
AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 1

TrafficLight: Arm FuSa RTS process isolation example

FuSa RTS Tutorial

AN336, Summer 2021, v1.1 keil-feedback@arm.com

Abstract

This application note demonstrates how to use the process isolation capabilities present in Arm’s Functional
Safety Run-Time System (FuSa RTS) [1].

The TrafficLight example described in the application note supports these boards out of the box: Keil
MCBSTM32F400, STMicroelectronics NUCLEO-F429ZI and NUCLEO-F746ZG. However, the analysis and principles
are mostly universal and can be similarly applied to other Cortex-M devices with a Memory Protection Unit
(MPU) present.

The example project is provided as part of commercial FuSa RTS deliverables. Contact Arm Sales or local Arm
distributor to receive it for evaluation purposes.

Prerequisites

To reproduce the example described in this application note, the following components are required:

Components from Arm:

• Arm FuSa RTS for Cortex-M4 or M7: run-time system for functional safety applications. Verified with FuSa
RTS v1.1.0.

• Arm Keil MDK: IDE and debugger used for project development and debug. MDK v5.35 was used.

• Arm Compiler for functional safety: safety-qualified C/C++ compiler for Arm devices. Required by Arm FuSa
RTS and available with the MDK-Professional edition. Version 6.6.4 is used.

• Keil MDK-Middleware: included in Keil MDK. Middleware v7.13.0 was used to verify the project.

• Arm CMSIS-Zone utility (optional): a graphical tool that allows to define partitions (zones) for a target
embedded system. CMSIS-Pack Eclipse Plugin v2.6.0 is used in the project.

• Arm CMSIS: standardized software interfaces for Cortex-M. The referenced example uses CMSIS-Driver API
components. The application is verified with CMSIS v.5.8.0.

• Keil::STM32F4xx_DFP or Keil::STM32F7xx_DFP: Device Family Pack (DFP) for target STM32F4 or STM32F7
devices respectively. Among other items, it contains the device header files and HAL used by the application.
Verified with Keil::STM32F4xx_DFP v2.15.0 and Keil::STM32F7xx_DFP v2.14.0.

• Keil::STM32NUCLEO_BSP: Board Support Pack (BSP) for STM32 NUCLEO boards. Verified with version 1.8.0.

• Keil MCBSTM32F400 development board with STM32F407IG Cortex-M4 based microcontroller. Version 1.2
is used by default, and v1.1 can be used with simple modifications in the project.

Components from ST:

• X-CUBE-STL (optional): software test library for target STM32F4 or STM32F7 devices. V1.0.0 is used.

• STM32CubeProgrammer (optional): programming utility for STM32 devices. Required when X-CUBE-STL is
enabled in the project. Version 2.6.0 is used.

See AppNote 326: Using X-CUBE-STL with Arm FuSa RTS [5] for further details.

• NUCLEO-F429ZI or NUCLEO-F746ZG development board with STM32 Cortex-M4 or Cortex-M7-based
microcontroller. Can be used as one of the hardware targets for the example application.

https://www2.keil.com/fusa-rts
https://www2.keil.com/mdk5/
https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation/6-6-ltm/version-6-6-2
https://www2.keil.com/mdk5/editions/pro
https://www2.keil.com/mdk5/middleware
https://arm-software.github.io/CMSIS_5/Zone/html/zoneToolUsage.html
https://developer.arm.com/tools-and-software/embedded/cmsis
https://www.keil.com/dd2/Pack/#/Keil.STM32F4xx_DFP
https://www.keil.com/dd2/Pack/#/Keil.STM32F7xx_DFP
https://www.keil.com/dd2/Pack/#/Keil.STM32NUCLEO_BSP
https://www.keil.com/mcbstm32f400/
https://www.st.com/en/embedded-software/x-cube-stl.html
https://www.st.com/en/development-tools/stm32cubeprog.html
https://www.st.com/en/evaluation-tools/nucleo-f429zi.html
https://www.st.com/en/evaluation-tools/nucleo-f746zg.html

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 2

Contents

Abstract ..1

Prerequisites ...1

Introduction ..4

Scope of the application note ...4

Arm FuSa RTS overview ..5

Process isolation in FuSa RTS ..5

TrafficLight: A process isolation example ...6

Application overview ..6

Web interface ..8

LED indications ..9

Project organization in µVision ...9

Safety requirements ...9

FuSa RTX configuration .. 10

System configuration ... 10

Thread configuration .. 11

Timer configuration .. 12

Event flags configuration.. 12

Message queue configuration .. 12

Event Recorder configuration .. 13

Other RTX configuration options ... 13

System initialization ... 13

MPU initialization ... 13

RTOS initialization .. 13

Thread initialization.. 14

RTX kernel operation ... 15

Usage of FuSa Event Recorder ... 15

Usage of the MDK-Middleware network component ... 16

User SVC calls ... 16

MPU Protected Zones .. 17

Zone definitions.. 17

Techniques for memory mapping .. 18

Usage of shared resources ... 19

Peripheral access protection .. 20

Zone assignments to threads ... 20

Loading zones ... 20

Handling memory access faults .. 21

Safety classes ... 21

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 3

Safety class assignment to threads .. 21

Communication across safety classes .. 22

Thread watchdogs.. 23

Thread watchdog alarm handler .. 24

Fault handling .. 25

Injecting faults .. 26

Summary .. 28

References and useful links ... 28

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 4

Introduction

Some functional safety standards require a thorough analysis of the software architecture on different levels.
This presents developers with great challenges. On the one hand, it is required to prove that all required
software elements are available, effective, and developed according to the correct ASIL (Automotive Safety
Integrity Level). On the other hand, a second required safety analysis needs to consider the dependent errors. It
serves to prove that all components are independent of one another without influencing each other.

To make these analyses easier, especially in a single-core embedded system (executing functionalities of
different safety integrity levels with different safety requirements in a single core), process isolation can be sued
to ensure that the non-safety part (or the part with lower integrity level) does not impact the operation of the
safety critical part (or the part with higher integrity level) of an application.

This application note introduces the process isolation capabilities of Arm FuSa RTS that enable such a protection
from interferences. Implementation of process isolation is then explained using an exemplary traffic light
application.

The application note is structured as follows:

• Introduction outlines the structure and scope of the application note.

• Arm FuSa RTS overview introduces Arm FuSa RTS and its process isolation capabilities.

• TrafficLight: A process isolation example explains the implementation of the TrafficLight example.

• References and useful links are provided related to the topic of this application note.

Scope of the application note

The TrafficLight example demonstrates how process isolation can be used in an Arm FuSa RTS based application.

Example is provided for specific target devices. However, the concepts are universal and can be similarly applied
to other Cortex-M devices with a Memory Protection Unit (MPU) present.

This application note provides an application example for explanatory purposes to show use of process isolation
concepts and key APIs. To keep the example simple, many FuSa RTS user safety requirements are explicitly
omitted as mentioned in Safety requirements. This application note is not part of the FuSa RTS Safety Package.

