
ARM® Cortex®-R Series
Version: 1.0

Programmer’s Guide
Copyright © 2014 ARM. All rights reserved.
ARM DEN 0042A (ID071714)

ARM Cortex-R Series
Programmer’s Guide

Copyright © 2014 ARM. All rights reserved.

Release Information

The following changes have been made to this book.

Proprietary Notice

This Cortex-R Series Programmer’s Guide is protected by copyright and the practice or implementation of the
information herein may be protected by one or more patents or pending applications. No part of this Cortex-R Series
Programmer’s Guide may be reproduced in any form by any means without the express prior written permission of
ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by
this Cortex-R Series Programmer’s Guide.

Your access to the information in this Cortex-R Series Programmer’s Guide is conditional upon your acceptance that
you will not use or permit others to use the information for the purposes of determining whether implementations of the
information herein infringe any third party patents.

This Cortex-R Series Programmer’s Guide is provided “as is”. ARM makes no representations or warranties, either
express or implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or
non-infringement, that the content of this Cortex-R Series Programmer’s Guide is suitable for any particular purpose or
that any practice or implementation of the contents of the Cortex-R Series Programmer’s Guide will not infringe any
third party patents, copyrights, trade secrets, or other rights.

This Cortex-R Series Programmer’s Guide may include technical inaccuracies or typographical errors.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any
direct loss, lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however
caused and regardless of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any
use of this Programmer’s Guide, even if ARM has been advised of the possibility of such damages. The information
provided herein is subject to U.S. export control laws, including the U.S. Export Administration Act and its associated
regulations, and may be subject to export or import regulations in other countries. You agree to comply fully with all
laws and regulations of the United States and other countries (“Export Laws”) to assure that neither the information
herein, nor any direct products thereof are; (i) exported, directly or indirectly, in violation of Export Laws, either to any
countries that are subject to U.S. export restrictions or to any end user who has been prohibited from participating in the
U.S. export transactions by any federal agency of the U.S. government; or (ii) intended to be used for any purpose
prohibited by Export Laws, including, without limitation, nuclear, chemical, or biological weapons proliferation.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited, except as otherwise
stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their
respective owners.

Copyright © 2014, ARM Limited, 110 Fulbourn Road Cambridge, CB1 9NJ, England

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the
acceptance by the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as
appropriate”.

Web Address

http://www.arm.com

Change history

Date Issue Confidentiality Change

03 April 2014 A Non-Confidential First release
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. ii
ID071714 Non-Confidential

Contents
ARM Cortex-R Series Programmer’s Guide

Preface
Glossary ... viii
Feedback on this book ... xi
References ... xii

Chapter 1 Introduction
1.1 Determinism .. 1-4

Chapter 2 ARM Architecture and Processors
2.1 Processor properties ... 2-3
2.2 Cortex-R series processors .. 2-5
2.3 Development platforms ... 2-8
2.4 Operating systems for Cortex-R processors ... 2-9

Chapter 3 ARM Processor modes and Registers
3.1 Registers ... 3-3

Chapter 4 Introduction to Assembly Language
4.1 Comparison with other assembly languages .. 4-2
4.2 The ARM instruction sets .. 4-3
4.3 Introduction to the GNU Assembler .. 4-5
4.4 ARM tools assembly language ... 4-9
4.5 Interworking .. 4-11
4.6 Identifying assembly code .. 4-12

Chapter 5 Unified Assembly Language Instructions
5.1 Instruction set basics .. 5-2
5.2 Data processing operations .. 5-6
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. iii
ID071714 Non-Confidential

Contents
5.3 Memory instructions .. 5-10
5.4 Branches ... 5-12
5.5 Branch prediction .. 5-14
5.6 Integer SIMD instructions ... 5-16
5.7 Saturating arithmetic ... 5-20
5.8 Miscellaneous instructions .. 5-21

Chapter 6 Floating-Point
6.1 Floating-point basics and the IEEE-754 standard .. 6-2
6.2 VFP support in the ARM Compiler .. 6-8
6.3 Floating-point optimization .. 6-9

