
Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

1

For Keil MCBSTM32C™ & ST STM3210C-EVAL Evaluation

 STMicroelectronics STM32C: Cortex™-M3 Lab
 ARM® Keil™ MDK Toolkit featuring Serial Wire Viewer and ETM Trace

For Keil MCBSTM32C™ Eval Board Fall 2013 Version 1.3 by Robert Boys, bob.boys@arm.com

Introduction:

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M3 processor using the ARM® Keil™ MDK
toolkit featuring the IDE μVision®. We will use the Serial Wire Viewer (SWV) and ETM trace on the Keil MCBSTM32C
evaluation board. At the end of this tutorial, you will be able to confidently work with STM32 processors and Keil MDK™.
This tutorial will also work with the STMicroelectronics STM3210C-EVAL board with no modifications.

Keil MDK comes in an evaluation version that limits code and data size to 32 Kbytes. Nearly all Keil examples will compile
within this 32K limit. The addition of a license number will turn it into the full, unrestricted version. Contact Keil sales for a
temporary full version license if you need to evaluate MDK with programs greater than 32K. MDK includes a full version of
Keil RTX™ RTOS. No royalty payments are required. RTX now comes with a BSD license. Visit www.keil.com/st.

Why Use Keil MDK ?
MDK provides these features particularly suited for Cortex-M3 users:

1. µVision IDE with Integrated Debugger, Flash programmer and the
ARM® Compiler. MDK is a turn-key product and includes examples.

2. Serial Wire Viewer and ETM trace capability is included. A full
feature Keil RTOS called RTX is included with MDK.

3. RTX Kernel Awareness windows are updated in real-time. Kernel
Awareness for Keil RTX, CMX, Quadros and Micrium.

4. Choice of adapters: ULINK2™, ULINK-ME™, ULINKpro™ and
Segger J-Link (version 6 or later). ST-Link V2 is supported with
SWV. ULINKpro supports ETM instruction and data trace.

5. Keil Technical Support is included for one year and is renewable.
This helps you get your project completed faster.

This document details these features:

1. Serial Wire Viewer (SWV) and ETM Trace using ULINKpro™.

2. Real-time Read and Write to memory locations for Watch, Memory
and RTX Tasks windows. These are non-intrusive to your program. Keil ULINK2 and MCBSTM32
No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also called Access Breaks).

4. RTX Viewer: two kernel awareness windows for the Keil RTX RTOS. They are updated in real-time.

Serial Wire Viewer (SWV):
Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf),
CPU counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into the
Cortex-M3. SWV is output on the Serial Wire Output (SWO) pin found on the JTAG/SWD adapter connector.

SWV does not steal any CPU cycles and is completely non-intrusive except for ITM Debug printf Viewer. SWV is provided
by the Keil ULINK2, ULINK-ME, ULINKpro and the Segger J-Link. Best results are with a ULINK family adapter. The
STMicroelectronics ST-Link V1 adapter does not support SWV or ETM. ST-Link V2 supports SWV but not ETM trace.

Embedded Trace Macrocell (ETM):
ETM adds all the program counter values to the features provided by SWV. This allows advanced debugging features
including timing of areas of code, Code Coverage, Performance Analysis and program flow analysis. ETM requires a special
debugger adapter such as the ULINKpro. This document uses a ULINKpro for ETM. A ULINK2 or ULINK-ME is used for
the Serial Wire Viewer exercises in this lab.

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_245.asp

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

2

Index:
STM32 Evaluation Board list, MDK Install, Useful Definitions 3

Part A: Connecting and Configuring to the target board:
1. Connecting ULINK2, ULINK-ME or ULINKpro to the MCBSTM32™ board: 4

2. ULINK2 or ULINK-ME and µVision Configuration: 5

3. ULINKpro and µVision Configuration: 6

4. ST-Link from STMicroelectronics and µVision Configuration: 7

5. Segger J-Link and µVision Configuration: 8

Part B: Example Programs using a ULINK2 or ULINK-ME:
1. Blinky Example Program using the STM32 and ULINK2 or ULINK-ME: 9

2. Hardware Breakpoints: 9

3. Locals Window 10

4. Call Stack Window 10

5. Variables for Watch and Memory Windows: 10

How to convert Local Variables to view in the Watch or Memory windows: 10

6. Watch and Memory Windows and how to use them: 11

7. Configuring the Serial Wire Viewer (SWV): 12

a. For ULINK2 or ULINK-ME: 12

b. For ULINKpro: 13

8. Using the Logic Analyzer (LA) with ULINK2 or ULINK-ME: 14

9. Watchpoints: 15

10. RTX_Blinky example program with Keil RTX RTOS: 16

11. RTX Kernel Awareness using Serial Wire Viewer (SWV): 17

12. Logic Analyzer Window: Viewing Variables in real-time in a graphical format: 18

13. Serial Wire Viewer (SWV) and how to use it: (with ULINK2) 19

a. Data Reads and Writes: 19

b. Exceptions and Interrupts: 20

c. PC Samples: 21

14. ITM (Instruction Trace Macrocell) a printf feature: 22

Part C: Using the ULINKpro with ETM Trace
1. Blinky_Ulp Example 23

2. Code Coverage: 24

3. Performance Analysis: 25

4. Execution Profiling: 26

5. In-the-weeds Example: 27

6. Configuring the ULINKpro ETM Trace: 28

7. Serial Wire Viewer Summary 29

8. Keil Products and contact information 30

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

3

STM32 Evaluation Boards:
Keil makes four STM32 evaluation boards plus several with STR7 and STR9 processors. Examples are provided.

Keil part number URL for board info Debug Connectors ST board equivalent

MCBSTM32™ www.keil.com/mcbstm32/ JTAG/SWD STM32F10X-128K-EVAL (color LCD)

MCBSTM32E™ replaced by EXL www.keil.com/mcbstm32EXL/ Cortex Debug and ETM STM3210E-EVAL

MCBSTM32EXL™ www.keil.com/mcbstm32EXL/ Cortex Debug and ETM STM3210E-EVAL

MCBSTM32C™ www.keil.com/mcbstm32c/ Cortex Debug and ETM STM3210C-EVAL

MCBSTM32F200 www.keil.com/mcbstm32f200/ Cortex Debug and ETM STM3220G-EVAL

MCBSTM32F400 www.keil.com/mcbstm32f400/ Cortex Debug and ETM STM32429-EVAL

Keil MDK provides example projects for many STMicroelectronics boards:

Example projects for STMicroelectronics boards are found inside Keil MDK here: C:\Keil\ARM\boards\ST.

You can adapt the instructions in this document for any board using a STM32 processor including your own target.

STM32 processors need a special .ini file that configures the CoreSight Serial Wire Viewer and/or ETM trace. If you do not
intend to use SWV or ETM you do not need this file. It is entered in the Options for Target window under the Debug tab. It
needs to be configured for either SWO or 4 bit Trace Port operation. SWO is default. Instructions are provided later.

Visit www.keil.com/st for more information about Keil support of STMicroelectronics processors.

Software Installation:
This document was written for Keil MDK 4.14 or later which contains µVision 4. The evaluation copy of MDK is available
free on the Keil website. Do not confuse µVision4 with MDK 4.0. The number “4” is a coincidence.

The current version is 4.72. Some windows will look different dues to product improvement.

To obtain a copy of MDK go to www.keil.com/arm and select “Evaluation Software” from the left column.

You can use the evaluation version of MDK and a ULINK2, ULINK-ME, ULINKpro, a J-Link or a ST-Link V2 for this lab.
You must make certain adjustments for non-ULINK adapters and not all features shown here will be available.

The addition of a license number converts the evaluation into a full, unrestricted copy of MDK.

The ULINKpro adds Cortex-M3 ETM trace support. It also adds faster programming time and better trace display. Most
STMicroelectronics Cortex-M3 parts are equipped with ETM. All have SWV.