The FuSa RTS Safety Package is the main reference for the user implementing safety-related systems with
process isolation on FuSa RTS.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 5

Arm FuSa RTS overview

Arm’s Run-Time System for Functional Safety (FuSa RTS) is a set of safety-certified software components for
Cortex-M based devices. It contains a real-time operation system (FuSa RTX RTOS), the processor abstraction
layer (FuSa CMSIS-Core), the FuSa Event Recorder and the FuSa C library. The system block diagram below shows
all FuSa RTS components (blue blocks within the red dotted line):

Arm FuSa RTS in an embedded application

Process isolation in FuSa RTS

Process isolation functionality is introduced in FuSa RTS 1.1.0 and allows to achieve freedom from interference
required for execution of functionalities with different integrity levels:

FuSa RTS for software components with different safety levels

The access to system resources (such as memory, peripherals, processor execution time) should be controlled to
avoid undesired mutual interferences between software elements of different integrity levels (with different
safety requirements). This is achieved in FuSa RTS with a following functionalities:

• Spatial isolation shields access to microcontroller memory or peripherals. In FuSa RTS this is enforced by
MPU Protected Zones and Safety Classes.

• Temporal isolation is the ability of a system to respect its own timing constraints. This is supported with
thread watchdogs that get triggered if timing requirements are violated.

• Controlled system recovery allows to control system operation in case of failures and so block execution of
non-safety critical parts or proceed to a safety state.

Detailed description of process isolation in FuSa RTS is provided in FuSa RTS Safety Manual.

https://www.keil.com/fusa-rts

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 6

TrafficLight: A process isolation example

The example project implements a simple traffic light controller with standard traffic light phases (red,
red/yellow, green, yellow, red). The time interval for green phase depends on the emulated traffic value.

The process isolation capabilities of FuSa RTS are fully utilized in this example to demonstrate how to protect
components with different safety levels from undesired mutual interference.

The control component Normal Operation is executed by default and has low safety integrity level. The
operation of the control application is monitored (Operation Verification) for plausible operation; and in case of
incorrect operation this is reported to “Safe-Mode Operation” with high safety integrity which then brings the
system into a safe state. In the Safe-Mode Operation only the yellow light blinks.

The Communication interface (in this example TCP/IP stack over Ethernet) allows to receive user input and
provides status information via hosted webserver.

In case of MPU faults or thread watchdog alerts caused by Safety Level 0, only the threads of the same safety
level are suspended. This still allows to maintain network communication that has Safety Level 1.

When a fault is caused by higher safety levels, then all functionality with lower safety levels is suspended and
only the safe state operation remains.

Figure below briefly describes operations at different safety levels implemented in the TrafficLight example.

Application overview

The table below explains the application functionalities with the corresponding threads that implement them, as
well as assigned Safety Class and MPU Protected Zone (including memory regions accessible from it).

Functionality
Safety
Class

MPU Protected Zone

Flash regions RAM regions I/O regions

Normal operation

SensorThread reads ADC value from potentiometer
emulating traffic data.

NormalOperationThread switches between red and green
lights (via yellow) with intervals depending on the
measured traffic.

A control loop in OperationVerificationThread verifies the
traffic data on plausibility.

The data and status are periodically sent to an HTTP
server.

0

Zone 0 (ZONE_NORMAL_OP):

NormalOperationThread, SensorThread

CODE (Flash):

p/u: RO, X

RAM_NORMAL_OP

RAM_SHARED

RAM_EVR

p/u: RW, XN

ADC

GPIO

p/u: RW, XN

Zone 1 (ZONE_VERIFY_OP):

OperationVerificationThread

CODE (Flash):

p/u: RO, X

RAM_VERIFY_OP

RAM_SHARED

RAM_EVR

p/u: RW, XN

None

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 7

Functionality
Safety
Class

MPU Protected Zone

Flash regions RAM regions I/O regions

Communication

HTTP web-server that gets accessed remotely over TCP/IP
connection with Ethernet interface.

Displays traffic data, status.

Can be used to inject various faults to the system.

Uses MDK-Middleware Network stack.

Also see Usage of the MDK-Middleware network
component

1

Zone 2 (ZONE_COM):

CommunicationInitThread,
netCore_Thread, netETH0_Thread

CODE (Flash):

p/u: RO, X

RAM_COM

RAM_SHARED

RAM_EVR

p/u: RW, XN

SYSCFG, EXTI

GPIO,

RCC,

Ethernet

p/u: RW, XN

Software Test Library (optional)

Integrates Software Test Library X-CUBE-STL for diagnostic
tests.

StlThread is executed in privileged mode.

Also see [5].

2

Zone 3 (ZONE_STL)

StlThread (privileged)

CODE (Flash):

p/u: RO, X

RAM_STL

RAM_SHARED

RAM_EVR

p/u: RW, XN

None

Safe-Mode operation

This is a safe state of the application.

Yellow light is blinking indicating that normal operation of
the traffic light is not possible.

3

Zone 4 (ZONE_SAFE_OP):

SafeModeOperationThread

CODE (Flash):

p/u: RO, X

RAM_SAFE_OP

RAM_SHARED

RAM_EVR

p/u: RW, XN

GPIO,

HW WDOG

p/u: RW, XN

RTOS operation

Kernel

Also see RTX kernel operation
N/A Not applicable as RTX Kernel runs in privileged mode and

has no restrictions on memory access.

Timer Thread

osRtxTimerThread is part of
RTOS and shall not be
modified.

Also see Timer configuration

1

Zone 5 (ZONE_TIMER):

osRtxTimerThread

CODE (Flash):

p/u: RO, X

RAM_TIMER

RAM_COM

RAM_SHARED

RAM_EVR

p/u: RW, XN

None

Idle Thread

osRtxIdleThread can be
modified by user.

Also see Thread configuration

4

Zone 6 (ZONE_IDLE):

osRtxIdleThread

CODE (Flash):

p/u: RO, X

RAM_IDLE

RAM_SHARED

RAM_EVR

p/u: RW, XN

None

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 8

Web interface

When the target board is available in the same LAN as the PC, its web page can be accessed from a browser
using the board address (for example https://mcbstm32f400, https://nucleo-f746zg or https://nucleo-f429zi).
Then following page showing status information and controls is displayed:

Operating mode shows the current mode of the application.

• Normal: switching between green and red lights (via yellow) with intervals depending on measured
traffic. This is a default mode at system start.

• Safe: blinking with yellow light only. System is switched to safe mode when certain errors occur in
normal operation mode. See Fault handling for additional information.

• Traffic light shows current light status green, yellow or red.

• Traffic sensor shows current emulated traffic density.
o On the MCB board, the traffic is emulated based on ADC measurement from the on-board

potentiometer. The data is considered implausible for high values. This can be triggered by
turning the potentiometer clockwise to the limit.

o On a NUCLEO board, traffic data changes when the USER button is pressed. A double-click is
used to force an implausible value.

• Inject fault area contains multiple buttons that can be used to inject different faults to the system.
Hovering over the button with a cursor will show additional information. Refer to section
Injecting faults for further details.

• Fault info: displays the fault information reported by the device.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 9

LED indications

On-board LEDs are used for emulating the traffic light behaviour with the following mapping:

On an MCB board On a Nucleo board

LED0 Red LED1 (green) Green

LED1 Yellow LED2 (blue) Yellow

LED2 Green LED3 (red) Red

Project organization in µVision

The application project in Vision is organized based on the functionalities.

