STMicroelectronics STM32C: Cortex™-M3 Lab DZ'KE'E

\ . Tool ARM
ARM® Keil™ MDK Toolkit featuring Serial Wire Viewer and ETM Trace Qo

For Keil MCBSTM32C" Eval Board Fall 2013 Version 1.3 by Robert Boys, bob.boys@arm.com

Introduction: For Keil MCBSTM32C™ & ST STM3210C-EVAL Evaluation

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_245.as

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M3 processor using the ARM® Keil™ MDK
toolkit featuring the IDE uVision”. We will use the Serial Wire Viewer (SWV) and ETM trace on the Keil MCBSTM32C
evaluation board. At the end of this tutorial, you will be able to confidently work with STM32 processors and Keil MDK ™.
This tutorial will also work with the STMicroelectronics STM3210C-EVAL board with no modifications.

Keil MDK comes in an evaluation version that limits code and data size to 32 Kbytes. Nearly all Keil examples will compile
within this 32K limit. The addition of a license number will turn it into the full, unrestricted version. Contact Keil sales for a
temporary full version license if you need to evaluate MDK with programs greater than 32K. MDK includes a full version of

Keil RTX™ RTOS. No royalty payments are required. RTX now comes with a BSD license. Visit www.keil.com/st.

Why Use Keil MDK ?
MDK provides these features particularly suited for Cortex-M3 users:

1. wVision IDE with Integrated Debugger, Flash programmer and the
ARM" Compiler. MDK is a turn-key product and includes examples.

2. Serial Wire Viewer and ETM trace capability is included. A full
feature Keil RTOS called RTX is included with MDK.

3. RTX Kernel Awareness windows are updated in real-time. Kernel
Awareness for Keil RTX, CMX, Quadros and Micrium.

4. Choice of adapters: ULINK2™, ULINK-ME™, ULINKpro™ and
Segger J-Link (version 6 or later). ST-Link V2 is supported with
SWYV. ULINKpro supports ETM instruction and data trace.

5. Keil Technical Support is included for one year and is renewable.
This helps you get your project completed faster.

This document details these features:

1. Serial Wire Viewer (SWV) and ETM Trace using ULINKpro™,

2. Real-time Read and Write to memory locations for Watch, Memory
and RTX Tasks windows. These are non-intrusive to your program. Keil ULINK2 and MCBSTM32
No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also called Access Breaks).
4. RTX Viewer: two kernel awareness windows for the Keil RTX RTOS. They are updated in real-time.

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWYV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf),
CPU counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into the
Cortex-M3. SWYV is output on the Serial Wire Output (SWO) pin found on the JTAG/SWD adapter connector.

SWYV does not steal any CPU cycles and is completely non-intrusive except for ITM Debug printf Viewer. SWV is provided
by the Keil ULINK2, ULINK-ME, ULINKpro and the Segger J-Link. Best results are with a ULINK family adapter. The
STMicroelectronics ST-Link V1 adapter does not support SWV or ETM. ST-Link V2 supports SWV but not ETM trace.

Embedded Trace Macrocell (ETM):

ETM adds all the program counter values to the features provided by SWV. This allows advanced debugging features
including timing of areas of code, Code Coverage, Performance Analysis and program flow analysis. ETM requires a special
debugger adapter such as the ULINKpro. This document uses a ULINKpro for ETM. A ULINK2 or ULINK-ME is used for
the Serial Wire Viewer exercises in this lab.

l Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

Index:
STM32 Evaluation Board list, MDK Install, Useful Definitions 3

Part A: Connecting and Configuring to the target board:

1. Connecting ULINK2, ULINK-ME or ULINKpro to the MCBSTM32™ board: 4
2. ULINK2 or ULINK-ME and pVision Configuration: 5
3. ULINKQpro and pVision Configuration: 6
4. ST-Link from STMicroelectronics and pVision Configuration: 7
5. Segger J-Link and pVision Configuration: 8
Part B: Example Programs using a ULINK2 or ULINK-ME:
1. Blinky Example Program using the STM32 and ULINK2 or ULINK-ME: 9
2. Hardware Breakpoints:
3. Locals Window 10
4. Call Stack Window 10
5. Variables for Watch and Memory Windows: 10
How to convert Local Variables to view in the Watch or Memory windows: 10
Watch and Memory Windows and how to use them: 11
Configuring the Serial Wire Viewer (SWV): 12
a. For ULINK2 or ULINK-ME: 12
b. For ULINKpro: 13
. Using the Logic Analyzer (LA) with ULINK2 or ULINK-ME: 14
9. Watchpoints: 15
10. RTX_Blinky example program with Keil RTX RTOS: 16
11. RTX Kernel Awareness using Serial Wire Viewer (SWV): 17
12. Logic Analyzer Window: Viewing Variables in real-time in a graphical format: 18
13. Serial Wire Viewer (SWV) and how to use it: (with ULINK2) 19
a. Data Reads and Writes: 19
b. Exceptions and Interrupts: 20
c. PC Samples: 21
14. ITM (Instruction Trace Macrocell) a printf feature: 22
Part C: Using the ULINKpro with ETM Trace
1. Blinky _Ulp Example 23
2. Code Coverage: 24
3. Performance Analysis: 25
4. Execution Profiling: 26
5. In-the-weeds Example: 27
6. Configuring the ULINKpro ETM Trace: 28
7. Serial Wire Viewer Summary 29
8. Keil Products and contact information 30
2 Copyright © 2013 ARM Ltd. Al rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

STM32 Evaluation Boards:

Keil makes four STM32 evaluation boards plus several with STR7 and STR9 processors. Examples are provided.

Keil part number URL for board info Debug Connectors ST board equivalent
MCBSTM32™ www.keil.com/mcbstm32/ JTAG/SWD STM32F10X-128K-EVAL (color LCD)
MCBSTM32E™ replaced by EXL www.keil.com/mcbstm32EXL/ Cortex Debug and ETM STM3210E-EVAL

MCBSTM32EXL™ www.keil.com/mcbstm32EXL/ Cortex Debug and ETM STM3210E-EVAL

MCBSTM32C™ www.keil.com/mcbstm32¢/ Cortex Debug and ETM STM3210C-EVAL

MCBSTM32F200 www.keil.com/mcbstm32{200/ Cortex Debug and ETM STM3220G-EVAL

MCBSTM32F400 www.keil.com/mcbstm32f400/ Cortex Debug and ETM STM32429-EVAL

Keil MDK provides example projects for many STMicroelectronics boards:
Example projects for STMicroelectronics boards are found inside Keil MDK here: C:\Kei\ARM\boards\ST.
You can adapt the instructions in this document for any board using a STM32 processor including your own target.

STM32 processors need a special .ini file that configures the CoreSight Serial Wire Viewer and/or ETM trace. If you do not
intend to use SWV or ETM you do not need this file. It is entered in the Options for Target window under the Debug tab. It
needs to be configured for either SWO or 4 bit Trace Port operation. SWO is default. Instructions are provided later.

Visit www.keil.com/st for more information about Keil support of STMicroelectronics processors.
Software Installation:

This document was written for Keil MDK 4.14 or later which contains pVision 4. The evaluation copy of MDK is available
free on the Keil website. Do not confuse pVision4 with MDK 4.0. The number “4” is a coincidence.

The current version is 4.72. Some windows will look different dues to product improvement.

To obtain a copy of MDK go to www.keil.com/arm and select “Evaluation Software” from the left column.

You can use the evaluation version of MDK and a ULINK2, ULINK-ME, ULINKpro, a J-Link or a ST-Link V2 for this lab.
You must make certain adjustments for non-ULINK adapters and not all features shown here will be available.

The addition of a license number converts the evaluation into a full, unrestricted copy of MDK.

The ULINKpro adds Cortex-M3 ETM trace support. It also adds faster programming time and better trace display. Most
STMicroelectronics Cortex-M3 parts are equipped with ETM. All have SWV.

MDK 5.0:
ARM will release MDK 5.0 in the Fall 2013. There are substantial improvements. See www.keil.com/mdkS3.

JTAG and SWD Definitions: It is useful to have a general understanding of these terms:
JTAG: JTAG provides access to the CoreSight debugging module located on the STM32 processor. It uses 4 to 5 pins.

SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except no Boundary Scan.
SWD is referenced as SW in the pVision Cortex-M Target Driver Setup. See page 5, middle picture.

SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.
SWO: Serial Wire Output: SWV frames come out this one pin output.

Trace Port: A 4 bit port that ULINKpro uses to output ETM frames and optionally SWV (rather than the SWO pin).
ETM: Embedded Trace Macrocell: Provides all the program counter values. Only the ULINKpro works with ETM.

Example Programs:

Keil provides examples for evaluation boards made by Keil in C:\Kei\ARM\boards\Keil. Most example projects are pre-
configured to use a ULINK2 or a ULINK-ME. Serial Wire Viewer is not usually configured. Projects that contain a Ulp in
their directory name are configured to use a ULINKpro. SWV and ETM are normally pre-configured. For instructions on
converting a project from ULINK?2 or ULINK-ME to a ULINKpro and vice versa please see the instructions under Part A.

Example projects for STMicroelectronics boards are found under C:\Kei\ARM\boards\ST.

Most example projects will compile within the 32 K code and data limit of MDK. Exceptions are LCD Demo and Demo. A
compiled executable .axf file is provided to allow you to run, evaluate and debug these programs. If you attempt to compile
these projects the .axf file will be erased. You must reinstall MDK to get the .axf file back unless you backed it up first.

3 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

Part A)
1) Connecting a ULINK2, ULINK-ME or ULINKpro:

The Keil MCBSTM32C is equipped with the new ARM standard 10 and 20 pin CoreSight connectors for JTAG/SWD, SWO
and ETM access as shown here:

The legacy 20 pin JTAG connector is provided. This
provides JTAG, SWD and SWO access.

The 10 pin “Cortex Debug” provides JTAG, SWD and
SWO access in a much smaller footprint. This connector
is supported by ULINK?2 and ULINK-ME with a special
supplied cable.

The 20 pin Cortex Debug + ETM” provides JTAG, SWD,
SWO and adds 4 bit ETM support and connects to the
ULINKQpro adapter.

Connecting a ULINK2 or ULINK-ME:
Legacy 20 Pin JTAG Connector:
A ULINK2 plugged to a STM32 board is pictured on the first page of this document.

10 Pin Cortex Debug Connector: You will need to take the case off the ULINK2 and install the 10 pin cable. The ULINK-
ME does not have a case and the cable can be directly installed on the 10 pin connector or directly to the legacy JTAG
connector. The ULINK-ME is pictured here and the arrow points to the
10 pin connector.

20 Pin Cortex Debug + ETM Connector: Keil does have a 10 pin to 20
pin adapter cable available to connect to this connector. The first 10 pins
on the 20 pin have an identical layout as the 10 pin.

The second 10 pins on the 20 pin are the five ETM signals.

Connecting a ULINKpro:

The ULINKpro connects to a STM32 board with its standard 20 pin Hi—
Density connector or the standard JTAG connector with a supplied
adapter.

In order to use ETM trace you must connect the ULINKpro to the 20 pin
Hi-density connector as shown here.

If you use the legacy 20 pin connector you can use JTAG,
SWD and SWV but not ETM.

Pictured is a ULINKpro with a MCBSTM32C (right) and a
STM3210C-EVAL from STMicroelectronics (below).

4 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

2) ULINK2 or ULINK-ME and pVision Configuration:

It is easy to select a USB debugging adapter in pVision. You must configure the connection to both the target and to Flash
programming in two separate windows as described below. They are each selected using the Debug and Ultilities tabs.

This document will use a ULINK2 or ULINK-ME as described. You can substitute a ULINKpro with suitable adjustments.

Serial Wire Viewer is completely supported by these two adapters. They are essentially the same devices electrically and any
reference to ULINK2 in this document includes the ME. STM32 processors require an .ini file to configure the SWV or
ETM features. The ULINKpro, which is a Cortex-Mx ETM trace adapter, has all the features of a ULINK2 with the
advantages of faster programming time, displays all program counter values and an enhanced instruction trace window.

Step 1) Select the debug connection to the target:

1. Assume the ULINK2 is connected to a powered up STM32 target board, uVision is running in Edit mode (as it is
when first started — the alternative to Debug mode) and you have selected a valid project. The ULINK2 is shown
connected to the Keil MCBSTM32C board on page 1. [D

| Linker Debug | Utiites |

x|

j Settings |

Select Options for Target EA or ALT-F7 and select the Debug tab. In the
drop-down menu box select ULINK as shown here:

= Use: ILILINK Cortex Debugger
2. Select Settings and the next window below opens up. This is the

control panel for the ULINK 2 and ULINK-ME (they are the same). '
In Port: select SWJ and SW. SWYV will not work with JTAG selected.

4. Inthe SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the
target processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the
target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it or click OK once to leave and then click on Settings again.

TIP: You can do regular debugging using JTAG. SWD and JTAG operate at approximately the same speed. Serial Wire

Viewer (SWV) will not operate in JTAG mode.

