Maxim Zeus: Cortex-M3 Lab ARMKEIL

ARM Keil MDK 5 Tutorial Summer 2014 Microcontroller Tools
AN265 For the Maxim Eval Board Version 1.0 Robert Boys bob.boys@arm.com

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_265.asp

Introduction:

The purpose of this lab is to introduce you to the Maxim Zeus Cortex™-M3 processor family using the ARM" Keil®
MDK™ 5 toolkit featuring the IDE pVision®. This tutorial will use a Keil ULINK"®2 debug adapter.

Keil provides a free 32K toolchain called MDK Lite. This document uses MDK 5.11. MDK includes a full version of Keil
RTX™ RTOS. RTX source code is included with all versions of MDK.

ARM Compiler Qualification Kit: For safety certification applications: www.keil.com/pr/article/1262.htm

Why Use Keil MDK ?
MDK provides these features particularly suited for Cortex-M processor users:

1. pVision IDE with Integrated Debugger, Flash programmer and the { f
ARM Compiler/Assembler and Linker toolchain. MDK is a turn- d 8§ g
key product with included examples and is easy to get running.

2. RTOS: A full feature RTOS called RTX is included with MDK and
includes source code. It has a BSD type license.

3. An RTX Kernel Awareness window is updated in real-time. This
displays Kernel and thread status information and more.

4. DSP: Keil provides free DSP libraries with source code. They are
CMSIS-DSP compliant.

5. Choice of adapters: ULINK™2, ULINK-ME, ULINKpro or Segger
J-Link and J-Link Lite.

6. All Zeus CoreSight™ debugger features are supported in the pVision
debugger.

7. Keil Technical Support is included for one year and is easily
renewable. This helps you get your project completed faster and more reliably.

8. Keil supports many Maxim 8051 processors. See www.keil.com/dd.

9. MDK is compatible with FreeRTOS and all other RTOSs.

10. MDK is completely CMSIS compliant. See www.arm.com/cmsis for information about this ARM standard.
This document details these features:

1. Real-time Read update for Watch, Memory and RTX Tasks windows. Memory and SVD windows also have Write
access while the program is running. These reads and writes are nearly always non-intrusive to your program. No
CPU cycles are stolen. No instrumentation code is added.

Four Hardware Breakpoints (can be set/unset on-the-fly) and two Watchpoints (also called Access Breaks).

System and Thread Viewer: a kernel awareness program for RTX RTOS that updates while the program is running.
MDK 5 Software Packs which offer easy selection of software components.

wok v

Creating MDK 5 projects from scratch including one using RTX.

Other Maxim processors supported:

MDK supports or can support other Maxim ARM processors. Contact Keil sales or tech support for more information.
Keil Sales In USA: sales.us@keil.com or 1-800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20
Keil Technical Support in USA: support.us@keil.com or 1-800-348-8051. Outside the US: support.intl@keil.com.

1 Copyright © 2014 ARM Ltd. Al rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

Index:

Part A: Obtaining and Installing MDK and the Examples:

1. Keil Software Download and Installation:: 3
2. Complimentary uVision License: 3
3. Example Programs: 3
4. Getting Started MDK 5 book: 3
5. uVision Software Packs Download and Install Process: 4
6. Testing the ULINK2 Connection to the Maxim board: 5
Part B: Project Examples:
7. Hello Example Program: 6
8. Hardware Breakpoints: 6
9. Call Stack + Locals Window 7
10. Watch and Memory Windows: 8
11. How to View Local Variables in Watch or Memory Windows: 9
12. Access Breakpoints (Watchpoints): Conditional Breakpoints 10
13. RTX Blinky example program with Keil RTX RTOS: 11
14. RTX Kernel Awareness: 12
15. Call Stack for RTX Blinky: 13
16. Creating your own MDK 5 project from scratch: 14
17. Creating your own MDK 5 RTX project from scratch: 17
Appendix:
18. Document Resources: 18
19. Keil Products and contact information: 19
2 Copyright © 2014 ARM Ltd. Al rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

Part A: Obtaining and Installing MDK and the Examples:

1) Keil Software Download and Installation:

Download MDK 5.11 or later from the Keil website. www.keil.com/mdk5/install

Install MDK into the default directory. You can install into any directory, but this lab uses the default C:\Keil v5

We recommend you use the default examples directories for this tutorial. We will use C:\MDK\ for the examples.
If you install MDK into a different directory, you will have to adjust for the directory differences.
You need an external debug adapter such as the Keil ULINK?2 or a ULINKpro. A Segger J-Link will also work.

A

MDK 5 vs MDK 4: MDK 5 does not include processor support files such as headers, peripheral, Flash programming and
example files. These are downloaded and installed for each processor family using Software Packs. This provides many
advantages.

If you need to run MDK 4 projects, download and install the Legacy Support: www?2.keil.com/mdk5/legacy.
With Legacy Support installed, MDK 5 will run both MDK 4 and MDK 5 programs.

2) The ULINK2 Debug Adapter:

The ULINK?2 adapter is used exclusively in this lab. You must install the provided 10 pin Coresight cable in the ULINK as
shown on the first page. You can use a ULINKpro. Page 5 contains a test for a debug adapter.

The Signum ADM-51 will not work with a Cortex-M processor, only with 8051 devices.

3) Example Programs:

The example programs are provided in the MDK 5.11 Software Packs. The next page describes where to install these
examples.

4) Getting Started MDK 5: Obtain this useful book here: www.keil.com/mdk5/.

More Information and Keil Contacts:

ARM Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

3 Copyright © 2014 ARM Ltd. All rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

5) pVision Software Packs Download and Install Process:

The entire project and required files are contained in a Software Pack. A Pack is normally distributed on a website and
accessed with the Pack Installer utility in pVision. A .pack file can also be imported manually into pVision.. A Pack is a zip
file renamed with a .pack file extension. This enables pVision to recognize it. If you double-click on a pack file, pVision
will install it. You can also select File/Import from the Pack Installer main menu.

1) Start pVision, open Pack Installer:

1. Install MDK 5.11 or later. www.keil.com/mdk You do not need a license for this tutorial.

2. For this tutorial, you need to be connected to the internet (it will display ONLINE in the bottom right corner in the
Pack Installer utility in pVision. See the first screen below).

L,
3. Start uVision by clicking on its desktop icon. mzw

4. The Pack Installer window shown below will open: If not, open it with its icon: i
5. Ifthe Pack Installer Welcome window opens, please read it and close it.
2) Download the Maxim Zeus Software Pack: Note: you can also locally import a .pack file. Select File/Import.
1. In the Devices tab, select Maxim/Zeus or in the Boards tab select DB-MAX71637. This filters the Packs tab.
2. In the Packs tab, select Install for Keil::Zeus DFP. This pack will be downloaded and installed from the web.

