

Arm Development Studio Guide

Debugging Armv8 platforms with CSAT

Non-Confidential Issue 0.0
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

NA

Arm Development Studio Guide Debugging Armv8
platforms with CSAT

NA
Issue 0.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 22

Arm Development Studio Guide

Debugging Armv8 platforms with CSAT

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0.0 8th March
2021

Non-
Confidential

First version

Confidential Proprietary Notice

This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement
between you and Arm or the terms of the agreement between you and the party authorized by Arm to
disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information: (i) for the purposes of determining whether
implementations infringe any third party patents; (ii) for developing technology or products which
avoid any of Arm's intellectual property; or (iii) as a reference for modifying existing patents or patent
applications or creating any continuation, continuation in part, or extension of existing patents or
patent applications; or (iv) for generating data for publication or disclosure to third parties, which
compares the performance or functionality of the Arm technology described in this document with any
other products created by you or a third party, without obtaining Arm's prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Arm Development Studio Guide Debugging Armv8
platforms with CSAT

NA
Issue 0.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 22

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to
create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed
written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please follow
Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. This document may only be used and distributed in accordance with the
terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is release quality.

Web Address

33Thttp://www.arm.com33T

Arm Development Studio Guide Debugging Armv8
platforms with CSAT

NA
Issue 0.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 22

Contents

1 Introduction ... 5

2 Armv8 topology... 6

2.1.1 What are CoreSight components? ... 6

2.1.2 What is a CoreSight ROM Table? ... 7

2.1.3 Useful Debug registers ... 7

2.1.4 Useful CTI registers ... 9

3 Worked examples .. 11

3.1.1 Description of the example target and tools ... 11

3.1.2 Setting up CSAT to use on your target ... 11

3.1.3 Reading the ROM Table .. 12

3.1.4 Halting a single core .. 13

3.1.5 Halting multiple cores .. 14

3.1.6 Restarting a single core ... 15

3.1.7 Restarting multiple cores ... 16

3.1.8 Setting hardware breakpoints .. 17

3.1.9 Setting watchpoints .. 18

3.1.10 Alternatives to using CSAT .. 19

3.1.11 Automate the debug activities ... 19

4 Conclusion ... 21

5 Further information .. 22

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Issue 0.0

Introduction

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 22

1 Introduction
This tutorial gives an overview of performing low-level debug using the CoreSight Access Tool
(CSAT) with an Armv8 target. Low-level debug allows you to:

 Manipulate individual registers, including Debug registers that are not normally accessible
to an application-level debugger.

 Perform functions such as halting and restarting the core, setting breakpoints, and
watchpoints, and reading the ROM Table.

CSAT only supports CoreSight SoC-400 targets. If you are using a CoreSight SoC-600 target,
use CoreSight Access Tool for SoC600 (CSAT600) instead.

CSAT is included in installations of Arm Development Studio (Arm DS).

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Armv8 topology

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 22

2 Armv8 topology
Armv8 platforms use a debug infrastructure called CoreSight to provide visibility into a SoC
(System on Chip) for debug purposes. CSAT directly interacts with the CoreSight infrastructure
to debug issues at a lower level than most debug tools. To understand how to use CSAT, you
must have a basic understanding of the CoreSight infrastructure and its components.

To prepare you to work with CSAT, this section includes information on the following
CoreSight topics:

 What are CoreSight components

 What a CoreSight ROM Table is

 Useful Debug Registers

 Useful Cross Triggering Interface (CTI) registers

2.1.1 What are CoreSight components?

CoreSight components provide the debug and trace infrastructure of a SoC. The components
include control and access devices like the following:

 Debug Access Port (DAP)

 Trace sources

 Trace links

 Trace sinks.

A DAP is a Debug Port (DP) that is connected to one or more Access Ports (APs). A DP provides
a connection from outside the SoC to one or more APs. An external debugger connects to a
DAP to access the CoreSight infrastructure.