Step 2) Configure the Keil Flash Programmer:
Click on OK once and select the Utilities tab.
Select the ULINK similar to Step 2 above.

Click Settings to select the programming
algorithm if one is not visible.

8. SelecSTM32F10x High-density Flash as
shown below or the one for your processor:

9. Click on OK once.

TIP: To program the Flash every time you enter Debug
mode, check Update target before Debugging.

10. Click on OK to return to the pVision main
screen. Select File/Save All

11. You have successfully connected to the
STM32 target processor and configured the
pVision Flash programmer.

TIP: The Trace tab is where you configure the Serial
Wire Viewer (SWV). You will learn to do this later.

TIP: Ifyou select ULINK or ULINKpro, and have the
opposite ULINK physically connected to your PC; the
error message will say “No ULINK device found”.
This message actually means that pVision found the
wrong Keil adapter connected.

x
Debug | Trace | Flash Download |
ULINK USB - JITAG/SW Adapter — — SW Device
Serial No: [VO783FBE] IDCODE | Device Name i
SWDIO | () (x2BAD1477 ARM CoreSight SW-DP
ULINK Version: [ULINKZ © b |
Device Family: [Cortex-M _]
[+ swi Poft:I' cnfiguration RGN
Max Clock: [1MHz - | elete | | Update | IFer
Ccrned & Reset Options Cache Options Download Options 7
Connect: [Nomal Reset: | Autodetect I‘ Cache Code I™ Verify Code Download
IV IReae i Coareet [¥ Cache Memory | | [~ Download to Aash
[o][e]
x
Debug | Trace Fash Download |
 Download Function RAM for Algorithm
LOAD " Ersse Full Chip ¥ Program
g ¢ EeesSecton I Very Start: [20000000 | Size: [B0800
" DonotEmse ¥ Resetand Run
P 1g Algarithm

Description

STM32F10x High-density Flash

Address Range
08000000 - 0807FFFFH

Device Type Device Size

On-chip Flash

Start: | Size: [0
Add | Remove

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

5

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

3) ULINKpro and pVision Configuration:

Step 1) Select the debug connection to the target:

1. Assume the ULINKpro is connected to a powered up STM32 target board, uVision is running in Edit mode (as it is
when first started — the alternative to Debug mode) and you have selected a valid project. The ULINKpro is shown

connected to the MCBSTM32C on page 4.

2.
the drop-down menu box select the ULINK Pro Cortex Debugger as
shown here:
Select Settings and Target Driver window below opens up:
4. In Port: select SWJ and SW. SWV will not work with JTAG selected. |

Select Options for Target EAN or ALT-F7 and select the Debug tab. In

Linker - Debug | Uiites |

* Use: IULINK Fro Cortex Debugger j Settings |

In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the
target processor. If there is an error displayed or is blank this must be fixed before you can continue. Check the
target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it
or click OK once to leave and then click on Settings
again.

TIP: You can do regular debugging using JTAG.
SWD and JTAG operate at approximately the same
speed. Serial Wire Viewer (SWV) will not operate in
JTAG mode unless the ULINKpro is using the Trace
Port to output the trace frames.

Step 2) Configure the Keil Flash Programmer:

Cortex-M Target Driver Setup

Debug | Trace | Fash Downioad |

x|

[~ ULINK USB - JTAG/SW Adapter— - SW Device
Senial No: [VO7BFBE | IDCODE | Device Name | s
SWDIO 4 T
ULINK Versin: W @ (x2BAD1477 ARM CoreSight SW-DP U
Devie Famy: Eorext
Fimware Version: [V1.41
W swd Por: [N ~|
MaxClock: [1MHz =]
—Debug
~Connect & Reset Options ~Cache Options ~ Download Options .
Connect: | Nomal | Reset: [Atodetet ¥| | | ¥ Cache Code I™ Verfy Code Download
¥ | Reset after Connect ¥ Cache Memory [~ Download to Flash
[o<][coes]

1. Click on OK once and select the Ultilities tab.
2. Select the ULINKpro similar to Step 2 above.
Click Settings to select the programming

algorithm if one is not visible.
4.

Click on OK once. Select File/Save All.

Select STM32F10x High-density Flash as shown below or the one for your processor:

TIP: To program the Flash every time you enter Debug mode, check Update target before Debugging.

1. Click on OK to return to the pVision main screen.
2.

TIP: If you select ULINK or ULINKpro, and have the
opposite ULINK physically connected; the error
message will say “No ULINK device found”. This
message actually means that pVision found the wrong
Keil adapter connected.

TIP: A ULINKpro will act very similar to a ULINK2.
The trace window (Instruction Trace) will be quite
different from the ULINK?2 Trace Records as it offers
additional features.

One feature is it is linked to the Disassembly and Source
windows. Double-click on a trace frame and it will be
located and highlighted in the two windows.

TIP: uVision windows can be floated anywhere. You

You have successfully connected to the STM32 target processor and selected the pVision Flash programmer.

Cortex-M Target Driver Setup

Debug | Trace Flash Download I

r~ Download Function
LOAD " Erase Full Chip ¥ Program
*F;ir % Erase Sectors [V Verfy
" DonctErmse ¥ Resetand Run

RAM for Algorithm

Start: [20000000 Size: [(x0800

Py ing Algorithm

Address Range
03000000H - 0307FFFEH

Device Type Device Size

On-chip Fash

Description

STM32F 10« High-density Flash

Start: [0<08000000 | Size: [0x00080000

Add Remaove |
oKk | cenea | Help

can restore them by setting Window/Reset Views to default.

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

6

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

4) ST-Link from STMicroelectronics and pVision Configuration:

The economical ST-LINK V2 can be used with pVision to provide stable JTAG or SWD debugging. It provides Serial Wire
Viewer, on-the-fly Watch and Memory updates and write capability, on-the-fly breakpoint setting and Watchpoints.

1. Assume the ST-LINK is connected to a powered up STM32 target board, pVision is running in Edit mode (as it is
when first started — the alternative to Debug mode) and you have selected a valid project.

Step 1) Select the debug connection to the target:

2. Select Options for Target &N or ALT-F7 and select the Debug tab. In the drop-down menu box, select the ST-

LINK Debugger as shown here: Lrker Debug | s |

o |se: |ST—Link Debugger j Settings |

3. Select Settings and Target Driver window below opens up:

4. 1In Protocol select either JTAG or SWD. You need to select SWD if
your target board only has the two SWD signals and not the full set of

JTAG signals or you want to use Serial Wire Viewer. x|
Step 2) Configure the Keil Flash Programmer: Pratocal
5. Click on OK once and select the Utilities tab. & ITAG
6. Select the ST-Link Debugger similar to Step 2 above. SwD
7. Youdo not select any Flash algorithm. ST-LINK does this automatically.
3. Click on OK twice to return to the pVision main screen. ok]| _ Conce
4. You have successfully connected to the STM32 target processor and selected the ST-
Link as your debugger.

5. Select File/Save All.

TIP: You do not need to click on the Load icon to program the Flash. Simply enter Debug mode and the Flash will be
automatically programmed.

TIP: You will need the Initialization ini file if you want to use Serial Wire Viewer. ST-Link V1 did not support SWV but
ST-Link V2 does. pVision supports both of these adapters. See page 12: Configuring the Serial Wire Viewer (SWV): for
instructions about using the .ini file.

ST-Link V1 Segger J-Link

7 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

5) Segger J-Link and pVision Configuration:

The J-Link (black box) version 6 or higher provides Serial Wire Viewer capabilities. It provides all debug functions that the
Keil ULINK2 provides. This includes breakpoints, watchpoints, memory read/write and the RTX Viewer. J-Link displays
exceptions and PC Samples does not provide ITM, data R/W trace frames in MDK 4.14. Segger has the new J-Link Ultra
which provides faster operation. Segger also provides a J-Trace for the Cortex-M3 ETM trace but this has not been tested
with MDK for this document. pVision will do an automatic firmware update provided by Segger on the J-Link.

SWYV is easily overloaded by a high output on the SWO pin especially where the Logic Analyzer is concerned. Make sure
you select only that data that you really need. Disable all others and that can include ITM 31 and 0. Lower the rate the
variable is changed or sample and display a fast changing variable. Try disabling the timestamps but some functions need it
and the trace will stop operating.

The J-Link is configured using very similar windows as with the ULINK2. This include SWV configuration. The J-Link

uses an Instruction Trace window similar to the ULINKpro. If you double click on a PC Sample frame, that instruction will
be highlighted in the Disassembly and Source windows. The J-Link does not display any ETM frames. Use the J-Trace.

If you have trouble installing the J-Link USB drivers, go to C:\Kei\ARM\Segger\USBDriver and execute InstallDrivers.exe.
If the green LED on the J-Link blinks quickly, this means the USB drivers are not installed correctly. This LED should
normally be on steady when in Edit mode and off with periodic blinks when in Debug mode.
1. Assume the J-Link is connected to a powered up STM32 target board, pVision is running in Edit mode (as it is when
first started — the alternative to Debug mode) and you have selected a valid project.

Step 1: Select the debug connection to the target:

2. Select Options for Target AN or ALT-F7 and select the Debug tab. In the drop-down menu box select the J-LINK

or J-Trace as shown here: Linker Debug | Utiities |

Select Settings and Target Driver window below opens up: & Use: [Cotect/RILNKATrace 7] | Seftings |
4. In Port: select SW. SWV will not work with JTAG selected.

In the SW Device area: ARM CoreSight SW-DP MUST be
displayed. This confirms you are connected to the target processor. If there is an error displayed or is blank this
must be fixed before you can continue. Check the target power supply. Cycle power to the J-Link and the board.

Step 2: Configure the Keil Flash Programmer:]
Click on OK once and select the Utilities tab. = e
. . . —J-Link / J-Trace Adapter —SW Device
Select the ST-Link Debugger similar to Step 2 EmmE -] usesfo =] IDCODE | Devics Hame [Hove
above TorEr TLink ARM SWD | ® 11BAD1477 ARM CoreSight SW-DP il
’ Hw: [veoo ar:[vaze Dawn
8. Click Settings to select the programming algorithm Fw: [Nov 132010 155507
. . g . . p g g g Port: Maz Clock: % futomatic Detection I COME: I
lf one 1S not VlSlble. lﬂ lm £ anual Configuration Device Hame: I—
9. Select STM32F10x High-density Flash as shown in mioCk ||| |_4dd | Dok | Updsc| I]
the directions for the ULINK2 or the algorithm for e
your processor. Connect & Reset Options——————————— ~Cache Options Download Options
))) Comnect: [Nomzl | Reset:[Asodetect x| | | ¥ Cache Code I” Veify Code Download
Click OK twice to return to the main screen. ¥ Resetshter Cornect] | s
You have now selected the J-Link as your adapter, poEEs TEVE ke
& UsB TCPAP SIS o T
successfully connected to the STM32 target < PAddsss Por (. O utodetect| || dlink rfo |
processor and configured the Flash programmer. Sme;lmm R Firg dink Gnd
Configure the SWV Trace

This is done the same way as the ULINK2 or ULINK-ME. J-Link has an extra setting in the trace configuration window to
store trace information on your hard drive called Use Cache File. Hover your mouse over this to get an explanation.

It is important with all Serial Wire Viewer configurations to choose as few signals as possible. The single wire SWO pin is
easily overloaded.

TIP: Ttis easy to miss programming the Flash with your latest .axf executable. Select either the :f’“""’_ad Options
Verify Code Download in the Target/Debug/Settings as shown here or select Update Target before e Do Daroad

W Update Tamet before Debugging

Debugging: or make sure you program the Flash manually by clicking on the Load icon.

8 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

Part B)

1) Blinky Example Programs using a ULINK2 or ULINK-ME:

We will connect a Keil MDK development system using real target hardware and a ULINK2 or ULINK-ME. These
instructions use a Keil MCBSTM32C board. It is possible to use the ULINKpro for this example but you must configure it.
The project referenced below is pre-configured to use ULINK2. You can also use a ST-Link V1 or V2.

1.

2.

9.

Connect the equipment as pictured on the first page.

Start pVision by clicking on its desktop icon. =

Select Project/Open Project. Open the file C:\Kei\ARM\Boards\Kei\MCBSTM32C\Blinky\Blinky.uvproj.

Make sure “MCBSTM32C” is Selected. MECBSTM32C -

This is where you create and select different target configurations such as to execute a program in RAM or Flash.
This project is configured by default to use either the ULINK2 or ULINK-ME.

*+
Compile the source files by clicking on the Rebuild icon. M

LOAD

Program the STM32 flash by clicking on the Load icon: #¥ Progress will be indicated in the Output Window.

. You can also use the Build icon beside it.

Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not for RAM operation or the simulator.

Click on the RUN icon. B Note: you stop the program with the STOP icon. @

The LEDs on the STM32 board will now blink at a rate determined by the setting of POT1

Now you know how to compile a program, load it into the STM32 processor Flash, run it and stop it.