3. A successful install is T =y |
indicated by the Up to Fle Pids Winee Vit
date ICOIII [4] . racks | Emmptes 4 Devices | Boards 3]

@ Manr

l |
N Pack Action Description Z =X
Up to date I = & Upto date | CMSES (C. Ber Software Intedace Standard) Deosios p—
ik are are for ARM Cortex-M based devic >
|
-

TIP: You can refresh the Packs el P S

-~ weMSELCyassL e Install | Light weight SSLTL e a maen J
list from the web with "= or [_ = EEMLIGIRAN
local files with File/Refresh. Reaty ' : = L.

3) Copy the Hello and CMSIS RTOS Examples:

1. Select the Examples tab. There are two examples provided in this Software Pack as shown here:

2. Select CMSIS-RTOS Copy |4 Copv | as shown: fi Pack Installer
File Packs Window Hel
The Copy Example window opens up: Unselect Launch | Device: Maxim ,Mmim
pVision. Select Use Pack Folder Structure as shown: (4] Face 7 Bnpies I
4. Type in C:\MDK for the Destination Folder. ; S:mw compe om e e °": —
ample ction escription
Click OK to copy the RTX Blinky project to CMSIS-RTOS Blinky (DB-MAX71637) | € Copy || CMSIS-RTOS based Blinky example =
C:\MDK\Boards\Maxim\DB-MAX71637. | Hello (CB-MAXTIEET) @ Copy | | Hiello Werld examle i
6. Repeat for the Hello example. Ready
E
TIP: The default directory for copied examples the first time you T
install MDK is C:\Users\<user>\Documents. For simplicity, we will use | [=wox Browse...
the default directory of C:\MDK\ in this tutorial. You can use any ¥ Use Pack Falder Structure ™ Launch ifsion
directory you prefer. Pack Installer creates the rest of the directory tree —
after C:\MDK\ in this case.
7. Close the Packs Installer. You can open it any time by clicking on its icon. &

TIP: An Update icon means there is an updated Software Pack available for download.

TIP: If you look in the directory C:\Keil v5\ARM\Pack\Kei\ZEUS DFP\1.0.0\Boards\Maxim\DB-MAX71637, you will
find the RTX Blinky and Hello projects. This is the read-only version you downloaded used for backup purposes. Use only
the projects you copied over from the Examples tab to the directory you chose: in this tutorial we have used C:\MDK.

The next page has a few notes on Software Packs Maintenance:

4 Copyright © 2014 ARM Ltd. All rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

Software Packs Maintenance Notes:

1.
2.
3.

Software Packs can be downloaded and installed on your computer with the Install icon. 2 Install
You can delete a Pack by double-clicking on it. A Remove icon appears. Click on this. & Remove |

The Pack is now removed but the original .pack compressed file you downloaded is still present. You can reinstall
the Pack by clicking on this icon: [Unpack |

To completely remove it: right-click on the Pack name or Unpack icon and select Delete Pack. Delete Pack

If a Pack is current, the Up to date icon will display: * Up to date ||
If an updated Pack is available, the Update icon appears. You can download this update (or not).

Example files, if provided by a Pack, can be copied into a directory of your choice. ﬂﬂu

6) Testing the ULINK Connection:

10.

11.
12.

the Port: box select SW and then select JTAG

) . . _ o - . "
TIP: To refresh the JTAG Device Chain box: in Seral No: [Vi526CSE 7] . IDCG, . IRlen | Move
ULINK Version: IW 4BADD4T7 ARM CoreSight JTAG-DP 4 (]} |
Dl |

again. You can also exit then re-enter this _ Device Family: [Cortex-M T

window. The Maxim Cortex-M3 currently works Fimware Version: [V2.02 ' Automatic Detection peoe [
only with JTAG and not SW. But, this is a useful v swi Pot:[iTAG <] € Manual Corfiguration — Deviceflare [
and quick way to refresh the JTAG setting. | MaxClock: [1MHz =] petdl | Detete | [Upde | IRder T AR oo |

Start pVision s if it is not already running. Select Project/Open Project.
Connect a ULINK?2 to your Maxim board as shown on the first page of this tutorial.

Select the project C:\MDK\Boards\Maxim\DB-MAX71637\Hello\Hello.uvprojx. Any valid Maxim project will
work for this test.

Select “MAX71637 Flash” in the Select Target menu: pax71637 Flash =

Select Target Options EA or ALT-F7 and select the Debug tab: [X
Choose your debug adapter: here we have chosen the ULINK2: You | Linker Debua | Utiites |

can also choose ULINKpro or J-Link. = Use: [ULINK2/ME Corex Debugger ¥ Settings |

Click on Settings: and the window below opens up: If an ICODE
and Device name is displayed, ULINK?2 is working. Skip to Step 11 1
to continue with this tutorial. If not, see the next step.

Select the SWJ box. In the Port: box select ITAG.

If nothing or an error is displayed in this JTAG Device Chain box, this must be corrected before you can continue.
Usual problems are no power connected to the board or ULINK. If you see a proper display as shown, your
ULINK?2 is installed properly and pVision is connected to the CoreSight debug module in the Maxim processor.
ULINK?2 uses the USB HID interface. The ULINKpro use USB2.

A number in the SN: box means pVision is successfully connected to the ULINK?2 adapter and not necessarily to the
Cortex-M3 core.

Select VECTRESET in the Reset: box. If you get weird problems with your projects, check this setting.
Click on OK twice to return to the cortexch Targetorversete [x

MVISIOH matn menu. Debug |T|T-.|ce I Flash Download I

— ULINK USB - JTAG/SW Adapter — —JTAG Device Chain

Do

r Deb

ug
"Connect & Reset Options 7';3“ "Cache Options—‘ "Download Options

Connegt: | Normal Reset: |VECTRESET x|) [V Cache Code [V Verfy Code Download
¥ Reset after Connect ——/

[V Cache Memory ™ Download to Flash

ok | Cancel | Help
5 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

7) Hello Example Program:

We will connect a Keil MDK development system using the Maxim MAX71637 evaluation board. This project is pre-
configured to use a ULINK?2. You can configure uVision to use a ULINKpro or Segger J-Link.

1. Connect a ULINK2 to your Maxim board as shown on page one.

Start uVision by clicking on its desktop icon. 2
Select Project/Open Project. Open the project file: C:\MDK\Boards\Maxim\DB-MAX71637\Hello\Hello.uvprojx

o
4. Compile the source files by clicking on the Rebuild icon. ko . You can also use the Build icon beside it.
LOAD

Program the Flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.