The System group contains the main file, zone partitioning, fault handling,
recovery, and other system-level items that are not part of any specific
thread.

Other groups are made up of application files that implement specific
functionality and are named based on the safety class assigned to them (for
example Safety Class 0 (Normal))

Software components used from the packs are displayed separately, even if
they implement functionality for a specific safety class (for example Network).

Safety requirements

The TrafficLight example is intended to demonstrate the usage of process isolation capabilities in a complex
application. To simplify the code and provide better readability, many of the FuSa RTS user safety requirements
were explicitly omitted (for example verification of return codes), while others are provided only as template
implementations (for example error handling routines). The FuSa RTS safety package is the main reference for
users implementing applications based on FuSa RTS.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 10

FuSa RTX configuration

FuSa RTX configuration parameters are defined in the RTX_Config.h file. It is recommended to use the
Configuration Wizard view that provides a GUI-style approach for specifying the parameters.

System configuration

The figure below shows settings in the System Configuration group used in the TrafficLight example:

Global Dynamic Memory size is set to 0 as dynamic memory allocation is generally not recommended for safety
reasons. Application uses object-specific memory allocation as well as static memory allocations.

Object Memory usage counters are enabled and can be used to verify the actual number of objects in use.

Safety features and all its sub-items except SVC Function Pointer checking are enabled to ensure that process
isolation features are available for use and operational.

SVC function pointer checking can be useful in safety applications. In the TrafficLight example, it is disabled to
avoid additional complexity in the zone configuration.

Additionally, safety class and MPU Zone numbers are provided for the Idle thread (in the Thread Configuration
group) and for the Timer thread (in the Timer Configuration group). The assigned values correspond to those
listed in in Application overview.

https://www.keil.com/support/man/docs/uv4/uv4_ut_configwizard.htm

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 11

Thread configuration

Figure below shows Thread Configuration group in RTX_Config.h file for the TrafficLight example.

Object specific Memory allocation is enabled for user threads. The Number of user Threads that can be
simultaneously allocated in such a way is set to 6. The threads netCore_Thread and netETH0_Thread are
statically allocated in the MDK-Middleware Network stack and do not need to be considered here. Idle and
Timer threads are system threads and are also excluded from this number.

For user threads that are created with control block pointer set to NULL (cb_mem field in the attr_bits), the
control blocks are automatically placed into the object-specific memory array allocated by the RTOS kernel (part
of named section .data.os.). The scatter.sct file then maps this memory to the RAM_PRIVILEGED region that is
not directly accessible from threads. Section RTX kernel operation gives additional details.

The Number of user Threads with default Stack size as well as Total stack size [bytes] for user Threads with user-
provided Stack size are both set to 0 to disable thread stack allocation within the RTOS. Hence for each user
thread a stack needs to be defined in the user code and placed into the memory region enabled for access from
the MPU Protected Zone assigned to the thread. In our example all thread stacks are kept separately in the
corresponding memory areas. Since RTOS does not need to allocate stacks for the user threads in our example,
this configuration option is set to 0.

Idle thread

The Idle thread is created by the kernel according to the settings provided in the Thread Configuration group as
shown in the figure above.

Idle Thread Safety Class is 4 – the highest among the threads in the TrafficLight example. This ensures that the
thread cannot be suspended, as otherwise scheduling will not work correctly.

Idle Thread Zone is 6 (ZONE_IDLE) that includes following RAM regions:

• RAM_IDLE region for the thread stack and local variables as defined in the scatter.sct file:

 RAM_IDLE REGION_RAM_IDLE_START REGION_RAM_IDLE_SIZE {

 * (ram_idle)

 rtx_lib.o (.bss.os.thread.idle.stack)

 }

ram_idle is a named memory section used in RTX_Config.c for mapping a local variable wait_counter. It
is present just as an example to show how user variables can be mapped into thread memory.

• RAM_SHARED is configured as available for all threads. Not used by the Idle thread.

https://www2.keil.com/mdk5/middleware

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 12

• RAM_EVR enabled for all threads to access Event Recorder. Not used by the Idle thread. See Usage of
FuSa Event Recorder.

• RAM_PRIVILEGED and ARM_LIB_STACK regions are present as a work-around. If a region is not assigned
to a zone, then it is not being put into the scatter file template by CMSIS-Zone. To avoid that, we enable
RAM_PRIVILEGED and ARM_LIB_STACK for the Idle Thread zone but with privileged access only, thus
they are not available to be accessed from the Idle Thread because it runs in an unprivileged mode.

Timer configuration

The figure below shows Timer Configuration group in RTX_Config.h file for the TrafficLight example:

The TrafficLight example uses 1 timer that is created in the MDK-Middleware Network component and relies on
the object-specific memory allocation for it.

Timer Thread Safety Class is 1 – it is the same as for threads in the Communication zone where RTX Timer
objects are used.

Timer Thread Zone is 5 (ZONE_TIMER) including the following RAM regions:

• RAM_TIMER for the thread stack, as defined in the scatter.sct file:

 RAM_TIMER REGION_RAM_TIMER_START REGION_RAM_TIMER_SIZE {

 rtx_lib.o (.bss.os.thread.timer.stack)

 }

Section Techniques for memory mapping explains in an example how the timer thread stack is
allocated.

• RAM_SHARED configured as available for all threads. Not used by the timer thread.

• RAM_EVR to access Event Recorder. See Usage of FuSa Event Recorder.

• RAM_COM required to enable Communication timer callback to access Communication variables.

Timer Callback Queue entries is kept at default value 4.

Event flags configuration

TrafficLight example uses 2 event flags. They are allocated via object-specific memory in RTX.

See section Communication across safety classes for more details on how the event flags are used.

Message queue configuration

One message queue object is used in the TrafficLight example to exchange the emulated traffic sensor data
between the threads.

The control block for the message queue object is allocated via object-specific memory in RTX and Number of
Message Queue objects is set to 1.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 13

Memory for data storage is allocated by the system and so will be mapped to privileged RAM area so that it can
be accessed from non-privileged threads only via RTOS APIs. Data storage size is set to 128 bytes.

See section Communication across safety classes for more details on how the message queue is used.

Event Recorder configuration

EventRecorder is enabled in the TrafficLight example as explained in Usage of FuSa Event Recorder.

RTX_Config.h contains some global configuration options for the Event Recorder operation, as well as specific to
the RTOS events.

Global initialization is enabled in the Event Configuration group as FuSa Event Recorder will be initialized by
RTX. Start recording flag is set which triggers event recording right after initialization.

The events generated by the RTOS are set in RTOS Event Generation Group and can be modified to
enable/disable specific event types.

Additionally, the Compiler component contains the file EventRecorderConf.h that configures the size of the
Event Recorder buffer as well as the time stamp source and frequency.

Other RTX configuration options

Mutexes are used by the MDK-Middleware Network component, but are statically allocated, so no special
configurations are required in the RTX_Config.h file.

Semaphore and Memory pool objects are not used in the TrafficLight example and corresponding configurations
are not relevant for it.

System initialization

On Cortex-M devices, the execution starts in privileged mode after reset. Also, the MPU is disabled, so all
memory can be accessed without any restrictions.

