STL SCH RunCpuTM5,
STL_ SCH RunCpuTMé,
STL_SCH _RunCpuTM7,
STL SCH RunCpuTM8,
STL SCH RunCpuTM9,
STL:SCH:RunCpuTMlO,
STL SCH RunCpuTM11,
i

/* Execute STL CPU TM test testNumber */
void StlCpuTMTest (uint32 t testNumber) {
STL TmStatus t StlCpuTmStatus = STL ERROR;

/* Verify testNumber value */

if (testNumber > STL CPU TM MAX) ({
StlErrorHandler () ;

}

A= Ihmalie S« /

else if (STL SCH Init () != STL OK) {
StlErrorHandler () ; /* STL Defence Programming */

}

/* Call STL SCH RunCpuTMX test */

else if (((*stlCpuTests[testNumber]) (&StlCpuTmStatus)) != STL OK) {
StlErrorHandler (); /* STL Defence Programming */

}

else if (StlCpuTmStatus != STL PASSED) {
stlErrorHandler () ; /* STL Tests FAILED */

e Flashtestfunction
The function for flash testing is implemented so that corresponding STLtests canbe run in the shortest
possible blocks - just testing one memory section. This allows us to minimize execution in the SVC context
when necessary.

/* Execute STL Flash tests for specified memory */
void StlFlashTest (uint32 t startAddr, uint32 t endAddr, uint32 t sections) {

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

10 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

/* Flash configurations: */
STL_MemSubset t FlashSubset;
STL MemConfig t FlashConfig;

FlashSubset.StartAddr = startAddr;

FlashSubset .EndAddr = endAddr;
FlashSubset.pNext = NULL;
FlashConfig.pSubset = &FlashSubset;
FlashConfig.NumSectionsAtomic = sections;

STL TmStatus t StlFlashStatus = STL ERROR;

/* Init STL */

if (STL SCH Init() != STL OK) {
StlErrorHandler () ; /* STL Defence Programming*/

}

/* Init Flash TM */

else if (STL SCH InitFlash (&StlFlashStatus) != STL OK) {
StlErrorHandler (); /* STL cannot be run */

}

/* check Flash TM status is reset to STL NOT TESTED */

else if (StlFlashStatus != STL NOT TESTED) {
StlErrorHandler (); /* STL cannot be run */

}

/* configure Flash TM */

else if (STL SCH ConfigureFlash (&StlFlashStatus, &FlashConfig) == STL KO) {
StlErrorHandler () ; /* STL Defence Programming */

}

/* check Flash TM status is reset to STL NOT TESTED */

else if (StlFlashStatus != STL NOT_ TESTED) ({
StlErrorHandler (); /* STL Defence Programming */

}

/* Run Flash TM */

else if (STL SCH RunFlashTM(&StlFlashStatus) != STL OK) {
StlErrorHandler (); /* STL Defence Programming */

}

/* check Flash TM status */

else if (StlFlashStatus != STL PASSED) {
StlErrorHandler(); /* STL Test Failed */

e RAMtest function

The function for RAM testing isimplemented sothat corresponding STL tests canbe run in the shortest
possible blocks - just testing one memory section. This allows us to minimize execution in the SVC context
when necessary.

/* Execute STL RAM tests for specified memory */
void StlRamTest (uint32 t startAddr, uint32 t endAddr, uint32 t sections) {

/* RAM configurations*/
STL MemSubset t RamSubset;
STL MemConfig t RamConfig;

RamSubset.StartAddr = startAddr;

RamSubset .EndAddr = endAddr;
RamSubset.pNext = NULL;
RamConfig.pSubset = &RamSubset;
RamConfig.NumSectionsAtomic = sections;

STL TmStatus t StlRamStatus = STL ERROR;

/* Init STL */
if (STL_SCH Init() != STL OK) {

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

11 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

StlErrorHandler () ; /* STL Defence Programming*/

}

/* Init RAM TM */

else if (STL SCH InitRam(&StlRamStatus) != STL OK) {
StlErrorHandler () ; /* STL cannot be run */

}

/* check RAM TM status is reset to STL NOT TESTED */

else if (StlRamStatus != STL NOT TESTED) {
StlErrorHandler(); /* STL cannot be run */

}

/* configure RAM TM */

else if (STL SCH ConfigureRam(&StlRamStatus, &RamConfig) == STL KO) {
StlErrorHandler (); /* STL Defence Programming */

}

/* check RAM TM status is reset to STL NOT TESTED */

else if (StlRamStatus != STL NOT TESTED) {
StlErrorHandler (); /* STL Defence Programming */

}

/* Run Ram TM */

else if (STL SCH RunRamTM(&StlRamStatus) != STL OK) {
StlErrorHandler (); /* STL Defence Programming */

}

/* check Ram TM status */

else if (StlRamStatus != STL PASSED) {
StlErrorHandler (); /* STL Test Failed */

Create user SVC calls
Since we want to execute STL tests in SVC context, the test functions implemented above need to be wrapped in
corresponding SVC calls. FuSa RTX provides user code templates for that.

