Migrate RTX to CMSIS-RTOS ARMKEIL
AN264, May 2014,V 1.0 Microcontroller Tools

Abstract

This application note demonstrates how to migrate your existing RTX based application to the new CMSIS-RTOS layer.

Introduction
The CMSIS-RTOS API is a generic RTOS interface for Cortex-M processor-based devices. CMSIS-RTOS provides a

standardized API for software components that require RTOS functionality and therefore gives serious benefits to the users
and the software industry.
e CMSIS-RTOS provides basic features that are required in many applications or technologies such as UML or Java
(JVM).
e The unified feature set of the CMSIS-RTOS API simplifies sharing of software components and reduces learning
efforts.
e Middleware components that use the CMSIS-RTOS API are RTOS agnostic. CMSIS-RTOS compliant middleware is
easier to adapt.
The ARM reference implementation of CMSIS-RTOS (CMSIS-RTOS RTX) is based on the RTX kernel and is part of the
CMSIS software pack.

Prerequisites
MDK-ARM Version 5.00 or above (www.keil.com/mdk5).

A Device Family Pack (DFP) for your microcontroller device. Availability can be checked in the MDKS5 pack installer or on
www.keil.com/dd2.

http://www.keil.com/mdk5

Migrate from RTX to CMSIS-RTOS

Contents
Abstract |

Introduction |

Prerequisites I

Differences 2
Integrating CMSIS-RTOS in your Project for Migration 3
Kernel Management 4
NVIC Priority Group Settings 4

Task Management 5
Time Management 6
Event Flag Management 7
Mailbox Management 7
Memory Allocation Functions 7
Mutex Management 8
Semaphore Management 8
System Functions 9
User Timer Management 9
Revision History 9
Differences
The following table provides an overview of general differences between RTX and CMSIS-RTOS RTX.

Time slice RTX is using kernel ticks as the standard CMSIS-RTOS fully relies on milliseconds as this

unit for measuring periods provides a fully qualified timing base without
knowing the configuration of a tick

Response time -no change-

Memory requirements = Code < 4KBytes / User Timer: 8 Bytes Code < 5KBytes / User Timer: 20 Bytes

Terminology Tasks / Events Threads / Signals

Delivery Integrated in MDK4 releases Part of CMSIS software pack

System Tasks Init task created by user Main runs as first system task / | dedicated task

for user timers
Priorities Up to 250 numerical task priorities Up to 7 named thread priorities
License MDK-ARM EULA BSD 3-clause license

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264 2 www keil.com

Migrate from RTX to CMSIS-RTOS

Integrating CMSIS-RTOS in your Project for Migration
The following section lists the required steps for migrating an existing project from RTX to CMSIS-RTOS RTX.

I. Create a backup of your project.

2. Replace RTX_Conf.c with RTX_Conf_CM.c.

3. The new configuration file RTX_Conf_CM.c shows up in the project tree under CMSIS. Open it and transfer the
following settings from your old configuration to your new configuration.

4. Change the API function calls as explained in the individual functional chapters following.

This chart helps to map the configuration settings from the old to the new configuration file:

RTX / RTX_Conf.c CMSIS-RTOS RTX / RTX_Conf CM.c
Number of concurrent running tasks Number of concurrent running threads
Default Task stack size Default Thread stack size
(See Note I) Main Thread stack size
Number of tasks with user-provided stack Number of threads with user-provided stack size
(See Note 2) Total stack size for threads with user-provided stack
Check for stack overflow Check for stack overflow
Processor mode for thread execution Run in privileged mode
Timer clock value [Hz] Timer clock value [Hz]
Timer tick value [us] Timer tick value [us]
Round-Robin Task switching Round-Robin Task switching
Round-Robin Task Timeout [ticks] Round-Robin Task Timeout [ticks]
Number of user timers Timers Callback Queue size (See Note 3)
ISR FIFO Queue size ISR FIFO Queue size
Notes:

1) Set the Main Thread stack size to the RTX Task stack size or the user stack size used in the (now obsolete)
os_sys_init_user call (see Kernel Management).

2) Remove all the user stack objects allocated in your project for os_tsk_create_user. The total size of all those
objects is the value required for Total stack size for threads with user-provided stack.

3) Also enable the User Timers and allocate a sufficient Timer Thread stack size according to worst case stack usage
of all timer callback functions.

The following chapters cover individual functional blocks and discuss differences.