MDK 5.0:
ARM will release MDK 5.0 in the Fall 2013. There are substantial improvements. See www.keil.com/mdk5.

JTAG and SWD Definitions: It is useful to have a general understanding of these terms:
JTAG: JTAG provides access to the CoreSight debugging module located on the STM32 processor. It uses 4 to 5 pins.

SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except no Boundary Scan.
SWD is referenced as SW in the µVision Cortex-M Target Driver Setup. See page 5, middle picture.

SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.

SWO: Serial Wire Output: SWV frames come out this one pin output.

Trace Port: A 4 bit port that ULINKpro uses to output ETM frames and optionally SWV (rather than the SWO pin).

ETM: Embedded Trace Macrocell: Provides all the program counter values. Only the ULINKpro works with ETM.

Example Programs:
Keil provides examples for evaluation boards made by Keil in C:\Keil\ARM\boards\Keil. Most example projects are pre-
configured to use a ULINK2 or a ULINK-ME. Serial Wire Viewer is not usually configured. Projects that contain a Ulp in
their directory name are configured to use a ULINKpro. SWV and ETM are normally pre-configured. For instructions on
converting a project from ULINK2 or ULINK-ME to a ULINKpro and vice versa please see the instructions under Part A.

Example projects for STMicroelectronics boards are found under C:\Keil\ARM\boards\ST.

Most example projects will compile within the 32 K code and data limit of MDK. Exceptions are LCD_Demo and Demo. A
compiled executable .axf file is provided to allow you to run, evaluate and debug these programs. If you attempt to compile
these projects the .axf file will be erased. You must reinstall MDK to get the .axf file back unless you backed it up first.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

4

Part A)
1) Connecting a ULINK2, ULINK-ME or ULINKpro:

The Keil MCBSTM32C is equipped with the new ARM standard 10 and 20 pin CoreSight connectors for JTAG/SWD, SWO
and ETM access as shown here:

The legacy 20 pin JTAG connector is provided. This
provides JTAG, SWD and SWO access.

The 10 pin “Cortex Debug” provides JTAG, SWD and
SWO access in a much smaller footprint. This connector
is supported by ULINK2 and ULINK-ME with a special
supplied cable.

The 20 pin Cortex Debug + ETM” provides JTAG, SWD,
SWO and adds 4 bit ETM support and connects to the
ULINKpro adapter.

Connecting a ULINK2 or ULINK-ME:
Legacy 20 Pin JTAG Connector:

A ULINK2 plugged to a STM32 board is pictured on the first page of this document.

10 Pin Cortex Debug Connector: You will need to take the case off the ULINK2 and install the 10 pin cable. The ULINK-
ME does not have a case and the cable can be directly installed on the 10 pin connector or directly to the legacy JTAG
connector. The ULINK-ME is pictured here and the arrow points to the
10 pin connector.

20 Pin Cortex Debug + ETM Connector: Keil does have a 10 pin to 20
pin adapter cable available to connect to this connector. The first 10 pins
on the 20 pin have an identical layout as the 10 pin.

The second 10 pins on the 20 pin are the five ETM signals.

Connecting a ULINKpro:
The ULINKpro connects to a STM32 board with its standard 20 pin Hi—
Density connector or the standard JTAG connector with a supplied
adapter.

In order to use ETM trace you must connect the ULINKpro to the 20 pin
Hi-density connector as shown here.

If you use the legacy 20 pin connector you can use JTAG,
SWD and SWV but not ETM.

Pictured is a ULINKpro with a MCBSTM32C (right) and a
STM3210C-EVAL from STMicroelectronics (below).

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

5

2) ULINK2 or ULINK-ME and µVision Configuration:
It is easy to select a USB debugging adapter in µVision. You must configure the connection to both the target and to Flash
programming in two separate windows as described below. They are each selected using the Debug and Utilities tabs.

This document will use a ULINK2 or ULINK-ME as described. You can substitute a ULINKpro with suitable adjustments.

Serial Wire Viewer is completely supported by these two adapters. They are essentially the same devices electrically and any
reference to ULINK2 in this document includes the ME. STM32 processors require an .ini file to configure the SWV or
ETM features. The ULINKpro, which is a Cortex-Mx ETM trace adapter, has all the features of a ULINK2 with the
advantages of faster programming time, displays all program counter values and an enhanced instruction trace window.

Step 1) Select the debug connection to the target:

1. Assume the ULINK2 is connected to a powered up STM32 target board, µVision is running in Edit mode (as it is
when first started – the alternative to Debug mode) and you have selected a valid project. The ULINK2 is shown
connected to the Keil MCBSTM32C board on page 1.

 Select Options for Target or ALT-F7 and select the Debug tab. In the
drop-down menu box select ULINK as shown here:

2. Select Settings and the next window below opens up. This is the
control panel for the ULINK 2 and ULINK-ME (they are the same).

3. In Port: select SWJ and SW. SWV will not work with JTAG selected.

4. In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the
target processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the
target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it or click OK once to leave and then click on Settings again.

TIP: You can do regular debugging using JTAG. SWD and JTAG operate at approximately the same speed. Serial Wire
Viewer (SWV) will not operate in JTAG mode.

Step 2) Configure the Keil Flash Programmer:

5. Click on OK once and select the Utilities tab.

6. Select the ULINK similar to Step 2 above.

7. Click Settings to select the programming
algorithm if one is not visible.

8. SelecSTM32F10x High-density Flash as
shown below or the one for your processor:

9. Click on OK once.

TIP: To program the Flash every time you enter Debug
mode, check Update target before Debugging.

10. Click on OK to return to the µVision main
screen. Select File/Save All.

11. You have successfully connected to the
STM32 target processor and configured the
µVision Flash programmer.

TIP: The Trace tab is where you configure the Serial
Wire Viewer (SWV). You will learn to do this later.

TIP: If you select ULINK or ULINKpro, and have the
opposite ULINK physically connected to your PC; the
error message will say “No ULINK device found”.
This message actually means that µVision found the
wrong Keil adapter connected.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

6

3) ULINKpro and µVision Configuration:
Step 1) Select the debug connection to the target:

1. Assume the ULINKpro is connected to a powered up STM32 target board, µVision is running in Edit mode (as it is
when first started – the alternative to Debug mode) and you have selected a valid project. The ULINKpro is shown
connected to the MCBSTM32C on page 4.

2. Select Options for Target or ALT-F7 and select the Debug tab. In
the drop-down menu box select the ULINK Pro Cortex Debugger as
shown here:

3. Select Settings and Target Driver window below opens up:

4. In Port: select SWJ and SW. SWV will not work with JTAG selected.

5. In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the
target processor. If there is an error displayed or is blank this must be fixed before you can continue. Check the
target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it
or click OK once to leave and then click on Settings
again.

TIP: You can do regular debugging using JTAG.
SWD and JTAG operate at approximately the same
speed. Serial Wire Viewer (SWV) will not operate in
JTAG mode unless the ULINKpro is using the Trace
Port to output the trace frames.

Step 2) Configure the Keil Flash Programmer:

1. Click on OK once and select the Utilities tab.

2. Select the ULINKpro similar to Step 2 above.

3. Click Settings to select the programming
algorithm if one is not visible.

4. Select STM32F10x High-density Flash as shown below or the one for your processor:

5. Click on OK once. Select File/Save All.

TIP: To program the Flash every time you enter Debug mode, check Update target before Debugging.

1. Click on OK to return to the µVision main screen.

2. You have successfully connected to the STM32 target processor and selected the µVision Flash programmer.

TIP: If you select ULINK or ULINKpro, and have the
opposite ULINK physically connected; the error
message will say “No ULINK device found”. This
message actually means that µVision found the wrong
Keil adapter connected.

TIP: A ULINKpro will act very similar to a ULINK2.
The trace window (Instruction Trace) will be quite
different from the ULINK2 Trace Records as it offers
additional features.

One feature is it is linked to the Disassembly and Source
windows. Double-click on a trace frame and it will be
located and highlighted in the two windows.

