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1 Overview

This guide aims to help anyone migrating existing vector processing code that uses Neon intrinsics to
Helium intrinsics. We will look at Neon code examples of varying complexity and investigate how to
migrate this Neon code to Helium. By examining these examples, you will gain an understanding of
some general migration principles that you can use to migrate your own Neon code to Helium.

Migration is necessary because although there are similarities between Neon and Helium, they are
based on different architectures. As a result, software is not directly portable between the two.

The similarities between Neon and Helium include the following:

e Vector registers are 128-bit wide.

e Registersin the floating-point unit (FPU) are reused as vector registers.

e Some vector instructions are common between both Helium and Neon.

However, there are also differences between Neon and Helium, including the following:

e Thenumber of vector registers. Helium supports eight vector registers, while Neon supports
either 16 or 32 vector registers.

e Many Heliuminstructions use both vector and general-purpose registers. In Neon only a few
instructions mix register usage in this way. However, some Neon instructions mix vector and
scalar values either through immediate values or by using an individual vector element as a scalar.

e Helium supports newer data types like fp16 which the Neon extensions to older architectures do
not support.

e Some Helium features like low-overhead branches and predication are specific to Helium.

e Neon provides a 64-bit half-vector size for narrowing and widening operations. Helium does not
support this feature.

e Neon provides aninterleaved three-way load and store. Helium does not support this feature.
e Neon and Helium provide different schemes for data widening and narrowing.

Because of these differences, there is no easy way to automatically translate Neon intrinsics code
directly to Helium. However, this does not necessarily mean you must redesign the code from scratch.
The following strategies can help migration:

e |[fthe Neon codeis already vectorized, the algorithmic structure in the software can be reused
with adjustments for Helium.

e [fthe Neon code uses intrinsics, the compiler hides all register differences.

e |fthe Neon code uses intrinsics, some of the intrinsic functions are common between Neon and
Helium.

This guide provides examples to illustrate the migration process, and each example includes the
following:

e Theoriginal Neon code, together with a high-level explanation of what functions the Neon
intrinsics perform.
Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
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e Thedirect Helium migration, designed to quickly get Neon code running on a Helium processor as
an initial prototyping stage.

These direct migration solutions do not usually provide an optimal solution. The resulting Helium
code might miss important Helium optimization features and could perform poorly.
e Theoptimized Helium migration, designed to get the best performance out of Helium.

These optimized migration solutions usually involve redesigning the original algorithm to take
advantage of Helium-specific features like predication.

The examples in this guide cover a range of complexities. Simpler examples appear earlier in the guide,
and complexity increases through subsequent sections.

The following are simple migration examples. In these simple examples the Neon code typically uses
basic 128-bit operations. There is no complicated rearrangement of data between vector lanes. For
simple cases, migration from Neon to Helium is generally possible with only small changes to the
code:

e Single-precision vector logarithm

¢ Single-precision vector exponent

¢ Single-precision vector sine

e Vector minimum searching

e Floating-point vector complex dot product
e Single-precision 4x4 matrix multiplication

The following are intermediate migration examples. These examples cover some typical features that
are found in Neon DSP code to highlight interesting Helium conversion challenges:

e Fixed-point 16-bit cross-correlation

e Floating-point 4x4 matrix transposition
e Integer 8-bit 4x4 matrix transposition

o RGB to grayscale conversion

Finally, the following advanced migration example looks at the Acoustic Echo Cancelation (AEC)
implementation in Web Real-Time Communication (WebRTC):

e AECInWebRTC

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
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1.1 Before you begin

This guide assumes some familiarity with both Neon and Helium, and the intrinsics that they provide.

For background knowledge, you can read the Neon Programmer's Guide for Armv8-A and the Helium
Programmer’s Guide, especially the following sections:

e Neon Programmer’s Guide:
o Introducing Neon for Armv8-A
o Optimizing C code with Neon intrinsics
o Getting started with Neon Intrinsics on Android
o Neon intrinsics Chromium case study
e Helium Programmer’s Guide:
o Introduction to Helium

o Coding for Helium

The examples in this guide use both Neon and Helium intrinsics. You might find it useful to consult the
following resources while reading this guide:

e Heliumintrinsics reference
e Neon intrinsics reference

e Arm Helium Technology M-Profile Vector Extension (MVE) for Arm Cortex-M Processors
Reference Book

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
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2 Single-precision vector logarithm

Thevlogg neon £32 functionimplements single-precision floating-point vector logarithm
calculations in both the Arm Compute Library and CMSIS DSP.

This implementation is based on Taylor series expansion.
The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmat
h.c

2.1 Neon implementation

The following code shows an implementation of a single-precision floating-point vector logarithm
function using Neon intrinsics:

static inline float32x4 t vtaylor polyqg f32(float32x4 t x, const float32 t * coeffs)
{

float32x4 t A = vmlaq f32(vldlg f32(&coeffs[4 * 0]), vldlg f32(&coeffs[4 * 4]), x);
float32x4 t B = vmlaq f32(vldlg f32(&coeffs[4 * 2]), vldlg £f32(&coeffs[4 * 6]), x);
float32x4 t C = vmlaq f32(vldlg f32(&coeffs[4 * 1]), vldlg f32(&coeffs[4 * 5]), x);
float32x4 t D (¢coeffs[4 * 3]), vldlg f32(&coeffs[4 * 7]), x);

float32x4 t x2 = vmulg f32(x, x);

float32x4 t x4 = vmulg £32(x2, x2);

float32x4 t res = vmlaq f32(vmlag f32 (A, B, x2), vmlag f32(C, D, x2), x4);
return res;

(
(
(
= vmlaq f32(vldlg f32
(
(
(

}

float32x4 t vlogqg neon f32(float32x4 t x)
{

// Extract exponent
int32x4 t m = vsubg s32 (vreinterpretq s32 u32(vshrg n u32(
vreinterpretq_u32_f32(x), 23)), vdupq_n_s32(127));

float32x4 t val = vreinterpretq f32 s32(vsubqg s32(vreinterpretq s32 £32(x),
vshlg n s32(m, 23)));

// Polynomial Approximation
float32x4 t poly = vtaylor polyg f32(val, log tab);

// Reconstruct
poly = vmlag f£32(poly, vcvtg £32 s32(m), vdupg n £32(LOG2)) ;

return poly;

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
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2.2 Direct migration to Helium

The Neon implementation uses standard, common operations including the following:
e Contiguous vector load: v1dlg £32

e Vector multiplication: vmulg £32

e Vector multiply-add: vmlag £32

e Unsigned integer to simple precision typecast: vreinterpretq s32 u32

e Signed integer to single-precision floating-point conversion: vevtqg £32 s32
All of these operations have direct equivalents in Helium.

One difference between Helium and Neon is that although Neon provides both fused and unfused
multiply-add instructions, Helium only provides fused multiply-add instructions. The Neon
implementation uses the unfused vmlaqg £32 intrinsic. However, the Helium implementation must
use the fused vEmaqg £32 intrinsic.

The following code shows a simple, direct conversion of the Neon implementation to Helium:

static inline float32x4 t vtaylor polyqg f32(float32x4 t x, const float32 t * coeffs)
{
float32x4 t A = vmlag emu £32(vldlg f32(&coeffs[4 * 0]),
vldlg f32(&coeffs[4 * 4]), x);
float32x4 t B = vmlag emu £32(vldlg f32(&coeffs[4 * 2]),
vldlg f32(&coeffs[4 * 6]), x);
float32x4 t C = vmlaqg emu f32(vldlg f32(&coeffs[4 * 1]),
vldlg f32(&coeffs[4 * 5]), x);
float32x4 t D = vmlag emu f32(vldlg f32(&coeffs[4 * 3]),
vldlg f32(&coeffs[4 * 7]), x);
float32x4 t x2 = vmulqg £32(x, x);
float32x4 t x4 = vmulqg £32(x2, x2);
float32x4 t res = vmlag emu f32(vmlag emu f32(A, B, x2), vmlagq emu £f32(C, D, x2),
x4) ;
return res;

}

float32x4 t vlogg helium £32 direct (float32x4 t x)
{
// Extract exponent
int32x4 t m = vsubg s32(vreinterpretq s32 u32(vshrg n u32(
vreinterpretq u32 f£32(x), 23)), vdupg n s32(127));

float32x4 t val = vreinterpretq f32 s32(vsubqg s32(vreinterpretq s32 £32(x),
vshlg n s32(m, 23)));

// Polynomial Approximation
float32x4 t poly = vtaylor polyq f32(val, log tab);

// Reconstruct
poly = vfmag £32(poly, vcvtg £32 s32(m), vdupg n £32(LOG2)) ;

return poly;
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This implementation uses amacro, vmlag emu £32, which maps directly to the Neon instruction

vimaq £32.Thismacroisdefinedinthehelium neon helpers.h header file.
Note

The following image shows the differences between the Neon implementation and the direct Helium
implementation:

Neon Helium
1 static inline float32xd_t vtaylor_polyq £32(float32xd_t x, censt Eloat32_t * coeffs) 1 static inline float32xd_t vtaylor_pelyq £32(float32xd_t x, censt Float32_t * coeffs)
2 2 {
3 £loat32xd_t a= 3 float32xd_t A=
i vmlaq £32(vlidlq £32 (kcoeffs(4 * 0]), vldlg £32(Scoeffs[s * 1), x); -+ L vmlaq BEENE32 (vidiq £32 (bcosEfs[4 * 0]), vidig £32(kcoeffs(4 * 41}, =l
s float3axd_t E= s float3zxd_t B =
€ wvmlaq £32(vldlq £32(&coeffs(4 * 2]), vldlg £32(kcoeffs(4 * 6]), x); - L1 vmlag emu £32(vldlg £32(kcceffs[4 * 2]), vldlg £32(&cceffs[4 * €]), x);
7 £loat3ixd_t c = 7 float32xd t c =
8 wmlag £32 (vldiq £32 (scosffs[4 & 1]), vidig £32 (scosffa(d * S]), x); - - aq_emil 32 (vidlq £32 (bcosffa[4 * 1]), vidig £32(kcosffs[4 + S]), x);
5 float32xd_t D = 5 float32xd ¢ D=
10 vmlaq_£32(vidiq_£32 (scosfEs(d4 * 3]), vidiq £3Z(scosffs(4 * 71), x); - 10 vmlaq_smuj£32 (vidiq_£32 (scosffa[4 * 31), vidig £32(kcosffs(4 * 71}, x);
11 £loat32x4_t x2 = vmulqg £32(x, x)7 11 £loat32xd_t %2 = wvmulq £32(x, x);
12 Eloatd2xi_t x4 = vmulg £32(x2, x2); 12 floatdzxi_t x4 = vmulq £32(x2, x2);
13 float3Zxd_t xes = wmlag £32(vmlaq £32(A, B, 2], wnlaqg £32(C; D, %2}, x4); - €13 float32xd_t Tes = vmlaq mui£32(vmlag SmGN£32 (A, B, x2), vmlaglema £32(C, D, x2), xd);
14 return res; 14 return res;
15) 53
1€ &
17 17 -
18float32xd_t vlogq_neen_£32 (floatdfxd_t x} + # 15 floatd2xd_t vlegq helium £32 direct (floatdZxd_t x)
15 ( 15 (
20 // Extract exponent 20 // Extract exponent
21 int32x4_t == 21 int32x4_t =

22 vaubq_s232 (vieintespretq_sdZ_u32 (vshrq_n_ud2 (vreinterpretq ud2_£32(x}, 23)), 22 vaubq_s32(vxe pretq_sd2_ud2(vshzq_n_ul2 (veeinterpretq_ud2_£32(x), 2311,
23 vdupq_n_s32(127))7 23 wdupq_n_232(127));

24 floadixd t val = 24 floa3zxd t val =

25 vreinterpretq_£32_s32 (vsubg_s3Z(vreinterpretq s32_f£32(x), vshlq n_s32(m, 23))); 25 vreinterpratg_f£32_s32 (vsubg_s32 (vreintaerpretq s32_f32(x), vshlq n_s32(m, 23)));
26 26

27 // Polynomial Approximation 27 // polynomial Approximation

28 floatd2xd_t poly = veaylor_polyq_£32(val, log_tab); 28 float32xd_t poly = veaylor_polyq_£32(val, log_tab);

29 29

30 // Reconstruct 30 // Reconstruct

31 poly = vmlaq £32(poly, vovtq £32 s32(m), vdupg n £32(L0G2)); - 31 poly = vimag £32(poly, vovtq £32 s32(m), vdupg n £32(L062));
32 32

33 return poly; 33 return poly;

34} 34)

The following GNU diff output shows the same differences in text form:

-—-— neon.c Thu Oct 15 15:41:18 2020

+++ helium direct.c Thu Oct 15 15:57:36 2020

@@ -1,21 +1,21 @@

static inline float32x4 t vtaylor polyqg f32(float32x4 t x, const float32 t * coeffs)
{

float32x4 t A =

= vmlagq f£32(vldlg £32 (&coeffs[4 * 0]), vldlg f32(&coeffs[4 * 4]), x);

+ vmlagq emu f32(vldlg f32(&coeffs[4 * 0]), vldlg f32(&coeffs[4 * 4]), x);
float32x4 t B =

= vmlag f£32(vldlg £32 (&coeffs[4 * 2]), vldlg f32(&coeffs[4 * 6]), x);

+ vmlag emu f32(vldlg f32(&coeffs[4 * 2]), vldlg f32(&coeffs[4 * 6]), X);
float32x4 t C =

- vmlagq £32(vldlg £32 (&coeffs[4 * 1]), vldlg f32(&coeffs[4 * 5]), x);

4 vmlag emu f32(vldlg f32(&coeffs[4 * 1]), vldlg f32(&coeffs[4 * 5]), Xx);
float32x4 t D =

= vmlag f£32(vldlg £32 (&coeffs[4 * 3]), vldlg f32(&coeffs[4 * 7]), x);

+ vmlag emu f32(vldlg f32(&coeffs[4 * 3]), vldlg f32(&coeffs[4 * 7]), x);
float32x4 t x2 = vmulg f32(x, x);
float32x4 t x4 = vmulqg f32(x2, x2);

= float32x4 t res = vmlag f32(vmlaq £f32 (A, B, x2), vmlag £f32(C, D, x2), x4);

i float32x4 t res = vmlag emu f32(vmlag emu f32(A, B, x2), vmlag emu f32(C, D,

x2), x4);

return res;

}

-float32x4 t vlogg neon f32(float32x4 t x)
+float32x4 t vlogg helium f32 direct(float32x4 t x)
{

// Extract exponent

int32x4 t m =
@@ -28,7 +28,7 @@
float32x4 t poly = vtaylor polyqg f32(val, log tab);
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// Reconstruct
poly = vmlag f32(poly, vcvtg f32 s32(m), vdupg n £f32(LOG2)) ;
poly = vfmag f32(poly, vcvtg f£32 s32(m), vdupg n £32(LOG2)) ;

return poly;

}

As you can see, the Helium implementation only differs from the Neon implementation by a few
characters.

2.3 Optimized migration to Helium

Many Helium instructions allow flexible mixing of vector register and general-purpose register
operands.

The optimized Helium implementation uses this flexible mixing of operands. The Neon
implementation uses vdupg_n_s32 to create a vector from a single scalar value in several places.
Helium, on the other hand, can use the scalar values directly by using n_ variant intrinsics like
vsubg n s32andvfmag n £32.

