
 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

1

Hands-on using the NXP LPCXpresso LPC800 Board and Keil MDK

NXP : Cortex™-M0+ Hands-On Lab

Using the LPCXpresso LPC800 featuring MTB: Micro Trace Buffer

and ARM® Keil™ MDK Toolkit Summer 2013 Version 2.1 by Robert Boys, bob.boys@arm.com

Introduction:

The purpose of this lab is to introduce you to the NXP LPC800 Cortex™-M0+ processor using the ARM® Keil™ MDK
toolkit featuring the IDE μVision®. We will demonstrate all debugging features available on this processer including Micro
Trace Buffer (MTB). At the end of this tutorial, you will be able to confidently work with these processors and Keil MDK.
See www.keil.com/nxp for more labs, appnotes and other information. See forums.arm.com.

Keil MDK supports and has examples for most NXP ARM and 8051 processors. Check the Keil Device Database® on
www.keil.com/dd for the complete list which is also included in MDK: In μVision, select Project/Select Device for target…

Linux: NXP ARM processors running Linux, Android and bare metal are supported by ARM DS-5™. www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn it into the appropriate commercial version.

Middleware: MDK Professional contains middleware libraries including TCP/IP stack, CAN drivers, a Flash file system and
USB drivers. Contact Keil sales for information regarding middleware for your processor. http://www.keil.com/arm/mdk.asp.

RTX RTOS: RTX now comes with a Berkeley BSD type license. All variants of MDK contain the full version of RTX with
Source Code. See www.keil.com/rl-arm/kernel.asp and www.arm.com/cmsis.

Why Use Keil MDK ?
MDK provides these features particularly suited for Cortex-M users:

1. µVision IDE with Integrated Debugger, Flash programmer
and the ARM® Compiler and assembler toolchain. MDK is
a complete turn-key tool solution.

2. A full feature Keil RTOS called RTX is included with
MDK. RTX comes with a BSD type license.

3. RTX Kernel Awareness windows. It is updated in real-time.
All applicable ARM debugging technology is supported.

4. Available Debug Adapters: ULINK™2, ULINK-ME,
ULINKpro, J-Link and NXP LPC-Link 2 (CMSIS-DAP).

5. Keil Technical Support is included for one year and is easily
renewable. This helps your project get completed faster.

6. MDK includes support for NXP processors including 8051,
ARM7™, ARM9™, Cortex-M0, Cortex-M3, and Cortex-M4.

This document includes details on these features plus more:

1. Micro Trace Buffer (MTB). This is Instruction Trace. It is a history of where your program has been.

2. Real-time Read and Write to memory locations for Watch and Memory windows. These are non-intrusive to your
program. No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Four Hardware Breakpoints (can be set/unset on-the-fly) and two Watchpoints (also known as Access Breaks).

4. RTX and its RTX Tasks window: a kernel awareness program for RTX that updates while your program is running.

5. A DSP example program using ARM CMSIS-DSP libraries.

Micro Trace Buffer (MTB):
MDK supports MTB with ULINK2/ME, ULINKpro or LPC-Link 2 (CMSIS-DAP). MTB provides instruction trace which is
essential for solving tricky program flow and other related problems. How to configure and use MTB is described.

Keil ULINK2 connected to LPCXpresso.
The USB cable provides power to the LPC800.

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_237.asp

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

2

Index:
1. NXP Evaluation Boards & Keil Evaluation Software: 3

2. Keil Software Installation: 3

3. CoreSight Definitions: 4

4. Debug Adapter Summary for Keil MDK with µVision IDE: 4

5. Debug Adapter Connection Issues with the LPCXpresso board: 5

6. CMSIS: Cortex Microcontroller Software Interface Standard: 5

7. Programming LPC-Link 2 as a CMSIS-DAP Complaint debug adapter: 6

Using the Blinky example with a ULINK2 or LINK-ME Debug Adapter:

8. Configure µVision for various debug adapters: 7

9. Blinky example using the LPCXpresso LPC800: 8

10. Hardware Breakpoints: 8

11. Call Stack & Locals window: 9

12. Watch and Memory windows and how to use them: 10

13. Watchpoints: Conditional Breakpoints: 11

14. MTB: Micro Trace Buffer: 12

15. Exploring the MTB: 13

16. Configuring the MTB Micro Trace Buffer: 14

17. Trace “In the Weeds” Example: 15

18. RTX_Blinky: Keil RTX RTOS example: 16

19. RTX Kernel Awareness using RTX Viewer: 17

20. DSP Sine Example using ARM CMSIS-DSP Libraries 18

21. Configuring MTB for the DSP SINE example: (for reference) 20

Additional Information:

22. Creating your own project from scratch: 20

23. LPC800 Cortex-M0+ Trace Summary: 23

24. Useful Documents: 23

25. Keil Products and contact information: 24

Using this document:
1. The latest version of this document and the necessary DSP example source files are available here:

www.keil.com/appnotes/docs/apnt_237.asp

2. You need a debug adapter: a ULINK2, ULINK-ME, ULINKpro, Segger J-Link (black case V6 or later) or a LPC-
Link 2. MDK supports any of these with LPCXpresso LPC800. MTB is not currently supported with a J-Link.

3. ULINK-ME is used by default in this document. A ULINK-ME is electrically essentially the same as a ULINK2.
Configuring another debug adapter such as a ULINKpro or a J-Link is easy to do.

4. Important note:
If you are using a debug adapter other than ULINK-ME: please see Debug Adapter Connection Issues on page 5.

5. The first exercise starts on page 8. You can go directly there if you are using ULINK2 or ULINK-ME. For any
ULINK you must select the correct adapter in the Target selector box as shown there: It is easy to add these targets.

TIP: If you select ULINK or ULINKpro, and have the opposite ULINK actually connected to your PC; the error
message will say “No ULINK device found”. This message actually means that µVision found the wrong Keil adapter
connected, and not that no ULINK was attached. Select the correct ULINK.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

3

1) NXP Evaluation Boards & Keil Evaluation Software:
Keil makes many boards supporting NXP processors. Visit www.keil.com/nxp and select ARM-based Device Families. We
have board support packages (BSP) for many other boards. Scan C:\Keil\ARM\Boards to find these example programs.

For NXP LPC3000 ARM9 processors using Linux, Android or bare metal (no OS) please see www.arm.com/ds5.
The directory \RL consists of middleware examples. Such middleware is a component of MDK Professional. To run these
examples a full license is needed. Please contact Keil sales for a temporary license if you want to evaluate Keil middleware.

Other Keil Hands-On Labs for NXP Processors:

CAN www.keil.com/download/docs/385.asp

NGX XpLorer LPC4300 www.keil.com/appnotes/docs/apnt_233.asp

Keil MCB1700 - LPC1700 www.keil.com/download/docs/394.asp

2) Keil Software Installation:
This document was written for Keil MDK 4.70 or later which contains µVision 4. The evaluation copy of MDK (MDK-Lite)
is available free on the Keil website. Do not confuse µVision4 with MDK 4.0. The number “4” is a coincidence.

MDK 4.71a is the current official Keil release. (June 2013)

To obtain a copy of MDK go to www.keil.com/arm and select the “Download” icon located on the right side.