TIP: µVision windows can be floated anywhere. You
can restore them by setting Window/Reset Views to default.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

7

4) ST-Link from STMicroelectronics and µVision Configuration:
The economical ST-LINK V2 can be used with µVision to provide stable JTAG or SWD debugging. It provides Serial Wire
Viewer, on-the-fly Watch and Memory updates and write capability, on-the-fly breakpoint setting and Watchpoints.

1. Assume the ST-LINK is connected to a powered up STM32 target board, µVision is running in Edit mode (as it is
when first started – the alternative to Debug mode) and you have selected a valid project.

Step 1) Select the debug connection to the target:

2. Select Options for Target or ALT-F7 and select the Debug tab. In the drop-down menu box, select the ST-
LINK Debugger as shown here:

3. Select Settings and Target Driver window below opens up:

4. In Protocol select either JTAG or SWD. You need to select SWD if
your target board only has the two SWD signals and not the full set of
JTAG signals or you want to use Serial Wire Viewer.

Step 2) Configure the Keil Flash Programmer:

5. Click on OK once and select the Utilities tab.

6. Select the ST-Link Debugger similar to Step 2 above.

7. You do not select any Flash algorithm. ST-LINK does this automatically.

3. Click on OK twice to return to the µVision main screen.

4. You have successfully connected to the STM32 target processor and selected the ST-
Link as your debugger.

5. Select File/Save All.

TIP: You do not need to click on the Load icon to program the Flash. Simply enter Debug mode and the Flash will be
automatically programmed.

TIP: You will need the Initialization ini file if you want to use Serial Wire Viewer. ST-Link V1 did not support SWV but
ST-Link V2 does. µVision supports both of these adapters. See page 12: Configuring the Serial Wire Viewer (SWV): for
instructions about using the .ini file.

ST-Link V1 Segger J-Link

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

8

5) Segger J-Link and µVision Configuration:
The J-Link (black box) version 6 or higher provides Serial Wire Viewer capabilities. It provides all debug functions that the
Keil ULINK2 provides. This includes breakpoints, watchpoints, memory read/write and the RTX Viewer. J-Link displays
exceptions and PC Samples does not provide ITM, data R/W trace frames in MDK 4.14. Segger has the new J-Link Ultra
which provides faster operation. Segger also provides a J-Trace for the Cortex-M3 ETM trace but this has not been tested
with MDK for this document. µVision will do an automatic firmware update provided by Segger on the J-Link.

SWV is easily overloaded by a high output on the SWO pin especially where the Logic Analyzer is concerned. Make sure
you select only that data that you really need. Disable all others and that can include ITM 31 and 0. Lower the rate the
variable is changed or sample and display a fast changing variable. Try disabling the timestamps but some functions need it
and the trace will stop operating.

The J-Link is configured using very similar windows as with the ULINK2. This include SWV configuration. The J-Link
uses an Instruction Trace window similar to the ULINKpro. If you double click on a PC Sample frame, that instruction will
be highlighted in the Disassembly and Source windows. The J-Link does not display any ETM frames. Use the J-Trace.

If you have trouble installing the J-Link USB drivers, go to C:\Keil\ARM\Segger\USBDriver and execute InstallDrivers.exe.
If the green LED on the J-Link blinks quickly, this means the USB drivers are not installed correctly. This LED should
normally be on steady when in Edit mode and off with periodic blinks when in Debug mode.

1. Assume the J-Link is connected to a powered up STM32 target board, µVision is running in Edit mode (as it is when
first started – the alternative to Debug mode) and you have selected a valid project.

Step 1: Select the debug connection to the target:

2. Select Options for Target or ALT-F7 and select the Debug tab. In the drop-down menu box select the J-LINK
or J-Trace as shown here:

3. Select Settings and Target Driver window below opens up:

4. In Port: select SW. SWV will not work with JTAG selected.

5. In the SW Device area: ARM CoreSight SW-DP MUST be
displayed. This confirms you are connected to the target processor. If there is an error displayed or is blank this
must be fixed before you can continue. Check the target power supply. Cycle power to the J-Link and the board.

Step 2: Configure the Keil Flash Programmer:

6. Click on OK once and select the Utilities tab.

7. Select the ST-Link Debugger similar to Step 2
above.

8. Click Settings to select the programming algorithm
if one is not visible.

9. Select STM32F10x High-density Flash as shown in
the directions for the ULINK2 or the algorithm for
your processor.

6. Click OK twice to return to the main screen.

7. You have now selected the J-Link as your adapter,
successfully connected to the STM32 target
processor and configured the Flash programmer.

Configure the SWV Trace

This is done the same way as the ULINK2 or ULINK-ME. J-Link has an extra setting in the trace configuration window to
store trace information on your hard drive called Use Cache File. Hover your mouse over this to get an explanation.

It is important with all Serial Wire Viewer configurations to choose as few signals as possible. The single wire SWO pin is
easily overloaded.

TIP: It is easy to miss programming the Flash with your latest .axf executable. Select either the
Verify Code Download in the Target/Debug/Settings as shown here or select Update Target before

Debugging: or make sure you program the Flash manually by clicking on the Load icon.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

9

Part B)
1) Blinky Example Programs using a ULINK2 or ULINK-ME:
We will connect a Keil MDK development system using real target hardware and a ULINK2 or ULINK-ME. These
instructions use a Keil MCBSTM32C board. It is possible to use the ULINKpro for this example but you must configure it.
The project referenced below is pre-configured to use ULINK2. You can also use a ST-Link V1 or V2.

1. Connect the equipment as pictured on the first page.

2. Start µVision by clicking on its desktop icon.

3. Select Project/Open Project. Open the file C:\Keil\ARM\Boards\Keil\MCBSTM32C\Blinky\Blinky.uvproj.

4. Make sure “MCBSTM32C” is selected.
This is where you create and select different target configurations such as to execute a program in RAM or Flash.

5. This project is configured by default to use either the ULINK2 or ULINK-ME.

6. Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

7. Program the STM32 flash by clicking on the Load icon: Progress will be indicated in the Output Window.

8. Enter Debug mode by clicking on the Debug icon. Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not for RAM operation or the simulator.

9. Click on the RUN icon. Note: you stop the program with the STOP icon.

The LEDs on the STM32 board will now blink at a rate determined by the setting of POT1

Now you know how to compile a program, load it into the STM32 processor Flash, run it and stop it.

STM3210C-EVAL Board: No LEDs will light but the program will run. Rotate RV1and monitor PE8 or PE9 with a meter.

2) Hardware Breakpoints:
1. With Blink running, double-click in the left margin on a darker gray block in the source file Blinky.c between Lines

55 through 61 as shown below:

2. A red block is created and soon the program will stop at this point.

3. The yellow arrow is where the program counter is pointing to in both the disassembly and source windows.

4. The cyan arrow is a mouse selected pointer and is associated with the yellow band in the disassembly window.

5. Note you can set and unset hardware breakpoints while the program is running.

6. The STM32 has 6 hardware
breakpoints. A breakpoint does not
execute the instruction it is set to.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

10

3) Locals Window:
Whenever the program is stopped, the Locals window will display the local variables for the active function. If possible, the
values of the local variables will be displayed and if not the message <out of scope> will be displayed.

1. Shown is the Locals window. Leave the hardware breakpoint active from the previous page.

2. AD_val contains the pot position value.

3. Rotate the pot to a new position and click on RUN.

4. Note AD_val is updated each time the program stops.

TIP: This is standard “Stop and Go” debugging. ARM
CoreSight debugging technology is much better than this. You
can display this variable updated in real-time while the program
is running. No additions or changes to your code are required.

4) Call Stack Window:
This window displays the list of called functions when the program is stopped. This is very useful for debugging when you
need to know which functions have been called and are stored on the stack.

The example Blinky.c does not have any function calls so the
Call Stack window is a simple one.