The following code shows an optimized conversion of the Neon implementation to Helium:

float32x4 t vlogqg helium £32 (float32x4 t x)
{

// Extract exponent
int32x4 t m = vsubg n_s32 (vreinterpretq s32 u32 (vshrg n u32(
vreinterpretq_u32_f32(x), 23)), 127);

float32x4 t val = vreinterpretq f32 s32(vsubqg s32(vreinterpretq s32 £32(x),
vshlg n s32(m, 23)));

// Polynomial Approximation
float32x4 t poly = vtaylor polyq f32(val, log tab);

// Reconstruct
poly = vfmag n £32(poly, vcvtg £32 s32(m), LOG2);

return poly;

}

The following image shows the differences between the Neon implementation and the optimized
Helium implementation:
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Neon Helium
1 static inline floati2xd_t vtaylor_polyq £32(float32xd_t x, const £loatd2 t * coeffs) 1 static inline float32xd_t vtaylor_polyq £32(floati2xi_t x, const £loatiz_t * coeffs)
2 2 {
a floatizxd_t = 3 floatd2xd_t =
4] wmlaq £32(vldlq_£32(scosffa[4 * 0]), vldiq £32(scosffs[4 * 4]), x); -+ LX) vmlaq EmENE32 (v1dlq £32(scoeffa[4 * 0]), vlidlg £32(scoaffa[4 * 4]}, x);
3 floataZxd_t B = s Eloat32xd_t 5 =
é wmlaq £32(vldlq £32(écoeffa(4 * 2]), vidig £32(kcosffa[d * 61), x); -+ L1 mlag BmEN£32 (vldlg £32(scoeffa[4 * 2]), vidlg £32(4coeffa(d * €1), x);
7 £loati2xé_t = 7 floati2xd_t c =
8 wvmlaq £32(vldlq £32(&coeffs(4 * 1]), vldig £32(Gcoeffs[% * 5]), x); - L E! vmlaq emG)£32 (vldlq £32(&cceffs(4 * 1)), vidiq £32(kcceffa(4 * 5]), x);
s £loatdzxd_t D= 5 £loat32xd_t D=
10 wmlaq £32(vldlq £32(kcosffa(d * 3]), vldiq £32(kcoeffs[4 * 7]), x); - =10 vmlag SmEU£32 (v1dlq £32(kcoeffs[4 * 3]), vidlig £32(scoeffa[4 * 7]}, x);
11 floati2xé_t %2 = vmulg_£32(x, x); 11 floatdZxd_t %2 = vmulq_£32(x, X);
12 float3zxd_t x4 = vmulg £32(x2, x2); 12 floatd2ed_t x4 = wmulg £32(x2, x2);
13 flcacazxd t res = vmlag £32 (wmlag £32(a, B, x2), vmlag £32(C, D, x2), x4); -+ ®13 float3Zxd_t zes = vmlag SmWUE£32(vmlag SWAUE32 (A, B, x2), vmlagleme £32(C, D, x2), x4);
14 Teturn res; 14 Teturn res;
15) 15)
16 16
17 17
i8Flcat3txd_t viogq BEGA_£32 (floatdixd_t x) - 10
15[ 15£loat3zed_t vlegq helium £32 (float3d2xd_t x)
20 // Extract expoment 20
21 int3zxd_t m = 21 /4 Extract exponent
22 wai 332 (vreinterpretq a32 u3d2(vahzq n_u3Z(vreinterpretq ud2 £32(x), 23)), - 22 int32xd_t m =
23 wdupq n_232(127)); LEES vaubq Alls32 (vreinterpretq 532_us2(vahrq n w32 (vreinterpretq udz_£32(x), 231,
24 £loatazxd_t val = 24 127);
28 vreinterpretq £32_s32 (vsubq s32(vreinterpretq s32 £32(x), vshlg n_s32(m, 23))); 25  float3Zxd t val =
26 26 vreinterpretq f32_s32 (vsubg_s32 (vreinterpretq_s32_£32(x), wshlg n_s3Z(m, 23)));
27 // Polynemial Approximation 27
28 floata2xd_t poly = veaylor_polyg _£32(val, log_tab): 28 /4 ®olynomial Approximation
2g 25 float32xd_t poly = vtaylor_polyq £32(val, log_tab);
30 // Reconstruct 30
31 poly = vmlag £32(poly, veweq £32 =32 (m), woipa A£32(1062)) ; -+ 31 // Reconstruct )
a2 #32  poly = viiag AI£3Z(poly, voveq £32_s32(m), LOGZ);
33 reeurn poly; 33
34) 34 return poly;
35}

The following GNU diff output shows the same differences in text form:

—--- neon.c Thu Oct 15 15:41:18 2020

+++ helium optimized.c Thu Oct 15 15:42:11 2020

@@ -1,26 +1,27 @@
static inline float32x4 t vtaylor polyq f32(float32x4 t x, const float32 t * coeffs)
{

float32x4 t A =

= vmlag f£32(vldlg £32 (&coeffs[4 * 0]), vldlg f32(&coeffs[4 * 4]), x);

+ vmlag emu f32(vldlg f32(&coeffs[4 * 0]), vldlg f32(&coeffs[4 * 4]), x);
float32x4 t B =

= vmlaq £32(vldlg £32 (&coeffs[4 * 2]), vldlg f32(&coeffs[4 * 6]), x);

4 vmlag _emu f32(vldlg f£32(&coeffs[4 * 2]), vldlg £f32(&coeffs[4 * 6]), X);
float32x4 t Cc =

= vmlagq f£32(vldlg £32 (&coeffs[4 * 1]), vldlg f32(&coeffs[4 * 5]), x);

+ vmlagq emu f32(vldlg f32(&coeffs[4 * 1]), vldlg f32(&coeffs[4 * 5]), x);
float32x4 t D =

- vmlaq f£32(vldlg £32 (&coeffs[4 * 3]), vldlg f32(&coeffs[4 * 7]), x);

4 vmlag _emu f32(vldlg f£f32(&coeffs[4 * 3]), vldlg f32(&coeffs[4 * 7]), x);
float32x4 t x2 = vmulg f32(x, x);
float32x4 t x4 = vmulg f32(x2, x2);

= float32x4 t res = vmlaq f32(vmlaq f32 (A, B, x2), vmlag f32(C, D, x2), x4);

+ float32x4 t res = vmlag emu f32(vmlag emu f32(A, B, x2), vmlag emu f32(C, D,

x2), x4);

return res;

}

-float32x4 t vloggq neon f£32(float32x4 t x)
+float32x4 t vlogg helium f32(float32x4 t x)
{
// Extract exponent
int32x4 t m =
- vsubg s32 (vreinterpretq s32 u32(vshrg n u32(vreinterpretq u32 f32(x), 23)),
= vdupg n s32(127));

i vsubg n s32 (vreinterpretq s32 u32(vshrq n u32(vreinterpretq u32 f32(x), 23)),
+ 127);
float32x4 t val =

vreinterpretq f£32 s32(vsubg s32 (vreinterpretq s32 £32(x), vshlg n s32 (m,
23)));

@@ -28,7 +29,7 Qa@
float32x4 t poly = vtaylor polyq £f32(val, log tab);

// Reconstruct
- poly = vmlag f32(poly, vcvtg f32 s32(m), vdupg n £32(LOG2)) ;
s poly = vfmag n f32(poly, vcvtg £32 s32(m), LOG2);
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return poly;
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3 Single-precision vector exponent

The vexpg_neon_£32 function implements single-precision floating-point vector exponent
calculations in both the Arm Compute Library and CMSIS DSP.

This example is similar to the vlogg neon £32 function thatis described in Single-precision vector
logarithm. The vexpg neon £32 function uses the same Taylor series expansion algorithm as
vlogq neon f£32,butalsouses conditional selection to round very small result values to zero.

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmat
h.c

3.1 Neon implementation

The following code shows an implementation of a single-precision floating-point vector exponent
function using Neon intrinsics:

float32x4 t vexpq neon f32(float32x4 t x)
{

// Perform range reduction [-log(2),log(2)]
int32x4 t m = vcvtg s32 £32 (vmulg £32(x, vdupg n £32 (INVLOG2))) ;
float32x4 t val = vmlsqg f32(x, vcvtqg £32 s32(m), vdupg n £f32(LOG2)) ;

// Polynomial Approximation
float32x4 t poly = vtaylor polyq f32(val, exp tab);

// Reconstruct
poly =
vreinterpretq £f32 s32(vgaddg s32
(vreinterpretq s32 f£32(poly), vgshlg n s32(m, 23)));
poly = vbslg £32(vcltqg s32(m, vdupg n s32(-126)), vdupg n £32(0.0f), poly);
return poly;

3.2 Direct migration to Helium

The vexpg neon £32 functionrounds very small result values to zero, using the following
intrinsics:

e Thevcltg s32intrinsic performs the comparison and creates a bitmask identifying the small
result values.

e Thevbslg f32intrinsicreturns either the original result or zero as specified by the bitmap.

Helium uses predication to perform conditional operations. In this example, the following changes
were made:

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 150f 79


https://github.com/ARM-software/EndpointAI/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmath.c
https://github.com/ARM-software/EndpointAI/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmath.c
https://github.com/ARM-software/EndpointAI/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmath.c
https://developer.arm.com/architectures/instruction-sets/simd-isas/helium/helium-programmers-guide/introduction-to-helium/predication

Helium Programmer's Guide: Migrating to Helium 102 107_?100_&%
from Neon ssue L.

e Thevcmpltg s32intrinsic performs the comparison and sets the predication register PO
accordingly. This predication register is exposed at C level ina variable of typemve predl6 t.

The vempltqg s32intrinsic has the following prototype:
mve predl6 t [ arm ]Jvempltg[ s32] (int32x4 t a, int32x4 t b);

e Thevpselg f32intrinsicuses the contents of the predication register to perform a bytewise

conditional select of 2 single-precision floating point vectors. The migrated Helium code uses this
intrinsic to conditionally select either the original result or a vector of zeroes.

The vpselq £32 intrinsic has the following prototype:
float32x4 t [ arm Jvpselqg[ f32] (float32x4 t a, float32x4 t b, mve predl6 t p);

The original Neon code is as follows:
poly = vbslg f32(vcltg s32(m, vdupg n s32(-126)), vdupg n £f32(0.0f), poly):;

The corresponding migrated Helium code is:
poly = vpselqg(vdupg n £32(0.0f), poly, vcmpltg s32(m, vdupg n s32(-126)));

The following code shows a simple, direct conversion of the Neon implementation to Helium:

float32x4 t vexpg helium f32 direct (float32x4 t x)
{

// Perform range reduction [-log(2),log(2)]
int32x4 t m = vcvtg s32 f32 (vmulg f32(x, vdupg n £32 (INVLOGZ2))) ;
float32x4 t val = vmlsqg emu f32(x, vcvtqg £32 s32(m), vdupg n £32(LOG2)) ;

// Polynomial Approximation
float32x4 t poly = vtaylor polyq f32(val, exp tab);

// Reconstruct
poly =
vreinterpretq f32 s32 (vgaddg s32
(vreinterpretq s32 f32(poly), vgshlg n s32(m, 23)));

poly = vpselqg(vdupg n £32(0.0f), poly, vcmpltg s32(m, vdupg n s32(-126)));
return poly;

}

The following image shows the differences between the Neon implementation and the direct Helium
implementation:

Neon Helium
1 jfloat32xd_t vexpy HESH_£32 (float3ed_t x) -+ 41 Float32xd_t vexpq Helium_£32JdIFEEE (float32xd_t x)
21 2 {
E] // perform rangs reduction [-log(2),log(2)] 3 // Perform range reduction [-log(2),log(2)]
4 int32xd_t m = vovtq 332_£32(vmulg £32(x, vdupq n_£32 (INVLOGZ))): 4 int3Zxd_t m = vovtq_s32_£32 (vmulq £33 (x, vdupq_n_£32 (INVLOG2)}) ;
s float32xd_t val = wmlsq £32(x, vcvtqg £32 332(m), vdupg n_£32(LOG2)); - == float32xd_t val = wvmlsq emu_f£32(x, vevtqg £32 332(m), vdupg n_£32(L0G2));
€ €
i // Bolyncmial Appre on 7 /! Polynomial Rpproxi on
8 £loat3Zxd e pol ayler pelyg £32(wal, exp_tab}; 8 £loat3Zed_t poly aylor_polyq £32(val, exp_tab);
L] 5
10 // Reconstruct 10 // Reconstruct
11 poly = 1 poly =
12 vreinterpretq £32_s32 (vqaddg s32 12 vreinterpretg £32_s32 (vgaddq_s32
13 (vreinterpretqg 332 £32(poly), vgshlqn 332(m, 23))); 13 (vreinterpretq 332 £32(poly), vgshlg n_332(m, 23}));
14 poly = vhalq £32(¥eltq s32(m, vdupq n_s32(-126) ) vdupq n £32(0.0£); polyls L] 14
15
1€

pely = vpaslq{vdupq n_£32 (0.0£), Boly, wempltq s32(m, vdupq_n_s3Z(-126)))3
Teturn poly:

Shia

16 return poly;

The following GNU diff output shows the same differences in text form:

-—-— neon.c Fri Oct 16 12:02:19 2020
+++ helium direct.c Fri Oct 16 12:01:37 2020
@@ -1,8 +1,8 @@

-float32x4 t vexpq neon f32(float32x4 t x)

+float32x4 t vexpqg helium f£32 direct (float32x4 t x)
{

// Perform range reduction [-log(2),log(2)]
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int32x4 t m = vcvtg s32 £32 (vmulg £32(x, vdupg n £32 (INVLOG2))) ;
- float32x4 t val = vmlsq f32(x, vcvtq £32 s32(m), vdupg n f32(LOG2)) ;
A float32x4 t val = vmlsqg emu £32(x, vcvtg £32 s32(m), vdupg n £32(LOG2)) ;

// Polynomial Approximation

float32x4 t poly = vtaylor polyq f32(val, exp tab);
@R -11,6 +11,7 Q@

poly =

vreinterpretq £32 s32(vgaddg s32
(vreinterpretqg s32 f32 (poly), vgshlg n s32(m, 23)));
= poly = vbslg £32(vcltqg s32(m, vdupg n s32(-126)), vdupg n £32(0.0f), poly):;
& poly = vpselg(vdupg n £f32(0.0f), poly, vcmpltg s32(m, vdupg n s32(-126)));
return poly;

3.3 Optimized migration to Helium

Like with the Single-precision vector logarithm example, we can use flexible mixing of vector
register and general-purpose register operands to save several VDUP instructions

Additionally, the vdupg m n_£32 intrinsic lets us provide the predicate directly, which improves the
readability of the code.

The following code shows an optimized conversion of the Neon implementation to Helium:
float32x4 t vexpq helium £32(float32x4 t x)

{
// Perform range reduction [-log(2),log(2)]
int32x4_t m = vcvtq_s32_f32(vmulq_n_f32(x, INVLOG2)) ;
float32x4 t val = vfmsq f32(x, vecvtq £32 s32(m), vdupg n £32(LOG2)) ;

// Polynomial Approximation
float32x4 t poly = vtaylor polyq f32(val, exp tab);

// Reconstruct
poly =
vreinterpretq £32 s32(vgaddg s32

(vreinterpretq s32 f32(poly), vgshlg n s32(m, 23)));
poly = vdupg m n f£f32(poly, 0.0f, vempltg n s32(m, -126));

return poly;

}

The following image shows the differences between the Neon implementation and the optimized
Helium implementation:

Neon Helium
1 |float32xd_t vexpq HESA_£32 (floatdlxd_t x) -+ 41 float32xé_t vexpq HeliEm £32(float3Zxi_t x)
z ( 2
3 // Perform range reduction [-log(2),log(2)] 3 // Perform range reduction [-log(2).log(2)1
4 int32x4_t m = vevtq 332_£32(vmulq £32(x, wdupq n £32(INVLCG2))); - - int32x4_t m = vovtq 832 £32 (vmulq AU£32(x, INVLOG2}):
5 £loat32xd_t wal = wmlaq £32(x, veveq £32_s32(m), vdupq n_£32(10G2)); 5 £loatdzwi_t val = vimaq £32(x, vevtq £32 532(m), vdupq n_£32(L0G2));
& €
7 /1 Polyncmial hpproximation 7 // Polynemial Approximation
8 £loat3zxd_t poly = veaylor_polyq £32(val, exp_tab); 8 £loatizxd_t poly = veaylor_pelyq £32(val, exp_tab);
s 5
10 // Reconstruct 10 // Reconstruct
11 poly 11 poly =
12 wreinterpretq £32 832 (vgaddq s32 12 wreinterpretq £32 s32 (vgaddq s32
13 (vreintsrpretq s32 £32(poly), vgshlg n s32(m, 23))); 13 (vreinterpretq s32 £32(pely), wgshlq n s32(m, 23)));
14 poly = vbslq £32(veltq a32(m, vdpq n_s32(-126) )} Wlupqin, £32(0.0£),  Boly)s -+ #14  poly = vdupgmin £32(paly, 0.0f, vempleq n_s32(m, -126))F

15 return poly; 15
16 return poly;

The following GNU diff output shows the same differences in text form:
-—-— neon.c Fri Oct 16 12:02:19 2020
+++ helium optimized.c Fri Oct 16 12:02:07 2020
@@ -1,8 +1,8 @@
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4 Single-precision vector sine

The vsing neon_ f£32 functionimplements single-precision floating-point vector sine calculations
in both the Arm Compute Library and CMSIS DSP.