Connect a USB cable to CN1 to your PC.

Configure a terminal program such as PuTTY to the appropriate virtual COM port and messages will be displayed.
Specifications are 115,200 baud, 8,1. Select Serial Port in the Windows Device Manager under Ports (COM).

8. Enter Debug mode by clicking on the Debug icon. @l Select OK if the Evaluation Mode box appears.
Note: pVision can be configured to program the Flash when entering Debug mode. You do not have to use Load.

9. Click on the RUN icon.] Note: you stop the program with the STOP icon. @

The program will run and Hello World is printed on the COM port.
Now you know how to compile a program, load it into the Maxim processor Flash, run it and stop it.

Note: The board will start Blinky stand-alone. Blinky is now permanently programmed in the Flash until reprogrammed.

8) Hardware Breakpoints:
With Blinky running, click in the left margin on a darker gray block inside the while(1) loop in Hello.c.
A red circle is created and soon the program will stop at this point.

The yellow arrow is where the program counter is pointing to in both the disassembly and source windows.

bl e

The cyan arrow is a mouse selected pointer and is associated with the yellow band in the disassembly window.
Click on a line in one window and this place will be indicated in the other window.

W

Note you can set and unset hardware breakpoints while the program is running with ARM CoreSight technology.

6. The MAX71600 series has 6 hardware breakpoints. A breakpoint does not execute the instruction it is set to. This
is a very important feature for effective debugging.

1 1q1 1 1 0x00000208 EO0OS B 0x00000216
7. If youset tog many t?re':apr}nts, pVision will notify e oo /e Deray 10
you. Sometimes pVision will use one of the 54:
. 0x0000020& 2064 MOWVS rd, $0x64
available breakpoints for one of its internal operation 0x0000020C FTFFFFCE BL.W Delay (0x000001A0)
: . . 55: printf ("Hello Worldinir"):
SUCh as SIHgle Stepplng or Run to main.. c}omoooozlo noos LDR rd, {pcl+4 ; @0X00000228
. 0x00000212 FOQOFE841 BL.W _Oprin:fsbare (0x00000298)
8. Remove any breakpoints you have set. You can 0200000216 ETF8 3 0%00000204
select Ctrl-B and select Kill All or click on the s oo e PR
breakpoint red ClI'Cle. LlijOOOOE iC oo0oc DCW 0x000C _,'LI
TIP: If you get multiple cyan arrows or have trouble Hello.c | [2] startup_ma7iGocs | L] Abstractbt | 2] Serale | - x
understanding the relationship between the C source and B o mmiciatise 0 2
assembly, try lowering the compiler optimization to Level 0 43 -
. . . 50 SysTick Config(SystemCoreClock / 100); [* BysTick 1
and rebuilding your project. 51 -
JS.' 52 while (1) { /* Loop fom
This level is set in Options for Target under the C/C++ = Delay(100) /* Delay 10
tab~ [l} 55 printf ("Hello Worldhnhz"):
56 }
TIP: For smaller programs, enable Use MicroLIB under the =
Target tab in Options for Target. If your program is allowed 59 -
to use MicroLIB, the compiler will not generate any errors. I »
6 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

9) Call Stack + Locals Window:
Local Variables:

The Call Stack and Local windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables belonging to the active function. If
possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed.

1. Open the Call Stack + Locals window by clicking on its tab.

2. Click on the RUN. Bl Then, stop the program. °

main and the Delay function will be displayed as shown here with any local variables and their values. The program
spends most of its time in the Delay function so it is likely to be running when you stop the program.

TIP: The contents of the local variables are displayed as well as names |[EIEEItEn

of active functions. Each function name will be displayed as it is called | name Location/Value Type
from the function before it or from an interrupt or exception. Exactly - @ Delay 0x000001AA void flunsigned inf) | 4|
. . . [. L dlyTick: 0x00000064 - i dint
which local variable that will be visible or not depends on precisely [dticks patal - tnlgnec
P W curTicks auto - unsigned int [
where you stop the program. .. & main 0x00000184 int il

When a function exits, it is removed from the list. £ Call Stack + Locals | E] Memory 1 |
The first called function is at the bottom of this table.

This table is active only when the program is stopped.

iyl
4. Click on the StepOut icon {3 (Ctrl-F11) to exit the Delay function to return to main().

Set a breakpoint in Serial.c in the SER PutChar function near line 61.

Click on the RUN icon. El The program will soon stop here and the window below opens.
Note the various functions that are now active and their local variable values.

Each time you click on RUN, these variables are updated as appropriate.

Call Stack - Locals

TIP: You can modify a variable value in the Call Stack & Locals Name tocation/Value i
window when the program is stopped. B R EE S ntflint)
et 0x00000048 param - int
000000120 int f{int,struct __FILE *)
000000043 param - int

0x20000000 & __stdout | param - struct __FILE *

0000001 B4 int)

-5-'3 Call stack + Locﬁ Memaory 1 |

Call Stack:
The list of called functions is displayed when the program is stopped. This is very useful for debugging when you need to
know which functions have been called and are stored on the stack.

9. Right click on a function name and try the Show Callee Code and Show Caller Code options as shown here:
The appropriate code will be shown in the source and/or disassembly windows.

10. Remove all breakpoints when you are done. You can click

on them individually or Ctrl-B and select Kill AllL Name | Locationavalue Type

[+ % SER_PutChar 000000160 int flint)
Lo param - int
int flint,struct __FILE)

Show Caller Code

param - int
Show Callee Code ut |param - struct __FILE *
. . v Oxﬂ.OOO W | Hexadecimal Display :
TIP: Use the Symbol window to locate and view components of your - [. pOSH) <
program including variables, structures and arrays. 1 Call Stack + Locals |] Memory 1
Select View/Symbol Window while in Debug mode.
7 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

10) Watch and Memory Windows and how to use them:

The Watch and Memory windows will display updated variable values in real-time. It does this using the ARM
CoreSight debugging technology that is a component of Cortex-M processors. It is also possible to “put” or insert values
into the Memory window in real-time. It is possible to “drag and drop” variable names into windows or enter them
manually. You can also right click on a variable and select Add varname to.. and select the appropriate window.

Watch window:

Add a global variable: Call Stack, Watch and Memory windows can’t see local variables unless stopped in their function.

