Using CMSIS-DSP with Keil RTX5 ARMKEIL

MDK Tutorial Microcontroller Tools
AN296, December 2016,V 1.0 feedback@keil.com
Abstract

This application note describes the development of a digital filter for an analog input signal using the
CMSIS-DSP library and Keil RTX5. The application is designed for an NXP LPC1768 device and can be tested
using pVision simulation capabilities. The Event Recorder is used to verify the program flow.

Using CMSIS, the application can be easily ported to any other ARM® Cortex®-M processor-based device.

Contents
N 0] 1 - Vo USSP 1
[T oTo [0 o! o] PSSP 1
PIEIBOUISITES ...ttt ettt ettt bt b et b b s bbb e s b e s b oAb e e b b e e e bt e e b e b e bt e e b et e bt eb e b e eb e st et se et et 2
0 TTo A oAV =T oY =TSSR 2
Port the filter coefficients to the aPPIICALION............ociiiiiii e 3
DL o 0 Tor =TT | T [SRRSO 3
RTX5 configuration settings in RTX_CONFIg.N......cooiiiiie s 5
Do TN o IR T=I=T o] o] L o%: 1T] o PSPPSR 5
Debugging RTX5 USING EVENE RECOITENc.oiiiiiiiiiiieite e 6
(O] Tod 1113 o] o OSSR PP 6
Introduction

This example project implements a low-pass filter using the DSP block processing mode. Incoming analog signals
are converted by the A/D peripheral and are collected into data blocks by an interrupt service routine (ISR). These
data blocks are saved in a memory pool and upon completion event flags are sent to an RTOS thread. The thread
executes a filter algorithm and saves the processed data in a memory pool. The availability of a data block is then
signaled to the ISR using another event flag. The data is then converted back to an analog signal by the D/A
peripheral. Keil RTX5 coordinates the flow of the data blocks through an interrupt service routine (ISR). The
CMSIS-DSP library provides the filter algorithm used in the worker thread. Since this example application uses
the DSP block processing mode, the output signal gets delayed by a few milliseconds.

RTOS Thread
—*AD — DSP processing —*D/IA —
ISR ISR
Data block Data block
Data block Data block
Memory pool
AN296 — Using CMSIS-DSP with Keil RTX5 Copyright © 2016 ARM Ltd. All rights reserved

feedback@keil.com I www.keil.com/appnotes/docs/apnt_296.asp

Prerequisites
To run through the application note’s example project, you need to install the following software:

o MDK version 5.22 or higher with CMSIS 5.0.0 pack
o Keil.LPC1700_DFP.2.2.0.pack or higher

The example project runs fully in simulation without the need for any target hardware.

Project overview

The pVision example project DSP_App.uvprojx implements a digital low-pass filter. The filter is defined with the
following characteristics:

o Filter Sampling Frequency [Hz]: 32000
e Passband Edge Frequency [Hz]: 3200
e Stopband Edge Frequency [Hz]: 9600
e Passband Ripple [dB]: 0.1

e Stopband Ripple [dB]: 60

Characteristics for the different filter types:

e FIR Filter Length: 15
e |IR Order Estimation: 4

Several variants for Finite Impulse Response (FIR) and Infinite Impulse Response (lIR) filters are included in the
project. In pVision, the filter variants can be selected through the project targets described below:

Target Configuration

SIM FIR FLOAT32 | FIR filter using the floating-point number format
SIM FIR Q31 FIR filter using the fixed-point number format Q31
SIM FIR Q15 FIR filter using the fixed-point number format Q15
SIM IIR FLOAT32 IIR filter using the floating-point number format
SIMIIR Q31 IIR filter using the fixed-point number format Q31
SIM IR Q15 IIR filter using the fixed-point number format Q15

The example code that is important for processing the signals is split into different modules:

Module Description

ADC.c Hardware abstraction layer for the A/D converter.

DAC.c Hardware abstraction layer for the D/A converter.

DSP_App.c Main application module, which initializes the timer, A/D and D/A converter, and starts

the RTX kernel. The file contains the thread to process the data and the ISR to handle
the sampling of the input and output data.

DSP_FIR.c Definition file for the FIR filter structure and state buffers. Contains the filter
coefficients. Functions to initialize the FIR data structure and functions to process the
data are declared in this file.

DSP_IIR.c Definition file for the IR filter structure and state buffers. Contains the filter
coefficients. Functions to initialize the IIR data structure and functions to process the
data are declared in this file.

Timer.c Hardware abstraction layer for the on-chip timers.