Install MDK into the default directory. You can install MDK into any directory, but references in this lab are made to C:\Keil.

MDK-ARM_AddOn_LPC8xx.zip: Do not install this file from the NXP website. All the files needed to debug on
LPCXpresso LPC800 are included on MDK 4.71. Get the DSP example from: www.keil.com/appnotes/docs/apnt_237.asp

MDK 4.71 has:

 Complete support for MTB trace.

 MTB Trace works with ULINK2, ULINK-ME (the version with 10 pin connector) and ULINKpro.
Currently, Segger J-Link (black case) does not work with MTB. However, everything else works with it.

 All the example files. For the DSP example go here: www.keil.com/appnotes/docs/apnt_237.asp.

You can use the evaluation version of MDK-Lite and ULINK2, ULINK-ME, ULINKpro for this lab. You can use a J-Link
(black case) for everything except MTB. This will likely come at a later date.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

4

3) CoreSight Definitions: It is useful to have a basic understanding of these terms:

Note: The Cortex-M0+ options are highlighted in red below: NXP Cortex-M3 and Cortex-M4 have all except MTB. Consult
your specific device datasheet for specifics.

 JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

 SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except for no
Boundary Scan. SWD is referenced as SW in the µVision Cortex-M Target Driver Setup. See page 5, 1st screen.
The SWJ box must be selected. The LPC800 processors use SWD exclusively. There is no JTAG on the LPC800.

 SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.
SWV must use SWD because of the TDIO conflict described in SWO below.

 DAP: Debug Access Port. A component of the ARM CoreSight debugging module that is accessed via the JTAG or
SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-fly memory
accesses without the need for processor core intervention. µVision uses the DAP to update memory, Watch and a
RTOS kernel awareness window in real-time while the processor is running. You can also modify variable values on
the fly. No CPU cycles are used, the program can be running and no code stubs are needed in your sources.
You do not need to configure or activate DAP. µVision does this automatically when you select the function.

 SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.

 Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than the SWO pin).

 ETM: Embedded Trace Macrocell: Provides all the executed instructions. Only ULINKpro provides ETM.

 ETB: Embedded Trace Buffer: a small dedicated on chip RAM (4 to 4 Kbytes) accessible with a debug adapter.

 MTB: Micro Trace Buffer. A portion of the device internal RAM is used for an instruction trace buffer. MTB is
only on LPC800 Cortex-M0+ processors. Most NXP Cortex-M3 and Cortex-M4 processors provide ETM trace.

4) Debug Adapter Summary for Keil MDK with µVision IDE:
ULINK2: Pictured on page 1. This is a hardware JTAG/SWD debugger. It connects to various connectors found on boards
populated with ARM processors. With NXP Cortex-M3 and M4 processors, ULINK2 adds Serial Wire Viewer (SWV). The
LPC1700 lab www.keil.com/download/docs/394.asp has many SWV and ETM trace examples.

ULINK-ME: Pictured on page 8. ULINK-ME is provided only combined with a board package from Keil or an OEM.
Electrically and functionally it is very similar to a ULINK2. With Keil µVision, they are used as equivalents. To connect to
the LPCXpresso LPC800, you need the newer ULINK-ME with the 10 pin Cortex JTAG/SWD connector as shown on page 8.

ULINKpro: Pictured on the next page. ULINKpro is Keil’s most advanced debug adapter. With NXP Cortex-M3 and
Cortex-M4 processors, ULINKpro provides Serial Wire Viewer (SWV) and adds ETM instruction trace. Code Coverage,
Performance Analysis and Execution Profiling are then provided using ETM. ULINKpro programs the flash very fast.

Segger J-Link: Pictured on the next page with adapter. µVision supports J-link and J-Link Ultra (black case only) Version
6.0 or later. The J-Link family supports all CoreSight components except MTB. This will be supported in the future.

LPC-Link 2: A CMSIS-DAP compliant debug adapter. This provides either a J-Link Lite or a CMSIS-DAP connection.
µVision supports both. CMSIS-DAP has MTB trace working. J-Link is under development.

CMSIS-DAP is a new ARM standard where a small processor located on the target board acts as the Debug Adapter. It
connects to your PC with a standard USB cable.

CMSIS-DAP provides run control debugging, Flash and RAM programming, Watchpoints, hardware breakpoints, and DAP
reads and writes in Watch and memory windows updated in real-time as well as MTB trace and RTX System kernel
awareness. You are able to easily incorporate a CMSIS-DAP design on your own custom target boards. For documents go to
silver.arm.com/browse/CMSISDAP and download CMSIS-DAP Beta 0.01. Also see www.arm.com/cmsis.

NEW ! ULINK2 and ULINK-ME with CMSIS-DAP Support: (not in 4.71a but will be in 4.72)

Starting with MDK 4.70, you can use either of these as a CMSIS-DAP compliant debugger or in standard ULINK2/ME mode.
CMSIS-DAP mode adds trace search, save and clear window options. This is the same window as with the ULINKpro.

The ULINK2/ME firmware needs to be updated. This is automatic when you enter Debug mode. After this, you can

select either mode in the Target Options menus: or

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

5

5) Debug Adapter Connection Issues with the LPCXpresso board Rev A:
These issues are very minor. Complete and easy workarounds are described:

ULINK-ME: No adjustments are needed. ULINK-ME ignores the missing VTRef voltage.

ULINK2: Pin 1 of the Debug connector (VTRef) is used by ULINK2 to determine the operating voltage of the target. The
LPCXpresso by default leaves this pin floating so it has zero volts. Either populate R29 with a low ohms resistor or set the
ULINK2 internal VCC jumper to 3.3V. This jumper is shown set correctly in the picture here:

ULINKpro: No adjustments are needed. ULINKpro Remove the cover to install the 20
to 10 pin cable. Do not remove or disturb the battery !

LPC-Link 2: No adjustments are needed. LPC-Link 2 ignores the VTRef voltage.

Segger J-Link: The J-Link pulls pin 10 of the debug connector (nSRST) down to about
1.5 volts and this holds the processor in RESET. This appears to be caused by VTRef
floating instead of at 3.3 volts. Populate R29 (a glob of solder will do). Adding a jumper
from J4 pin 11 to J6 pin 2 (+3.3v) to bring nSRST up to 3.3v prevents any debug adapter,
including J-Link, to use this pin to reset the processor. By default, MDK does not use
nSRST to reset the target. It uses the CPU SYSRESETREQ bit.

Go to www.keil.com and search for schematics for Keil ULINK interface details.

USB on LPCXpresso board: If you plug the USB into the LPCXpresso board and Windows attempts to install USB
drivers, please cancel this operation. We do not need any USB drivers for this board for this tutorial.

6) CMSIS: Cortex Microcontroller Software Interface Standard
CMSIS-CORE provides a common interface to ARM processor cores and peripheral registers.
NXP example software is CMSIS hardware abstraction layer compliant.

CMSIS-DSP DSP libraries are currently offered for all Cortex-M0, Cortex-M0+, Cortex-M3 and Cortex-M4 processors.

CMSIS-RTOS provides standard APIs for RTOSs. RTX is a free RTOS available from ARM as part of CMSIS Version 3.0.
RTX is included, with source files, with MDK and is also available here: www.keil.com/demo/eval/rtx.htm.