Detailed descriptions of types, functions and arguments are available in the CMSIS-RTOS RTX documentation.

Hint:

Enable the “Text Completion” options in Edit -> Settings. Once you included the cmsis_os.h in any module the code
completion and function parameter display will be of great help when integrating the new CMSIS-RTX functions.

B2 8.5k 365 (0x0004, 3d2):

32 osSignalSet (|

2E /* Wait for|int32 t osSignalSet (osThreadld thread id, int32 t signals
I 34 a8 eyt wait or (0x0004, Oxffff);

s Tl TTe S de e mmm Emee PV e e

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264 3 www keil.com

http://www.keil.com/pack/doc/cmsis_rtx/index.html

Migrate from RTX to CMSIS-RTOS

Kernel Management

RTX CMSIS-RTOS RTX
os_sys_init -obsolete-
os_sys_init_user -obsolete-
os_sys_init_prio -obsolete-

CMSIS-RTOS RTX’s first thread is main. You can move all code from the initialization task to main function replacing any
os_sys_init* calls.

For compatibility reasons, call osKernellnitialize() and osKernelStart() in your main function. This is not required in
the current releases of CMSIS-RTOS RTX, but can cause malfunction in future releases or when using a different CMSIS-
RTOS compliant RTOS.

For example, see the following implementation of main:

int main (void) {
osKernelInitialize () // initialize CMSIS-RTOS

// initialize peripherals here

// create 'thread' functions that start executing,
// example: tid name = osThreadCreate (osThread(name), NULL) ;

osKernelStart (); // start thread execution
}
After system initialization main can be used as a fully functional thread or it can be deleted (see Task Management). If
you return from main, as in the above example, the thread will be properly terminated and removed from the thread list.
Main cannot be restarted without a system reset after that.

NVIC Priority Group Settings

The initialization of CMSIS-RTOS RTX reads out the NVIC Priority Group configuration and sets the system handlers to
the correct priority. If custom settings of groups are made after the startup code executes, the system may be
miconfigured.

Make sure that you set the PendSV to the lowest level available after configuration of your custom interrupt priorities and
groupings.

NVIC SetPriority(PendSV_IRQn, <new priority>);

In the next chapter you will learn how to transfer your task creation to the new thread management of CMSIS RTOS.

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264 4 www keil.com

Migrate from RTX to CMSIS-RTOS

Task Management

RTX CMSIS-RTOS RTX
os_tsk_create_ex osThreadCreate

os_tsk _create_user osThreadCreate
os_tsk_create_user_ex osThreadCreate

os_tsk_delete osThreadTerminate
os_tsk_delete_self osThreadTerminate(osThreadGetld())
os_tsk_pass osThreadYield

os_tsk_prio osThreadSetPriority

os_tsk_prio_self osThreadSetPriority(osThreadGetld()...
os_tsk_self osThreadGetld

isr_tsk_get -not available-

OS _TID osThreadld

osThreadCreate replaces all variants of os_tsk_create_* in a single function. A major difference is the way tasks are defined
and declared. The prototype now carries an optional argument that can be passed by osThreadCreate. The macro
osThreadDef statically declares the initial priority level and user stack size for the thread.

//RTX task definition:
__task void taskname (void)

{
}

//RTX task create
os_tsk create(taskname) ;

//CMSIS-RTOS thread definition and declaration
void ThreadName (void const *arg);

osThreadDef (ThreadName, osPriorityNormal, 1, O0);

void ThreadName (void const* arg)

{
}

//CMSIS thread create
osThreadCreate (osThread (ThreadName) , NULL) ;

Besides defining and creating RTX tasks vs. CMSIS-RTOS threads, all other thread management tasks can be migrated using
the above table.

Hint:
The task prototype of CMSIS-RTOS now has an optional parameter. This can be freely used to pass any arguments to
the task. This might be useful to configure multiple instances of a task to e.g. use different hardware resources, etc...

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264 5 www keil.com

Migrate from RTX to CMSIS-RTOS

Time Management

RTX CMSIS-RTOS RTX
os_dly wait osDelay

os_itv_set -not available-
os_itv_wait osDelay or User Timers
os_time_get osKernelSysTick

The osDelay function is the only timed wait function in CMSIS-RTOS RTX.

os_itv_wait is no longer available but you can recreate this functionality using periodic user timers (see the User Timer
section).