An AP provides a bridge into another system on the SoC. A Memory Access Port (MEM-AP)
provides a window into a memory system. This window allows memory-mapped accesses to
debug resources like Debug registers. Read Understanding the CoreSight DAP for more
information on DAPs and APs.

An example of a MEM-AP is an Advanced Peripheral Bus Access Port (APB-AP). In this tutorial,
with CSAT, we use the target APB-AP to access the memory-mapped Debug registers.

One type of trace link is a cross-trigger network that consists of Cross Trigger Interfaces (CTIs)
and Cross Trigger Matrices (CTMs). CTIs enable the distribution of events to and from sources
and destinations in the system. CTIs are connected to each other using one or more CTMs
through channels.

The cross-trigger network works by input triggers or the user generating channel events on a
channel or connected channels. This channel event triggers an output trigger event like a core
halt or restart request. For example, if multiple cores are connected to a channel and one core

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Armv8 topology

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 22

halts, a synchronous halt of all connected cores occurs. For an Armv8 core, core halt and restart
must happen using CTIs. Read your core Technical Reference Manual (TRM) for more
information on the use of CTI channels and triggers.

Read Understanding trace for more information on how trace works in Arm systems.

2.1.2 What is a CoreSight ROM Table?

A CoreSight ROM Table stores the locations of all the debug components accessible through a
DP or MEM-AP. ROM Table values are usually read consecutively starting at the base address
of the ROM Table. To find the ROM Table base address, look at the memory map in your target
Technical Reference Manual (TRM). Alternatively, read the MEM-AP register BASE at offset
0xF8 to find the ROM Table base address for the MEM-AP.

The processor might see the debug components at a different address to the external
debugger. This difference might occur so the external debugger can bypass locks used to
restrict software access to the Debug registers. For example, on the Arm Cortex-A53x2 SMM
target, the TRM states the debug components start at address 0x20000000. The external
debugger accesses the debug components starting at address 0x80000000. For more
information, read the 'Memory system design' section of the Arm CoreSight Architecture
Specification.

A ROM Table is usually at the beginning of a memory system and is 4KB in size. For targets with
more than one cluster of processors, there is usually a top-level ROM Table and a ROM Table
for each cluster. Read Understanding the CoreSight DAP for more information on ROM Tables
and the CoreSight architecture.

2.1.3 Useful Debug registers

To perform low-level debug using CSAT, you must read and write registers that are accessible
VIA the external memory mapped interface. The following are some useful Debug registers:

Register name Memory-
mapped
offset

Register description

External Debug Status and
Control Register (EDSCR)

0x088 Main debug control register for an
Armv8 core.

OS Lock Access Register
(OSLAR_EL1)

0x300 Controls the OS Lock. Unlocking
the OS Lock allows you to access
the Debug registers. Write-only
register.

External Debug Program
Counter Sample
Register[31:0] (EDPCSRlo)

0x0a0

And
0x0ac

Optional registers to read the
Program Counter when externally
debugging. Read-only registers. Not
present in all implementations.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Armv8 topology

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 22

And
External Debug Program
Counter Sample Register
[63:32] (EDPCSRhi)

External Debug Power/Reset
Control Register (EDPRCR)

0x310 Controls the powerup, reset, and
powerdown functionality of the
CPU.

External Debug Processor
Status Register (EDPRSR)

0x314 Contains status information on the
reset and powerdown state of the
CPU.

Debug Breakpoint Value
Register (DBGBVR<n>_EL1)*

0x400 +
16n

Contains address of hardware
breakpoint n.

Debug Breakpoint Control
Register (DBGBCR<n>_EL1)*

0x408 +
16n

Controls and enables hardware
breakpoint n.

Debug Watchpoint Value
Register
(DBGWVR<n>_EL1)**

0x800 +
16n

Contains address of watchpoint n.

Debug Watchpoint Control
Register
(DBGWCR<n>_EL1)**

0x808 +
16n

Controls and enables watchpoint n.

