NXP LPC1700 Lab for the Keil MCB1768/58™ [>z| KEIL

ARM® Keil® MDK Toolkit featuring Serial Wire Viewer and ETM Trace Tools by ARM
For the Keil MCB1700™ Evaluation Board Version 4.94 by Robert Boys bob.boys@arm.com

For the Keil MCB1700 Evaluation Board

Introduction: - - - _
The latest version of this document is here: www.keil.com/appnotes/docs/apnt_246.asp

The purpose of this lab is to introduce you to the NXP Cortex*-M3 processor using the Keil MDK-ARMT™ Microcontroller
Development Kit featuring uVision”. MDK also contains a simulator. We will use the Serial Wire Viewer (SWV) on the
LPC1768 or LPC1765 rather than the simulator in this lab. Keil MDK supports all NXP ARM processors including Serial
Wire Viewer and ETM trace. Check the Keil Device Database® for NXP on www keil.com/dd/chips/nxp/arm.htm.

Keil MDK comes in an evaluation version that limits code and data size to 32 Kbytes. Nearly all Keil examples will compile
within this 32K boundary. The addition of a license number will turn it into the full, unrestricted version. Keil also provides
middleware in MDK-Professional™. This package includes a TCP/IP stack, CAN drivers, a Flash file system and USB
drivers. See the last page of this document for details on MDK and ARM contact information.

For more information: www.keil.com/nxp, forums.arm.com and www.arm.com/cmsis
Why Use Keil MDK ?

MDK provides these features particularly suited for NXP Cortex-M0, Cortex-M0+,
Cortex-M3 and Cortex-M4 users:

1. pVision IDE with Integrated Debugger, Flash programmer and the ARM®
Compiler, Assembler and Linker toolkit. MDK is a turn-key product with
included examples and is easy to get running.

2. Serial Wire Viewer and ETM trace capability is included. A full feature
Keil RTOS called RTX is included with MDK and includes source code
with all versions of MDK. RTX now comes free with a BSD type license.
See www.keil.com/demo/eval/rtx.htm.

3. Two RTX Kernel Awareness windows are updated in real-time. Kernel
Awareness exists for Keil RTX, CMX, Quadros and Micrium. MDK can
compile all RTOSs written in C.

Choice of adapters: ULINK2™_ ULINK-ME™, ULINKpro™
5. Keil Technical Support is included for one year and is renewable. This helps you get your project completed faster
This document details these features (plus more):
Serial Wire Viewer (SWV) with ULINK2, ULINK-ME and ULINKpro. ETM Trace using ULINKpro.

2. Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also called Access Breaks).

4. RTX Viewer: Two kernel awareness windows for the Keil RTX RTOS that update while the program is running.

5. A DSP example using the ARM DSP libraries for Cortex-MO0, Cortex-M0+, Cortex-M3 and Cortex-M4.
Serial Wire Viewer (SWV): (Data Trace) Use a ULINK2 for this debugging feature.

Serial Wire Viewer (SWYV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf),
CPU counters and a timestamp. This information comes from the ARM CoreSight™ debug module.

SWYV does not steal any CPU cycles and is completely non-intrusive except for ITM Debug printf Viewer. SWYV is provided
by the Keil ULINK2, ULINK-ME, ULINKpro and the Segger J-Link. A ULINK2 is used for the Serial Wire Viewer
exercises in this lab. An LPC-Link 2 can be used with this document but it currently does not support SWV.

Embedded Trace Macrocell™ (ETM): (Instruction Trace) Use a ULINKpro for ETM.

ETM displays all the executed instructions. As well as SWV. This allows advanced debugging features including timing of
areas of code (Execution Profiling), Code Coverage, Performance Analysis and program flow debugging and analysis. ETM
support requires the ULINKpro. This document uses a ULINKpro for ETM.

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. Al rights reserved.
www.keil.com www.arm.com forums.arm.com

Index:

1. Software Installation, JTAG and SWD Definitions, debug adapter connectors: 3
2. Debug Adapter Summary: ULINK2/ME, ULINKpro, J-Link, LPC-Link 2: 4
3. Blinky example using the Keil MCB1700 board and ULINK2: 5
4. Hardware Breakpoints: 6
5. Call Stack + Locals Window: 6
6. Watch and Memory Windows and how to use them 7
7. How to view Local Variables in the Watch or Memory windows: 8
8. Configuring the Serial Wire Viewer (SWV) with the ULINK?2: 9
9. Logic Analyzer: graphical data display using Serial Wire Viewer 10
10. Watchpoints: Conditional Breakpoints 11
11. RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor: 12
12. RTX Kernel Awareness example using Serial Wire Viewer 13
13. Logic Analyzer Window: view RTX variables real-time in a graphical format: 14
14. External Interrupt Example: EXTI using SWV: 15
15. ITM (Instruction Trace Macrocell) 16
16. printf Statements using [TM: 17
17. CAN (Controller Area Network) 18
18. Using Watchpoints and Serial Wire Viewer with CAN 19
19. DSP SINE Example using ARM CMSIS-DSP Libraries: 20
1) Running the DSP SINE example: 20
2) Signal Timings in the Logic Analyzer (LA): 21
3) RTX Tasks and System Awareness window: 21
4) RTX Event Viewer (EV): 22
5) Event Viewer Timing: 23
6) Changing the SysTick Timer: 23
20. Using a ULINKpro: Instruction Trace and more... 24
21. Using a ULINKpro: 24
22. Using the Blinky Ulp example: 25
23. Finding the Trace Frames you are looking for: 28
24. Trace Triggering: 28
25. Setting Trace Triggers: 29
26. In-the-Weeds Example: 30
27. Program Analysis 31
28. Code Coverage: 31
29. Saving Code Coverage information: 32
30. Performance Analysis (PA): 33
31. Execution Profiling: 34
32. Creating a new project: Using the Blinky source files: 35
33. Serial Wire Viewer summary 36
34. Keil Products and contact information 37
NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

1) Software Installation:

This document was written with Keil MDK 4.72a which contains pVision4. MDK is available on the Keil website and the
specific example files are included with this document. Example files are subject to improvement and can change. Use the
files specified for this document. Do not confuse uVision4 with MDK 4.0. The number “4” is a coincidence.

MDK 5 will be released late October 2013. See www.keil.com/mdkS5.

If you have a previous version of MDK 4, do not uninstall it; just install the new version on top. If you want to refresh the
examples, delete them in C:\Kei\ARM\boards\ and they will be replaced at install time.

You can use the evaluation version of MDK and a ULINK?2, ULINK-ME, ULINKpro, Segger J-Link or a LPC-Link 2.

If you are using a Segger J-Link, you do not need to install any additional files. You will need to configure pVision to use
the J-Link to run programs and program the Flash memory. This is easy to do. A J-Link (black case) Version 6 and later
supports Serial Wire Viewer with Keil pVision. For LPC-Link 2, select CMSIS-DAP mode.

Five Easy Steps to Get Connected and Configured:

1. Physically connect your debug adapter to the Keil board. Power both of these appropriately with USB cables.
Obtain and install Keil MDK Lite (evaluation version) on your PC. Use the default directory C:\Keil\.
Configure pVision to use a ULINK2, ULINK-ME or ULINKpro to communicate with the JTAG or SWD port.
Configure the Flash programmer inside pVision to program the internal or external flash or SPIFI memory.

If desired, configure the Serial Wire Viewer and/or ETM trace with a ULINK?2 or a ULINKpro as appropriate.

A

CoreSight™, JTAG and SWD Definitions: Itis useful to have an understanding of these terms:
Note: NXP Cortex-M3 and Cortex-M4 have most features except MTB. Consult your device datasheet for specifics.
o JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

e SWHD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except for no
Boundary Scan. SWD is referenced as SW in the uVision Cortex-M Target Driver Setup. The SWJ box must be
selected. LPC800 Cortex-MO0+ processors use SWD exclusively. There is no JTAG on the LPC800.

e SWV: Serial Wire Viewer: A data trace capability providing display of reads, writes, exceptions, PC Samples, [ITM
printf and Counters. SWV must use SWD because of the TDO conflict described in SWO below.

o DAP: Debug Access Port. A component of the ARM CoreSight debugging module that is accessed via the JTAG or
SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-fly
memory accesses without the need for processor core intervention. pVision uses the DAP to update Memory,
Watch and a RTOS kernel awareness window in real-time while the processor is running. You can also modify
variable values on the fly with the Memory window. No CPU cycles are used, the program can be running and no
code stubs are needed. CMSIS-DAP uses this port. The LPC-Link 2 debug adapter is CMSIS-DAP compliant.

You do not need to configure or activate DAP. pVision does this automatically when you select the function.

e SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDO.
e Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin).
e ETM: Embedded Trace Macrocell: Captures all the executed instructions. Only ULINKpro provides ETM.

e ETB: Embedded Trace Buffer: a small dedicated on chip RAM (4 to 8 Kbytes) accessible with a debug adapter.
Currently, only the ULINKpro can access the ETB. It is useful for instruction trace at the highest CPU speeds.

e MTB: Micro Trace Buffer. A portion of the device internal RAM is used as an instruction trace buffer. MTB is
only on LPC800 Cortex-MO0+ processors. Most NXP Cortex-M3 and Cortex-M4 processors provide ETM trace.

MCB1700 debug adapter connectors:

JTAG: standard 20 pin header for JTAG, SWD and SWV connections.
Cortex-Debug: compact ARM connector for JTAG, SWD and SWV connections.
Cortex-Debug+ETM: 20 pin compact JTAG, SWD, SWV and ETM connections.

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex _debug_connectors.pdf

www.keil.com/coresight/coresight-connectors/

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
www.keil.com www.arm.com forums.arm.com

2) Debug Adapter Summary for use with pVision IDE:
ULINK2:

This is a hardware JTAG/SWD debugger. It connects to various connectors found on boards
populated with ARM processors. With NXP Cortex-M3 and M4 processors, ULINK2 @!5_&35

supports Serial Wire Viewer (SWV) and MTB (Micro Trace Buffer) with Cortex-M0+. w E
ULINK-ME: -

ULINK-ME is provided combined with a board package from Keil or a ULINK2
OEM. Electrically and functionally it is very similar to a ULINK2. With Keil pVision, they are used
as equivalents. ULINK-ME has the both a legacy 20 pin and the new 10 Cortex Debug connector.

ULINKQpro:

ULINKpro is Keil’s most advanced debug adapter. With NXP Cortex-M3 and Cortex-M4
processors, ULINKpro provides Serial Wire Viewer (SWV) and adds ETM Instruction Trace. Code
Coverage, Performance Analysis and Execution Profiling are then provided using ETM. ULINKpro
programs the Flash memories very fast.

LPC-Link 2:

A CMSIS-DAP compliant debug adapter. This provides either a J-Link Lite or a CMSIS-
DAP connection. pVision supports both. LPC-Link 2 supports MTB trace on the LPC800.
Serial Wire Viewer (SWV) will be supported late 2013.

The LPC-Link 2 can start and stop the CPU and set/unset breakpoints. Watchpoints function.
The Watch and Memory windows update in real-time.

CMSIS-DAP: ULINKpro
This is a new ARM standard where a small processor located on the target board acts as the

Debug Adapter. It connects to your PC with a standard USB cable.

The processor can also be external as in the NXP LPC-Link 2.

CMSIS-DAP provides run control debugging, Flash and RAM programming, Watchpoints and
hardware breakpoints. DAP reads and writes in the Watch and Memory windows are updated
in real-time as well as the RTX System kernel awareness.

MTB is supported with the LPC800 Cortex-M0+. You are able to easily incorporate a
CMSIS-DAP design on your own custom target boards. For documents go to
silver.arm.com/browse/CMSISDAP/ and download CMSIS-DAP Beta 0.01. Also see
www.arm.com/cmsis and forums.arm.com.

Segger J-Link: LPC-Link 2

The fifth picture. pVision supports J-link and J-Link Ultra (black case only) Version 6.0 or later.
The J-Link family supports all CoreSight components except MTB. This will be supported in the
future. J-Link is configured similar to the ULINK2/ME. Select J-Link/J-Trace Cortex in the
Debug and Utilities tab. The Trace windows are slightly different from the ULINK2/ME.

NEW ! ULINK2 and ULINK-ME with CMSIS-DAP Support:

Starting with MDK 4.71, you can use either of these as a CMSIS-DAP compliant debugger or in
standard ULINK2/ME mode. With a LPC800, CMSIS-DAP mode adds trace search, save and
clear window options. This is the same window as with the ULINKpro. ULINK2 CMSIS-DAP

can start and stop the CPU and set/unset breakpoints. Watchpoints function. The Watch and Memory JLink Ultra
windows update in real-time. SWV does not function in CMSIS-DAP mode at this time.
If you want to use SWV, choose the standard ULINK2/ME, ULINKpro or J-Link (black case) V6 or higher.

If the ULINK2/ME firmware needs to be updated, a notice will appear when you enter Debug mode. @ After this, you can
| Linker Debug | Luities | | Linker Debug | ities |
€ Use: [CMSIS-DAP Debugger =] | Settrngs or | @ Use: [ULINKZ/ME Cortex Debugoer 7] _Setings |

select either mode in the Target Options menus:

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
www.keil.com www.arm.com forums.arm.com

3) Blinky example program using the Keil MCB1700 and ULINK2 or ULINK-ME:

Now we will connect up a Keil MDK development system using real target hardware and a ULINK2 or ULINK-ME. These
examples will also run on the MCB1750 which uses a LPC1758 processor.

1.

Connect the equipment as pictured here: - i

-
Start pVision4 by clicking on its desktop icon. == ULINK2 .
Select Project/Open Project. '
Open the file
C:\Kei\ARM\Boards\Keil\MCB1700\Blinky\Blinky.uvproj.

Make sure “LPC1768 Flash” is selected, -F=1758 Flash T

This is where you select the Simulator or to execute a program in
RAM or Flash. You can easily create your own Target Options.

Select Target Options icon EAN and select the Debug tab. The
USB adapter is selected in this window as shown below:
ULINK2/ME will be pre-selected in this example project.

TIP: The Flash programming algorithm is selected in the Utilities tab. The ULINK2/ME is pre-selected for this project.
You do not need to change this unless you are using a different adapter.

5.
6.
7.

Select the Settings: box under the Debug tab. The window below opens up.
In Port: select SWJ and SW. You can use JTAG if you are not going to use Serial Wire Viewer (SWV).

In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the
target processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the

target power supply. Cycle the power to the ULINK and the board.

TIP: To refresh this screen select Port: and change it or click OK once to
leave and then click on Settings again.

TIP: You can do regular debugging using JTAG. SWD and JTAG operate

at approximately the same speed. Serial Wire Viewer (SWV) will not

(¢ Uss: [ULINK2/ME Cortex Debugger x| Settings |

ULINKZ/ME Cortex Debugger

RDI Interface Driver
Altera Blaster Cortex Debugger
v
'___ Load g tans ICDI
Initializatid Signum Systems JTAGjet

b maln{}

operate in JTAG mode. I— J-LINK / J-Trace Cartex .
. ST-Link {Deprecated Version) J il
8. Click on OK twice to return to the main pVision screen. UILINK Pro Cortex Debuager
RSISS!) Link Deb
Abs % B SiLabs UDA Debugger
. da3ts v
9. Compile the source files by clicking on the Rebuild icon. L . =yl ST-Link Debugger
LOAD
10. Program the LPC1700 flash by clicking on the Load icon: #% Progress will be indicated in the Output Window.
11. Enter the Debug mode by clicking on the Debug B
@1 Debug | Trace | Aash Dowrdoad |
icon. Select OK if the Evaluation Mode box ULINK USB - JTAG/SW Adspter —| - SW Device
appears. Serial No: |VU733FBE ﬂ IDCODE | Device Name idar:
Note: You only need to use the Load icon to o O | [|5 |2 AT MM Core g S 0 L|
download to FLASH and not to program the e feorex 22|
simulator or RAM. Femnuars Versn: V1.4 e oD
) ~ swi Port: (ST ~ (ol on e ;
12. Click on the RUN icon. =l Note: you stop the e gl | [Beie || Dpdate] IRter [T
program with the STOP icon. | CCornect & Rosst Optors Cache Optiora——Diownicad Optona
. . . Connect: [Nomal =] Reset: [Atodetect =] | | ¥ Cache Code I Verfy Code Download
13. You can single-step with these icons: Hover your ¥ Reset after Conect 7 Cache Memary | | I Dowrioadto flash
mouse over each icon to identify its function: - —
Tl
ERAURUNY

The LEDs on the MCB1700 will now blink at a rate according to the setting of the pot P7.
Now you know how to compile a program, load it into the LPC1700 Flash, run it and stop it.

Note: This program is now running on the Cortex-M3 processor in the LPC1700. If you remove the ULINK2/ME, this
program will run standalone as you have programmed it in the Flash. This is the complete development cycle.