1. Click on the Call Stack tab.

2. This widow opens up showing two local variables:

3. Each time you click on RUN this will be updated.

4. Remove the breakpoint by double-clicking on it.

5) Variables for Watch and Memory Windows:
It would be more useful if we could see the values of variables while the program is still running. Even more valuable would
be the ability to change these values while the program is running. CoreSight and µVision can do this.

CoreSight cannot display local variables on-the-fly so these must first be converted into static or global variables.

How to convert Local Variables to be viewable in the Watch or Memory windows:
All you need to do is to make the variable AD_val static !

1. In the declaration for AD_val in Blinky.c, add the keyword static and make i a separate int variable like this:
 int main (void) {

 static int AD_val ;
int i;

2. This will ensure that variable AD_val always exists and is visible to µVision.

3. Exit debug mode. TIP: You can edit files in edit or debug mode, but can compile them only in edit mode.

4. Compile the source files by clicking on the Rebuild icon. Hopefully they compile with no errors or warnings.

5. To program the Flash, click on the Load icon. . A progress bar will be displayed at the bottom left.

The next page describes how to enter variables in the Watch and Memory windows.

TIP: You will have to re-enter AD_val into a window after modifying it because it isn’t the same variable anymore – it is a
static variable now instead of a local. Drag ‘n Drop is the fastest way as you will see on the next page.

TIP: µVision in conjunction with CoreSight can display in real-time global and static variables, structures, peripheral
registers and physical memory locations. Local variables cannot be displayed because they are active only when in scope
while their function is executed. Convert locals to static or global variables to see them. This conversion usually means the
variable is stored in volatile memory rather than a CPU register. There will be a small time penalty incurred.

This feature is available on any Keil ULINK or the Segger J-Link version 6 or later.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

11

6) Watch and Memory Windows and how to use them:
The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M3 processors. It is also possible to “put” or insert values into these memory
locations in real-time. It is possible to “drag and drop” variables into windows or enter them manually.

Watch window:
1. You can do the following steps while the CPU is running. Click on RUN if desired.

2. Find the static variable AD_val in Blinky.c. This was changed from a local to a static var in the previous example.

3. Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.

4. In Blinky.c, block AD_val, click and hold and drag it into Watch 1.
Release it and it will be displayed updating as shown here:

5. Rotate POT1 to see the value update.

6. You can also enter a variable manually by double-clicking or
pressing F2 and using copy and paste or typing the variable.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable
and hold it over the tab you want to open; when it opens, move your
mouse into the window and release the variable.

6. Double click on the value for AD_val in the Watch window. Enter the value 0 and press Enter. 0 will be inserted
into memory in real-time. It will quickly change as the variable is updated often by the program. You can also do
this in the Memory window with a right-click and select Modify Memory.

Memory window:
1. Drag ‘n Drop AD_val into the Memory 1 window or enter it manually. Rotate the pot and watch the window.

2. Note the value of AD_val is displaying its address in Memory 1 as if it is a pointer. This is useful to see what
address a pointer is pointing to but this not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name and press Enter. Now the physical address is shown
(0x2000_00014).

4. Right click in the memory window and select Unsigned/Int.

5. The data contents of AD_val is displayed as shown here:

TIP: You are able to configure the Watch and Memory windows and
change their values while the program is still running in real-time without
stealing any CPU cycles.

1. AD_val is now updated in real-time. This is ARM CoreSight technology working.

2. Stop the CPU and exit debug mode for the next step. and

TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.

This is just a small example of the capabilities of Serial Wire Viewer. We will demonstrate more features..

How It Works:
µVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M3 is a Harvard
architecture. This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed,
there is plenty of time for the CoreSight debug module to read or write to memory without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and µVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

You are not able to view local variables while the program is running. They are visible only when the program is stopped in
their respective functions.

STM3210C-EVAL Board: The Watch and Memory windows will display exactly the same on the ST board.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

12

7) Configuring the Serial Wire Viewer (SWV):
Serial Wire Viewer provides program information in real-time.

A) SWV for ULINK2 or ULINK-ME: (ULINKpro instructions are on the next page)

Configure SWV:

1. µVision must be stopped and in edit mode (not debug mode).

2. Select Options for Target or ALT-F7 and select the Debug tab.

3. In the box Initialization File: enter ..\Blinky_ULp\STM32_SWO.ini You can use the Browse button:

4. Click on Settings: beside the name of your adapter (ULINK Cortex Debugger) on the right side of the window.

5. Select the SWJ box and select SW in the Port: pulldown menu.

6. In the area SW Device must be displayed: ARM CoreSight SW-DP. SWV will not work with JTAG.

7. Click on the Trace tab. The window below is displayed.

8. In Core Clock: enter 72 and select the Trace Enable box. This is the default frequency for many STM32 projects.

9. Select Periodic and leave everything else at default. Periodic activates PC Samples.

10. Click on OK twice to return to the main µVision menu. SWV is now configured.

Note: Any of these ini files will work in Step 3:
STM32_SWO.ini
C:\Keil\ARM\Boards\MCBSTM32C\Blinky_Ulp

STM32F10x_DBG.ini
C:\Keil\ARM\Boards\MCBSTM32E\Blinky

STM32DBG.ini
C:\Keil\ARM\Boards\MCBSTM32E\STLIB_Blinky

These are set by default to SWV operation. You must change
them to use the Trace Port and ETM.

To Display Trace Records:

1. Enter Debug mode.

2. Click on the RUN icon. .

3. Open Trace Records window by clicking on the small arrow beside the Trace icon:

4. The Race Records window will open and display PC Samples as shown below:

TIP: If you do not see PC Samples as shown and either nothing or erratic frames with strange data, the trace is not
configured correctly. The most probable cause is the Core Clock: frequency is wrong.

All frames have a timestamp displayed in CPU
cycles and accumulated time.

Double-click inside this window to clear it.

If you right click inside this window you can see
how to filter various types of frames out. No
other frames than PC Samples exist in this simple
example.

TIP: SWV is easily overloaded as indicated by
an “x” in the OVF or Dly column.

Select only that information needed.

There are more features of Serial Wire Viewer.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

13

B) SWV for ULINKpro:
Configure SWV: This uses the SWO output pin rather than the 4 bit Trace Port that is normally used with the ULINKpro.

1. µVision must be stopped and in edit mode (not debug mode).

2. Select Options for Target or ALT-F7 and select the Debug tab.

3. In the box Initialization File: enter ..\Blinky_ULp\STM32_SWO.ini You can use the Browse button:

4. Click on Settings: beside the name of your adapter (ULINK Pro Cortex Debugger) on the right side of the window.

5. Click on the Trace tab. The window below is displayed.

6. Core Clock: No need to enter anything. ULINKpro determines this automatically. Select the Trace Enable box.

7. In the Trace Port select Serial Wire Output – Manchester. Selecting UART/NRZ will cause an error.

8. Select Periodic and leave everything else at default. Selecting Periodic activates PC Samples.

9. Click on OK twice to return to the main µVision menu. SWV is now configured.

TIP: Sync Trace Port with 4 bit Data field sends the trace records out the 4 bit trace port rather than the single pin SWO.
The Trace Port is faster and must be selected for ETM trace. It is available only with the ULINKpro.
We will examine this setting later. You could use it now
if you prefer.

Note: Any of these ini files will work in Step 3:
STM32_SWO.ini
C:\Keil\ARM\Boards\MCBSTM32C\Blinky_Ulp

STM32F10x_DBG.ini
C:\Keil\ARM\Boards\MCBSTM32E\Blinky

STM32DBG.ini
C:\Keil\ARM\Boards\MCBSTM32E\STLIB_Blinky

These are set by default to SWV operation. You must
change them to use the Trace Port and ETM.

Display Trace Records:

1. Enter Debug mode.

2. Click on the RUN icon. .

3. Open the Instruction Trace window by clicking on the small arrow beside the Trace icon:

4. The Instruction Trace window will open and display PC Samples as shown below:

TIP: The Instruction Trace window is different that the Trace Records window provided with the ULINK2. Note the
disassembled instructions are displayed and if available, the source code is also displayed. Clicking on a PC Sample line will
take you to that place in the source and disassembly windows.