CMSIS-DAP (Debug Access Port) is a new ARM standard for on-board debugging adapters. An external adapter such as a
ULINK2 is not needed for most debugging applications. LPC-Link 2 is CMSIS-DAP compliant. ULINK-ME and ULINK-2
have CMSIS-DAP operating modes and well as their regular proprietary option.

CMSIS-SVD (System View Description) are XML files that contain the programmer's view of a complete microcontroller
system including peripherals. MDK supports CMSIS-SVD.

See www.arm.com/cmsis and forums.arm.com for more information.

Keil ULINKpro with
20 to 10 pin cable.

Segger J-Link Ultra with
optional Cortex adapter.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

6

LPC-Link 2 connected to LPC800.

Selecting CMSIS-DAP:

LPC-Link 2 Configuration program:

7) Programming LPC-Link 2 as a CMSIS-DAP Compliant debug adapter:
LPC-Link 2 provides either a Segger J-Link2 Lite or CMSIS-DAP mode.
µVision supports both. CMSIS-DAP mode provides MTB support.
All files needed are here: http://www.lpcware.com/lpclink2-config-tool.
There are three steps to configure LPC-Link 2 with µVision:

1. Install the NXP USB drivers. The filename currently is
lpc18xx_43xx_winusb_drivers_v1.00.zip. Extract these into a
temp directory and plug the LPC-Link 2 into the PC USB and
install the USB drivers in the usual way.

2. Your PC must have Microsoft .NET Framework 4 or later.
When you run the LPC configuration tool in Step 3 and you do
not have the correct version of .NET, there will be an error. If
you do not receive an error, then your .NET is correct. You can
get .NET here: www.microsoft.com/net/download.

3. Program the LPC-Link to either J-Link or CMSIS-DAP mode.

A program called LPC-Link 2 Configuration Tool is used. Obtain it
from the website listed above: LPC-Link 2 Config tool.zip Extract it
into a suitable directory on your PC. You will execute it by double-clicking on it or in the fashion you prefer.

Configuring LPC-Link 2 for CMSIS-DAP:

1. Remove jumper JP1. Whether JP1 installed or not will be sensed by the processor at its startup routines.

2. Connect LPC-Link 2 to your PC’s USB port. The USB drivers in Step 1 above must be installed and must connect.

3. Start LPC-Link 2 Config.exe by double-clicking on it. This file runs alone, it does not install as most programs do.
The window below opens up. Follow the steps – it is fairly simple and reliable.

TIP: JP1 must be either installed or not when the power is applied or cycled. In Step 1 below it is assumed the LPC-Link 2 is
not connected to the USB port when you are instructed to remove JP1. If it is powered, just cycle the power with JP1 off.

TIP: If the instructions in Step 2 below are greyed out, this usually means the LPC-Link 2 is not connected to the PC USB
drivers. You will have to fix this before you can continue. Solutions include: check the USB port or re-install the drivers.

TIP: Step 3 assumes power will be applied via the USB cable. After replacing JP1, the USB cable must be plugged in.

Configuring µVision for LPC-Link 2:

In µVision, Select Target Options and select the Debug tab. In the drop-down menu box select CMSIS-DAP Debugger as
shown at the bottom of this page: You will also have to select the Flash programming algorithm in the Utilities tab.

You only need to program the
LPC-Link 2 once. The
firmware will stay in flash until
you need to change it to a
different mode.

You can now complete the
instructions on the next page to
configure uVision for the debug
adapter you are using.

TIP: JP2 supplies power to
your target board if installed.
You can leave JP2 on or off for
all the programming steps
above.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

7

8) Configuring µVision for various debug adapters:
1. The LPC800 examples are pre-configured to use the ULINK2 or ULINK-ME. If you are using one of these adapters,

you do not need to configure anything on this page. These steps show you how to change to other debug adapters
such as ULINKpro or a J-Link and confirms you have successfully connected to the Cortex-M0++ core in Step 9.

2. Start µVision . Connect the LPCXpresso board to a ULINK2 or ULINK-ME or other supported debugger.

3. Power LPCXpresso with a USB cable. We will not use this USB connection for anything else. If a request from
Windows to install USB drivers pops up: cancel this operation.

4. If µVision says a Firmware Upgrade is required to the ULINK, please allow this. It will not take very long.

5. Select Project/Open Project and select the project you want to use for your board.
We used C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky\Blink.uvproj.

6. Select Target Options or ALT-F7 and select the Debug tab. In the drop-down menu box select ULINK2/ME

Cortex Debugger or the adapter you want to use as shown here:

7. Select Settings and the next window below opens up. This is the control panel for debug control.

8. In Port: select SW. Select the SWJ box. Note:
The LPC800 has only SWD (SW). It does not
have JTAG. You can do everything with SWD.

9. In the SW Device area: ARM CoreSight SW-DP
MUST be displayed. This confirms you are
connected to the target processor. If there is an
error displayed or it is blank: this must be fixed
before you can continue. Check the target power
supply. Cycle the ULINK and LPC800 power.

TIP: To refresh this screen, change the option in Port: to JTAG and then back to SW or click OK to leave and then re-enter.

10. Click OK once to return to the Options for target menu.

Configure the Keil Flash Programmer:
1. Select the Utilities tab.

2. Select ULINK2/ME Cortex Debugger or
your own adapter as shown:

3. Click Settings to select the programming
algorithm.

4. Select Add and select the LPC8xx Flash if
necessary as shown here:

5. LPC8xx IAP 16kB Flash is the correct one
to use with the LPCXpresso LPC800
board.

6. Click on OK once.

TIP: To program the Flash every time you enter
Debug mode, check Update Target before
Debugging.

7. Click on OK once more to return to the
µVision main screen.

TIP: To use a ULINKpro or a J-Link, follow the
instructions above but select the correct adapter.
LPC-Link 2 will work with µVision. Make sure
you check the debug connection issues on page 5.

To use a LPC-Link 2, select CMSIS-DAP as the debug adapter in the Target Options window under the Debug tab.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

8

9) Blinky example program using the NXP LPXpresso LPC800:
Now we will connect a Keil MDK system using the LPCXpress LPC800 and a ULINK2 or ME as the debug adapter.

11. Connect the ULINK as shown below or on page 1. Take care in attaching the debug cable. It is easy to get it
backwards. The USB cable to J3 is used to only power the board. Cancel any requests to install USB drivers.

1. Start µVision by clicking on its desktop icon.

2. Select Project/Open Project.

3. Open the file: C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky\Blinky.uvproj.

4. Select “LPC812M101 Flash” in the Select Target menu.
This is where you create and select different target configurations such as to execute a program in RAM or Flash.
This Target selection is pre-configured to use a ULINK2 or a ULINK-ME.

5. Compile the source files by clicking on the Rebuild icon. .
You can also use the Build icon beside it.

6. Program the LPC800 flash by clicking on the Load icon:
Progress is indicated in the Output Window.

7. Enter Debug mode by clicking on the Debug icon.
Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to
FLASH and not for RAM operation if it is chosen.

8. Click on the RUN icon. Note: you stop the program

with the STOP icon.

The three colour LED D3 on the LPCXpresso board will
now blink in sequence.