NXP LPC1700 Lab. Fall 2013

www.keil.com www.arm.com

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

forums.arm.com

4) Hardware Breakpoints:

1. With Blinky running, click in the left margin on a darker gray block somewhere appropriate in the while(1) loop
between Lines 062 through 088 in the source file Blinky.c as shown below: Click on the Blinky.c tab if not visible.

2. Ared circle is created and soon the program will stop at this point as shown below.

The yellow arrow is where the program counter is pointing to in both the disassembly and source windows. This
instruction has not been executed yet.

4. The cyan arrow is a mouse selected pointer and is associated with the yellow band in the disassembly window.
Click on a line in one window and this place will be indicated in the other window.

5. Note you can set and unset hardware breakpoints while the program is running. ARM CoreSight debugging
technology does this. There is no need to stop the program for many other CoreSight features.

The LPC1700 family has 6 hardware breakpoints. A breakpoint does not execute the instruction it is set to.
Remove the breakpoint to continue.

TIP: If you get multiple cyan arrows or can’t understand Disassembly

the relationship between the C source and assembly, try 73 GEI0_ClearValue (LEDL EORI, (1<<LEDI BII)):
R 3 . X 0x14001510 F44F6100 MOV r1, $#0x800
lowering the compiler optimization to Level 0 and 0x14001514 2001 HOVS x0, $0x01
: : . 0x14001516 F7FFFRAEE BL.W GPIO ClearValue (0x14000AF0)
rebulldlng your prO_]CCt. - T4: timer_delay ms tEOJ H
. . . g 0x1400151R 2032 MOWVS =0, #0x32
The level is set in Target Optlons 433\ under the C/C++ 0x1400151C FTFFFFAC BL.W timer delay ms (Ox14001458)
t b h t D b d 75: GPIC_ClearValue (LED2_PORT, (1<<LED2_EIT));
ab when not n © ug mode. c}OxlﬂOOlSEO F44F5180 MOV rl, #OxlOOO
0x14001524 2001 MOVS r0, #0x01
0x14001526 FTFFFRAE3Z BL.W GPIC ClearValue (0x14000RFQ) =
. LL' Thrmana T e »
5) Call Stack + Locals Window: [Disassembly | B8 Logic Analyzer |
Local Vanables I3 timer.c | [#] startup_teCazncs . [¥] Gpio_LedBlinky.c | [£] lpeimsoutise | ¥ x
a3 Y
The Call Stack and Local windows are incorporated into 70 J] while (1)
. . . Ti[] 4 // Loop forever
one integrated window. Whenever the program is 72 timer delay ms(50):
stopped, the Call Stack + Locals window will display call ~ |* 7 GPIO_ClearValue [LEDL_FORT, (1<<LEDI_BIT))
. . T4 timer delay ms(50);
stack contents as well as any local variables belonging to w78 GPIO_ClearValue (LED2_PORT, (1<<LED2_EIT)):
. . 76 GPIC SetValue (LED1 PORT, (1<<LED1 BIT)):
the active function. - cimeT dela 03 -]
IET ¢ v_ms(50);
i . . 78 GPIO SetValue (LED2 PCRT, (1<<LEDZ BIT});:
If possible, the values of the local variables will be 79 msec+:
displayed and if not the message <not in scope> will be = H (mescrOxio) mseemo:
displayed. The Call + Stack window presence or visibility g = [_>|L|

can be toggled by selecting View/Call Stack window. : =
1. Click on the Call Stack + Locals tab. Stop the program if necessary.
2. Shown below is the Locals window in the Blinky program.
3. The contents of three local variables in the main() function are displayed as well as the function name(s).
4. Using RUN, Step, Step Over and Step Out to enter and exit various functions, this window will update.
5. Set a breakpoint at an appropriate place in GLCD_SPI LPC1700.c source file and select RUN to see other Locals.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debuggmg technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your

code are required. Update while the program is
running is not possible with local variables. They must [G ERrIoE
be converted to global or static variables or be part of a

A Name Location/Malue | Type
structure or array so they always remain in scope. o % main 0x000011E8 int 10
Call Stack: """ ¥ ad_avg auto - unsigned int

auto - unsigned short

The list of stacked functions is displayed when the
program is stopped. This is when you need to know
which functions have been called and are stored on the
stack.

auto - unsigned short

-:.-'_'l Call Stack + Locals | E‘iDehug [printf) Viewer Memory 1

6. Remove all hardware breakpoints by clicking on its red circle ! Select Debug/Breakpoints (or Ctrl-B) to
see how you can manage breakpoints such as using Kill All Breakpoints or temporarily unselect them.

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
www.keil.com www.arm.com forums.arm.com

6) Watch and Memory Windows and how to use them:

The Watch and Memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of most NXP Cortex-M processors. It is also possible to “put” or insert values into these
memory locations in real-time. You can “drag and drop” variables into windows or enter them manually to configure them.

1.

2.

In the source file ADC.c is the global variable AD_last near line 21. Select File/Open to access ADC.c if needed.

Enter debug mode if not there already. @ The program can be running or stopped for the following steps.

Right-click on AD_last and select Add ‘AD last’ to ... Watch 1 2 x
and select Watch 1. Watch 1 will open if necessary. — — e

You can also highlight the variable and drag it into the ;- @ (ROt unsigned short
Watch window. You can also select on <Enter +<Enter expression=

expression> in Watch 1 to type it in manually.

.;..'_'| Call Stack + Locals | 5‘§Dehug [printf} Viewer Watch1 | (] Memory 1

You can always open a Watch window by selecting
View/Watch Windows/Watch 1 in the main pVision window.
AD _last will display as shown here:

Click on RUN if necessary.

Rotate the pot and AD_last is updated in real-time.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

Memory window:

1. Right-click on AD_last and select Add AD_last to ... and then select Memory 1.
2. Rotate the pot and watch the memory window.
3. Note the value of AD_last is displaying its address in Memory 1 as if it is a pointer. This is useful to see what
address a pointer is pointing at but this not what we want to see at this time.
4. Add an ampersand “&” in front of the variable name and press Enter. Now the address of AD_last is shown
(0x10000028 in this case).
Right click in the memory window and select Unsigned/Long. Address: [£AD_as [i7] ii
The data contents of AD_last is displayed as shown here: 0x10000028: 0000070C 37307830 00004430 00000000
0x10000038: 00000000 00000000 00000000 00000000
7. Both the Watch and Memory windows are updated in real-time. ~ |9%10000048: 00000000 00000000 00000000 00000000
0x10000058: 00000000 00000000 00000000 00000000
TIP: You are able to configure the Watch and Memory windows and 0x10000068: 00000000 00000000 00000000 00000000
. N . . 0x10000078: 00000000 00000000 00000000 00000000 LI
change their values while the program is still running in real-time without - — —— :
. gl Call Stack + Locals | ':';Dehug [printf) Viewer | Watch 1
stealing any CPU cycles.

You can insert a number in a Memory window in real-time: No CPU cycles are stolen !

Stop the CPU 9 and exit debug mode. @

9. In the source file Blinky.c add a global variable counter near line 30 like this: unsigned int counter = 0;
10. In the main function add the following two lines just after the printf statement near line 88:
counter++;
if (counter > OxOF) counter = O; N
11. Compile the source files by clicking on the Build icon. b .
. e @Q . &
12. Program the flash by clicking on the Load icon: ## and enter Debug mode. Click on the RUN icon. =
13. Enter the variable counter in the Memory 1window by your preferred method. Add the & in front of counter.
Note it increments every second or so.
14. Right-click on the memory word for counter in the Memory 1 window.
15. Select Modify Memory at Oxaddress and enter 0x0 or just 0 and press Enter.
16. counter will be set to zero while the program still runs or to any other value you entered. You can also do this in
the Watch window when the program is halted.
NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

7) How to view Local Variables in the Watch or Memory windows:

Watch, Memory windows and many functions of the Serial Wire Viewer can view variables located in physical memory.
This includes static and global variables plus arrays and structures. Local variables, usually held in CPU registers, are not
visible. To view locals (also called automatics), simply convert them to static or global variables.

1. Stop the program @ . Enter the local variable ad_val from main() in Blinky.c near line 37 to Watch 1. If you are
unable to enter ad_val , make sure that the program is stopped in main() and not some function.

2. It will probably have a value displayed as the program spends nearly all its time in main() so it is in scope. If the PC
is outside of main(), <out of scope> or <cannot evaluate> will be displayed.

Start the program by clicking on the Run icon El'

4. Set a breakpoint by clicking in the margin beside the line clock_1s = 0; in main() around line 86 The program
will soon stop on this hardware breakpoint.

TIP: You can set breakpoints on-the-fly with Cortex-M f¥aicipl 1 X
processors ! Name Value Type

o WOAD last 0x04AC unsigned short

W counter _unsignedint

; W ad_val 0x04AD unsigned short
[<Enter expression=

5. ad_val is displayed as shown here:

6. Each time you click RUN, these values are updated.
You might have to rotate the pot to see a difference.

How to view these variables updated in real-time:

All you need to do is to make ad_val static !
1. In the declaration for ad_val add static like this and recompile:
int main (void) {
uint32_t ad_avg = O;
static uintl6é_t ad_val = 0, ad_val_ = OxFFFF;
2. Exit debug mode.
TIP: You can edit files in edit or debug mode, but can compile them only in edit mode.

3. Compile the source files by clicking on the Build icon or press F7. Hopefully they compile with no errors or
warnings.
LoAD

4. To program the Flash click on the Load icon. ## . A progress bar will be at the bottom left.

TIP: To program the Flash automatically when you enter Debug mode select Target Options EAN , select the Utilities tab
and select the “Update Target before Debugging” box.

Enter Debug mode. @

Remove the breakpoint you previously set and click on RUN. You can use Debug/Kill All Breakpoints to do this.

ad_val is now updated in real-time.

8. Stop the CPU Q and exit debug mode @ for the next step.

How It Works:

pVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M3 is a Harvard
architecture. This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed,
there is plenty of time for the CoreSight debug module to read or write values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

TIP: If various windows update only when the programs stops, make sure the Update is enabled:

In the main menu select View/Periodic Window Update: H milesiadiciliindawylipdsio

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
www.keil.com www.arm.com forums.arm.com

8) Configuring the Serial Wire Viewer (SWV) with the ULINK2:
Serial Wire Viewer provides program information in real-time and is extremely useful in debugging programs.
SWYV is available with any ULINK2, ULINK-ME, ULINKpro or a J-Link. LPC-Link 2 does not provide SWV at this time.
Configure SWV:
1. | Linker Debug | Ltittes |

% Use: IULINI{Z."'I'\"IECDrtax Debugger j Settings |

uVision must be stopped and in edit mode (not debug mode).

Select Target Options EAN or ALT-F7 and select the Debug tab.

2.
3. Click on Settings: this is beside the name of your adapter (in this case ULINK2/ME Cortex Debugger).
4. Select the SWJ box and select SW in the Port: pulldown menu.
5. Inthe area SW Device must be displayed: ARM CoreSight SW-DP. SWV will not work with JTAG.
6. Click on the Trace tab. The window here is displayed: =
7. In Core Clock: enter 100 and select Trace Enable. Debug. Toce | Faeh Dowri |
8. Select Periodic and leave everything else at default. Core oo [TOR 00O 1 I Trace Enctie
Periodic activates PC Samples. e AT =] | | F o e[+ 2] || - Corcrooer oo
9. Click on OK twice to return to the main pVision SW1O Clock Frescalr xmm pcsEmphngpm e et
menu. SWV is now configured. 0ok T || 5 pane reme| o s
10. Select File/Save AlL i] e bk B EEE Eam e

rITM Stimulus Ports

To DISp|ay Trace Records: . 31 Pt 2423 Pt 1615 Pt 8 7 Pt D
| Wi¥ieiviviviviy ivivivivivivie VIivivivivivivie e bl
@ = Privilege: [2<00000008 Port 31.24 ¥ Port 23.16 ™ Port 15.8 [~ Port 7.0 ™
Enter Debug mode. Click on the RUN icon. =
2. Open Trace Records window by clicking on the small == H|- - e
arrow beside the Trace icon shown here: Trace Exceptions
You can also open the Trace Records window by selecting View/Trace/Records. Event Counters
. . . . v | Records
3. The Trace Records window will open and display PC Samples and Exceptions as shown below:

Displayed are PC samples and Exception 15 (SYSTICK timer) Entry, Exit and Return points.
Entry: when the exception or interrupt is entered.

Exit: when the exception or interrupt exits.

Return: when all exceptions or interrupts exit. This indicates no tail chaining is occurring.

TIP: If you do not see PC Samples and Exceptions as shown and instead see either nothing or frames with strange data, the
trace is not configured correctly. The most probable cause is the Core Clock: frequency is wrong. ITM frames 31 and O are
the only valid ones. Any other numbers are bogus and usually indicate a wrong Core Clock value.

All frames have a timestamp displayed in CPU cycles and accumulated time.

Double-click this window to clear it. Hoestoe s =

. . o . . Type Ovf [Num Address | Data | PC [oy [Cyoes | Tmel) |l
If you right click inside this window you can see PC Sample 00001200H 302962974 3.02982974
. PC Sample 000012D4H 302595358 3.025959358
how to filter various types of frames out. Unselect PC Sampls 00001276H 03015742 203015742
. . PC Sample D000127AH 303032126 3.03032126

PC Samples and you will see only exception frames. PC Sanpe 01234 S0 I

ample 1

Did you know Exception 15 is being activated ? e - sanznan Toers 3oaers
Now you do. This is a very useful tool for Beonfetm 0 x s 300004
: 3 : : 3 : Exception Retum X 0 X 303092414 303092414
displaying how many times an exception is firing PC Sample 00001278H X 303039614 3.0309%14
: : PC Sampl D0D01Z7AH 303114046 3.03114045
and when. You can open up the Exceptions window PC Samble 000012D0H 03430 303130430
PC Sample 000012D4H 303146874 303146814
th? same way yog opened _the Tra.ce Re(fords o PC Sample DO0D12E4H 303163138 303163198
window. Exceptions are listed with various timings. ~ |ESEEE L e
1 1 _t1 PC Sample 000012D0H 303212350 3.03212350

BOth Wlndows are updated mn real time. PC Sample 000012D4H 303228734 303228734 LI

Close both Trace windows when done with them.

TIP: SWV is easily overloaded as indicated by an “x” in the OVF or Dly column. In this case, the extra Exception Return 0
marked with the X is spurious. Select only that information needed to reduce overloading. In this case, removing the PC
Samples will solve this issue. There are more useful features of Serial Wire Viewer as we shall soon discover.

TIP: Num is the exception number: RESET is 1. External interrupts start at Num 16. For LPC1768, 41 is CAN IRQ. This
is found in the LPC17xx Users Manual. Num 41 is also known as 41-16 = External IRQ 25.

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

9) Logic Analyzer: graphical data display using Serial Wire Viewer and ULINK2:

This example will use the ULINK2 with the Blinky example. It is assumed a ULINK2 is connected to your Keil board and
configured for SWV trace as described on the previous page.

uVision has a graphical Logic Analyzer (LA) window. Up to four variables can be displayed in real-time using the Serial
Wire Viewer. The Serial Wire Output pin is easily overloaded with many data reads and/or writes and data can be lost. The

LA shares the address comparators in CoreSight with the Watch windows. They are mutually exclusive.

1.
2.
3.
4

5.
6.

TIP: An error message saying ticks cannot be added usually means SWV is not configured or ticks is not in focus.

TIP: You can also open the LA and select Setup and then select the New icon and enter \Blinky\Blinky.c\counter.

10.

11.

The project Blinky.uvproj should still be open and is still in Debug mode and running.

Note: You can configure the LA while the program is running or stopped.

Select Debug/Debug Settings and select the Trace tab.

Unselect Periodic and EXCTRC. This is to prevent overload on the SWO pin. Click OK twice.

Click on RUN El to start the program again.

Locate the variable counter you previously created in Blinky.c.

Right click on counter and select Add ‘counter’ to ... and select Logic Analyzer. This will open the LA window.

Click on Setup and set Max: in Display Range to 0xOF. Click on Close. The LA is completely configured now.

counter should still be visible
in Watch 1. If not, enter it into paifine
the Watch 1 window.

Adjust the Zoom OUT or the
All icon in the LA to provide a
suitable scale of about 5 s as
shown here:

Would you have guess counter —
is a sawtooth wave from

“
@D\sassemmy |] Logic Analyzer

Max Time

Gid | Zoom | Min/Max |Updste Screen

Transition

Jump to

(ove..| 163498 (22759545 | §¢ | 0wl AT] o] o] [Siop [Gowr]

188.0244 5

Code |[Trace

™ Signal Info
™ Show Cycles [~ Cursor

™ Amplitude

22802445
L fl=1]

looking at its value changing in the Watch 1 window ? Select Amplitude and use the cursor to see when counter =
0xA. Select Stop in Update Screen to stop the LA from collecting data.

TIP: The Logic Analyzer can display static and global variables, structures and arrays. It can’t see locals: make them static
or global. To see peripheral registers, enter their physical addresses into the Logic Analyzer and read or write to them.
Physical addresses can be entered as *((unsigned long *)0x20000000).