*Each hardware breakpoint uses a pair of registers to control, set, and enable the breakpoint.
The number of hardware breakpoints available is IMPLEMENTATION SPECIFIC.

**Each watchpoint has a pair of registers to control, set, and enable the watchpoint. The
number of watchpoints available is IMPLEMENTATION SPECIFIC.

To find the offsets of other Debug registers in an Armv8-A system, read the 'External Debug
Register Descriptions' section of the Arm Architecture Reference Manual Armv8-A. These
offsets are relative to the address of the debug memory system of the core. The core debug
memory system address is found in the target TRM. For example, calculate the address of the
EDSCR register for a core with the following information:

 Base address of the target debug and trace system is 0x80000000.

 Cluster offset is 0x02000000.

 Individual core debug region offset is 0x00010000.

 EDSCR at offset 0x088.

Add the previous information together

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Armv8 topology

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 22

0x80000000 + 0x02000000 + 0x00010000 + 0x088

to get an EDSCR address of 0x82010088.

2.1.4 Useful CTI registers

To halt or restart the core, use one or more target CTIs. The following are useful CTI registers:

Register name Memory-
mapped
offset

Register description

CTI Control Register
(CTICONTROL)

0x000 Used to enable or disable CTIs.

CTI Channel Gate Enable
Register (CTIGATE)

0x140 Controls whether the internal channels
are connected to the CTM. Internal
channels allow channel events on
specific cores to propagate to other
components.

CTI Input Channel to
Output Trigger Enable
Registers (CTIOUTEN<n>)

0x0a0 +
4n

Connects input channels to output
trigger n. This connection allows
channel events on these channels to
generate trigger events on output
trigger n. The number of output
triggers available is
IMPLEMENTATION SPECIFIC.

CTI Input Trigger to Output
Channel Enable Registers
(CTIINEN<n>)

0x020 +
4n

Connects input trigger n to output
channels. This connection allows input
trigger n to generate channel events on
the connected channels. The number of
input triggers available is
IMPLEMENTATION SPECIFIC.

CTI Application Pulse
Register (CTIAPPPULSE)

0x01c Can generate channel events on a
specific channel. Write-only register.

CTI Output Trigger
Acknowledge Register
(CTIINTACK)

0x010

Can create soft acknowledgements of
output triggers. Can deassert a trigger
event by writing 1 to bit[0]. Write-only
register.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Armv8 topology

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 22

CTI Trigger Out Status
Register
(CTITRIGOUTSTATUS)

0x134 Gives the status of the trigger outputs.
To confirm an output trigger has been
deasserted, the debugger must poll
bit[0] until it reads as 0. Bit[0] must
read as 0 before attempting to
generate another trigger event. Read-
only register.

To find the offsets of other CTI registers in an Armv8-A system, read the “External Debug
Register Descriptions” section of the Arm Architecture Reference Manual Armv8-A. These
offsets are relative to the address of the CTI region for a core. The CTI addresses are available
in the “CoreSight debug and trace” section of the target TRM.

For more detailed CTI register descriptions for an Armv8-A system, read the Arm Architecture
Reference Manual Armv8-A.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 22

3 Worked examples
This section focuses on using CSAT to perform low-level debug activities. The following
activities are performed:

 Setting up CSAT to use on your target

 Reading the ROM Table

 Halting a single core

 Halting multiple cores

 Restarting a single core

 Restarting multiple cores

 Setting hardware breakpoints

 Setting watchpoints

Also, this section covers Alternatives to using CSAT and instructions on how to Automate the
debug activities performed in this section.

3.1.1 Description of the example target and tools

This tutorial uses a Versatile Express with a Cortex-A53x2 SMM implemented on a LogicTile
Express 20MG V2F-1XV7 FPGA board. CSAT shipped with Arm Development Studio is used.
CSAT is connected to the target using a DSTREAM debug probe.