If a periodic interval task should run on the same as priority the user timer task is configured to, transform that task to a
user timer callback.

If multiple periodic interval tasks at different priorities are used, it is recommended that the callback function only uses
osSignalSet to wake up the respective thread based on the priorities defined.

Example:

osTimerId Timerl Id;
void Timerl Callback (void const *arg) ({
/* Periodic tasks that formerly where in the interval task

or wake up task with
osSignalSet(id of interval task, 0x0001); */

}

osTimerDef (Timerl, Timerl Callback);

Timerl Id = osTimerCreate (osTimer (Timerl), osTimerPeriodic, NULL) ;
osTimerStart (Timerl Id, 10);

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264 6 www keil.com

Migrate from RTX to CMSIS-RTOS

Event Flag Management
RTX

CMSIS-RTOS RTX

os_evt_clr osSignalClear
os_evt_get osSignalClear
os_evt_set osSignalSet
os_evt_wait_and osSignalWait
os_evt_wait_or -not available-
isr_evt_set osSignalSet

osSignalClear combines the functions os_evt_clr and os_evt_get. Thus it is not possible to functionally replace the

os_evt_wait_and function from RTX.

A special isr_evt_set function is no longer required. osSignalSet is safe to be used on interrupt level.

Mailbox Management
RTX

os_mbx_check

CMSIS-RTOS RTX
osMailAlloc(....,0)

os_mbx_declare

osMailQDef

os_mbx_init

osMailCreate

os_mbx_send

osMailPut

os_mbx_wait

osMailGet

isr_mbx_check

osMailAlloc(..., 0)

isr_mbx_receive

osMailGet(..., 0)

isr_mbx_send

osMailPut

Memory Allocation Functions
RTX

CMSIS-RTOS RTX

_declare_box* osPoolDef
_init_box* osPoolCreate
_alloc_box osPoolAlloc
_calloc_box osPoolCAlloc
_free_box osPoolFree

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264

www.keil.com

Migrate from RTX to CMSIS-RTOS

Mutex Management

RTX CMSIS-RTOS RTX
os_mut_init osMutexCreate(osMutex())
os_mut_release osMutexRelease
os_mut_wait osMutexWait

-not available- osMutexDelete

OS_ID osMutexld

OS_MUT osMutexDef()

Example of Declaration:

osMutexDef (MutexIsr) ;
osMutexId mutex_id;

mutex id = osMutexCreate (osMutex (MutexIsr));

Example of Usage:

osMutexWait (mutex_id, 0); //Wait until a Mutex becomes available.

osMutexRelease (mutex id) ; //Release a Mutex. Threads that wait for the same
mutex will go into READY state.

Semaphore Management

RTX CMSIS-RTOS RTX

os_sem_init osSemaphoreCreate(osSemaphore())
os_sem_send osSemaphoreRelease

os_sem_ wait osSemaphoreWait

isr_sem_send osSemaphoreWait

-not available- osSemaphoreDelete

OS_ID osSemaphoreld

OS_SEM osSemaphoreDef()

Example of Declaration:

osSemaphoreId semaphore; // Semaphore ID
osSemaphoreDef (semaphore) ; // Semaphore definition

semaphore = osSemaphoreCreate (osSemaphore (semaphore), 1) ;

Example of Usage:

val = osSemaphoreWait (semaphore, 1); // Wait 1lms for the free semaphore
if (val > 0) {
// No time-out / semaphore was acquired
// The interface is free now
osSemaphoreRelease (semaphore) ; // Return a token back to a semaphore

}

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264 8 www keil.com

Migrate from RTX to CMSIS-RTOS

System Functions

RTX CMSIS-RTOS RTX
os_resume -not available-
os_suspend -not available-
tsk_lock -not available-
tsk_unlock -not available-

CMSIS-RTOS does not provide System Functions that lock the Kernel like RTX does. This can be considered poor practice.
If you want to lock the scheduler for a specific operation, it is recommended that you implement a Supervisor Call (SVC)

function. See CMSIS-RTOS RTX User Guide.

User Timer Management
RTX

os_tmr_create

CMSIS-RTOS RTX

osTimerCreate

os_tmr_kill

osTimerDelete

os_tmr_call

-not available-

-not available-

osTimerStart

-not available-

osTimerStop

Revision History
= May 2014: Initial Version

Copyright © 2014 ARM Ltd. All rights reserved

Application Note: 264

www.keil.com