The Reset_Handler exception is implemented in the device startup file (startup_stm32f407.s,
startup_stm32f746xx.s). From there, the SystemInit(void) performs initial device configuration and then the pre-
main function __main(void) is called.

The pre-main function __main() needs to be implemented in the application as it is not available in the FuSa C
library. FuSa C lib safety manual explains the expected startup sequence and in the TrafficLight example it is
implemented in fusa_clib_startup.c. At the end, the application main() function is called.

In the main.c , the main() function initializes HAL and Clocks, as well as peripherals for LED and ADC.
A hardware watchdog is initialized and started with 1 second timeout to act as the last-resort protection against
system hang.

MPU initialization

ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk); is called to enable MPU with access to the default memory
map from the privileged mode. Such access is required for correct kernel operation, but also enables access to
the memory from all interrupts.

RTOS initialization

The FuSa RTX kernel is set up with osKernelInitialize().

osKernelProtect() is called to disable kernel control from threads lower than a specific safety class. In our
example, SAFETY_CLASS_COMMUNICATION is used in the argument, thus disabling kernel control from the
normal operation mode (threads have lower safety class value). This is done because in our example, from
communication threads we want to trigger some faults by suspending the kernel. This is needed only for demo
purposes and in a real application, only threads with a high safety class that need to control the kernel should be
able to do so.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 14

Note that in cases when device needs to go into sleep, this would typically be done in the Idle thread. Hence the
idle thread would need to have a sufficient safety class and potentially privileged level for suspending the kernel
and putting the system into sleep. In our example we do not put the device into low-power mode.

With osKernelStart() the scheduling process starts, so it is called after initial application threads are created.

Thread initialization

User threads are created for the application operation modes. The safety class and MPU Protected Zone values
are assigned when RTX objects are created.

The following code snippet shows how the SensorThread is created in the NormalOperation.c file. The local array
sensor_thread_stack is allocated for the thread stack.

/* Threads stacks located in RAM_NORMAL_OP */

static uint64_t sensor_thread_stack [512/8];

/* SensorThread thread attributes */

static const osThreadAttr_t sensor_thread_attr = {

 .name = "SensorThread ",

 .attr_bits = osThreadUnprivileged |

 osThreadZone(ZONE_NORMAL_OP) |

 osSafetyClass(SAFETY_CLASS_NORMAL_OPERATION),

 .cb_mem = NULL, /* System allocated control block */

 .cb_size = 0U,

 .stack_mem = sensor_thread_stack, /* User provided stack */

 .stack_size = sizeof(sensor_thread_stack),

 .priority = osPriorityNormal,

 .tz_module = 0U, /* Not used */

 .reserved = 0U

};

(void)osThreadNew(SensorThread, NULL, &sensor_thread_attr);

SensorThread is created with unprivileged access level (osThreadUnprivileged in attr_bits). Its MPU Protected
Zone is set to ZONE_NORMAL_OP (0) and safety class to SAFETY_CLASS_NORMAL_OPERATION (0).

Variables defined in NormalOperation.o, including sensor_thread_stack, get placed by default into the
RAM_NORMAL_OP area as defined in scatter.sct file:

RAM_NORMAL_OP REGION_RAM_NORMAL_OP_START REGION_RAM_NORMAL_OP_SIZE {

 NormalOperation.o (+RW +ZI)

}

and this memory region is also defined in the MPU Protected Zone number 0 in zones.c file that the
SensorThread is assigned to.

Notes:

• Shared variables defined in NormalOperation.c are explicitly placed into shared RAM as explained in
section Usage of shared resources.

• Variables defined as static const (for example sensor_thread_attr) are placed into flash memory with
read-only access.

Section MPU Protected Zones provides additional details on how MPU Protected Zones are defined and used.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 15

In the example, StlThread is created for execution in privileged mode as this is required by X-CUBE-STL. All other
threads are created to run in unprivileged mode.

After the application threads are created, the function osThreadProtectPrivileged() is called to disable the
creation of new threads with privileged access level.

RTX kernel operation

FuSa RTX RTOS kernel operations are mostly executed in handler mode using exception handlers
SysTick_Handler, SVC_Handler and PendSV_Handler.

Exceptions and interrupts are executed in privileged handler mode and from there any memory can be accessed
since during System initialization MPU is enabled with MPU_CTRL_PRIVDEFENA_Msk.

In the scatter.sct file, the RAM used only by RTOS is explicitly mapped into RAM_PRIVILEGED area. This ensures
that kernel data does not accidentally end up in regions accessible from threads.

RAM_PRIVILEGED REGION_RAM_PRIVILEGED_START REGION_RAM_PRIVILEGED_SIZE {

 Net_Config.o (.bss.os.*.cb)

 * (.data.os*)

 * (.bss.os*)

}

The control blocks of RTOS objects need to be in this memory.

• Section Net_Config.o (bss.os*.cb) places the control blocks for the objects defined in the Network MDK-
Middleware component into the privileged RAM. See also Usage of the MDK-Middleware network
component.

• * (.data.os*) corresponds to the object-specific memory buffers used by the RTOS.

• (.bss.os*) is used for kernel internal items, as well as object control blocks. When static memory
allocation is used in the application, the control blocks for the objects will need to be placed into
corresponding part of .bss.os. The section Usage of the MDK-Middleware network component shows
how this is done in case of networking threads.

Additionally, the main stack used in the exceptions is placed into a special memory region that will not be
accessible from threads and is kept uninitialized to ensure that the program starts correctly after pre-main
function __main is executed.

ARM_LIB_STACK REGION_ARM_LIB_STACK_START EMPTY REGION_ARM_LIB_STACK_SIZE {

}

The section FuSa RTX configuration explains RTX configuration options for process isolation and describes how
internal threads operated by RTX kernel (Idle thread and Timer thread) are configured.

Usage of FuSa Event Recorder

In the Traffic Light example, the Event Recorder (FuSa variant) is selected for the Debug target in the Manage
Run-Time Environment window, and corresponding files can be found in the Project window in the Compiler
component.

Event Recorder is disabled for the Release target. Alternatively, it is also safe to keep the Event Recorder in the
Release target, and if needed, just disable the event generation if it is not required for logging purposes.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 16

Event Recorder does not use separate threads and its API is called from different components, including the RTX
kernel. So, it cannot be classified with a single safety class, or allocated only to certain MPU Protected Zone.
Event Recorder RAM is placed into a dedicated RAM_EVR area that is then accessible for all MPU Zones (refer to
the scatter.sct file):

RAM_EVR REGION_RAM_EVR_START UNINIT REGION_RAM_EVR_SIZE {

 EventRecorder.o (+ZI)

}

The region RAM_EVR is defined as uninitialized as required by FuSa Event Recorder.

Usage of the MDK-Middleware network component

For communication, the TrafficLight example uses the MDK-Middleware Network stack. The application
implements a simple HTTP-server.

The file Communication.c implements the application thread CommunicationInitThread that first initializes the
underlying MDK-Middleware Network with the netInitialize() function, and then constantly verifies if a memory
access fault was triggered from the web interface in order to inject it into the system (see section Web
interface).

The CommunicationInitThread is defined as part of an object-specific memory block so its control block is
automatically placed into the correct memory region for privileged access by the RTOS. The thread stack
(communication_init_thread_stack) gets mapped into RAM_COM area in the scatter.sct file.