When you enter a variable in the Logic Analyzer window, it will also be displayed in the Trace Records window.

1.
2.

TIP: The PC column is activated when you selected

Select Debug/Debug Settings and select the Trac
Select on Data R/W Sample. Click OK twice.

Run the program. =,

Open the Trace Records window and clear it
by double clicking in it.

The window similar below opens up:

The first line says:

The instruction at 0x0000 12EC caused a
write of data 0x00 to RAM memory address
0x1000_0024 at the listed time in CPU
Cycles or accumulated Time in seconds.

e tab.

ﬂ
Type [ouf [Mum [Address | Dats | FC [oy[Cuoles | Tmes |-l
Data Wte: 10000024H 0000DOODH ODOOTZECH X 31859940921 31859940921
Data Wrte 10000024H OO0DDODEM ODDOTZECH X 31959940281 319.59940281
Data Wite 10000024H OOD0DOOOFH ODDOTZECH X 32059941831 32059941831
Data Wite 10000024H 00D0DDOTOH ODODTZECH X 32158840741 32158940741
Data Wite 10000024H 000DOODOH OODD12FBH X 32158950311 32158950311
Data Wite 10000024H 000DOODTH ODOOT2ECH X 32059940093 32258940093
Data Wte: 100000244 0000000ZH ODDO1ZECH X 32359841671 32359941671
Data Wite: 10000024H 000DD003H ODDD1ZECH X 32459940525 324 53940525
Data Wrte 10000024H 000DD0D4H ODDOTZECH X 32550940286 32559940286
Data Wite 10000024H 000DOODSH ODDOTZECH X 32659941868 32653941868
Data Wite 10000024H OO0DDODGH ODDDTZECH X 32753940730 32758940730
Data Wite 10000024H 000DOOO7H ODODT2ECH X 32853940030 32858940030

2

On Data R/W Sample in Step 2. You can leave this unselected to save bandwidth on the SWO pin if there are too many
overruns. pVision and CoreSight recover gracefully from trace overruns.

TIP: ULINKpro can process SWV data faster than a ULINK?2 or a J-Link as it uses either the Manchester format or outputs
the frames on the 4 bit trace port instead of the single bit SWO pin. ULINK2/ME and J-Link use the slower UART mode.
If you are trying to output SWV trace at high rates, consider using a ULINKpro. It also programs Flash memory much faster.

NXP LPC1700 Lab. Fall 2013

www.keil.com www.arm.com

10

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

forums.arm.com

10) Watchpoints: Conditional Breakpoints

Most NXP Cortex-M3 and M4 processors have four data comparators. Since a Watchpoint uses two comparators, you can
configure two complete Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic Analyzer uses
watchpoints in its operations. This means you must have two variables free in the Logic Analyzer to use Watchpoints.

1. Using the example from the previous page, stop the program. Stay in Debug mode.
2. Enter the global variable counter into the Watch 1 window if it is not already there.
3. Click on Debug and select Breakpoints or press Ctrl-B.
4. The SWV Trace does not need to be configured to use Watchpoints. However, we will use it in this exercise.
5. Enter in Expression: “counter == 0x4” without the quotes. Select both the Read and Write Access.
6. Click on Define and it will be accepted as shown here: =]
(the Expression: box will actually go blank) Dmmmm)> Curent Breckporis
7. Click on Close.
Double-click in the Trace Records window to clear it.
counter should still be entered in the Logic Analyzer
window from the previous exercises.]
10. Click on RUN. Access
. Expression: Icoumer == (04 [¥ Read v Wiie
11. When counter equals 0x4, the program will stop. Cort: [| = Size:
This is how a Watchpoint work — =
is is how a Watchpoint works. ot | =
12. You will see counter displayed as 0x4 in the Logic
Analyzer as well as in the Watch window. Deine | KiSdected | w4 | Cose | ho |
13. Note the data write of 0x4 in the Trace Records window
shown below in the Data column. The address the data written to and the PC of the write instruction is displayed as
well as the timestamps:
14. There are other types of expressions you can Ml — I I — I j'
. . Type Ovf | Num Address Data PC Cycles Time[s =
enter and they are detailed in the Help button e Vis 10000024H OODDOOTON DODDT2ECH D)? 3535;?45535 35359945636
in the Breakpoints window. i e mom o gme) nmer noer
. . . Data :Nrite 10000024H 001 H 000012ECH X 35559942116 355.59942116
15. To repeat this exercise, enter a different Deta vine foooonaen (o000) GODTZECH X Ssesiiias 357sceatiss
value for ticks in Watch 1 and click on RUN.
The trace will be updated.
16. With the program stopped (or the LA Update Screen is Stopped) you can measure value of ticks: ====>
This can be very useful to determine what the value of a variables really is at a given point in time.
17. When finished, click on STOP if the program is running and delete this Watchpoint by
selecting Debug and select Breakpoints and select Kill All. Select Close.
Note: Selecting Debug and the Kill all Breakpoints will not delete Watchpoints.
18. Leave Debug mode. @

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints window and its information will be dropped down into the
configuration area. Clicking on Define will create another Watchpoint. You should delete the old one by highlighting it and

click on Kill Selected or use the next TIP:

TIP: The checkbox beside the expression in Current Breakpoints as shown above allows you to temporarily unselect or

disable a Watchpoint without deleting it.

NXP LPC1700 Lab. Fall 2013 1

www.keil.com www.arm.com forums.arm.com

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

11) RTX_Blinky Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX now comes with a BSD type license. This means it is free and no licensing or
product fees or royalties are payable with RTX. RTX is easy to implement full feature RTOS with up to 255 tasks.

Users often want to know the current operating task number and the status of the other tasks. This information is usually
stored in a structure or memory area by the RTOS. Keil provides two Task Aware windows for RTX by accessing this
information. Other RTOS companies also provide awareness plug-ins for pVision. Any RTOS ported to a Cortex-M or R
processor will compile with MDK. See www.keil.com/rl-arm/kernel.asp for complete RTX details.

RTX is a Keil produced RTOS that is provided with MDK. Source code is provided with all versions of MDK.

TIP: You can also run this program with the simulator.

Start pVision4 by clicking on its icon on your Desktop if it is not already running. ‘=

2. Select Project/Open Project and open C:\Kei\ARM\Boards\Kei\MCB1700\RTX _Blinky\Blinky.uvproj.

LOAD
4. To program the Flash manually, click on the Load icon. A progress bar will be at the bottom left.
Enter the Debug mode by clicking on the debug icon @ and click on the RUN icon. =l
6. The LEDs will blink indicating the waveforms of a stepper motor driver. This will also be displayed on the LCD
screen. Click on STOP °
The Configuration Wizard for RTX:

1. Click on the RTX Conf CM.c source file tab as shown below on the left. You can open it with File/Open or
double-click on it in the Project window if you are not in Debug mode.

2. Click on Configuration Wizard at the bottom and your view will change to the Configuration Wizard.
3. Open up the individual directories to show the various configuration items available.
4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
5. This is a great feature as it is much easier changing items here than in the source code.
6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
8. See www.keil.com/support/docs/2735.htm for instructions on using this feature in your own source code.
9. The pVision4 System Viewer windows used to display the peripherals are created in a similar fashion.
/ RTX_Conf_CM.c l - X Elinky.c RTX_Conf_CM.c I - X
081 #ifndef OS5 _TICK = g RE— T
032 #$define 05_TICHE 10000 j e I e I ¢I
083 #endif Option | value
034 5-Task Definltions
085 /S </h> Mumber of concurrent running tasks 7
088 // <e>Round-Reobin Task switchin .. Mumber of tasks with user-provided stack. [u]
087 f - Task stack size [bytes] 00
088 // <i> Enable Round-Robin | itching Check For the stack overflow Icd
089 #ifndef 05 ROBIN Run in privileged mods I
090 #define O35 ROBIN 1 J L Murnber of user timers i
091 #endif - = SysTick Timer Canfiguration
09z Timer clock value [Hz] 72000000
093 . rticks] <l-1 -Timer tick walue [us] 10000
094 ‘_";;‘-\:"l-"' - - exe ZEF.0 b hing I
09 o cis Defa R 5 o R :- Round-Robin Timeout [kicks] [
095 #ifndef 05 _RCEINTOUT
097 #define 05 _ROBINTOUT 5
JeR gendif ﬁ
' Tet Editor f_ Camgrenen e Text Editor_ Configuration Wizard

Text Editor Configuration Wizard

TIP: pVision windows can be floated anywhere. You can restore them by selecting Window/Reset Views to default.
pVision supports dual monitors.

NXP LPC1700 Lab. Fall 2013 12 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

12) RTX Kernel Awareness using Serial Wire Viewer

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides two kernel aware windows for RTX. Other RTOS

companies also provide awareness for pVision.
Click on the RUN icon to run RTX_Blinky. e .
Timer Number: 0
2. Open Debug/OS Support and select RTX Tasks and the Tk T 25040, 20 e
. . Round Robin Timeouk: 1342191.400 mSec
window on the right opens up. You probably have to Stock 5= an
o Starck with User-provided Stack: 0
drag it in the middle of your screen to view it. Stock vl chack =
Task Usage: Available: 7, Used: 6
3. RTOS visibility is updated in real-time using CoreSight | . P =
2 Tasks) Pricity

technology as used in the Watch and Memory windows.

os_idle_demon o
7 Icd 1 2%
TIP: View/Periodic Window Update must be selected for the 5o : T
. . . Phasel I
RTX Task and System window to be updated. The Serial Wire < o : oot L
. . 3 phases 1 it _AND 00001
Viewer must be configured for the Event Viewer to be updated. 2 [ohasen i i | D TR) =

4. Open Debug/OS Support and click on Event Viewer.
There is probably no data visible because... SWV iS 110t Juryrase sasysten [vt s
configured yet. If it is working, jump to step

Configuring the Serial Wire Viewer (SWV):

In order to get the Event Viewer working we have to configure the Serial Wire Viewer section of pVision. This is easy to do.
: x
1. Stop the CPU and exit debug mode. T E—

Debug | Trace | Flash Dawnlozd |

. . . a& ~ULINK USE - JTAG/SW Adapter S'w' Device
2. Click on the Target Options icon . Sl N VS DCODE | Devio ome [Hete
O SWDIO | @ (42801477 ARM CoreSight SW-DP il
Select the Debug tab and then click the Settings box next to besica Famiy [EariT— Do
ULINK Cortex Debugger dialog. _f;f_ﬂimm B bt et e [
) . C W W Patfsw = " Wanusl Configuation. Devies Mame:
4. In the Debug window as shown here, make sure SWJ is WarCoon etz = | | | A | [Delee | [peee| HEn T
checked and Port: is set to SW. Max Clock can be 10 -
Cornect & Reset Dption Cache Optiar: Downlnad Option:
MH
Z. lrcuﬂnect:lema\ | Resek [Hw RESET -] [E Cache Code (E Werify Cade Download
. . % Floset after Connect % Cache Memory Dowinload to Flach
Click on the Trace tab to open the Trace window.
6. Set Core Clock: to 100 MHz and select Trace Enable.
7. Unselect the Periodic and EXCTRC boxes as shown here.
: x
ITM Stimulus Port 31 must be checked. = .

Debug Trace | Flash Download |

8. C1.10k on OK twice to return to pVision. The Serial Wire T
Viewer is now configured in pVision. Tl Trerer e
SerialWire Output - UART/NRZ > [¥ Enable Prescaler |1 = [~ CPI: Cucles per Instruction
™ I~ EXC: Exceplion overhead
. -+ S0 Clock Fressaler: [0 ampling—————————————
9. Enter Debug mode @ and click on Run Eh’ Em. Posenois e Bl e Seeti
LSU: Load Store Unit Cpcles
. . S0 Clock: 1.250000 MHz 3
10. Note the values in the Event Viewer and tasks and System ' e | il I
are updated with the program running. Y,
kel Part 24 23 Port 1615 Part 8 7 Part]
11. This window displays task events in a graphical format as Eratle DT\ PRPRRIVR PRVRRRIR FRRRIRIE FRRRRERY
hown in the RTX Event Viewer Window below You Privilege: [0x00000008 Poit 31.24 ¥ Port23.16 [Port 16.8 [~ Pot7.0 [~
s .
probably have to change the Range to about 0.2 seconds by
clicking on the Out or In button or the ALL icon.

. | MinTme MaxTme Grid | Zoom | UpdateSceen | Jumpto | Transition
TIP: To find the CPU Core frequency select -] [13929455 [74573595 [0.25 |[Tn |[out] Al] |[ston [Giear || [Code [Trace] | [Prew [Next] -
Perlpher'als/Clocklng‘ and selept the Power Contrql/@lock A Tasks K feesn | ey O Heeesn XKX
Generation Schematic. Do this now to see it. This is a very (1) - -
useful window. If you open this after RESET and before run, you |s==2@ I P)
can see the base frequency. P oo | e

phaseC 4) ! ! '

TIP: Cortex-MO0 and Cortex-MO0+ processors do not have Serial phaseD (5) I o

. . eqeg clock ' ' i
Wire Viewer or ETM facilities. Cortex-M0+ can have MTB » m(ﬁ] : ' ‘
Instruction Trace. They do have hardware breakpoints and Id= (255)
read/write memory capabilities. See your specific processor | e SR e |

i . Event Viewer | RTX Tasks and System

datasheet for details
NXP LPC1700 Lab. Fall 2013 13 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

13) Logic Analyzer Window: view RTX variables real-time in a graphical format:

pVision has a graphical Logic Analyzer window. Variables will be displayed in real-time using the Serial Wire Viewer in
the LPC1700. RTX Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

Add the eight source lines to the four tasks:
Stop the program and exit debug mode.
2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

et o e e o —

Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as shown 028 | #define LED D o
below: phasea=1; and phasea=0; :the first two lines are shown added at lines 081 028 | #define LED CLE LED_1
and 084 (just after LED On and LED_Off function calls. For each task, add the g;ﬂ unsi 3)

— — gned int phasea;

corresponding variable assignment statements phasea, phaseb, phasec and phased. (32 | unsigned int phaseh;
033 | unsigmed int phasec:

4. We do this because in this example program there are not enough global or static 034 | unsigned int phased:

variables to connect to the Logic Analyzer. 035
TIP: The Logic Analyzer can display static and global variables, structures and arrays. It 332 7 : ________ ;_;;;;;;";;;;_;
can’t see locals: make them static. To see peripheral registers values, read or write to them. gl e T
¥ LOAD {
5. Rebuild the project. = Program the Flash ## and enter debug mode @1 .
L = I e
6. Runthe program at this point. D {1Fis) * Task 1 '"phased': Phase A oubput
Enter the Variables into the Logic Analyzer: L
077-] __task void phasei (void) {
7. Click on the Blinky.c tab. Right-click on phasea and 078 for (:;) 1
select Add ‘counter’ to ... and select Logic Analyzer 073 os_evt_wait_snd (0x0001, Oxffff]; 7*
Repeat for phaseb, phasec and phased. These gg? LiD—On_lu_‘ED—M ;
variables will be listed on the left side of the LA window o0 pamsesn s _
R K sighal func (t phaseEB) ! Fi
as shown. Now we have to adjust the scaling. 0o LED OFff (LED &);
TIP: If you can’t enter a variable, make sure the Serial Wire o phaseasd;
. ’ . . 085 }
Viewer is configured as detailed on the previous page. s |

8. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.

9. Click on Close to go back to the LA window.

10. Using the OUT and In buttons set the range to 1 second or so. Move the scrolling bar to the far right if needed.
11. Click on Stop in the Update Screen box. Note the program continues running.

12. You will see the following waveforms appear. Click to mark a place See 27 s below. Place the cursor on one of the
waveforms and get timing and other information as shown in the inserted box labeled phasec:

13. Select Signal Info, Amplitude, Show Cycles and Cursor. Move the cursor to see the information displayed.

14. When you are finished, click on Stop @ and exit Debug mode @ .

| Logic Analyzer

Min Time Max Time Grid Zoom Min/Max |Update Screen| Transition Jump to

Save..||[0.13856ms | 3768365 | 1s |[In [Out][Al] [Adte][Undo] [Start |[Clear ||[Prev]Nex]| [Codz|[Trace]

¥ Signal Info ¥ Amplitude
¥ Show Cycles ¥ Cursor

phasea

phaseb

phasec

Reference Point Delta B
276796 5 236396 5 4,04 5= 0247525 Hz | |
1 1 0 b
M/A M/A

phased

o] " : . : : " . : :
2331965 23,639 5 [2767%s, d 2045P0.3196s 1831965
23319600(2363560050 050 3831960050
] L =1l

[Eh pisassembly | B Logic Analyzer

TIP: You can also enter these variables into the Watch and Memory windows to display and modify them in real-time.

NXP LPC1700 Lab. Fall 2013 14 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

14) External Interrupt Example: EXTI using Serial Wire Viewer (SWV):
This example uses a ULINK2/ME and SWV. You can also use a ULINKpro or J-Link with proper configuration.