In the Project window, right-click on the group with the application code and then click Add New Item to
Group..., select User Code Template. Expand CMSIS category, select the CMSIS-RTOS2 SVCUser Table and click

Add.

@ € Fie (o) Add template file{s) to the project.
* Component Mame
6 C++ File {cpp) = ’ CMSIS ~
Aj Asm File (5) RTOS2:Keil RTXS CIMSI5-RTQS2 'main’ function
RTO52:Keil RTXS CMSIS-RTOS2 Events
\ﬂ Header File {h) RTOS2:Keil RTXS CMSIS-RTOS2 Memory Pool
&) RTOS52:Keil RTXS CMSIS-RTOSZ Message Queue
\é Tert File (1) RTOS2Keil RTXS | CMSIS-RTOS2 Mutex
i e RTOS2:Keil RTXS CMSIS-RTOS2 SWC User Table
=4l Image File {°) I
B RTOS2:Keil RTXS CIMSIS-RTOS2 Sermaphore
@ User Code Template RTC52:Keil RT3 CMSIS-RTQS2 Thread
RTOS52:Keil RTXS CMSIS-RTOS2 Timer ﬂ
Type: I User Code Template
Name: I SVC_User.c
Location: IC:\ST‘.,Examples‘-NUCLED-Fq-J32H‘-,B|inky |

Add | Close | Help |

A new file calledsvc_user.c will be added to the project. This file should specify user functions that the
application wants to execute in the SVC context.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved
12 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

In our example, the SVC functions are mapped to the test functions implemented in “Create STL test execution
module” and the svc_user.c file has the following code:

#include <stdint.h>

extern void StlCpuTMTest (uint32 t testNumber) ;
extern void svc_ StlCpuTMTest (uint32 t testNumber) ;

__attribute ((always inline)) void svc StlCpuTMTest (uint32 t testNumber) ({
register unsigned r0 asm("r0") = testNumber;
__asm volatile("SVC #1" : : "r" (r0));

}
extern void StlFlashTest (uint32 t startAddr, uint32 t endAddr, uint32 t sections);
extern void svc StlFlashTest (uint32 t startAddr, uint32 t endAddr, uint32 t sections);

attribute ((always inline)) void svc StlFlashTest (uint32 t startAddr, uint32 t endAddr,
EInt327t sections) { \ B B B
register unsigned r0 asm("r0") = startAddr;
register unsigned rl _ asm("rl") = endAddr;
register unsigned r2 asm("r2") = sections;
__asm volatile ("SVC #2" : : "r" (r0),"r" (rl),"r" (r2));:

extern void StlRamTest(uint32 t startAddr, uint32 t endAddr, uint32 t sections);

extern void svc StlRamTest(uint32 t startAddr, uint32 t endAddr, uint32 t sections);
__attribute ((always inline)) void svc StlRamTest (uint32 t startAddr, uint32 t endAddr,
uint32 t sections) { \

register unsigned r0 asm("r0") = startAddr;
register unsigned rl ::asm("rl") = endAddr;
register unsigned r2 asm("r2") = sections;
__asm volatile ("SVC #3" : : "r" (r0),"r" (rl),"r" (r2)):;

}

void EnablePrivelegedMode (void) ;

void EnablePrivelegedMode (void) {

__set CONTROL(__ get CONTROL() & ~CONTROL nPRIV Msk) ;
}

extern void svc EnablePrivelegedMode (void);

~_attribute ((always inline)) void svc EnablePrivelegedMode (void) { \
__asm volatile ("SVC #4" : :);

}

void DisablePrivelegedMode(void) ;
void DisablePrivelegedMode (void) {
~_set CONTROL(get CONTROL() |
}

CONTROL nPRIV Msk) ;

extern void svc DisablePrivelegedMode (void) ;

__attribute ((always inline)) void svc DisablePrivelegedMode (void) { \
__asm volatile ("SVC #5" : :);

}

#define USER_SVC_COUNT 5 // Number of user SVC functions

extern void * const osRtxUserSVC[1+USER SVC COUNT];
void * const osRtxUserSVC[1+USER SVC COUNT] = {
(void *)USER SVC COUNT,
(void *)StlCpuTMTest,
(void *)StlFlashTest,
(void *)StlRamTest,
(void *)EnablePrivelegedMode,
(void *)DisablePrivelegedMode,
//
b

*
*
*
*

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved
13 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

Create an RTX thread for STL tests

The exact scheduling of the STL test depends on the application. For simplicity, our application runs a dedicated
STL thread that periodically tests CPU, flashand memory.