STM3210C-EVAL Board: No LEDs will light but the program will run. Rotate RV1and monitor PE8 or PE9 with a meter.
2) Hardware Breakpoints:

1. With Blink running, double-click in the left margin on a darker gray block in the source file Blinky.c between Lines
55 through 61 as shown below:
2. A red block is created and soon the program will stop at this point.
3. The yellow arrow is where the program counter is pointing to in both the disassembly and source windows.
4. The cyan arrow is a mouse selected pointer and is associated with the yellow band in the disassembly window.
5. Note you can set and unset hardware breakpoints while the program is running.
i x
6. The STM32 has 6 hardware (R TEIR - 2 x|
. . Ox08000466 EBOOZ2005 ADD rQ,r0, r5,L5L ¥& ﬂ
breakpomts.' A brea'lkpo.n}t does not 0%02000468 4350 P 0,6
execute the instruction it is set to. 0x0800046C DCF9 BGT 0x08000462
6l: GPICE->BSRR = led mask[num] << 1&; /* Turn LED off
OxO-EOGO'iSE 480E LDR r0, [pc, #56]1 ; @0x080004A8
0x08000470 FE500024 LDR rQd, [r0,r4,LSL #2]
0x08000474 0400 L3LS r0,r0, #16
0x08000476 430D LDR rl, [pc, #52]1 : B0x080004AC
[TOP.OOO'%'?P. AONR TR 0. Ir1.#0=001 _ILI
4 L4
Abstractiat | [£] system_stm32110x_cl.c ” [£] Blinky.c | v X
53 —
54 /* Calculate 'mnum': 0, 1, ... , LED NUM-1, LED NUM-1,
55 nun += dir;
56 if (num >= LED NUM)} { dir = -1; num = LED NUM-1; }
57 else if {fnam < 0) { dir = 1; num = 0;
58
59 GPICE->BSRR = led mask[num]; /* Turn LED on
o Gl for (i = 0; i « ((AD wal << B) + 100000); i++);
51 GPICE->BSRR = led mask[nuw] << 16; /* Turn LED off
B2}
83
B4 =
I 4 I I »
9 Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

3) Locals Window:

Whenever the program is stopped, the Locals window will display the local variables for the active function. If possible, the
values of the local variables will be displayed and if not the message <out of scope> will be displayed.

1. Shown is the Locals window. Leave the hardware breakpoint active from the previous page.

AD _val contains the pot position value.

2.
3. Rotate the pot to a new position and click on RUN.
4,

MName Value I
Note AD_val is updated each time the program stops. - AD_val TxODDDOERE
TIP: This is standard “Stop and Go” debugging. ARM e (x000E2400
CoreSight debugging technology is much better than this. You ;;m igggggggf

can display this variable updated in real-time while the program
is running. No additions or changes to your code are required. Facall stack | fdLocals | B Memory1 |

4) Call stack Window:

This window displays the list of called functions when the program is stopped. This is very useful for debugging when you
need to know which functions have been called and are stored on the stack.

The example Blinky.c does not have any function calls so the
Call Stack window is a simple one. Stack Frames [Value/Address |

1. Click on the Call Stack tab. = % main]
. This widow opens up showing two local variables: ¢ dr e

2
3. Each time you click on RUN this will be updated.
4. Remove the breakpoint by double-clicking on it. G2 Call Stack | Gl Locals | Ewatch1 |

Memory 1 |

5) Variables for Watch and Memory Windows:

It would be more useful if we could see the values of variables while the program is still running. Even more valuable would
be the ability to change these values while the program is running. CoreSight and pVision can do this.

CoreSight cannot display local variables on-the-fly so these must first be converted into static or global variables.
How to convert Local Variables to be viewable in the Watch or Memory windows:
All you need to do is to make the variable AD_val static !

1. In the declaration for AD_val in Blinky.c, add the keyword static and make 1 a separate int variable like this:
int main (void) {
static int AD_val ;
int i;
2. This will ensure that variable AD_val always exists and is visible to pVision.
Exit debug mode. TIP: You can edit files in edit or debug mode, but can compile them only in edit mode.

4. Compile the source files by clicking on the Rebuild icon. Hopefully they compile with no errors or warnings.
LOAD

5. To program the Flash, click on the Load icon. ## . A progress bar will be displayed at the bottom left.
The next page describes how to enter variables in the Watch and Memory windows.

TIP: You will have to re-enter AD val into a window after modifying it because it isn’t the same variable anymore — it is a
static variable now instead of a local. Drag ‘n Drop is the fastest way as you will see on the next page.

TIP: pVision in conjunction with CoreSight can display in real-time global and static variables, structures, peripheral
registers and physical memory locations. Local variables cannot be displayed because they are active only when in scope
while their function is executed. Convert locals to static or global variables to see them. This conversion usually means the
variable is stored in volatile memory rather than a CPU register. There will be a small time penalty incurred.

This feature is available on any Keil ULINK or the Segger J-Link version 6 or later.

10 Copyright © 2013 ARM Ltd. Al rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

6) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M3 processors. It is also possible to “put” or insert values into these memory
locations in real-time. It is possible to “drag and drop” variables into windows or enter them manually.

Watch window:

1. You can do the following steps while the CPU is running. Click on RUN if desired.

2. Find the static variable AD_val in Blinky.c. This was changed from a local to a static var in the previous example.
3. Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.
4

In Blinky.c, block AD_val, click and hold and drag it into Watch 1.
Release it and it will be displayed updating as shown here: ==

5. Rotate POTI to see the value update. Name Value
. o e AD (<00000F8
You can also enter a variable manually by double-clicking or e cdoubleclick or F2 to adds
pressing F2 and using copy and paste or typing the variable.
TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable Ecal stack | [Elocals f@wateh 1 Memory 1

and hold it over the tab you want to open; when it opens, move your
mouse into the window and release the variable.

6. Double click on the value for AD val in the Watch window. Enter the value 0 and press Enter. 0 will be inserted
into memory in real-time. It will quickly change as the variable is updated often by the program. You can also do
this in the Memory window with a right-click and select Modify Memory.

Memory window:
1. Drag ‘n Drop AD_val into the Memory 1 window or enter it manually. Rotate the pot and watch the window.

2. Note the value of AD val is displaying its address in Memory 1 as if it is a pointer. This is useful to see what
address a pointer is pointing to but this not what we want to see at this time.

3. Add an ampersand “&” in front of the variable name and press Enter. Now the physical address is shown

(0x2000_00014).
4. Right click in the memory window and select Unsigned/Int. =

£ Yy & Address: |&.-'—\D_va| D j
0x20000014: 00000FSE 00000000 00000000

The data contents of AD_val is displayed as shown here: ==
0x20000020: 00000000 00000000 00000000

0x2000002C: 00000000 00000000 000Q0000
0x20000038: 00000000 Q0000000 00000000 ll

g Call Stack | @ Locals | Ewatch 1 | E] Memory 1

TIP: You are able to configure the Watch and Memory windows and
change their values while the program is still running in real-time without
stealing any CPU cycles.

1. AD_val is now updated in real-time. This is ARM CoreSight technology working.

2. Stop the CPU and exit debug mode for the next step. @ and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.

This is just a small example of the capabilities of Serial Wire Viewer. We will demonstrate more features..

How It Works:

pVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M3 is a Harvard
architecture. This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed,
there is plenty of time for the CoreSight debug module to read or write to memory without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

You are not able to view local variables while the program is running. They are visible only when the program is stopped in
their respective functions.

STM3210C-EVAL Board: The Watch and Memory windows will display exactly the same on the ST board.

11 Copyright © 2013 ARM Ltd. Al rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

7) Configuring the Serial Wire Viewer (SWV):

Serial Wire Viewer provides program information in real-time.

A) SWV for ULINK2 or ULINK-ME: (ULINKpro instructions are on the next page)

Configure SWV:

1. upVision must be stopped and in edit mode (not debug mode).

© X N v R W

Select Options for Target EAN or ALT-F7 and select the Debug tab.
In the box Initialization File: enter ..\Blinky ULp\STM32_SWO.ini You can use the Browse button:

Select Periodic and leave everything else at default. Periodic activates PC Samples.

10. Click on OK twice to return to the main pVision menu. SWV is now configured.

Note: Any of these ini files will work in Step 3:
STM32 SWO.ini
C:\Kei\ARM\Boards\MCBSTM32C\Blinky Ulp

STM32F10x_DBG.ini
C:\Kei\ARM\Boards\MCBSTM32E\Blinky

STM32DBG.ini

C:\Kei\ARM\Boards\MCBSTM32E\STLIB_Blinky
These are set by default to SWV operation. You must change

them to use the Trace Port and ETM.

To Display Trace Records:

1. Enter Debug mode. @

2. Click on the RUN icon. =,

Open Trace Records window by clicking on the small arrow beside the Trace icon:

4. The Race Records window will open and display PC Samples as shown below:

Debug Trace | Flash Download I

]

Click on Settings: beside the name of your adapter (ULINK Cortex Debugger) on the right side of the window.
Select the SWJ box and select SW in the Port: pulldown menu.
In the area SW Device must be displayed: ARM CoreSight SW-DP. SWV will not work with JTAG.
Click on the Trace tab. The window below is displayed.
In Core Clock: enter 72 and select the Trace Enable box. This is the default frequency for many STM32 projects.

Cortex-M Target Driver Setup

r~ Trace Port

Trace Events
I~ CPI: Cycles per Instruction

Core Clock: | 72.000000 MHz ¥ Trace Enable

Ti
Serial Wire Output - UART/NRZ ~ ’7|7 Enable Prescaler: |1 -I
SWO Clock Prescaler: 62 PC Sampling

¥ Autodetect
SWO Clock: [1161230 MHz

Emor: <5W Port not selected:>

¥ Periodic F‘eriud.l 227556 us

I on Data R/W Sample

Prescaler: IT 024716 VI

™ EXC: Exception overhead
I~ SLEEP: Sleep Cycles

I LSU: Load Store Unit Cycles
™ FOLD: Folded Instnuctions
W EXCTRC: Exception Tracing

~ITM Stimulus Ports

3

Port 24 23 Port 16 15

Port 8 7 Fort 0

Enable: |bxFFFFFFFF 72 7 2 7 el 3 4 e vl 4 e 1
Privilege: [(x00000008 Port 31.24 [Port 23.16 [~ Pot 15.8 [~ Pot 7.0 ™

Exceptions

Counters

D@ -

v | Records

TIP: If you do not see PC Samples as shown and either nothing or erratic frames with strange data, the trace is not
configured correctly. The most probable cause is the Core Clock: frequency is wrong.

All frames have a timestamp displayed in CPU
cycles and accumulated time.

Double-click inside this window to clear it.

If you right click inside this window you can see
how to filter various types of frames out. No
other frames than PC Samples exist in this simple
example.

TIP: SWV is easily overloaded as indicated by
an “x” in the OVF or Dly column.

Select only that information needed.

There are more features of Serial Wire Viewer.

Type ovi | hNum Address | Data___| FC |Dy| Cyces [Timels]

PC Sample 03000474H 16385 0.00022757
PC Sample 02000466H 32769 0.00045513
PC Sample 03000458H 45153 0.00058268
PC Sample 0200046AH 65537 0.00081024
PC Sample 0200046CH 81521 0.00113779
PC Sample 0800046CH 98305 0.00136535
PC Sample 0200046EH 114589 0.00159290
PC Sample 03000474H 131073 0.00182046
PC Sample 08000466H 147457 0.00204801
PC Sample 03000458H 163841 0.00227557
PC Sample 0800046CH 180225 0.00250313
PC Sample 0300046CH 196609 0.00273068
PC Sample 0200046CH 212993 0.00255824
PC Sample 03000474H 229377 0.00318579
PC Sample 02000466H 245761 0.00341335
PC Sample 03000458H 262145 0.00364090
PC Sample 0200046AH 278529 0.00386846
PC Sample 0200046CH 294913 0.00409601
PC Sample 0300046CH 311287 0.00432357
PC Sample 0200046EH 327681 0.00455112

x
=

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

B) SWV for ULINKQpro:
Configure SWV: This uses the SWO output pin rather than the 4 bit Trace Port that is normally used with the ULINKpro.
1. uVision must be stopped and in edit mode (not debug mode).

Select Options for Target A\ or ALT-F7 and select the Debug tab.

In the box Initialization File: enter ..\Blinky_ULp\STM32_SWO.ini You can use the Browse button: |:I
Click on Settings: beside the name of your adapter (ULINK Pro Cortex Debugger) on the right side of the window.
Click on the Trace tab. The window below is displayed.

Core Clock: No need to enter anything. ULINKpro determines this automatically. Select the Trace Enable box.

In the Trace Port select Serial Wire Output — Manchester. Selecting UART/NRZ will cause an error.

Select Periodic and leave everything else at default. Selecting Periodic activates PC Samples.

O 0 NN kv

Click on OK twice to return to the main pVision menu. SWV is now configured.

TIP: Sync Trace Port with 4 bit Data field sends the trace records out the 4 bit trace port rather than the single pin SWO.
The Trace Port is faster and must be selected for ETM trace. It is available only with the ULINKpro.