Serial Wire Viewer can help debug many tricky interrupt issues. The project EXTI is available to demonstrate these
powerful SWYV features. The Serial Wire Viewer will be configured for this example to work.

In this program the button INTO is connected to a GPIO port (p2.10) and each time it is pressed an interrupt is generated.
1. Open the project C:\Kei\ARM\Boards\Kei\MCB1700\EXTI\EXTIL.uvproj.
Configure Serial Wire Viewer trace:

-

Select Target Options EAN and select the Debug tab. Confirm the SJ box is checked and SW is selected.
Select the Trace tab.
Set Core Clock: to 100 MHz. Select Trace Enable.

5. Select EXCTRC, unselect Periodic and on Data R/W Sample. Click on OK twice to return to the main menu.
Build, Load and RUN EXTI:

eI

LOAD

15. Build the source files bt , load the Flash ## and enter Debug mode @ . Run the program. =l
View the Trace and create exception EXTI:

a
i

v

Open the Trace Records and Exception Trace windows:

6
7. Click on the Trace Exception window tab and move it into the middle of your screen.
8. Press the INTO button and EXTIrq 21 (Number 37) will display in both windows and cause a Led will advance.
9. Make sure you do not press the RESET button by accident !

10. The interrupt handler function EINT3_1RQHandler () in Exti.c is executed each time you press INTO.

Trace Records Exceptions Type:
. : H =B e F : Exception Tracin ¥ Timestamps Enable
Entry: when the exception is entered. U SemeRemenfean |-

Mum | Name Count Total Time Min Time In Max Time In Min Time Out | Max Time Out | First Time [s] Last Time [s]

- . . . 33 ExtIRQ 17 o 0s ;I
Exit: when the exception or interrupt exits. 51 ERais 0 os
. . 35 ExtIRQ 19 Q Qs
Return: when all exceptions or interrupts S _|ELaa g 0s
. 37 ExtlRQ 21 4 B30.809 ms 220.202 ms 220.202 ms 979.743 ms 2156 s 132.52058106 |137.50427850 |
exit. This indicates there is no tail chaining. % ERQ22 o os
33 ExtIRQ 23 Q [
TIP: If you do not see PC Samples and D _|ETa D b
. . . 41 ExtIRQ) 25 0 0s
Exceptions as shown and instead either 2 |BdRQ 2% o EE .

nothing or frames with strange data, the trace
is not configured correctly. The most probable cause is the Core Clock: frequency is wrong.
Switch Bounce:

You might notice as you press the INTO button that sometimes the sequence of switching LEDs jumps. This is caused by
switch bounce. You can correct this by adding this C code to the beginning of the interrupt handler EINT3 IRQHandler():
unsigned int i =0;
for (i = 0; 1 < Ox60000; i++)

1. Exit debug mode @ and enter the two C lines to the beginning of the interrupt handler found in EXTI.c.

%’_i'r_] frrcerecoris x
2. Rebuild the project. == ' [Tpe [Ovf [Mum | Address | Data | PC | Dy| Cyces | Tmel] |~]
Exception Entry 7 13252058106 132.52058106
Efa‘ﬁ | | Exception Bxt 37 13274078331 132.74078311
Exc R 0 13274078339 132.74078339
3 N Program the FlaSh' Excza:g: Ereil‘r:'m 37 13485684042 134 85684042
Exception Bxit 7 13511704267 135.11704267
Q = ape s
4‘ Enter debug mOde' Eu::tﬂ:gg E)ttlry 3} 13631 55533[) 13631 55533[)
. ' | Exception Retum o 13631655338 136.316359338
E ey i mes
5. Run the program = and press INTO. ot Voo 137 oadans
6. You will see the issue is resolved.
Using SWV to debug exceptions is very useful and is
completely non-intrusive to your program. =
7. Stop the program @ and exit Debug mode @ .
NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

15

www.keil.com www.arm.com forums.arm.com

15)

ITM (Instruction Trace Macrocell)

Recall in the Section RTX Kernel Awareness on page 13 that we showed you can display information about the RTOS in
real-time. This is done through the ITM Stimulus Port 31. Port 0 is available for a printf type of instrumentation that
requires minimal use code. After the write to the ITM port, zero CPU cycles are required to get the data out of the processor

and into pVision for display.

1. Open the RTX Blinky project you used before. You can select it at the bottom of Project menu in the recent files

list.

2. Add this code to Blinky.c. A good place is right after the place where you declared the four phasex variables.
(*((volatile unsigned char *)(0xE0000000+4*n)))

#define 1TM_Port8(n)

3. In the task phaseA near line 85 enter these three lines:

ITM_Port8(0) = 0x35;

Debug Trace | Flash Download |

Cortex-M Target Driver Setup

while (ITM Port8 (O) o 0) - Core Clack | 100.000000 MHz [Trace Enable
N ~ Trace Pott Ti Trace Everts
|TM_PO rt8 (0) = 0Ox0D ; Serial Wire Output - UART/NRZ + ’VIV Enable F‘rescaler:h - [~ CPI: Cycles per Instruction
- = ™ EXC: Exception overhead
while (ITM_Port8(0) == 0); Mol PCSampling 1 | [~ SLEEP: Sleen Cycles
o Prescaler: 1024716 - I~ LSU: Load Store Linit Cycles
ITM_Port8(0) = OxO0A; SWOClock:] 1.250000 MHz | | = pgrogic Perod: [<Dsabled> | | I~ FOLD: Folded Instructions
. ™ on Data R/W Sample I~ EXCTRC: Exception Tracing
4. Rebuild the source files, program the Flash memory
r ITM Stimulus Ports
and enter Debug mode. 1 Pt 2423 Pt 1615 Pot 8 7 Pt 0
g Enable W I |¢|.,|J:./|v|v|¢ |¢|v|v|~::v|v|v|v |v|v|¢|v°|v|v|v|v Ivlvlvlv:ivlvlvlv
5. Select on View/Serial Wil’ldOWS and SCICCt Debug Privilege: [Z00000008 Port 31.24 ¥ Port 23.16 [~ Port 15.8 [~ Pot 7.0 [~
(printf) Viewer and click on RUN. Make sure
Periodic Update is selected. Help
6. Inthe Debug (printf) Viewer you will see the value “5” appear every few seconds.
To see the Trace Records
1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect On Data R/W Sample, PC Sample, ITM Port 31 and EXCTRC.
3. Select ITM Port 0. x
: . | Type |Ovf [Mum | Address | Data | PC__ |Dy| Cyoles | Tmel |-l
4. Click OK twice. Data Witte 10000034H 0ODDDODOH OOOD1DSEH X 548627524 543627524
. Data Witte 1000002CH OODDDODTH 0OOD1024H X 538625928 598525928
5. The Trace Records should still be Data Wiite 10000028H 000000DOH DODDOFECH X 648632324 6.48632324
s : IT™™ 0 35H X 648632324 543632324
open. Open it if not. Double click H 0 ooH Y easeaoion e
on it to clear it. IT™ 0 0AH X 648632324 543632324
Data Witte 10000030 OODDDODTH 00OD1052H X 638625928 5.93525928
: Data Witte 1000002CH OODDDODOH 0OOD1032H X 748627524 743627524
Click RUN to start the program. Data Wrie 10000034H ODDODOOTH OODOTOBOH X 798625330 798625330
. . .. Data Witte 10000030 OODDDODOH OOODDSOH X 843627524 843627524
You will see a window similar to Data Wiite 10000028H 0000000 TH DDDDOFDEH X 898625938 8.98625938
: Data Witte 10000034H OODDDODOH OOOD1OSEH X 948627524 943627524
the one below with ITM and data Data Wite 1000002CH 00ODODDTH OODODTO24H X 998625832 9.98625932
write frames. Data Witte 100000284 O0ODDDODOH OODDOFECH X 1048632324 10.48632324
IT™™ 0 35H X 1048632324 1048632324 |
. IT™ 0 0DH X 143632324 10.43532324
8. Stop and exit Debug mode when ™ 0 DAH X 1048632324 10.48632324
; Data Witte 100000304 0ODDDODTH 000010524 X 1098625932 10.98625932
you are finished. Data Witte 1000002CH 0ODDDODOH 0OOD1032H X 1148627524 11.48627524
Explanation: Data Witte 100000344 0DDDDOTH OOOT0BOH X 1158625934 1198625834 |

The Data Write frames are the writes to phasea through phased. These are here because you previously entered them in the
Logic Analyzer window.

ITM 0 frames are our ASCII characters “5” and carriage return and line feed. You can see these values in the Data column.
ITM Conclusion

The writes to ITM Stimulus Port 0 are intrusive and are usually one cycle. It takes no CPU cycles to get the data out the
LPC1700 processor via the Serial Wire Output pin to pVision to be displayed.

Note the X in the Dly column. The three writes are too fast for the SWO and you can see the timing as shown in the Cycles
column are all the same but the data values are correct. As mentioned before, this is a limitation of SWV. But SWV is
intensely useful for debugging.

Examination with an ETM Trace shows the total time to display the digit is 25 CPU cycles including the while wait time.

TIP: ITM_SendChar is a useful function you can use to send characters. It is found in the header core.CM3.h.

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

forums.arm.com

16

www.keil.com www.arm.com

16) printf Statements using ITM:

It is possible to retarget printf statements to either the Debug (printf) Viewer or to the LPC1700 UART.
The Serial Wire Viewer will need to have been configured previously. Otherwise, you will need to repeat these steps.

1.

2.
3.
4
5

10.

11.

12.

13.
14.
15.
16.

Open the Blinky project C:\Kei\ARM\Boards\Kei\MCB1700\Blinky\Blinky.uvproj.

Select the Target Options icon EAN and select the C/C++ tab. This window opens:
In the Define box, enter DBG_ITM as shown below:
Select the Debug tab and then click the Settings box next to ULINK Cortex Debugger dialog.

In the Debug window, make sure
SW1I is checked and Port: is set to
SW.

Click on the Trace tab to open the
Trace window.

Set Core Clock: to 100 MHz and
select Trace Enable.

Unselect the Periodic and
EXCTRC boxes. ITM Stimulus
Port 0 must be checked.

Click on OK twice to return.

¥
Rebuild the project. =
LOAD

Program the Flash. ##

Enter debug mode. @

Run the program El

W, Options for Target 'LPC1768 Flash' x|

Device I Target | Qutput | Listingl User C/C+= |Asn1 | Linker | Debug | Ltilties |

B

— Preprocessor Symbols

B I_USE_LCD _ADC(F\Q __DEG_ITM)

Undefine: | S —®

— Language / Code Generation

Optimization: ILeveI 0 (-00) ‘l

[~ Optimize for Time
[~ Split Load and Store Muttiple
[One ELF Section per Function

™ Strict ANSIC

™ Enum Cortainer always int

[™ Plain Charis Signed

™ Read-Only Position Independent
™ Read-Write Position Independent

Wamings:

I <unspecified > = l
I Thurb bade
[~ No Auto Includes

Include I
Paths

L]

Misc I
Controls

Compiler
control
string

¢ —cpu Cortex-M3 -D__MICROLIB g -00 —apcs=interwork
- C:A\KeiNARMYRYVITUNG

[ok || cancel || Defaus

| Help

Open View/Serial Windows and select Debug (printf) Viewer.

This window will now display the variable AD value.

This happens on the printf near line 90 in Blinky.c:

printf("AD value: %s\r\n", text);

0x056C
0x0Ce3
0x0185
0x0%961

Mm@

wvalues:
B0 value:
wvalue:
value:

AT tralnea -
4

-:,-'jCaII Stack = Locals | E'ﬂDebug (printf] Viewer | i

Memory 1 |

TIP: Examine the files Retarget.c and Serial.c for the functions used to accomplish this.

UART Operation:
In the C/C++ tab, in the Define: box enter UARTO instead of DBG_ITM.

1.

2
3.
4.
5

Rebuild and program the Flash.

Remove the ISP and RST jumpers.

Connect a serial port to COM1. 115200 baud, 8 data bits, no parity, 1 stop bit

Enter Debug mode and Run the program and serial data will be displayed on your favourite serial program.

NXP LPC1700 Lab. Fall 2013

www.keil.com www.arm.com

17

forums.arm.com

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

17) CAN: Controller Area Network

CAN is a network that is easy to implement. It is a peer-to-peer network and adding nodes is very easy. For more detailed
information on the CAN bus and complete exercises using CAN for the LPC1700 series obtain the CAN Primer from:
www.keil.com/appnotes/docs/apnt_247.asp.

1.

6.
7.

Connectors: The MCB1700 board has two DB-9 connectors labeled CAN1 and CAN2. These are the two CAN
controllers. You must connect pin 2 of each connector to the other and also pin 7 to the other. Do not cross them.
You can use two DB-9 connectors or jumper wires. Make sure the connections are reasonably sturdy. See the first
TIP below for an explanation.

Start pVision by clicking on its icon on your Desktop if it is not already running.
Select Project/Open Project and open the project file C:\Kei\ARM\Boards\Kei\MCB1700\CAN\CAN.uvpro;j.

LoAD

Click on the Load icon to program the Flash memory. ¥% . A progress bar will be at the bottom left.

Enter the Debug mode by clicking on the Debug icon @1 and click on the RUN icon. =
The LCD screen will display a value of both Tx: and Rx: and will vary when you rotate the potentiometer P2.

What is happening: The LPC1758 or 68 contains two CAN controllers and we have connected them together to form a two
node network. CAN2 is sending messages to CAN1 and they are displayed on the LCD as TX: and RX: respectively. You
need at least two CAN nodes to have a working CAN network. See the Keil CAN Primer for more information.

I connected a CAN analyzer to the CAN bus and it displays the CAN frames transmitted

. Time / 10 mSec | |dentiier | Fomat | Flags | Data
as shown here: CAN analyzers are a good investment. 00:00.39.85 21 5 0
00:00:39.91 21 5d 45
The CAN Identifier is 21 (ID column) and the data values displayed. There is one data o0 3357 2159 @
byte per frame in this case. It is possible to have from 0 to 8 data bytes per frame. 00:00.40.09 215 sc
00:00:40.15 2151 69
TIP: If only Tx: changes, either the loopback cable isn’t connected or you are using only poniez! 2 o
an early ULINK-ME to power the board. Connect a USB cable from your computer to the foooo4033 2154 98
" . . . 00:00:40.38 216d A2
MCB1700 board to provide 5 volts to the CAN transceiver in this case. 00:00:40.44 2154 Bl
00:00:40.50 21 5id BC
Logic Analyzer Window: 0:00:40.56 2154 c8
00:00:40.62 215td DA
. : : : : : : 00:00: 40,69 216d EB
We can display the CAN data as a graph updated in real-time with Serial Wire Viewer. : '
1. Stop the program and leave Debug mode. GACDSPILREIT00.60 o B Caneiio o o AR e L AOSh [0 B Lagic Analyzer | = X
e Min Time: Max Time:; Range: Girick: Zoom: Code: Setup Min/Max
. Y etup .. |[Export .| | 1416189 ¢ | 52733455 | 10.00000s | 0.500000 s n [[Ou el (<) uto nda
2. Open Target Options EAN , Select the Debug tab e ”EDDF; |[hioress [Sersstw [iaceone[osommes v o] en o] :
and then Settings. Ensure SWJ and SW are T R I
selected so SWV will be operational. =
Select the Trace tab. Set the Core Clock: to 100 E
MHz and select Trace Enable. § A
Uncheck Periodic and EXCTRC. Select on Data R e ol I IR
. . 5263.500 5 5268500 ¢ 5273500 ¢
R/W Sample. Click OK twice to return. o .
. @
3. Select File/Save All. Enter debug mode.
4. Insert the global variable val_Tx in CanDemo.c into the Logic Analyzer window with a range 0 to OxFF.
5. Click on Zoom icons to set Grid to 2 seconds. £
. . Type [ovi[Mum | Addess | Datla | PC [oy [Goes [Timel] |2l
6. Insert val_Tx into the Watch window. Do Ve 10000028H 0O000OFZH ODODTGBAH X 4979260264 4979260264
Data Write 10000028H D00D0OFFH 0000188AH X 4382160260 43.82160260
7. Open the Trace Records window. RUN the Dot vite OO0 GOOFFA O0O0Gaw: X omerz) <03z
Data Wi 10000028H D00D0OFFH 0000188AH X 4390860260 43950860260
rogram. Dat: sz 10000028H D00D0OFFH 0000188AH X 4393760260 49.93760260
p g Data Write 10000028H D00D0OFCH 0000188AH X 4396660260 49.96660260
. Data Write 10000028H D0DDODE3H 0000188AH X 4399560260 439.99560260
8. You will see the data change as you rotate the pot Dats Wite 10000028H 0OOODCBH ODODTSBAH X 5002460260 5002460260
. . . Data Write 10000028H 000D00ASH 0000188AH X 5005360260 50.05360260
in both the LA window shown here and in the Data Witte 10000028H 000000S2H ODODTGEAH X 5008260260 5008260260
Data Write 10000028H 000D0OGEH 0000188AH X 5011160260 50.11160260
Watch window in real time stealing no CPU cycles. |3 fm mowe e X oumm o
Data Write 10000028H 00000021H 0000188AH X 5019860260 50.19860260
9. The trace records window will show the CAN data Data Wite 10000028H DOOOODOCH ODODISBAH X 5022760260 50227601260
Data Write 10000028H 00000000H 0000188AH X 5025660260 50.25660260
3 1 1 Data Wi 10000028H 00000000H 0000188AH X 5028560260 50.28560260
erte to the Varlable VaI—TX All arc tlmeStamped D:tt: ‘N;: 10000028H 00000000H 0000188AH X 5031460260 50.31460260
Data Write 10000028H 00000000H 0000188AH X 5034360260 50.34360260 ;I
NXP LPC1700 Lab. Fall 2013 18 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

18)

Using Watchpoints and Serial Wire Viewer with CAN

Stop the program if still running. pVision must be in debug mode to access the Watchpoints.