Stop the processor 0 and exit Debug mode. @

1.
2. Declare a global variable is the usual manner (I called it counter) near line 20 in Hello.c:
unsigned int counter = 0; [el [) sermle | -:I
47 -
3. Add the statements near line 54 just Delay(100); o
. 50 SysTick Config(SystemCoreClock / 100);: /* SysTick 10
Counter++1 2; while (1) { * Loop forew
R 53 Delay (100) ; * Delay 1000
it (counter > OxF) counter = 0; = e Ay
4. Select File/Save All. EE) P e fomaimns]
.) l:i) LoAD KT S ;l_l
5. Click on Rebuild “* and program the Flash with Load % .
6. Enter Debug mode. @ Click on RUN IE”' You can configure a Watch window while the program is running.
You can also do this with a Memory window.
7. Select View and select Periodic Window Update if necessary: Y plesiadbe o ipsate
In Blinky.c, right click on counter and select Add counter to ... and select Watch 1. Watch 1 will automatically
open. counter will be displayed as shown here:
9. counter will update in real time. Name Value Type
¢ W counter 000000003 unsigned int
‘< Enter expressions
TIP: You can also block a variable name drag and drop it into s can vt + oot [Sviemon 1 |

Watch or Memory windows. You can also enter a variable

manually by double-clicking <Enter expression> or press F2 and use copy and paste or typing the variable name.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the appropriate window and release the variable.

Memory window:

1.
2.

N kW

Right click on counter and select Add counter to ... and select the Memory 1 window.

Note the value of counter is displaying its address in Memory 1 as if it is a pointer. This is useful to see what
address a pointer is pointing to: but this not what we want to see at this time.

Add an ampersand “&” in front of the variable name and press Enter. The physical address is (0x2000 _0008).

Right click in the memory window and select Unsigned/Int.
The data contents of counter is displayed as shown here: Address: [Ecourter D ii
Both the Watch and Memory windows are updated in real-time. ~|0x20000008 %?0000“2 06720000 00000000
0x20000018: 00000000 00000000 00000000
Right-click with the mouse cursor over the desired data field 0x20000028: 00000000 00000000 00000000 00000000
. 0x20000038: 00000000 00000000 00000000 00000000
and select Modify Memory. You can change a memory 0x20000048: 00000000 00000000 00000000 00000000 v
location or variable on-the-fly while the program is still 1 Call Stack - Locals | Watch 1 || Memory 1

running.

TIP: No CPU cycles are used to perform these operations. You can have more than one variable displayed.
Structures can also be displayed and expanded.

TIP: To view variables and their location use the Symbol window. Select View/Symbol Window while in Debug mode.

These Read and Write accesses are handled by the Serial Wire Debug (SWD) connection via the CoreSight Debug Access
Port (DAP), which provides on-the-fly memory accesses. The next page describes how this works.

8 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

11) How to view Local Variables in the Watch or Memory windows:

1. Keep the program running: Start the program if it is not running. =

2. There is a local (automatic) variable i declared near line 34 in Hello.c: uint32_t curTicks;;

3. Enter curTicks into Watch 1 window by right clicking on it and selecting Add curTicks to.... Watch 1.
4

Note it says <cannot evaluate> or “not in scope”.

Mame Value Type

¢ W counter
e
~-<Enter expression=>

unsigned int

5. Stop the program 0 and the value of curTicks will now
display. This is because it is now in scope.

uchar

6. uVision is unable to determine the value of curTicks when the
program is running because it exists only when the function T —
Delay is running. It disappears in other functions and handlers. =

Memaory 1

7. Stop the program. e Exit Debug mode. Q
How to view local variables updated in real-time:
All you need to do is to make curTicks static where it is declared in Hello.c !
1. In the declaration for curTicks, add the static keyword like this:
34 static uint32_t curTicks;

TIP: You can also make a variable global or have it as part of a structure so it will update in real-time.

2. Compile the source files by clicking on the Rebuild icon L . Select File/Save All or 'j .

LoAD

3. To program the Flash, click on the Load icon. ##* . Enter Debug mode. @1 Click on RUN. El
curTicks is still not updated in real-time. You must first show curTicks to uVision by stopping when it is in scope.

Watch 1 X

5. Stop the program. 0 The program will stop and a value for

- . . Name ‘ Value |Type
curTicks WIH now be dlSplayed. - @ counter 0x0000000A unsigned int
. ~ . - W curTicks unsigned int
6. Click on RUN and curTicks will now update. ---<Enter expression>
4| |+

21 Call Stack = Locals | Watch1 | B Memory1 |

TIP: You must fully qualify a variable in order for it to update without initially stopping the program while it is in scope.
To do this, you can open the View/Symbols window and copy the variable from there. This automatically fully qualifies the
variable. In this case, curTicks fully qualified is \\Blinky\Hello.c\Delay\curTicks. You also can enter this text line directly
into the Watch or Memory windows.

7. You can also enter a variable into a Memory window. Remember to prefix it with an &.

8. Stop the CPU ° for the next step. Select File/Save All.
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.

TIP: To program the Flash automatically when you enter Debug mode select Target Options EN , select the Utilities tab and

LOAD

select the “Update Target before Debugging” box. This means you can skip using the LOAD icon. i Programming the

Flash will be automatically done when you enter Debug mode. @ .

How It Works:

pVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive. While the CPU is fetching instructions at full speed, the CoreSight debug module can read or write
values without stealing any CPU cycles. This can be slightly intrusive in the unlikely event the CPU and pVision reads or
writes to the same memory location at exactly the same time. Then, the CPU will be stalled to allow this access to occur.

9 Copyright © 2014 ARM Ltd. All rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

12) Access Breakpoints: Conditional Breakpoints

The Maxim Cortex-M3 processor has two Watchpoints. Watchpoints can be thought of as conditional breakpoints.
Watchpoints are referred to as Access Breaks in Keil documents.

Use the same Blinky configuration as the previous page. Stop the program if necessary. %) Stay in debug mode.

1.
2. We will use the global variable counter you created in Blinky.c to explore Watchpoints.
3. Select Debug in the main pVision window and then select Breakpoints or press Ctrl-B.
4. Select Read in the Access box. (or write or both if you prefer)
5. In the Expression box enter: “counter == 0x5” without the quotes. This window will display:
TIP: An Access Breakpoint that does not use a data value (i.e. Posess
counter) is not intrusive. Bxprssion: [eourter == 0 WiRed 7 Vine
6. Click on Define or press Enter and the expression will be mm::: :G’ |S1lm_:|l l'; 2:‘;;

moved into the Current Breakpoints box as shown below:
7. Click on Close.
Enter the variable counter in Watch 1 if it is not already there.