We will examine this Settlng later. You could use it now

if you prefer. Debug Trace | Flash Download |

Core Clock: | 72.000000 MHz ¥ Trace Enable = ETM Trace Ensble

Note: Any of these ini files will work in Step 3: ~Trace Port T Tracs Events
STM32 SWO lnl Serial Wire Qutput - UART/NRZ j ’V ¥ Enable Prescaler: |1 'I ™ CPI: Cycles per Instruction

S . . Sync Trace Port with 1-bit Data ™ EXC: Excepti erhead
C:\Keil\ARM\Boards\MCBSTM32C\Blinky Ulp PCSampiog 1| ciree ety

.. Prescaler (1024716 =] | | 1= |11 o Sore Unt ycles

STM3.2F10X_DBG.IIII . [Perodic Period: [22755 s | | I~ FOLD: Folded Instnuctions
C\Kell\ARM\BoardS\MCBSTM32E\B11nky [~ on Data RAW Sample ¥ EXCTRC: Exception Tracing

STM32DBG.ini

~ITM Stimulus Ports
Port

24 23 Port 16 15

Port 8 7 Port 0

Enable: [BFFFFFFFF

Ell
Iwlvlvivivivivie fviviviviviviviv vl lviviviviviv el el ivievle

C:\KeilARM\BoardssMCBSTM32E\STLIB_Blinky

Privilege: | &«00000008 Port 31.24 ¥ Pot 23.16 [~ Port 15.8 [~ Pot 7.0 ™
These are set by default to SWV operation. You must
change them to use the Trace Port and ETM.

Display Trace Records:

1. Enter Debug mode. @

ﬂ Instruction Trace

2. Click on the RUN icon. “=*.

Open the Instruction Trace window by clicking on the small arrow beside the Trace icon:

Exceptions

Counters

4. The Instruction Trace window will open and display PC Samples as shown below:

TIP: The Instruction Trace window is different that the Trace Records window provided with the ULINK2. Note the
disassembled instructions are displayed and if available, the source code is also displayed. Clicking on a PC Sample line will
take you to that place in the source and disassembly windows.

If you want to see all the program counter values, use the ETM trace available with most STM32 processors. A Ulinkpro
using ETM trace will also provide Code Coverage, Performance Analysis and Execution Profiling in real time.

You cannot clear the Instruction Trace window by double-clicking inside it. To clear the trace, exit and re-enter debug mode.

Fiter: [All =l 2l
H Type Flag | Num EFC Cpcode Instruction Source Code Address Data Cycles Time[s]
96588 PC Sample (03000466 | EBOD2005 | ADD rDr0s5.LSLHE 1582730600 158 27306000
96589 PC Sample (x0300046C | DCFS BGT (x02000462 1582746384 158 27469840
96590 PC Sample (03000462 | 1C76 ADDS r6rBH1 1582763368 158 77633680
96591 PC Sample (03000464 | 4812 LDR rll[pc #72] : @0x080004B0 1582779752 158 27797520
96592 PC Sample (x0300046C | DCFS BGT (x02000462 1582796136 158 27961360
96593 PC Sample (x0300046C | DCFS BGT (x02000462 1582812520 158.28125200
96594 PC Sample (03000464 | 4812 LDR rll[pc #72] : @0x080004B0 1582828504 158 28285040
96595 PC Sample (03000466 | EBOD2005 | ADD rDr0s5.LSLHE 1582845288 158 28452880
96596 PC Sample (x0300046C | DCFS BGT (x02000462 1582861672 158 28616720
96597 PC Sample (03000462 | 1C76 ADDS r6rb H1 158 560
PC Sample (03000464 JR).[pe. (2000480] 158
@D\sassemb\y | nstruction Trace

13
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

8) Using the Logic Analyzer (LA) with the ULINK2 or ULINK-ME:

This example will use the ULINK2 with the Blinky example. Please connect a ULINK2 or ULKINK-ME to your STM32
board and configure it for SWV trace. If you want to use a ULINKpro you will have to make appropriate modifications.

pVision has a graphical Logic Analyzer (LA) window. Up to four variables can be displayed in real-time using the Serial
Wire Viewer. The Serial Wire Output pin is easily overloaded with many data reads and/or writes and data can be lost.

7 x|

™ Signal Info

1. Create a global variable called count. Enter int count; before main() near line 16 in Blinky.c.
2. Enter count ++; just after the for loop near line 60 in Blinky.c:
for (i = 0; 1 < ((AD_val << 8) + 100000); i++);
count ++;
3. Compile the source files by clicking on the rebuild icon. ==
LOAD

4. Program the STM32 flash by clicking on the Load icon: ##

Enter debug mode @ .

Select Debug/Debug Settings and select the Trace tab.

Unselect Periodic and EXCTRC. This is to prevent overload on the SWO pin. Click OK twice.
8. Run the program. IE]'L Note: You can configure the LA while the program is running or stopped.
9. Open View/Analysis Windows and select Logic Analyzer or select the LA window on the toolbar.
10. Locate the variable count you created in Blinky.c. It is declared near line 16.
11. Block count and drag it into the LA window and release it. Or click on Setup in the LA and enter it manually.
12. Click on Setup and set Max: in Display Range to OxFF. Click on Close. The LA is completely configured now.
13. Drag and drop count into the Watch 1 window. It should be incrementing if Blinky is running.
14. Adjust the Zoom OUT icon in the LA window to about 1 second or so to get a nice ramp as shown below.
15. In the Watch 1 window, double-click on the count value and enter 0 and press Enter.
16. This value will be displayed in the LA window as shown here: You can enter any reasonable value into count.

[Logic Analyzer
Fotp |oed]| MnTme MacTme Gid Zoom Code | Setup Min/Max | Update Screen| Transtion
TIP: The Logic Analyzer can display static Eo=

and global variables, structures and arrays. It

Odf

can’t see locals: make them static or global.
To see peripheral registers, enter them into the

Logic Analyzer and read or write to them.

1.

A

count

Select Debug/Debug Settings and
select the Trace tab.

|
|
|
|
|
|
|
|
|
|

|| Dsl ym| msl E

™ Show Cycles ™ Cursor

. 00 s :
Select On Data R/W Sample. Click R 7> 1T e e
H | |
OK twice. ! 2
Run the program. Type Ovi [Mum [Address Data | PC (O] Cookes | Tmell |-l
. Data Wite 200000204 0DDOOBABH DBOOD4AIH X 3781553315 52521576271
Open the Trace Records window. Data Read 200000204 DODDOSABH DBOOD4SEH X 37829159883 52540499837
Data Wite J00000204 DDDDOBASH DBOODMAH X 37829167289 52540510124
. S . Data Read 200000204 DDDOOBASH DBOODAOEH X 3784275648 52559384650
The window similar below opens up: Data Wiite 200000204 O0DODOBAAH DBDD04A4H X 37842764385 52559394579
Data Read 00000204 ODOODEAAH DBOODMSEH X 37856283357 52578171329
; . Data Wite 200000204 00000BABH DBOOD4MH X 37856290729 52578181582
The first line below says: Data Read 200000204 ODOO0SABH DROOD4SEH X 37969821542 5596974364
: : : Data Wite 00000204 ODOODBACH DBOODMAMH X 37869828935 525 96984632
The instruction at 0x0800_04A4 caused a write Data Read 200000204 ODDDOBACH DBOODASEH X 37883453935 52615908243
Data Wrte 200000204 0DOO0SADH DB0O04AH X 37883461371 52615913571
of data 0x0000_08AS8 to address 0x2000_0020 Dala Read 20000020 DDOODDOOH DGODDMSEH X 37897062769 526.34809401
: . . : Data Wite 200000204 00DOOODIH DBOOOAAH X 37897070185 52634813701
at the listed time in Cycles or Time. Data Read 200000204 DDDOODDIH DROODASEH X 37910783370 52653874125
Data Wite J00000204 0DDOODOZH DBOODMAMH X 37910796799 G2653gesaa3 —I
. ; H Data Read 200000204 00DOODOZH DBOODASEH X 37924386435 52672758337
TIP: The PC column is activated when you selected On Data Wrte 200000204 DDDOODO3H DROOD4AIH X 37924353833 52672763212
; ; Data Read 200000204 0DDOODO3H DBOODMSEH X 37937995276 526.91660106
Data R/W Sample in Step 2. You can leave this Dita Wirte 200000204 0DDOODD4H DBOOD4MH X 37938002709 52691670429
Data Read 0000020 OODO0OH UBODD4SEH X 37951721877 52710724823 |

unselected to save bandwidth on the SWO pin.

TIP: The ULINKpro will give a more sophisticated Instruction Trace window. Watchpoints are described on the next page.

14

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

9) Watchpoints: Conditional Breakpoints

The STM32 Cortex-M3 processors have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The
Logic Analyzer uses watchpoints in its operations. This means in pVision you must have two variables free in the Logic
Analyzer to use Watchpoints.

= 0 0 N kWD

11.

12.

13.

14.

15.

16.

Using the example from the previous page, stop the program. Stay in Debug mode.
Click on Debug and select Breakpoints or press Ctrl-B.
The SWV Trace does not need to be configured to use Watchpoints. However, we will use it in this exercise.

In the Expression box enter: “count == 0x15” without the quotes. Select both the Read and Write Access boxes.

Click on Define and it will be accepted as shown here: EE=m)> BRI =]
. Cument Breakpoints:
Click on Close. :

00: (A readwrite (x20000018 len=4). ‘count == (x15",

Double-click in the Trace Records window to clear it.

Set count in Watch 1 window to zero.

Click on RUN. .
When count equals 3, the program will stop. Thisishowa Access
Watchpoint works. Borssan four 15 Y e P Ve

. . . . Count: |1 _Ij Size: e
You will see count incremented to 0x15 in the Logic — = ¥ Objcts

Analyzer as well as in the Watch window.

Defne | KilSelected | wa | Cose | Hep |

Note the data write of 0x15 in the Trace Records window shown below in the Data column. The address the data
written to and the PC of the write instruction is displayed as well as the timestamps. This is with a ULINK?2 or
ULINK-ME. The ULINKpro will display a different window. 1

There are other types of expressions

you can enter and are detailed in the _I_I
. : Type Ovf | Num Addess | Data | FC [oy[Cydes [Timefs] —
Hlep button in the Breakpoints Data Read 20000018H OODDODDBH 030004784 X 1315659252 18.27304517
window. Data Wite 200000184 000DODOCH OS00D47EH X 1315666645 1827314785
Data Read 200000184 000DODOCH 030004784 X 1318319239 18.30999026
Data Wite 200000784 ODDDDOODH OS0DD47EH X 1318326633 18.31005296
Data Read 200000184 ODDODDODH 03000478H X 1320959378 18.34665803
TO repeat thlS exercise set count Data Write 20000018H D00D0DDEH 0800047EH X 1320966777 1834676075
> . Data Read 200000184 OOODODDEH 030004784 X 1323652705 18.33406535
to a number less than 15 or click on Data Vit 20000018H D0CDOODFH DS00D47EH X 1323660119 18.38416832
. Data Read 200000184 OODDODOFH 0S000478H X 1326279472 18.42054822
RUN a few times to get past the Data Wite 200000184 00ODODTOH O8DD047EH X 1326286873 1B.42085101
p Data Read 200000184 000DOOTOH 030004784 X 1328912835 18.45712354
trigger value of 0x15. Data Wite 200000184 000DODT1H O0S0D047EH X 1328920323 18.45722671
. . Data Read 200000184 O00DOOT1H 030004784 X 1331533006 18.48351397
ata Wite 7 7
When finished, delete this Data W 20000018H 0000DD12H 080DD47EH X 1331540443 18.49361726
Watchpoint b lecting Deb d Data Read 200000184 000DOO12H 030004784 X 133415977 1852993625
atchpoint by selecting Debug an Data Wrte 200000184 000DODI3H OS00D47EH X 1334167197 18.530099%
: : Data Read 200000184 000DODT3H 03000478H X 1336813164 18.56684950
select Breakpoints and select Kill Data Wite 200000184 000DO014H 0S00047EH X 1336820543 1856835207
AlL Data Read 200000184 000DOO14H 030004784 X 1339413307 18.60296260
Data Wrte 200000184 000DODISH OS00D47EH X 1333420705 1860306535 z]

Leave Debug mode.

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the
configuration area. Clicking on Define will create another Watchpoint. You should delete the old one by highlighting it and
click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression in Current Breakpoints as shown above allows you to temporarily unselect or
disable a Watchpoint without deleting it.

15 Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

10) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included for no charge as part of the Keil MDK full tool suite. It can have
up to 255 tasks and no royalty payments are required. If source code is required, this is included in the Keil RL-ARM™
Real-Time Library which also includes USB, CAN, TCP/IP networking and a Flash File system. This example explores the
RTOS project. Keil will work with any RTOS. A RTOS is just a set of C functions that gets compiled with your project.

1.

7.
8.

This exercise will work with the ST STM3210C-EVAL board except the LCD and LEDs will not be active.