3.1.2 Setting up CSAT to use on your target

1. Turn on the target. Ensure the target is in a stable state that allows a bare-metal debug
connection.

2. Connect DSTREAM to the host VIA USB or TCP.

3. Connect the DSTREAM to the target and check the TARGET LED is on.

4. Open an Arm Development Studio command prompt and type csat.

csat

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 22

5. Connect your DSTREAM to CSAT.

If using a USB DSTREAM connection:

con USB

If using a TCP DSTREAM connection:

con TCP:<IP address or host name of your target>

6. Auto detect the scan chain of your device.

chain dev=auto

7. Open the DAP on the scan chain. The device number used is taken from the output of
chain dev=auto.

dvo <device number>

On the example target, the DAP is device number 0.

dvo 0

8. Enumerate the access ports available on the DAP.

dpe

3.1.3 Reading the ROM Table

1. Locate the base address of the ROM Table. Look at the memory map in your target TRM.
Alternatively, read the MEM-AP register BASE at offset 0xF8 for the MEM-AP.

2. After finding the base address of the ROM Table, read the ROM Table using the dmr
command. As part of the command, specify the access port number using the output from

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 22

the dpe command. On the example target, use the APB-AP access port 1 (AP1). Also,
specify the number of ROM Table entries to read. The following dmr command reads 32
words from APB-AP 1 at address 0x820000000:

dmr 1 0x82000000 32

The command output shows the offsets of the available components relative to the base
address of the ROM Table. Notice that bits[1:0] of all the ROM Table entries are set to 1. This
value indicates that the component is present in the system and the ROM Table entries are 32-
bits wide. Bits[1:0] are ignored when calculating the component address.

To calculate a component address, add the ROM Table base address to the component offset.
For example, a ROM Table entry at 0x00010003 means there is a component at address.

0x82000000 + 0x00010000 = 0x82010000

For information on reading ROM Table entries, look at the component TRM.

For the example target, the base addresses of the components are:

 Core 0 debug region - 0x82010000

 Core 0 CTI region - 0x82020000

 Core 1 debug region - 0x82110000

 Core 1 CTI region - 0x82120000

3.1.4 Halting a single core

To halt a core, use the CTI to trigger debug request events. There are multiple channels
available for a CTI. In this tutorial, we use channel 2 to generate a channel event. This channel
event generates a debug request trigger on output trigger 0. On a Cortex-A53 core, output
trigger 0 causes the core to enter Debug state, halting the core. The channel and output trigger
might be different on your target.

1. Unlock the OS Lock by writing 0 to bit[0] of OSLAR.

dmw 1 0x82010300 0x0

2. To see the status of the processor, read EDPRSR.

dmr 1 0x82010314 1

3. To enable the CTI, write 1 to bit[0] of CTICONTROL.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 22

dmw 1 0x82020000 0x1

4. Write 0 to bit[2] of CTIGATE so the channel event is not passed on internal channel 0 to the
CTM.

dmw 1 0x82020140 0x0

5. To generate a debug request trigger event using trigger 0 when a channel event happens on
channel 2, write 1 to bit[2] of CTIOUTEN0.

dmw 1 0x820200a0 0x4

6. To generate a channel event on channel 2, write 1 to bit[2] of CTIAPPPULSE.

dmw 1 0x8202001c 0x4

At this point, the core halts.

7. To check that the core is halted, read EDPRSR. Notice that bit[4] is now set. If this bit is set,
the core has halted.

dmr 1 0x82010314 1

3.1.5 Halting multiple cores

To halt all cores, repeat the single core halt steps for every core you want to halt. Also, use the
CTIGATE register to connect channel 2 of every core you want to halt to the CTM. This
connection transmits a channel event from core 0 to all the other cores connected through
channel 2 VIA the CTM.