If you want to see all the program counter values, use the ETM trace available with most STM32 processors. A Ulinkpro
using ETM trace will also provide Code Coverage, Performance Analysis and Execution Profiling in real time.

You cannot clear the Instruction Trace window by double-clicking inside it. To clear the trace, exit and re-enter debug mode.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

14

8) Using the Logic Analyzer (LA) with the ULINK2 or ULINK-ME:
This example will use the ULINK2 with the Blinky example. Please connect a ULINK2 or ULKINK-ME to your STM32
board and configure it for SWV trace. If you want to use a ULINKpro you will have to make appropriate modifications.

µVision has a graphical Logic Analyzer (LA) window. Up to four variables can be displayed in real-time using the Serial
Wire Viewer. The Serial Wire Output pin is easily overloaded with many data reads and/or writes and data can be lost.

1. Create a global variable called count. Enter int count; before main() near line 16 in Blinky.c.

2. Enter count ++; just after the for loop near line 60 in Blinky.c:
 for (i = 0; i < ((AD_val << 8) + 100000); i++);
 count ++;

3. Compile the source files by clicking on the rebuild icon.

4. Program the STM32 flash by clicking on the Load icon:

5. Enter debug mode .

6. Select Debug/Debug Settings and select the Trace tab.

7. Unselect Periodic and EXCTRC. This is to prevent overload on the SWO pin. Click OK twice.

8. Run the program. . Note: You can configure the LA while the program is running or stopped.

9. Open View/Analysis Windows and select Logic Analyzer or select the LA window on the toolbar.

10. Locate the variable count you created in Blinky.c. It is declared near line 16.

11. Block count and drag it into the LA window and release it. Or click on Setup in the LA and enter it manually.

12. Click on Setup and set Max: in Display Range to 0xFF. Click on Close. The LA is completely configured now.

13. Drag and drop count into the Watch 1 window. It should be incrementing if Blinky is running.

14. Adjust the Zoom OUT icon in the LA window to about 1 second or so to get a nice ramp as shown below.

15. In the Watch 1 window, double-click on the count value and enter 0 and press Enter.

16. This value will be displayed in the LA window as shown here: You can enter any reasonable value into count.

TIP: The Logic Analyzer can display static
and global variables, structures and arrays. It
can’t see locals: make them static or global.
To see peripheral registers, enter them into the
Logic Analyzer and read or write to them.

1. Select Debug/Debug Settings and
select the Trace tab.

2. Select On Data R/W Sample. Click
OK twice.

3. Run the program. .

4. Open the Trace Records window.

5. The window similar below opens up:

6. The first line below says:
The instruction at 0x0800_04A4 caused a write
of data 0x0000_08A8 to address 0x2000_0020
at the listed time in Cycles or Time.

TIP: The PC column is activated when you selected On
Data R/W Sample in Step 2. You can leave this
unselected to save bandwidth on the SWO pin.

TIP: The ULINKpro will give a more sophisticated Instruction Trace window. Watchpoints are described on the next page.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

15

9) Watchpoints: Conditional Breakpoints
The STM32 Cortex-M3 processors have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The
Logic Analyzer uses watchpoints in its operations. This means in µVision you must have two variables free in the Logic
Analyzer to use Watchpoints.

1. Using the example from the previous page, stop the program. Stay in Debug mode.

2. Click on Debug and select Breakpoints or press Ctrl-B.

3. The SWV Trace does not need to be configured to use Watchpoints. However, we will use it in this exercise.

4. In the Expression box enter: “count == 0x15” without the quotes. Select both the Read and Write Access boxes.

5. Click on Define and it will be accepted as shown here:

6. Click on Close.

7. Double-click in the Trace Records window to clear it.

8. Set count in Watch 1 window to zero.

9. Click on RUN.

10. When count equals 3, the program will stop. This is how a
Watchpoint works.

11. You will see count incremented to 0x15 in the Logic
Analyzer as well as in the Watch window.

12. Note the data write of 0x15 in the Trace Records window shown below in the Data column. The address the data
written to and the PC of the write instruction is displayed as well as the timestamps. This is with a ULINK2 or
ULINK-ME. The ULINKpro will display a different window.

13. There are other types of expressions
you can enter and are detailed in the
Help button in the Breakpoints
window.

14. To repeat this exercise, set count
to a number less than 15 or click on
RUN a few times to get past the
trigger value of 0x15.

15. When finished, delete this
Watchpoint by selecting Debug and
select Breakpoints and select Kill
All.

16. Leave Debug mode.

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the
configuration area. Clicking on Define will create another Watchpoint. You should delete the old one by highlighting it and
click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression in Current Breakpoints as shown above allows you to temporarily unselect or
disable a Watchpoint without deleting it.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

16

10) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example
Keil provides RTX, a full feature RTOS. RTX is included for no charge as part of the Keil MDK full tool suite. It can have
up to 255 tasks and no royalty payments are required. If source code is required, this is included in the Keil RL-ARM™
Real-Time Library which also includes USB, CAN, TCP/IP networking and a Flash File system. This example explores the
RTOS project. Keil will work with any RTOS. A RTOS is just a set of C functions that gets compiled with your project.

1. This exercise will work with the ST STM3210C-EVAL board except the LCD and LEDs will not be active.

2. Start µVision by clicking on its icon on your desktop if it is not already running.

3. Select Project/Open Project and open the file C:\Keil\ARM\Boards\Keil\MCBSTM32C\RTX_Blinky\Blinky.uvproj.

4. RTX_Blinky uses the ULINK2 as default: if you are using a ULINKpro, please configure it as described on page 4
and configure the Serial Wire Viewer on page 13. You only have to do this once for each project – it will be saved
in the project file. Select File/Save All.

5. Compile the source files by clicking on the Rebuild icon. . They will compile with no errors or warnings.

6. To program the Flash manually, click on the Load icon. . A progress bar will be at the bottom left.

7. Enter the Debug mode by clicking on the debug icon and click on the RUN icon.

8. The LEDs will blink indicating the four waveforms of a stepper motor driver. Click on STOP .

The Configuration Wizard for RTX:
1. Click on the RTX_Conf_CM.c source file tab as shown below on the left. You can open it with File/Open.

2. Click on Configuration Wizard at the bottom and your view will change to the Configuration Wizard.

3. Open up the individual directories to show the various configuration items available.

4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.

5. This is a great feature as it is much easier changing items here than in the source code.

6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.

7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.

8. The new µVision4 System Viewer windows are created in a similar fashion. Select View/System Viewer or click

on the icon. The window similar to the on the far right opens.

TIP: If you don’t see any System Viewer entries, either the System Viewer is not available for your processor or you are
using an older example project and it needs to be “refreshed” by the following instructions:

Exit Debug mode. Click on the Target Options icon and select the Device tab. Note which processor is
currently selected. Select a different one, reselect the original processor and click on OK. System Viewer is
now activated. Close this window and select File/Save All.

Text Editor: Source Code Configuration Wizard System Viewer

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

17

11) RTX Kernel Awareness using Serial Wire Viewer (SWV):
Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS
companies also provide awareness plug-ins for µVision.

1. Run RTX_Blinky again by clicking on the Run icon.

2. Open Debug/OS Support and select RTX Tasks and System
and the window on the right opens up. You might have to
grab the window and move it into the center of the screen.
These values are updated in real-time using the same
technology as used in the Watch and Memory windows.

3. Open Debug/OS Support and select Event Viewer. There is
probably no data displayed because SWV is not configured.

RTX Viewer: Configuring Serial Wire Viewer (SWV):
We must activate Serial Wire Viewer to get the Event Viewer working.