The STL threadis configured with a priority higher than the other user threads. This shall ensure that the STL
thread doesn’t get blocked by other threads. X-CUBE-STL user guide provides a stack requirement for STL
operation and this is higher than the default 256 Bytes usedin our FuSa RTS example. So, the STL thread s
configured with 512 Bytes for the stack.

The code below shows how the STL thread is configured and created in the main application thread.

#define STL THREAD STK SZ (5120)
static uint64 t stl thread stk[STL THREAD STK Sz / 8];
static const osThreadAttr t stl thread attr = {

.stack mem = é&stl thread stk[O0],
.stack size = sizeof(stl thread stk),
.priority = osPriorityHigh

b

static osThreadId t tid thrSTL; /* Thread id of thread: STL */

~_NO RETURN static void app main (void *argument) {

tid thrSTL = osThreadNew (thrSTL, NULL, &stl thread attr); /* create STL thread */
if (tid_thrSTL == NULL) { /* add error handling */ }

}

The implementation of the STL threaditself is rather application specific. In our example, it runs the STL tests
every 5 seconds and requires the code shown below. The svc_xx functions are directly mapped to corresponding
test functions implemented in “Create STL test execution module”.

#include "stl user api.h"

extern void svc StlCpuTMTest (uint32 t testNumber) ;
extern void svc StlFlashTest (uint32 t startAddr, uint32 t endAddr, uint32 t sections);
extern void svc StlRamTest(uint32 t startAddr, uint32 t endAddr, uint32 t sections);

/* Array for CPU ARM Core Test Module test list */

static STL TmEnable t aCpuTmEnable[STL CPU TM MAX]=({
STL TEST ENABLE, /* CPU ARM Core Test Module 1 */
STL_TEST DISABLE,/* CPU ARM Core Test Module 1L */ // choose one test to run TMl1 or TMIL
STL TEST ENABLE, /* CPU ARM Core Test Module 2 */

STL_TEST ENABLE, /* CPU ARM Core Test Module 3 */
STL_TEST ENABLE, /* CPU ARM Core Test Module 4 */
STL_TEST ENABLE, /* CPU ARM Core Test Module 5 */
STL TEST ENABLE, /* CPU ARM Core Test Module 6 */
STL TEST ENABLE, /* CPU ARM Core Test Module 7 */
STL _TEST ENABLE, /* CPU ARM Core Test Module 8 */

STL TEST ENABLE, /* CPU ARM Core Test Module 9 */

STL_TEST ENABLE, /* CPU ARM Core Test Module 10 */

STL TEST ENABLE, /* CPU ARM Core Test Module 11 */
b

#define FLASH SECTION SIZE 1024U /* Fixed by STL */

#define TEST FLASH SECTIONS 48 /* Customizable. Amount of sections to be tested in total */
#define TEST FLASH SECTION NB 1 /* Customizable. Sections to be verified in a single run */
#define TEST ROM START ADDR 0x08000000U

#define TEST ROM END ADDR (TEST ROM START ADDR + TEST FLASH SECTIONS*FLASH SECTION SIZE)

#ifdef STL DISABLE RAM BCKUP BUF
#define RAM BACKUP BUFFER SIZE 0
#else

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

14 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

#define RAM BACKUP BUFFER SIZE 32 /* Fixed value as in stl user param.c */
#endif

#define RAM SECTION SIZE 128U /* Fixed by STL */

#define TEST RAM START ADDR (0x20000000U + RAM BACKUP BUFFER SIZE)