This example involves several operations, including the following:
e Floating-point arithmetic

e |ogical operations

e Comparison operations to manage changes of sign

e Rebasing operations
The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmat
h.c

4.1 Neon implementation

The following code shows an implementation of a single-precision floating-point vector sine function
using Neon intrinsics:

float32x4 t vsing neon f32(float32x4 t val)

{
const float32x4 t pi v = vdupg n f32(M PI);
const float32x4 t pio2 v = vdupg n £32 (M PI / 2);
const float32x4 t ipi v = vdupg n £32(1 / M PI);

//Find positive or negative

const int32x4 t c v = vabsq s32(vcvtg s32 £32(vmulg £32(val, ipi v)));

const uint32x4 t sign v = vcleq £32(val, vdupg n £32(0));

const uint32x4 t odd v = vandg u32(vreinterpretq u32 s32(c v), vdupg n u32(1));

uint32x4 t neg v = veorqg u32(odd v, sign v);
//Modulus a - (n * int(a*(1/n)))
float32x4 t ma = vsubqg f32(vabsq f32(val), vmulg £32(pi v,

vevtg £32 s32(c_v)));
const uint32x4 t reb v = vcgeq f32(ma, pio2 v);

//Rebase a between 0 and pi/2
ma = vbslqg f32(reb v, vsubqg f32(pi v, ma), ma);

//Taylor series
const float32x4 t ma2 = vmulg f32 (ma, ma);

//2nd elem: x~3 / 3!
float32x4 t elem = vmulqg f32 (vmulg f32(ma, ma2), vdupqg n f32(te sin coeff2));
float32x4 t res = vsubg f32(ma, elem);

//3rd elem: x*5 / 5!
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elem = vmulqg £32 (vmulg f32(elem, ma2), vdupg n f32(te sin coeff3));
res = vaddg f32(res, elem);

//4th elem: x*7 / 7!float32x2 t vsin £32(float32x2 t val)
elem = vmulqg £32 (vmulg f32(elem, ma2), vdupgqg n f32(te sin coeff4));
res = vsubg f32(res, elem);

//5th elem: x"*9 / 9!
elem = vmulqg f32(vmulg £32(elem, ma2), vdupg n f32(te sin coeffd));
res = vaddg f32(res, elem);

//Change of sign

neg v = vshlg n u32(neg v, 31);

res = vreinterpretq £32 u32(veorqg u32(vreinterpretq u32 £f32(res), neg v));
return res;

4.2 Direct migration to Helium

Like with the Single-precision vector exponent example, we must change the conditional selection
operations to use predication.

In addition to straightforward conditional selects, the Neon code also uses a comparison vector
bitmask to perform other logical operations. For example, the Neon implementation uses the
vcleq £32andvcgeq £32intrinsics with vectors of duplicated values. These operations cannot
be directly expressed using the Helium predication functionality. Instead, we must expand the
predicate mask into a bitmask vector using the following operation:

const uint32x4 t sign v = vpselqg u32(vdupg n u32(0xffffffff), vdupg n u32(0), pred);

The following code shows a simple, direct conversion of the Neon implementation to Helium:

float32x4 t vsing helium £32 direct(float32x4 t wval)
{
const float32x4 t pi v = vdupg n f32 (M PI);
const float32x4 t pio2 v = vdupg n f32(M PI / 2);
const float32x4 t ipi v = vdupg n £32(1 / M PI);

//Find positive or negative

const int32x4 t c v = vabsqg s32(vcvtqg s32 f32(vmulg £32(val, ipi v)));

mve predl6 t pred = vcmpleq f£32(val, vdupg n £32(0));

const uint32x4 t sign v = vpselq u32(vdupg n u32 (0xffffffff), vdupg n u32(0), pred);
const uint32x4 t odd v = vandq u32 (vreinterpretq u32 s32(c_v), vdupg n u32(1l));

uint32x4 t neg v = veorq u32(odd v, sign v);

//Modulus a - (n * int(a*(1/n)))

float32x4 t ma = vsubqg £32 (vabsq f32(val), vmulg £f32(pi v, vcvtqg £32 s32(c v)));
mve predl6 t reb v = vcmpgeq f32 (ma, pio2 v);

//Rebase a between 0 and pi/2
ma = vpselq f32(vsubg f32(pi v, ma), ma, reb v);

//Taylor series
const float32x4 t ma2 = vmulg f32(ma, ma);

//2nd elem: x*3 / 3!
float32x4 t elem = vmulg £32 (vmulg f£32(ma, ma2), vdupqg n f32(te sin coeff2));
float32x4 t res = vsubqg f32(ma, elem);

//3rd elem: x~5 / 5!
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elem = vmulqg £32 (vmulg f32(elem, ma2), vdupg n f32(te sin coeff3));
res = vaddg f32(res, elem);

//4th elem: x*7 / 7!float32x2 t vsin £32(float32x2 t val)
elem = vmulqg £32 (vmulg f32(elem, ma2), vdupgqg n f32(te sin coeff4));
res = vsubg f32(res, elem);

//5th elem: x*9 / 9!

elem = vmulqg f32(vmulg £32(elem, ma2), vdupg n f32(te sin coeffd));
res = vaddg f32(res, elem);

//Change of sign

neg v = vshlg n u32(neg v, 31);

res = vreinterpretq £32 u32(veorqg u32(vreinterpretq u32 £f32(res), neg v));
return res;

The following image shows the differences between the Neon implementation and the direct Helium
implementation:

Neon Helium
1 [float32xd_t vaing MEGA £32 (float3Zx4_t val) - 1 floatd2xd t veing BelSem £32)d0Fect (floatiZxd t val)
2 | 2
a eonst floatd2xd_& pi_v = vdupg n_£32(M_PI); 3 const float32x4_t pi_v = vdupq n_£32(M_PT};
4 const f)uacllxﬁ A p:.oZ v = vdupg n_f£32(M_PL / 2): 4 const float32xd_ _T pla? v = vdupgq n_f£32(M PI / 2);
s const. f)uut’unﬁ t ipi_v = vdupg_n_£32(1 / M_PI); 5 const float32x4_t ipi_v = vdupq_n_f32(1 / M_PI);
€ €
7 //®ind positive or negative 7 //®ind pesitive or negative
e const intd2xd t c_v = vabsq s32(vevtq s32 £32(vmulq £32(val, ipi w))); [ const int32xd t c v = “b,q_ssmwn;_,zv £3: Imulq_fszlval. ipi_v)));
E) const uine3Zxd_t sign v = vEIEAUEI? (wal, wdupy n £32(0)); - * mes_predi6_t ~ pred = vempleq _£32(val, wdupqn_£32(0))
10 const uint32xd_t odd v = vandg u3d (vreinterprets u32_s32(e_v), wdupg n u32(1)); 10 const uint32x4 & sign v = vpgo].q_us! vdnpq_n nu;muzuu), wdupg n_832(0)} pred);
11 11 const uint3Zxd_t |_t odd_v = vandq u32(vreinterpretq u32_s32(c_v), vdupg n_ud2(1));:
12 uint32xd_t neq_v = veorq_ul2(edd_v, sign_v); 12
13 13 uint32x4_t neg_v = veorq u3Z(odd_v, 3ign_v):
14 //¥odulus a - En * int(a*(1/n))) 14
15 floatazxd t = vsubqg £32({vabsq £32(val), vmulq £32(pi_v, vovtq £32 s32(c_v)}); 15 //Modulus a - (a * int{a*(1/n)))
16 const uin®dZud_t x»eh ¥ = vegeq €32 (ma, pisZ_v); - 16 £loat3znd € ma = wsubq £32 (vabsq £32(val), vmulq €32(pi v, veveq £32 s32(c_v)));
17 €17 mve predié t zeb v = vompgeq £32(ma, pic2 v);
18 //Rebase a betwean 0 and pi/f2 18
s ma = vbslg £32 (EeBlw,lvsubg £32(pi_v, ma), ma); - 18 //Rebase a between 0 and pi/2
20 20 ma = vpaslq £32 (vsubq £32(pi_v, ma), majliEebiv);
21 //Taylor series 21
22 const flcat32x4_t ma2 = vmulq £32 (ma, ma); 22 /fTaylor series
23 23 const float32x4_t ma? = vmulg £32 (ms, ma);
24 //2nd elem: x*3 / 31 24
25 floatdzx4_t elem = vmulq_£32 (vmulq f£32(ma, maZ), vdupg n_£32(te_sin_coeff2)); 25 //2nd elem: x*3 / 31
26 float32xd_t res = vsubq_f32(ma, elem); 26 £loat32xd_t elem = vmulq_£32(vmulg_£32 (ma, ma2), vdupq_n_£32(te_sin_coeff2));
27 27 float32xd_t res = vsubg £32(ma, elem);
28 //3zd elem: x*5 / 5! 28
25 elem = vmulq £32 (vmulq_£32(elem, ma2), vdupq n_£32(te_sin_coe££3)); 25 //37d elem: x*5 / 5!
30 res = vaddg £32(xes, elem); 30 elem = vmulg £32 (vmulq £32(elem, ma2), wdupg n_£32 (te_sin_coeff3));
31 k3 4 res = vaddg £32(res, elem);
a2z /74th elem: x*7 / 71float32x2_t vain_£32(floatd2x2_t val) 32
a3 elem = wvmulq £32 (vmulg_£32(elem, ma2), vdupq n_£32(te_sin_coeffd)); a3 //4th slem: x*7 / T1float32x2_t vsin_£32(float32x2_t val)
34 res = wsubqg £32(res, elem); 34 elem = vmulg £32 (vmulg_f£32(elem, ma2), vdupq n_f£32(te_sin_cosffd));
35 as res = vaubg f32(res, slem);
36 //Sth elem: x*~9 / 91 36
37 elem = wvmalq £32(vmulq _£32(elem, ma2), vdupq n_£32(te_sin_coeff5)); 37 //5th elem: x*§ / 81
38 res = vaddg £32(res, elem); ag elem = vmulg £32 (vmulq £32(elem, ma2), vdupg n £32(te sin coeff5));
39 s res = vaddg_£32(zes, elem);
40 //Change of sign 40
41 neg_v = vshlg n_udZ(neg_v, 31); 41 //changs of sign
42 res = vreinterpretq_£32_u3Z{veorq_u3Z (vreinterpretq_u32_f32(res), neg_v)); 42 neg_v = vshlg_n_u32(neg_v, 31);
3 zeturn res; a3 res = vreintezpretq_£32_u32 (veorq_u32 (vreinterpretq_u32_£32(res), neg_v));
44) 44 return res;
45)

The following GNU diff output shows the same differences in text form:

—--- neon.c Fri Oct 16 13:46:10 2020
+++ helium direct.c Fri Oct 16 13:50:02 2020
@@ -1,4 +1,4 @@
—float32x4_t vsinq_neon_f32(float32x4_t val)
+float32x4 t vsing helium f32 direct(float32x4 t val)
{

const float32x4 t pi v = vdupg n f32(M PI);

const float32x4 t pio2 v = vdupg n £32(M PI / 2);
@e -6,7 +6,8 @@

//Find positive or negative
const int32x4 t c v = vabsqg s32(vcvtg s32 f£32(vmulg f£f32(val, ipi v)));
- const uint32x4 t sign v = vcleq f32(val, vdupg n £32(0));
A mve predl6 t pred = vcmpleqg f32(val, vdupg n £32(0));
i const uint32x4 t sign v = vpselqg u32(vdupqg n u32(0xffffffff), vdupg n u32(0),
pred) ;
const uint32x4 t odd v = vandq u32(vreinterpretqg u32 s32(c_v), vdupg n u32(1l));

uint32x4 t neg v = veorq u32(odd v, sign v);
@@ -13,10 +14,10 @@
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//Modulus a - (n * int(a*(1/n)))

float32x4 t ma = vsubg f32 (vabsq f32(val), vmulg £f32(pi v,
vevtg £32 s32(c_v)));
= const uint32x4 t reb v = vcgeq f32(ma, pio2 Vv);
i mve predl6 t reb v = vcmpgeq f32 (ma, pio2 v);

//Rebase a between 0 and pi/2
- ma = vbslg f32(reb v, vsubg f32(pi v, ma), ma);
+ ma = vpselq f32(vsubg f32(pi v, ma), ma, reb v);

//Taylor series
const float32x4 t ma2 = vmulg £f32 (ma, ma);

4.3 Optimized migration to Helium

Like with the Single-precision vector logarithm example, we can use flexible mixing of vector
register and general-purpose register operands. In this example, mixing scalar and vector operands
saves a large number of VDUP instructions.

The following code shows an optimized conversion of the Neon implementation to Helium:

float32x4 t vsing helium £32(float32x4 t val)
{

const float32 t pi v = M PI;

const float32 t pio2 v = M PI / 2;

const float32 t ipi v =1 / M PI;

//Find positive or negative

const int32x4 t c v = vabsqg s32(vcevtqg s32 £32 (vmulg n £32(val, ipi v)));

mve predl6 t pred = vcmpleq f£32(val, vdupg n £32(0));

const uint32x4 t sign v = vpselqg u32(vdupg n u32(0xffffffff), vdupg n u32(0), pred);
const uint32x4 t odd v = vandgq u32(vreinterpretq u32 s32(c_v), vdupg n u32(1l));

uint32x4 t neg v = veorq u32(odd v, sign v);

//Modulus a - (n * int(a*(1/n)))

float32x4 t ma = vsubg £32(vabsq f32(val), vmulg n £32(vcvtqg £f32 s32(c v),
pi_v));
mve predl6 t reb v = vcmpgeq n £32 (ma, pio2 v);

//Rebase a between 0 and pi/2
ma = vpselq f32(vsubg f32(vdupg n f32(pi v), ma), ma, reb v);

//Taylor series
const float32x4 t ma2 = vmulg £32 (ma, ma);

//2nd elem: x*3 / 3!
float32x4 t elem = vmulg n £32(vmulg £32 (ma, ma2), te sin coeff2);
float32x4 t res = vsubg f32(ma, elem);

//3rd elem: x*5 / 5!
elem = vmulg n £32 (vmulg f32(elem, ma2), te sin coeff3);
res = vaddg f32(res, elem);

//4th elem: x*7 / 7!float32x2 t vsin £32(float32x2 t val)
elem = vmulg n £f32 (vmulg f32(elem, ma2), te sin coeffd);
res = vsubg f32(res, elem);

//5th elem: x"*9 / 9!
elem = vmulg n £32(vmulg f32(elem, ma2), te sin coeffh);
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res = vaddg f32(res, elem);

//Change of sign
neg v = vshlg n u32(neg v, 31);

102107 0100 01
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res = vreinterpretq £32 u32(veorq u32 (vreinterpretq u32 f32(res), neg v));

return res;

}

The following image shows the differences between the Neon implementation and the optimized

Helium implementation:

Neon Helium
1 [Flcatizx4 t vaing RGO £32 (flcatdzxd t val) ®1 Eloatizxe_t vaing BENSUM £32(flcatdZxd t val)
2 | 2 {
3 const £loat32xd t pi_v = vaupqIALEIZ(M_PI); - const float32 t pi_v = M_PI;
4 conat float32ed t pic2 v = ydupqn £3204 #1 / 2; 4 const floatd2 t pis2 v = MBI / 2;
s const float32wd_t ipi_v = wdupq m £32(1 / M_PI); s const float32 t ipi_v = 1 7 M PI;
€ 3
7 //Find positive or negative 7 //Find positive or negative
& const intdZxd_t c_v = vabag s3Z(veveq s32 €32 (vmulq €32(val, ipi_v))); . const intiZxé t ¢ v = unbsc;_sl2:vcvr_q_532 £32 (vmolq BIE3Z (val, ipi_v)));
s const uint32xd_t sign v = voleq €32 (val, vdupq n £32(0)); ) mve_predlé_t = wempleq_£3 4 wdupq_n_£3210))
10 const uintd2xd_t odd_v = vandg ul2(vreinterpretq u32_s32(c_vl, vdupq n_ud2(1)}; 1000const uint32xd_t sign v = vplllq_ n_u32 (OXEEEELEEE), vdupq n_B32(0),pred) ;
11 11 const uinti2xd_t odd_v = v-ndq_u:azcv:eamexpunq_u:m_;az::_r». vdupq_n_u32(1));
12 wint32xd_t neg_v = veorq ud2(edd v, sign_v): 12
13 13 uine3zxd_t neg_v = veorq u32(edd_v, sign_v):
14 //Modulus & = (n * int(a*(1/n)}) 14
15 floatazxé_t ma = vaubg £32 (vabaq _£32(val), vaulq £32(pilWjlivcveq £32_832(c_v))); 1S //Modulus & - (n * int(a*(1/n)})
16 const uintd2wd_t reb_v = vogeq £32(ma, pio2_v); #16  floatazxd e ma = vsubq_£32 (vabaq_£32(val), wmulg RL£32(veveq_£32_s32(c_v), Bil¥));
17 17 mve predif v |\ reb_v = vcEpgeqin £3Z(ma, pio2_v);
16 //Rebase a betwsen O and pi/2 18
15 ma = vhalq £32 (xeblw, vaubg £32(pi_v, ma), ma); 19 //Rebase a between 0 and pi/2
20 20 ma = vpaslq £32(vsubg £32 (FAGPEUANEIZNpi vH, ma), majlEeBIw);
21 //Taylor series 21
22 const floatd2x4_t ma2 = vmulg £32(ma, ma); 22 //Tayler series
23 23 const float32xd_t ma2 = wvmulg £32({ma, ma);
24 //2nd elem: x*3 / 3t 24
25 floatdxd t elem = vmulg £32(vmulg £32(ma, ma2), wdupq n £33{te_sin cosff2}); - 25 //2nd elem: %*3 / 31
26 float3Zad_t res = vsubq_£32(ma, elem); #26 flcatdzxa_t olem = wmulq BU£32(vmulq £32(ma, ma2), te_ smin_coeff2);
27 27 £loat3zas_t res = woubq £32 (ma, slem);
28 //3rd elem: x*5 / 5t 28
25 alem = vmulq £32(vmulg_£32(elem, maZ), WAUPAUALESZ(te_sin coeff3)); - 29 //3rd elem: xS / St
30 res = vaddgq f32(res, elem); +30 elem = vmulq AUE32(vmulq €32 (elem, ma2), te_sin_coef£3);
31 31 res = vaddg £32(res, elem);
32 //4th elem: x*7 / 7ifloatd2x2 &t vsin_£32(float32xl t val) 22
33 elem = vmulg £32(vmulg £32(slem, ma2), VAUPQUALESZ(te ain cooffdl); - 33 //4th elem: x°7 / 7!float32x2_t vsin £32(float32x2_t val)
34 res = vsubg £32(res, elem); 34 elem = wmulq RU£32(vmulg £32(elem, ma2), te_sin coeffd);
35 35 res = vsuby £32(res, slem);
36 //Sth slem: %9 / 91 36
37 elem = vmulg £32(vmulg £32(elem, ma2), W B £32(te_sin_coe££S)) ; - 37 //Sth elem: %"5 / 91
38 res = vaddg £32(res, elem); ®35 elem = wvmulq BU£3Z(vaulg £32(slem, ma2), te_sin coeffS);
35 35 res = vaddg £32(res, elem);
40 //Change of sign 40
41 neg_v = vshlg n u32(neg_v, 31); 41 //Change of sign
42 res = vreinterpretq £32 ul2(veorq ulZ(vreinterpretq ul2 £32(res), neg_v)); 42 neg_v = vshlq n ul2(neg_v, 31);
43 recurn res; 43 res = vreinterpretq f£32_u32(veorq ulZ(vreinterpretq ul2_£32(res), neg_v));
44) 44 return res;
45}