9. Set counter to zero (so things are interesting) in the Watch window.

10. Click on RUN. Eu

11. When the program detects a read or write access of 0x5 to counter as you selected, the program will stop. See

Watch 1 shown here: _)

Watch 1

12. Click on RUN and the program will run to the next read and/or
write 0f 0x5 to counter. ;- @ eonntey
e W curTicks
13. Stop the CPU if it is running. @ - <Enter expression>
14. Select Debug/Breakpoints (or Ctrl-B) and delete the 4 | 3]
Watchpoint with Kill All and select Close. .&'jCaII Stack = Locals | Watch1 |] Memory 1

15. Exit Debug mode. @1

TIP: You cannot configure Access Breakpoints on-the-fly while the program is running like you can with hardware
breakpoints.

TIP: To edit an Access Breakpoint: double-click on it in the Breakpoints window and its information will be dropped down
into the configuration area. Make your modifications now. Clicking on Define will create another Watchpoint. You should
delete the old one by highlighting it and click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression allows you to temporarily unselect or disable an Access Breakpoint without

deleting it.
reakoomts | zl
Cument Breakpoints:
TIP: Raw addresses can be used with a Access Breakpoint. 00: (A readwrite 0x20000008 len=4). ‘counter — Ox5"
An example is: *((unsigned long *)0x20000004)

4] | o]

Access
Expression: I [Read [~ Wiite

FriE |1 j: Size:
. =l I.Iﬁ I~ Bytes
Command: I =l ™ Objects

Define | | Kill Selected Kil Al Cose | Hep |

10 Copyright © 2014 ARM Ltd. All rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

13) RTX_BIlinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included as part of the Keil MDK tool suite. No royalty payments are
required. RTX has a BSD type license. RTX with source code is provided with all MDK versions. See
www.arm.com/cmsis and C:\Keil v5\ARM\Pack\ARM\CMSIS\4.1.00\CMSIS_RTX. Click on index.html. This example
explores RTX. Keil will work with any RTOS. A RTOS is just a set of C functions that gets compiled with your project. A
real-time awareness viewer for RTX is provided inside pVision.

1. Start pVision by clicking on its icon if not already running. “*#* You must have installed the RTX Blinky5

example previously. Instructions are provided on the bottom of page 4.
2. Select Project/Open Project and open C:\MDK\Boards\Maxim\DB-MAX71637\RTX_Blinky \Blinky.uvprojx.

5
3. Compile the source files by clicking on the Rebuild icon. B . They will compile with no errors or warnings.
LoAD

4. To program the Flash manually, click on the Load icon. A progress bar will be at the bottom left.

Enter the Debug mode by clicking on the debug icon @l and click on the RUN icon. =

6. The program is now running under the RTX operating system and on the next page we will illustrate this fact.

7. Click on STOP °
The Configuration Wizard for RTX:
Click on the RTX_ Conf CM.c source file tab as shown below on the left below. You can open it with File/Open.
Click on Configuration Wizard at the bottom and your view will change to the Configuration Wizard.
Open up the individual directories to show the various configuration items available.
See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
This is a great feature as it is much easier changing items here than in the source code.

You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.

N ks WD

This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
See www.keil.com/support/docs/2735.htm for instructions to add this feature to your own source code.

Getting Started MDK 5: Obtain this book here: www.keil.com/mdk5/. It has very useful information on
implementing and managing RTX.

L] Abstract bt r startup_max716ms r B\lmcy‘:/y RTX_Conf CM.c | v X
[Bpandal | Colapseal | Hep | I ShowGrd
/ RTX_Conf_CM.c] v X Option ‘Value
081 #ifndef OS—TICK Z‘ 7 Thml::mcbuer:nogfu.:?::ur:rent running threads 3
Uee .*dej_flne O5_TICE 10000 Default Thread stack size oyteg) e}
083 #endif ~-Main Thread stack size [bytes] 200
084 MNumber of threads with user-provided stack size o}
088 /S </h> ~-Total stack size [bytes] for threads with user-provided stack size 0
086 // <=>Round-Robin Task svitching —-Check for stack overflow o
gz s --Processor mode for thread execution Privileged mode
088 // <i> Enasble Round-Robin Task switching [=)-RTX Kernel Timer Tick Configuration
089 #ifndef OS_ROBIN Use Cortex-M SysTick timer as RTX Kernel Timer =
090 #define O5_ROBIN 1 J - Timer clock value [Hz] 108134400
091 #endif Timer tick value [us] 1000
032 [=]-5ystem Configuration
093 s <oxRound-Robi T e} [ticks] <i-i [=-Round-Robin Thread switching =
094 S/ <is . o % will exe .~Round-Robin Timeaut [ticks] 5
0as <i> De [=-User Timers cd
096 £ifndef 0S 5----T\merThrEad Priority High
097 #define OE ROBINTOUT 5 F-Timer Thread stack size [bytes] 200
noe $#endif - - ~-Timer Callback Queue size 4
M 4’|J ~ISR FIFO Queue size 16 entries
% Text Editar 4 Configuration Wiaano
Default Thread stack size [bytes]
Defines default stack size for threads with osThreadDef stacksz = 0
Default: 200
Text Editor: Source Code
Configuration Wizard

Configuration Wizard

11 Copyright © 2014 ARM Ltd. All rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

14) RTX Kernel Awareness:

Users often want to know the number of the current operating task and the status of it and the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX to display this
information in real time, while the program is running. Other RTOS companies also provide awareness plug-ins for pVision.

Run RTX_Blinky by clicking on the Run icon. =

2. Open Debug/OS Support and select RTX System and Thread Viewer. The window below opens up. You might
have to grab the window and move it into the center of the screen. These values are updated in real-time using the
same read write technology as used in the Watch and Memory windows.

3. Select View and select Periodic Window Update if these values do not change: Y Besiahe o blpalate

1. You will not have to stop the program to view this data. No CPU cycles are used. Your program runs at full speed.
No instrumentation code needs to be inserted into your source. Most of the time the CPU is executing the
os_idle _demon. The processor spends relatively little time in each task. You can change this to suit your needs.

2. pVision also has an Event Viewer which displays RTX threads in a graphical format. The Maxim processors at this time
do not support this feature.