Start pVision by clicking on its icon on your desktop if it is not already running. =
Select Project/Open Project and open the file C:\KeilARM\Boards\Kei\MCBSTM32C\RTX _Blinky\Blinky.uvproj.

RTX Blinky uses the ULINK2 as default: if you are using a ULINKpro, please configure it as described on page 4
and configure the Serial Wire Viewer on page 13. You only have to do this once for each project — it will be saved
in the project file. Select File/Save AlL

LOAD

To program the Flash manually, click on the Load icon. #% . A progress bar will be at the bottom left.

Enter the Debug mode by clicking on the debug icon @ and click on the RUN icon. =

The LEDs will blink indicating the four waveforms of a stepper motor driver. Click on STOP 6

The Configuration Wizard for RTX:

© NN kLN -

Click on the RTX Conf CM.c source file tab as shown below on the left. You can open it with File/Open.
Click on Configuration Wizard at the bottom and your view will change to the Configuration Wizard.

Open up the individual directories to show the various configuration items available.

See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
This is a great feature as it is much easier changing items here than in the source code.

You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.

The new puVision4 System Viewer windows are created in a similar fashion. Select View/System Viewer or click

on the icon. i - The window similar to the on the far right opens.

TIP: If you don’t see any System Viewer entries, either the System Viewer is not available for your processor or you are
using an older example project and it needs to be “refreshed” by the following instructions:

. CEEE
Exit Debug mode. Click on the Target Options icon and select the Device tab. Note which processor is e
currently selected. Select a different one, reselect the original processor and click on OK. System Viewer is o6
now activated. Close this window and select File/Save All. -

" [# rTX_conf_th.c] T E RTX_Conf_CM.c | - x RO '

" AFIO

051 #ifndef OS5 TICE —

082 ;d:fjne OE TICR 10000 j Expand Al Collapse Al I Help EXTI

033 #endif - DM 3
" Option | Value RIC

054 ~Task Definitions T

085 // </h> ;--Number of concurrent running tasks 7

086 // <e>Round-Robin Task svitching - Mumber of tasks with user-pravided stack o oG

g7 /s = i Task stack size [bytes] 200 WWDG

088 // <i> Enable Round-Robin Task svitching - Check for the stack overflow ~ M 4

089 #ifndef 05 ROBIN Run in privieged mode r bXCAN

090 #define OS5 ROBIN 1 J - Humbsr of user timers 0 e ,

091 #endif - -SysTick Timer Configuration sp N

L Timet clock value [Hz] 72000000
i " Timer tick value [us] 10000 USART "
033 [ticks] <i-1 - ADC »
L Fobi i P

054 . task will exe s Flash

035 // <i> D : CRC

095 #ifndef 05_ROBINTOUT DaC

097 #define 05_ROBINTOUT 5 R

e fendif _’Ij v

\J_Ll1mm - Text Editor_ Configuration Wizard Ethemet

Text Editor: Source Code

Configuration Wizard

System Viewer

STMicroelectronics Cortex-M3 Lab with ARM

16
“ Keil™ MCBSTM32C board

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

11) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS

[RTX Tarskn el Syrstemms

companies also provide awareness plug-ins for pVision.

Run RTX Blinky again by clicking on the Run icon. =

Open Debug/OS Support and select RTX Tasks and System
and the window on the right opens up. You might have to
grab the window and move it into the center of the screen.
These values are updated in real-time using the same
technology as used in the Watch and Memory windows.

Open Debug/OS Support and select Event Viewer. There is
probably no data displayed because SWYV is not configured.

RTX Viewer: Configuring Serial Wire Viewer (SWV):

We must activate Serial Wire Viewer to get the Event Viewer working.

1.

2.

b

o ® =2

10.

11.
12.
13.
14.

Stop the CPU and exit debug mode. Q @

Click on the Options icon EA next to the target box.

Select the Debug tab. In the box Initialization File: enter
.ABlinky_ULp\STM32_SWO.ini or use the Browse icon.

Click the Settings box next to ULINK Cortex Debugger.

In the Debug window as shown here, make sure SW1J is
checked and Port: is set to SW and not JTAG.

Click on the Trace tab to open the Trace window.
Set Core Clock: to 72 MHz and select Trace Enable.
Unselect the Periodic and EXCTRC boxes as shown here:

ITM Stimulus Port 31 must be checked. This is the method
the RTX Viewer gets the kernel awareness information out to
be displayed in the Event Viewer. It is slightly intrusive.

Click on OK twice to return to pVision.
The Serial Wire Viewer is now configured in pVision.

Enter Debug mode and click on RUN to start the program.
Select “Tasks and System” tab: note the display is updated.
Click on the Event Viewer tab.

This window displays task events in a graphical format as
shown in the RTX Kernel window below. You probably have
to change the Range to about 5 seconds by clicking on the
ALL and then the + and — icons.

TIP: View/Periodic Window Update must be selected !

TIP: If Event Viewer doesn’t work, open up the Trace Records and
confirm there are good ITM frames present. Is the Core Clock correct ?

Cortex-M3 Alert: uVision will update all RTX information in real-
time on a target board due to its read/write capabilities as already
described. The Event Viewer uses ITM and is slightly intrusive.

You will not have to stop the program to view this data. No CPU
cycles are used. Your program runs at full speed. No instrumentation
code need be inserted into your source. You will find this feature very
useful ! Remember, RTX is included free with MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro or Segger J-Link for these RTX Kernel Awareness windows.

Tiendr Nusmber: o

Tic. Tiveee 110,000 e |
Pnund Rohin Timeout: S0.000 mSar

Sack e JE]

Suach with User-prorvided Stad: [0

Sack Crverfiow Check: o5

Tk Lisage: | Avslabie: 7, Used: b

User Tarmrs: | rvishatie: 0, Used 0
et Hriorty State Delay vt Valie Lyent Mask StackLoed
| 295 | os_ide_demn] PRurrigy o
led 1 woe rev [N £
k. 1 Wt AND by 0100 %
5 [phesd 1 [wat o N o0 (0001 |40
r phasaC 1 Wat_ShD (i) [T .
] phasall 1 Wt AND) [l Tw
et - Commcowe |
@evink | BT Tashs sl System |

x
Debug | Trace | Fash Download |
- ULINK USE - JTAG/SW Adapter — - SW D
Seral No: [TTREER IDCODE [Device Name I o
SWDIO | ® 02BAD1477 ARM CoreSight SW-DP]
ULINK Version: [ULINKZ =2 |
Device Famiy: [Cotex-M Down|
Fimurare Version: [V1 41 | Automatic Detection 1D/ CODE
¥sws Pot:[sw = € banuel Corfiguation Deviee Hame
MaxClock: [1MHz ¥ fidd | [Dekete | [Updzie| 1Rl
- Debug
Connect & Reset Options ———————— Cache Options——| |- Download Options
Connect:[Nomal x| Reset:[Atodetect x| | | ¥ Cache Code I” Verity Code Dowrload
|7 Roset after Connedt IV Cache Memory | | [~ Download to Flash
B

Debug Trce | Fash Download |

Core Clock: 72.000000 MHz ¥ Trace Enable
T Tz TrmEar
Serial Vire Output - UART/NRZ. ~ [V Enable Prescaler:[1 I~ CPI: Cycles per Instruction
- I~ EXC: Bxception overhead
SO Clock Prescaler:| 52 PCSamping | [§1EEp Sjoap Gyoles
O e Prescaer [1026°6 71 | | (= 6y Lond e Ui Cyles
SWO Codke | 1161290 MHe | | porogic Perod: [<Disabied> | | I FOLD: Foldsd Instructions
on Data R/W Sample EXCTRC: Exception Tracing
r r

r~ ITM Stimulus Ports

3 Port Aun Port 16 15 Port 8 7 Port 0
Enable: [WFFFFFFFF v VIviVViVY WV VRV MYV
Privilege: [(00000008 Port 31.24 [V Port 23.16 [~ Port 15.8 [~ Pot 7.0 [~
Cancel Help
T
C TR
Min Tiee: 0400055 & Max Tiena: 507465 ¢ Range: 1000000 ¢ Gnd 0.500000 &
['
phased 4 ' | N | !
phasetl [' ! v
phasell '] [
chock. [T T 1] "now "o [LT T TR TR 1] [l [}]]] il
lail | 11
Note: The Event Viewer is
temporarily disabled in MDK 4.14.
Will be activated in MDK 4.20
by T !\II11=IIII g T '|[I‘I1;IIII1
« | v
| |

17

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

12) Logic Analyzer Window: View variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. Close the RTX Viewer windows. Stop the program and exit debug mode.
2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

3. Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as . derine S i
shown below: phasea=1; and phasea=0; :the first two lines are shown 031 const long led mask[] = { 1<<15,
added at lines 081 and 084 (just after LED On and LED Off function - - N
—) — 7 . gned int phasea;
calls). For each of the four tasks, add the corresponding variable assignment 03 unsigned int phaseb;
035 nunsigned int phasec:
statements phasea, phaseb, phasec and phased. 0 unsigned imt phased:
4. We do this because in this simple program there are not enough suitable gg; e
variables to connect to the Logic Analyzer. 038 + switch LED on

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: just make them
static. To see peripheral registers merely read or write to them and enter them into the Logic Analyzer.

LDRB

5. Rebuild the project. LJ Program the Flash ¥

@ o077
6. Enter debug mode . g;g
. . =] 080 _ task void phasel (void) {
7. You can run the program at this point. il]* 081 for (::) I
. . . . 082 os_evt_wait_and (0x0001, Oxffff); *
Open View/Analysis Windows and select Logic Analyzer or 083 LED_On (LED_A):
- 084 phasea = 1; ——
select the LA window on the toolbar. 085 signal_func (t_phaseB); s
086 LED Cff (LED_ &)
Enter the Variables into the Logic Analyzer: 087 phasea = 0; —
088 }
9. Click on the Blinky.c tab. Block phasea, click, hold and drag 089

up to the Logic Analyzer tab (don’t let go yet!)
10. When it opens, bring the mouse down anywhere into the Logic Analyzer window and release.

11. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as
shown. Now we have to adjust the scaling.

12. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
13. Click on Close to go back to the LA window.
14. Using the OUT and In buttons set the range to 20 seconds. Move the scrolling bar to the far right if needed.

15. You will see the following waveforms appear. Click to mark a place move the cursor to get timings. Place the
cursor on one of the waveforms and get timing and other information as shown in the inserted box labeled phasec:

|LugicAnaIyzer a Xl
Setup ...|[Load ... Min Time Max Time Grid Zoom Code Setup Min/Max Update Screen| Transition ¥ Signal Info
S][o [sts [ts [w]e]A] e

" I S T B R TR T R

= of LT LT L i i i !

. - U I

& H H H H 1 1 H H

= 0 | S ¥ I W N O

. 3 : : : : : : : : : 3 3 : :

5 E : : : 3 3 E : : : 3 : :

& o ;] : : 3 : ; : : 3 : L

A T AN S L S S S

= : : : ' ! |phasec

. H N H ! . Maouse Pos Reference Point Delta

= 0 i i i i LI;T::&: 57‘65625 5 T 5 ?17.65625 s = 0036158 HZJ
21416255 ! ! ' '|PCS: M/A 0%388 bs

1203593192 1596993192 2046533152

E | B

@D\sassemh\y | SLugicAnalyzer
TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.

TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

18 Copyright © 2013 ARM Ltd. Al rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

13) Serial Wire Viewer (SWV) and how to use it: (with ULINK2)
a) Data Reads and Writes: (Note: Data Reads but not Writes are disabled in the current version of uVision).

You have configured Serial Wire Viewer (SWV) two pages back in Section 11 under Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with pVision and a ULINK2, ULINK-ME,
ULINKpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. A user program runs at full
speed and needs no code stubs or instrumentation software added to your programs.

1.

2.

A e AR

Use RTX_Blinky from the last exercise. Enter Debug mode and run the program if not already running.

Select View/Trace/Records or click on the Trace icon Q T

The Trace Records window will open up as shown here:]

The ITM frames are the data from the RTX Kernel
Viewer which uses Port 31 as shown under Num.
To turn this off select Debug/Debug Settings and
click on the Trace tab. Unselect ITM Stim. Port 31.
TIP: Port 0 is used for Debug printf Viewer.

Unselect EXCTRC and Periodic.
Select On Data R/W Sample.
Click on OK to return.

Click on the RUN icon.

Double-click anywhere in the Trace records
window to clear it.

. Only Data Writes will appear now.

TIP: You could have also right clicked on the Trace
Records window to filter the ITM frames out but
this will not reduce any SWO pin overloads.

What is happening here ?

1.

When variables are entered in the Logic Analyzer
(remember phasea through phased ?), the reads
and/or writes will appear in Trace Records.

The Address column shows where the four
variables are located.

The Data column displays the data values written to
phasea through phased.

PC is the address of the instruction causing the
writes. You activated it by selecting On Data R/W
Sample in the Trace configuration window.

The Cycles and Time(s) columns are when these
events happened.

TIP: You can have up to four variables in the Logic
Analyzer and subsequently displayed in the Trace Records

window.