The following GNU diff output shows the same differences in text form:

—--- neon.c Fri Oct 16 13:46:10 2020
+++ helium optimized.c Fri Oct 16 13:46:34 2020
@@ -1,40 +1,41 @@
-float32x4 t vsing neon f32(float32x4 t val)
+float32x4 t vsing helium f£32(float32x4 t val)
{
= const float32x4 t pi v = vdupg n f32(M PI);
= const float32x4 t pio2 v = vdupg n £32(M PI / 2);
- const float32x4 t ipi v = vdupg n £32(1 / M PI);

i const float32 t pi v = M PI;
+ const float32 t pio2 v = M PI / 2;
+ const float32 t ipi v =1 / M PI;
//Find positive or negative
= const int32x4 t c v = vabsqg s32(vcvtqg s32 £32(vmulg £f32(val, ipi v)));
- const uint32x4 t sign v = vcleq f32(val, vdupg n £32(0));
e const int32x4 t c v = vabsqg s32(vcvtqg s32 f32(vmulg n £32(val, ipi v)));
s mve predl6 t pred = vcmpleqg f32(val, vdupg n £32(0));
+ const uint32x4 t sign v = vpselqg u32(vdupq n u32 (0xffffffff), vdupg n u32(0),
pred) ;

const uint32x4 t odd v = vandqg u32(vreinterpretq u32 s32(c v), vdupg n u32(1l));

uint32x4 t neg v = veorq u32(odd v, sign v);
//Modulus a - (n * int(a*(1/n)))
= float32x4 t ma = vsubqg £32 (vabsq f32(val), vmulg £f32(pi v,
vevtg £32 s32(c v)));
- const uint32x4 t reb v = vcgeq f32(ma, pio2 v);
+ float32x4 t ma = vsubg f£32(vabsq f32(val), vmulg n £32(vcvtg £32 s32(c v),
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5 Vector minimum searching

Thearm min £32 function computes the minimum value of an array of floating-point values. The
function returns both the minimum value and its position within the array.

The function is implemented in the CMSIS DSP library.
The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/vmin.
c

5.1 Neon implementation

The following code shows an implementation of a single-precision floating-point vector sine function
using Neon intrinsics:

void arm min neon f32(const float32 t * pSrc,
uint32 t blockSize, float32 t * pResult, uint32 t * pIndex)

{

float32 t maxVall, out; /* Temporary variables to store the output value. */

uint32 t blkCnt, outIndex; /* loop counter */

float32x4 t outV, srcV;

float32x2 t outv2;

uint32x4 t idxV;

static const uint32 t indexInit[4] = { 4, 5, 6, 7 };

static const uint32 t countVInit(4] = { 0, 1, 2, 3 };

uint32x4 t maxIdx;

uint32x4 t index;

uint32x4 t delta;

uint32x4 t countV;

uint32x2 t countv2;

maxIdx = vdupg n u32 (ULONG MAX) ;
delta = vdupg n u32(4);

index vldlg u32 (indexInit);
countV = vldlg u32 (countVInit);

/* Initialize the index value to zero. */
outIndex = 0U;

/* Load first input value that act as reference value for comparison */
if (blockSize <= 3) {
out = *pSrct+;
blkCnt = blockSize - 1;
while (blkCnt > 0U) {
/* Initialize maxVal to the next consecutive values one by one */
maxVall = *pSrc+t+;

/* compare for the maximum value */

if (out > maxVall) {
/* Update the maximum value and its index */
out = maxVall;
outIndex = blockSize - blkCnt;
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The core loop of the Neon code is as follows:
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while (blkCnt > 0U) {
srcV = vldlg £32 (pSrc)
pSrc += 4;

idxV = vcltq £32(srcV, outV);
outV = vbslqg f32(idxV, srcV, outV);
countV = vbslg u32(idxV, index, countV);

index = vaddqg u32(index, delta);
/* Decrement the loop counter */

blkCnt--;
}

102107 0100 01
[ssue 1.0

This loop iterates over each element of the data array, four elements at a time. The main loop
compares the value in each lane of the input vector with the value in the corresponding lane of the
vector outV. If alower value is found, that lane of outV is updated with the new lowest value. After
all iterations have finished, outVv contains four values with each value being the minimum seen in

each lane.

The global minimum for the whole array is then calculated by selecting the lowest of these four values

using the pairwise minimum operation:
outV2 = vpmin f£32(vget low £32(outV), vget high f32 (outV)):;
outV2 = vpmin f32 (outV2, outVv2);
out = vget lane f32(outv2, 0);

idxV = vceqq £32 (outV, vdupg n £32(out)):;
countV = vbslg u32(idxV, countV, maxIdx) ;

countV2 = vpmin u32(vget low u32 (countV), vget high u32(countV));

countV2 = vpmin u32 (countV2, countV2);
outIndex = vget lane u32(countV2, 0);

5.2 Direct migration to Helium

Like with the Single-precision vector exponent example, we must change the conditional selection
operation in the main loop to use predication. The following code shows the Helium main loop:

/* Compute 4 outputs at a time */
blkCnt = (blockSize - 4) >> 2U;

while (blkCnt > 0U) {
srcV = vldlg £32(pSrc);
pSrc += 4;

pred = vcmpleq f£32(srcV, outV);
outV = vpselq f32(srcVv, outV, pred):;
countV = vpselqg f32(index, countV, pred);

index = vaddg u32(index, delta);
/* Decrement the loop counter */

blkCnt--;
}

To calculate the global minimum, Helium does not provide a pairwise minimum operation. However,
Helium instead provides across-vector operators including vector minimum for both floating point,

vminnmvg £32,andintegers, vminvg u32.
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This simplifies the global minimum calculation as follows:

The following code shows a simple, direct conversion of the Neon implementation to Helium:
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The following image shows the major differences between the Neon implementation and the direct
Helium implementation:

Neon Helium

5 7 4€ (blocksize - 10) is nor mulsiple of 4 +/ ‘§ 4o 12 (olocksisa - 10) fs ot mulniple of 4 4/
n ke = (hecksize - 4 8 40 e bixans = Bolocksize - 41 8 407

The following GNU diff output shows the same differences in text form:
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5.3 Optimized migration to Helium

Helium supports tail-predicated loops, which optimize processing when the amount of data to be
processed is not an exact multiple of the vector length. For loops that do not require explicit unrolling,
tail-predicted loops deal with the scalar residual parts.

Tail-predicated loops need to be expressed in a way that the compiler can recognize. The compiler can
thenissue loop instructions using the DLSTP, WLSTP, and LETP instructions. Arm Compiler 6
requires that intrinsics operators belonging to the loop are predicated using a vetp predicate.

The following code shows an optimized conversion of the Neon implementation to Helium:
void arm min helium f32 (const float32 t * pSrc,

uint32 t blockSize, float32 t * pResult, uint32 t * pIndex)
{

int32 t blkCnt = blockSize;

float32x4 t veecSrel;

float32x4 t curExtremValVec = vdupg n f32(F32 MAX) ;
float32 t minValue = F32 MAX;

uint32 t idx = blockSize;

uint32x4 t indexVec;

uint32x4 t curExtremIdxVec;

uint32 t curldx = 0;

mve predl6 t pred;

indexVec = vidupg wb u32(&curldx, 1);
curExtremIdxVec = vdupg n u32(0);

do {
mve predl6 t p = vctp32g(blkCnt) ;

vecSrc = vldlqg z £f32(pSrc, p);
/*
* Get current min per lane and current index per lane
* when a min is selected
=
pred = vcmpleg m f32 (vecSrc, curExtremValVec, p);
curExtremValVec = vorrqg m f32 (curExtremValVec, vecSrc, vecSrc, pred);
curkExtremIdxVec = vorrg m f32 (curExtremIdxVec, indexVec, indexVec, pred);

indexVec = vaddg n u32 (indexVec, 4);

pSrc += 4;
blkCnt -= 4;

}
while (blkCnt > 0);

*
/* Get min value across the vector
*
migValue = vminnmvqg (minValue, curExtremValVec) ;
*
/* set index for lower values to min possible index
*
préd = vcmpleq (curExtremValVec, minValue) ;
indexVec = vpselqg(curExtremIdxVec, vdupg n u32(blockSize), pred);

/%
* Get min index which is thus for a min value
=

idx = vminvqg(idx, indexVec) ;

/%
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* Save result

=

*pIndex = idx;
*pResult = minValue;

}
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6 Floating-point vector complex dot
product

Thearm cmplx dot prod neon £32 functioncomputes the dot product of two single-precision
floating-point complex vectors.

The vectors are multiplied element-by-element and then summed, using the following underlying
algorithm:
realResult = 0;

0;

imagResult =
for (n = 0; n < numSamples; n++) {
realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[ (2*n)+1];

imagResult += pSrcA[ (2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[ (2*n)+0];
}

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/cmpl
x_dot.c

6.1 Neon implementation

The following code shows an implementation of a single-precision floating-point vector exponent
function using Neon intrinsics:

void arm cmplx dot prod neon £32(const float32 t * pSrcAh,
const float32 t * pSrcB,
uint32 t numSamples,
float32 t * realResult, float32 t * imagResult)

uint32 t blkCnt; /* Loop counter */
float32 t real sum = 0.0f, imag sum = 0.0f; /* Temporary result variables */
float32 t a0, b0, c0, dO;

float32x4x2 t vecl, vec2, vec3, vec4d;
float32x4 t accR, accI;
float32x2 t accum = vdup n f32(0);

accR = vdupg n £f32(0.0f);
accI = vdupg n £32(0.0f);

/* Loop unrolling: Compute 8 outputs at a time */
blkCnt = numSamples >> 3U;

while (blkCnt > 0U) {
/* C = (A[0]+JA[1])*(B[O]+3B[1]) + ... */
/* Calculate dot product and then store the result in a temporary buffer. */

vecl = vld2g f32 (pSrcAh);
vec2 vld2gq f£32(pSrcB);

/* Increment pointers */
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The Neon implementation of floating-point complex dot product uses the following vector operations:

e De-interleaved load vld2qg_£32 to separate the real and imaginary parts
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e Aseriesof vmlag f£32andvmlsg £32 operations to perform the computation of the per-lane
accumulated complex multiplications

e Pairwise addition vpadd £32 to perform final summation outside the loop

6.2 Direct migration to Helium

Most of the Neon intrinsics used in this example have Helium counterparts. The exceptions are vector
pairwise addition, unfused multiply-accumulate, and unfused multiply-subtract.

The Neon implementation uses the v1id2qg £32 intrinsic to perform an interleaved two-element load
for the alternating real and imaginary components of the complex numbers. Neon and Helium both
support interleaved two- and four-element loads and stores. Neon and Helium provide the same
vld2q £32,vl1d4dq £32, vst2q £32,andvstdqg £32intrinsics, but the resulting instructions
are different. Helium requires two or four calls with different pattern IDs to fill a pair or a quadruplet
of 128-bit vectors.

For example, Helium and Neon both provide the following intrinsic:
float32x4x2 t vld2g f32 (float32 t const * ptr)

Compiling for Neon results in the following single Aé4 instruction:
LD2 {Vt.4S - Vt2.4S}, [Xn]

Compiling for Helium results in the following pair of instructions:
VLD20.32 {Qt, Qt+l}, [Rn]

VLD21.32 {Qt, Qt+1l}, [Rn]

Helium does not provide interleaved three-element load and store intrinsics, but the RGB to
grayscale conversion example shows how to mimic this behavior using scatter-gather operations.

The following code shows a simple, direct conversion of the Neon implementation to Helium:

void arm cmplx dot prod helium f32 direct conversion(const float32 t * pSrch,
const float32 t * pSrcB,
uint32 t numSamples,
float32 t * realResult,
float32 t * imagResult)

uint32 t blkCnt; /* Loop counter */
float32 t real sum = 0.0f, imag sum = 0.0f; /* Temporary result variables */
float32 t a0, b0, c0, do;

float32x4x2 t vecl, vec2, vec3, vec4;
float32x4 t accR, accI;

/* float32x2 t accum = vdup n £32(0); */

accR
accIl

vdupg n £32(0.0f);
vdupg n £32(0.0f);

/* Loop unrolling: Compute 8 outputs at a time */
blkCnt = numSamples >> 3U;
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The following image shows the major differences between the Neon implementation and the direct
Helium implementation:

Neon Helium

wineaz e blkones  /* Zesp scuntes +/
fioaesi e ealsim - 0.0, imag_sim - 9.08; /4 Sesporary ressls varisbles ¢/
s S

acek = vdapq_n_f32(0.0€);
S dcal = vdupan 310,081}

1€ acem
4 secp unrdlings & sutputa at a sime o/ 17 asel = wdwpn_f32(0.00);
BINCAT @ nustanples > 307 i
7+ taop unrsilings Compute § cutputs at & vims */
Lo (biecat 2 0w ( By iecs i e
Fre = GALOIHAILI)*BIO1+3BI1]) + . *f
7+ Calculate dot product and then store the result in a temporary buffer. '/ 31 while tblkces > oW [

? FtC = RIOIVIAILII(BIO14SBIIN & ..
weel = vldiq £33 (pSzer); . 7+ Calculate dot product and then siore the result in a tesporacy buffer. +/
vacd = wldia£12{pareB); 3

2 vest = vldiq £33 (psseal:

pointers ¢/ E vec2 = widiq £32ipsreth;
£

-

et e

The following GNU diff output shows the same differences in text form:
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= accR = vmlsqg £32(accR, vecl.val[l], vec2.val[l]);
+ accR = vfmaq f32 (accR, vecl.val[0], vec2.val[0]);
4 accR = vfmsqg £32(accR, vecl.val[l], vec2.val[l]);

/* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
- accI = vmlaqg f32(accI, vecl.val[l], vec2.val[O
= accI = vmlaqg £32(accI, vecl.val[0], vec2.val[l
+ accI = vfmaq f32(accI, vecl.val[l], vec2.val[O
4 accl = vfmaq £32(accI, vecl.val[0], vec2.val[l

’

vec3 = vld2g f32(pSrcAh);

vecd = vld2q_f32(pSch);
@@ -44,27 +46,26 Q@

pSrcB += 8;

/* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
= accR = vmlaq £32(accR, vec3.val[0], vec4.val[0]
= accR = vmlsqg f32(accR, vec3.val[l], vec4d.val[l]
4 accR = vfmaq £32(accR, vec3.val[0], vec4.val[0]
+ accR = vfmsqg f32(accR, vec3.val[l], vec4d.val[l]

/* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
- accI = vmlaqg f32(accI, vec3.val[l], vec4.val[O
= accI = vmlaqg £32(accI, vec3.val[0], vecd.val[l
+ accI = vfmaq f32(accI, vec3.val[l], vec4.val[O
4+ accl = vfmaq £32(accI, vec3.val[0], vecd.val[l

/* Decrement the loop counter */
blkCnt--;

accum = vpadd f32(vget low £32(accR), vget high £32(accR));

- real sum += vget lane f32(accum, 0) + vget lane £32(accum, 1);

/* no pairwise add vpadd £32 */

real sum += vgetq lane f32(accR, 0) + vgetqg lane f32(accR, 1) +
vgetqg lane f32(accR, 2) + vgetqg lane f32(accR, 3);

IR

accum = vpadd f32(vget low £32(accI), vget high £32 (accI))
- imag sum += vget lane f32(accum, 0) + vget lane f32(accum, 1);
+ imag_sum += vgetq lane £32(accI, 0) + vgetq lane £32(accI, 1) +
+ vgetq lane f32(accI, 2) + vgetqg lane f32(accI, 3);

~.