System and Thread Viewer
Property Value
Tick Timer: 1.000 mSec
Round Robin Timeout: 5.000 mSec
Default Thread Stack Size: 200
Thread Stack Overflow Check: Yes
Thread Usage: Awvailable: 7, Used: 7
Ié---Threads D Mame Priority State Delay Event Value Event Mask Stack Load

255 | os_idle_demon 0 Running 0%
7 clock Mormal Wait_AND 0x0000 0x0100 40%
[} phaseD Maormal Wait_DLY 00000 00001

5 phaseC Maormal

4 phaseB Maormal Wait_AND 0x0001

3 phaseh Maormal 0x0001

2 main Maormal Wait_DLY

1 osTimerThread High Wait_MBX

Demonstrating States: (note: Tasks and Threads are used interchangeably in Keil MDK documentation)
Blinky.c contains four threads that represent the stages of a stepping motor. Thread 1 (phaseA) is shown below:

1. The gray areas opposite the line numbers indicate there is valid assembly code located here.

2. Set a breakpoint on one of these in abstractext [£] Biinky.c | [£] RIX Cont cvc | [E] startup mawisecs | v X
Thread 1 as shown: (but not on the for :;T’ - - T 2
| * hread 1 'phaseA': Phase A output
(;;;) llne) 22 v;id phasel (void const *argument) { N/
. . 61 for (i7) {
3. Seta breakp()lnt in one or two other o &2 0sSignalWait (0x0001, osWaitForewver): /* wait for an event flag 0x0001 =/ =
s &3 Switch_On (LED_R):
Slmllar threads‘ 64 signal func(tid phaseB); /* call common signal function L
L) Switch Off (LED A);
. (13 ¥
4. Click on RUN . 67 |} =
- | o

When the program stops, this
information will be updated in the RTX System and Thread Viewer window. The Task running when the program
stopped will be indicated with a “Running” state.

6. Click on RUN . The other thread will show as “Running”. Each time you click RUN, the next thread will run.

12 Copyright © 2014 ARM Ltd. Al rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

15) Call Stack and Locals with RTX_Blinky: | canstack < todas 3 x|

1. Click on the Call Stack + Locals tab. This window opens up: Name Location/Value LES
BN 0:000002EA Task
. El- % phaseA 0x000002FC void flvoid *)
2. Each time you click on RUN the information is updated {9 argument | <not in scope> param -void *
depending on which thread is running. @ phaseB :4 0x00000312 Task
El- % phaseB 0x00000312 void flvoid *)
3. Right click on an element and select Callee or Caller Code to go 1% argument | <not in scope> param - vaid *
there: o) 000000000 void
Show Caller Code [=-# phaseC:5 000000334 Task
— Show Callee Code B V phaseC 0)@00?033;& void f[\roid.*]
[-#% argument |<notin scope= param - void *
v | Hexadecimal Display - phaseD:6 0x00000362 Task
=W cdock:7 000000384 Task
Bl @ dock 0x0000038A void flvoid *)
Stop the program. % argument |<not in scope> param -void *
[~ osTimerThread : 1 | 0x000007BC Task
Remove all breakpoints. El- % osMessage... |0x00000714 struct <untagged> f(st...
-W gueue_id |<notin scopex param - struct os_mess...
6. EXlt Debug mOde. @ W .rniIIisec <not in scopex> pa.ram - L.lnsigned int
[=l- % osTimerThre... |0x000007CA void fivoid *)
-W argument | <notin scope> param - void *
L] <not in scope> auto - struct <untagge...
[@ evt <not in scope> auto - struct <untagge...
=¥ main: 2 000000362 Task
= osDelay 0x00000640 enum (int} flunsigned i...
L millisec <not in scopex> param - unsigned int
o o main 0x000003E62 int fi)
Y| - ¥ os_idle_demon ... |0x00000434 Task

| fs—‘_‘l Call Stack = Locals | Watch 1

Memaory 1 |

TIP: Recall the Call Stack and Locals window updates only when the program is stopped by one of the two breakpoints that
were set on the previous page.

More Information of obtaining and using RTX:

It is very beneficial to use an RTOS. RTX is a good choice. It is small, efficient and easy to use yet it is full featured.
RTX source, various ports and documentation are here: C:\Keil v5\ARM\Pack\ARM\CMSIS\4.1.0\CMSIS RTX.
index.html is the entry point into the documentation.

There are two versions of RTX: The first comes with MDK 4.7x and earlier. The second comes with MDK 5.11 and later.
This second one is CMSIS-RTOS compliant and this is the one you want to use.

Ports are available for ARM and GCC compilers and others.

This is the end of the stand-alone examples.

13 Copyright © 2014 ARM Ltd. Al rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

16) Creating your own MDK 5 project from scratch:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a template for
your own projects. However, we will start an example project from the beginning to illustrate how easy this process is. Once
you have the new project configured; you can build, load and run a bare Blinky example. It will have an empty main()
function so it does not do much. However, the processor startup sequences are present and you can easily add your own
source code and/or files. You can use this process to create any new project, including one using an RTOS.

Install the Maxim Zeus Software Pack for your processor:
1. Start pVision and leave in Edit mode. Do not be in Debug mode.
2. Pack Installer: The Pack for the Zeus processor must be installed. This has already been done on page 4.

3. You do not need to copy any examples over. "g"“f_:""" e %
A } u' “ Maxim ¥ DB-MAX71637 » Blinky New w |4y || Search Blinky New
Create a new Directory and a New Project: e —— =
1. Click on Project/New pVision Project... o, M ' Tl S
2. In the window that opens, shown below, go to the folder AL
C:\MDK\Boards\Maxim\DB-MAX71637\ 3 owaries
3. Right click in this window and select New and create a new £ Music
folder. I called it BlinkyNEW. -y
4. Double click on BlinkyNew to open it or highlight it and o ’
SeleCt Open. M::‘I::‘T;:: :r:::{lhlm (*amvpray; *anganojx) :
In the File name: box, enter Blinky. Click on Save. =<
~ Hide Folders e | ancel

6. This creates the project Blinky.uvproj in
:\MDK\B Maxim\DB-MAX71 BlinkyNEW.
C:\ \Boards\Maxim\ 71637\BlinkyNEW ey e Targﬂ_

7. As soon as you click on Save, the next window opens: U

Select the Device you are using:
Vendor: Maxim
1. Expand Maxim, then Zeus Series, and then select MAX71637 as Shown: m) Device: MAX71637

2. Click OK and the Manage Run Time window shown below bottom right opens. Toolset ARM
Select the CMSIS components you want: Sjar:R

Maxim
=% ZEUS Series

& Mmax71616
4 Max71617
& MmAx71636

1. Expand all the items and select CORE and Startup as shown below. They will be
highlighted in Green indicating there are no other files needed. Click OK.

Click on File/Save All or select the Save All icon: ﬂ
The project Blinky.uvproj will now be changed to Blinky.uvprojx.

You now have a new project list as shown on the bottom left below: The appropriate CMSIS files you selected have
been automatically entered and configured.