AN296 — Using CMSIS-DSP with Keil RTX5 Copyright © 2016 ARM Ltd. All rights reserved

feedback@keil.com 2 www.keil.com/appnotes/docs/apnt_296.asp

The most important functions of the main module DSP_App.c are described briefly below:

e main(): initializes the A/D and D/A converters, and starts the RTX kernel. It also initializes the Timer2 to
trigger at 32 kHz. The timer clock rate, #define TimerFreq, has to be set equal to the filter sampling
frequency.

o RTX Features_lInit: initializes the memory pool for messages DSP_MsgPool and the event flags
DSP_Event. It creates the Clock and SigMod threads.

e TIMERZ2_IRQHandler: is the ISR triggered by the Timer2 interrupt. The ISR collects the values from
the A/D converter and stores the data in the memory pool. The ISR also sends the output data, which have
been computed by the task SigMod, to the D/A converter.

¢ SigMod: is the RTX5 thread that computes the data by applying the filter function of the CMSIS-DSP
library and stores the computed values in a memory pool for further processing. All data buffers in the
program contain 256 samples. The buffers size can be adjusted through the #define DSP_BLOCKSIZE.

Additional modules and functions, which are not relevant to understand the DSP implementation, have not been
explained in this document. They are related to device configuration settings or peripherals.

Port the filter coefficients to the application

The project includes two files, FIR_32K_filterCoeff QED.flt and IIR_32K _filterCoeff QED.flt, containing
the filter coefficients created using QEDesign. These filter coefficients have been copied to the example
application.

Using your own FIR/IIR filter coefficients, open the file DSP_FIR.c/DSP_IIR.c in pVision and copy the
coefficients to the data structure.

DSP processing

The code snippets used in this document have been simplified for demonstration purposes. Error handling and
overflow checks have been omitted. The IR Q31 filter variant is used to explain the code.

The application can be split logically into three parts:

1. Sampling input data — processed by the ISR TIMER2_IRQHandler.
2. Filtering the sampled data — processed by the thread SigMod.
3. Sampling output data — processed by the ISR TIMER2_IRQHandler.

The buffers for the sampled and processed data are arrays with the size bSP_BLOCKSIZE (set either in DSP_FIR.c
or DSP_IIR.c), in this example set to 256. The memory pool contains four blocks of data.

typedef struct _DSP_DataType {
q3l_t Sample[DSP_BLOCKSIZE] ;
} DSP_DataType;

The ISR TIMERZ2_IRQHandler samples the incoming A/D data and converts them to the selected number
format, Q31 for example. The samples are stored in the data block pbataTimlrqout. After storing
DSP_BLOCKKS1ZE samples, the event flag EVENT_DATA_TIM_OUT_SIG_IN is set.

The code below is part of the ISR TIMER2_IRQHandler:

/* —-- signal Input Section ——————————— - */
adGdr = LPC_ADC->ADGDR;
if (adGdr & (<< 31)) { /* Data available ? */
/* scale value and move it in positive/negative range. (12bit Ad = OxFFF)
filter in range is -1.0 < value < 1.0 */
tmpFilterin = ((float32_t)((adGdr >> 4) &) 7 (/ 2)) -

arm_float_to_g31(&tmpFilterlin, &tmp, 1);
pDataTimlrqOut->Sample[dataTimlrqOutldx++] = tmp;
if (dataTimlrqOutldx >= DSP_BLOCKSIZE) {

AN296 — Using CMSIS-DSP with Keil RTX5 Copyright © 2016 ARM Ltd. All rights reserved

feedback@keil.com 3 www.keil.com/appnotes/docs/apnt_296.asp

http://www.mds.com/products/software/qedesign/

// set buffer and event
pDataSigModln = pDataTimlrqOut;
flags = osEventFlagsSet(DSP_Event, EVENT_DATA TIM_OUT_SIG_IN);
if (flags < 0) {
errHandler(__LINE_);
}

// allocate next output buffer
pDataTimlrqOut = osMemoryPoolAlloc(DSP_MemPool, 0);
if (pDataTimlrqOut == NULL) {
errHandler(__LINE_);
}

dataTimlrqOutldx = O;
s

else {
errHandler(__LINE_);

3

The SigMod thread waits for the event flag EVENT_DATA_TIM_OUT_SIG_IN. After the event flag is set, the
CMSIS-DSP library filter function is executed. The received and the newly allocated data from the memory pool
is directly used as parameters in the filter function. On completion of the filter function, the filtered data is saved
in the memory pool and the event flag EVENT_DATA_TIM_IN_SIG_OUT is set.