The thread stacks as well as other data items that are necessary for communication are placed into an MPU
region dedicated to the communication RAM_COM. Below is an example for NUCLEO-F429ZI:

RAM_COM REGION_RAM_COM_START REGION_RAM_COM_SIZE {

 Communication.o (+RW +ZI)

 Net.lib (+RW +ZI)

 Net_Config.o (.bss.*)

 emac_stm32f4xx.o (+RW +ZI)

 phy_lan8742a.o (+RW +ZI)

 }

Additionally, functions for sharing or modifying the data from normal operation mode are implemented.
Corresponding data items such as u32_input_val, u32_output_val, and str_fault_info are placed into the shared
RAM region (see Communication across safety classes).

In the TrafficLight example, two threads are created by the network stack library: netCore_Thread and
netETH0_Thread (in net_rtos2.h). The control blocks for these threads as well as related RTOS objects already
get placed into the corresponding named section .bss.os in the Net_Config.o object. This can be seen in
net_rtos2.h file.

As described in RTX kernel operation these .bss.os sections need to be accessible from the RTOS kernel only,
and hence are mapped in the linker scatter file as part of the RAM_PRIVILEGED area.

User SVC calls

The Ethernet operation in TrafficLight example requires some control over the Ethernet interrupts. Specifically,
it needs to be able to execute three NVIC functions: NVIC_EnableIRQ(IRQn), NVIC_DisableIRQ(IRQn) and
NVIC_ClearPendingIRQ(IRQn).

However, the networking threads are executed in unprivileged mode and hence cannot directly modify
necessary MCU registers because that would trigger an exception. To overcome such a restriction, it is possible
to wrap required code in user SVC (SuperVisor Call) calls that implement the required functionality.

https://www.keil.com/pack/doc/mw/Network/html/index.html

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 17

In our implementation, we use the CMSIS_NVIC_VIRTUAL define that allows to override NVIC functions which
are defined in CMSIS-Core and are mapped to and implemented in the svc_user.c file.

In the application, the file cmsis_nvic_virtual.h already maps NVIC functions calls to their implementations in
CMSIS-Core (__NVIC_...).

In the TrafficLight example, such interrupt control functionality is needed only for Ethernet interrupts, so there is
a dedicated verification that the call is done for Ethernet IRQs and from the communication MPU Zone.

/* SVC handler for NVIC functions:

 - NVIC_EnableIRQ

 - NVIC_DisableIRQ

 - NVIC_ClearPendingIRQ

 it enables these functions to be executed in privileged mode */

void svcNVIC_Handler (uint32_t func_index, IRQn_Type IRQn) {

 /* Only Ethernet IRQ handling from Zone 2 is allowed */

 if (IRQn == ETH_IRQn) {

 if (osThreadGetZone(osThreadGetId()) == ZONE_COM) {

 switch (func_index) {

 …

 }

 }

 }

}

This approach can also be used for access to generic peripherals as explained in section Peripheral.

MPU Protected Zones

The table provided in Application overview lists the MPU Protected Zones assigned to specific threads and the
memory regions enabled in them. This section explains the implementation details.

Zone definitions

MPU Zones are defined in the files located in the ./CMSIS_Zone/ftl_gen/ folder.

• zones.h and zones.c files define the MPU Table of type ARM_MPU_Region_t (mpu_table). Each element
in the array defines an MPU Protected Zone, with each row specifying a memory region and its access
rights. In total 7 zones (ZONES_NUM) are defined and they are referenced in the Application overview.

• mem_layout.h contains defines for addresses of memory regions used for memory organization by the
scatter file.

• scatter.sct is a scatter-loading file that allocates memory regions as defined in the mem_layout.h and
places the application object files into the specific memory regions.

These files can be maintained manually, but also generated using graphical CMSIS-Zone utility.

The directory ./CMSIS_Zone/ contains the project files that are used in the CMSIS-Zone utility:

• .rzone – generic file that describes resources available on the target microcontroller.

• .azone – project-specific file that describes MPU Zones allocations, memory layout and mapping of
application object files.

• .fzone – is autogenerated by CMSIS-Zone utility for internal use and shall not be modified or used
otherwise.

This is a screenshot of the CMSIS-Zone utility for the NUCLEO-F429ZI target project:

https://developer.arm.com/documentation/101754/0616/armlink-Reference/Scatter-File-Syntax/Syntax-of-a-scatter-file?lang=en
https://arm-software.github.io/CMSIS_5/Zone/html/zoneToolUsage.html

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 18

Techniques for memory mapping

The TrafficLight example shows some useful techniques that help to place individual program objects into target
memory regions. The Arm Compiler 6.6 documentation describes available methods in more details.

1) Map all global data defined in a C file
This is the simplest approach. Data items can be implemented in separate C files and then the
corresponding object files can be placed to the target memory region using scatter file. In our example
this is done for EventRecorder:

RW_RAM_EVR REGION_RAM_EVR_START UNINIT REGION_RAM_EVR_SIZE {

 EventRecorder.o (+ZI)

}

2) Map an application data item into a named section
If only some data defined in a C file needs to be placed in a specific memory region, then
__attribute__ can be used to place it into a named memory region. This name can be then mapped
to a corresponding memory section defined in the scatter file. For example, in the NormalOperation.c
file, sensor_data_mq is defined in the ram_shared section:

/* Local variable located in shared RAM */

static osMessageQueueId_t sensor_data_mq __attribute__((section("ram_shared"))) = NULL;

and the ram_shared section is mapped into RAM_SHARED in the scatter.sct file (along with system and
HAL) as described in Usage of shared resources.

3) Map a data item without modifying the code (for MDK-Middleware or RTOS)
In some cases, it is not desired or not possible to modify a variable definition. It is possible to map such
data to a target memory region. For example, the following definition places the stack of the Timer
thread into the dedicated RAM region:

RAM_TIMER REGION_RAM_TIMER_START REGION_RAM_TIMER_SIZE {

 rtx_lib.o (.bss.os.thread.timer.stack)}

https://developer.arm.com/documentation/dui0803/k/Scatter-loading-Features/Root-region-and-the-initial-entry-point/Methods-of-placing-functions-and-data-at-specific-addresses?lang=en

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 19

In this case of the timer thread stack, it is already being placed into a specific named memory
.bss.os.thread.timer.stack and that is why in the scatter file we just map it to the RAM_TIMER region.
Refer to the rtx_lib.c file where the timer thread stack is defined as follows:

// Timer Thread Stack

static uint64_t os_timer_thread_stack[OS_TIMER_THREAD_STACK_SIZE/8] \

__attribute__((section(".bss.os.thread.timer.stack")));

Usage of shared resources

Items that need to be accessed from different MPU Protected Zones should be placed into a RAM region that is
then specified as accessible by those Zones.

In our example, two RAM regions are read/write accessible for all MPU Zones.

1) The memory region RAM_SHARED is defined in the scatter.sct file:

RAM_SHARED REGION_RAM_SHARED_START REGION_RAM_SHARED_SIZE {

 * (ram_shared)

 system_stm32f4xx.o (+RW +ZI)

 stm32f4xx_hal.o (+RW +ZI)

}

It contains following items:

• STM32F4 HAL (stm32f4xx_hal.o).