5. Note the Target Selector says Target 1. Highlight Target 1 in the Project window.

6. Click once on it and change its name to Zeus Flash and press Enter. The Target selector name will also change.

What has happened to this point: 3 s ur-tme cvcrmer AR
You have created a blank pVision project using MDK ||| software component 5. Variant Version Description
: ® omsis Mi frware Interf mponents
5 Software Packs. All you need to do now is add your . o = e e oents 2}
own source files. ¢ CORE = 3300 | CMSIS-CORE for Conex-M, SC000, and SC300
o RTOS (APD) 10 CMSIS-RTOS API for Cartex-M, SC000, and SC300
Project n @ % @ CMSIS Driver Inifigd Device Drivers compliant to CMSIS-Driver Specifi
= @ Device Startup, System Setup
-3 Zeus Flash ¢ Startup ¥ 100 System Startup for Maxim ZEUS Series
3 Source Group 1 % ¥ File System MDK-Pro B.00 Eile Access on vanous storage device:
L& CMSTS # ¥ Graphics MDK-Pro 5240 |User Interface on graphical LCD displays
* 0 ¥ Network MDK-Pro 600 | IPNetworking using Ethernet or Serial protocols |
=4 Device T~
‘ J il
startup_max716xx.s (Startup) —— e
idati tput Tipti
: system_max7 1&occ (Startup) b bl oo
Resclve | |SelectPacks| Details | [0K Cancel Help
ElProjec‘t Books | {3 Functions | Uy Templates
g
14 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

Create a blank C Source File:

1. Right click on Source Group 1 in the Project window and select | Add New Item to Group ‘Source Files'..
2. This window opens up: i e i e S e T e
3. Highlight the upper left icon: C file (.c): @ P PO
4. Inthe Name: field, enter Blinky. ic e
5. Click on Add to close this window. h Hoadura
. . é 3 Tt Fila | b}
6. Click on File/Save All or $ image e ()
7. Expand Source Group 1 in the Project window and A UvrCote Torgie
Blinky.c will now display.
8. It will also open in the Source window.
Type: |(File (.¢)
Add Some Code to Blinky.c: o
9. In the blank Blinky.c, add the C code below: Locoon: [CRBOMrOSMEITIRR- AL uly e -
10. Click on File/Save All or el e | o= | =
11. Build the files. Lzl There will be no errors or warnings if all was entered correctly.
#include "max716xx.h"
unsigned int counter = 0;
Y
MAIN function
___ */
int main (void) {
while(1) {
counter++;
if (counter > OxOF) counter = 0;
}
3
TIP: You can also add existing source files: fuckd, Exieling Files 0. Group.Sousce, Filesi No need to at this time.

Configure the Target Zeus Flash: Please complete these instructions carefully to prevent unusual problems...

1.

A e A o

—_
(=]

11.

12.

13.

14.
15.

Select the Target Options icon ‘8“\ Select the Target tab.
Confirm 108 in Xtal (MHz). This is used for timing calculations. Select Use MicroLIB to optimize your code size.
Select the Output tab. Click on Select Folder for Objects...: | Select Folder for Objects. . |

In the Browse for Folder window that opens: right click and create a new folder called Flash.

Double click on Flash to enter this folder and click OK. Compilation files will now be stored in this Flash folder.
Click on the Listings tab. Click on Select Folder for Objects...: Double click on Flash and click OK to close.
Click on the Linker tab. Select Use memory Layout...: [Use Memory Layout from Target Dialog

Click on the Debug tab. Select the ULINK2/ME Cortex Debugger: . [GLNIGIVE ConexDomugger (=] | Setings

Select the Settings: icon.

. Select JTAG as shown here in the Port: box: ret[itae -] If your board is connected to your PC, you must now see

a valid IDCODE and Device Name in the JTAG Device Chain box.
Click on OK once to go back to the Target Configuration window. Otherwise, fix the connection problem.
Click on the Utilities tab. Select Settings and confirm the correct Flash algorithm: Shown is the correct one for the

MAX716xx series processors: — Programming Algoritm
. . . Description | Device Size ‘ Device Type | Address Range |
Click on OK twice to return to the main menu. MAXT7 16 TME Flash [On-chipFlash 00000000H - D00FFFFFH

Click on File/Save All or ﬂ

Build the files. “ There will be no errors or warnings if all was entered correctly. If there are, please fix them !

The Next Step ? Let us run your program and see what happens ! Please turn the page....

15 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

Running Your Program:

LOAD

1. Program the Zeus Flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.

2. Enter Debug mode by clicking on the Debug icon @

3. Click on the RUN icon. E] Note: you stop the program with the STOP icon. 0
4. No LEDs will blink since there is no source to accomplish this task.
5. Right click on counter in Blinky.c and select Add counter to ... and select Watch 1.
6. counter should be updating as shown here: ————————)
7. You can also set a breakpoint in Blinky.c and the program should stop at | Name L Type
this point if it is running properly. If you do this, remove the breakpoint. | ;:;f::’mm&f’moms D umisneeint_2|

8. You should now be able to add your own source code to create a 3
meaningful project. &1 Call Stack - Locals || Watth1 |

=
-
| »

Memory 1 |

TIP: The Watch 1 is updated periodically, not when a variable value changes. Since Blinky is running very fast without any
time delays inserted, the values in Watch 1 will appear to jump and skip the sequential values you know must exist.

Cleaning up your Project: (you only need to do this once: this is not a critical step)

We modified the folder where the output and listings files are stored. This was in Steps 3 through 6 on the preceding page.
If you did a Build before this was done, there will be files in your project root directory. We want them only in .\Flash to
keep things more organized.
MName ~
Flash

Exit pVision. Otherwise, you can’t delete files that it still has open. RTE
Blinky.c
2. Open Microsoft Explorer and navigate to: Binky.uvoptx

C:\MDK\Boards\Maxim\DB-MAX71637\BlinkyNEW\. & inky cnpro

|| Blinky_uvoptx.bak

3. Delete all files and folders except these: (you can delete Flash — a Build will recreate it.) W ik o bk
You can also leave any backup or pVision files that identify your computer to retain your settings.
Restart pVision. Having all compilation files stored in the .\Flash folder makes it cleaner.
TIP: If you want to save or send the project files to someone, you can delete the folder Flash to reduce file size. This folder
and its contents are easily reconstructed with a Build.

16 Copyright © 2014 ARM Ltd. All rights reserved
Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

17) Creating your own RTX MDK 5 project from scratch:
The MDK Software Packs makes it easy to configure an RTX project. There are two versions of RTX: The first comes with

MDK 4.7x and earlier. The second comes with MDK 5.11 and later. This second one is CMSIS-RTOS compliant.

Configuring RTX is easy in MDK 5.11 and later. These steps use the configuration from the preceding Blinky example.

N =

SANENARE

7.