TIP: If you select View/Symbol Window you can see where
the addresses of the variables are. E——————
Note: You must have Browser Information selected in the
Options for Target/Output tab to use the Symbol Browser.

TIP: ULINKpro and the Segger J-Link adapters display the
trace frames in a different style trace window.

and select Records.

m - @
Records

Excsptions

Counters

- | 3.

Data Wiite
ITM
ITM
ITM
™
ITM
ITM
ITM
ITM
Data Wite
ITM
ITM
T
ITM
ITM
Data Write
ITM
ITM

2000003CH 0

20000034H 0

20000030H o

X

X

0000000H X

FFH X
06H

FFH X
07H
02H

07H X

03H X

X

000000TH X

FFH X
06H

FFH X
02H

X

0000000H X
03H

06H X

767.93420682
767.93530732
768 01294476
768.01415237
768 42294476
768.47294457
768.47300835
768 45230068
768.43345246
768.49349246
768 45455726
76857294476
768 57415274
768 97294476
768.97419568
768 97419568
768.99294608
768.99300837 ;I

55251262891
55251342127
55296932023
55297018971
55326452023
55330052009
55330056601
55331445645
55331531457
55331531457
55331611003
55337252023
55337338997
55366052023
55366142089
55366142089
BB3E7452118
55367496603

i
Type Jovi[Mum | Address | Data | PC [oy [Cydles [Tme ||
| pata wite 20000038H QODDODOTH 0BDODS4AH X 55695804849 77355409513 —d
Data Wite J0000034H DOODOOOOH OBDOOSZAH X 55731896234 77405411436
Data Wite 2000003CH QODDODOTH 0BDOOSTSH X 55767204849 774.55409513
Data Wits D0DDO3EH H X 03396234 77505411436
Data Wite 20000030H 0ODDODOTH OBODOEEH X 55839894849 775.55409513
Data Wite 2000003CH O00DDODOOH 0B000586H X 55875896242 776.05411447
Data Wite 200000344 0ODDODOTH 0BDOOSICH X 55916164787 776.61339982
Data Wite 20000030 00DDODOOH OBDOD4FCH X 55950775437 777.09410329
Data Wite 200000334 0ODDODOTH 0BDODSSAH X 55988214849 777.61409512
|| pata wite 20000034H 0ODDODOOH 0BDOOS2AH X 56024216232 778.11411433
Data Wite 2000003CH 0ODDODOTH 0BDODS7EH SG0E0Z14846 772.61409508
Data Wite 20000033H O0ODDODOOH 0BDOOSSBH X 56096216231 779.11411432
Data Wite 20000030H 00DDODOTH OBODOEEH X 56132214846 779.61409508
Data Wite 2000003CH 00DDDDOOH 0BDOOS86H X 56168216239 7B0.11411443
=]
Symbols =
Mask: I‘ [T Case Senstive
Name Address Type I;|
E-Z7 Rurtime Library
ED Blirtkey Module
- i@ led_mask 08001C54 amay[8] of int
- g m MO O — [3] of wirt
Z phasea 20000030
- g phaseb 20000034
- @@ phasec 20000038
phased [b2000003C
=N b0
- g t_led Db DOO002C wint
- @@ t_phaseA 20000018 uint
- @@ t_phaseB bc2000001C uint
- @@ t_phaseC 20000020 uint
- @@ t_phaseD 20000024 uint
- @ clock <0300058A Function
- init k08000656 Function e

19

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

b) Exceptions and Interrupts:

The STM32 family using the Cortex-M3 processor has many interrupts and it can be difficult to determine when they are
being activated. SWV on the Cortex-M3 processor makes the display of exceptions and interrupts easy.

1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0. (this is to minimize overloading the SWO port)
3. Select EXCTRC as shown here:
x|
4. Cth OK tWiCC. Debug Trace I
5 The Trace Records. should still be open. Double Core ook | 72000000 Wiz o e
click on it to clear it. PN - o
. Serial Wire Output - UART/NRZ j ’7|7 Enable Prescaler: |1 vl [~ CPI: Cycles per Instruction
Click RUN to start the program. o _ I XC: Bxosption ovethead
. . L lock Prescaler: 62 PC Sampling——————————— I SLEEP: Sleen Cydes
You will see a window similar to the one below W Auodetect Prescaler [1326716 =] | | 1= Loy tond St g & e
with Exceptions frames displayed. SlEEms| WHED Perodic. Period:| Sgabieds | | [
. ™ on Data R/W Sample, [V EXCTRC: Exception Tracing 1)
What Is Happening ? A
pp g ~ITM Stimulus Ports 7\ N
. . N Port 2423 Port 16 15 Port 87 Port 0
1. You can see two exceptions (11 & 15) happening. R ol W o o el o e o el e o e e ,,,,,,,,,,,,,%)
. Privilege: | 2<00000008 Port 31.24 [Port 23.16 Port 15.8 ™ Port 7.0
= Entry: when the exception enters. e i i i :
= Exit: When it exits or returns.
= Return: When all the exceptions have returned.
This is useful to detect tail-chaining.
. Trace Records x|
2. Num 11 is SVCall from the RTX calls.
Type [Ovi[Mum | Addess | Data | PC (o[Cyes | Timel) |l
1 1 1 Exception Ents 15 57593011640 799.90293344
Num 15 18 the SyStICk tlmer' Exc:pt:gg Exltw 15 57593011925 799.90254340
. Exception Retr 1] X 57553014104 799.90297367
4. In my example you can see one data write Bxcepton Erty 15 57593731640 79991283344 |
. Exception Exit 15 57593732215 799.51294743
from the Loglc Analyzer, Exception Entry X 11 X 57593735970 799.91299958
Exception Retum X o X 57593735970 799.91259558
h. . . Exception Entry n 57593814690 799.91409252
Note everything 1s tlmestamped. Exception Exit 1 57593914820 79931409472
Data Write 20000030H 00000001H X 57593820228 799.51416983
Oy 1 Exception Ret X o X 57593820228 799.91416383
6' The X n OVf 1S an OVCI‘ﬂOW and some Exc:pt:gg Ervlrl;m n 57593897326 799.91524064
data was lOSt The “X” in Dly means the Exception Bxit n 57593897456 79991524244
° Exception Retum X 1] X 575593899774 79991527464
1 Exception Ent 15 57554451640 79952293544
timestamps are delayed because too much Excepton I STeSuSIB Tensansises
1 1 1 1 1 Exception Ret o X 57594454116 799.92257383
information is being fed out the SWO pin. Ercepton fetum 2 STssasalie Tessanore
- . Exception Exit 15 57595171925 79993294340
TIP: The SWO pin is one pin on the Cortex-M3 Exception Retum b X STSSSITAI2 79009 .|

family processors that all SWV information is fed out.
The exception is the ULINKpro which can also send this out the 4 bit Trace Port. There are limitations on how much

information we can feed out this one pin. These exceptions are happening at a very fast rate. [CFlm- -
v Records

1. Select View/Trace/Exceptions or click on the Trace icon and select Exceptions. “ ey

2. The next window opens up and more information about the exceptions is displayed as shown.

3. Note the number of times these have happened under Count. This is very useful information in case interrupts come
Al different from x|
what you expect.

y p MNum I Name | Count | Total Time | Min Time In I Max Time In | Min Time Out | Mazx Time Out | First Time [s Last Time [s -
1 2 NMI] Os

4. ExtIRQ are the peripheral 2] b

1nterrupts . 4 MemManage 0 0s _—
5 BusFault 0 Os
3 & UsageFault i} Os

5. YOU can Clear thlS trace ihl SVCall 24 810.417us 1.806us 59.889 us 57722 us 8118s 767.53411243 303.05410092

window by double- 12 DbgMon 0 0s

. . . 14 PendSV 0 Os
Chcklng on it. 15 SysTick 2804 16.836 ms 3750 us 68572 us 9.531 ms 7.800= 7E7.65293557 B03.47253544

16 EdIRQ O 0 0s

1S 1 1 1 7 EdIRQ 1 0 0s

6. All this 1nf0nnat19n is 17 BaRal ’ 0

displayed in real-time and 19 EdIRQ3 0 0s
. . 20 EdIRQ 4 0 Os
without steahng CPU 21 EdlRQ5 0 Ds
22 ExdIRQ &] Os

cycles ! 22 EdRQ7 0 0s =

TIP: Num is the exception

number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals, start at Num 16. For
example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 =16 — 16 = ExtIRQ 0.

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

20

www.keil.com

Copyright © 2013 ARM Ltd. All rights reserved

c) PC Samples:

Serial Wire Viewer can display a sampling of the program counter. If you need to see all the PC values, use the ETM trace
with a Keil ULINKpro. ETM trace also provides Code Coverage, Execution Profiling and Performance Analysis.

SWYV can display at best every 64™ instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.
3. Click on OK twice to return to the main screen.
4. Close the Exception Trace window : : — : =
T ovi [N Add Dat PC G Tmel] |~
and leave Trace Records open. FC Seample = = : 02000E5CH = EDEE?:[?;TBZ sds.slr;;;sw :’
_cli i PC Sample 08000C40H 50885526176 84563230800
Double-click to clear it. PC Sample DSO00E5EH 50885542560 845 63253556
. P PC Sample 0800OCT2H 60885558944 845.63276311
5. Click on RUN and this window PC Sample DBOODESOH 60885575328 84563299067
opens: PC Sample DS000E5EH 50285591712 84563321822
pens. Data Wite 20000034H 0ODDDOOIH 50885604775 84563339965
PC Sample D8000E5EH 502E5608096 845 63344578
6. Most of the PC Samples are PC Sample 08000E5EH 50885624480 84563367333
S PC Sample 08000E5EH 5UBS56ADB64 845 63390089
0X0800_0408 which is a branch to PC Sample 08000E58H 60805657248 845.63412844
: ; ; PC Sample DBO00ESEH 50885673632 84563435600
itself in a loop forever routine. PC Sample 02000402H 50285630016 84563458356
PC Sample 08000408H 50885706400 84563481111
7. Stop the program and the PC Sample 08000408H 60885722784 24563503867
. bly wind i1l sh hi PC Sample 08000408H 50885739168 84563526622
Disassembly window will show this FC Sample 03000408H 50885755552 84563549378
Branch: PC Sample 08000408H 6085771936 84563572133
: PC Sample 08000408H 50885783320 84563594889
. . PC Sample 02000402H GUBE5E0AT04 84563617644 |
8. Not all the PCs will be captured. Still, =
PC Samples can give you some idea of where your program is; especially if it
is caught in a tight loop like in this case.
9. Note: you can get different PC values _ﬁm =
depending on the optimization level set s o8t Al
in },lViSiOIl. 153: void os_tmr_call (Ulé info) {
154: /% This function is called when the user timer has expired. Paramecer *®
10 Set a breakpoint in one Of the taSkS. i:.‘; /% "info' holds the walue, defined when the timer was created. *®
157: /* HERE: include optional user code to be executed on timeout. */
11. Run the program and when the 2008000408 ETEE B o0s_idle demon (0x08000408)
breakpoint is hit, the program and trace e
159:
collection is stopped. 160
161: /= 03_error
12. Scroll to the bottom of the Trace = _>|21
Records window and you might see the
correct PC value displayed. Usually, it will be a different PC depending on when the sampling took place.
13. Remove the breakpoint for the next step.
Disassembly a X|
. 46: while (ADC1->CR2 & (1 << 2)): /* Wait for calibration to finish *f -
TIP' In Order to see all 0x08000400 0900 L3RS r0, x0, 4 ﬂ
the program Counter 0x08000402 003D MOVS r5,r7
0x08000404 0000 MOVS 0,0
values. use ETM trace 0x08000406 4014 ANDS r2,ra, r3
th tl'; ULINK ro o>0x08000408 ETFE B 0x08000408
W1 e . 0x08000408 4770 BX 1r
Most STM32 p 47: ADC1->CR2 I= 1 << 22 /* Start first conversion *f
48:
8 7 5 8 %]
processors have ETM. | s o 5, o[R B
ETM is much SUperior [@oisassemsiy [B oo anayeer | e Smoe e T Mo N
: PC Sampl 08000408H 753434886 10.5484011% -,
for debugglng than PC] Abstractit %) Biinky.c | (] SM32_5we |pC Samole 08000408H 759501270 1054362875 |
. . PC Sampl 08000408H 753517654 10.54885631
Samples‘ i ADC1-3CR2 - t? o« ?J ’ FC SZEEIZ 08000408H 755534038 10.54508386 ﬂ
o . . e e st s, |pegamee 02000408H 750550422 1054931142
- < - =HFe PC Sampl 08000408H 759566806 1054553857
“’VISIOH Wlth a E:>45 ADC1->CR2 1= 1 << 25 PC S::EIZ 08000408H 759583190 10.54976653
4 while (ADC1->CR2 & (1 << 2)): |PC Samol 08000402H 7E999574 1054358408
47 ADC1->CR2 I= 1 << 22; FC Szmglz 08000408H 759615958 10.55022164
ULINKpro uses ETM
to provide Code @ e mose i s
. 43 for (;:) { ample 7 7 767
N - . PC Sampl 08000408H 759665110 10.55090431
Coverage, Execution > R e AN | Samole 02000408H 750581434 1055113186 J
1 T = - PC Sampl 08000408H 759697878 10.55135942
Profiling and 52 ADE1->CR2 |= 1 << 22; PC Samdle 08000408H 759714262 1055158697
] 53 } PC Sampl 08000408H 759730646 10.55181453
Performance AnalySIS' 54 FC S::EI: 08000408H 759747030 10.55204208 j
([I e PC Sample 08000408H 755763414 10.55226964 ;I
21 Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

www.keil.com

14) ITM (Instruction Trace Macrocell) a printf Feature:

Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done
through ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code.
After the write to the ITM port, zero CPU cycles are required to get the data out of the processor and into pVision for display

in the Debug (printf) Viewer window.
1. Open the project Blinky.uvproj (not RTX Blinky).