• System device file (system_stm32f4xx.o).
o SystemCoreClock variable defined in system file is required by HAL_GetTick function that

is frequently called from HAL.

Note that in this example complete HAL and system device data are placed for shared access
and can be overwritten also by components with lower safety integrity levels. This is done so for
simplicity reasons only. In a real-world application, the potential safety impact needs to be
analyzed and potentially additional provisions are needed to protect such data. Also see
Peripheral.

• ram_shared is a named section used in the example for individual items that are intended for
access from various MPU Protected Zones.

o HAL ticks defined in HAL_GetTick function in main.c.
o Variables that are shared with communication threads for display on the web page

▪ Sensor input, light status, and operation mode
▪ Fault information array

o Id of the event flag object used for triggering faults
o Id of the event flag object used for starting safe operation mode
o Id of the message queue object used for sharing traffic data

Note: To be able to access and modify an RTOS object from threads assigned to different MPU
Protected Zones, at least the following is required:

• The object Id needs to be placed into the shared RAM

• The assignment of safety class to the object and the threads shall enable required
access. Most manipulations with RTOS objects are permitted only for threads that have
the same or higher safety class as assigned to the target RTOS object.

Also see Communication across safety classes.

2) The memory region RAM_EVR is allocated for the Event Recorder buffer, so that all threads can record
events. See section Usage of FuSa Event Recorder for details.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 20

Peripheral access protection

For correct operation, peripheral drivers require read/write access to various CPU peripheral registers. MPU
Protected Zones can define corresponding access rights to the memory-mapped peripherals. Often, the target
registers are not peripheral-specific and define system-wide behavior.

In the TrafficLight project for example, the Ethernet MAC driver (implemented in EMAC_STM32F4xx.c and called
from the thread netETH0_Thread (part of MPU Zone 2)) requires not only access to the Ethernet MAC specific
peripheral (ETH) but also to generic System Configuration (SYSCFG), Reset and Clock Control (RCC) as well
External Interrupts (EXTI) register groups.

If such a generic peripheral is enabled in a low safety integrity MPU Protected Zone, then any code from that
Zone has access to the peripheral. This implies a risk that the low safety code can modify the parts of the
peripheral not required for the operation of a specific driver (Ethernet in our example) and thus impact the
safety-critical components that depend on the same peripheral. Such safety risks must be analyzed and if
necessary mitigated. Peripheral drivers used in the current version of the TrafficLight example do not address
this problem.

One potential approach could be to use aa SVC gateway. In this approach, the low safety MPU Protected Zone
does not enable the peripheral for access and hence the non-privileged code cannot unintentionally modify the
peripheral. The access from the privileged mode is enabled through the background region (in the TrafficLight
example done with ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);). The peripheral driver needs to rely on
user SVC functions that are executed in privileged mode but also should implement explicit control that only
specific peripherals or parts of them are accessed. NVIC control functions explained in section User SVC calls
demonstrate how this approach can be implemented.

Note: When running in the privileged mode, all other peripherals and memory regions can be accessed as well.
Hence implementation of user SVC calls must be extensively analyzed and validated.

Zone assignments to threads

Individual threads are assigned to the MPU Zones when the threads are created. Section Thread initialization
provides an example.

Loading zones

An MPU Zone is loaded in the osZoneSetup_callback(uint32_t zone) function. It is called by the RTX kernel during
a thread switch if the next thread to be executed has a different MPU Protected Zone than the currently one.
Implementation is done in the zone.c file and is quite straightforward:

/* Update MPU settings for newly activating Zone */

void osZoneSetup_Callback (uint32_t zone) {

 if (zone >= ZONES_NUM) {

 ZoneError_Handler();

 }

 ARM_MPU_Disable();

 ARM_MPU_Load(mpu_table [zone], MPU_REGIONS);

 ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk);

}

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 21

Handling memory access faults

When a memory access violates the rules of the currently loaded MPU Zone then a Memory Management
Interrupt (MemoryManagement_IRQn) is triggered by the processor and its handling function is executed
according to the exception vector table specified in the device startup file (by default, MemManage_Handler).

The example application provides an implementation of the MemManage_Handler() in the faults.c file. It is
implemented in assembler to avoid overwriting the link register. From there the MemManage_Handler_in_C()
function is called that implements the actual handling as summarized in the table below:

Condition Actions

The fault is triggered from exception context

Trigger fatal error, see FatalError_Handler in
Fault handling

The fault is caused from an invalid thread (thread Id is
NULL, or MPU protected Zone is invalid)

The fault is caused by safe mode operation

The fault is caused from a non-safe operation.

Can be injected from web interface.

Suspend operation of the threads assigned to
the MPU Protected Zone that has caused the
failure.

Log fault info and send it to the web server.

In the last case, when the fault is caused from a non-safe operation, the execution continues and at the end of
the MemManage_Handler the osFaultResume function is called to correctly resume RTOS operation.

The section Fault handling additionally explains how other faults and errors are handled in the TrafficLight
example.

Safety classes

The example uses various RTOS objects such as threads, event flags, timer, mutexes and message queue. They
are defined in the application code as well as in the MDK-Middleware Network library.

Assignment of safety classes is typically done first for thread objects based on the safety integrity level they
implement. For TrafficLight, this is explained in subsection Safety class assignment to threads.

An RTOS object can use a default safety class (0) or inherit the safety class of a thread that creates it if the object
will be used only by threads with the same safety class. In the TrafficLight example, this is the case for the
threads and objects created by the MDK-Middleware Network library. They all operate with the
SAFETY_CLASS_COMMUNICATION value inherited from the CommunicationInitThread. The section Usage of the
MDK-Middleware network component explains the integration.

RTOS objects that shall be used by threads with different safety classes require additional considerations as
explained in section Communication across safety classes.

Safety class assignment to threads

The table provided in Application overview lists the safety classes assigned to specific threads and operation
modes. File system_defs.h contains safety class value definitions assigned to specific numeric values and they
are used throughout the application.

The section Thread initialization shows a code snippet that creates the SensorThread with safety class
SAFETY_CLASS_NORMAL_OPERATION (0) assigned to it.

https://arm-software.github.io/CMSIS_5/Core/html/group__NVIC__gr.html#details

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 22

Communication across safety classes

Different mechanisms can be used to exchange data between threads of different safety classes.

1. Use variables placed in a shared RAM region.

Section Usage of shared resources explains how shared access to a memory region can be enabled using
MPU Protected Zones.

For example, the Communication.c file defines variables that are used for displaying system information.
Set/get functions implement the access interface that can be called by various threads.

The variables are mapped to a named section ram_shared. This section is part of the memory region
RAM_SHARED that is enabled for access in all MPU Protected Zones defined in the example.

For example, the sensor_val variable is accessible via the functions DisplaySetSensorValue(..) and
DisplayGetSensorValue(..). The variable is defined in Communication.c as follows:

/* Local variables located in shared RAM */

static uint32_t sensor_val __attribute__((section("ram_shared"))) = 0U;

Note that in this approach the data exchange is not performed via the RTOS but is fully under the
control of the application.