The code below is part of the SigMod thread:

void SigMod (void __ attribute__ ((unused)) *arg) {
int32_t flags;
osStatus_t status;

for (7)) {

// wait for data
flags = osEventFlagsWait(DSP_Event, EVENT_DATA TIM_OUT_SIG_IN, O, osWaitForever);
if (flags < 0) {
errHandler(__LINE_);
}

iirExec_g31 (pDataSigModIn->Sample, pDataSigModOut->Sample);

// free input buffer
status = osMemoryPoolFree(DSP_MemPool, pDataSigModin);
if (status != 0sOK) {

errHandler(__LINE_);

}

// data is ready
pDataTimlrgln = pDataSigModOut;
flags = osEventFlagsSet(DSP_Event, EVENT_DATA_TIM_IN_SIG_OUT);
if (flags < 0) {
errHandler(__LINE_);
}

// allocate next output buffer
pDataSigModOut = osMemoryPoolAlloc(DSP_MemPool, 0);
if (pDataSigModOut == NULL) {
errHandler(__LINE_);
}
}
}

The data blocks sent from the SigMod thread are stored in the memory pool bsP_MemPool. The ISR
TIMER2_IRQHandler reads the data blocks and converts them to a format that fits the D/A converter. Then, the
data is sent to the D/A converter. After processing DSP_BLOCKKSI1ZE samples, the data block memory is freed.
AN296 — Using CMSIS-DSP with Keil RTX5 Copyright © 2016 ARM Ltd. All rights reserved

feedback@keil.com 4 www.keil.com/appnotes/docs/apnt_296.asp

The code below is part of the ISR TIMER2_IRQHandler:

/* -- signal Output Section ---—-—————— - ————————— */
if (dataTimlrqlnldx == 0) {

// check if data is available

flags = osEventFlagsWait(DSP_Event, EVENT_DATA TIM_IN_SIG OUT, 0, 0);

}
if ((dataTimlrginldx > 0) || (Flags==EVENT_DATA_TIM_IN_SIG_OUT)) {

tmp = pDataTimlrgln->Sample[dataTimlrgInldx++];
arm_q31_to_float(&tmp, &tmpFilterOut, 1);

/* move value in positive range and scale it. (10bit DA = Ox3FF)
filter OUT range is -1.0 < value < 1.0 */
LPC_DAC->DACR = (((uint32_t)((tmpFilterOut + 1) * (/ 2))) &) <<

if (dataTimlrginldx >= DSP_BLOCKSIZE) {
// free input buffer
status = osMemoryPoolFree(DSP_MemPool, pDataTimlrqgln);
if (status != 0sOK) {
errHandler(__LINE_);

dataTimlrglnldx = O;

}
}

LPC_TIM2->IR |= (<< 0); /* clear MRO Interrupt flag */

}
}

RTX5 configuration settings in RTX_Config.h

As the memory pool is made up of four objects with a size of 256 x 4 bytes, the overall Global Dynamic
Memory size [bytes] is set to 8192. Apart from that, only default values are used for RTX5.

Debug the application

The application can be tested with the puVision simulator and the Logic Analyzer. pVision incorporates a C-type
scripting language to simulate analog input signals for the A/D converter. The VTREG AIN2 is linked to the input
pin of the A/D converter. The code to generate input signals can be found in the debug command file
Dbg_Sim.INI.

Generate mixed sine wave signal

a = amplitude of mixed sine wave
fl = frequency of sine wave 1
2 = frequency of sine wave 2

signal void SineMix (float a, float f1, float f2) {
float sinl;
float sin2;

float w;
for (G3) { // do forever
w = &3 * ¥1;
sinl = _ sin (((double)STATES / CCLK) * w);
w =2 * * f2;
sin2 = __sin (((double)STATES / CCLK) * w);
AIN2 = (((sinl + sin2) * a)) + ; // set analog value
swatch (); // in 10 uSec resolution
} // end do forever
}
AN296 — Using CMSIS-DSP with Keil RTX5 Copyright © 2016 ARM Ltd. All rights reserved

feedback@keil.com 5 www.keil.com/appnotes/docs/apnt_296.asp

http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_logicanalyzer.htm
http://www.keil.com/support/man/docs/uv4/uv4_df_signalfunctions.htm

Toolbox buttons that start and stop generating sine waves are defined in the file Dbg_Sim.INI:

DEFINE BUTTON
DEFINE BUTTON
DEFINE BUTTON
DEFINE BUTTON

“Mixed Sine Signal",

"Mixed Sine Stop",
""Sweep Sine Signal™
""Sweep Sine Stop",

“SineMix (1.0, 2000.0, 14000.0)"
“SIGNAL KILL SineMix"

, "SineSweep (1.0, 2500.0, 9700.0)"

"SIGNAL KILL SineSweep™

To debug the program:

e Start the pVision debugger with Debug — Start/Stop Debug Session (Ctrl+Fb5).
o Click Debug — Run (F5) to continue debugging the program.

e Use the Toolbox window buttons to start generating the sine wave signals. The output can be viewed in

the Logic Analyzer.