Chapter 7 Caches
7.1 Cache drawbacks ... 7-3
7.2 Memory hierarchy ... 7-4
7.3 Cache architecture .. 7-5
7.4 Cache policies .. 7-10
7.5 Write and Fetch buffers .. 7-12
7.6 Cache performance and hit rate ... 7-13
7.7 Invalidating and cleaning cache memory .. 7-14
7.8 Point of coherency and unification .. 7-16
7.9 Level 2 cache controller .. 7-19

Chapter 8 Tightly Coupled Memory
8.1 Location of the TCM in the memory map .. 8-4
8.2 Performance of TCM compared to cache ... 8-6
8.3 Loading values into TCMs .. 8-7
8.4 TCM Properties in the Cortex-R4 and Cortex-R5 processors 8-8
8.5 TCM properties in the Cortex-R7 processor ... 8-9
8.6 Quality of Service .. 8-10

Chapter 9 The Memory Protection Unit
9.1 Memory subsystem ... 9-3
9.2 Implementing a Protected Memory System with Regions .. 9-4
9.3 Memory attributes ... 9-11
9.4 Attributes and cache maintenance ... 9-14
9.5 Managing the MPU in context switches .. 9-15
9.6 Cache maintenance recommendations .. 9-17

Chapter 10 Memory Ordering
10.1 ARM memory ordering model ... 10-3
10.2 Memory barriers .. 10-6
10.3 Cache coherency implications .. 10-10

Chapter 11 Exceptions and Interrupts
11.1 Types of exception .. 11-2
11.1.1 Exception priorities ... 11-4
11.2 Exception handling ... 11-7
11.3 Other exception handlers .. 11-9
11.4 External interrupt requests .. 11-11
11.5 Low latency interrupts ... 11-17
11.6 The Generic Interrupt Controller ... 11-18

Chapter 12 Fault Detection and Control Features
12.1 Types of errors .. 12-2
12.2 Error detection methods ... 12-3
12.3 Error signalling .. 12-5
12.4 Recovering from hard errors ... 12-6
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. iv
ID071714 Non-Confidential

Contents
12.5 Power and performance ... 12-7
12.6 Fault detection and control features in the Cortex-R4 processor 12-8
12.7 Fault detection and control features in the Cortex-R5 processor 12-15
12.8 Fault detection and control features in the Cortex-R7 processor 12-21

Chapter 13 Profiling
13.1 Profiler output ... 13-3
13.2 Performance Monitor Unit ... 13-4

Chapter 14 Coding for Cortex-R Processors
14.1 Compiler optimizations ... 14-2
14.2 Endianness ... 14-8
14.3 ARM memory system optimizations ... 14-11
14.4 Source code modifications .. 14-16

Chapter 15 Boot Code
15.1 Booting a bare-metal system .. 15-2

Chapter 16 Power Management
16.1 Idle management .. 16-2
16.2 Assembly language power instructions .. 16-5

Chapter 17 Debug
17.1 ARM debug hardware ... 17-2
17.2 ARM trace hardware ... 17-4
17.3 Debug monitor .. 17-7
17.4 ARM DS-5 ... 17-8
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. v
ID071714 Non-Confidential

Preface

There is a good chance that you have used ARM Cortex-R technology many times today without
realizing it. If you have accessed the data on your computer hard drive, downloaded e-mails on your
smartphone, or made a safe journey to work this morning, you may have done so with the assistance
of Cortex-R series processor. This is because ARM Cortex-R series processors are shipping in high
volume and supplying a broad range of technologies including hard disk drive controllers,
industrial control, wireless baseband processors, consumer products and electronic control units for
automotive systems.

This book is intended to provide a single guide for developers writing programs for Cortex-R series
processors, bringing together information from a wide variety of sources useful to both assembly
language and C programmers. Hardware concepts such as caches and Memory Protection Units are
covered where knowledge of the architecture is necessary to understand the principles of
application programming. We will also look at ways to take full advantage of the capabilities of the
ARM processor.

This is not an introductory level book. It assumes some knowledge of the C programming language
and microprocessors, but not of any ARM-specific background. We cannot hope to cover every
topic in detail. In some chapters, we suggest additional reading (referring either to books or
websites) that can give a deeper level of background to the topic in hand, but in this book we focus
on the ARM-specific detail. We do not assume the use of any particular tool chain. We will mention
both GNU and ARM tools in the course of the book. We hope that the book is suitable for
programmers who have a desktop PC or x86 background and are taking their first steps into the
ARM processor based world.