1. Stop the CPU and exit debug mode.

2. Click on the Options icon next to the target box.

3. Select the Debug tab. In the box Initialization File: enter
..\Blinky_ULp\STM32_SWO.ini or use the Browse icon.

4. Click the Settings box next to ULINK Cortex Debugger.

5. In the Debug window as shown here, make sure SWJ is
checked and Port: is set to SW and not JTAG.

6. Click on the Trace tab to open the Trace window.

7. Set Core Clock: to 72 MHz and select Trace Enable.

8. Unselect the Periodic and EXCTRC boxes as shown here:

9. ITM Stimulus Port 31 must be checked. This is the method
the RTX Viewer gets the kernel awareness information out to
be displayed in the Event Viewer. It is slightly intrusive.

10. Click on OK twice to return to µVision.
The Serial Wire Viewer is now configured in µVision.

11. Enter Debug mode and click on RUN to start the program.

12. Select “Tasks and System” tab: note the display is updated.

13. Click on the Event Viewer tab.

14. This window displays task events in a graphical format as
shown in the RTX Kernel window below. You probably have
to change the Range to about 5 seconds by clicking on the
ALL and then the + and – icons.

TIP: View/Periodic Window Update must be selected !

TIP: If Event Viewer doesn’t work, open up the Trace Records and
confirm there are good ITM frames present. Is the Core Clock correct ?

Cortex-M3 Alert: µVision will update all RTX information in real-
time on a target board due to its read/write capabilities as already
described. The Event Viewer uses ITM and is slightly intrusive.

You will not have to stop the program to view this data. No CPU
cycles are used. Your program runs at full speed. No instrumentation
code need be inserted into your source. You will find this feature very
useful ! Remember, RTX is included free with MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro or Segger J-Link for these RTX Kernel Awareness windows.

Note: The Event Viewer is
temporarily disabled in MDK 4.14.
Will be activated in MDK 4.20

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

18

12) Logic Analyzer Window: View variables real-time in a graphical format:
µVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX_Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. Close the RTX Viewer windows. Stop the program and exit debug mode.

2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

3. Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as
shown below: phasea=1; and phasea=0; :the first two lines are shown
added at lines 081 and 084 (just after LED_On and LED_Off function
calls). For each of the four tasks, add the corresponding variable assignment
statements phasea, phaseb, phasec and phased.

4. We do this because in this simple program there are not enough suitable
variables to connect to the Logic Analyzer.

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: just make them
static. To see peripheral registers merely read or write to them and enter them into the Logic Analyzer.

5. Rebuild the project. Program the Flash .

6. Enter debug mode .

7. You can run the program at this point.

8. Open View/Analysis Windows and select Logic Analyzer or

select the LA window on the toolbar.

Enter the Variables into the Logic Analyzer:
9. Click on the Blinky.c tab. Block phasea, click, hold and drag

up to the Logic Analyzer tab (don’t let go yet!)

10. When it opens, bring the mouse down anywhere into the Logic Analyzer window and release.

11. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as
shown. Now we have to adjust the scaling.

12. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.

13. Click on Close to go back to the LA window.

14. Using the OUT and In buttons set the range to 20 seconds. Move the scrolling bar to the far right if needed.

15. You will see the following waveforms appear. Click to mark a place move the cursor to get timings. Place the
cursor on one of the waveforms and get timing and other information as shown in the inserted box labeled phasec:

TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.

TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

19

13) Serial Wire Viewer (SWV) and how to use it: (with ULINK2)
a) Data Reads and Writes: (Note: Data Reads but not Writes are disabled in the current version of µVision).

You have configured Serial Wire Viewer (SWV) two pages back in Section 11 under Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with µVision and a ULINK2, ULINK-ME,
ULINKpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. A user program runs at full
speed and needs no code stubs or instrumentation software added to your programs.

1. Use RTX_Blinky from the last exercise. Enter Debug mode and run the program if not already running.

2. Select View/Trace/Records or click on the Trace icon and select Records.

3. The Trace Records window will open up as shown here:

4. The ITM frames are the data from the RTX Kernel
Viewer which uses Port 31 as shown under Num.
To turn this off select Debug/Debug Settings and
click on the Trace tab. Unselect ITM Stim. Port 31.
TIP: Port 0 is used for Debug printf Viewer.

5. Unselect EXCTRC and Periodic.

6. Select On Data R/W Sample.

7. Click on OK to return.

8. Click on the RUN icon.

9. Double-click anywhere in the Trace records
window to clear it.

10. Only Data Writes will appear now.
TIP: You could have also right clicked on the Trace
Records window to filter the ITM frames out but
this will not reduce any SWO pin overloads.

What is happening here ?

1. When variables are entered in the Logic Analyzer
(remember phasea through phased ?), the reads
and/or writes will appear in Trace Records.

2. The Address column shows where the four
variables are located.

3. The Data column displays the data values written to
phasea through phased.

4. PC is the address of the instruction causing the
writes. You activated it by selecting On Data R/W
Sample in the Trace configuration window.

5. The Cycles and Time(s) columns are when these
events happened.

TIP: You can have up to four variables in the Logic
Analyzer and subsequently displayed in the Trace Records
window.

TIP: If you select View/Symbol Window you can see where
the addresses of the variables are.

Note: You must have Browser Information selected in the
Options for Target/Output tab to use the Symbol Browser.

TIP: ULINKpro and the Segger J-Link adapters display the
trace frames in a different style trace window.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

20

b) Exceptions and Interrupts:
The STM32 family using the Cortex-M3 processor has many interrupts and it can be difficult to determine when they are
being activated. SWV on the Cortex-M3 processor makes the display of exceptions and interrupts easy.

1. Open Debug/Debug Settings and select the Trace tab.

2. Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0. (this is to minimize overloading the SWO port)

3. Select EXCTRC as shown here:

4. Click OK twice.

5. The Trace Records should still be open. Double
click on it to clear it.

6. Click RUN to start the program.

7. You will see a window similar to the one below
with Exceptions frames displayed.

What Is Happening ?

1. You can see two exceptions (11 & 15) happening.

 Entry: when the exception enters.

 Exit: When it exits or returns.

 Return: When all the exceptions have returned.
This is useful to detect tail-chaining.

2. Num 11 is SVCall from the RTX calls.

3. Num 15 is the Systick timer.

4. In my example you can see one data write
from the Logic Analyzer.

5. Note everything is timestamped.

6. The “X” in Ovf is an overflow and some
data was lost. The “X” in Dly means the
timestamps are delayed because too much
information is being fed out the SWO pin.

TIP: The SWO pin is one pin on the Cortex-M3
family processors that all SWV information is fed out.
The exception is the ULINKpro which can also send this out the 4 bit Trace Port. There are limitations on how much
information we can feed out this one pin. These exceptions are happening at a very fast rate.

1. Select View/Trace/Exceptions or click on the Trace icon and select Exceptions.

2. The next window opens up and more information about the exceptions is displayed as shown.

3. Note the number of times these have happened under Count. This is very useful information in case interrupts come
at rates different from
what you expect.

4. ExtIRQ are the peripheral
interrupts.

5. You can clear this trace
window by double-
clicking on it.

6. All this information is
displayed in real-time and
without stealing CPU
cycles !

TIP: Num is the exception
number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals, start at Num 16. For
example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 = 16 – 16 = ExtIRQ 0.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

21

c) PC Samples:
Serial Wire Viewer can display a sampling of the program counter. If you need to see all the PC values, use the ETM trace
with a Keil ULINKpro. ETM trace also provides Code Coverage, Execution Profiling and Performance Analysis.

SWV can display at best every 64th instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

1. Open Debug/Debug Settings and select the Trace tab.

2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.

3. Click on OK twice to return to the main screen.

4. Close the Exception Trace window
and leave Trace Records open.
Double-click to clear it.

5. Click on RUN and this window
opens:

6. Most of the PC Samples are
0x0800_0408 which is a branch to
itself in a loop forever routine.

7. Stop the program and the
Disassembly window will show this
Branch:

8. Not all the PCs will be captured. Still,
PC Samples can give you some idea of where your program is; especially if it
is caught in a tight loop like in this case.