The speed the leds change can be changed by varying the pot R38.

Now you know how to compile a program, program it into the LPC800 processor Flash, run it and stop it !

Note: The board will start Blinky stand-alone. Blinky is now permanently programmed in the Flash (until reprogrammed).
If you remove the ULINK and cycle the board power, this program will run automatically from the Flash memory.

10) Hardware Breakpoints:
The LPC800 has four hardware breakpoints that can be set or
unset while the program is running.

1. With Blinky running, in the source window, set a
hardware breakpoint by clicking on a darker block in
the left in Blinky.c in the inside the while(1) loop.

2. A red circle will appear and the program will
presently stop at this point.

3. Note the breakpoint is displayed in both the
disassembly and source windows as shown here:

4. Every time you click on the RUN icon the
program will run until the breakpoint is again
encountered and the next LED will illuminate.

5. Remove the breakpoint by clicking on it.

Clicking in the C source window will indicate the appropriate code line in the Disassembly window and vice versa. Scrolling
up and down in one window with the arrow keys moves the other window. This is relationship is indicated by the cyan arrow
as shown at Line 57. The yellow arrow is the program counter.

TIP: A hardware breakpoint does not execute the instruction it lands on. ARM CoreSight hardware breakpoints are no-skid.
This is a rather important feature.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

9

11) Call Stack + Locals Window:
Local Variables:
The Call Stack and Locals windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables belonging to the active function.

If possible, the values of the local variables will be displayed and if not, the message <not in scope> will be displayed. The
Call + Stack window presence or visibility can be toggled by selecting View/Call Stack Window in the main µVision window
when in Debug mode.

1. Set a breakpoint in the while(1) loop in main(). Run Blinky. It will soon stop on this breakpoint.

2. Click on the Call Stack + Locals tab if necessary to open it.

3. Shown is the Call Stack + Locals window.

4. The contents of the local variables are displayed as well as
function names.

5. In this example, two local variables leds and dlyVal are
displayed in the window here with their values:

6. Click on the Step icon or F11: Make sure the Blinky.c window is in focus else you will step in assembly.

7. Continue until the program enters the LED_Out function. The Call Stack + Locals window will now show this event:

8. Keep stepping until LED_On is entered as shown here:

9. Click on the Step Out icon or CTRL-F11 once or
twice to exit all function(s) to return to main(). This will
be indicated in the Call Stack window.

10. When you are ready to continue, remove the hardware
breakpoint by clicking on its red circle ! You can also
type Ctrl-B and select Kill All.

TIP: You can modify a variable value in the Call Stack & Locals window when the program is stopped.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your code
are required. Variable update while the program is running is not possible with local variables because they are usually stored
in a CPU register. They must be converted to global or static variables so they always remain in scope: usually in RAM.

Call Stack:
The list of stacked functions is displayed when the program is stopped as you have seen. This is useful when you need to
know which functions have been called and are stored on the stack. This can be quite useful for finding program crashes.
Using MTB Micro Trace Buffer in conjunction with the Call Stack provides much more debugging power.

! Do not forget to remove the hardware breakpoint(s) before continuing.

TIP: You can access the Hardware Breakpoint table by clicking on Debug/Breakpoints or Ctrl-B. This is also where
Watchpoints (also called Access Points) are configured. You can temporarily disable entries in this table by unchecking them.
You can permanently deleted them by using one of the Kill buttons.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

10

12) Watch and Memory Windows and how to use them:
The Watch and Memory windows will display updated variable values in real-time. It does this using the ARM CoreSight
debugging technology that is part of Cortex-M processors. It is also possible to “put” or insert values into the Memory
window in real-time. It is possible to “drag and drop” variable names into windows or enter them manually. You can
also right click on a variable and select Add varname to... and select the appropriate window where you want it inserted.

Watch window:
Make a STATIC variable: Recall the Watch and Memory windows can’t see local variables unless stopped in their function.
If you have trouble using STATIC in the Watch and Memory windows,
make these variables global. Often, global variables are easier to use.

1. Stop the processor and exit debug mode.

2. Add the static keyword to the variables leds and dlyVal.

3. Click on Rebuild and program the Flash with Load .

4. Enter Debug mode. Click on RUN .

5. You can configure a Watch window while the program is running. You can also do this with a Memory window.

6. Right-click on leds and select Add ‘leds’ to… and choose Watch 1. Repeat with dlyVal.

7. The Watch 1 window below will display these variables. If the program is running, leds will change value as it
points to which LED is lit. The variable dlyVal will change as you vary the pot R38. This updating is in real time.

8. If these variables do not update: Select View and select Periodic Window Update:

TIP: You can also enter a variable by blocking it, click and
hold it and drag it into a Watch or Memory window and then
release it.
You can also enter a variable manually by double-clicking
<Enter expression> or press F2 and use copy and paste or
typing the variable name.

TIP: To Drag ‘n Drop into a tab that is not active, block the
variable, click it and hold the mouse over the tab you want to
open; when it opens, move your mouse in the window and release the variable.

Memory window:
1. Make sure the program is running.

2. Right-click on leds and select Add leds to… and choose Memory 1.

3. If the Memory window is not visible, this action will open it.

4. Right click in the memory window and select Unsigned/Int.

5. Note the value of leds is displaying its address in Memory 1 as if it is a pointer. This is useful to see what address a
pointer is pointing to but this not what we want to see at this time.

6. Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown (0x1000_0008).

7. The data contents of leds is displayed as shown here:

8. Both the Watch and Memory windows are updated in real-time.

9. Right-click with the mouse cursor over the desired data field and
select Modify Memory. You can change a memory or variable
on-the-fly while the program is still running.

TIP: To view variables and their location use the Symbol window.
Select View/Symbol Window while in Debug mode.

These Read and Write accesses are handled by the Serial Wire Debug (SWD) connection via the CoreSight Debug Access Port
(DAP), which provides on-the-fly memory accesses. No CPU cycles are used to perform these operations.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

11

13) Watchpoints: Conditional Breakpoints
The LPC800 has two Watchpoints. Watchpoints can be thought of as conditional breakpoints. Watchpoints are also referred
to as Access Breaks in Keil literature. Cortex-M0+ Watchpoints, unlike those in Cortex-M3 and Cortex-M4, are intrusive.
The test for the condition in a Cortex-M0+ requires briefly halting the processor. It is restarted if the test is not true.

1. Use the same Blinky configuration as the previous page. Stop the program if necessary. Stay in debug mode.

2. We will use the static variable dlyVal you created in Blinky.c to explore Watchpoints.

3. Select Debug in the main µVision window and then select Breakpoints or press Ctrl-B.

4. In the Expression box enter: “\\Blinky\Blinky.c\main\dlyVal==0x320” without the quotes.

TIP: You must fully qualify this variable because it is visible only when uVision is in the while(1) loop in main().
If dlyVal had been changed to a global variable,
you normally do not need to fully qualify it.

5. Select both the Read and Write Access.

6. Click on Define and it will be accepted as
shown here:

7. Click on Close.

8. Enter the variable dlyVal to the Watch 1
window by dragging and dropping it if it is not
already there.

9. Click on RUN. .

10. You will see dlyVal change in the Watch
window.

11. Rotate the pot and when dlyVal equals 0x320,
the Watchpoint will stop the program. This can
be tricky as this variable is not updated often.