Using the same example from the preceding pages, Stop the program @ and Exit Debug mode. @

In Blinky.c, at the top, add this line: #include "cmsis_os.h"

Open the Manage Run-Time Environment window: @
Expand all the elements as shown here:

Select Keil RTX as shown and click OK.
Appropriate RTX files will be added to your project. See the Proj

Click on File/Save All or i

Configure RTX:

1.
2
3.
4.
5

6.

In the Project window, expand the CMSIS group.

Double click on RTX Conf CM.c to open it.

Select the Configuration Wizard tab: Select Expand All.

The window is displayed here: e —————— — —————)
Set Timer clock value: to 108000000 as shown: (108 MHz)

Unselect User Timers. Use the defaults for the other settings.

Build and Run Your RTX Program:

Build the files. L Program the Flash: 3

Enter Debug mode: @ Click on the RUN icon.
Select Debug/OS Support/System and Thread Viewer. The
window below opens up.

You can see two threads: the main thread is the only one
running. As you add more threads to create a real RTX
program, these will automatically be added to this window.

What you have to do now:

1.

Software Component Sel. | Variant Ver
Sy CMSIS
P [3.2C
» r 1.4,
1.0
) 474
ect window.

cd 1.04

Validation Qutput

Resaolve | Details | OK I

system_stm32f4nec [£] RIX Conf CM.c | [£] Blinky.c | [#] startup_stm32f4

Expand All I Collapse Al Help I Show Grid

Option

IS8 Thread Configuration

-~Number of concurrent running threads

--Default Thread stack size [bytes]

--Main Thread stack size [bytes]

~-Number of threads with user-provided stack size

--Total stack size [bytes] for threads with user-provided stack size
Check for stack overflow
Processor mode for thread execution

[=1-RT¥ Kernel Timer Tick Configuration

--Use Cortex-M SysTick timer as RTX Kernel Timer

-~Timer clock value [Hz]

~-Timer tick value [us]

[=I-System Configuration

[=-Round-Robin Thread switching

i Round-Robin Timeout [ticks]

[-User Timers

~-I5R. FIFQ Queue size

Value

[

200

200

0

0

[l

Privileged mode

I
165000000
1000

]
5
r
16 entries

| Thread Configuration

| Text Editor_}}, Configuration Wizard

You must add the RTX framework into your code and create your threads to make this into a real RTX project

configured to your needs.

See the RTX Blinky example to use as templates and hints.

If you copy Blinky.c from the RTX Blinky project, it will blink the LEDs. It has the RTX code incorporated into it.
Getting Started MDK 5: Obtain this useful book here: www.keil.com/mdk5/. It has very useful information on

implementing and maintaining RTX.

System and Thread Viewer

This completes the exercise of creating Property | Value
your own RTX project from scratch. E-system R

Tick Timer:

s

1.000 m5ec

Round Robin Timeout:

5.000 mSec

Default Thread Stack Size:

200

Thread Stack Overflow Check:

Yes

Thread Usage:

—

é--ThrEad! o} Mame

55 losidedemon 0|

Priority State Delay Event Value Event Mask Stack Load

Normal | I |
=

17

Maxim Integrated Zeus Cortex-M3 Lab

Copyright © 2014 ARM Ltd. All rights reserved
www.keil.com

18) Document Resources:

Books:
1. NEW! Getting Started MDK 5: Obtain this free book here: www.keil.com/mdk5/.
2. There is a good selection of books available on ARM processors. A good list of books on ARM processors is found

6.
7.

at www.arm.com/university by selecting “Teaching Resources”. You can also select ARM Related Books but make
sure to also select the “Books suited for Academia” tab to see the full selection.

pVision contains a window titled Books. Many documents including data sheets are located there.

A list of resources is located at: www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

The Definitive Guide to the ARM Cortex-M0/M0+ by Joseph Yiu. Search the web for retailers.
The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.

Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.

Application Notes:

1.
8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.

NEW! ARM Compiler Qualification Kit: Compiler Safety Certification: www.keil.com/pr/article/1262.htm

Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

Segger emWin GUIBuilder with pVision™ www.keil.com/appnotes/files/apnt_234.pdf
Porting mbed Project to Keil MDK™ www.keil.com/appnotes/docs/apnt _207.asp
MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt _202.asp

Using pVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt _199.asp

RTX CMSIS-RTOS in MDK 5 C:\Keil v5\ARM\Pack\ARM\CMSIS\xxx\CMSIS RTX
Download RTX CMSIS-RTX www.keil.com/demo/eval/rtx.htm and_www.arm.com/cmsis
Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
Lazy Stacking on the Cortex-M4: www.arm.com and search for DAI0298A

Cortex Debug Connectors: www.arm.com and search for cortex debug connectors.pdf
Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

ARM Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content

ARM University program: www.arm.com/university. Email: university@arm.com

ARM Accredited Engineer Program:_www.arm.com/aae

mbed™:

http://mbed.org

For comments or corrections on this document please email bob.boys@arm.com.

For more information on the ARM CMSIS standard: www.arm.com/cmsis.

18 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

19) Keil Products and Contact Information:

Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite (Evaluation version) - $0
= NEW Il MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit)
= MDK-Standard (unlimited compile and debug code and data size)
= MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries and Graphic User Interface (GUI))
= NEW !l ARM Compiler Qualification Kit: for Safety Certification Applications

USB-JTAG adapter (for Flash programming too)
= ULINK2 - (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME — sold only with a board by Keil or OEM.
= ULINKpro — Faster operation and Flash programming, Cortex-Mx SWV & ETM trace.
= NEW !l ULINKpro D — Faster operation and Flash programming, Cortex-Mx SWV, no ETM trace.
Contact sales.us@keil.com 800-348-8051 for USA prices.
Contact sales.intl@keil.com +49 89/456040-20 for pricing in other countries.

= For special promotional or quantity pricing and offers, please contact Keil Sales.

The Keil RTX RTOS is now provided under a BSD type license. This makes it free.

[— P ——
All versions, including MDK-Lite, includes Keil RTX RTOS with source code ! t 1
Keil includes free DSP libraries for all Cortex-M processors. | [PIKEIL
Call Keil Sales for details on current pricing, specials and quantity discounts. DZKE!LJ Developmentcioats
Sales can also provide advice about the various tools options available to you. Gexting Srted o

They will help you find various labs and appnotes that are useful.

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

KEIL

Call Keil Sales for special university pricing. Go to www.arm.com/university to
view various programs and resources.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

CMSIS documentation: www.arm.com/cmsis

S5 orm Wit cOrtex ‘” ARMKEIL

Intelligent Processors by ARM® Microcontroller Tools

19 Copyright © 2014 ARM Ltd. All rights reserved

Maxim Integrated Zeus Cortex-M3 Lab www.keil.com