1.

2. Open Target Options EAN , Select the Debug tab and then Settings. Select the Trace tab.
Select EXCTRC. Click OK twice to return.

3.

4. Click on Define to create the Watchpoint and then Close.

5.

6.

7.

8.

9.

1

0x189C.

Open Debug/Breakpoints and enter in the dialog box: val_Tx == 0x44 Select Read and Write.

Adjust the pot to indicate 0x44. The first time this value is written to val Tx, the program will stop.

Double-click in the Trace Records box to clear it and run the program by clicking on RUN. Or open it if it is not.

Note the value in the Watch window will equal 0x44 ! The LCD may or may not have been updated yet.
Scroll to the bottom of the Trace Records and the value of 0x44 will be visible on the last line as shown below.

There will be a read of 0x44 at the end of the trace plus the address of the instruction that caused the trigger !

What is happening: Note the last frame has the data value of 0x44. Recall you set the Watchpoint to a READ of 0x44.

0. In this case, the last frame says a Data Write of 0x44 occurred to address 0x10000028 by the instruction located at

You are not able to see the CAN EXTIRQ 41 x|
occurring because it is swamped out by the [Type [ovi [Nom [Address | [P Toy[Goes [Tmew |-l
ick ti ich is bei in thi Exception Retum 0 X 10345949730 103.45949730

Systick timer which is being uged in this o B ® Do oce S eyl
example as a general purpose timer. If you Exception Ext 15 1046047369 103.46047369
. Exception Retum 0 X 10346049730 103.46049730
turn Systick off and use a software delay, Exception Ertry 15 10346147359 103.46147359
. . Exception Exit 15 1046147369 103.46147369
you will see only the CAN exceptions. Exception Retum) X 10346149730 10346145730
. Exception Ertry 15 10346247359 103.46247359
Recall the Exception Return of Num 0 means | Exception Ext 15 10246247369 103.46247269
1l th ions h d and there i Exception Retum 0 X 10346249730 10346249730
all the exceptions have returned and there 1s Exception Ertry 15 10346347359 103.46347359
Techaini Exgeption Exit 15 10346347269 10346347369
no tail-chaining. Exception Retum) 10346349730 103 46349730
.. Exception Entry 15 10346247359 10346447359
This is one of the powers of trace: you can Exception Ext 15 10346447369 103.46447369
Exception Retum 0 X 10346449730 10346449730
see what happened to.your program and how. | £20 o 15 10346547359 10346547359
If a bad value was written to one of your E’E(C‘C:;*:g; e N DR ot e s
variables; you can tell when it happened and Data Write 100000284 ODODDDS4H ODDDTSSCH X 10346543368 10346548368 —
what instruction made this write. The
possibilities of advanced debugging are great with trace.
3
1. Open the Trace Exception window. I»
2. Grab it by its tab and bring it in the middle of the screen for convenient viewing.
3. The CAN Exceptions (41) are visible with various timings displayed as well as the number of times it occurred.
Trace Exceptions ®
= 3 @ ¥ EXCTRC ExceptionTracing = ¥ Timestamps Enable
Mum | Mame Count Total Time Min Time In Max Time In Min Time Out | Max Time Out | First Time [5] Last Time [s]
38 |ExtRQ 22 0 0s =]
39 |EdRQ 23 0 0s
40 |ExtRQ 24 0 0s
41 |ExtRQ 25 1533 650,930 us 2,930 us 72,000 us 30,000 ms 44,280 5 56.57560110 | 103.43564930 |—
42 |ExRQ 26 0 0s
43 |EdRQ 27 0 0s
44 ExtIRQ 28 0 Os hd

TIP: Recall that you can right click in the Trace Records window to filter out various Types of frames.

TIP: The ULINKpro displays the source code and disassembly instructions in the new Trace window.

ULINKQpro also provides Code Coverage, Performance Analysis and Execution Profiling by using the ETM trace.

Note: The current version of Keil MDK (4.72a) only displays data writes and not reads. This is to prevent data overruns in
the Trace Records window. Future versions may include data reads.

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

19

www.keil.com www.arm.com forums.arm.com

19) DSP SINE Example using ARM CMSIS-DSP Libraries:

1) Running the DSP SINE example:

ARM CMSIS-DSP libraries are offered for ARM Cortex-M0, Cortex-M0+, Cortex-M3 and Cortex-M4 processors. DSP
libraries are provided in MDK in C:\KeilARM\CMSIS. README.txt describes the location of various CMSIS components.
See www.arm.com/cmsis and forums.arm.com for more information.

You can use this example with other Cortex-M boards with possible changes to the startup and system files.

This example creates a Sine wave, then creates a second to act as noise, which are then added together (disturbed), and then
the noise is filtered out (filtered). The waveform in each step is displayed in the Logic Analyzer using Serial Wire Viewer.

This example incorporates the Keil RTOS RTX. RTX is available free with a BSD type license. Source code is provided.
To obtain this DSP example project, download it from: www.keil.com/appnotes/docs/apnt 246.asp

1. Extract DSP.zip to C:\Kei\ARM\Boards\Keil\MCB1700\ to create the folder \DSP.

1. Open the project file sine.uvproj with uVision. Connect a ULINK?2 or ULINKpro to the MCB1700 board.

2. Ifyou are using a ULINK2 or ME, select MCB1700 Flash from the target drop menu:
If using a ULINKpro, select MCB1700 Ulp to send SWV out the Trace Port. Select MCBLI00 Elach

MCB1700 Ulp SWO to send SWV out the 1 bit SWO pin. MeB1700 lb WO

3. Compile the source files by clicking on the Rebuild icon.
LOAD

4. Program the MCB1700 flash by clicking on the Load icon: ¥¥
5. Enter Debug mode by clicking on the Debug icon. @1 Select OK if the Evaluation Mode notice appears.
TIP: The default Core Clock: is 100 MHz for use by the Serial Wire Viewer configuration window in the Trace tab.

6. Click on the RUN icon. Open the Logic Analyzer window if necessary.

7. Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust
Zoom for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.

TIP: If one or two variables shows no waveform, disable the ITM Stimulus Port 31 in the Trace Config window. The SWO
pin is probably overloaded if you are using a ULINK2. ULINKpro handles SWV data faster than a ULINK2 or J-Link can.

8. This project provided has Serial Wire Viewer configured and the Logic Analyzer loaded with the four variables.
9. Select View/Watch Windows | ey

and Select Watch 1 The fOuI‘ W Min Time Mazx Time: Grid | Zoom | Min/Maze |U date Sm’een‘ Transtion ‘ Jump to ¥ Signal Info [~ Ampliude
Variables are displayed Save... 0s 69, 14{B Dfrs |[n HOLrt | |||Mo|@|| Slup [Clear |HF‘rev \|Ne;dH|Code||Tmce| I— Show Cydas v Cursor
32767 : : : : : : :
updating as shown below: sine \//—‘\v/—‘:\ f\ /—‘f\ ; /_“1\ ; /—\T‘
They are pre-configured in :Zi 7] | , :] : : : | : | , ,
this project. i: e s s e S PR ARG AR
32768 3775 : : : ! : i : ; : ; : i
10. Open the Trace Records 52767 N N L N
ind d the Data Writ i ,JV\ ' ' ‘ ' ' ' ‘ '
window and the Data Writes A A A A A VA
. 32768 | a7g) : : : : : : ! : :
to the four variables are e i ; ; i ; ; ; i :
displayed using Serial Wire ftered . /h\ A :
Vi ¢ 32768 [75553) | ; ' ; i B
iewer. When you enter a Gl 711|m 8521135
. _ . e Ll
Varlable n the LA’ lts data @Dlsassemhly ‘ ﬂLog\:Analyzer |

write is also displayed in the
Trace window.

11. Open View/Serial Windows/Debug (printf) Viewer. printf data is displayed from printf statements in DirtyFilter.c
near lines 174 through 192 using the ITM at initialization time.

TIP: The ULINKpro trace display is different and the program
must currently be stopped to update it. The LA will still be
updated in real-time.

W noise
12. Leave the program running. i @ disturbed

b @ filtered

.. <Enter expression=

short
short

13. Close the Trace Records window if it is open.

NXP LPC1700 Lab. Fall 2013 20 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

2) Signal Timings in the Logic Analyzer (LA):
In the LA window, select Signal Info, Show Cycles, Amplitude and Cursor.

Look in the Watch 1 window to confirm the DSP program continues to run.

Click somewhere in the LA to set a reference cursor line.

M

Note as you move the cursor various timing information is displayed as shown below:

Click on Stop in the Update Screen box. You could also stop the program but leave it running in this case.

Logic Analyzer
Min Time Mazx Time Grid Zoom Mirn/Max | Update Sc:'een| Transition Jump to ¥ Signal Info [~ Ampliude
Save... ||| Os [283.4403s | 05s |[In JOut][Al] [Start][Clear || [Prev][Next]| [Codz |[Trace] [T Show Cycles ¥ Cursor
32767 ; ; ; E L ; ; ; ; E ; E
s i LN i PN N N N
s " o~ 1 A 1 Do N
- ' |15558 d: 16352 ' : '
32767 i 1 i i i i i i i i i
A AAAAAAP ARG A AAAAAAAAAL A
wml : v I
32767 1 H H . . H .
-32768 i H | ' ' disturbed N
. . . . | |@ Mouse Pos Reference Point Delta
32767 0] 0 0 0 Time: 278.9293 s 278.7103 s 0.219033 s = 4565522 Hz
fitered : TN N | Value: 21016 4369 16647
! S S _‘/ PCS: /A /A "
32768 : 0 : : . |F2#3676. d- 18881 . :
276.0493 s 278[278.9293s, d. 0.219033s 28354935
k| [+ =1
@lDisassembl}-‘ | ﬂ Lagic Analyzer

3) RTX Tasks and System Awareness window:

Click on Start in the Update Screen box to resume the collection of data.

10.

11.

Open Debug/OS Support and select RTX Tasks and System. A window similar to below opens up. You probably
have to click on its header and drag it into the middle of the screen.

Note this window does not change much: most of the processor time is spent in the idle daemon: which shows as
Running. The processor spends relatively little time in other tasks. You will see this illustrated on the next page.

Set a breakpoint in each of the four tasks in DirtyFilter.c by clicking in the left margin on a grey box near lines 77,
95, 115 and 135. Do not select the actual line while(1) as this will not stop the program.

If the program is not running, click on Run and the program will stop at one of the breakpoints and the Task window
will be updated accordingly. In the screen below, the program stopped in the noise _gen task:

Clearly you can see that noise_gen was running when the breakpoint was activated.

12. Each time you click on RUN, the next task

will display as Running.

13. Remove all the breakpoints. You can use
Ctrl-B and select Kill All, then Close.

TIP: You can set hardware breakpoints while the
program is running.

TIP: Recall this window uses the CoreSight DAP
read and write technology to update this window.
Serial Wire Viewer is not used and is not required
to be activated for this window to display and be
updated.

The Event Viewer does use SWV and this is
demonstrated on the next page.

RTX Tasks and System X

Property Value
[=)-System

Timer Number: 0

Tick Timer: 10.000 mSec

Round Robin Timeout:

Stack Size: 200

Tasks with User-provided Stack: 0

Stack Overflow Check: Yes

Task Usage: Available: 7, Used: 5

User Timers: Available: 0, Used: 0

é Tasks

MName Priority State Delay Event Value Event Mask Stack Load
255 |os_idle_demaon o
6 syne_tsk 1 ‘Wait_DLY 1 32%
5 filter_tsk 1 Wait_AND 0x0000 0x0001 32%
4 disturb_gen 1 Wait_AND 0x0000 00001 32%
3 noise_gen 1 0:x0000 00001
2 sine_gen 1 ‘Wait_AND 00000 0x0001 32%

NXP LPC1700 Lab. Fall 2013

www.keil.com www.arm.com

21 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

forums.arm.com

4) RTX Event Viewer (EV):

1. Select Debug/Debug Settings. Click on the Trace tab.

2. Enable ITM Stimulus Port 31. Event Viewer uses this to collect its information.
3. Click OK twice.
4

Exit and re-enter Debug mode

@ @ | Min Time: Max Time Grid ‘ Zoom ‘ Update Screen | Jump to Transition |[~ TaskInfo [Cursor
[Save...] || 12.38044s [66.99045s [10ms |[In J[out|[Al] [Stop |[clear | [Code [Trace]| [Prev |[Next]| [~ show cye
to refresh the Trace = — — e
Configuration. Al Tasks Xus ‘{ZBSXIdIe izm}(mwe §255><\d|a ‘{ZSSXIdIe iszmm ?SSX\dIe i255><|d\e §255}<\d|a ‘{ZBSXIdIe izss}(we §255><\d|a {255}
5. Click on RUN. | = = ‘ : : : | ; ; |
main_tsk (1)
6. Open Debug/OS Support and
fiter_tsk (2)

select Event Viewer. The
window here opens up: disturb_gen (3

7. Note Task 1 (main_tsk) has no roise_gzn {4)
events displayed. Tis means it is
not running. Task 1 is found in
DirtyFilter.c near line 169. It syne_isk {6)
runs some RTX initialization

sine_gen (3}

. . Idle (255)
code at .the begmnmg and then m— . . ‘ —— . ‘ . ' il
deletes itself with Al oLl
os_tsk_delete_self(); found near IR st cna st |

line 195.

TIP: If Event Viewer is blank or erratic, or the LA variables are not displaying or blank: this is likely because the Serial
Wire Output pin is overloaded and dropping trace frames. Solutions are to delete some or all of the variables in the Logic
Analyzer to free up some SWO or Trace Port bandwidth. It depends on how much trace data is sent to the ports.

How to unload the SWO if Event Viewer does not work: Stop the program. Click on Setup... in the Logic Analyzer. Select
Kill All to remove all variables and select Close. This is necessary because the SWO pin will likely be overloaded when the
Event Viewer is opened up. Inaccuracies might occur. You can also leave the LA loaded with the four variables to see what
the Event Viewer will look like. Or you can remove just one or two. Later, delete them to see the effect on the EV.

ULINKpro is much better with SWO bandwidth issues. These have been able to display both the Event and LA windows.
ULINKQpro uses the faster Manchester format than the slower UART mode that ST-Link, ULINK?2 and J-Link uses. If you
expect to use SWV extensively and at high data rates, please consider purchasing a ULINKpro.

ULINKQpro can also use the 4 bit Trace Port for even faster operation for SWV. Trace Port use is mandatory for ETM trace.

8. Note on the Y axis each of the 5 running tasks plus the idle daemon. Each bar is an active task and shows you what
task is running, when and for how long.

9. Click Stop in the Update Screen box.

Update Screen

Code Trace
show || show | [start | dlear

SO 17 Cursor [TaskInfo

Tran:
Prev] Next]|[# show Cydes

de@ss | X
bezw A

- Min Time: Manx Time Grid
. ||[p-762635 ms [24.99017s [2ms
: : = i

Zoom
[[

10. Click on Zoom In so three or four tasks are
displayed as shown below:

Idie (255); ; Idle (255)

11. Select Cursor. Position the cursor over one set
of bars and click once. A red line is set here:

12. Move your cursor to the right over the next set
and total time and difference are displayed. D
=~ 10 ms.

13. Note, since you enabled Show Cycles, the
total cycles and difference is also shown.

Load.
Save
2
z
z
=
g
5
n
5
o
g
E
2
3
3
2
5
k]
5
5
o
=

The 10 ms shown is the SysTick timer value. This

. . 24564685 : FZE T : " 2497853
value is set in RTX_Conf CM.c. L ooy Lot s

2338098937, d: 963020

TIP: ITM Port 31enables sending the Event Viewer frames out the SWO port. Disabling this can save bandwidth on the
SWO port even if you are not using the Event Viewer and this is a good idea if you are running RTX with high SWO use.

If the Event Viewer is closed, the data is still being sent out the SWO pin or the Trace Port and contributes to overloading.

NXP LPC1700 Lab. Fall 2013 99 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

5) Event Viewer Timing:

1.
2.
3.
4.