/* Tail */
blkCnt = numSamples & 0x7;
while (blkCnt > 0U) {

a0 = *pSrcA+t+;

b0 = *pSrcA++;

6.3 Optimized migration to Helium

[ssue 1.0

Helium supports new complex operations which allow a more natural implementation and do not
require a de-interleaving stage. For example, Helium provides the Vector Complex Multiply
Accumulate VCMLA instruction, which operates on complex numbers that are represented in

registers as pairs of elements.

The following code shows an optimized core loop that uses these complex instructions:

while (blkCnt > 0U) {
vecSrcA = vldlg((const float32 t *) pSrchd);
vecSrcB = vldlqg((const float32 t *) pSrcB);
/* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
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Further performance improvements are possible on dual beat cores like Cortex-M55. By unrolling
loops, the compiler can perfectly interleave vector loads and vector complex multiplications. The
following code shows a fully optimized Cortex-M55 version of the function:
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/* process last elements out of loop to keep the SW pipeline */
vec acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
vecSrcC v1ldlg (pSrch) ;

/* Tail handling code elided... */

}
}

o
% Armv8.3A provides the FCMLA Floating-point Complex Multiply Accumulate instruction, which
provides similar functionality to the Helium instructions in this code implementation.

Note
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7 Fixed-point vector complex dot
product

Thearm cmplx dot prod neon_ gl5 functioncomputes the dot product of two Q15 fixed-
point complex vectors.

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/cmpl
x_dot.c

7.1 Neon implementation

The Neon implementation has a similar construction to the Floating-point vector complex dot
product. The main difference is the complex accumulation handling which uses 2 levels of widening, as
follows:

e Longmultiplication of 16-bit values using vmull s16 gives 32-bitresults.

e Long pairwise addition of 32-bit values using vpadalqg s32 gives 64-bit results.

The following code shows an implementation of a fixed-point vector exponent function using Neon
intrinsics:
void arm cmplx dot prod neon gl5(const gl5 t * pSrca,

const gl5 t * pSrcB,

uint32 t numSamples, g31 t * realResult,

g3l t * imagResult)

uint32 t blkCnt; /* Loop counter */

g63 t real sum = 0, imag sum = 0; /* Temporary result variables */
gl5 t a0, b0, c0, do;

intl6x8x2 t vecl, vec2;

int32x4 t tempL, tempH;

int64x2 t resrl, resr2, resi;

resrl vdupg_n s64(0) ;

resr2 = vdupqg n s64(0);
resi = vdupg n s64(0);

/* loop unrolling */
blkCnt = numSamples >> 3U;

while (blkCnt > 0U) {
vecl = vld2g sl6(pSrcA);
vec2 = vld2g sl6 (pSrcB) ;
pSrcA += 16;
pSrcB += 16;

tempL
tempH

= vmull sl6(vget low sl6(vecl.val[0]), vget low sl6(vec2.val[0])):;
= vmull sl6(vget high sl6(vecl.val[0]), vget high sl16(vec2.val[0])):
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7.2 Optimized migration to Helium

Long multiplication is available on Helium, but operates differently from Neon.

Neon long multiplication operates on half-vectors (int16x4_t), as shown inthe following diagram:
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intl6x4 tvector

intlex4 tvector

int32x4 tvector

Helium long multiplication, however, operates on a full 128-bit vector selecting either the top parts
(odd-indexed elements) or bottom parts (even-index elements). This process is shown in the following
diagram:

vmullbg int sl16

intleéx4 tvector

intlexd tvector

int32x4 tvector

intle6x4 tvector

intléx4 tvector

int32x4 tvector

Helium does not provide a direct equivalent for the vpadalqg s32 Neon long pairwise addition
intrinsic, but integer vectors have support for across operations like sum. Either a 32-bit or 64-bit
general-purpose register can be used for accumulation. To align with the Neon implementation, we
use vaddlvaqg s32 tooperate onanint32x4_t vector and sumin a 64-bit accumulator.

Implementing these substitutions allows an almost one-to-one Neon to Helium conversion. The
following code shows this simple, direct conversion of the Neon implementation to Helium:

void arm cmplx dot prod helium gl5 direct conversion(const gl5 t * pSrcAh,
const gl5 t * pSrcB,
uint32 t numSamples,
g3l t * realResult,
g3l _t * imagResult)

uint32 t blkCnt; /* Loop counter */

q63 t real sum = 0, imag sum = 0; /* Temporary result variables */
qls t a0, b0, c0, doO;

intlé6x8x2 t vecl, vec2;

int32x4 t tempL, tempH;

int64 t resrl, resr2, resi;
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/* Convert real data in 34.30 to 8.24 by 6 right shifts */

*realResult = (g31 t) (real sum >> 6);
/* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */
*imagResult = (g31 t) (imag sum >> 6);

7.3 Optimized migration to Helium

Like Floating-point vector complex dot product, complex operations can be used to implement a more
efficient Helium implementation.

Helium fixed-point complex multiplication is implemented using the vmlsldav{a}lqg s16 and
vmlaldav{al}xqg slé6 intrinsics.

This optimized implementation produces a very compact implementation of the routine, as shown by
the following code:

while (blkCnt > 0) {
vecl = vldlg(pSrcA);
vec2 = vldlg(pSrcB);

real sum = vmlsldavaq sl6(real sum, vecl, vec2);
imag sum = vmlaldavaxq sl16(imag sum, vecl, vec2);

pSrcA += 8; pSrcB += 8;
blkCnt--;
}

Further performance improvements are possible on dual beat cores such as Cortex-M55. By
unrolling loops, the compiler can perfectly interleave vector loads and vector complex multiplications.

Note that Helium also provides 64-bit shift operators such as asr1 which can be used to scale the
final real and imaginary parts of the complex result to the final format. It is expected that future
compilers will be able to use these instructions without requiring explicit intrinsics.

The following code shows a fully optimized Cortex-M55 version of the function:

void arm cmplx dot prod helium gl5(const gl5 t * pSrca,
const gl5 t * pSrcB,
uint32 t numSamples,
g3l t * realResult, g3l t * imagResult)

int32 t blkCnt;

g63 t accReal = OLL;
q63 t accImag = OLL;
intl6x8 t vecSrcA, vecSrcB;
intl6x8 t vecSrcC, vecSrcD;

blkCnt = numSamples >> 3;
blkCnt -= 1;
if (blkCnt > 0) {
/* should give more freedom to generate stall free code */
vecSrcA = vldlg(pSrch);
vecSrcB = v1dlg(pSrcB) ;
pSrcA += 8;
pSrcB += 8;

while (blkCnt > 0U) {

accReal = vmlsldavaqg(accReal, vecSrcA, vecSrcB);
vecSrcC = v1dlg(pSrch);
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8 Single-precision 4x4 matrix
multiplication

Themat multiply 4x4 neon functionuses intrinsics to multiply two single-precision floating
point 4x4 matrices. The Neon implementation of this example function is described in the Neon
Programmer's Guide for Armv8-A: Optimizing C Code with Neon Intrinsics

The matrices are multiplied together using the following underlying algorithm:
void matrix multiply c(float32 t *A, float32 t *B, float32 t *C, uint32 t n,
uint32 t m, uint32 t k) {
for (int i idx=0; i idx < n; 1 idx++) {
for (int j_idx=0; j idx < m; j_idx++) f{
Cln*j idx + i _idx] = 0;
for (int k_idx=0; k_idx < k; k_idx++) {
C[n*j idx + i idx] += A[n*k idx + i idx]*B[k*]j idx + k idx];
}
}
}
}

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/matri
X.C

8.1 Neon implementation

The following code shows an implementation of a 4x4 single-precision floating-point vector multiply
function using Neon intrinsics:

void mat multiply 4x4 neon(float32 t * A, float32 t * B, float32 t * C)
{

// these are the columns A

float32x4 t AQ;
float32x4 t Al;
float32x4 t A2;
float32x4 t A3;

// these are the columns B

float32x4 t BO;
float32x4 t B1;
float32x4 t B2;
float32x4 t B3;

// these are the columns C

float32x4 t CcO;
float32x4 t Cl;
float32x4 t C2;
float32x4 t C3;
A0 = vldlg £32(A);
Al = vldlg f32(A + 4);
A2 = vldlg f32(A + 8);
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A3 = vldlg f32(A + 12);

// Zero accumulators for C values
CO0 = vmovg n £32(0);

Cl = vmovg n £32(0);

C2 = vmovg n £32(0);

C3 = vmovg n £32(0);
// Multiply accumulate in 4x1 blocks, i.e. each column in C
BO = vldlg £32(B);

CO0 = vfmaqg laneq £32(C0, A0, BO, O
CO0 = vfmaq laneq £32(C0, Al, BO, 1
CO0 = vfmag laneq £32(C0, A2, BO, 2
C0 = vfmaq laneq £32(C0, A3, BO, 3
vstlg £32(C, CO);

Bl = vldlg £32(B + 4);

Cl = vfmaq laneq f£32(Cl, AO, B1, 0)
Cl = vfmaq laneq £32(C1, Al, B1, 1)
Cl = vfmaq laneq f32(Cl, A2, Bl, 2);
Cl = vfmaq laneq £32(Cl, A3, Bl, 3)
vstlg £32(C + 4, Cl1);

B2 = vldlg f32(B + 8);

C2 = vfmaq laneq £32(C2, A0, B2, O
C2 = vfmaq laneq £32(C2, Al, B2, 1
C2 = vfmaq laneq £32(C2, A2, B2, 2
C2 = vfmaq laneq £32(C2, A3, B2, 3
vstlg £32(C + 8, C2);

B3 = vldlg £32(B + 12);
C3 = vfmaqg laneq £32(C3, A0, B3, O
C3 = vfmaq laneq £32(C3, Al, B3, 1
C3 = vfmaq laneq £32(C3, A2, B3, 2
C3 = vfmaq laneq £32(C3, A3, B3, 3
vstlg £32(C + 12, C3);

}

The Neon code uses the vidlg f£32intrinsic to load contiguous data elements into vectors. These
vectors represent columns in the source matrices. The code then uses vfmaqg_ laneqg £32intrinsics
to multiply each column in turn by a single element from the other matrix. This operation is repeated
until all columns have been multiplied and summed.

8.2 Direct migration to Helium

The vimag laneq f£32 intrinsic used by the Neon code multipliesa float32x4 t vector by a
single element of another f1oat32x4 t vector, and then accumulates the resultin a third
float32x4 t.

Helium does not provide instructions that mix vector registers and single lane value operands in this
way. However, Helium does provide instructions that let you mix vector and general-purpose
registers.

The direct conversion from Helium to Neon is therefore to mimic the Neon vEmag laneq £32
intrinsic using the Helium vfmagq n f£32andvgetq lane £32 intrinsics, for example:

#define vfmag laneq emu f£32(acc, A, B, idx)
vimag n f32(acc, A, vgetq lane £32 (B, idx))
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The Neonvmovg n_£32 intrinsic can be directly substituted with the Helium vdupg n £32

intrinsic, for example:

The following code shows a simple, direct conversion of the Neon implementation to Helium:
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€3 =
vstlqg £32
}

vfmag laneq emu £32(C3, A3, B3,

3);
(C + 12, C3);

102107_0100_01

[ssue 1.0

The following image shows the major differences between the Neon implementation and the direct
Helium implementation:

26 /I Zero accumulators for

wmove_n_£32(0) ;

Neon Helium

/# Zero accumulators for C values

0 = vmova_n_emu_£32(0) ;

C values 26

28 €1 = vmovg n £32(0); 28 Cl = vmovg n_emm £32(0);

25 ©2 = wmowg n £32(0); 239 ©2 = wmovq n_emm £32(0);

30 ©3 = vmovg n_£32(0); 30 €3 = vmovqg nlemm £32(0);

31 31

32 // multiply accumulate in 4x1 blocks, i.e. sach column in C 32 // multiply accumulate in 4x1 blocks, i.e. each column in C
33 BO = vldlq £32(B); 33 BO = vldlq £32(B);

347 €0 = vimaq laneq £32(C0, AU, BO, 017 - #34 G0 = vimaq laneq emaUf3z (CO, A0, BO, 0):

35 cO = vemag laneq £32(cO,
36 cO = vimaq_lanaq_£32(cO,

37 €O = vfmag laneq £32(CO,
38 wstlq £32(C, CO);

39

40 B1 = vldlg £32(8 + 4);

41 c1 = vimaq laneq £32(cl,
42 C1 = vimagq_laneq_£32(c1,
43 €1 = vfmag laneq £32(C1,
44 C1 = vfmag laneq £32(C1,
45 vatlg £32(c + 4, Cl);

47 B2 = vldlg £32{B + 8);
48 C2 = vimaq laneq £32(cZ.
45 ©2 = vimaq laneq £32(C2,

S0 c2 = vimaq laneq £32(C2, A2

AL, BO, 1); as CO = vwfmag laneq emu £32(CO, Al, BO, 1};

22, BO, 2); 3€  CO = vimaq_lansq_smu £32(C0, A2, BO, 2);

A3, BO, 3); a7 €0 = vfmaq laneqg ema £32(CO, A3, BO, 3);
38 wstly £32(2, CO);

40 Bl = vldlg £32(B + 4);

R0, BL, 01; -+ €1 = vemaq_laneq SmE £32(C1, A0, BI, 0};

&1, B1, 1) 42 C1 = vimaq_laneq_smu_£32(C1, Al, Bl, 1);
A2, Bl, 2) 43 C1 = vimaq laneq_smu £32(Cl, A2, Bl, 2);
A3, B1, 3); 44 Cl = vfmaq laneqiemu £32(Cl, A3, Bl, 3};

45 vatlg £32(C + 4, cl);

47 B2 = vldlg £32(B + B);

€2 = vimag laneq mEi£32(C2, A0, B2, 0):
C2 = vfmag laneq emm £32(C2, Al, B2, 1);
©2 = vfmaq laneq emu £32(C2, AZ, B2, 2);

A0, BZ, 017 L)
AL B2, 1); 45

51 C2 = vemag_laneqg £32(C2, R3, B2, 3) 51 C2 = vfmag_laneglema £32(C2, A3, B2, 3);
52 vatlq £32(C + 8, C2): 52 vatlq £32(C + 8, C2);

53 53

54 B3 = vldig £32(B + 12} S4 B3 = vldig £32(B + 12);:

55 €3 = vimaq laneq £32(c3, A0, B3, 0]7 -+ €55 €3 = vimaq laneq BEEIES3(C3, AU, B3, 01
56 ©3 = vémaq lanagq £32(C3, Al, B3, 1) 56 ©3 = vémaq laneq sms €32(c3, Al, B3, 1);
57 €3 = vfmag laneg £32(C3, A2, B3, 2); 57 C3 = vfmag laneg emu £32(C3, A2, B3, 2);
58 €3 = vfmag laneq £32(C3, A3, B3, 3); 58 €3 = wfmaq laneglemu_£32(C3, A3, B3, 3);
55 variq £32(C + 12, C3); 59 vatiq £32(C + 12, c3);

0} €0)

8.3 Optimized migration to Helium

The direct conversion of vimag laneq f32tovfmag n f32andvgetq lane £32intrinsics
requires additional moves from vector registers to scalar registers.

Anoptimized implementation can use scalar loads to directly read scalar elements using scalar loads.

The following code shows an optimized core loop that uses these scalar loads:

void mat multiply 4x4 helium(float32 t * A, float32 t * B, float32 t * C)
{

float32 t const *pSrBVec;

float32 t *pInB = B;

float32 t *pInA = A;

float32 t *pOut = C;

float32 t *pInA0O, *pInAl, *pInA2, *pInA3;

float32x4 t vecMacO, vecMacl, vecMac2, vecMac3;
float32x4 t vecInB;

const uint32 t MATRIX DIM = 4;

pSrBVec = (float32 t const *) pInB;
pInAO0 = pInA;

pInAl = pInAO0 + MATRIX DIM;

pInA2 = pInAl + MATRIX DIM;

pInA3 = pInA2 + MATRIX DIM;

/%
* load {b0,0,
*/

b0,1, b0,2, b0, 3}

vecInB = vldlg(pSrBVec); pSrBVec += MATRIX DIM;
vecMacO = vmulg(vecInB, *pInAQ++);
vecMacl = vmulg(vecInB, *pInAl++);
vecMac2 = vmulg(vecInB, *pInA2++);
vecMac3 = vmulqg(vecInB, *pInA3++);

/*
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This example uses vfmag, the polymorphic implementation of the vimag n_£32 intrinsic. Helium
provides polymorphic implementations of most intrinsics. The polymorphic name of an intrinsic is
indicated by leaving out the type suffix, leading to a more concise syntax.