TIP: If you have a hard time getting the Watchpoint to trigger on 0x320, change the value to something you see in dlyVal as
you change the pot to make matching easier. Sometimes it is difficult to get the pot to match exactly the trigger value.

12. You can also use the static variable leds with values of 1, 2 or 4. Acquiring a trigger is easier with this variable.

13. There are other types of expressions you can enter and are detailed in the Help button in the Breakpoints window.

14. To repeat this exercise, rotate the pot and click on RUN two or three times to get past the true condition.

15. Delete the Watchpoint with Ctrl-B and Kill All.

16. Stop the program and exit Debug mode.

TIP: If you have trouble displaying these variables in the
Watch window or with the Watchpoints, change them to
global rather than static.

TIP: You cannot set Watchpoints on-the-fly while the
program is running like you can with hardware
breakpoints.

TIP: To edit a Watchpoint, double-click on it in the
Breakpoints window and its information will be dropped
down into the configuration area. Clicking on Define
will create another Watchpoint with any modifications.
You should delete the old one by highlighting it and click
on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression allows you to
temporarily unselect or disable a Watchpoint without deleting it. Hardware Breakpoints are also visible in this window
when they are configured.

TIP: Raw addresses can also be entered into the Watchpoint. An example is: *((unsigned long *)0x20000004)

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

12

14) MTB: Micro Trace Buffer:
The NXP LPC800 processor contains an instruction trace called MTB. The trace buffer resides in the LPC800 internal RAM.
The trace frames are stored here. The size of this buffer is adjustable in the file DBG_MTB.ini.

MTB works with any Keil ULINK and LPC-Link 2. It does not work with a J-Link <yet>.

1. Stop the processor and exit debug mode.

2. Open the project C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky_MTB\Blinky.uvproj.

3. If you are using ULINK2 or ULINLK-ME, select it in the Target selector:

4. Click on Rebuild and program the Flash with Load .

5. Enter Debug mode.

6. Select the Instruction Trace window by selecting View/Trace/Instruction Trace or by using
this icon: Click on the small arrow beside the upper left icon to open this up:

7. A window similar to next one below will be visible: Size it accordingly. Note the instructions displayed. This is a
record of the last number of instructions (2204 in this case) executed by the processor.

8. Click on RUN and STOP.

9. Note each time the program is cycled this
way, different trace information is
displayed.

10. Click on RUN

11. Set a breakpoint in the while(1) loop. The
program will soon stop at this point.

12. Note C source is now displayed as shown
in the Instruction Trace shown below:

13. Click and hold on the Instruction Trace
tab and pull this window out into the open
so you can see the Disassembly window at
the same time.

14. Double-click on any line to go to this spot
in the Blinky.c and Disassembly window
as shown below: I clicked on 0x00622.

15. Remove the breakpoint.

16. Single step a few times and note the
Instruction Trace window is updated with
the latest instruction executed.

How it Works: The trace frames are stored in a
portion of the LPC800 internal RAM. In this case, it is set to 2 Kb. As the
program is run, this memory is over written with the most recent
instructions. When the program is stopped, the trace frames currently in the
RAM are appended to the Trace Instruction window which is stored in the
host computer.

It is important to configure the IRAM settings to prevent the compiler from
using any MTB RAM. See the section Reserve IRAM Memory for MTB
two pages from this one.
TIP: CMSIS-DAP adds the options to clear, save and search trace.
ULINK2, ULINK-ME and LPC-Link 2 uses CMSIS-DAP mode.
A LPC-Link 2 was not tested for this document <yet>.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

13

15) Exploring the MTB:
 The MTB provides a record of instructions executed. No CPU cycles are stolen to accomplish this. MTB is part of CoreSight
debugging technology.

1. Make sure all breakpoints and watchpoints are removed. Enter Ctrl-B or Debug/Breakpoints and select Kill All.

2. Exit Debug mode if it is in this mode.

3. Re-enter Debug mode. This has the effect of restarting your entire program and the processor from a fresh start.
The program will run to main() as directed. The following Data Trace window (or similar) will display:

Note these items:

1. There are 1,333 instructions captured.

2. The last instruction executed was: BX r0
located at memory 0x00CA.

3. Register R0 (see the Registers window)
equals 0x199. The least significant bit means
this is a Thumb2 instruction. Subtract one
from this to get the actual address. (199-1=198)

4. The PC equals this 0x198 which was set by
the BX instruction and R0. The PC can also
be viewed in the Register window.

5. Select the Disassembly window tab. The yellow arrow address 0x198 is the next instruction to be executed which is
MOVS r5,#0x01.

6. Double-click on the BX instruction in the Instruction Trace window. (or perhaps the next one – LSLS if visible)

7. Examine this instruction in the Disassembly window. Note there is no clue this BX would result in the next
instruction being MOVS or what caused the jump to the MOVS at 198. The MTB has faithfully recorded that it was.

Examine the Start of Program:

8. Scroll to the top of Trace Data. We want to look at the very first instruction executed but this has been over-written.

9. Double-click on the first instruction.

10. Set a breakpoint at this instruction in the
Disassembly window.

11. Exit and re-enter Debug mode. The
processor will stop at the breakpoint.
Scroll to the top of the Instruction Trace
window. This window displays:

12. Note the first instruction is at 0xD4 and
is a LDR instruction. This is the very
first instruction executed after RESET.

13. Open a Memory window and enter address 0x0. Right click and select Unsigned Long. See the window below:

14. Note 0X0 is the Initial Stack Pointer (0x1000_0208).

15. 0x4 is the initial PC and is 0x100_00D5. Subtract one to get the actual initial PC = 0xD4 as is displayed in the Trace.

16. Click on Step (F11) a few times and see more instructions executed and recorded in the Trace Data window.

17. Remove breakpoints: Enter Ctrl-B and select Kill All and Close.

TIP: If Run to main() is not set, (Target Options and select Debug tab)
no instructions will be executed when Debug mode is entered. The PC will
be at the first instruction. You can Step (F11) or RUN from this point and
the Trace Data window will update as the instructions are executed.

TIP: These addresses will probably be different with different compiler
options. The addresses shown were obtained with MDK 4.70 defaults.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

14

16) Configuring the MTB Micro Trace Buffer:
You will learn how to configure MTB for your own project. We will configure the first Blinky to have MTB implemented.

1. Exit Debug mode. Open Project/Open Project.

2. Open the file: C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky\Blinky.uvproj.

Select the Initialization File:

1. Click on Target Options and select the Debug tab.

2. The file DBG_MTB.ini needs to be inserted in the Initialization box as shown here:

3. This file is located in C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky_MTB. You might want
to copy this file into C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky.

4. You can use the Browse icon to locate and select it.

5. When selected, click on Edit… to open it up.

Reserve IRAM Memory for MTB (so the user program will not use it)

6. Click on the Target tab.

7. Note the IRAM1 has a length of 0x1000 (4096 bytes). We must reserve some (0x800 = 2Kb) for MTB.

8. Set IRAM1 to a length of 0x800 a shown here:

9. Click on OK to return. The compiler will not allocate RAM > 0x800.

TIP: If this is not correct, a Hard Fault often is the consequence.