The book is meant to complement rather than replace other ARM documentation available for
Cortex-R series processors, such as the ARM Technical Reference Manuals (TRMs) for the
processors themselves, documentation for individual devices or boards or, most importantly, the
ARM Architecture Reference Manual (the ARM ARM).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. vi
ID071714 Non-Confidential

Preface
The first chapters of the book cover the basic features of the ARM Cortex-R series processors.
An introduction to the fundamentals of the ARM architecture, covering the various registers,
and modes and some background on individual processors is provided in Chapter 2. Chapters 3
and 4 provide an introduction to ARM assembly language programming, and assembly
language instructions. Floating-point is covered in Chapter 6, and a description of Caches can
be found in Chapter 7. The memory system, including Tightly Coupled Memory, the Memory
Protection Unit and Memory Ordering is covered in Chapters 8, 9 and 10. Dealing with
exceptions and interrupts is covered in Chapter 11.

Chapter 12 covers the important area of the fault detection and control features of Cortex-R
processors, those features that make them suitable for fail-safe design or safety related
applications. Writing code for Cortex-R series processors is covered in Chapters 13, 14, and 15.
Power management is an important part of ARM programming and is covered in Chapter 16.
Debug is covered in Chapter 17.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. vii
ID071714 Non-Confidential

Preface
Glossary
Abbreviations and terms used in this document are defined here.

AAPCS ARM Architecture Procedure Call Standard.

ABI Application Binary Interface.

ACP Accelerator Coherency Port.

AHB Advanced High-Performance Bus.

AMBA® Advanced Microcontroller Bus Architecture.

AMP Asymmetric Multi-Processing.

APB Advanced Peripheral Bus.

ARM ARM The ARM Architecture Reference Manual.

ASIC Application Specific Integrated Circuit.

APSR Application Program Status Register.

ASID Address Space ID.

ATPCS ARM Thumb® Procedure Call Standard.

AXI Advanced eXtensible Interface.

BE8 Byte Invariant Big-Endian Mode.

BTAC Branch Target Address Cache.

BTB Branch Target Buffer.

CISC Complex Instruction Set Computer.

CP15 Coprocessor 15 - System control coprocessor.

CPSR Current Program Status Register.

DAP Debug Access Port.

DDR Double Data Rate (SDRAM).

DMA Direct Memory Access.

DMB Data Memory Barrier.

DS-5™ The ARM Development Studio.

DSB Data Synchronization Barrier.

DSP Digital Signal Processing.

EABI Embedded ABI.

ECC Error Checking and Correction.

ECT Embedded Cross Trigger.

ETB™ Embedded Trace Buffer™.

ETM™ Embedded Trace Macrocell™.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. viii
ID071714 Non-Confidential

Preface
FIQ An interrupt type (formerly fast interrupt).

FPSCR Floating-Point Status and Control Register.

GCC GNU Compiler Collection.

GHB Global History Buffer.

GIC Generic Interrupt Controller.

Harvard architecture
Architecture with physically separate storage and signal pathways for
instructions and data.

IDE Integrated development environment.

I/F Interface (abbreviation used in some diagrams).

IRQ Interrupt Request (normally external interrupts).

ISA Instruction Set Architecture.

ISB Instruction Synchronization Barrier.

ISR Interrupt Service Routine.

Jazelle™ The ARM bytecode acceleration technology.

L1/L2 Level 1/Level 2.

LSB Least Significant Bit.

MMU Memory Management Unit.

MPU Memory Protection Unit.

NMI Non-Maskable Interrupt.

Normal world The execution environment when the processor is in the Non-secure state.

PCS Procedure Call Standard.

PFU Prefetch Unit.

PLE Preload Engine.

PLI Preload Instruction.

PMU Performance Monitor Unit.

PoC Point of Coherency.

PoU Point of Unification.

PPI Private Peripheral Input.

PSR Program Status Register.

RISC Reduced Instruction Set Computer.

RVCT RealView® Compilation Tools (the “ARM Compiler”).

SBZP Should Be Preserved.

SCU Snoop Control Unit.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. ix
ID071714 Non-Confidential

Preface
Secure world The execution environment when the processor is in the Secure State.