For the example target, using the CTIs and CTM, execute the following CSAT commands to halt
core 0 and core 1:

#Unlock OS Lock

dmw 1 0x82010300 0x0

dmw 1 0x82110300 0x0

#Read the unhalted value of the External Debug Processor Status Register

dmr 1 0x82010314 1

dmr 1 0x82110314 1

#Set CTICONTROL[0] = 1 to enable CTI

dmw 1 0x82020000 0x1

dmw 1 0x82120000 0x1

#Set CTIGATE[2] = 1 so CTI passes channel events on internal channel 2 to

#CTM

dmw 1 0x82020140 0x4

dmw 1 0x82120140 0x4

#Set CTIOUTEN0[2] = 1 so CTI generates a debug request trigger event 0 in

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 22

#response to a channel event on channel 2

dmw 1 0x820200a0 0x4

dmw 1 0x821200a0 0x4

#Set CTIAPPPULSE[2] = 1 to generate channel event on channel 2 on core 0

dmw 1 0x8202001c 0x4

#Read the halted value of the External Debug Processor Status Register

dmr 1 0x82010314 1

dmr 1 0x82110314 1

3.1.6 Restarting a single core

To restart the core, use a similar process to halting the core. For the example target, use
channel 1 to generate a channel event. This channel event causes a debug request trigger on
output trigger 1. On a Cortex-A53 core, output trigger 1 causes the processor to exit Debug
state, restarting the core. The channel and output trigger might be different on your target.

1. Unlock the OS Lock by writing 0 to bit[0] of OSLAR.

dmw 1 0x82010300 0x0 to see the status of the processor

2. To see the status of the processor, read EDPRSR. Bit[4] is 1 indicating that the core has
halted.

dmr 1 0x82010314 1

3. To enable the CTI, write 1 to bit[0] of CTICONTROL.

dmw 1 0x82020000 0x1

4. To clear any debug request trigger events that halted the core, write 1 to bit[0] of
CTIINTACK. Then, read CTITRIGOUTSTATUS until bit[0] is 0 to confirm that the output
trigger event has been deasserted.
dmw 1 0x82020010 0x1

dmr 1 0x82020134 1

5. Write 0 to bit[1] of CTIGATE so the channel event is not passed on internal channel 1 to the
CTM.

dmw 1 0x82020140 0x0

6. To generate a restart request trigger event using trigger 1 when a channel event happens
on channel 1, write 1 to bit[1] of CTIOUTEN1.

dmw 1 0x820200a4 0x2

7. To generate a channel event, write 1 to bit[1] of CTIAPPPULSE.

dmw 1 0x8202001c 0x2

At this point, the core restarts.

8. To check that the core has restarted, read EDPRSR. Bit[4] is 0 indicating that the processor
has restarted.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 22

dmr 1 0x82010314 1

3.1.7 Restarting multiple cores

To restart all cores, repeat the single core restart steps for every core you want to restart. Use
the internal channel 1 to connect the cores to the CTM. This connection transmits a channel
event from core 0 to all the other cores connected through channel 1 VIA the CTM.

For the example target, using the CTIs and CTM, execute the following CSAT commands to
restart core 0 and core 1:

#Unlock OS Lock

dmw 1 0x82010300 0x0

dmw 1 0x82110300 0x0

#Read the halted value of the External Debug Processor Status Register

dmr 1 0x82010314 1

dmr 1 0x82110314 1

#Set CTICONTROL[0] = 1 to enable CTI

dmw 1 0x82020000 0x1

dmw 1 0x82120000 0x1

#Set CTIINTACK[0] = 1 to clear the debug request trigger event

dmw 1 0x82020010 0x1

dmw 1 0x82120010 0x1

#Read CTITRIGOUTSTATUS[0] to check trigger event is deasserted.