TIP: The SWV trace (in Debug tab, Settings and then the Trace tab) must not be enabled. If it is, MTB will not be activated.

10. Click on Rebuild and program the Flash with Load .

Configure the Initialization File:

11. DBG_MTB.ini will now be displayed with the other source files because Step 5 opened it.

12. It is a small function that writes to several registers to enable and configure MTB.

13. Click on the Configuration Wizard tab at the bottom. The next screen opens: Expand the menu items.

14. You can enable/disable and change the size of the trace buffer here. Leave all entries at the default at this time.

Alert: “Stop Target when buffer is full” does not work on the first LPC800 silicon.
This will be fixed in the next release. Everything else works fine.

TIP: After modifying this file (is indicated by an asterisk beside its name), select
File/Save All. Exit and re-enter Debug mode to re-run this file. The Reset icon

 will clear the trace and sometimes re-run the ini file.

Run The Program:

1. Enter Debug mode .

2. Open the Instruction Trace window using the icon: or by selecting View/Trace/Instruction Trace.

3. Click on RUN . When you stop the program, the Trace Data window will be updated.

4. Select Stop Trace when Buffer is full in the Dbg_MTB.ini file.

5. Select File/Save All. Exit and re-enter Debug mode to clear the trace and reset the target.

6. Note the Trace Gap as shown below. This indicates
where trace collection has been stopped.

7. Step (F11) a few times and note the Trace displays
these traces as shown here:

8. When you are done, change Dbg_MTB.ini back to its
default settings.

9. Remove any breakpoints and Watchpoints. (Ctrl-B)

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

15

17) Trace “In the Weeds” Example
Perhaps the most useful use of trace is to show how your program got to an unexpected place. This can happen when normal
program flow is disturbed by some error and it goes “into the weeds”. A record of all the instructions executed prior to this
usually catastrophic error are recorded to the limits of the trace buffer size. In a Cortex-M processor, when a program goes
haywire, it normally ends up at one of the error exception vectors. This minimizes damage to your system and preserves it for
subsequent debugging. The MTB trace has a record of how the program got there.

1. Use your MTB enabled Blinky from the previous page. We need MTB enabled for this exercise.

2. Stop the program of running. Be in Debug mode.

3. In the file startup_LPC8xxx.s, set a breakpoint at the Hard Fault exception as shown here:

4. You can also find the Hard Fault near address
0x00DC in the disassembly window.

5. This stops the program when a Hard Fault occurs.

6. Setting this breakpoint stops the program when a
Hard Fault occurs. Otherwise a Hard fault handler, which is normally a branch to itself ,will fill up the trace buffer
with this one instruction. This is not useful.

7. Click on RUN . After a few seconds, click on STOP. The Instruction Trace window will be full.

8. In order to crash the program, we can execute a POP out of order, an illegal instruction or use a bogus lr (R14) value.

9. Usually the program will stop in the Delay function in Blinky.c. Start and stop the program until it does.

10. At 0x182 will see a BX lr instruction as shown below: When executed, BX places the contents of lr (R14) in the PC.

11. In the Register window, double-click on the R14 lr register value and enter 0x0. This is sure to cause a hard fault.

12. Click on RUN .

13. The program will immediately go to the Hard
Fault vector and the breakpoint will stop
execution at the B before it is executed.

14. The Call Stack window will correctly show
the program is in the Hard Fault Handler.

15. The Instruction Trace now shows the last
number of instructions executed. You can
clearly see the instructions executed before
the fateful BX as shown here:

16. Click on Step (F11) a few times and
the B at the HardFault_Handler will be
executed and displayed as shown on
the bottom window: Remember, a
CoreSight breakpoint does not execute
the instruction it is set to.

17. Note the Call Stack window displays
the entry into the Hard fault vector as
__asm_0xD4.

18. Remove the breakpoint.

19. Exit Debug mode.

TIP: MTB can be used to more easily solve
difficult program flow problems that often
require much investigation. Trace can
sometimes be the only way to find the cause of
these problems.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

16

18) RTX_Blinky Example Program with Keil RTX RTOS:
Keil provides RTX, a full feature RTOS. RTX is included as part of Keil MDK including source. It can have up to 255 tasks
and no royalty payments are required. This example explores the RTX RTOS project. MDK will work with any RTOS. An
RTOS is just a set of C functions that gets compiled with your project.

RTX comes with a BSD license and source code. See https://www.keil.com/demo/eval/rtx.htm and www.arm.com/cmsis

1. With µVision in Edit mode (not in debug mode): Select Project/Open Project.

2. Open the file C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\RTX_Blinky\Blinky.uvproj.

3. Compile the source files by clicking on the Rebuild icon. . They will compile with no errors or warnings.

4. To program the Flash manually, click on the Load icon. . A progress bar will be at the bottom left.

5. Enter the Debug mode by clicking on the debug icon and click on the RUN icon.

6. The red led will blink in accordance with the two tasks running.

7. Click on STOP .

The Configuration Wizard for RTX:

1. Click on the RTX_Conf_CM.c source file tab as shown below on the left. You can open it with File/Open if needed.

2. Click on the Configuration Wizard tab at the bottom and your view will change to the Configuration Wizard.

3. Open up the individual directories to show the various configuration items available.

4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.

5. Changing an attribute in one tab changes it in the other automatically. You should save a modified window.

6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.

7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
See www.keil.com/support/docs/2735.htm for instructions.

8. The µVision System Viewer windows are created in a similar fashion. Select View/System Viewer.

Text Editor: Source Code Configuration Wizard

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

17

19) RTX Kernel Awareness using RTX Viewer
Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS
companies also provide awareness plug-ins for µVision or use an external program for this purpose.

1. Run RTX_Blinky by clicking on the Run icon.

2. Open Debug/OS Support and select RTX Tasks and System and the window below opens up. You might have to
grab the window and move it into the center of the screen. Note these values are updating in real-time using the same
technology as used in the Watch and Memory windows.

3. Select View and select Periodic Window Update if these values do not change:

You will not have to stop the program to view this data. No CPU cycles are used. Your program runs at full speed. No
instrumentation code needs to be inserted into your source. µVision automatically configures this when RTX is present.

Demonstrating States:

Blinky.c contains two tasks. Task 1 (phaseA) is shown below:

1. The gray areas opposite the line numbers
indicate there is valid assembly code
located here.

2. Set a breakpoint on one of these in Task 1
ledOn in Blinky.c as shown:
Do not set it on the for (;;;) at line 23.

3. Set a second breakpoint in Task 2 ledOff at
a similar location.

4. Click on RUN .

5. When the program stops, this information will be updated in the RTX Tasks window. The Task running when the
program stopped will be indicated with a “Running” state. Most of the time the CPU is executing the os_idle_demon.

6. Each time you click on RUN, the program will stop in the next task and this will be updated in RTX Tasks.

7. Remove the breakpoints and close the RTX Tasks window.

8. Exit Debug mode.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

18

20) DSP SINE example using ARM CMSIS-DSP Libraries:
ARM CMSIS-DSP libraries are offered for Cortex-M0, Cortex-M0+, Cortex-M3 and Cortex-M4 processors. DSP libraries are
provided in MDK in C:\Keil\ARM\CMSIS. README.txt describes the location of various CMSIS components. For more
information please see www.arm.com/cmsis, and forums.arm.com.
CMSIS is an acronym for Cortex Microcontroller Software Interface Standard.