#define TEST_ RAM END ADDR 0x20004000U /* customizable */

#define TEST RAM SECTION NB 1 /* Amount of RAM section tested at once*/

thrSTL: run STL
~ NO RETURN static void thrSTL(void *argument) {

(void) argument;
uint32 t i=0;

uint32 t currRomStartAddr = 0;
uint32 t currRomEndAddr = 0;
uint32 t RomSections = TEST FLASH SECTION NB;

uint32 t currRamStartAddr = 0;
uint32 t currRamEndAddr =0;
uint32 t RamSections = TEST RAM SECTION NB;

for (;;) {

/** Run CPU tests ****xx*x/

for (i=0; i < STL CPU TM MAX; i++) {
if (aCpuTmEnable[i] == STL TEST ENABLE) {

osDelay (1);
svc_StlCpuTMTest (i) ;

}

}

/** Run Flash tests *****x**x/

currRomStartAddr = TEST ROM START ADDR;

while (currRomStartAddr <= TEST ROM END ADDR- (RomSections*FLASH SECTION SIZE)) {
currRomEndAddr = currRomStartAddr + (RomSections*FLASH SECTION SIZE)-1;
osDelay (1) ;
svc StlFlashTest (currRomStartAddr, currRomEndAddr, RomSections) ;
currRomStartAddr = currRomEndAddr+1;

}

/** Run RAM tests **x***x*x%x/

currRamStartAddr = TEST_RAM START_ADDR;

while (currRamStartAddr <= TEST RAM END ADDR- (RamSections*RAM SECTION SIZE)) {
currRamEndAddr = currRamStartAddr+ (RamSections*RAM SECTION SIZE)-1;
osDelay (1) ;
svc_StlRamTest (currRamStartAddr,currRamEndAddr, RamSections) ;
currRamStartAddr = currRamEndAddr+1;

}

osDelay (5000) ;

Execution in thread mode

X-CUBE-STL-F4 used in our example (see "References and Useful Links”) does not require that any of the STL
tests shall be executedin thread mode. But STLs for some other STM32 families (for example STM32F1,
STM32F7) require thatthe CPU TM7 test is executed in privileged thread mode and otherwise an error is
returned. This means that it cannot be run in the SVC context that gets executedin handler mode.

The solution could be to enable the privileged mode before executing the test in the STLthread and disable it
right after. The implementation for the enable and disable functions is already provided in the svc_user.cfile
shown in section “Create user SVC calls”. The functions can be used as follows:

extern void svc EnablePrivelegedMode (void);
extern void svc DisablePrivelegedMode (void) ;
extern void StlCpuTMTest (uint32 t testNumber) ;

/.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

15 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

~_NO RETURN static void thrSTL(void *argument) {
// ...
for (;;) |
/** Run CPU tests ***x**x*xx%/
for (i=0; i < STL CPU TM MAX; i++) {
if (aCpuTmEnable[i] == STL TEST ENABLE) {
osDelay (1);
if (1 == 7){ // Run CPU TM7 in privileged thread mode
svc EnablePrivelegedMode () ;
St1lCpuTMTest (1) ;
svc DisablePrivelegedMode () ;
}
else{
svc_StlCpuTMTest (i) ;
}
}

)
//...

Note, that FuSa RTXRTOS kernel does not change the privilege level during a thread switch. Hence if a thread
switch occurs when the privileged level is enabled, then also the new thread will be executedin the privileged
mode. The user shall analyze potential safetyimpact of such behavior on its application.

Analyze X-CUBE-STL integration in MDK

Arm Keil MDK has advanced debug and trace capabilities that allow us to analyze the X-CUBE-STL integrationin
our example. The System Analyzer window graphically displays the exceptions and RTOS events synchronized

over time. uVision User’s Guide [7] provides more details on the System Analyzer.

In our example, we use a high-speed ULINKpro adapter for the debug connection to the MCU. ULINKprois
connected to the NUCLEO-F413ZH board via an SWD adapter.

Project configuration

Configure SWO Trace

The SWO trace needs to be enabled and configured for the target debug adapter. Refer to the ULINKpro User’s
Guide [8] for details on how to do this.

Configure FuSa Event Recorder

The FuSa Event Recorder component shall be presentin the application to enable RTOS-aware debugging. To
add it to the project open Manage Run-Time Environment window and then in the Compiler group enable
Event Recorder software component.