SGI Software Generated Interrupt.

SIMD Single Instruction, Multiple Data.

SMP Symmetric Multi-Processing.

SoC System on Chip.

SP Stack Pointer.

SPI Shared Peripheral Interrupt.

SPSR Saved Program Status Register.

SVC Supervisor Call instruction. (Previously SWI)

SWI Software Interrupt instruction. (Replaced with SVC)

SYS System Mode.

TCM Tightly Coupled Memory.

TEX Type Extension.

Thumb® An instruction set extension to ARM.

Thumb-2 A technology extending the Thumb instruction set to support both 16-bit
and 32-bit instructions.

UAL Unified Assembly Language.

USR User mode, a non-privileged processor mode.

VFP The ARM floating-point instruction set. Before ARMv7, the VFP
extension was called the Vector Floating-Point architecture, and was used
for vector operations.

VIC Vectored Interrupt Controller.

XN Execute Never.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. x
ID071714 Non-Confidential

Preface
Feedback on this book
We have tried to ensure that the Cortex-R Series Programmer’s Guide is easy to read. It covers
the material in enough depth to provide a comprehensive introduction to using the processors.

If you have any comments on this book, don’t understand our explanations, think something is
missing, or think that it is incorrect, send an e-mail to errata@arm.com. Give:
• the title, The Cortex-R Series Programmer’s Guide.
• the number, ARM DEN 0042A.
• the page number(s) to which your comments apply.
• what you think needs to be changed.

ARM also welcomes general suggestions for additions and improvements.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. xi
ID071714 Non-Confidential

Preface
References
Furber, Steve. “ARM System-on-chip Architecture”, 2nd edition, Addison-Wesley, 2000, ISBN:
9780201675191.

Hohl, William. “ARM Assembly Language: Fundamentals and Techniques” CRC Press, 2009.
ISBN: 9781439806104.

Sloss, Andrew N.; Symes, Dominic.; Wright, Chris. “ARM System Developer's Guide:
Designing and Optimizing System Software”, Morgan Kaufmann, 2004, ISBN:
9781558608740.

ANSI/IEEE Std 754-1985, “IEEE Standard for Binary Floating-Point Arithmetic”.

ANSI/IEEE Std 754-2008, “IEEE Standard for Binary Floating-Point Arithmetic”.

The ARM Architecture Reference Manual (known as the ARM ARM) is a must-read for any
serious ARM programmer. It is available (after registration) from the ARM website. It fully
describes the ARMv7 instruction set architecture, programmer’s model, system registers, debug
features and memory model. It forms a detailed specification to which all implementations of
ARM processors must adhere.

References to the ARM Architecture Reference Manual in this document are to:

ARM Architecture Reference Manual - ARMv7-A and ARMv7-R edition (ARM DDI 0406).

Note
 In the event of a contradiction between this book and the ARM ARM, the ARM ARM is
definitive and must take precedence. In most instances, however, the ARM ARM and the
Cortex-R Programmer’s Guide cover two separate world views. The ARM ARM is for
processor implementers, while this book is for processor users. The most likely scenario is that
this book will describe something in a way that does not cover all architecturally permitted
behaviors - or rewords an abstract concept in more practical terms.

ARM Cortex-R4 and R4F Technical Reference Manual(ARM DDI 0363)

ARM Cortex-R5 Technical Reference Manual(ARM DDI 0460)

ARM Cortex-R7 Technical Reference Manual(ARM DDI 0458)

ARM Generic Interrupt Controller Architecture Specification (ARM IHI 0048).

ARM Compiler Toolchain Assembler Reference (DUI 0489).

ARM C Language Extensions (IHI 0053).

The individual processor Technical Reference Manuals provide a detailed description of the
processor behavior. They can be obtained from the ARM website documentation area,
http://infocenter.arm.com.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. xii
ID071714 Non-Confidential

Chapter 1
Introduction

An embedded system can be defined as a piece of computer hardware running software designed
to perform a specific task. This contrasts with what is generally considered a computer system, that
is, one that runs a wide range of general purpose software running multiple tasks.