This example creates a sine wave, then creates a second to act as noise, which are then added together (disturbed), and then
the noise is filtered out (filtered). The waveform values in each step are displayed in the Watch 1 window.

This example incorporates Keil RTX RTOS. RTX is available free with a BSD type license. Source code is provided.

1. To obtain this example file, go to www.keil.com/appnotes/docs/apnt_237.asp and copy it into
C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\. A \DSP directory will be created.

2. Stop µVision and exit Debug mode if necessary.

3. Open the project file sine: C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\DSP\sine.uvproj

4. Build the files. There will be no errors or warnings.

5. Program the LPC800 flash by clicking on the Load icon: Progress will be indicated in the Output Window.

6. Enter Debug mode by clicking on the Debug icon. Select OK if the Evaluation Mode box appears.

7. Click on the RUN icon.

8. Select View/Watch Windows and select Watch 1. This will open as shown below with the four global variables
sine, noise, disturbed and filtered declared in DirtyFilter.c being updated in real-time:
These variables were entered into Watch 1 previously.

9. The NXP Cortex-M3 and Cortex-M4 processors have Serial Wire Viewer (SWV). The four waveforms will be
displayed in the Logic Analyzer as shown below. The NXP LPC800 does not have SWV so this screen is shown for
reference only. You can see the four global variables graphed:

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

19

RTX Tasks and System Kernel Awareness with the DSP Demonstration:
1. Click on RUN to start the program if not already running.

2. Open Debug/OS Support and select RTX Tasks and System. A window similar to below opens up. You might have
to drag it into the center of the screen to see it more easily.

3. Note this window does not update: nearly all the processor time is spent in the idle daemon. The processor spends
relatively little time in each task in this example. These timings are easily adjusted with RTX.

4. Set a breakpoint in each one of the four tasks in DirtyFilter.c by clicking in the left margin on a grey area. These
tasks are sine_gen (near line 78), noise_gen (near line 96), disturb_gen (near line 116) and filter_tsk (near line 136).

Do not set your breakpoints on the while(1) statement. It will not stop here.

5. The program will stop here and the Task window will be updated accordingly. Here, I set a breakpoint in the
disturb_gen task:

6. Clearly, in the RTX Tasks and System window below, you can see that noise_gen was running when the breakpoint
was activated. Os_idle_demon is Ready to run when noise_gen is finished and no other task is Ready.

7. Each time you click on RUN, a new Task will run. When it stops, the task that was running is indicated.

TIP: os_idle_demon has a Priority of
0 which is the lowest priority
possible. Everything other task has a
higher priority.

8. Remove the breakpoints
(Ctrl-B).

9. Stop the processor .

10. Close the Tasks window.

11. Exit debug mode.

TIP: Recall this window uses the
CoreSight DAP read and write
technology to update this window and
does not steal CPU cycles.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

20

21) Configuring MTB for the DSP SINE example: (for reference)
It is easy to configure MTB for any project. Recall that MTB stores trace data in the processor internal RAM. It is important
to properly configure the RAM so the user program will not overrun this memory. A Hard fault can happen. MTB is pre-
configured in the example provided. This page describes all the pertinent settings.

This DSP example uses a great deal of the LPC800 internal RAM. When you build this project the Build Output window will
display the amount of RAM needed. In this case it is 136 + 2888 = 3,024 (0xBD0) bytes. This needs to be allocated.

1. MTB RAM: The LPC800 has 4 Kb (0x1000)
RAM. This means we have at maximum only 4096-3024 = 1072 for MTB trace. We will round this to 1 Kb (1024
bytes). We are required to use RAM in certain boundaries.

2. User RAM: We can maximum use 4096-1024 = 3072 (0xC0) bytes.

Configure IRAM1:

3. Click on Target Options and select the target tab. Note the RAM size is
set to 1000. We need to change this to the value the program needs. Change
it to 0xC00 as shown in this window: MTB will use the rest.

4. The first available address for MTB will be 0x1000_0000 + 0xC00 = 0x1000_0C00.

TIP: If this is not set correctly, a Hard Fault is often the consequence.

Configure Dbg_MTB.ini:

5. Click on the Debug tab. Enter the file Dbg_MTB.ini from example Blinky_MTB. Click on the Edit button to make
it visible. Click on OK to close Target Options. You might want to copy a version over to the \DSP directory.

6. Select the Configuration Wizard tab at the bottom of the Dbg_MTB source tab.

7. This window opens up: Expand the elements if necessary.

8. Note the Buffer Size is default to 2kB.

9. Open the Buffer Size select 1kB as shown:

10. Change the Buffer Position to 0x1000 0C00:

11. Select File/Save All.

These are all the steps necessary to properly configure the
MTB.

12. Build the files and program the flash:

13. Enter Debug mode and click on RUN

14. Open the Instruction Trace window and the executed instructions will be displayed. Most will be the branch
instruction to itself which is the os_idle_demon. Set a breakpoint in sine_generator.c near line 64 for a more
interesting display as shown: You can open any source file from the projects window.

This is the end of the
exercises.
Next is how to create your own
projects. Plus…

 A review of what trace is
good for.

 Keil product and contact
information.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

21

22) Creating your own project from scratch: Using the Blinky source files:
All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point
for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.
We will use the existing source code files so you will not have to type them in. Once you have the new project configured;
you can build, load and run a bare Blinky example. It has an empty main() function so it does not do much. However, the
processor startup sequences are present and you can easily add your own source code and/or files. You can use this process to
create any new project, including one using an RTOS.

Create a new project called Mytest:
1. With µVision running and not in debug mode, select Project/New µVision Project…
2. In the Create New Project that opens, go to the folder C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\.

Create a new folder and name your project:
3. Right click inside this window and create a new folder by selecting New/Folder. I named this new folder FAE.
4. Double-click on the newly created folder “FAE” to enter this folder. It will be empty.
5. Name your project in the File name: box. I called mine Mytest. You can choose your own name but you will have to

keep track of it. This window is shown here:
6. Click on Save.

Select your processor:
7. Select Device for “Target 1” opens up as shown below.
8. This is the Keil Device Database® which lists all the

devices Keil supports. You can create your own if
desired for processors not released yet.

9. Locate the NXP directory, open it and select
LPC812M101 (or the device you are using). Note the
device features are displayed for your reference.

10. Note the large number of NXP parts that Keil supports.
11. Select OK.

µVision will configure itself to this device.
Select the startup file:

12. A window opens up asking if you want to insert the
default LPC8xx.s startup file to your project. Click on
“Yes”. This will save you some good time.

13. In the Project Workspace in the upper left hand of µVision, expand the folders Target 1 and Source Group 1 by
clicking on the “+” beside each folder.

14. We have now created a project called Mytest with the target hardware called Target 1 with one source assembly file
startup_ LPC8xx.s and using the LPC800 Cortex-M0+ processor.

TIP: You can create more target hardware configurations and easily select them. This can include multiple Target settings,
simulation and RAM operations. See Projects/Manage/Components when you complete creating your own project.