Click on In under Zoom until one set of tasks is visible as shown below:
Enable Task Info (as well as Cursor and Show Cycles from the previous exercise).
Note one entire sequence is shown. This screen was taken with a ULINK?2 with LA cleared of all variables.

Click on a task to set the cursor and move it to its end. The time difference is noted. The Task Info box will appear.

TIP: If the Event Viewer does not display correctly, the display of the variables in the Logic Analyzer window might be
overloading the SWO pin. In this case, stop the program and delete all LA variables (Kill All) and click on Run.

The Event Viewer can give you a good idea if your RTOS is configured correctly and running in the right sequence.

Event Viewer

x
Load... | Min Time Max Time Grid Zoom Update Screen Jump to

Transition
Save... || 0.40818ms | 19.92045s | 5us |[In |[out][all]|[Start |[Clear ||[Code [[Trace]

IV TaskInfo ¥ Cursor
|Prev ||Next|

[V show Cydes

Al Tas... | Idie (255), EX{G} ! Ysnelgen® fnose jel‘i @ o Xﬁner_tsk @ Xidle (255) |
- - - - - J sy tsk (8] = fnoise_gen (4 ! - - -

main_ts...

etk 0 |
dsub. | 0 [[

noise_g..

sine_ge.. H H H H H H H H H H H H

sess L o N

| | || sync_tsk (6] Min Max Average Called

Idle (2.. : : 1 (0000006 3) 6.07 us 7.23 us 6.08 us 1993
19.56039 = 19.56041s Time: Mouse Pos Reference Point Delta 5
1956038610 1956041323 19.56042 5 19.56041 s 8.07 us = 123915737302 Hz §10

1

3

6) Changing the SysTick Timer:

1. Stop the processor ° and exit debug mode. @
2. Open the file RTX Conf CM.c from the Project window. You can also select File/Open and select it in
C:\Kei\ARM\Boards\Keil\MCB1700\DSP\.
3. Select the Configuration Wizard tab at the bottom of the window. This scripting language is shown in the Text
Editor as comments starting such as a </h> or <i>. See www.keil.com/support/docs/2735.htm for instructions.
4. This window opens up. Expand the SysTick Timer —
Configuration as shown here: startup_VKGONS12MD1005 (5] RTX.Conf cMc | T X
Note the Timer tick value is 10,000 ps or 10 ms. Bopand Al | _Colapse Al | __Hep | T showad =
6. Change this value to 20,000. S [value
---Task Configuration
TIP: The 100,000,000 is the CPU speed and is correct for this)+ SysTick Timer Configuration
DSP example_ ~Timer clock value [Hz] 56200000
Timer tick value [us] 10000
7. Rebuild the source files and program the Flash. [System Configuration
Enter debug mode Q and click on RUN . S’I'sr“ Timer Configuration I _‘ILI
4 3
When you check the timing of the tasks in the Event Tex Edtar), Configuration Wizard
Viewer window as you did on the previous page, they

will now be spaced at 20 msec.

TIP: The SysTick is a dedicated timer on Cortex-M processors that is used to switch tasks in an RTOS. It does this by
generating an Exception 15 periodically every 10 pus or to what you set it to. You can view these exceptions in the Trace
Records window by enabling EXCTRC in the Trace Configuration window. You can use SysTick for other purposes.

10.
11.

Set the SysTick timer back to 10,000. Click on File/Save All.

Stop the processor and exit Debug mode and re- compile the source files to the RTOS settings back to original.

NXP LPC1700 Lab. Fall 2013

www.keil.com www.arm.com

23 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
forums.arm.com

20) Using a ULINKpro:

We have seen what features the Serial Wire Viewer provides with many NXP Cortex-M3 and M4 processors. Most of these
processors also have Embedded Trace Macrocell (ETM). ETM provides a record of all executed instructions and is
invaluable for program flow analysis of many kinds.

A |

For more information regarding ETM instruction trace obtain the MCB4300
lab: www.keil.com/appnotes/docs/apnt_241.asp

Blinky_Ulp example:

This project is a version of the standard Blink project but is pre-configured to
use with a ULINKpro. This project is located here:
C:\Kei\ARM\Boards\Kei\MCB1700\Blinky Ulp\Blinky.uvproj.

\J\.\““LW

e\
@\k &

Trace Display:

The main trace window (known as Trace Records with a ULINK?2) is called Trace Data. It has added features such as the
ability to save the frames and extra filter modes. Data Trace (SWV) and Instruction trace can be displayed in this window
but not at the same time. The program must be stopped in order for this window to be updated. The Trace Data window

features are being constantly improved with new features added. [TracePort Trace -]

You can right-click in this window and set these elements: (and more) simulatar
SWO Trace

1. Set a timestamp to zero. All other timestamps are now relative to this one.
2. Add the Functions column. Displays the function an instruction belongs to. TracePort InstructionTrace
3. Show Record Information: displays additional information about a function.

Target Configurations for trace configuration:

There are three Target Configurations as shown here: This menu is available in pVision main screen while in Edit mode.
You can easily create your own targets: They are described on the next page.

1. Simulator: Selects the Keil simulator. No target hardware is needed.

2. SWO Trace: Serial Wire Viewer (SWV) is activated and is sent out the one bit SWO pin using Manchester mode.
Used by ULINKpro only. ULINK2/ME and J-Link use UART mode.

Trace Port Trace: Serial Wire Viewer (SWV) is sent out the 4 bit Trace Port for faster operation.

4. Trace Port Instruction Trace: ETM trace is sent out the 4 bit Trace Port. SWV information is not always
displayed in the Trace Data window in this mode. Shorts bursts of runtime they are

; Trace Port
captured. In long runtimes, they are deleted to save space. Syno Trace Port wih &5t Data 7]
1 i - Sync Trace Port with 1-bit Data
Trace Port Configuration Box: o o Dot
. 5& . . . Sync Trace Port with 4-bit Data
The Debug/Settings/Trace tab in the Target Configuration window selects how the geml :-ﬂre gutput - NRHHCT'}EPTHBE
trace information (Data or Instruction) is physically output form the processor: ponal fre Dot oA

This is not to be confused with the 4 bit Trace Port mentioned above which is a subset of this box. These selections are
configured in each Target Configuration as listed above.

1. Sync Trace Port with 4-bit Data: SWV frames are sent out the 4 bit (or 1 or 2) parallel port with a clock.
Only ULINKpro can use this selection. A script, LPC17xx_TPIU.ini, is needed to configure GPIO pins.

2. Serial Wire Output — Manchester: SWV out the SWO pin on the debug connector using Manchester encoding.
ULINKpro only.

3. Serial Wire Output — UART/NRZ: SWV out the SWO pin on the debug connector using UART/NRZ encoding.
ULINK?2, ULINK-ME and J-Link only.

4. Embedded Trace Buffer: ETB: An internal memory in the processor used as a instruction trace buffer. Currently
available with ULINKpro only. Not available on the LPC1700 processors. Works at the top processor speed.

NXP LPC1700 Lab. Fall 2013 24 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

22) Using the Blinky_Ulp example:
1) SWO Trace: Serial Wire Viewer (SWV) is activated and is sent out the one bit SWO pin using Manchester mode.
No ETM instruction trace frames are available with this selection.

1. Open the project C:\KeiNARM\Boards\Kei\MCB1700\Blinky Ulp\Blinky.uvproj.

2. In the Target Selection window, select SWO Trace. > == .

.'+. 3
3. Compile the source files by clicking on the Rebuild icon. L= . They will compile with no errors or warnings.
LOAD

4. Click on the Load icon to program the Flash memory. ## . A progress bar will be at the bottom left.

5. Enter the Debug mode by clicking and click on the RUN icon.

TIP: When switching Target Selections, it is always a good idea to rebuild your project.

v | Trace Data

. . . Trace MNavigation
6. Click on the small arrow beside the Trace icon and open the Trace Data and Trace ¢

Exception windows a shown here:
7. Drag them to an appropriate position and size on your screen. Event Counters
8. Examine the Trace Exception window shown below. It will be updating in real-time and

displays the Systick timer (15) and ADC interrupt (ExtIRQ 22):

9. Click on the top of the Count column to bring both exceptions together. The default is Num selected.
frocebeptions __________________________ax]

v | Trace Exceptions

=] £ @ ¥ EXCTRC Exception Tracing ¥ Timestamps Enable

Num | Name Count | Total Time MinTimeIn | MaxTimeIn | MinTime Qut | MaxTime Out | First Time [s] | Last Time [s)

15 |sysTick 4187 17.351 ms 4090 us 4.260 us 9.996 ms 9.996 ms 00101053 | 41.87010557 f’
38 |EdtRQ22 4187 3.099 ms 740,000 ns 770000 ns 9.999 ms 10,000 ms 001012255 | 41.57012250

6 UsageFault 0 0s

11 [sveal [) 0s

14 |Pendsy 0 0s

4 1agem... 0 0s

3 HardFault 0 0s
. | | | | | | | | s

1 1 1
[@y Disassembly | B8 Logic Analyzer | g Trace Exceptions

10. Stop the processor 9
11. The Trace Data window will now display these same exceptions in a different format as shown below:

TIP: If there were any other SWV frames such as Data Writes or PC Samples selected, they would also be displayed here.
You only need to select them as described in preceding examples in this document.

Display: Al L= R T in Al LI = R -

Time Address / Port Instruction / Data Src Code / Trigger Addr Function |

-0.000 013 830 s Exception Return ;I

-0.000 001130 5 Exception Entry - ExtIRQ) 22

-0.000 000 390 s Exception Exit - ExtIR(Q 22

-0.000 000 310 s Exception Return

W:0x10000022 OxD0C1

+0.009 981 870 s Exception Entry - SysTick

+0.009 936 040 5 Exception Exit - SysTick

= 0.009 985 130 s Exception Return —

+ 0.009 998 870 s Exception Entry - ExtIRQ 22 LI

Exception Event

Exception Type : Entry
Exception Name : ExtlRQ 22
Exception Descr. @ ExtIR(} 22

TIP: In the Trace Data window above, I right-clicked inside it and selected Show Functions and Show Record Description.
I set the timestamp to a data write. This timestamp is now zero and all others are displayed relative to it.

12. Exit Debug mode. @

13. Select the Target Options windows. EA

14. Select the Debug tab and then the Settings: box. Select the Trace tab.

15. Note the Trace Port selection Serial Wire Output — Manchester: is selected. The trace frames are sent out the 1
bit SWO pin on a debug connector using Manchester encoding. e

|Serial Wire Output - Manchester ﬂ

TIP: Only the ULINKpro can use this selection. It is unable to use UART/NRZ such as the ULINK2/ME or J-Link does.
An error will result if you attempt this.

o

NXP LPC1700 Lab. Fall 2013 25 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

2) TracePort Trace: Serial Wire Viewer (SWV) is activated and is sent out the 4 bit (or 1 or 2) parallel port with a clock.
No ETM instruction trace frames are available with this selection. This mode has the greatest SWV output available.

The difference between this selection and SWO Trace is here the SWV frames come out the 4 bit

pVision must be not in Debug mode. This will be Edit mode.

-

In the Target Selection window, select Trace Port Trace. TracePort Trace

LOAD

Click on the Load icon to program the Flash memory. #% . A progress bar will be at the bottom left.

Enter the Debug mode by clicking and click on the RUN icon. M

Click on the small arrow beside the Trace icon and open the Trace Data and Trace i Troce Daia

Exception windows a shown here if they are not already open: jliacelRlagaticn
You will see all the SWV functions that work on the previous page also function here. v | Trace Exceptions

Event Counters

Trace Port as found on the Cortex Debug+ETM connector.

The SWO Trace comes out the 1 bit SWO pin found on all the debug connectors and shared with the JTAG TDO pin. This
conflict is why SWD and not JTAG must be used with SWV. Because TracePort Trace comes out the 4 bit Trace Port, no
conflict arises and you can use JTAG with SWV. Neither JTAG nor SWD have any significant speed advantages.

3) TracePort InstructionTrace: ETM trace is sent out the 4 bit Trace Port. SWYV information is not displayed in the Trace
Data window in this mode. The Exception Trace, Logic Analyzer and Debug (printf) Viewer windows will still function.

This mode has a high SWV output.

1. uVision must be not in Debug mode. This will be Edit mode.
. : : T Port InstructionTi 57
2. In the Target Selection window, select TracePort InstructionTrace, o< o MEiueionirac
3. Compile the source files by clicking on the Rebuild icon. L5 . They will compile with no errors or warnings.
LOAD
4. Click on the Load icon to program the Flash memory. #% . A progress bar will be at the bottom left.
- . . [= -6 - | 3 -
5. Enter the Debug mode by clicking and click on the RUN icon. = M
. . . v | Trace Data
6. Click on the small arrow beside the Trace icon and open the Trace Data and Trace
Exception windows a shown here if they are not already open: jiacellavigaticn
7. You will see all the SWV functions that work on the previous page also function here. v' | Trace Exceptions
8. Except SWV frames do not appear in the Trace Data window. Event Counters
9. Stop the processor
10. The Trace Data window now displays all the instructions executed with Source if available:
11. Double-click on a trace frame and this instruction will be highlighted in the Disassembly and source windows.
{l Trace Data x
Display: All - B | &R * in Al S ™ I - |
- Time Address / Port Instruction / Data Src Code / Trigger Addr
2179993 930 5| X : 0x0000072E | LDRE 10, [10,%0x00] =]
X:0400000730 | CBZ r0,0%00000740
¥ 1 000000740 B 0:000006F2 while [1} { /* Loop forever *f
X1 0:000006F2 LDR m,[pc#92] ; @0x00000750 if (AD_dane) { f* If conversion has finished ...
X:0x000006F4 | LDRE 10, [10,#0x00]
X:0x000006F6 | CBZ r0,0x00000716
¥ :0x00000716 EQRS rd,r5,m if (ad_wal ~ ad_val_] { S ADvalue changed
X:0x00000714 | BEQ 0M0000072C
¥:010000072C | LDR 10,[pc#56] ; @0x00000765 if iclock_15) {
X:0x0000072E | LDRE 10, [10,%0x00]
X:0400000730 | CBZ r0,0x00000740
X:0400000740 | B Ox000006F2 while (1) { /* Loop forever Y
¥ 1 0:x000006F2 LDR i, [pc#92] ; @0x00000750 if (A0_daone] { S/ If conversion has finished ...
X:04000006F4 | LDRE 10, [10,%0x00] -~
NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

26

www.keil.com www.arm.com forums.arm.com

More Information on TracePort InstructionTrace:

Select Edit... and this file will be displayed.
Click on OK to close this window.

1. Select the Target Options windows. EAN and select the select the Debug tab.

2. Note there is an entry in the Initialization file: LPC17xx_TPIU.ini —_
3. This configures the GPIO port to allow Trace Port operation. [\LPCTa_TPlUm
4.

5.

Looking how the ETM Instruction Trace works:

P

Exit Debug mode. @ Immediately re-enter Debug mode @ . This has the effect of resetting everything.

1.
2. Do NOT click on RUN. The program runs (but does not execute) to the beginning of main().
3. The last instruction executed was probably a BX r0 at 0x00D6 as shown below at time 0.000 111 400 s.
. ¢ .
4. Click on STEP * or press F11 to single-step once.
5. The first instruction in main() will be displayed as shown below: It will probably be a MOVS r4,#0x00
6. Scroll to the top of the Trace Data window. You will notice many instructions with an address with Ox1FFF 00xx.
7. This is part of the NXP internal initialization sequence.
Trace Data *x
Display: Al v = | & T in Al < | @ o @ B
Time Address / Port Instruction / Data Src Code / Trigger Addr | Function
¥ 0x0000032E ADDS rd, rd #0x10 __scatterload ;I
X3 0x00000830 CMP 4,15 __scatterload
0,000 110 720 5| X : 0x00000532 *BCC 000000522 __scatterload
X2 000000834 ELW __main_after_scatterload (0x000000D4) __scatterload
¥:0x000000D4 | LDR 10,[pc,#0] ; @0x00000006 77
0,000 110 760 5| X : 0x00000006 BX] B
TRACE RUN
int32_tad_avg = 0; main
Instruction (ETM)
Function Name : “main”
Src Module : Blinky.c
Src Line 1 36
8. Scroll down to where the addresses start with 0XO0EO as shown below: This is the start of the user code.
9. Use a memory window to view location 0x00. Address 0 contains the initial SP. Here it is 0x1000 0230:
10. Address 0x04 contains the initial PC. Here is it 0xE1. 0xE1-1 = OxEO will correspond to the first instruction as
shown in the trace data window circled below. It is a LDR instruction.
11. It is apparent that ETM instruction trace is a power tool for debugging and providing information.