Software Component Sel. Variant Versi.. Description
7 € CMSIS 4|
% € CMSIS Driver
SR Compiler ARM Compiler 16,0 |FuSa: Compiler Extensions for ARM Compiler 6
¥ ClLibrary v Library 6.6.0 |FuSa: Arm Compiler FuSa C Library for Cortex-M4
v [7 DAP 1.4.0 FuSa: Event Recording and Component Viewer via Debug Access Port (DAP)
+ ‘ Device
7 € Graphics Display Display Interface including configuration for emWIN
“ more... ‘Select Software Packs' has been used to hide some Software Components LI
| | 2l
Validation Output Description
Resolve Select Packs Details OK I Cancel Help

AN326 — Using X-CUBE-STL with Arm FuSa RTS

Copyright © 2020 Arm Ltd. All rights reserved

16 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp
https://www2.keil.com/mdk5/
https://www2.keil.com/mdk5/ulink/ulinkpro/

Then the FuSa Event Recorder files will be added to the

_] EventRecorderConfh v X

project under the Compiler group. Inthe Somd it | _Colpee i | meb | T ShonGed
EventRecorderConf. h file we need to specify the number ?p falue

of records for the Event Recorder buffer in RAM, time Number of Records 256

stamp source and clock frequency. Configuration Wizard Time Stamp Source DWT Cycle Counter

view allows GUI-like editing of the file. Time Stamp Clock Frequency [Hz] 18000000

Event Recorder buffer needs to be placed into a non-
initialized RAM area. Corresponding entry can be seen in
the scatter file described in the section “Configurations for

Event Recorder

RAM memory test”. Text Editor P\Conﬁguration Wizard ‘.l'
Configure FuSa RTX RTOS Events -] R Configh M
. . . . Expand Al | Collapse Al Help |
In the FuSa RTX configuration file RTX_Config.h we need to enable Event .
e . . ption Value
Recorder initialization and recording start. 4 Memory Pool Configuration]
. . . +-Message Queue Configuration
We keep all event categories enabledin the RTOS Event Generation group. 1
But to reduce the number of events placed in the limited Event Recorder 5 Global Initialization v
buffer we need to configure RTOS Event Filter Setup for our debug purpose. ! S‘IOLIEEH't:Im - i
We enable Error, Operation and Detailed Operation event types for Kernel, £ RTOS Event Filter Setup
Thread and Generic Wait categories. For other categories, only Error events 4 RTOS Event Generation e
are enabled Event Recorder Configuration
Text Editor }\(onfiguration Wizard [

Observed System Behavior

When the debug sessionis started and the application is running we can open System Analyzer window and see
the exceptions and RTOS threads appearing in the window over time.

From the default view, as shown in the figure below, we canobserve large blocks of activityin the STL thread
every 5 seconds. This is our periodic STL test executions.

System Analyzer H

Hesaa|fidlke=|libd ke ulaMe

,‘ Exceptions Ja
Thread Mode |
SWCall (11) | | | | | | | | | | | 1 |
SysTick {15) |
Event Recorder Thread Su] Thread D elzy St Thread Sul Thread S Thread Sw Thread Sw Thread Sw Thread Sw] Thread Sl Thread Sw Thread Sul lIDelz]Thread SwThrea:
RTX5 RTOS

F

4 Thread Events
app_main ((x200017c)
osRtxldle Thread (kx20001550)
osRtxTimer Thread (b20001554)
thrBUT ((20001840)
thrLED ((x200018584)

osRixldl {osRix osRixld <osRixldl <osRixldl <psRixldl {psPixldl {psRixldl <psRixldl <psRixld <psRtxldl <osRtxldl os <{osBixld <osRts

thrSTL {(x200018c8) || [|
T Executions of the STL thread ——
Grid: 500 ms 9.5272 s 13027 = 165275 =
< | r[>]
AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

17 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

Zooming in to one of such areas we can see that this is not a continuous execution, but many short runs of the
STL thread. This is also how it should be per our implementation. We execute STL tests individually in the
shortest possible blocks and have a 1 SysTick delay in between.

System Analyzer H

Hesa|Jjwcs ekl ulandae
4 Exceptions
Thread Mode A | N | | N N O O O O
SVCall (11) (I O O O O O B O B B O e e e e e e e |
SysTick (13) | I S N T R NN U R R RO RN RORN O U R R RN R e |
Event Recorder [Cel [l [Del] [Del] [Del] [l [Del] [Del [Del [Del [Del] [Del [Del [Del [Del] [Tel [Cel [Dell [Del [Tel [Te

4 RTX5 RTOS
4 Thread Events

app_main (k20001 Fc)
osRtxldle Thread ((«200071950)
osRtx TimerThread ((20007954)
thrBUT ((x20001840)
thrLED (0x20001884)
thrSTL ((200018c8)

-

ANV g

Executions of individual STL tests

13.819s 13829 =

Grid: 2 ms 13805s
< [2>l

Zooming further into a single continuous STLthread run, we can analyze the STL test executionin more detail, as