dmr 1 0x82020134 1

dmr 1 0x82120134 1

#Set CTIGATE[1] = 1 so CTI passes channel events on internal channel 1 to

#CTM

dmw 1 0x82020140 0x2

dmw 1 0x82120140 0x2

#Set CTIOUTEN1[1] = 1 so CTI generates a debug request trigger event 0 in

#response to a channel event on channel 1

dmw 1 0x820200a4 0x2

dmw 1 0x821200a4 0x2

#Set CTIAPPPULSE[1] = 1 to generate channel event on channel 1 on core 0

dmw 1 0x8202001c 0x2

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 22

#Read the unhalted value of the External Debug Processor Status Register

dmr 1 0x82010314 1

dmr 1 0x82110314 1

3.1.8 Setting hardware breakpoints

A hardware breakpoint halts core execution at a particular instruction in the code. There is a
limited number of hardware breakpoints available on each core. Each breakpoint has a value
and control register. The value register contains the address of the instruction to break on. The
control register defines the breakpoint type and whether the breakpoint is enabled.

Execute the following to set up hardware breakpoint 0:

1. Halt the core.

2. To check if the core is halted, read the EDPRSR. If bit[4] is 1, the core is halted.

dmr 1 0x82010314 1

3. If bit[14] of the EDSCR is not set, write 1 to it to enable Halting debug. If bit[14] is 1, skip
this step.

dmw 1 0x82010088 0x03007f13

4. Write the address of the instruction you want to halt on to DBGBVR0_EL1. DBGBVR0_EL1
is a 64-bit register. On a Cortex-A53, DBGBVR0_EL0 uses two register offsets, 0x400 and
0x404. Offset 0x400 contains bits[31:0] of the breakpoint address. Offset 0x404 contains
bits[63:32] of the breakpoint address. The target example halts on instruction address
0x00000000_80000008.

dmw 1 0x82010400 0x80000008

dmw 1 0x82010404 0x0

5. Write 0x000021e7 to DBGBCR0_EL1 to set a basic breakpoint with the following
attributes:

o Enabled breakpoint

o Unlinked address match

o Execution halts at any Exception level

o Works for both AArch64 and AArch32 instructions.

For more information on the different breakpoint attributes, look at the DBGBCR<n>_EL1
register description in the Arm Architecture Reference Manual Armv8-A.

dmw 1 0x82010408 0x000021e7

6. Restart the core. Halt occurs on the address you specified.

7. To check the program has halted on the breakpoint, read EDPRSR. Bit[4] is 1 indicating that
the core has stopped.

dmr 1 0x82010314 1

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 22

8. To get the debug status and the reason for core halt, read the STATUS bits[5:0] of EDSCR.
If the core has stopped on a breakpoint, the STATUS bits read as 0b000111. To check that
execution has stopped on the correct address, read EDPCSRlo and EDPCSRhi and see if
their values match the breakpoint address.

dmr 1 0x82010088 1

dmr 1 0x820100a0 1

dmr 1 0x820100ac 1

9. To disable a breakpoint without losing the breakpoint settings, write 0 to bit[0] of
DBGBCR0_EL1.

dmw 1 0x82010408 0x000021e6

10. To delete the breakpoint, clear DBGBCR0_EL1 and DBGBVR0_EL1.

dmw 1 0x82010400 0x0

dmw 1 0x82010404 0x0

dmw 1 0x82010408 0x0

3.1.9 Setting watchpoints

A watchpoint halts execution when a particular value in memory is accessed. Unlike a
breakpoint, for a watchpoint, you only must know the memory address of the data.
Watchpoints are sometimes called data breakpoints. There are a limited number of watchpoints
available on each core. Each watchpoint has a value register and a control register. The value
register contains the address value for comparison. The control register defines the watchpoint
type and whether the watchpoint is enabled.