Address: ID ﬂ
0x00000000:C 10000230>G00000E1 DO0000ES 000000EB
0x00000010: O0O0000QOED OOOQDOOEF 000000F1 EFFFFE4E
0x00000020: 00000000 00000000 00000000 OOO0O0OQODF3
OwO00OON030- OOOOOOFS 00000000 O00NNAFT ANNNNO&E1S j
E,_l Call 5tack + Locals | E'?Debug (printf] Viewer |] Memory 1

Display: Al - = | @& * in Al - | & € B
Time Address / Port Instruction / Data Src Code / Trigger Addr Function
¥:0x1FFF0260 | MOV sp,rl 7 -]
¥:0xFFF0262 | LDR rl,[r0,#0x04] 77]
0.0WWM ?
¥:0x000000E0 | LDR 10,[pc,#24] ; @0x000000FC LDR RO, =SystemInit __asm_0xE0
0,000 009 640 5[X T Owoe a2 e m BLY RO T URED
X2 000000445 MOVS 0, #0x20 LPC_SC-=5C5 = 5C5_Val; SystemInit
¥:0x000004AA | LDR rl,[pc,#316] ; @0x000005ES SystemInit
¥:0x000004AC | TR rd,[rl, #0:00] systemlInit
¥:0xD00004AE | LDR D, [pc#292] : @OMD0000SD4 | if (LPC_SC->5CS & (1 << 5)){ /* I Main Osci... | Systemlnit
¥:0x000004B0 | LDR 0, [rD,#0x1A0] systemlInit -
4 | |
Instruction (ETM)
Function Mame : "SystemlInit™
Src Module : system_LPC1Tonc
Src Line 1 511

NXP LPC1700 Lab. Fall 2013

www.keil.com www.arm.com

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
forums.arm.com

27

23) Finding the Trace Frames you are looking for:

Capturing all the instructions executed is possible with ULINKpro but this might not be practical. It is not easy sorting
through millions and billions of trace frames or records looking for the ones you want. You can use Find, Trace Triggering,
Post Filtering or save everything to a file and search with a different application program such as a spreadsheet.

Trace Filters: [|
: : : : . |EmA-CodeEx -
In the Trace Data window you can s.elect various types of frames to be displayed. Open the D1§play. ETM - Code Exoe HLL [
box and you can see the various options available as shown here: These filters are post collection. ma-Al
Future enhancements to pVision will allow more precise filters to be selected. T oy Sl
- Event Counters
. S . ITM - Excepti
TIP: The ITM prefix signifies all SWV frames in this perspective. T - pcczsr,:‘;?:s
ITM - Data Read i
I - Data Write r
Find a Trace Record:
In the Find a Trace Record box enter bx as shown here:
= |bx [+] in a0 -
Note you can select properties where you want to search in the “in” box. All is shown in the screen above
Select the Find a Trace Record icon & and the Find Trace window screen =
opens as shown here: Click on Find Next and each time it will step through Find Whats | bx |
the Trace records highlighting each occurrence of the instruction bx. In Colmn: [7]
Where: |Avallable Data j _I
Find Options Find Direction
[~ Match whole word only " up
[~ Match case % Down
Find Mext I | Cancel I

24) Trace Triggering:

pVision has three trace triggers currently implemented:
TraceRun: Starts ETM trace collection when encountered.

TraceSuspend: Stops ETM trace collection when encountered. TraceRun has to have been encountered for this to have an

effect.

These two commands have no effect on SWV or ITM. TraceRUN starts the ETM trace and TraceSuspend stops it.
TraceHalt: Stops ETM trace, SWV and ITM. A TraceStart will not restart the collection of trace. Can be resumed only

with a STOP/RUN sequence.

Insert Tracepoint at '0:x0000027E" ...

Enable/Disable Tracepoint
Inline Assembly...

How it works:

3

TraceRun [ETH)
TraceSuspend [ETM)
TraceHalt

When you set a TraceRun point in assembly language point, ULINKpro will start collecting trace records. When you set a

TraceSuspend point, trace records collection will stop there. EVERYTHING in between these two times will be collected.

This includes all instructions through any branches, exceptions and interrupts.

The next page has a real example of Trace Triggers.

NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

28

www.keil.com www.arm.com forums.arm.com

25) Setting Trace Triggers:

1. With Blinky in Debug mode, click on the C source line AD_avg += AD Last << &; near line 51 in Blinky.c.

This is shown in the Blinky.c window below:

2. This source line will then be highlighted in the Disassembly window as shown. Instructions at 0x0000 1064

through 0x0000 1068 are displayed as belonging to this C source line.
3. Right-click on the instruction MOV and select Insert Tracepoint at 0x0000 1064 and select TraceRun.

A cyan T will appear as shown:

4. Right-click on the instruction ADD and select Insert Tracepoint at 0x0000 1068 and select TraceSuspend.

Two cyan T icons will appear as shown:

Clear the Trace Data window. L
6. RUN the program and after a few

9]

. . 0.320 us Ox000006FE 4815 LDR 0, [pc, $84]
seconds STOP it. Examine the first 0.320 us 0x00000700 8800 LDRE r0, [T0, $0x00]
Trace Data window as shown below: 0.320 us 0x00000702 EB042400 ADD r4,r4,r0,L5L #8
52: ad avg ++;
TIP: If you see any other frames than 0.320 us 0x00000706 1064 ADDS ra, r4, £1
. . : 53: if ((ad_avg & OxFF) == 0xl0) {
instructions, select ETM — Code Exec in the 0.320 us 0x00000708 B2E0 Sern 0,22

Display: window as shown below:.

0.320 us Ox000006FA 4915
0.320 us O0x000006FC 7008

LDR rl, [pc, #84]
STRB ro, [r1, $0x00]

51: ad_avg += AD last << &;

; B0x00000750

/% hdd AD wal

; B0x00000754

/* average ov
-
3

Binky.c | [£] statup p17ecs | [#] apce |2 serale | (4] ene |'[H Rac |

-

You can see where the trace started on 3;
0x0000_0700 and stopped on 0x0000 07106 19
multiple times shown below in the first Trace o
Data window. 52
In the first frame below it is clear the first o
instruction Ox6FE LDR was not recorded. 2
There is also a skid of one instruction. (s

27.787

0.960

960
320
280
200
100

(== =}

/* AD converter input
ms if (AD done) {
us AD done = O;
us ad avg += AD last << E;
us ad_avg ++;
us if ((ad_avg & OxFF) == Ox10) {
us ad val = (ad _avg »» B} >> 4;

us ad_avg H

f* If conversi

f* average ove
f* average dev

Add AD wvalu

2]

il

TIP: The ETM trace will collect everything

between the TraceRun and TraceSuspend points. This will include any branches and exception calls.

Ealb el e

TIP: Once started, the trace will collect frames until it encounters a TraceSuspend or a TraceHalt point.

Right click on 0x06FE and delete the existing trigger.
Right-click on the instruction STRS at 0x06FC and select Insert Tracepoint at 0x0000_06FC and select TraceRun.

RUN the program again and the second Trace Data window below will probably display depending on your settings.
When you are done, right-click on each trigger and select Remove Tracepoint at ‘Oxaddress’

Display: ETM - Code Exec - ﬂ EE - in Al - 4@ H @
Time Address / Port Instruction / Data Src Code / Trigger Addr Function
TRACE RUN =]
¥:0x00000700 | LDRH 10, [r0,#0x00] main
¥:0x00000702 | ADD rd,rd,), LSL #8 main
. . 0.000 000 00D s 0000706 ADDS rd,rd 1
Trace recording with LDR RGN
at 0x06FE not recorded ¥: 0400000700 | LDRH 10, [10,=0:00] main
and one skid 0x0706 X:0x00000702 | ADD rd,r4,0,L5L =5 main
ADDS added = 0,010 000 040 5| X: 0x00000706 | ADDS rd,r4,#1 ad_avg =+ main
’ TRACE RUN TI
Display: ETM - Code Exec - ﬂ ;E - in Al - _\@ H @
Time Address / Port Instruction / Data Src Code /Trigger Addr Function
TRACE RUN =
X2 0x000006FE LDR), [pc#34] ; @0x00000754 ad_avg == AD_last <= §; /= Add AD value ... | main
¥:0x00000700 | LDRH 0, [rD,#0x00] main
¥:0x00000702 | ADD rd,r4,10,LSL #3 main
3.272 297 330 5| X: 000000706 | ADDS rd,rd,#1 ad_avg ++: main
. . TRACE RUM
Trace recording with LDR X:0x000006FE | LDR 10,[pc,#84] ; @0x00000754 ad_avg += AD_last << 8; /* Add AD value ... | main
at 0Xx06FE recorded and X:0x00000700 | LDRH 10,[r0,#0x00] main
one skid 0x0706 ADDS ¥:0x00000702 | ADD r4,r4,10,L5L #8 main iy
added! ‘?.232300 550 5| X: 000000706 | ADDS rd,rd #1 ad_avg ++: | main) |
NXP LPC1700 Lab. Fall 2013 29 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com

forums.arm.com

26) In-the-Weeds Example:

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this — you only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and it is not hard to use.

If a Hard Fault occurs in our example, the CPU will end up at 0x0000 00EA as shown in the disassembly window below.
This is the Hard Fault handler. This is a branch to itself and will run this Branch instruction forever. The trace buffer will
save millions of the same branch instructions. The Trace Data window at the bottom shows this branch forever. This is not
very useful or practical.

This exception vector is found in the file startup LPC43xx.s. If we set a breakpoint by clicking on the Hard Fault handler
and run the program: at the next Bus Fault event the CPU

Disassembly

will again jump to its handler. T22: PROC
149: EXPORT MemManage Handler [WERK]
The difference this time is the breakpoint will stop the R R,
CPU and also the trace collection. The trace buffer will be B aE JZI
»

visible and extremely useful to investigate and determine
the cause of the crash.

1. Use the Blinky example from the previous exercise. Enter Debug mode.

2. Locate the Hard fault vector near address 0x0000_00EA in the Disassembly window or near line 145 in the file
startup LPC43xx.s.

3. Set a breakpoint at this point. A red circle will appear.
Find the function LED Out in the file LED.c near line 55. Set a breakpoint on the start of LED Out.
5. Click on RUN. The program will soon stop here.

Clear the Trace data window by clicking on the Clear Trace icon: 5t This is to help clarify what is happening.

In the Registers window, double-click on R14 (LR) register and set it to zero. LR contains the return address from a
subroutine. This is guaranteed to cause a Hard Fault when the processor tries to execute an instruction at 0x0.
(initial SP). This will cause a real and serious problem.

Click on RUN and almost immediately the program will stop on the Hard Fault exception branch instruction.
At the end of the Trace Data window you will find the offending instruction (a POP) at the end.

10. The B instruction at the Hard Fault vector was not executed because ARM CoreSight hardware breakpoints do not
execute the instruction they are set to when they stop the program. They are no-skid breakpoints.

~ :
11. The Exception Entry frgme is actually e TTETTE D T B |
from SWV EXCTRC 1S Set NOte Time Address / Part Instruction / Data Src Code / Trigger Addr Function
Display: is set to All. X:0x000001FE | BEQ 0x00000208 LED_Out -]
¥: 000000208 | MOV 10,13 LED_Ofil; LED_Out
O X:0x00000204 | BLW LED OFf (0x000001D4) LED Out
12. To repeat click on RESET FRsT | ¥:0:000001DA | CMP 10,5003 if (num < 3] LPC_GPIOL-> FIOPIN &= ~led_.. |LED_Off
¥:0x000001DC | BCS 0D00001EE LED_Off
13. Goto step 5 0010113 590 5| X : Dx000001EE | BX Ir } LED_Off
: : X:0:0000020E | ADDS 13,13,#1 LED_Out
. . X: 000000210 | CMP 13,%0408 LED Out
14. Remove the breakp oint and click on 0010118 630 5| X: 0x00000212 | "BLT 0x000001FS LED Out
RUN and then STOP. 0010118 710 5| X: 0x00000214 | POP {rd,pg) e — LED_Out
00101183920 s Exception Entry - HardFault Jj
15. You will now see all the Hard Fault « | 8

branches as shown in the bottom screen:

This is admittedly a contrived example but it clearly shows how quickly ETM trace can help you solve tricky program flow
problems.

HaraFault_Handler De00000ES) _nim OxED

Display. All - @ @R - n Al - ")
TIP: Instead of setting a breakpomt on the Hard Fault vector, = e ey 5
you could also right-click on it and select Insert Tracepoint at XDOEA_] 8 _etofu Heits DARNOOEN |____S |sim.oet0
. . X : ODO0D00EA |] Haral sult_Mandier 000000 L4) | L] |83, o0
line 145... and select TraceHalt. When Hard Fault is reached X:GAO00OER | aofaul Handiet SA00000EN |] | om0t
. . . . X : ODOODOOEA |] Haral sult_Handier 000000 LA] | 8 |83, (N1
is reached, trace collection will halt but the program will keep KOO0WEA L& Hardfaul Haodier aN00OCR |0 |oim.0nt0
. . . X : ODO0D00EA |] Haral sult_Mandier 000000 L4) | L] |83, o0
eXeCutlng the B instructions fOreVer. r:u-uwww: |8 Hararsul Handler O00000LA) | 1] | _asm oeto
X : CMDO0D00EA B B8
B]
B]

X1 OMDODO0OEA HardFault_Mandler £red00000F A) __asm 0wk
X1 OMDODO0OEA HardFault_Handler £e000000FA)

E _avm OnEd =
4 | E

NXP LPC1700 Lab. Fall 2013 30 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

27) Code Coverage:

1. Click on the RUN icon. = After a second or so stop the program with the STOP icon. °
2. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:
3. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Colour blocks indicate which assembly instructions have been executed.

Disassembly

. . . 0x00000ABE 1FFF SUES r7,r7,#7
. 1. Green: this assembly instruction was executed. st free box:
0x00000RCO 4281 CcHMP rl,r0
2. Gray: this assembly instruction was not executed. 0x00000AC2 D302 BCC 0x00000RCA
oxoooo0RCE 6842 LDR r2, [r0, $0x04]
. 0x00000ACE 428L CcHMP r2,rl
3. Orange: a Branch 1S always not taken. 0xO0000ACE D201 BCS 0xO0000ACE
0x00000RCE 2001 MOVS ro,#0x01
.] 0x00000RCC 4770 BX 1r
4. Cyan: a Branch is always taken.
0x00000ACE F3EFS2210 MRS r2, PRIMASE
. . . . 0x00000ADZ2 FO120F01 TST r2,$#0x01
5. Light Gray: there is no assembly instruction here. 0x00000AD6 B672 cesID I
0x00000ADE 6803 LDR r3, [r0, $0x00]
I 6. RED: Breakpoint is set here. (is actually a circle) 0x00000RDR 6003 STR 3, [rl,#0x00]
0x00000ADC 6001 STR ril, [r0, $0x00]
. . 0x00000ADE D100 BNE O0x00000RAEZ
{j: 7. Next instruction to be executed. Dx00000RED Bé62 CPSIE I
0x00000REZ 2000 MOVS rd,#0x00
0x00000RE4 4770 BX 1r
rt_get first:
0x00000REE 4601 MoV rl,r0
. . . 0x00000REE 6840 LDR r0, [T0, $0x04] =
In the window on the right you can easily see examples of each type of M. reee - . PP _’lj

A
Code Coverage block and if they were executed or not and if branches Bo E :
Disassembly | E] Instruction Trace |
were taken (or not). _

TIP: Code Coverage is visible in both the disassembly and source code windows. Click on a line in one and this place will
be matched in the other.

Why was 0x0000 0ACA never executed ? You should devise tests to execute instructions that have not been executed.
What will happen to your program if this untested instruction is unexpectedly executed ?

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions have not been tested. Some agencies
such as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.
Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage.
The next page describes how you can save Code Coverage information to a file.

Code Coverage

Maodule: |=NI Modules j

Maodules/Functions | Execution percentage I;|
- Blinky.c
“main 467 of 76 instructions, 1 condjumpis) not fully executed
IRQ.c
: e SysTick_Handler 100% of 48 instructions
B LED_LPC4%ecc
-~ LED_Init 0% of 60 instructions
= LED_Unlmit 0% of 33 instructions

100% of 12 instructions
100% of 14 instructions

- LED _Val 100% of 17 instructions
o LED_MNum 100% of 2 instructions
[Serial_LPC4%0cc
- SER_Init 0% of 4instructions
SER_PutChar 72% of 25 instructions, 2 condjumpis) not fully executed
- SER_GetChar 0% of 26 instructions -
@Disassemhly c:}E Code Coverage
NXP LPC1700 Lab. Fall 2013 31 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

28) Saving Code Coverage information:

Code Coverage information is temporarily saved during a run and is displayed in various windows as already shown.

It is possible to save this information in an ASCII file for use in other programs.

TIP: To get help on Code Coverage, type Coverage in the Command window and press the F1 key.

You can Save Code Coverage in two formats:

1. Inabinary file that can be later loaded back into pVision. Use the command Coverage Save filename.

2. Inan ASCII file. You can either copy and paste from the Command window or use the log command:

1) log>ci\ccltest.txt ; send CC data to this file. The specified directory must exist.