For example:

is equivalent to:
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9 Fixed-point 16-bit cross-
correlation

This section of the guide examines the implementation of cross-correlation in the Opus CELT
algorithm.

Cross-correlation is a mathematical measure of the similarity between two vectors.

Opus is a codec for interactive speech and audio transmission over the Internet developed by the
Xiph.Org Foundation. Opus uses the Constrained Energy Lapped Transform (CELT) algorithm to
compress audio.

The xcorr kernel neon fixed functionuses Neon intrinsics to perform cross-correlation on
two vectors.

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/opus_
XCorr.c

9.1 Neon implementation

The following code shows an implementation of a 16-bit fixed-point cross-correlation function using
Neon intrinsics:

void xcorr kernel neon fixed(const opus vall6 * x, const opus vall6 * y,
opus _val32 sum[4], int len)

{

int 35

int32x4 t a = vldlg s32(sum);

/* Load y[0...3] */

/* This requires len>0 to always be valid (which we assert in the C code). */
intlé6x4 t y0 = vldl sl6(y):

y t= 4;

for (j = 0; j + 8 <= len; j += 8) {
/* Load x[0...7] */

intlé6x8 t xx = vldlg sl6(x);

intlé6x4 t x0 = vget low s16 (xx);

intléx4 t x4 = vget high sl16(xx);

/* Load y[4...11] */

intlé6x8 t yy = vldlg slé6(y);

intlé6x4 t y4 = vget low sl6(yy):

intléx4 t y8 = vget high s16(yy):

int32x4 t a0 = vmlal lane sl6(a, yO0, x0, 0);
int32x4 t al = vmlal lane sl6(a0, y4, x4, 0);
intlé6x4 t yl = vext slé6(y0, y4, 1);

intlé6x4 t y5 = vext slé6(y4, y8, 1);

int32x4 t a2 = vmlal lane sl6(al, yl1, x0, 1);
int32x4 t a3 = vmlal lane sl6(a2, y5, x4, 1);
intlé6x4 t y2 = vext slé6(y0, y4, 2);
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intlé6x4 t y6 = vext slé6(y4, y8, 2);
int32x4 t a4 = vmlal lane sl6(a3, y2, x0, 2);
int32x4 t a5 = vmlal lane sl6 (a4, y6, x4, 2);
intlé6x4 t y3 = vext sl6(y0, y4, 3);
intlé6x4 t y7 = vext slé6(y4, y8, 3);
int32x4 t a6 = vmlal lane sl6(a5, y3, x0, 3);
int32x4 t al = vmlal lane sl6(a6, y7, x4, 3);
y0 = y8;
a = a’l;
X += 8;
y += 8;
}
for (; j < len; j++) {
intléx4 t x0 = vldl dup s16(x); /* load next x */
int32x4 t a0 = vmlal sl6(a, yO0, x0);
intléx4 t y4 = v1dl dup sl16(y); /* load next y */
y0 = vext slé6(y0, y4, 1);
a = a0;
xX++;
Namat

}

vstlg s32(sum, a);

}

9.2 Direct migration to Helium

As we see in this section of the guide, direct migration by simply replacing Neon intrinsics with Helium
counterparts is not the recommended approach. The resulting Helium code would miss important
optimization features and perform poorly. However, direct migration allows us to quickly get Neon
code running on a Helium processor as an initial prototyping stage.

Examining the Neon implementation of the cross-correlation function reveals several obstacles to
Helium migration. The Neon code uses 64-bit int16x4 t vectors and associated instructions
includingvget low sl6,vget high s16,vext sl6,andvmlal lane s16 whichdonot
exist in Helium.

Because Helium does not provide 64-bit half vectors, the migrated code uses full 128-bit vectors but
only considers the lower half of each element. These emulated half vectors are filled using vector load
with widening. The widened size is double the size of the loaded vector element. For example, an
int8x8 t vector canbe loaded with a 16-bit widened byte load. An int16x4 t vector canbe
loaded with a 32-bit widened short load.

Helium does not support 64-bit widening.

The Neon code uses vlidlg sléwithvget low sl6andvget high s16toload linear 16-bit
dataintoint16x4 t vectors,asshow in the following diagram:
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int16 t lineardata

vldlg sle

int16x8 vector

vget low sle vget high sle

With Helium, we can use the vldrhqg s32 widening load intrinsic to load four 16-bit elements into

the lower halves of a 4x32 128-bit vector, as show in the following diagram. The upper halves contain
the sign bits.

int16_tlinear data

vldrhg s32

vldrhg s32

The Neon code uses the vmlal lane s16 intrinsicto perform along multiply-accumulate with the
scalar multiplier residing in a single lane.

In the migrated Helium code, the vectors have already been widened from int16_t elements intoan
int32x4 _t vector,sono further wideningis needed. The multiply-accumulate operation is emulated
withvmlag n s32and vgetq laneintrinsics asfollows:

#define vmlal lane emu sl6(a, b, c, idx) vmlag n s32(a, b, vgetg lane(c, idx))

The Neon code uses vext s16 tomerge two vectors after applying animmediate offset. Thisis a

common operation in Neon code. For more background information, see Coding for Neon - Part 5:
Rearranging Vectors.

Helium does not provide a direct equivalent for the Neon vext s16 intrinsic. The easiest way to

support an equivalent operation without refactoring the entire algorithm, is to directly permute the
lanes using VMOV operations.

If your target supports floating-point, the compiler issues S or D register moves. However, if floating-
point is not supported then lane moves use the general-purpose registers.

Both Arm Compiler and GCC supportthe  builtin shufflevector functionwhich providesa
useful way to shuffle a vector pair and create a destination vector with immediate indexes.

The builtin shufflevector function has the following syntax:

__builtin shufflevector (vecl, vec2, indexl, index2, ...)
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For more informationaboutthe  builtin shufflevector function, see Clang Language

Extensions.
Note

Wecanusethe builtin shufflevector functiontoemulate the vext sl16 intrinsicas

follows:

vext emu sl6 (a, b, 1)  builtin shufflevector(a, b, 1, 2, 3, 4);
vext emu sl6 (a, b, 2) builtin shufflevector(a, b, 2, 3, 4, 5);
vext emu sl6 (a, b, 3)  builtin shufflevector(a, b, 3, 4, 5, 6);

__builtin shufflevector(a, b, 3, 4, 5, 6)

—/b/—

The following code shows a simple, direct conversion of the Neon implementation to Helium:

void xcorr kernel mve fixed direct (const opus vall6 * x, const opus vall6 * vy,
opus val32 sum[4], int len)

a

{
int J7
int32x4 t a = vldlg s32 (sum) ;
/* Load y[0...3] */
/* This requires len>0 to always be valid (which we assert in the C code). */
int32x4 t y0 = vldrhqg s32(y);
y t= 4;

for (j = 0; j + 8 <= len; j += 8) {
/* Load x[0...7] */

int32x4 t x0 = vldrhg s32(x);

int32x4 t x4 = vldrhg s32(x + 4);

/* Load y[4...11] *x/

int32x4 t y4 = vldrhqg s32(y);

int32x4 t y8 = vldrhg s32(y + 4);

int32x4 t a0 = vmlag n s32(a, y0, vgetqg lane(x0, 0));
int32x4 t al = vmlag n s32 (a0, y4, vgetq lane(x4, 0));
int32x4 t yl = vext emu sl6(y0, y4, 1);

int32x4 t y5 = vext emu sl6(y4, y8, 1);

int32x4 t a2 = vmlag n s32(al, yl, vgetq lane(x0, 1));
int32x4 t a3 = vmlag n s32 (a2, y5, vgetq lane(x4, 1));
int32x4 t y2 = vext emu sl6(y0, y4, 2);

int32x4 t y6 = vext emu sl6(y4, y8, 2);

int32x4 t a4 = vmlag n s32 (a3, y2, vgetq lane(x0, 2));
int32x4 t a5 = vmlag n s32 (a4, y6, vgetq lane(x4, 2));
int32x4 t y3 = vext emu sl6(y0, y4, 3);

int32x4 t y7 = vext emu sl6(y4, y8, 3);

int32x4 t a6 = vmlag n s32 (a5, y3, vgetq lane(x0, 3));
int32x4 t a7 = vmlag n s32 (a6, y7, vgetq lane (x4, 3));
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The following image shows the major differences between the Neon implementation and the direct
Helium implementation:

int 3 ks int 3s
intazxd_t a = vldig 832 (sum); L int32xd_x a = vidiq 32 (sum);
/* Load y10...3] */ /% Load y[0...3] */
o ) 2 /* This requires len>0 to always be valid (which we assert in the © code). *,

y 4= 4
for (3 = 0; j + & <= lan; j +=8) | for (3 = 0; j +8 <= len: j +=8) |
F* Load x(0...7] */ /¥ Load x[9...7] 4/

The following GNU diff output shows the same differences in text form:
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for (j = 0;

/* Load x[0...7]

- intlé6x8 t
= intlex4 t
- intléx4 t
+ int32x4 t
i int32x4 t

J + 8 <= len;
*/

XX =

x0
x4
x0
x4

/* Load y[4...11]

- intléx8 t
= intlé6x4 t
- intléx4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t

oA

intléex4 t
= intlé6x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t

oA

intléx4 t
intlex4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t

oA A

intlé6x4 t
intléx4 t
- int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t
int32x4 t

[T

y0 = y8;
a = a’;
@@ -42,11 +40,10 @@
}

for (;
= intlex4 t
- int32x4 t
+ intle t
i int32x4 t

- intléx4 t

Jj < len;

Yy
v4
y8
a0
al
v4
y8
a0
al

vl
yv5
a2
a3
yl
v5
a2
a3

y2 =

y6
a4l
ab
y2
y6
a4l
ab

v3
y7
a6
a’7
v3
y7
a6
a’7

{
x0
a0
x0
a0

yv4

= y0 = vext sl6(y0,

+ y0 =
a:
X++;
y++;

al;

v4,
vldrhqg s32(y - 3);

j += 8) {

vldlg s16(x);
vget low s16 (xx);
vget high s16(xx);
vldrhg s32 (x);
vldrhg s32(x + 4);

vldlg sl6(y)

vget low sl6(yy):
vget high s16(yy):
vmlal lane sl6(a,
vmlal lane slé6 (a0,
vldrhg s32(y);
vldrhg s32(y + 4);
vmlag n s32(a, y0, vgetg lane (x0,
vmlag n s32 (a0, y4, vgetqg lane (x4,

0);
0);

x0,
x4,

vO,
v4,

vext sl6(y0, y4, 1);

vext sl6(y4, y8, 1);
vmlal lane sl6(al, yl, x0,
vmlal lane sl6 (a2, y5, x4,
vext emu sl6(y0, y4, 1);
vext emu sl6(y4, y8, 1);
vmlag n s32(al, yl, vgetq lane (x0,
vmlag n s32 (a2, y5, vgetq lane (x4,

1);
1);

vext sl6(y0, y4, 2);

vext sl6(y4, y8, 2);
vmlal lane sl6 (a3, y2, x0,
vmlal lane sl6 (a4, y6, x4,
vext emu sl6(y0, y4, 2);
vext emu sl6(y4, y8, 2);
vmlag n s32 (a3, y2, vgetq lane (x0,
vmlag n s32 (a4, y6, vgetq lane (x4,

2)) 8
2);

vext sl16(y0, y4, 3);

vext sl6(y4, y8, 3);
vmlal lane sl6 (a5, y3, x0,
vmlal lane sl6 (a6, y7, x4,
vext emu sl6(y0, y4, 3);
vext emu sl6(y4, y8, 3);
vmlag n s32 (a5, y3, vgetq lane (x0,
vmlag n s32 (a6, y7, vgetq lane (x4,

3);
3);

vldl dup s16(x); /* load next x

vmlal slé6(a, yO0, xO0);

*x; /* load next x */

vmlag n s32(a, yO0, (int32 t) xO0);

v1ldl dup sl16(y);
1);

/* load next y */

/* load next y

102107 0100 01
[ssue 1.0

*/

*/
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9.3 Optimized migration to Helium

If we disassemble and examine the assembly code that the compiler produces, we see that the vext
emulation used in the direct migration is costly in terms of VMOV operations. Arm Compiler
generates the following code with the -mcpu=cortex-m55 option:

dls Lz, Lz

1s
vldrh.s32 q4, [r0], #16
vmov rl2, sl6
vmla.u32 ql0, gl, rl2
vldrh.s32 q2, [r0, #-8]
vmov . £32 s20, s5
vmov rl2, s8
vldrh.s32 q3, [rl], #1l6
vmla.u32 g0, g3, rl2
vmov . £32 s21, s6
vmov.f32 s22, s7
vmov rlz, sl7
vmov.f32 s23, sl2
vmla.u32 g0, g5, rl2
vmov.f64 d10, d3
vmov . £32 s21, s7
vmov.f32 s22, sl2
vmov.£32 s4, s7
vmov rl2, sl8
vmov . £32 s23, sl13
vmov.£32 s5, sl2
vmla.u32 g0, g5, rl2
vmov.£32 s6, sl3
vmov rl2, sl19
vmov.£32 s7, sl4
// etc...
lr, #1b

If we examine how vext is used in the code, we see a successive series of vext instructions. This
series of vext instructions extract 64-bit sub-vectors from 128-bit vectors with incremental offsets
of 1, 2 and 3. This implementation minimizes the number of vector load operations, as shown in the
following Neon code fragment:

intlé6x4 t yl = vext slé6(y0, y4, 1);
intlé6x4 t y5 = vext slé6(y4, y8, 1);
int32x4 t a2 = vmlal lane sl6(al, yl1, x0, 1);
int32x4 t a3 = vmlal lane sl6(a2, y5, x4, 1);
intlé6x4 t y2 = vext slé6(y0, y4, 2);
intléx4 t y6 = vext slo6(y4, y8, 2);
int32x4 t a4 = vmlal lane slé6(a3, y2, x0, 2);
int32x4 t a5 = vmlal lane sl6(a4, y6, x4, 2);
intléx4 t y3 = vext sle(y0, y4, 3);
intlé6x4 t y7 = vext slé6(y4, y8, 3);
int32x4 t a6 = vmlal lane sl6(a5, y3, x0, 3);
int32x4 t a7 = vmlal lane sl6(a6, y7, x4, 3);

We can more efficiently code this using a successive vector load with an incrementing base address.
This code is more efficient because Helium processors can overlap vector load and vector data
operations. The following Helium code shows the optimized implementation:

int32x4 t yl = vldrhqg s32(y - 3);
int32x4 t y5 vldrhg s32(y + 1);
int32x4 t a2 vmlag n s32(al, yl, vgetqg lane(x0, 1));
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int32x4 t a3 = vmlag n s32 (a2, y5, vgetq lane(x4, 1));
int32x4 t y2 = vldrhqg s32(y - 2);
int32x4 t y6 = vldrhg s32(y + 2);
int32x4 t a4 = vmlag n s32 (a3, y2, vgetq lane(x0, 2));
int32x4 t a5 = vmlag n s32 (a4, y6, vgetq lane(x4, 2));
int32x4 t y3 = vldrhg s32(y - 1);
int32x4 t y7 = vldrhg s32(y + 3);
int32x4 t a6 = vmlag n s32 (a5, y3, vgetq lane(x0, 3));
int32x4 t a7 = vmlag n s32 (a6, y7, vgetq lane (x4, 3));

This optimized code gives significantly better performance than the version that uses the emulated
vext operation.

Thinking again about what the code is doing, we notice that the algorithm multiply-accumulates the X
vector with four different shifted versions of the Y vector. This is called the cross-correlation sliding
dot-product. We can use the Helium integer dot-product intrinsics to further optimize this portion of
the algorithm.

Several variants of the Helium integer dot-product intrinsics are available. In this situation,
vmladavaqg sl6,wouldbe agood fit. Because vimladavaqg s16 takes 16-bit signed integer input
vectors and accumulating in a 32-bit scalar register, it aligns with the original Neon implementation.

Helium also provides 64-bit accumulator variants of the integer dot-product intrinsics.

The following code shows how the Helium main loop can be rewritten using the vmladavaqg s16
intrinsic:

for (j = 0; 3 + 8 <= len; j += 8) {
/* Load x[0...7] */

intl6x8 t x0 = vldlg(x);

/* Load y[0...7]1 */

intl6x8 t y0 = vldlg(y);

intlé6x8 t yl = vldlig(y + 1);
intl6x8 t y2 = vldlg(y + 2);
intlé6x8 t y3 = vldlg(y + 3);
sum[0] = vmladavag sl6(sum[0], x0, yO);
sum[1] = vmladavaqg sl6(sum[1], x0, yl1);
sum[2] = vmladavaqg_sl6(sum[2], x0, y2);
sum[3] = vmladavaqg sl6(sum[3], x0, y3);
x += 8;

y += 8;

}

This optimized code does not need to perform any widening, and the loop can directly operate on full
int16x8 t vectors. These optimizations give another significant performance boost compared to
the direct migration.