Rename the Project names for convenience:

15. Click once on the name “Target 1” (or twice if
not already highlighted) in the Project
Workspace and rename Target 1 to something
else. I chose LPC800 Flash. Press Enter to
accept this change. Note the Target selector in
the main µVision window also changes to
LPC800 Flash.

16. Similarly, change Source Group 1 to Startup.
This will add some consistency to your project
with the Keil examples. You can name these or
organize them differently to suit yourself.

17. Select File/Save All.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

22

Select the source files and debug adapter:
1. Using MS Explore (right click on Windows Start icon), copy files Blinky.c and system_LPC8xx.c from

C:\Keil\ARM\Boards\Embedded Artists\LPCXpresso LPC800\Blinky to the \FAE folder you created.
Source Files:

2. In the Project Workspace in the upper left hand of µVision, right-click on “LPC800 Flash” and select “Add Group”.
Name this new group “Source Files” and press Enter. You can name it anything. There are no restrictions from Keil.

3. Right-click on “Source Files” and select Add files to Group “Source Files”.
4. Select the file Blinky.c and click on Add (once!) and then Close.

System File:
5. Right-click on “Startup” and select Add files to Group “Source Files”.
6. Select the file system_LPC8xx.c and click on Add (once!) and then Close.
7. Your Project window will look similar to the one shown here:

Select your Debug Adapter:
8. By default the simulator is selected when you create a new µVision project.

You probably want to change this to a USB adapter such as a ULINK2.

9. Select Target Options or ALT-F7 and select the Debug tab. Select
ULINK/ME Cortex Debugger as shown below: If you are using another
adapter such as CMSIS-DAP or ULINKpro, select the appropriate adapter from the pull-down list.

10. Select JTAG/SWD debugging (as opposed to selecting the Simulator) by checking the circle just to the left of the
word “Use:” as shown in the window to the right:

11. Select the Utilities tab and select the appropriate debug adapter. To
select the proper Flash algorithm, click on Settings: The LPC800
uses the algorithm named LPC8xx IAP 16kB Flash. Click on OK
once.

12. Click on the Target tab and select MicroLIB for smaller programs.
See www.keil.com/appnotes/files/apnt202.pdf for details.

13. Click on OK to close this window and return to the main µVision menu.
Modify Blinky.c

14. Double-click the file Blinky.c in the Project window to open it in the editing window or click on its tab if it is already
open.

15. Delete everything in Blinky.c except the main () function to provide a basic platform to start with:

#include <LPC8xx.h>
/*--
 Main Program
 --/
int main (void) {

 while(1) { /* Loop forever */
 // your code goes here !
 }
}

16. Select File/Save All
Compile and run the program:

17. Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

18. Program the LPC800 Flash by clicking on the Load icon: Progress will be indicated in the Output Window.

19. Enter Debug mode by clicking on the Debug icon.

20. Click on the RUN icon. Note: you stop the program with the STOP icon.

21. The program will run but since while(1) is empty – it does not do very much. But it runs. You can set a breakpoint
in the Disassembly window on the Branch to itself to demonstrating the program makes it this far.

22. You should be able to add your own source code to create a meaningful project.

This completes the exercise of creating your own project from scratch.
You can also configure a new RTX project from scratch using RTX_Blinky project.

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

23

23) NXP LPC800 Cortex-M0+ Trace Summary:

Watch and Memory windows can see:
 Global variables.

 Static variables.

 Structures.

 Peripheral registers – just read or write to them.

 Can’t see local variables. (just make them global or static).

 Can’t see DMA transfers – DMA bypasses CPU and CoreSight and CPU by definition.

Serial Wire Viewer displays in various ways: : (Cortex-M0+ does not have SWV. Cortex-M3, Cortex-M4 does)

 PC Samples.

 Data reads and writes.

 Exception and interrupt events.

 CPU counters.

 Timestamps are provided.

 ITM Instrumentation Trace Macrocell: A printf feature.

Instruction Trace (MTB) is good for:
 Trace adds significant power to debugging efforts. Tells where the program has been.

 A recorded history of the program execution in the order it happened.

 Trace can often find nasty problems very quickly.

 Weeks or months can be replaced by minutes.

 Especially where the bug occurs a long time before the consequences are seen.

 Or where the state of the system disappears with a change in scope(s).

These are the types of problems that can be found with a quality trace:
 Pointer problems.

 Illegal instructions and data aborts (such as misaligned writes).

 Code overwrites – writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did I get here ?

 Out of bounds data. Uninitialized variables and arrays.

 Stack overflows. What causes the stack to grow bigger than it should ?

 Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

 Communication protocol and timing issues. System timing problems.

24) Useful Documents: See www.keil.com/NXP
1. The Definitive Guide to the ARM Cortex-M0 by Joseph Yiu.

2. The Definitive Guide to the ARM Cortex-M3 by Joseph Yiu. Search the web to obtain these books.

3. MDK-ARM Compiler Optimizations: Appnote 202: www.keil.com/appnotes/files/apnt202.pdf

4. A handy list of resources is located at: http://www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

5. forums.arm.com and www.arm.com/cmsis

6. CAN: Controller Area Network lab with a LPC1700 Cortex-M3 processor: www.keil.com/download/docs/385.asp

 Copyright © 2013 ARM Ltd. All rights reserved

NXP LPCXpresso Cortex-M0+ Lab with ARM® Keil™ MDK toolkit www.keil.com

24

25) Keil Products and Contact Information:

Keil Microcontroller Development Kit (MDK-ARM™)
 MDK-Lite (Evaluation version) $0

 NEW !! MDK-ARM-CM™ (for Cortex-M series processors only – unlimited code limit) - $3,200
 MDK-Standard (unlimited compile and debug code and data size) - $4,895
 MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,995

For special promotional or quantity pricing and offers, contact Keil Sales.

USB-JTAG adapter (for Flash programming too)
 ULINK2 - $395 (ULINK2 and ME - SWV only – no ETM)
 ULINK-ME – sold only with a board by Keil or OEM.
 ULINKpro - $1,250 – Cortex-Mx SWV & ETM trace.

All ULINK products support MTB.
The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free.

All versions, including MDK-Lite, includes Keil RTX RTOS with source code !

Keil provides free DSP libraries for the Cortex-M0+, Cortex-M3 and Cortex-M4.

Call Keil Sales for details on current pricing, specials and quantity discounts.
Sales can also provide advice about the various tools options available to you.
They will help you find various labs and appnotes that are useful.

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com and search
for university to view various programs and resources.

Keil supports many other NXP processors including ARM7™and ARM9™
series processors. See the Keil Device Database® on www.keil.com/dd for the
complete list of NXP support. This information is also included in MDK.

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

Prices are for reference only and are subject to change without notice.

For Linux, Android and bare metal (no OS) support on Cortex-A processors, please see DS-5 www.arm.com/ds5.

For more information:
Keil Sales: In the USA: sales.us@keil.com or 800-348-8051. Outside the USA: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the USA: support.intl@keil.com.

International Distributors: www.keil.com/distis/ See www.embeddedsoftwarestore.com

For more NXP specific information: visit www.keil.com/NXP

CMSIS Version 3: www.arm.com/cmsis and forums.arm.com