2. Use RTOS objects.

In the TrafficLight example, following RTOS objects are used by threads with different safety classes and
different MPU Protected Zones and are placed in shared RAM area as explained in Usage of shared
resources:

• Event flag object fault_inject_event.

It is defined in Communication.c and is used for triggering faults in the program.

Here are the key specifics of its implementation that make it accessible from threads with
different safety classes and MPU Protected Zones:

o The object Id fault_inject_event is mapped to a shared RAM region accessible from MPU
Protected Zones assigned to the target threads. See Usage of shared resources for
further details.

o The object is explicitly assigned with the lowest safety class value (0) and so can be
accessed from all threads. The FuSa RTS Safety manual [6] lists RTOS API functions
where safety class assignment gets verified. If the target object has a higher safety class
than the safety class of the running thread, then the requested operation will be
rejected.

o The object control block is allocated by kernel. Also see Event flags configuration. In
case of static memory allocation, the application should place the control block to
privileged RAM area as mentioned in RTX kernel operation and required in FuSa RTS
Safety manual [6]. This requirement is generic for RTOS objects and is independent on
their use by different safety classes.

o In the example, the functions FaultInject and FaultWasInjected access the object. They
can be called by all threads because the TrafficLight application does not partition flash
code with MPU Protected Zones. Access protection for the data (object Id) and safety
class verification is sufficient in this case.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 23

This code snippet shows how fault_inject_event is created:

/* Local variable located in shared RAM */

static osEventFlagsId_t fault_inject_event __attribute__((section("ram_shared"))) = 0U;

/* fault_inject_event event flags attributes */

static const osEventFlagsAttr_t fault_inject_event_attr = {

 .name = "fault_inject_event",

 .attr_bits = osSafetyClass(0U),

 .cb_mem = NULL, /* System allocated control block */

 .cb_size = 0U

};

…

void CommunicationInit (void) {

 fault_inject_event = osEventFlagsNew(&fault_inject_event_attr);

 …

}

• Event flag object safe_mode_operation_event_id.

Defined in SafeModeOperation.c; is used for starting safe operation mode. The implementation
concept equals the one of fault_inject_event explained above.

• Message queue object sensor_data_mq.

Defined in NormalOperation.c and is used for sharing sensor data that emulates traffic density.
Implementation concept equals the one of fault_inject_event explained above.

o Note that the message queue is created with the memory for data storage being
allocated by the kernel as explained in Message queue configuration. This prohibits
direct access to the message queue data memory from non-privileged threads. Access is
allowed only using message queue RTOS APIs with sensor_data_mq object Id value that
is in the shared RAM area.

Thread watchdogs

The example demonstrates how thread watchdogs can be used in an application. The table below lists the
threads and the thread watchdogs maintained for them:

Thread Operation mode Thread Watchdog interval, ms

NormalOperationThread Normal operation 200

SensorThread Normal operation Not used

OperationVerificationThread Operation verification 100

StlThread STL 1500

SafeModeOperationThread Safe operation 500

CommunicationInitThread,

netCore_Thread,

netETH0_Thread

Communication Not used

osRtxTimerThread Timer thread Not applicable

osRtxIdleThread Idle thread Not used

Thread watchdogs are typically restarted at the beginning of the infinite loop (for(;;) or while(1)) present in the
thread. For communication threads, there is no thread watchdog as the example has no real-time requirements.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 24

Thread watchdog alarm handler

If a thread watchdog does not get fed within the expected time interval, the osWatchdogAlarm_Handler
callback function is called (by the RTOS) with the thread Id as the parameter indicating for which thread the
watchdog has expired. Based on that, the application can tailor its response. The function should return a new
value for the thread watchdog, or 0 if the thread watchdog should not be restarted.

In the example, the thread osWatchdogAlarm_Handler is implemented in faults.c file.:

• Initial checks verify the thread ID parameter and the safety class assigned to it.

• If the thread watchdog is triggered for the ThreadSafeModeOperation thread, then osThreadSuspendClass is
called to suspend all threads with lower safety class. This helps to free the kernel resources for the safe
mode operation so that its execution can be scheduled. The new value for the thread watchdog is set to
510 ms. However, within the ThreadSafeModeOperation also the hardware watchdog is fed, so now if this
thread will not be served in 500ms then the hardware watchdog will trigger and reset the system.

• If the thread watchdog expires for a thread other than ThreadSafeModeOperation, then we activate the safe
mode operation (switching the traffic lights to blinking yellow mode) and suspend all threads of the same or
lower safety class.

Note that if a thread gets suspended from scheduling while the application calls such functions as
osThreadSuspend or osThreadSuspendClass, its thread watchdog continues to run, and it is expected to expire
and trigger the alarm function as the thread will not be running anymore.

Hence, it may be important to differentiate the handling of a thread watchdog that expired unexpectedly, from
one that gets fired when the application intentionally suspends the operation of a specific thread.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 25

Fault handling

Arm FuSa RTS implements mechanisms that can detect certain failures and allows suspending parts of the
system from operation. This can be used when handling faults and errors to reduce the current scope of the
application operation and so avoid inference from the code with lower safety-criticality level.

In the example, faults.h/faults.c implement the error and fault handlers. The next table summarizes them:

Fault/Error Actions

NormalOperationError_Handler
Called from OperationVerificationThread if input data
about measured traffic is not plausible. Executed in thread
context. Can be injected by potentiometer on the board.

Activate safe mode operation.
Suspend threads with same or lower safety
class.
Log error message and send to the web server.

StlError_Handler
Called when STL detects a failure or fails to run. Executed
in thread context.
Can be injected from web interface.

Activate safe mode operation.
Suspend threads with safety class lower than
safe mode thread.
Log error message and info to the web server.

osWatchdogAlarm_Handler
Callback issued by RTX kernel if a thread watchdog
expires. Executed in SVC context.
Can be injected from web interface.

See Thread watchdog alarm handler.

SystemStartupError_Handler
Clock setup fails.

Trigger fatal error, see FatalError_Handler.

MemManage_Handler
Called when memory access has violated the rules
configured for the MPU Protected Zones.
Executed in SVC context.
Can be injected from web interface.

See Handling memory access faults.

SafeModeDormantError_Handler
While in normal operation mode, an error occurred with
the event flag that signals safe mode operation (for
example event flag was destroyed)

Activate safe mode operation.
Suspend threads with safety class lower than
safe mode thread.
Log error message and send to the web server.

ZoneError_Handler
An undefined zone is requested for activation in
osZoneSetup_Callback.

Trigger fatal error, see FatalError_Handler.

osRtxErrorNotify
Notifies that RTX has detected an issue during its
operation, such as thread stack underflow, ISR queue
overflow, and others.
Executed in SVC context.

Action depends on the reported error.
osRtxErrorStackUnderflow

• Fatal error when in safe operation, or in
unknown state (see FatalError_Handler)

• Otherwise activate safety mode,
suspend threads with same or lower
safety class.

osRtxErrorISRQueueOverflow

• Fatal error. See FatalError_Handler.
osRtxErrorTimerQueueOverflow

• Activate safety mode, destroy all objects
with safety class lower than safe mode.

Other:

• Fatal error. See FatalError_Handler.

FatalError_Handler
No recovery path possible/defined.

Turn on red light and reset the system.