9. Note: you can get different PC values
depending on the optimization level set
in µVision.

10. Set a breakpoint in one of the tasks.

11. Run the program and when the
breakpoint is hit, the program and trace
collection is stopped.

12. Scroll to the bottom of the Trace
Records window and you might see the
correct PC value displayed. Usually, it will be a different PC depending on when the sampling took place.

13. Remove the breakpoint for the next step.

TIP: In order to see all
the program Counter
values, use ETM trace
with the ULINKpro.
Most STM32
processors have ETM.

ETM is much superior
for debugging than PC
Samples.

µVision with a
ULINKpro uses ETM
to provide Code
Coverage, Execution
Profiling and
Performance Analysis.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

22

14) ITM (Instruction Trace Macrocell) a printf Feature:
Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done
through ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code.
After the write to the ITM port, zero CPU cycles are required to get the data out of the processor and into µVision for display
in the Debug (printf) Viewer window.

1. Open the project Blinky.uvproj (not RTX Blinky).

2. Add this code to Blinky.c. A good place is near line 17, just after the declaration of count.
#define ITM_Port8(n) (*((volatile unsigned char *)(0xE0000000+4*n)))

3. In the main function in Blinky.c right after the variable count enter these lines after near line 63:
ITM_Port8(0) = num + 0x30; /* displays count value: +0x30 converts to ASCII */

while (ITM_Port8(0) == 0);

ITM_Port8(0) = 0x0D;

while (ITM_Port8(0) == 0);

ITM_Port8(0) = 0x0A;

4. Rebuild the source files, program the Flash memory and enter debug mode.

5. Open Debug/Debug Settings and select the Trace tab.

6. Unselect On Data R/W Sample, PC Sample and ITM Port 31. (this is to help not overload the SWO port)

7. Select EXCTRC and ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer.

8. Click OK twice.

9. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

10. In the Debug (printf) Viewer you will see the ASCII value of num appear.

11. Change the POT and the display rate will change.

12. How else could you detect this interesting effect of the program without SWV ?

Trace Records
1. Open the Trace Records if not already open. Double click on it to clear it.

2. You will see a window such as the one below with ITM and Data R/W frames.

What Is This ?
1. ITM 0 frames (Num column) are our ASCII characters from num with carriage

return (0D) and line feed (0A) as displayed the Data column.

2. All these are timestamped in both CPU cycles and time in seconds.

3. Note the “X” in the Dly column. This means the timestamps might/are not be correct due to SWO pin overload.

ITM Conclusion
The writes to ITM Stimulus Port 0 are
intrusive and are usually one cycle. It takes
no CPU cycles to get the data out the STM32
processor via the Serial Wire Output pin.

This is much faster than using a UART and
none of your peripherals are used.

TIP: It is important to select as few options in
the Trace configuration as possible to avoid
overloading the SWO pin. Enter only those
features that you really need.

Super TIP: ITM_SendChar is a useful function you can use to send characters. It is found in the header core.CM3.h.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

23

Part C)
Using the ULINKpro with ETM Trace:
The examples previously shown with the ULINK2 will also work with the ULINKpro. There are two major differences:

1) The window containing the trace frames is now called Instruction Trace. More complete filtering is available.

2) The SWV (Serial Wire Viewer) data is sent out the SWO pin with the ULINK2 using UART encoding. The
ULINKpro can send SWV data either out the SWO pin using Manchester encoding or through the 4 bit Trace Port.
This is done so the ULINKpro can support those Cortex-M3 processors that have SWV but not ETM. The trace port
is found on the 20 pin Hi-density connector. It is configured in the Trace configuration window as shown below.
ETM data is always sent out the Trace Port and if ETM is being used, SWV data is also sent out this port.

ULINKpro offers:

1) Faster Flash programming than the ULINK2.

2) All Serial Wire Viewer features as the ULINK2 does.

3) Adds ETM trace which provides records of all Program Counter values. ULINK2
provides only PC Samples and is not nearly as useful.

4) Code Coverage: were all assembly isntructions executed ?

5) Performance Analysis: where the processor spent its time.

6) Execution Profiling: How long instructions, ranges of instructions, functions or C source code took in both time
and CPU cycles as well as number of times these were executed.

 1) Blinky_ULp Example:
The project in C:\Keil\ARM\Boards\Keil\MCBSTM32C\Blinky_ULp is preconfigured for the ULINKpro.

1. Connect the ULINKpro to the MCBSTM32C board using the Cortex Debug + ETM connector.

2. Start µVision by clicking on its desktop icon.

3. Select Project/Open Project. Open the file C:\Keil\ARM\Boards\Keil\MCBSTM32C\Blinky_ULp\Blinky.uvproj.

4. Compile the source files by clicking on the Rebuild icon. . You can also use the Build icon beside it.

5. Program the STM32 flash by clicking on the Load icon: Progress will be indicated in the Output Window.

6. Enter Debug mode by clicking on the Debug icon. Select OK if the Evaluation Mode box appears.

7. DO NOT CLICK ON RUN YET !!!

8. Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET until µVision halted the program at the start of main() since Run To main is selected in µVision.

9. In this case, # 607 shows the last instruction to be executed. (BX r0). In the Register window the PC will display the

value of the next instruction to be executed (0x0800_045A in my case). Click on Single Step once.

10. The instruction BL.W will display:

11. Scroll to the top of the Instruction Trace window to frame # 1. This is the first instruction executed after RESET.

12. If you use the Memory window at look at location 0x4, you will find the address of the first instruction there and this
will match with that displayed in frame # 1. In my case it is 0x8000_0164 + 1 (+1 says it is a Thumb instruction).

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

24

2) Code Coverage:

13. Click on the RUN icon. After a second or so stop the program with the STOP icon.

14. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:

15. This is Code Coverage provided by ETM trace. This indicates if an
instruction has been executed or not.

Colour blocks indicate which assembly instructions have been executed.

1. Green: this assembly instruction was executed.

2. Gray: this assembly instruction was not executed.

3. Orange: a Branch is always not taken.

4. Cyan: a Branch is always taken.

5. Light Gray: there is no assembly instruction here.

6. RED: Breakpoint is set here.

7. Next instruction to be executed.

In the window on the right you can easily see examples of each type of Code
Coverage block and if they were executed or not and if branches were taken (or not).

Why was 0x0800_046E never executed ? Or 0x0800_0490 ? You should devise tests to execute these instructions so you
can test the effects.

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions cannot be tested. Some agencies
such as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.

Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage. You
can Clear and Update this window with the buttons provided.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

25

3) Performance Analysis (PA):
Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and more accuracy is improved with longer runs.
Small loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides only ETM PA.

Keil provides Performance Analysis with the µVision simulator or with ETM and the ULINKpro. SWV PA is not offered.
The number of total calls made as well as the total time spent in each function is displayed. A graphical display is generated
for a quick reference. If you are optimizing for speed, work first on those functions taking the longest time to execute.

1. Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. This clears the PA window and resets the STM32 and reruns it to
main() as before.

4. Expand some of the module names as shown below.

5. Note the execution information that has been collected in this initial short run. Both times and number of calls is
displayed.

6. We can tell that most of the time at this point in the program has been spent in the Reset_Handler.

7. Click on the RUN icon.

8. Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

9. Select Functions from the pull down box as shown here and notice the difference.

10. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.

11. When you are done, exit Debug mode.

TIP: You can also click on the RESET icon but the processor will stay at the initial PC and will not run to main().
You can type g, main in the Command window to accomplish this.

When you click on RESET, the Initialization File .ini will no longer be in effect and this can cause SWV and/or SWV to stop
working. Exiting and re-entering Debug mode executes the .ini script again.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

26

4) Execution Profiling:
Execution Profiling is used to display how much time a C source line took to execute and how many times it was called.
This information is provided by the ETM trace in real time while the program keeps running.
The µVision simulator also provides Execution Profiling.