Embedded systems are commonly found in consumer, industrial, automotive, medical, commercial
and military applications, with a controlling SoC designed for a single purpose ranging from digital
watches to traffic lights, and larger, more complex systems. Aircraft contain advanced avionics
such as inertial guidance systems and GPS receivers, both systems with considerable safety
requirements. Automotive safety systems include Anti-lock Braking System (ABS), Electronic
Stability Control (ESC/ESP), Traction Control (TCS) and automatic four-wheel drive.

In dealing with security, the embedded systems can also be self-sufficient and be able to deal with
a failure of electrical and communication systems. Complexity can vary from single core devices,
to multiple units, peripherals and networks.

There are many constraints on embedded systems that can make programming them more of a
challenge than writing an application for a general-purpose PC.

Memory Footprint
In many systems, to minimize cost and power, memory size is limited. This forces
you to consider the size of the program and how to reduce memory usage while it
runs.

Power In many embedded systems the power source is a battery. Programmers and
hardware designers must take great care to minimize the total energy usage of the
system.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 1-1
ID071714 Non-Confidential

Introduction
Real-time behavior
A feature of certain systems is that there are time constraints to respond to
external events. This might be a hard requirement or soft requirement. An
example hard requirement is a car braking system because it must respond within
a certain time consistently. An example soft requirement is an audio processing
system because it must complete within a certain time. The ARM Real-time (R)
profile defines an architecture aimed at systems that require deterministic timing
and low interrupt latency.

A system is said to be real-time if the total correctness of an operation depends not only on its
logical correctness, but also on the time in which it is performed. Real-time systems, and their
deadlines, are classified by the consequence of missing a deadline:

Hard Missing a deadline is a total system failure.

Firm Infrequent deadline misses are tolerable, but can degrade the systems quality of
service. The usefulness of a result is zero after its deadline.

Soft The usefulness of a result degrades after its deadline, thereby degrading the
system's Quality of Service.

The goal of a hard real-time system is to ensure that all deadlines are met, but for soft real-time
systems the goal can be meeting a certain subset of deadlines to optimize an application-specific
criteria. The particular subset of deadlines depends on the application, but some typical
examples might include minimizing the lateness of tasks and maximizing the number of high
priority tasks meeting their deadlines.

Hard real-time systems are used when it is vital that an event be reacted to within a strict
deadline. Such guarantees are required of systems for which not reacting in a certain interval of
time would cause great loss in some manner, especially damaging the surroundings physically
or threatening human lives, although the strict definition is that missing the deadline constitutes
failure of the system. For example, a car engine control systemis a hard real-time system
because any delayed signal might cause engine failure or damage to the engine. Other examples
include medical systems such as heart pacemakers and industrial process controllers. Hard
real-time systems are typically found interacting at a low level with physical hardware, in
embedded systems.

Cortex-R series cores are intended for use in deeply-embedded, real-time systems. providing
high-performance computing solutions where reliability, high availability, fault tolerance,
maintainability and real-time responses are required. This requires optimizing the core for
performance while enabling time-critical code to execute in a timely manner. Cortex-R series
processors include features to improve the determinism of the core for critical code.

For embedded applications requiring high performance combined with high reliability,
Cortex-R series cores also provide several useful features, including both soft and hard error
management, redundant dual-core systems using two cores in lock-step and Error Correcting
Codes (ECC) on all external buses.

• The ARM Cortex-R4 processor is a mid-range real-time processor for use in deeply
embedded systems.

• The ARM Cortex-R4F processor is a Cortex-R4 processor with a floating-point unit
(FPU).

• The ARM Cortex-R5 processor is a high-performance real-time processor for use in
embedded systems.

• The ARM Cortex-R5F processor is a Cortex-R5 processor with a floating-point unit
(FPU).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 1-2
ID071714 Non-Confidential

Introduction
• The ARM Cortex-R7 MPCore processor is a high performance real-time multi-core
processor for use in a vast range of deeply embedded applications.

The Cortex-R series processors differ from both the Cortex-M and Cortex-A series processors.
Cortex-R series processors typically offer much higher performance and can run at higher clock
speeds than the Cortex-M series, while the Cortex-A series is intended for user-facing
applications with complex software operating systems employing virtual memory management.