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 26

Injecting faults

The application provides a Web interface that can be used to control and monitor program execution.

• Data error:
o If emulated traffic data is not plausible (larger than 4000 or timed-out), this is considered by the

application as a data error that requires transition to a safe state.
To trigger the data error, doble-click the USER button on a NUCLEO board or turn the
potentiometer to maximum on the MCB board. This results in the following operation:

▪ NormalOperationError_Handler is called. It starts safe mode operation and suspends all
threads with the same or lower safety class (0).

▪ Web interface and communication continue working and display safe mode operation.
▪ The STL thread continues its operation.
▪ The LED status indicates safe operation mode.
▪ OperationVerificationThread was suspended, so its thread watchdog expires.

This gets captured in the fault info. In this case, handling of the thread watchdog alarm
does not change the operation as the application is already in the safe mode and
threads with safety class 0 are suspended.

▪ NormalOperationThread was suspended, so its thread watchdog expires.

This gets captured in the fault info. In this case, handling of the thread watchdog alarm
does not change the operation as the application is already in the safe mode and
threads with safety class 0 are suspended.

▪ As the result, the Fault info field gets extended with following error messages:

Operation Verification has detected an error in input data

Thread watchdog alarm was triggered for thread OperationVerificationThread

Thread watchdog alarm was triggered for thread NormalVerificationThread

The Inject fault section contains buttons that can be used to inject different faults into the system.

• Thread watchdog: locks the specified thread to trigger its Thread watchdog alarm handler.

o OperationVerificationThread button:

This works in the Normal mode only. In the Safe mode no action is performed.

▪ Thread watchdog alarm handler is triggered for OperationVerificationThread. It starts
safe mode operation and suspends all threads with the same or lower safety class (0).

▪ Web interface and communication continue working and display safe mode operation.

▪ The STL thread continues its operation.

▪ The LED status indicates safe operation mode.

▪ Since NormalOperationThread was suspended its thread watchdog expires as well.

This gets captured in the fault info. In this case, handling of the thread watchdog alarm
does not change the operation as the application is already in the safe mode and
threads and threads with safety class 0 are suspended.

▪ As the result, the Fault info field gets extended with following error messages:

Thread watchdog alarm was triggered for thread OperationVerificationThread

Thread watchdog alarm was triggered for thread NormalVerificationThread

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 27

o SafeModeOperationThread button:

▪ The thread watchdog alarm handler is triggered for SafeModeOperationThread. It
suspends all threads with lower safety class and initiates hardware watchdog to verify
the recovery.

▪ Since the lock is injected into the SafeOperationThread itself, the attempt to recover by
suspending other threads does not help.

▪ Initiated hardware watchdog expires, and the system is reset.

▪ System starts in normal operation mode, Fault info displays:

The system was reset by a hardware watchdog

• Memory access: performs memory access outside of the MPU Protected Zone assigned to
corresponding thread to trigger memory access fault (MemManage_Handler)

o NormalOperationThread button:

Works in the Normal mode only. In the Safe mode no action is performed.

▪ Upon invalid memory access the MemManage_Handler handler terminates
NormalOperationThread.

▪ As the result, an error in normal operation mode is detected
(NormalOperationError_Handler) that transitions system to a safe mode and suspends
user threads with the same or lower safety class (0).

▪ Web interface and communication continue working and safe mode operation is shown.

▪ Since OperationVerificationThread is suspended now, its thread watchdog expires, and
corresponding alarm handler is triggered.

▪ The STL thread continues its operation.

▪ The LED status indicates safe operation mode.

▪ As a result, the Fault info field gets extended with following error messages:

Memory fault caused by NormalOperationThread trying to access data at
address 0x20000000

Operation Verification has detected an error in input data

Thread watchdog alarm was triggered for thread OperationVerificationThread

o CommunicationInitThread button:

▪ Upon invalid memory access, the MemManage_Handler handler terminates all
communication threads, but the system stays in the current operation mode.

▪ The STL continues to execute.

▪ The LED status indicates the current operation mode.

▪ Web interface is not responding as communication threads are terminated.

• STL: injects a CPU fault (handled in StlError_Handler) as if it was detected by an STL test. Works only if
the STL is enabled in the project, otherwise no reaction.

o CPU fault button:

▪ The STL diagnostic test detects a CPU fault.

▪ StlError_Handler transitions system to a safe mode and suspends user threads with the
same or lower safety class as the STL thread (2).

AN336 – TrafficLight: Arm FuSa RTS process isolation example Copyright © 2021 Arm Ltd. All rights reserved

 28

▪ Since OperationVerificationThread is suspended now, its thread watchdog expires, and
the corresponding alarm handler is triggered.

▪ Since NormalVerificationThread is suspended now, its thread watchdog expires, and the
corresponding alarm handler is triggered.

▪ The LED status indicates safe operation mode.

▪ Web interface is not responding as communication threads are suspended.

• Fatal: suspends the RTOS kernel by calling osKernelSuspend().

o Suspend kernel button:

▪ This triggers a chain of various errors that could not be recovered.

▪ Initiated hardware watchdog expires, and the system is reset.

▪ System starts in normal operation mode and Fault info displays:

The system was reset by a hardware watchdog

Summary

In this application note, we have shown how to use process isolation capabilities provided in FuSa RTS to
implement a complex example with processes of different safety integrity levels. The example projects are
provided for selected development boards with Cortex-M4 and Cortex-M7 devices, but the concepts can be
applied on any Cortex-M device with MPU as supported by FuSa RTS.

References and useful links

[1] Arm FuSa RTS

[2] Vision User’s Guide
[3] ULINKpro User’s Guide
[4] Arm Safety Compiler
[5] AppNote 326: Using X-CUBE-STL with Arm FuSa RTS
[6] Arm FuSa RTS Safety manual

https://www.keil.com/fusa-rts
https://www.keil.com/support/man/docs/uv4/uv4_overview.htm
https://www.keil.com/support/man/docs/uv4/uv4_overview.htm
https://www.keil.com/support/man/docs/ulinkpro
https://developer.arm.com/tools-and-software/embedded/arm-compiler/safety
http://www.keil.com/appnotes/docs/apnt_326.asp

	Abstract
	Prerequisites
	Introduction
	Scope of the application note

	Arm FuSa RTS overview
	Process isolation in FuSa RTS

	TrafficLight: A process isolation example
	Application overview
	Web interface
	LED indications
	Project organization in µVision

	Safety requirements
	FuSa RTX configuration
	System configuration
	Thread configuration
	Timer configuration
	Event flags configuration
	Message queue configuration
	Event Recorder configuration
	Other RTX configuration options

	System initialization
	MPU initialization
	RTOS initialization
	Thread initialization

	RTX kernel operation
	Usage of FuSa Event Recorder
	Usage of the MDK-Middleware network component
	User SVC calls

	MPU Protected Zones
	Zone definitions
	Techniques for memory mapping
	Usage of shared resources
	Peripheral access protection
	Zone assignments to threads
	Loading zones
	Handling memory access faults

	Safety classes
	Safety class assignment to threads
	Communication across safety classes

	Thread watchdogs
	Thread watchdog alarm handler

	Fault handling
	Injecting faults

	Summary
	References and useful links