The final version of our optimized Helium code uses all the optimizations described in this section. In
addition, we can use predicated intrinsics to avoid performing tail handling. The final result is a
compact implementation which is still fully aligned with the original Neon code behavior.
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The following code shows the final version of the optimized Helium code:

The following image shows the differences between the Neon implementation and the optimized
Helium implementation:

Neon

i x[0...7)

51

The following GNU diff output shows the same differences in text form:
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10 Floating-point 4x4 matrix
transposition

Themat transpose inp 4x4 neon_ £32 functionuses intrinsics to transpose a 4x4 matrix that
contains single-precision floating-point data.

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/matri
X.C

10.1 Neon implementation

The Neon implementation uses the vtrng £32 intrinsic to perform matrix transposition. For more
background information about the corresponding VTRN instruction, see Coding for Neon - Part 5:
Rearranging Vectors.

The following code shows an implementation of a 4x4 floating-point matrix transposition function
using Neon intrinsics:
void mat transpose inp 4x4 neon f32(float32 t * matrix)

{
float32x4 t row0O = vldlg f£32 (matrix);
float32x4 t rowl vldlg f32 (matrix + 4);
float32x4 t row2 vldlg f32 (matrix + 8);
float32x4 t row3 = vldlg £32 (matrix + 12);

float32x4x2 t row01l
float32x4x2 t row23

vtrng f£32 (row0O, rowl);
vtrng f32(row2, row3);

vstlg f32 (matrix,

vcombine f£32(vget low f32 (row0l.val[0]), vget low £f32(row23.val[0])));
vstlg f32 (matrix + 4,

vcombine f£32(vget low f32(row0Ol.val[l]), vget low f32(row23.val[l])));
vstlg f32 (matrix + 8,

vcombine f£32(vget high £32(row0Ol.val[0]), vget high £32(row23.val[0])));
vstlg f32 (matrix + 12,

vcombine f£32(vget high £32(rowOl.val[l]), vget high £f32(row23.val[l])));

10.2 Direct migration to Helium

The Neon implementation uses the following intrinsics which do not have Helium equivalents:
e vtrng f£32:vectortranspose

e vcombine f32:jointwo halfvectorsinto asingle full vector

e vget low f32andvget high f£32:half-vector extraction
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All these instructions can be emulated with the helpofthe  builtin shufflevector function
introduced in 16-bit fixed-point cross-correlation, as seen in the following code:

static inline float32x4x2 t vtrng emu f32(float32x4 t a, float32x4 t b)

{
float32x4x2 t elsicg

dst.val[0] __builtin shufflevector(a, b, 0, 4, 2, 6);
dst.val[l] = builtin shufflevector(a, b, 1, 5, 3, 7);
return dst;

}
static inline float32x4 t vcombine emu £32(float32x4 t a, float32x4 t b)

{

return builtin shufflevector(a, b, 0, 1, 4, 5);

}

static inline float32x4 t vget low emu f32(float32x4 t a)

{
return builtin shufflevector(a, a, 0, 1, DONT CARE, DONT CARE);

}

static inline float32x4 t vget high emu f32(float32x4 t a)

{
return builtin shufflevector(a, a, 2, 3, DONT CARE, DONT CARE);

}

However, emulating these instructionswith  builtin shufflevector comeswithacostto
performance.

The same emulation strategy can also be used for other Neon data rearranging intrinsics. For
example, the following code shows how you can emulate the vzip and vuzp intrinsics:

static inline float32x4x2 t vzipg emu f32(float32x4 t x, float32x4 t y)
{

float32x4x2 t elsicg

dst.val[0] = builtin shufflevector(x, y, 0, 4, 1, 5);

dst.val[l] = builtin shufflevector(x, y, 2, 6, 3, 7);

return dst;

}

static inline float32x4x2 t vuzpg emu f32(float32x4 t x, float32x4 t y)

{
float32x4x2 t elsicg
dst.val[0] = builtin shufflevector(x, y, 0, 2, 4, 6);
dst.val[l] = builtin shufflevector(x, y, 1, 3, 5, 7);
return dst;

10.3 Optimized migration to Helium

As we explained in 16-bit fixed-point cross-correlation, using emulation to simply replace Neon
intrinsics is not the recommended approach. The resulting Helium code would miss important
optimization features and perform poorly. However, direct migration allows us to quickly get Neon
code running on a Helium processor as an initial prototyping stage.

When migrating Neon data rearranging intrinsics, VREV is the only intra-vector rearrangement
instruction which is available on both Neon and Helium. All other operations requiring intricated
vector element shuffling on Helium should be implemented using scatter-gather operations or
interleaved-deinterleaved loads and stores to rearrange data from memory.
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The following code shows the final version of the optimized Helium code:

o
}r This approach, which uses interleaved loads to rearrange the matrix data, could also have been used
for the original Neon implementation.

Note
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11 Integer 8-bit 4x4 matrix
transposition

Themat transpose inp 4x4 neon_u8functionuses intrinsics to transpose a 4x4 matrix
containing 8-bit integer data.

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/matri
X.C

11.1 Neon implementation

The Neon implementation uses the vtb12 u8 vector table lookup intrinsic to perform matrix
transposition. For more background information about the corresponding VTBL instruction, see
Coding for Neon - Part 5: Rearranging Vectors.

The following code shows an implementation of a 4x4 8-bit integer matrix transposition function
using Neon intrinsics:

static const uint8 t mat 4x4 transp idx u8[1l6] = {
0, 4, 8, 12,

s 9, 13,

, 10, 14,

, 11, 15,

4

w N
~J oy U1

7
14
}i

void mat transpose inp 4x4 neon u8 (uint8 t * matrix)

{

uint8xl6 t mat = vldlg u8 (matrix);

uint8x16 t offset = vldlg u8 (mat 4x4 transp idx u8);
uint8x8 t bot, top;

uint8x8x2 t tmp;

tmp.val[0] = vget low u8(mat);

tmp.val[l] = vget high u8 (mat);

bot vtbl2 u8 (tmp, vget low u8 (offset

));
top vtbl2 u8 (tmp, vget high u8(offset));

vstlg u8(matrix, vcombine u8 (bot, top)):;

11.2 Optimized migration to Helium
The Neon implementation uses the following intrinsics which do not have Helium equivalents:
e wvtbl2 u8:vector tablelookup
e vget low f32andvget high £32:half-vector extraction
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Unlike the Floating-point 4x4 matrix transposition example, we cannot use the

_ builtin shufflevector functiontoemulate vtb12 u8.Thisisbecause the table indexis
dynamic. Therefore, a direct migration to Helium is not possible, and we will move straight to an
optimized solution.

__builtin shufflevector could be used. However, we will show a solution that can be used

ko In this specific transposition example, the permutation indexes are fixed. This means that
Note for the general case.

Helium provides scatter-gather support which we can use to rearrange the vector during the load and
store process. In the Neon implementation, data is loaded linearly from memory then rearranged
within the vector itself.

Thevldrbg gather offset u8intrinsicletsus specify a base address and vector index as input.
The intrinsic then gathers elements using the address calculationbase + index[].

The following code shows the final version of the optimized Helium code:
void mat transpose inp 4x4 helium u8 (uint8 t * matrix)
{

uint8x16 t mat;

uint8xl6 t offset = vldlg u8(mat 4x4 transp idx u8);

mat = vldrbg gather offset u8 (matrix, offset);
vstlg u8 (matrix, mat);

}

The Helium scatter-gather intrinsics support all data types, and data narrowing and widening. This
range of abilities make these intrinsics powerful for manipulating a wide variety of data.

The vector index range is constrained to the vector element range. That is, for an 8-bit gather load,
the index must also be 8-bit with a value between O and 255. If you need to transpose larger matrices,
the gather-load-with-widening intrinsics let you increase the index range. For example, the

vldrbg gather offset ulé6 intrinsicusesavector of 16-bitindex. This approachis needed to
transpose a matrix with a size greater than 256 elements.
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12 RGB to grayscale conversion

The rgb to gray neonfunctionuses intrinsics to convert RGB color pixel data to grayscale
values. RGB pixel data is transferred from memory using a de-interleaving load, then the individual
red, green, and blue components are combined using different weights to obtain a grayscale value.

The source code for this example is available at the following location:

https://github.com/ARM-
software/EndpointAl/blob/master/Kernels/Migrating_to_Helium_from_Neon_Companion_SW/rgb.c

12.1 Neon implementation

The Neon implementation uses the v1d3_ u8 3-element de-interleaving load to retrieve the red,
green, and blue component data from memory. For more background information about using Neon
intrinsics to load RGB data, see Optimizing C Code with Neon Intrinsics: RGB deinterleaving.

The following code shows an implementation of an RGB to grayscale conversion function using Neon
intrinsics:

void rgb to gray neon(const uint8 t * rgb, uint8 t * gray, int num pixels)

{

uint8x8 t w r = vdup n u8(77);
uint8x8 t w g = vdup_n u8(150) ;
uint8x8 t w b = vdup n u8(29);
uintl6x8 t temp;

uint8x8 t result;

num pixels /= 8;

for (int 1 = 0; i1 < num pixels; ++i, rgb += 8 * 3, gray += 8) {
uint8x8x3 t src = v1d3 u8(rgb);

temp = vmull u8(src.val[0], w r);
vmlal u8 (temp, src.val[l], 5

temp w_g)
vmlal u8 (temp, src.val[2], w Db);

temp

result = vshrn n ulé6(temp, 8);

vstl u8(gray, result);
}
}

The function uses the following Neon intrinsics:

e v1d3 u8:three-element de-interleaving load to extract individual red, green, and blue
components from pixel data

e wvmull u8andvmlal u8:multiply each component by adifferent weight to obtain a 16-bit
grayscale value

e vshrn n ulé:shift the most significant bits of 16-bit grayscale value to get an 8-bit value
e wvstl u8:contiguous store of the 8-bit grayscale pixel values
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12.2 Optimized migration to Helium

Helium does not support the v1d3 u8 interleaved three-element load intrinsic. However, Helium
provides scatter-gather support which we can use to emulate the three-element load operation.

The following macros emulate the Neon v1d3 and v1d3gintrinsics by executing three successive
gather loads. Each of the gather loads use incrementing base addresses together with multiple-of-3
indexes. The code for the macros is as follows:

static inline intl6x8x3 t v1d3 emu u8(const uint8 t * base)

{
intl6x8x3 t dst;
intl6x8 t index;

index = vidupg n ulé6 (0, 1);
index = vmulg n ul6 (index, 3);

dst.val[0] = vldrbg gather offset ul6 (base, index);
dst.val[l] = vldrbg gather offset ul6(base + 1, index);
dst.val[2] = vldrbg gather offset ul6(base + 2, index);

return dst;

}

static inline int8x16x3 t v1d3g emu u8(const uint8 t * base)
{

int8x16x3 t dst;

intlé6x8 t index;

index = vidupg n ul6(0, 1);
index = vmulg n ul6 (index, 3);

dst.val[0] = vldrbg gather offset u8 (base, index):;
dst.val[l] = vldrbg gather offset u8(base + 1, index);
dst.val[2] = vldrbg gather offset u8(base + 2, index);

return dst;

}

typedef struct {
intl6x8 t val([3];
} intl6x8x3 t;

typedef struct {
int8x16 t val([3];
} int8x16x3 t;

The following code shows the final version of the optimized Helium code, which uses the macros
described in the preceding code:

void rgb to gray helium(const uint8 t * rgb, uint8 t * gray, int num pixels)

{

uintl6 t w r = (77);
uintlé t w g = (150);
uintl6 t w b = (29);
uintl6x8 t temp;
uintl6x8 t result;

num pixels /= 8;
for (int 1 = 0; i1 < num pixels; ++i, rgb += 8 * 3, gray += 8) {
intl6x8x3 t src = v1d3 emu u8(rgb); /* widened */

temp = vmulg n ulé6(src.val[0], w r);
temp = vmlag n ulé6(temp, src.val[l], w g);
temp = vmlagq n ulé6 (temp, src.val[2], w b);
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result = vshrg n ulé6(temp, 8);
vstrbg ul6 (gray, result); /* narrowed store */

}

Thevidupg n ul6 (0, 1) andvmulg n_ ulé operations generate a sequence of index values
pointing to multiples of three. First, vidupg n ul6 (0, 1) generatesavector containingan

incrementing sequence from O to 7. This sequence is then multiplied by 3 to generate an index
sequence containing: {0, 3, 6, 9,12, 15, 18,21}

Subsequent gather loads use three different bases addresses and the same multiple-of-three index
sequence we just generated to perform the de-interleaved load.

Using the emulated v1d3 emu u8 function widens the vector elements so that no further long
multiplication is needed. The multiplication operation can therefore use the Helium vmulg n ulé
andvmlag n ulé6intrinsics.

Neon uses the vshrn n_ulé intrinsic to shift and narrow the final result fromuint16x8 tto
uint8x8 t.Heliumalso supports this shift and narrowing operation with the vshrg n ulé
intrinsic.

Note

Helium does not provide a half-vector type, so the intrinsics provide additional modifiers to specify
top or bottom destination locations, for example vshrnbg n sl6and vshrntg n slé.

Helium provides a narrowed store operation, so the simple shift is sufficient with no widening
required. The vstrbg_ ulé intrinsic stores the lower parts of the 16-bit vector elements into a
contiguous byte stream.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 700f 79



Helium Programmer's Guide: Migrating to Helium 102 107_?100_?(%
from Neon ssue L.

13 AECin WebRTC

This section of the guide examines the implementation of the core AEC algorithm in WebRTC.

Web Real-Time Communication (WebRTC) is an open-source project that enables Real-Time
Communications (RTC) capabilities in web browsers and mobile applications. WebRTC provides an
extensive suite of API functions that developers can use to implement real-time multimedia
applications like video chat in web browsers.

One of the features that WebRTC provides is Acoustic Echo Cancelation (AEC). Annoying echoes can
occur when sounds that are played through speakers are captured by the microphone. AEC analyzes
both input and output audio signals and removes these echoes in real-time.

Looking at the core AEC algorithm as a whole, the majority of the functions can be migrated from
Neon to Helium using the techniques described in this guide. However, the
ScaleErrorSignalNEON partial function appears to be more difficult to migrate. This is
because it uses both vector division and square root operations. Helium does not provide instructions
for either of these operations.

The source code for this example is available at the following location:

https://chromium.googlesource.com/external/webrtc/+/ee0c100d5495cd8c440b767a7852532afb
bcefb2/webrtc/modules/audio_processing/aec/aec_core_neon.c

13.1 Neon implementation

The following code shows the implementation of ScaleErrorSignalNEON partial which

forms part of the WebRTC core AEC algorithm:
void ScaleErrorSignalNEON partial ( float * aecxPow, float ef[2] [PART LEN1])
{
const float mu = 1.0f;
const float error threshold = le-5f;
const float32x4 t kle 10f = vdupg n f32(le-10f);
const float32x4 t kMu = vmovg n £32 (mu);
const float32x4 t kThresh = vmovqg n f32(error threshold);
int 1i;
// vectorized code (four at once)
for (i = 0; i + 3 < PART LEN1; i += 4) {
const float32x4 t xPow = vldlg f32 (&aecxPow[i]);
const float32x4 t ef re base = vldlg £f32(&ef[0][i]);
const float32x4 t ef im base = vldlqg £32(&ef[1][i]);
const float32x4 t xPowPlus = vaddqg f32(xPow, kle 10f);
float32x4 t ef re = vdivg f32(ef re base, xPowPlus);
float32x4 t ef im = vdivg f32(ef im base, xPowPlus);
const float32x4 t ef re2 = vmulg f32(ef re, ef re);
const float32x4 t ef sum2 = vmlag f32(ef re2, ef im, ef im);
const float32x4 t abskEf = vsqrtq f32(ef sum2);
const uint32x4 t bigger = vcgtqg £32 (abskEf, kThresh);
const float32x4 t absEfPlus = vaddg f32 (abskEf, kle 10f);
const float32x4 t absEfInv = vdivqg f32 (kThresh, absEfPlus);
uint32x4 t ef re if = vreinterpretq u32 £32(vmulg f32(ef re, absEfInv));
uint32x4 t ef im if = vreinterpretq u32 f32(vmulg f32(ef im, absEfInv));
uint32x4 t ef re u32 = vandg u32(vmvng u32 (bigger),
vreinterpretq u32 f32(ef re));
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uint32x4 t ef im u32 = vandg u32(vmvng u32 (bigger),
vreinterpretq u32 f£32(ef im));

ef re if vandg u32 (bigger, ef re if);

ef im if vandgq u32 (bigger, ef im if);

ef re u32 = vorrqg u32(ef re u32, ef re if);

ef im u32 = vorrq u32(ef im u32, ef im if);

ef re = vmulg f32(vreinterpretq £32 u32(ef re u32), kMu);

ef im = vmulg f32(vreinterpretq f32 u32(ef im u32), kMu);

vstlg £32(&ef[0][i], ef re);

vstlg f32(&ef[1][1], ef im);

13.2 Direct migration to Helium

The Neon ScaleErrorSignalNEON partial function uses the followingintrinsics which do not
have Helium equivalents:

e vdivqg f32:floating-point vector divide

e vsgrtqg f£32:floating-point vector square root

A basic migration method might be to create an emulation function for each of these intrinsics which
contains four separate calls to scalar division and square root instructions, one for each individual
element.