ARM Partners have developed families of devices using the Cortex-R4 processor with varying
feature sets and levels of performance for products ranging from 3G USB modem sticks to
automotive microcontrollers such as the TMS570 devices available from Texas Instruments.
Infineon also has a Cortex-R4 processor-based medical device platform, MD8710. In all cases
these devices are enabled by the specific capabilities of the Cortex-R4 processor, namely high
computing performance, configurable features such as soft error handling, and the ability to
respond deterministically to hard real-time events in an embedded system

Hard disk drives also continue to be one of the most demanding applications for embedded
processors and the Cortex-R series has been adopted by many of the major manufacturers. For
HDD and SSD mass storage systems the Cortex-R series processors provide a balance between
processor performance, reliability and real-time response, along with ease of development and
CoreSight® debug to support current and future system chip architectures. Cortex-R series
processors are also being widely adopted for Solid State Drives where performance and real
time responses both to the host interface and the NAND devices is key to the system
performance.

Mobile handsets are introducing high data rate wireless broadband to deliver feature-rich, audio,
video and Internet services to users. Advanced multi-core SoCs use Cortex-R series processors
for these tasks, complementing Cortex-A series processors for user applications. Low cost and
power consumption continue to be key success criteria for mobile handset products. The
real-time features of Cortex-R series processors are particularly suited to advanced mobile
baseband applications and include support for high frequency interrupts along with fast and
deterministic control of data transmission between cellular base-stations and mobile devices.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 1-3
ID071714 Non-Confidential

Introduction
1.1 Determinism
Deeply-embedded, real-time systems require optimizing the processor for performance while
enabling time-critical code to execute in a timely manner. Cortex-R processors include features
to improve the predictability (determinism) of the processor for critical code. The memory
subsystems of Cortex-R processors use Tightly Coupled Memory (TCM) located close to the
processor core, meaning the core can have immediate access to memory rather than having to
wait for external memory. This is described in Chapter 8 Tightly Coupled Memory.

The Cortex-R5 and Cortex-R7 processors include ports specifically to provide access to
time-critical peripherals. Having the dedicated ports means that accesses to these peripherals do
not contend with lower priority memory accesses in the rest of the memory subsystem. This is
described in Access to peripherals on page 8-11.

The Cortex-R processors also contain a number of features that provide deterministic timing and
low interrupt latency for hard real-time applications. These features are collectively referred to
as Low Latency Interrupt features. This is described in Low latency interrupts on page 11-17.

The Cortex-R7 processor has an out-of-order pipeline, in contrast to the in-order pipeline of the
Cortex-R4 and Cortex-R5 processors. This means that the Cortex-R7 processor is more
optimized towards performance than the Cortex-R4 and Cortex-R5 processors. The Cortex-R7
processor also includes features to help prioritize more critical code. These features are called
Quality of Service (QoS) features and are described in Quality of Service on page 8-10.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 1-4
ID071714 Non-Confidential

Chapter 2
ARM Architecture and Processors

Periodically, new versions of the architecture are announced by ARM. These add new features or
make changes to existing behaviors. Such changes are almost always backwards compatible,
meaning that user code that ran on older versions of the architecture will continue to run correctly
on new versions. Of course, code written to take advantage of new features will not run on older
processors that lack these features.

In all versions of the architecture, some system features and behaviors are implementation-defined.
For example, the architecture does not define cache sizes or cycle timings for individual
instructions. These are determined by the individual processor and SoC.

The ARMv7 architecture also has the concept of profiles. These are variants of the architecture
describing processors targeting different markets and uses.

The profiles are:

A The Application profile defines an architecture aimed at high performance
processors and supports a virtual memory system using a Memory Management Unit
(MMU). It is capable of running fully featured operating systems. It has support for
the ARM and Thumb instruction sets.

R The Real-time profile defines an architecture aimed at systems that require
deterministic timing and low interrupt latency. These systems use a Memory
Protection Unit (MPU) to protect the memory regions. These systems do not support
a virtual memory system and MMU.

M The Microcontroller profile defines an architecture aimed at low cost systems, where
low-latency interrupt processing is vital. It uses a different exception handling model
to the other profiles and supports only a variant of the Thumb instruction set.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-1
ID071714 Non-Confidential

ARM Architecture and Processors
Figure 2-1 shows the development of the architecture over time, illustrating additions to the
architecture at each new version. Almost all architecture changes are backwards compatible,
meaning software written for the ARMv4T architecture can be used on ARMv7 processors.