System Analyzer H

H*H'||J|\ﬂ'4"‘>|\pql|fﬁ19¢&—l;|“‘ |ﬂ.'»||'€-'

4 Exceptions Thread Mod % SysTick {15) SWCall {11) [Entry] SWCall {11) = Thread Mode [
Thread Mode I | [|]
SWCall (11} . § |
SysTick (15) L 1 [|
Event Recorder [DellThred Th ThreadSwitched | [Threl Thi] DElayStarted |

4 RTX5 RTOS
4 Thread Events osBtxdle Thread (0 ®ihrS thrSTL ((x200018c8) [Running] thr # osBixldle Thread (k2

app_main (x200017Fc)

osRtxldieThread (320001350} I 1 |

osRtx TimerThread (ka20001594)

thrBUT {20001 840)

thrLED {(20001884)

thrSTL (x200018c8)

0JO), G0l0),

Grid: 50 us 13.816¢ 135165 138168]
Kl | v [>]

shown in the figure below.

Here are the explanations for the highlighted events:

1) osRtxldleThreadis in Running state. STLthreadis in Blocked state because it has called ospelay (1)
function before and is still waiting for the delay to end. At this point, SysTick execution is startedand
shortly after the delay is completed.

2) Then the STL threadis changedfrom Blocked to Readystate.

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

18 www. keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp

3)

4)
5)

6)

7)
8)

Since STL thread has a higher priority it preempts the osRtxldleThread andis now changedto Running
state.

The svc_xx function is called within the STL thread and its execution in the SVC context is started.

The svc_xx function is completed, and the processor exits from the SVC exception. The STL thread
executes some code in the thread mode (the for () loops)

osDelay function is called in the STLthread. Itis executed in the SVC context and changes the STL thread
state from Running to Blocked.

osRtxldleThread state is changed to Running state.

osRtxldleThreadis executedin thread mode.

Observed operation is as expected according to the implementation. The STL tests are kept short and executed
one by one in the SVC exceptions with delays in between. Execution of each STLtest is startedright aftera
SysTick interrupt toreduce the risk of postponing the next SysTick.

Summary

In this application note, we have analyzed the possibility of using X-CUBE-STL-F4 in a FuSa RTS based application.
It shows that individual test execution using the SVC exception can be a valid approach for the integration of X-
CUBE-STL. Anexample implementation for such integrationis provided for the STM32F413ZH device.

References and Useful Links

(1]
(2]
(3]
(4]
(5]
(6]
7]
(8]
(9]

UM1840 STM32F4 Series safety manual, Rev.6-June 2019

AN5141 Results of FMEA on STM32F4 Series microcontrollers, Rev. 3, June 2019
AN5140 FMEDA snapshots for STM32F4 Series microcontrollers, Rev. 4, June 2019
FuSa RTSv1.0.1Safety manual

UM2490 STM32F4 Series self-test library safety manual, Rev. 4, April 2019
UM?2494 STM32F4 Series self-test library user guide, Rev. 2, February 2019
uVision User’s Guide

ULINKpro User’s Guide

Arm Safety Compiler

[10] Arm FuSa RTS

AN326 — Using X-CUBE-STL with Arm FuSa RTS Copyright © 2020 Arm Ltd. All rights reserved

19 www.keil.com/appnotes/docs/apnt_326.asp

http://www.keil.com/appnotes/docs/apnt_326.asp
https://www.keil.com/support/man/docs/uv4/uv4_overview.htm
https://www.keil.com/support/man/docs/ulinkpro
https://developer.arm.com/tools-and-software/embedded/arm-compiler/safety
https://www.keil.com/fusa-rts

	Abstract
	Prerequisites
	Introduction
	Scope of the application note

	STM32 X-CUBE-STL overview
	Arm FuSa RTS overview
	Integration of X-CUBE-STL with FuSa RTS
	X-CUBE-STL CoUs and FuSa RTS operation
	STL user constraints and FuSa RTS operation
	Interrupt management

	FuSa RTS user requirements and STL operation

	Add X-CUBE-STL tests to a FuSa RTS project
	Project setup
	Add X-CUBE-STL files to the project
	Configurations for the flash memory test
	Configurations for RAM memory test
	Add support for Arm Compiler 6
	Implement STL tests in the application
	Create STL test execution module
	Create user SVC calls
	Create an RTX thread for STL tests
	Execution in thread mode

	Analyze X-CUBE-STL integration in MDK
	Project configuration
	Observed System Behavior

	Summary
	References and Useful Links