13.3 Optimized migration to Helium

The basic migration method described in the preceding section does not take advantage of
vectorization. A more efficient method is to implement vectorizing division and square root in Helium.
This section of the guide looks at how to do this in detail.

13.3.1 Vector division

The Newton-Raphson method provides a high-speed method for performing division by computing
the inverse of a floating-point number. We can extend this method to operate on vectors rather than
individual values.

The vinvg helium £32 function computes the reciprocal of elements of a single precision vector.
This function uses three iterations but can be adjusted depending on the precision that you require.
The initialization and step portions of the algorithm are wrapped in a macro to mimic the Neon
intrinsics vrecpeq £32 and vrecpsqg £32.Additional code is included to handle division by zero.

The following code shows the implementation of vinvg _helium £32 together with the two
macros vrecpeq f£32and vrecpsqg £32 that mimic Neon reciprocal initial estimation and step:

float32x4 t vinvg helium £32 (float32x4 t x)
{

float32x4 t recip;
float32x4 t ax = vabsq(x);
recip = vrecpq init £32 (ax); /* vrecpeq f32 equivalent */

recip = vrecpq step £32(recip, ax); /* vrecpsq f32 equivalent */
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recip = vrecpq step £32(recip, ax);
recip = vrecpq step f32(recip, ax);

/*
* restore sign + handle division by 0

*/

recip = vdupqg m(recip, INFINITY, vcmpeqq(x, 0.0f));
recip = vnegq x f32(recip, vcmpltg(x, 0.0f));
return recip;

}

static inline float32x4 t vrecpg init £32(float32x4 t ax)
{

any32x4 t xinv;
int32x4 t m;
xinv.f = ax;

m = vsubg(vdupg n s32(0x3F800000), vandg s32(xinv.i, vdupg n s32(0x7F800000)));
xinv.i = vaddg s32(xinv.i, m);

xinv.f = vfmsq £f32(vdupg n £32(1.41176471f), vdupg n £32(0.47058824f), xinv.f);
xinv.i = vaddg s32(xinv.i, m);

return xinv.f;

}

static inline float32x4 t vrecpq step f32(float32x4 t x, float32x4 t ax)

{
float32x4 t b;
float32x4 t v2f = vdupg n £32(2.0f);

b = vfmsqg(v2f, x, ax);
x = vmulg £32(x, b);
return x;

}

The final result of the division operation is then calculated by multiplying the reciprocal with the

numerator, as follows:
static inline float32x4 t vdiv_helium f32( float32x4 t num, float32x4 t den)
{

return vmulq £32 (num, vinvg helium £32(den));

}

13.3.2 Vector square root

Like with vector division, we can use the Newton-Raphson method to compute the inverse square
root. This method is described in detail in Lomont, Chris - Fast Inverse Square Root (2003).

The following code shows the implementation of vinvsgrtg helium £32 together with the two
macros that mimic the vesgrteq £32 and vrecpsqg £32 Neon floating-point reciprocal square

root estimate and step intrinsics:

float32x4 t vinvsqrtqg helium f£32 (float32x4 t vecIn)

{
float32x4 t sqrt reciprocal;
float32x4 t vecHalf;

vecHalf = vmulg(vecIn, 0.5f);

/* vrsqrteq £32 equiv. */
sqrt reciprocal = vinvsqrtg helium init f£32(vecIn); /* vrsqgrteq £f32 equiv. */

/* vrsqgrtsqg £32 equiv. */
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sqrt reciprocal = vinvsqgrtqg helium step f32(sqrt reciprocal, vecHalf);
sqrt reciprocal = vinvsqgrtqg helium step f32(sqrt reciprocal, vecHalf);
sqrt reciprocal = vinvsqgrtqg helium step f32(sqrt reciprocal, vecHalf);

/%
* handle negative and 0 values
*/
sqrt reciprocal = vdupgq m(sqrt reciprocal, NAN, vcmpltqg(vecIn, 0.0f));
sqrt reciprocal = vdupg m(sgrt reciprocal, INFINITY, vcmpeqq(vecIn, 0.0f));
return sqrt reciprocal;

static inline float32x4 t vinvsqrtqg helium step £32(float32x4 t sqrt reciprocal,
float32x4 t vecHalf)
{

float32x4 t vecOneHandHalf = vdupg n f£32(1.5f);
float32x4 t tmp;
/*

* 1st iteration
* (1.5f-xhalf*x*x)

tmp = vmulqg(sgrt reciprocal, sqgrt reciprocal);

tmp = vfmsqg f32 (vecOneHandHalf, tmp, vecHalf);
/*

* x = x*(1.5f-xhalf*x*x);

*/

sqrt reciprocal = vmulqg(sqrt reciprocal, tmp):;
return sqrt reciprocal;

}

static inline float32x4 t vinvsqrtq helium init £32 (float32x4 t veclIn)
{

int32x4 t vecNewtonInit = vdupg n s32 (INVSQRT MAGIC F32);
float32x4 t sqrt reciprocal;
int32x4 t vecTmpInt;
/*
* cast input float vector to integer and right shift by 1
*/
vecTmpInt = vshrg n s32((int32x4 t) vecIn, 1);
/*
* INVSQRT MAGIC - ((vec _g32 t)vecIn >> 1)
*/
sqrt reciprocal = vreinterpretq £f32 s32(vsubg(vecNewtonInit, vecTmpInt));

return sqrt reciprocal;

}

The final square root result is calculated by multiplying the inverse square root of the input vector
with itself. Any zero values are cleared, to avoid getting an infinite result from calculating the inverse
square root of zero.

The following code shows the implementation of the vector square root function:

static inline float32x4 t vsqrtg helium f32( float32x4 t in)

{
float32x4 t elgics

dst = vinvsqrtg helium f32 neon like (in);

dst = vdupg m n f32(dst, 0.0f, vcmpegq n £32(in, 0.0f));
dst = vmulg f32(dst, in);

return dst;
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13.3.3 Full code for optimized Helium migration

Using the vector division and square root functions described previously, the code for the optimized
migration to Helium is as follows:

void ScaleErrorSignalHELIUM partial( float * aecxPow, float ef[2] [PART LEN1])
{
const float mu = 1.0f;
const float error threshold = le-5f;
const float32x4 t kle 10f = vdupg n £32(le-10f);
const float32x4 t kMu = vmovg n emu f£32 (mu);
const float32x4 t kThresh = vmovg n emu f32 (error threshold);
int 1i;
// vectorized code (four at once)
for (1 = 0; 1 + 3 < PART LEN1; i += 4) {
const float32x4 t xPow = vldlg f32 (saecxPow[i])
const float32x4 t ef re base = vldlqg £32(&ef[0][i]);
const float32x4 t ef im base = vldlg f32(&ef[1][i]);
const float32x4 t xPowPlus = vaddq f32(xPow, kle 10f);
float32x4 t ef re = vdiv_helium f32(ef re base, xPowPlus);
float32x4 t ef im = vdiv _helium £32(ef im base, xPowPlus);
const float32x4 t ef re2 = vmulg f32(ef re, ef re);
const float32x4 t ef sum2 = vfmaq f32(ef re2, ef im, ef im);
const float32x4 t abskEf = vsqrtg helium f32(ef sum2);
mve predl6 t bigger pred = vcmpgtq £32 (abskEf, kThresh);
const uint32x4 t bigger mask = vpselq u32(vdupqg n u32 (Oxffffffff), vdupg n u32(0),
bigger pred);
const float32x4 t absEfPlus = vaddg f32 (abskEf, kle 10f);
const float32x4 t absEfInv = vdiv helium £32 (kThresh, absEfPlus);
uint32x4 t ef re if = vreinterpretq u32 f32(vmulg f32(ef re, absEfInv));
uint32x4 t ef im if = vreinterpretq u32 £32(vmulg £f32(ef im, absEfInv));
uint32x4 t ef re u32 = vandqg u32(vmvng u32 (bigger mask),
vreinterpretq u32 f£32(ef re));
uint32x4 t ef im u32 = vandqg u32(vmvng u32 (bigger mask),
vreinterpretqg u32 £32(ef im));
ef re if = vandq u32 (bigger mask, ef re if);
ef im if = vandg u32(bigger mask, ef im if);
ef re u32 = vorrq u32(ef re u32, ef re if);
ef im u32 = vorrqg u32(ef im u32, ef im if);
ef re = vmulg f32(vreinterpretq f£f32 u32(ef re u32), kMu);
ef im = vmulg f32 (vreinterpretq f32 u32(ef im u32), kMu);
vstlg £32(&ef[0][1], ef re);
vstlg f32(&ef[1l][i], ef im);
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from Neon
The following image shows the major differences between the Neon implementation and the
optimized Helium implementation:

Neon Helium
1 poid ScalefrrorSignalWEON partial( float * aecxFow, float ef[2] [FART_LEN1]) - 41 void ScaleError3ignalHELIUM partial( float * aecxPow, float ef[2] [PART_LEN1])
2 {
3 : 3 const float mu = 1.0f;
4 reshold = le-5f; 4 const float erzor_threshold = le-5f;
S const floatdlxd_t . kls »_10f = vdupq _n_£32(le-10f); 5 const floati2xd_t kle_]l’)ﬁ = vdupq n_£32(le-10f);
€ const float32xd t KMy = van £32 (mu) ; - - const §1“h32!17t kMu = vmovqg_n_ema £32 (mu) 7
7 const float32w4_t kThresh = wvmovg n_£32 (srror_threshold); 7 const float32x4_t kThresh = vmovq n_emu €32 (srror_threshold);
8 i 8 int i;
L] f7 vec
10 4 10 for (i
11 311E22 (GaecxPow([i]); 1 conat ElDAtM:ﬁ t xPow 1q_£32 ELAscxin[A])
i vl i B o e ey,
13 const float3lxd_t e! im_} _base = = wldlg £32(sef[1][i]); 13 const [laav.:izxi t ef_: _im | " bass = = wldlq_f: 32(‘!([1][ 1);
14 const floatld2xd_t xPowPlua = vaddq _£32 (xPow, kle 10f); 14 conat £loati2xd_t _t xpowPlus = vaddg £32(xPow, kle 10f);
15 £loat32x4_t ef re = vdivg £32(ef_re base, xPowPlus); - - £loat32x4_t ef _re = vdiv, ha.l,i.ul £32:=£ re_base, xBowBlus);
16 floatdzx4 t ef im = vd: vg_fiz[el_m__hnse, :F:wlllual; 16 floatd2xd t ef im = vd: £32(, ase, xPouplus) ;
18 wml. - 18 Lt im. ef_im);
19 13 const float32x4_t abaEf = vaq:!q_mu- 532"( Junzl
20 20 mve_predl€ t bigger pred = v:-pg:itﬂz(m EE, Erhresh)
21 21 const uint32xd_t bigger_mask = vpsslq ud2(vdupq n_u3Z (muzuzzn vdupg n_u32(0), bigger_pz
22 i + 22 const Eloat3Zxd_t absEEFL addq_£32 (absEf, kie 10£);
23 terpretq_u32_£32 (vmulq_f32(ef_re, absEfInv)); 2 const float32xd_t absEfIn v helilm_£32 (kThresh, absEfPlus)
24 uint32x4_t ef im if = vreinterpretq u32_f32 (vmulg £32(ef_im, absEfInv}); 24 erpretq_ud2_£32 (vmulqg_£32(ef_re, absEfInv}};
25 uine32xd_t of re u32 = wandg u32 (vmvng u32(bigger), - 25 erpretq u32_£32 (vmulg £32(ef_im, abaffInv}):
26 vreinterpretq ul2 £32(ef re)); LD 132 (vmvnq_u32 (bigger WASK) ,
27 32 (bi - 27 vreinterpretq u32 £32(ef _re)):
28 £ im}); *®28 BintiZxd_t ef im ud2 = vandq ul2 (vmvng udZ (biggerlmAsk),
29 - 29 wreinterpretq u32_£32(ef im));

#30 of re if = vandq udZ(bigger mask, of re if);

czpretq £32_u3Z(ef_ze ul2), KMul; ef im u32 = worrq u3z(
e erpraty_£32_u32(ef_im_u32), kMu); 34 af_re = vmulg £32 (vead
vatlq £32 (se£10] [i, i 35 ef_im = vmulg £32(vrei
36 wstlq £32(4ef[1][i], ef_im); 36 wstlg_£32(5e£[0] [i], e
37 ) 37 vatlg £32(ef[1][i],
8 ]

, ef im if
ary_£32 h:\zu( re_udld), kMu);
etq_£32_u32(ef_im_u32), kMu);

The following GNU diff output shows the same differences in text form:

=== NEOM € Thu Nov 19 15:25:27 2020

+++ helium optimized.c Thu Nov 19 15:25:06 2020

@@ -1,10 +1,10 @@

-void ScaleErrorSignalNEON partial( float * aecxPow, float ef[2] [PART LEN1])

+void ScaleErrorSignalHELIUM partial( float * aecxPow, float ef[2] [PART LEN1])

{
const float mu = 1.0f;
const float error threshold = le-5f;
const float32x4 t kle 10f = vdupg n f32(le-10f);

- const float32x4 t kMu = vmovg n f32 (mu);

- const float32x4 t kThresh = vmovqg n f32(error threshold);

+ const float32x4 t kMu = vmovg n emu f32 (mu);

+ const float32x4 t kThresh = vmovg n emu f32 (error threshold);

int i;
// vectorized code (four at once)
for (i = 0; 1 + 3 < PART LEN1; i += 4) {

@@ -12,22 +12,23 @@
const float32x4 t ef re base = vldlg f32(&ef[0][i]);
const float32x4 t ef im base = vldlqg f32(&ef[1][i]);
const float32x4 t xPowPlus = vaddg f32(xPow, kle 10f);

= float32x4 t ef re = vdivqg f32(ef re base, xPowPlus);

- float32x4 t ef im = vdivg f32(ef im base, xPowPlus);

+ float32x4 t ef re = vdiv _helium f£32 (ef re base, xPowPlus);

+ float32x4 t ef im = vdlv_hellum_f32(ef_lm_base, xPowPlus) ;
const float32x4 t ef re2 = vmulg f32(ef re, ef re);

= const float32x4 t ef sum2 = vmlaq £f32(ef re2, ef im, ef im);

const float32x4 t absEf = vsqgrtg f32(ef sum2);

const uint32x4 t bigger = vcgtg f32 (abskEf, kThresh);

const float32x4 t ef sum2 = vfmaq f32(ef re2, ef im, ef im);

const float32x4 t absEf = vsqrtqg helium f32 (ef sum2);

mve predl6 t bigger pred = vcmpgtqg f32 (abskEf, kThresh);

const uint32x4 t bigger mask = vpselq u32(vdupg n u32 (0xffffffff), vdupg n u32(0),

bigger pred);
const float32x4 t absEfPlus = vaddq f32 (abskEf, kle 10f);

- const float32x4 t absEfInv = vdivg f32 (kThresh, absEfPlus);

+ const float32x4 t absEfInv = vdiv helium f32 (kThresh, absEfPlus);
uint32x4 t ef re if = vreinterpretq u32 £32(vmulqg f32(ef re, absEfInv)
uint32x4 t ef im if = vreinterpretq u32 f£32(vmulg f32(ef im, absEfInv)

- uint32x4 t ef re u32 = vandqg u32(vmvng u32(bigger),

4 uint32x4 t ef re u32 = vandg u32(vmvng u32 (bigger mask),
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14 Related information

Here are some resources related to the material in this guide:
e Arm C Language Extensions Documentation: M-profile Vector Extension (MVE) intrinsics

e Arm Community provides a forum where you can ask questions, and find articles and blogs on
specific topics from Arm experts.

e (Clang Language Extensions.

e Git repository of companion code examples for this guide
e Helium intrinsics reference

e Helium Programmer’s Guide

e Neonintrinsics reference

e Neon Programmer's Guide for Armv8-A

e Xiph.Org Foundation
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15 Next steps

This guide has provided examples of how to migrate code from Neon to Helium using intrinsics.
The next stepis for you to migrate your own Neon code to Helium.

Arm provides extensive reference material for both Neon and Helium intrinsics, which will help you
during the migration process:

e Heliumintrinsics reference

e Neon intrinsics reference

For further examples of how Neon intrinsics can be used in real-life scenarios, please see the Neon
intrinsics Chromium case study.
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