Figure 2-1 Architecture history

4T 5 6 7

Halfword and signed
halfword/byte support

System mode

Thumb instruction
set

Improved ARM/Thumb
Interworking

CLZ

Saturated arithmetic

DSP multiply-accumulate
Instructions

Extensions:
 Jazelle (v5TEJ)

SIMD instructions

Multi-processing

TrustZone

v6 memory architecture

Unaligned data support

Extensions:
 Thumb-2 (v6T2)
 TrustZone (v6Z)
 Multiprocessor (v6K)
 Thumb only (v6-M)

Thumb-2 technology

NEON

Profiles:
 v7-A (Applications)
 NEON

LPAE
Virtualization

 v7-R (Real-time)
 Hardware divide

 v7-M (Microcontroller)
 Hardware divide
 Thumb only

Floating-point
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-2
ID071714 Non-Confidential

ARM Architecture and Processors
2.1 Processor properties
For many years, ARM adopted a sequential numbering system for processors with ARM9
following ARM8, which came after ARM7. Various numbers and letters were appended to the
base family to denote different variants. For example, the ARM7TDMI processor has T for
Thumb, D for Debug, M for a fast multiplier and I for EmbeddedICE.

For the ARMv7 architecture, ARM adopted the brand name Cortex for its processors, with a
supplementary letter indicating which of the three profiles, A, R, or M, the processor supports.
Figure 2-2 shows how different versions of the architecture correspond to different processor
implementations. The figure is not comprehensive and does not include all architecture versions
or processor implementations.

Figure 2-2 Architecture and processors

This section briefly looks at some ARM processors and identifies which processor implements
which architecture version. Cortex-R series processors on page 2-5 takes a slightly more
detailed look at some of the individual processors that implement architecture version
ARMv7-R. The terminology in this chapter might be unfamiliar to the first-time user of ARM
processors.

Table 2-1 lists the architecture version implemented by the Cortex family of processors.

Architecture
v4 / v4T

Architecture
v5

Architecture
v6

Architecture
v7

ARM7TDMI
ARM920T
StrongARM

ARM926EJ-S
ARM946E-S
XScale

ARM1136J-S
ARM1176JZ-S
ARM1156T2-S

ARMv7-A
Cortex-A5
Cortex-A7
Cortex-A8
Cortex-A9
Cortex-A12
Cortex-A15
Cortex-A17
ARMv7-R
Cortex-R4
Cortex-R5
Cortex-R7
ARMv7-M
Cortex-M3

ARMv6-M
Cortex-M0+
Cortex-M0
Cortex-M1

ARMv7E-M
Cortex-M4

Table 2-1 Cortex processors and architecture versions

v7-R (Real-time) v7-A (Application) v6-M/v7-M (Microcontroller)

Cortex-R4 Cortex-A5 (Single/MP) Cortex-M0+ (ARMv6-M)

Cortex-R5 Cortex-A7 (MP) Cortex-M0 (ARMv6-M)

Cortex-R7 Cortex-A8 (Single) Cortex-M1 (ARMv6-M)

Cortex-A9 (Single/MP) Cortex-M3 (ARMv7-M)

Cortex-A12 (MP) Cortex-M4(F) (ARMv7E-M)

Cortex-A15 (MP)

Cortex-A17 (MP)
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-3
ID071714 Non-Confidential

ARM Architecture and Processors
Table 2-2 compares the properties of Cortex-R series processors.

Table 2-2 Properties of Cortex-R series processors

Processor

Cortex-R4 Cortex-R5 Cortex-R7

Release date May 2006 August 2010 March 2012

Typical clock speed 600 MHz on 40 nm 600 MHz on 40 nm 1 GHz on 28 nm

Execution order In-order In-order Out-of-order

Cores 1 1 to 2 (in AMP mode) 1 to 2

Peak integer throughput 2.45 DMIPS/MHz 2.45 DMIPS/MHz 2.50 DMIPS/MHz

VFP architecture VFPv3 VFPv3 VFPv3

Half precision extension No No Yes

Hardware integer divide Yes Yes Yes

Fused Multiply Accumulate No No No

Pipeline stages 8 8 11

Instruction decode per cycle Partial dual issue Partial dual issue 2 (Superscalar)