1. Enter Debug mode.

2. Select Debug/Execution Profiling/Show Time.

3. Click on RUN.

4. In the left margin of the disassembly and C source
windows will display various time values.

5. The times will start to fill up as shown below right:

6. Click inside the yellow margin of Blinky.c to refresh it.

7. This is done in real-time and without stealing CPU cycles.

8. Hover the cursor over a time and ands more information appears as in the yellow box here:

9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the
left margin.

Outlining:
Each place there is a small square with a “-“ sign can be collapsed down to compress the associated source files together.

1) Click in the square near the while(1) loop near line 84 as shown here:

2) Note the section you blocked is now
collapsed and the times are added together
where the red arrow points.

3) Click on the + to expand it.

4) Stop the program and exit Debug mode.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

27

5) In-the-Weeds Example:
Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and is not hard to use.

If a Bus Fault occurs in our example, the CPU will end up at 0x800_016A as shown in the disassembly window below. This
is the Bus Fault handler. This is a branch to itself and will run this Branch instruction forever. The trace buffer will save
millions of the same branch instructions. The Instruction Trace window below shows this branch forever. This is not useful.

This exception vector is found in the file startup_stm3210f10x_cl.s. If we set a breakpoint by double-clicking on the Hard
Fault handler and run the program: at the next Bus Fault event the CPU will again jump to the Hard Fault handler.

The difference this time is the breakpoint will stop the CPU and also the trace collection. The trace buffer will be visible and
extremely useful to investigate and determine the cause of the crash.

1. Using the Blinky example from the previous exercise, exit and re-enter Debug mode to clear the trace.

2. Locate the Hard fault vector near line 169 in the disassembly window or in startup_stm3210f10x_cl.s.

3. Set a breakpoint at this point. A red
block will appear.

4. Run the Blinky example for a few
seconds and click on STOP.

5. In the Disassembly window, scroll
down until you find a POP instruction.
I found one at 0x8000_05AA.

6. Right click on the POP instruction and
select Set Program Counter. This will be the next instruction executed.

7. Click on RUN and immediately the program will stop on the Hard Fault exception branch instruction.

8. Examine the Instruction Trace window and you find this POP plus everything else that was previously executed.

How this was done:

To create the hard fault, a POP instruction was executed out of order. A breakpoint was set on the Hard Fault Handler
location 0x800_016A. The program was run and stopped. A POP was located by scrolling down through the disassembly
window. The PC was set to the POP at this location by right clicking on it and selecting Set PC. Click on RUN and the CPU
immediately goes to the Hard Fault Handler and stops because the stack had a non-valid return PC address to be popped.

TIP: You might have to do a step-out-of to clear out all other running interrupt routines running otherwise you will just
return from an interrupt rather than crash. See the µVision Call Stack window for information on interrupts running.

 The frames above the POP are a record of all previous instructions executed and tells you the complete program flow.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

28

6) Configuring the ULINKpro ETM Trace:
The ULINKpro was configured for SWV operation using the SWO pin and Manchester encoding on page 11. We will
activate ETM trace here.

1) Select a project. Please use MCBSTM3220F Blinky.

2) Configure ULINKpro for the STM32 processor as described on page 6: ULINKpro and µVision Configuration:
Do not forget to configure the Flash programmer as well.

3) µVision must be stopped and in edit mode (not debug mode).

4) Select Options for Target or ALT-F7 and select the Debug tab.

5) In the box Initialization File: an ini file will be there. Click on the Edit box. The specified ini file will open.

6) Click OK. At the bottom of the ini file, click on the Configuration Wizard tab.

7) Expand the menu and select Synchronous: Trace
Data Size 4 as shown here:

TIP: Asynchronous is used to select the SWO port and is
needed for the ULINK2 or ULINK-ME.

8) Click on File/Save All to enable this file. It will be
executed when you enter Debug mode.

9) Select Options for Target or ALT-F7 and
select the Debug tab (again).

10) Click on Settings: beside the name of your adapter
(ULINK Pro Cortex Debugger) on the right side of
the window.

11) Click on the Trace tab. The window below is
displayed.

12) Core Clock: No need to enter anything.
ULINKpro determines this automatically

13) In Trace Port select Sync Trace Port with 4 bit data. It is possible to use other bit sizes but best to use the largest.

14) Select Trace Enable and ETM Trace Enable. Unselect Periodic and leave everything else at default as shown below.

15) Click on OK twice to return to the main µVision menu. Both ETM and SWV are now configured.

16) Select File/Save All.

TIP: We said that you must use SWD (also called
SW) in order to use the Serial Wire Viewer. With
the ULINKpro and with the Trace Port selected,
you can also select the JTAG port as well as the
SWD port.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

29

7) Serial Wire Viewer Summary:

Serial Wire Viewer can see:

 Global variables.

 Static variables.

 Structures.

 Peripheral registers – just read or write to them.

 Can’t see local variables. (just make them global or static).

 Can’t see DMA transfers – DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

 PC Samples.

 Data reads and writes.

 Exception and interrupt events.

 CPU counters.

 Timestamps for these.

Trace is good for:

 Trace adds significant power to debugging efforts. Tells where the program has been.

 A recorded history of the program execution in the order it happened.

 Trace can often find nasty problems very quickly.

 Weeks or months can be replaced by minutes.

 Especially where the bug occurs a long time before consequences are seen.

 Or where the state of the system disappears with a change in scope(s).

 Plus - don’t have to stop the program. Crucial to some.

These are the types of problems that can be found with a quality trace:

 Pointer problems.

 Illegal instructions and data aborts (such as misaligned writes).

 Code overwrites – writes to Flash, unexpected writes to peripheral registers (SFRs), corrupted stack.
How did I get here ?

 Out of bounds data. Uninitialized variables and arrays.

 Stack overflows. What causes the stack to grow bigger than it should ?

 Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this.
Is very tough to find these problems without a trace especially oif the stack is corrupted.

 ETM trace with the ULINKpro is best for solving program flow problems.

 Communication protocol and timing issues. System timing problems.

For complete information on CoreSight for the Cortex-M3: Search for DDI0314F_coresight_component_trm.pdf on
www.arm.com.

Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

30

8) Keil Products:
Keil Microcontroller Development Kit (MDK-ARM™)

 MDK-Lite™ (Evaluation version) $0

 NEW !! MDK-ARM-CM™ (for Cortex-M series processors only – unlimited code limit) - $3,200
 MDK-Standard™ (unlimited compile and debug code and data size) - $4,895
 MDK-Professional™ (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,500

For special promotional pricing and offers, please contact Keil Sales for details.

USB-JTAG adapter (for Flash programming too)
 ULINK2 - $395 (ULINK2 and ME - SWV only – no ETM)
 ULINK-ME – sold only with a board by Keil or OEM.
 ULINKpro - $1,250 – Cortex-Mx SWV & ETM trace.
 MDK also supports ST-Link V2 and Segger J-Link Debug adapters.

The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free.

All versions, including MDK-Lite, includes Keil RTX RTOS with source code !

Keil provides free DSP libraries for the Cortex-M3 and Cortex-M4.

Call Keil Sales for details on current pricing, specials and quantity discounts.
Sales can also provide advice about the various tools options available to
you. They will help you find various labs and appnotes that are useful.

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. See
www.arm.com/university to view various programs and resources.

MDK supports STM32 Cortex-M3 and Cortex-M4 processors. Keil
supports many other ST processors including 8051, ARM7, ARM9™ and
ST10 processors. See the Keil Device Database® on www.keil.com/dd for
the complete list of STMicroelectronics support.

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

Prices are for reference only and are subject to change without notice.

For the entire Keil catalog see www.keil.com or for your local distributor see: www.keil.com/distis/

For Linux, Android and bare metal (no OS) support on ST processors such as SPEAr, please see DS-5 www.arm.com/ds5.

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, contact the author, Keil Technical support or www.keil.com.