2) coverage asm ; you can also specify a module or function.
3) logoff ; turn the log function off.
1) Here is a partial display using the command coverage. This displays and optionally saves everything.
\\Blinky\Blinky.c\main - 46% (35 of 76 instructions executed)
1 condjump(s) or 1T-bcock(s) not fully executed

NE | Ox1AO00FE8 main:

NE | Ox1AO00FE8 2500 MOVS r5,#0x00

EX | Ox1A001056 F7FFFESA BL.W ADC_GetVal (Ox1AO0OD6E)

NT | O0x1A00105E DOOD BEQ 0x1A00107C

EX | O0x1A001070 2810 CMP ro,#0x10

FT | 0x1A001072 D103 BNE 0x1A00107C
\\Blinky\LED_LPC43xx.c\LED_UnlInit - 0% (0O of 33 instructions executed)

NE | Ox1A000EAA LED Unlnit:

NE | Ox1AO00EAA 482D LDR r0, [pc,#180] ; @0x1A000F60
\\Blinky\Serial_LPC43xx.c\SER_PutChar - 72% (18 of 25 instructions executed)

2 condjump(s) or IT-bcock(s) not fully executed

EX | O0x1A000DBO SER_PutChar:

EX | 0x1A000DBO B510 PUSH {r4,Ir}

EX | Ox1A000DB4 4B1D LDR r3,[pc,#116] ; @0x1A000E2C

2. The command coverage asm produces this listing (partial is shown):

\\Blinky\Blinky.c\SysTick_Handler - 100% (6 of 6 instructions executed)
EX | 0x000002B8 SysTick_Handler:

EX | 0x000002B8 483D LDR r0, [pc,#244] ; @0x000003BO
EX | OxO00002BA 6800 LDR r0, [r0,#0x00]
EX | Ox000002BC 1C40 ADDS r0,r0,#1

\\Blinky\Blinky.c\main - 92% (89 of 96 instructions executed)
3 condjump(s) or IT-bcock(s) not fully executed

EX
EX
EX
EX

| 0x000002C4 main:

] 0x000002C4 FO4F34FF MOV r4 ,#0xFFFFFFFF
] 0x000002C8 2501 MOVS r5,#0x01
] 0x000002CA FOOOF8CB BL.W SystemCoreClockUpdate (0x00000464)

The first column above describes the execution as follows:

NE Not Executed Command 1 x |
FT Branch is fully taken |
NT Branch is not taken coverage \Blinky\main details
. \\Blinky\Blinky.c\main - 92% (89 of 96 instructions executed)
AT Branch is always taken. 3 condjump (s} or IT-bcock(s) not fully executed
EX Instruction was executed (at least once) e onoas Das e PO
not taken: O0x000002F2 DROT BGE 0x00000304
fully taken: 0x00000364 D102 BNE 0x0000036C
taken: Ox0000036E DAOD1 BGE 0x00000374
2) Shown here is an example using: 4 -
coverage \BI Inky\mal n details >coverage “\Blinky'\main details
If the log command is run, this will be COVERAGE |

saved/appended to the specified file.

You can enter the command coverage with various options to see what is displayed in the Command window and saved.

NXP LPC1700 Lab. Fall 2013

32

www.keil.com www.arm.com forums.arm.com

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

29) Performance Analysis (PA):
Performance Analysis tells you how much time was spent in each function. It is useful to help optimize your code for speed.

Keil provides Performance Analysis with the uVision simulator or with ETM and the ULINKpro. The number of total calls
made as well as the total time spent in each function is displayed. A graphical display is generated for a quick reference. If
you are optimizing for speed, work first on those functions taking the longest time to execute. This can also expose code that
is taking more time to execute than is expected or designed for.

1. Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the LPC4300 processor

S Q=
= RET

and reruns it to main(). You can also click on the RESET icon and enter g,main in the Command window.

4. Do not click on RUN yet Expand some of the module names as shown below.

Times and number of calls has been collected in this short run from RESET to main().

2+ Toolbox
I Reset I| Show: IModuIes j Show or hide the Toolbox

Madule/Function Calls Time{Sec) Time{%) I;|
= Birky 26ms [Br M
- system_LPC430cc T e—
- GetPLL1Param 1 D533 us 0% |
- SetClock 1 2456 ms 75% R |
- WaitlUs 7 181.675us YA |
- Systemlnit_Ext MemCH 1 5.800us 0%
- MeasureFreq 0 Dus 0%
- (3etCheSel 1 1.050us 0%
- GetClockFreg 1 2250 us 0%
- SystemCoreClock Update 1 1.100us 0%
- Systemlnit 1 0.492 us 0% =
@ Disassembly E Performance Analyzer | c\n}[Code Coverage |

6. Click on the RUN icon. =

7. Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

| Performance Analyzer

[Reset || show: [Moduies =l
Module/Function Calls Time(Sec) Time(*%) I;
26058 [—aaa—
15.885 5 L — |
: 1 15.885 5 G —
Bl ADC_LPCA%ecc 10.010s .
i b ADC_Init 1 1.800us Lo
- ADC_Unlnit 0 Dus Lo
- ADCO_IRQHandler 2616 2555ms 0% |
- ADC_StartCrv 2616 1.453 ms 0| =
~ ADC_GetVal 63193420 10.006 5 .
i - ADC_Bits 0 Dus 0% |
{Senial [PCd%oce 56147 ms B o
@Disassemhly E Performance Analyzer |c\°}= Code Coverage |
8. Select Functions from the pull down box as shown here and notice the difference. Im

9. Click on the PA RESET icon. Watch as new data is displayed in the PA window.

10. When you are done, exit Debug mode.

TIP: The Performance Analyzer uses ETM to collect its raw data.

NXP LPC1700 Lab. Fall 2013 33 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

30) Execution Profiling:

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called.
This information is provided by the ETM trace in real time while the program keeps running.

The pVision simulator also provides Execution Profiling.

1. Enter D mode.
¢ ebug ode Execution Profiling L4 Disabled
2. Select Debug/Execution Profiling/Show Time. oy o Al <how Time
3. Click on RUN. o Show Calls
Inline Assembly...
4. In the left margin of the @sassqnbly and C source Function Editor (Open Ini File)... T -
windows will display various time values.
5. The times will start to fill up as shown below right:
6. Click inside the yellow margin of Blinky.c to refresh it.
7. This is done in real-time and without stealing CPU cycles.
8. Hover the cursor over a time and ands more information appears as in the yellow box here:
Time: Calls: Average:
19.599 5 139910257 * 0.140 ps
9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the
left margin.
startup_LPQ17xcs | [#] Blinky.c | [£] ADC.c [E#] seriale | [£] tED.c.” 4] Roec | v %
26 Lo« = |
27 1.690 us [Jvoid SysTick Handler (void) f
28 static unsigned long ticks = 0
29 static unsigned long timetick;
30 static unsigned int leds = 0x01;
31
3z 13.510 u= -] if (ticks++ >= 29) { /* Set Clockls to 1 every second =/
i 0.030 us ticks =0
34 0.030 us clock 1s = 1
35 ¥
38 =
37 /* Blink the LEDs depending on ADC ConvertedValue =/
38 20.620 us [if (timetick++ »>= (AD last >> 2)) {
39 6.420 us timetick = 0;
40 10.700 us leds <<= 1;
41 9.340 us if (leds > (1 << LED NUM)) leds = Ox0l:
42 11.910 us LED Cut (leds):;
43 H
44 =
45 8.840 us ADC StartCnv():
46 50.760 us ||Time: Calls: Average:
47 8.840 us 108 * 0.081 us =
Kl | o
Outlining:

113813

Each place there is a small square with a

sign é can be collapsed down to compress the associated source files together.

1) Click in the square near the while(1) loop near line 38 as shown here:
2) Note the section you
: startup_LPCL7xc.s] Blinky.c ADC.c Serial.c LED.c IRQ.C v x
blocked is now collapsed =
. 29 static unsigned long timetick; :I
and the tlmes are added 30 static unsigned int leds = 0x01;
31
together Where the red 32 13.510 us] 4if (ticks++ >= 29) { /% Set Clockls to 1 every second *
arrow points. 33 0.030 us ticks = 0:
p = 0.030 us clock 1s = 1;
3) Click on the + to expand it. L
: /* Blink the LEDs depending on ADC ConvertedValue
4) Stop the program and exit H if (timetickit >= (AD last m
Debug Il’lOdC. ADC StartCnvi(): /’/
< | »

NXP LPC1700 Lab. Fall 2013 34

www.keil.com www.arm.com

Copyright © 2013, ARM Limited or its affiliates. All rights reserved.
forums.arm.com

31) Creating a new project: Using the Blinky source files:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point
for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.
We will use the existing source code files so you will not have to type them in. Once you have the new project configured;
you can build, load and run the Blinky example as usual. You can use this process to create any new project from your own
source files created with pVision’s editor or any other editor.

Create a new project called Mytest:

SNk

~

10.

11.

12.

13.

14.

Select the source files:

With pVision running and not in debug mode, select Project/New pVision Project.

In the window Create New Project go to the folder C:\Kei\ARM\Boards\Kei\MCB1700.

Right click and create a new folder by selecting New/Folder. I named this new folder FAE.

Double-click on the newly created folder “FAE” to enter this folder as is shown below.

Name your project. I called mine Mytest. You can choose your own name but you will have to keep track of it.
Click on Save.

F
tru |
“Select Device for Target 1” shown here opens up. _
.. . . ® . . Wendor: NXP [founded by Phiips)
This is the Keil Device Database™ which lists all the Devies: LPCITER
devices Keil supports (plus some secret ones). et 5L
Locate the NXP directory, open it and select Data bece Ry
N . ~£d LH74404 - WARM 32-bit Corter-43 Mi ller with MPLL. CPU clock 100MHz »
LPC1768. Note the device features are d1splayed £ LFCI751 =l 512kE on-'ihi;'ﬁ;sh_Hoﬁ’ﬁfnohngr?h?nggd Flash Memocryof.?_ccuep\;;mr, =
Cl k O L3 LPCI7R2 Lnigs}t_ﬁ{eﬂ;‘nMPrﬁgramén\l’lpg [ISF“]j“andln-ApEphcallﬂn Programring (4P,
. b s it t it .
tekcon OF. 35n Al i
H t it it it .
£ LPCi7ee USEerSTEU full-speed Devvrt‘:e controlﬁe?rai':de;:stfﬂeT E:?:oentmllel with DM,
. . . . £ LPC1764 CaM 2.08 with twa charinels, Four UARTs, one with full Modem interface.
A window opens up asking if you want to insert the £ Lreirss el et 15 o 1201 ADC i O oo 105 DAL
. . ~£4 LPC1766 Four 32-bit Timers with capture/compare, Standard P/t Timer block,
. otar cantral ar three-phase Motor contral, Quadrature Encoder,
default LPC17xx startup file to your project. Click a b I P ot hiee-phase | Qusdrature Encad
<« 2 . . . ~£3 LPC21m 'w'atchdag Timer, Real Time Clack with optional Battery backup,
ystem Tick Timer, Repetitive Interrupt Timer, Brown-out detect circut,
on “Yes”. This will save you a great deal of time. £ Lo System Tick Tirer, B Intempt Timer, B 4
Power-0n Reset, Power Management Unit, W akeup Intermupt Controller, ™
mustal ozcillator, z internal oscillatar, . -
In the Project Workspace in the upper left hand of & s =l Cq Hosaietor, e nimaIFC seclate, FL [
1a1 M 3 [IARE Ca L
pVision, open up the folders by clicking on the “+
beside each folder.

We have now created a project called Mytest and the
target hardware called Target 1 with one source file startup LPC17xx.s.

Click once (carefully) on the name “Target 17 (or twice if not already highlighted) in the Project Workspace and
rename Target 1 to something else. I chose LPC1700 as shown above. Click once on a blank part of the Project

Workspace to accept this. Note the Target selector 2|
also changes. Click on the + to open up the directory Savein: [FiE =« mEckE-

structure. You can create many target hardware (] Mytest.oproi
configurations including a simulator and easily select

them.

1. Using MS Explore (right click on Windows Start
icon), copy blinky.c, core_cm3.c and
system LPC17xx.c from RIS
C:\Kei\ARM\Boards\Keil\MCB1700\Blinky to the !'[
KeilMCB1700\FAE folder. My Computer

2. In the Project Workspace in the upper left hand of
uVlSlO’{l, rlght—cllgk on LPC17‘(‘)O and sn?lec’t, Add I e 3]
Group”. Name this new group “Source Files” and Swesuse [P AT =] Canced
press Enter. ' 7

3. Right-click on “Source Files” and select Add files to Group “Source Files”.

4. Select the file Blinky.c, core_cm3.c and system LPC17xx.c and click on Add and then Close. These will show up
in the Project Workspace when you click on the + beside Source Files..

5. Select Target Options and select the Debug tab. Make sure ULINK Cortex Debugger is selected. Select this by
checking the circle just to the left of the word “Use:”.

6. At this point you could build this project and run it on your MCB1700 board.

This completes the exercise of creating your own project from scratch.
NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

35

www.keil.com www.arm.com forums.arm.com

32) Serial Wire Viewer Summary:

Serial Wire Viewer can see:

Global variables.

Static variables.

Structures.

Peripheral registers — just read or write to them.

Can’t see local variables. (just make them global or static).

Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:

Trace

PC Samples.
Data reads and writes.
Exception and interrupt events.
CPU counters.
Timestamps for these.
is good for:
Trace adds significant power to debugging efforts. Tells where the program has been.
A recorded history of the program execution in the order it happened.
Trace can often find nasty problems very quickly.
Weeks or months can be replaced by minutes.
Especially where the bug occurs a long time before the consequences are seen.
Or where the state of the system disappears with a change in scope(s).

Plus - don’t have to stop the program. Crucial to some.

These are the types of problems that can be found with a quality trace:

Pointer problems.
Illegal instructions and data aborts (such as misaligned writes).

Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), corrupted stack.
How did I get here ?

Out of bounds data. Uninitialized variables and arrays.
Stack overflows. What causes the stack to grow bigger than it should ?

Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this.
Is very tough to find these problems without a trace.

Communication protocol and timing issues. System timing problems.
Profile Analyzer. Where is the CPU spending its time ?
Code Coverage. Is a certification requirement. Was this instruction executed ?

For complete information on CoreSight for the Cortex-M3: Search for DDI0314F_coresight_component_trm.pdf on
www.arm.com. You do not need to know the information in this document to use Serial Wire Viewer or the ETM trace.

Other Useful Documents:

1.

The Definitive Guide to the ARM Cortex-M3 by Joseph Yiu. (he also has one for the Cortex-M0) Search the
web.

2. MDK-ARM Compiler Optimizations: Appnote 202: www.keil.com/appnotes/files/apnt202.pdf
A list of resources is located at: http://www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.
NXP LPC1700 Lab. Fall 2013 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

36

www.keil.com www.arm.com forums.arm.com

33) Keil Products and Contact Information:

Keil Microcontroller Development Kit (MDK-ARM™)

= MDK-Lite™ (Evaluation version) $0

= NEW Il MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit) - $3,200

= MDK-Standard™ (unlimited compile and debug code and data size) - $4,895

= MDK-Professional™ (Includes Flash File, TCP/IP, CAN and USB driver libraries) $9,500

For special promotional or quantity pricing and offers, contact Keil Sales or your favourite
distributor.

USB-JTAG adapter (for Flash programming too)

= ULINK2™ - $395 (ULINK2 and ME - SWV only — no ETM)

= ULINK-ME™ — sold only with a board by Keil or OEM.

= ULINKpro™ - $1,250 — Cortex-M SWV & ETM trace.

All ULINK™ products support MTB with LPC800 Cortex-MO+.

The Keil RTX RTOS is now provided with a BSD type license. This makes it free.
All versions, including MDK-Lite, includes Keil RTX RTOS with source code ! e e e P
Keil provides free DSP libraries for the Cortex-M0+, Cortex-M3 and Cortex-M4.

. . . . o | KEIL
Call Keil Sales for details on current pricing, specials and quantity discounts. : EIL RIEE
Sales can also provide advice about the various tools options available to you. l Z]K o AR Development Tools

They will help you find various labs and appnotes that are useful. | Getting Started .

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com and search
for university to view various programs and resources.

Keil supports many other NXP processors including ARM7 ™and ARM9™
series processors. See the Keil Device Database”™ on www.keil.com/dd for the
complete list of NXP support. This information is also included in MDK.

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

Prices are for reference only and are subject to change without notice.

See www.keil.com/nxp for more NXP specific information.

For more information:

Keil products can be purchased directly from ARM or through various distributors.

Keil Distributors: See www.keil.com/distis/

Keil Direct Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For the latest version of this document, see www.keil.com/nxp or www.keil.com/appnotes/docs/apnt 246.asp

I}MSIS
COMPLIANT ‘ rtex ™
AP el Mo DE K E I I

Intelligent Processors by ARM"
Tools by ARM

NXP LPC1700 Lab. Fall 2013 37 Copyright © 2013, ARM Limited or its affiliates. All rights reserved.

www.keil.com www.arm.com forums.arm.com