; ; . Toolbox =
Mixed sine signal output for target SIM IR Q31: pdate Vindows
Logic Analyzer Mixed Sine Signal
Min Time Max Time Grid Zoom Min/Max |Update Screen| Transition Jump to ¥ Signal Infe [Amplitude [Mixed Sine Stop

Save.. 0s 69.89325 ms 1 ms || \n [Cu][.NI] -m [Stop |[Clear ||[Prev \|Next| [Code ||Trace\ I— Show Cycles = Cursor _—
ﬁ ‘ ; ' ' ' ' Sweep Sine Signal
Sweep Sine Stop
¥
AIN2
I Il
D | l | | l
78] ! |2.73804 5: 0539043
33 i A o
i Signalldelay;
- e >
AOUT } 5 I
I N
0 ; ‘ el :] l :

16.42037 ms 1930037 ms 2542037 ms 2 54[)37"‘5 d gymg 34.42037 me

| | =]

B Disassembly | B Logic Analyzer
Debugging RTXS5 using Event Recorder

The example project is using Event Recorder

annotations. The Event Recorder shows Eravieecoder. 7| B | 7 | e mopertions o SSSERES
. . . Event Time (sec) Compenent Event Property Value
execution status and event information, and : It Event Restert Count=0:00000001
1 1 0.00032610 RTX Kernel Kernellnitialize
helpS to analyze the Operatlon of RTXS. 2 000032611 RTXKemel | KemellnitializeCompleted
- - 3000032612 RTX MemP... |MemoryPoollNew block_count=4, block size=512, attr=0x00000000

In |~1V|S|0n debuggel’, the Event Recorder 4 000032613 RTX Memery | MemenyAlloc mem=0:10000000, size=48, type=1, block=0x10000010

WlndOW W|“ ShOW a" eventS from RTX5 5 0.00032614 RTX Memory | MemoryAlloc . mem=0x10000000, size=2056, type=0, hlmk:m.ﬂnmmn”.
6 000032615 RTX Memory | MemoryBlocklnit mp_info=0:1000001C, block_count=4, block_size=512...

- 3 . 7 000032616 RTX MemP... | MemeryPoolCreated mp_id=0:10000010

Use the fllter ‘“l’tO SeIeCt Only a SUbset Of events: g 000032617 RTX EvFlags | EventFlagshlew attr=0x00000000
9 000032618 RTX Memory | MemoryAlloc mem=0:10000000, size=24, type=1, block=0x10000848
10 000032619 RTX EvFlags | EventFlagsCreated of id=0x10000843
1 000032620 RTX Thread | Threadhew func=Sighlod, argument=0x00000000, attr=0:00004434
12000032621 RTX Thread | ThreadNew name=0+00000000, attr_bits=0x00000000, cb_mem=0x...
13 000032622 RTX Memory | MemonyAlloc mem=0,10000000, size=80, type=1, block=0,10000860
14 000032623 RTX Memery | MemenyAlloc mem=0x10000000, size=1008, type=0, block=0x100008...
15 000032624 RTX Thread | ThreadCreated thread_id=0:10000860
16 000032625 RTX MemP... | MemanyPoolAlloc mp_id=0x10000010, timeout=0
17 000032626 RTX Memory | MemoryBlockAlloc mp_info=0x1000001C, block=0:10000040

Event Recorder

LR

. VEuentRecorder RTX RTOS
Conclusion
The CMSIS-DSP library and RTX5 make the implementation of DSP algorithms straightforward. RTX5 memory
pools and event flags support the DSP block processing offered by the CMSIS-DSP library.

The CMSIS-DSP library offers a common set of DSP algorithms. Only minor code changes are required for
processing data with different filter types. As a consequence, development cycles are shortened and developers
can focus on the application requirements and design, without having to develop and implement their own DSP
algorithms.

AN296 — Using CMSIS-DSP with Keil RTX5
feedback@keil.com 6

Copyright © 2016 ARM Ltd. All rights reserved

www.keil.com/appnotes/docs/apnt_296.asp

http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_toolbox.htm
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr.htm

	Abstract
	Introduction
	Prerequisites
	Project overview
	Port the filter coefficients to the application
	DSP processing
	RTX5 configuration settings in RTX_Config.h

	Debug the application
	Debugging RTX5 using Event Recorder

	Conclusion