Executed the following to set up watchpoint 0:

1. Halt the core.

2. To check if the core is halted, read EDPRSR.

dmr 1 0x82010314 1

3. If bit[14] of the EDSCR is not set, write 1 to it to enable Halting debug. If bit[14] is 1, skip
this step.

dmw 1 0x82010088 0x03007f13

4. Write the address of the data to halt on when accessed to DBGWVR0_EL1.
DBGWVR0_EL1 is a 64-bit register. On a Cortex-A53, DBGWVR0_EL1 uses two register
offsets, 0x800 and 0x804. Offset 0x800 contains bits[31:0] of the watchpoint address.
Offset 0x804 contains bits[63:32] of the watchpoint address. The target example halts on
data address 0x00000000_80000100.

dmw 1 0x82010800 0x80000100

dmw 1 0x82010804 0x0

5. Write 0x00003fff to the DBGWCR0_EL1 to set a basic watchpoint for testing:

o Enabled watchpoint

o Unlinked data address

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 22

o Execution halts at any Exception level

o Applies to both loads and stores to the memory address.

For more information on the different watchpoint attributes, look at the
DBGWCR<n>_EL1 register description in the Arm Architecture Reference Manual Armv8-
A.

dmw 1 0x82010808 0x00003fff

6. Restart the core. Halt occurs on a load or store to the watchpoint address.

7. To check the program has halted on the watchpoint, read EDPRSR. Bit[4] is set to 1
indicating that the core has halted.

dmr 1 0x82010314 1

8. To get the debug status and the reason for the core halt, read the STATUS bits[5:0] of
EDSCR. If the core has stopped on a watchpoint, the STATUS bits read as 0b101011. To
check where execution halted, read EDPCSRlo and EDPCSRhi.

dmr 1 0x82010088 1

dmr 1 0x820100a0 1

dmr 1 0x820100ac 1

9. To disable a watchpoint without losing the watchpoint settings, write 0 to bit[0] of
DBGWCR0_EL1.

dmw 1 0x82010808 0x00003ffe

10. To delete the watchpoint, clear DBGWCR0_EL1 and DBGWVR0_EL1.

dmw 1 0x82010800 0x0

dmw 1 0x82010804 0x0

dmw 1 0x82010808 0x0

3.1.10 Alternatives to using CSAT

Low-level debug is also done in:

 Simulation

 With a debugger like Arm DS

If using Arm DS, low-level debug is done by creating scripts that access debug functionality or
doing Debug register accesses through the Memory view.

To learn more about accessing debug functionality, read the external debug sections of the Arm
Architecture Reference Manual Armv8-A.

3.1.11 Automate the debug activities

To run the previous examples using a script, do the following steps:

1. Create a file with a .cst files extension in the CSAT executable directory.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Worked examples

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 22

2. Copy the example commands to the .cst file.

3. Run the scripts using

batch <script name>.cst

Attached to this tutorial are two script directories:

 CSAT scripts

o Scripts containing CSAT commands from this tutorial.

o Run theses scripts using the previous steps.

 Arm DS scripts

o Arm DS scripts that do the same actions as the previous CSAT scripts.

o Run the scripts using information from the "Running a script" section of the Arm
Development Studio User Guide.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0
Conclusion

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 22

4 Conclusion
In this tutorial, you learned how to use CSAT with an Armv8 target to:

 Halt one or more cores.

 Restart one or more cores.

 Set a breakpoint.

 Set a watchpoint.

Arm Development Studio Guide Debugging Armv8 platforms
with CSAT

NA
Version 0.0

Further information

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 22

5 Further information
Read the following documents for further information on topics related to this tutorial:

 Arm Architecture Reference Manual Armv8-A

o Architecture reference manual for Armv8-A implementations.

 Arm CoreSight Architecture Specification

o Specification containing information on the architecture of CoreSight systems.

 Arm CoreSight SoC-400 Technical Reference Manual

o CoreSight TRM containing information on CoreSight Components.

 Arm Development Studio User Guide

o Arm DS user guide containing information on running and using Arm DS.

 CSAT User Guide

o User guide containing CSAT usage instructions, examples, and commands.

 Understanding the CoreSight DAP

o Guide containing information on DAPs, APs, and ROM Tables.

 Understanding trace

o Guide containing more information on how trace works in Arm systems.

 What is the difference between CSAT and CSAT600?

o KBA that shows the differences between CSAT and CSAT600.