2. Add this code to Blinky.c. A good place is near line 17, just after the declaration of count.
#define 1TM_Port8(n) (*((volatile unsigned char *)(0xEO0000000+4*n)))

3. In the main function in Blinky.c right after the variable count enter these lines after near line 63:
ITM_Port8(0) = num + 0x30; /* displays count value: +0x30 converts to ASCIl */

while (1TM_Port8(0) == 0);
ITM_Port8(0) = 0x0D;
while (I1TM_Port8(0) == 0);
ITM_Port8(0) = Ox0A;
Rebuild the source files, program the Flash memory and enter debug mode.

Open Debug/Debug Settings and select the Trace tab.

®© NS

Click OK twice.
9. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.
10. In the Debug (printf) Viewer you will see the ASCII value of num appear.

11. Change the POT and the display rate will change. _
12. How else could you detect this interesting effect of the program without SWV ?

Trace Records

1. Open the Trace Records if not already open. Double click on it to clear it.

2. You will see a window such as the one below with ITM and Data R/W frames.
What Is This ?

1. ITM 0O frames (Num column) are our ASCII characters from num with carriage
return (0D) and line feed (0A) as displayed the Data column.

2. All these are timestamped in both CPU cycles and time in seconds.

Note the “X” in the Dly column. This means the timestamps might/are not be correct due to SWO pin overload.

@Debug [printf) Vie...

Unselect On Data R/W Sample, PC Sample and ITM Port 31. (this is to help not overload the SWO port)
Select EXCTRC and ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer.

Debug (printf} Viewer o x
5 .I
4
3
2
1
0
0
1
2
3
-
4] 3

=] Build Output |

ITM Conclusion
The writes to ITM Stimulus Port 0 are
. : Data Read 20000018H __ 0DDDODS0H
intrusive and are usually one cycle. It takes Dt e e 000005 1h
no CPU cycles to get the data out the STM32 iy H o
processor via the Serial Wire Output pin. Ll 0 0AH
Data Read 20000018H 0000005TH
This is much faster than using a UART and L Wirte , Coioomed - ooocdusaH
1 ITM o 0DH
none of your peripherals are used. m H o
. fe . . Data Read 20000018H 00000052H
TIP: Itis lmportant to select as few Optlons m Dat: We,-;e 200000184 00000052H
the Trace configuration as possible to avoid iy : oo
overloading the SWO pin. Enter only those ™ 0 0AH
Data Read 20000018H 00000053H
features that you really need. Data Wit 20000018H 0000O054H
ITM o 33H
ITM o 0DH
ITM o 0AH

3OO MO MMM MM MK

3
1457181476
1457181476
1457181476
1515832766
1515837710
1515837710
1515837710
1515837710
1534515649
1534520604
1534520604
1534520604
1534520604
1553258424
1553263330
1553263330
1553263330
1553263330

20.79411887
2075418717
2075418717
2075418717
2075418717
21.05323286
21.05330153
21.05330153
21.05330153
21.05330153
2131271735
21.31278617
21.31278617
21.31278617
21.31278617
2157303367
2157310264
2157310264
2157310264
2157310264

L x

Super TIP: ITM_SendChar is a useful function you can use to send characters. It is found in the header core.CM3.h.

22 Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

Part C)

Using the ULINKpro with ETM Trace:
The examples previously shown with the ULINK?2 will also work with the ULINKpro. There are two major differences:
1) The window containing the trace frames is now called Instruction Trace. More complete filtering is available.

2) The SWV (Serial Wire Viewer) data is sent out the SWO pin with the ULINK2 using UART encoding. The
ULINKpro can send SWYV data either out the SWO pin using Manchester encoding or through the 4 bit Trace Port.
This is done so the ULINKpro can support those Cortex-M3 processors that have SWV but not ETM. The trace port
is found on the 20 pin Hi-density connector. It is configured in the Trace configuration window as shown below.
ETM data is always sent out the Trace Port and if ETM is being used, SWV data is also sent out this port.

ULINKpro offers: “Trace Part
1) Faster Flash programming than the ULINK?2. Sync Trace Port with 4bit Data ¥ |
. : : Sync Trace Port with 1-bit Data
2) All Serial Wire Viewer features as the ULINK2 does. = Trace Port with 2:bit Data
3) Adds ETM trace which provides records of all Program Counter values. ULINK2 Sync Trace Port with 4-bit Data
. R Seral Wire Output - Manchester
provides only PC Samples and is not nearly as useful. Serial Wire Output - UART/NRZ

4) Code Coverage: were all assembly isntructions executed ?
5) Performance Analysis: where the processor spent its time.

6) Execution Profiling: How long instructions, ranges of instructions, functions or C source code took in both time
and CPU cycles as well as number of times these were executed.

1) Blinky_ULp Example:
The project in C:\Kei\ARM\Boards\Kei\MCBSTM32C\Blinky ULp is preconfigured for the ULINKpro.
1. Connect the ULINKpro to the MCBSTM32C board using the Cortex Debug + ETM connector.

2. Start pVision by clicking on its desktop icon. s
Select Project/Open Project. Open the file C:\KeilNARM\Boards\Kei\MCBSTM32C\Blinky ULp\Blinky.uvproj.

i
4. Compile the source files by clicking on the Rebuild icon. £ . You can also use the Build icon beside it.
LOAD

5. Program the STM32 flash by clicking on the Load icon: ¥# Progress will be indicated in the Output Window.
Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
DO NOT CLICK ON RUN YET !!!

Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET until pVision halted the program at the start of main() since Run To main is selected in pVision.

9. In this case, # 607 shows the last instruction to be executed. (BX 10). In the Register window the PC will display the
&

value of the next instruction to be executed (0x0800 045A in my case). Click on Single Step once.

Fiter: [l

Source Code

0.00001264

<03000A14
(08000946
(08000948
(030009AA
(<080003AC
(08000158
(<0800015A

ADDS rdrd HI10

CMP rdr5

“BCC «DB00093A

BLW _main_init (2c08000158)
LDR rll[pc #0] : @0x0800015C
BX 0

0.00001272

FTFFFBD4
4800
4700

0.00001275

@Difafreml:l;' | ﬂlnstrud:ion Trace
10. The instruction BL.W will display: | 08000454 | FFFFFEST | BLW Systeminit (02000120) | 109: Systemint(; |
11. Scroll to the top of the Instruction Trace window to frame # 1. This is the first instruction executed after RESET.

12. If you use the Memory window at look at location 0x4, you will find the address of the first instruction there and this
will match with that displayed in frame # 1. In my case it is 0x8000 0164 + 1 (+1 says it is a Thumb instruction).

23 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM” Keil™ MCBSTM32C board www.keil.com

2) Code Coverage:

13. Click on the RUN icon. El After a second or so stop the program with the STOP icon. o
14. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:

15. This is Code Coverage provided by ETM trace. This indicates if an Disassembly

instruction has been executed or not. PCEIIDREE DUETREED =0 ED0IN
0x0800046C D300 BCC 0x08000470
Colour blocks indicate which assembly instructions have been executed. 0x0800048E E0IC B O=080004RR
1141: SysTick->LOAD = (ticks & SysTick LOAL
0x08000470 FO20417F EBIC rl,x0d, $0xFF000000
0x08000474 1E49 SUEBS rl, rl,#1
. . . 0x08000476 FO4F22EQ0 MOV r2, $0xEQQ0EOQOOD
. 1. Green: this assembly instruction was executed. 008000474 6151 STR ri, [r2,#0x14]
1142: NVIC SetPriority (SysTick IRQn, (l<<_
2. Gray: this assembly instruction was not executed. e e s
. 0x0800047E 1751 ?-151.15 rl,r2,$28
. 3. Orange: a Branch is always not taken. 0x08000480 2300 CMP rl, #0x00
0x08000482 DAOS BGE Ox08000480
4. Cyan: a Branch is always taken. 1015: SCE->SHR[((nine32_r) (TRQn) & OxF)-¢)
1016: else {
. . . . 0x08000484 210F MOVS rl, #0x0F
5. Light Gray: there is no assembly instruction here. 0308000486 0109 ISLS rl,r1,%4
0x0D8000488 4R24 LDR r2, [pc, $144] @ @C
. . . 0x0800048A 230B MOVS r3, #0x0B
I 6. RED: Breakpoint is set here. 05000450 sams crrn o trs, 23
. . 0x0800048E E004 B Ox0800048A
{]:I 7. Next instruction to be executed. 1017: NVIC->IP[(uint32_t) (IRQn)] = ((prie:
0x08000490 210F MOVS rl, #0x0F
0x08000492 0109 LSL5S rl,rl,#4

4
In the window on the right you can easily see examples of each type of Code IR T rotracion e
Coverage block and if they were executed or not and if branches were taken (or not).

Why was 0x0800_ 046E never executed ? Or 0x0800 0490 ? You should devise tests to execute these instructions so you
can test the effects.

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions cannot be tested. Some agencies
such as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.
Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage. You
can Clear and Update this window with the buttons provided.

| verage qx
‘ Module: I:AII Modules: j
Modules/Functions | Execution percentage I;

100% of 6 instructions
0% of 4 instructions
0% of 3instructions
0% of Sinstructions
0% of 2instructions

100% of 46 instructions
68% of 22 instructions, 3 condjumpis) not fully executed
0% of 8 instructions

SysTick_Handler 100% of 48 instructions

ADC1_2_IRQHandler 100% of 15instructions, 1 condjump(s) not fully executed
linkcy

ADC_init 100% of 61 instructions, 1 condjump(s) not fully executed
LED_init 100% of Sinstructions

100% of 5instructions

100% of 5instructions

100% of 17 instructions

85% of 58 instructions, 2 condjump(s) not fully executed

70% of 173 instructions, 12 condjump(s) not fulty executed
Bl gtatup stm3X10x cl =

@Disassemhly |c\°}z Code Coverage ﬂ[nstrudian Trace |

24 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

3) Performance Analysis (PA):

Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and more accuracy is improved with longer runs.
Small loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides only ETM PA.

Keil provides Performance Analysis with the uVision simulator or with ETM and the ULINKpro. SWV PA is not offered.
The number of total calls made as well as the total time spent in each function is displayed. A graphical display is generated
for a quick reference. If you are optimizing for speed, work first on those functions taking the longest time to execute.

Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the STM32 and reruns it to
main() as before.

4. Expand some of the module names as shown below.

Note the execution information that has been collected in this initial short run. Both times and number of calls is
displayed.

6. We can tell that most of the time at this point in the program has been spent in the Reset Handler.

7. Click on the RUN icon.

Reset || Show: IModules j
ModuleFunction Calls Time(Sec) Time(*%)
= Blinky 0.250 s 100%

Bl startup_stm32 10x_cl 0.167 ps T
- Reset_Handler 1 0167 = 7 |
- NMI_Handler 0 Dps 0% |
- HardFault_Handler 0 Dps 0%
- MemManage_Handler 0 Ops 0%
- BusFault_Handler 0 Ops 0%
- |IsageFault_Handler 0 Ops 0%
- SWC_Handler 0 T} 0% |
- DebugMon_Handler 0 Ops 0% |
- PendSV_Handler 0 Ous 0% |
- Sys Tick_Handler 0 Ous 0% |
- Default_Handler 0 Dps 0%

= Binky 008315 N —
- ADC_init 0 Ops 0% |
- LED_init 0 Ops 0% -
- LED_On 0 Ops 0%
- LED_CHf 0 [T 0% |
- LED_Out 0 [T 0% |
- mEin 1 0.083 p= 33 B

O T 2 1 Y| e ney 1 i

@Disassemhly | E Performance Analyzer | @ Instruction Trace |

8. Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.
IFunn:'tiDns "I

NC

10. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.

11. When you are done, exit Debug mode.

9. Select Functions from the pull down box as shown here and notice the difference.

TIP: You can also click on the RESET icon - #1 | but the processor will stay at the initial PC and will not run to main().
You can type g, main in the Command window to accomplish this.

When you click on RESET, the Initialization File .ini will no longer be in effect and this can cause SWV and/or SWV to stop
working. Exiting and re-entering Debug mode executes the .ini script again.

25 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

4) Execution Profiling:

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called.
This information is provided by the ETM trace in real time while the program keeps running.
The pVision simulator also provides Execution Profiling.

1. Enter Debug mode. Execution Profiling » Disabled
2. Select Debug/Execution Profiling/Show Time. 7| Show Time
. Memory Map...
3. Click on RUN. o Show Calls
Inline Assembly...
4. In' the left margin of the @sassqnbly and C source Function Editor (Open Ini File)... —
windows will display various time values.
5. The times will start to fill up as shown below right:
6. Click inside the yellow margin of Blinky.c to refresh it.
7. This is done in real-time and without stealing CPU cycles.
8. Hover the cursor over a time and ands more information appears as in the yellow box here:
Time: Calls: Average:
19.539 s 139910357 * 0.140 s

9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the
left margin.

system_MKSOMNS512MD100. ¢ r startup_MKSONS512MD100.5 /V Blinky.c]’ Abstract.bit] v x
82 LED Config(): =]
83
[> =4 = while(1) {
85 /% calculate 'num': 0,1,...,LED NUM-1,LED NOM-1,...,1,0,0,..
86 28.488 us num += dir;
87 62.171 us if (num == LED WNUM) { dir = -1; num = LED NUM-1;
B8 47.367 us else if (fnum < 0) { dir = 1; num = 0O;
8o
90 138.790 us LED On (num);
91 46.263 us Delav(250);
92 137.153 us LED Off (num) ;
93 45.694 us Delav(250);
g4 Time: Calls=: Lverage:
g5 F45.730 us 1289 = 0.035 us
96 } -
1] | _'I_I

Outlining:

11313

Each place there is a small square with a “-* sign é can be collapsed down to compress the associated source files together.

1) Click in the square near the while(1) loop near line 84 as shown here:

2) Note the section you blocked is now

collapsed and the times are added together system_MK6ONS12MD100.c | [] startup_MKSONS12MD100.s * [#] Biinkye | ¥ X
where the red arrow points. 80 SysTick Config(SystemCoreClock/1000); |
. . g1
3) Click on the + to expand it. 22 LED Configl():
. 83 C——
4) Stop the program and exit Debug mode. D sa 432.331 us[] while(l) {
96)
97
98 L
KN ;Ij
26 Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

5) In-the-Weeds Example:

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and is not hard to use.

If a Bus Fault occurs in our example, the CPU will end up at 0x800_016A as shown in the disassembly window below. This
is the Bus Fault handler. This is a branch to itself and will run this Branch instruction forever. The trace buffer will save
millions of the same branch instructions. The Instruction Trace window below shows this branch forever. This is not useful.

This exception vector is found in the file startup stm3210f10x_cl.s. If we set a breakpoint by double-clicking on the Hard
Fault handler and run the program: at the next Bus Fault event the CPU will again jump to the Hard Fault handler.

The difference this time is the breakpoint will stop the CPU and also the trace collection. The trace buffer will be visible and
extremely useful to investigate and determine the cause of the crash.

Using the Blinky example from the previous exercise, exit and re-enter Debug mode to clear the trace.
2. Locate the Hard fault vector near line 169 in the disassembly window or in startup_stm3210f10x_cl.s.

I instruction Trace n

Set a breakpoint at this point. A red

. Fiter: [l =l
block will appear.
H Type Fag | Mum PC Opcode Instruction Source Code
: 1048564 [0800016A) HardFault_Handler ((x0800016A) B
4' Run the Bhnky exanflple for a feW 1048565 | ETM x0800016A | EVFE B HardFautt_Handler (02000164} 168: B
Seconds and click on STOP 1048566 | ETM [<0200016A | EFFE B HardFautt_Handler {l«0800016A) 169: B
1048567 | ETM [x0800016A | E7FE B HardFautt_Handler {(x0800016A) 165 B
. . 1048568 | ETM (x08D0016A | EVFE B HardFault_Handler {(x0200016A) 189: B
5. Inthe Dlsassembly window, scroll 1048569 | ETM LeIB0D016A | ETFE B HardFaut_Handler (G<03000164) 169: B
1] - 1048570 | ETM x0800016A | EVFE B HardFautt_Handler (02000164} 168: B
dOWIl untll you ﬁnd a POP Instruction. 1048571 [ETM x0800016A | E7FE B HardFautt_Handler {x08000164) 169 B
I found one at 0x8000_05AA. - :
— @D\fa::eml)l; | E Performance Analyzer | anstructmn Trace

6. Right click on the POP instruction and
select Set Program Counter. This will be the next instruction executed.

Click on RUN and immediately the program will stop on the Hard Fault exception branch instruction.

Examine the Instruction Trace window and you find this POP plus everything else that was previously executed.

How this was done:

To create the hard fault, a POP instruction was executed out of order. A breakpoint was set on the Hard Fault Handler
location 0x800 016A. The program was run and stopped. A POP was located by scrolling down through the disassembly
window. The PC was set to the POP at this location by right clicking on it and selecting Set PC. Click on RUN and the CPU
immediately goes to the Hard Fault Handler and stops because the stack had a non-valid return PC address to be popped.

TIP: You might have to do a step-out-of to clear out all other running interrupt routines running otherwise you will just
return from an interrupt rather than crash. See the pVision Call Stack window for information on interrupts running.

Instruction Trace 3 x
Fiker: [l =l 1=

Source Code

#

Instruction

9

if (AD_value = AD_last) { /* Make sure that AD interrupt did

104857 (02000488 0.[pc #104] ; @080005... =/
1048571 (020004BA LDRH rl.[rD.#000]

1048572 (020004BC CMP rdrD

1048573 020004BE BEQ (<080004CA

1048574 (bc0B0004CA MOV rBrd 121: AD_prnt = AD_value; /* Get unscaled value for pintout =/
1048575 (020004CC LDR rl.[pc#92] ; @00800052C 123 fidock_1s){

1048576 (02000544 POP {rdpc) 48:1 j

The frames above the POP are a record of all previous instructions executed and tells you the complete program flow.

27 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM” Keil™ MCBSTM32C board www.keil.com

6) Configuring the ULINKpro ETM Trace:

The ULINKpro was configured for SWV operation using the SWO pin and Manchester encoding on page 11. We will
activate ETM trace here.

1) Select a project. Please use MCBSTM3220F Blinky.
2) Configure ULINKpro for the STM32 processor as described on page 6: ULINKpro and pVision Configuration:
Do not forget to configure the Flash programmer as well.
3) uVision must be stopped and in edit mode (not debug mode).
4) Select Options for Target AN or ALT-F7 and select the Debug tab.
T Edi... |
5) In the box Initialization File: an ini file will be there. Click on the Edit box. The specified ini file will open.
6) Click OK. At the bottom of the ini file, click on the Configuration Wizard tab.
7) Expand the menu and select Synchronous: Trace ,
Data Size 4 as shown here: [stm32.TPini | [] Abstracttt | [£] Blinky.c | [] STM32.SWO.ini | s x
TIP: Asynchronous is used to select the SWO port and is Bpand Al | Collapss Al | Help
needed for the ULINK2 or ULINK-ME. Onton [
8) Click on File/Save All to enable this file. It will be £=)-Debug MCU Configuration
. DBG_SLEEP [
executed when you enter Debug mode. . DRG.STOP "
'\', DBG_STAMDEY |7
9) Select Options for Target #N or ALT-F7 and -~ TRACE_IOEN ~ :
select the Debug tab (again). e ydvonows AT e+ [

10) Click on Settings: beside the name of your adapter

- DBG_WWDG_STOP

Synchronous: TRACEDATA Size 1
5 ACEDATA Size 2

- DBG_TIM1_STOP
(ULINK Pro Cortex Debugger) on the right side of DBG_TIM2_STOP
the window. DBG_TIM3_STOP
. DBG_TIM4_STOP
11) Click on the Trace tab. The window below is - DBG_CAN_STOP
displayed.
'\ Text Edtor j} Configuration Wizard

12) Core Clock: No need to enter anything.
ULINKpro determines this automatically

13) In Trace Port select Sync Trace Port with 4 bit data. It is possible to use other bit sizes but best to use the largest.

14) Select Trace Enable and ETM Trace Enable. Unselect Periodic and leave everything else at default as shown below.

15) Click on OK twice to return to the main pVision menu. Both ETM and SWYV are now configured.

16) Select File/Save All.

TIP: We said that you must use SWD (also called
SW) in order to use the Serial Wire Viewer. With

the ULINKpro and Wlth the Trace POI’t selected, Core Clcck:l 10.000000 MHz ¥ Trace Enable [¥ ETM Trace Enable
1 lect the JTAG port as well as the i B Trece Bvenis
yOU can also se p Sync Trace Port with 4-bit Data j [+ Enable Prescaler: m I~ CPI: Cycles per Instruction
SWD port F— ™ EXC: Exception overhead
[ressmeingT 71 | [T SLEEP: Slesp Cycles
Prescaler 102616] | | [611 Long Stee Uit Cycles
™ Periodic Penod:lm [~ FOLD: Folded Instructions
™ on Data RAW Sample ¥ EXCTRC: Exception Tracing

Cortex-M Target Driver Setup

Debug Trace | Flash Download I

Ix

—ITM Stimulus Ports

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board

3 Port 2423 Port 16 15 Port 87 Port 0
Enable: |(xFFFFFFFF v (v v v o o o vl o e v v o e e e o e v o e o el o e v o e o o
Pri\rilege:IDxDDDDDDDE Port 31.24 v Pot23.16 [Port15.8 [Pot 7.0 I
ok | [caned | Help
Ok | Cancel | Defaits | Help
28 Copyright © 2013 ARM Ltd. All rights reserved

www.keil.com

7) Serial Wire Viewer Summary:

Serial Wire Viewer can see:

Global variables.

Static variables.

Structures.

Peripheral registers — just read or write to them.

Can’t see local variables. (just make them global or static).

Can’t see DMA transfers —- DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

PC Samples.

Data reads and writes.
Exception and interrupt events.
CPU counters.

Timestamps for these.

Trace is good for:

Trace adds significant power to debugging efforts. Tells where the program has been.
A recorded history of the program execution in the order it happened.

Trace can often find nasty problems very quickly.

Weeks or months can be replaced by minutes.

Especially where the bug occurs a long time before consequences are seen.

Or where the state of the system disappears with a change in scope(s).

Plus - don’t have to stop the program. Crucial to some.

These are the types of problems that can be found with a quality trace:

Pointer problems.
Illegal instructions and data aborts (such as misaligned writes).

Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), corrupted stack.
How did I get here ?

Out of bounds data. Uninitialized variables and arrays.
Stack overflows. What causes the stack to grow bigger than it should ?

Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this.
Is very tough to find these problems without a trace especially oif the stack is corrupted.

ETM trace with the ULINKQpro is best for solving program flow problems.

Communication protocol and timing issues. System timing problems.

For complete information on CoreSight for the Cortex-M3: Search for DDI0314F_coresight_component_trm.pdf on
WWW.arm.com.

29 Copyright © 2013 ARM Ltd. All rights reserved

STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

8) Keil Products:

Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite™ (Evaluation version) $0
= NEW Il MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit) - $3,200
= MDK-Standard™ (unlimited compile and debug code and data size) - $4,895
= MDK-Professional™ (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,500

For special promotional pricing and offers, please contact Keil Sales for details.

USB-JTAG adapter (for Flash programming too)

= ULINK2 - $395 (ULINK2 and ME - SWV only — no ETM)

= ULINK-ME — sold only with a board by Keil or OEM.

= ULINKpro - $1,250 — Cortex-Mx SWV & ETM trace.

= MDK also supports ST-Link V2 and Segger J-Link Debug adapters.
The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free.
All versions, including MDK-Lite, includes Keil RTX RTOS with source code !) _
Keil provides free DSP libraries for the Cortex-M3 and Cortex-M4. k '

Call Keil Sales for details on current pricing, specials and quantity discounts. l [>]KEIL
Sales can also provide advice about the various tools options available to DE]KEI!'._ Development Tools

you. They will help you find various labs and appnotes that are useful.

Getting Smrtedl

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. See
Www.arm.com/university to view various programs and resources.
MDK supports STM32 Cortex-M3 and Cortex-M4 processors. Keil

supports many other ST processors including 8051, ARM7, ARM9™ and
ST10 processors. See the Keil Device Database® on www keil.com/dd for
the complete list of STMicroelectronics support.

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

Prices are for reference only and are subject to change without notice.

For the entire Keil catalog see www.keil.com or for your local distributor see: www.keil.com/distis/

For Linux, Android and bare metal (no OS) support on ST processors such as SPEAr, please see DS-5 www.arm.com/dsS5.

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, contact the author, Keil Technical support or www.keil.com.

y cMSIS E B _E N ==
vz Cortex |S]KEIL

Intelligent Processors by ARM® TOO'S by ARM

30 Copyright © 2013 ARM Ltd. All rights reserved
STMicroelectronics Cortex-M3 Lab with ARM® Keil™ MCBSTM32C board www.keil.com