Return stack entries 4 4 8

Floating Point Unit Optional Optional Optional

AMBA interface 64-bit AXI 3 64-bit AXI 3 64-bit AXI 3

Generic Interrupt Controller
(GIC)

Not included Not included Included

Branch predictor entries 256 256 Configurable

Indirect predictor No BTAC No BTAC 256, 512, 1024, 2048,
or 4096 BTAC
entries

Trace Optional ETM
Separate macrocell

Optional ETM,
Separate macrocell

Optional ETM

Cache I-Cache and D-Cache I-Cache and D-Cache I-Cache and D-Cache

Pipeline 8 stage dual issue 8 stage dual issue 11 stage susperscalar
with Out-of-order
execution
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-4
ID071714 Non-Confidential

ARM Architecture and Processors
2.2 Cortex-R series processors
This section takes a closer look at each of the processors that implement the ARMv7-R
architecture. It gives only a general description in each case. For more specific information on
each processor, see Table 2-2 on page 2-4.

2.2.1 The Cortex-R4 processor

The ARM Cortex-R4 processor is designed for use in embedded, real-time systems. It
implements the ARMv7-R architecture, and includes Thumb-2 technology for optimum code
density and processing throughput, but can also use ARM instructions. It is for use in
high-volume, deeply embedded System-on-Chip applications, for example, hard disk drive
controllers, wireless baseband processors, consumer products and electronic control units for
automotive systems.

Figure 2-3 Cortex-R4 core block diagram

2.2.2 The Cortex-R5 processor

The Cortex-R5 processor is designed for use in embedded, real-time systems. It implements the
ARMv7-R architecture, and includes Thumb-2 technology for optimum code density and
processing throughput, but can also use ARM instructions. The pipeline has a single Arithmetic
Logic Unit, but implements limited dual-issuing of instructions for efficient utilization of other
resources such as the register file. A hardware Accelerator Coherency Port (ACP) is available
to reduce the requirement for slow software cache maintenance operations when sharing
memory with other masters.

64-bit AMBA3 AXI

ARM CoreSight Multicore Debug and Trace

Cortex-R4 core

L1
Instruction

Cache

L1
Data Cache

Core

μSCU ACP

B TCMA TCM

Floating point
unit

MPULoad Store
Unit
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-5
ID071714 Non-Confidential

ARM Architecture and Processors
Figure 2-4 Cortex-R5 core block diagram

2.2.3 The Cortex-R7 processor

The ARM Cortex-R7 MPCore processor is a highly configurable processor for use in embedded
real-time systems. It consists of one or two Cortex-R7 cores in a single cluster. It implements
the ARMv7-R architecture, and includes Thumb-2 technology for optimum code density and
processing throughput.

The Cortex-R7 processor provides higher levels of performance to the Cortex-R series of
processors through the introduction of out-of-order instruction execution and dynamic register
re-naming, combined with improved branch prediction, superscalar execution capability and
faster hardware support for divide, DSP and floating point functions.

64-bit AXI-M

Cortex-R5 core

L1
Instruction

Cache

L1
Data Cache

Core

AXI-S LLPP

B TCMA TCM

Floating point
unit

MPULoad Store
Unit

μSCU ACP
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-6
ID071714 Non-Confidential

ARM Architecture and Processors
Figure 2-5 Cortex-R7 processor block diagram

The Cortex-R7 processor has the following features:

• Flexible Multi-Processor Core (MPCore) configurations.

• Lock-step configuration with redundant core.

• Symmetric Multi-Processing (SMP).

• Asymmetric Multi-Processing (AMP).

• Integrated Generic Interrupt Controller (GIC), Snoop Control Unit (SCU), and timers.

• Quality of Service (QoS) features.

• Full coherency support for SMP.

• Hardware accelerated data cache operation with Tag RAM copies in SCU.

• Twin core and I/O coherency.

• Dedicated Low Latency Peripheral and Memory Ports for hard real-time work.

• Flexible and configurable Floating Point Unit (FPU).

• CoreSight SoC Debug and Trace.

• Optional Embedded Trace Macrocell ETMv4.

Core 1

Dual 64-bit AMBA3 AXI

ARM CoreSight Multicore Debug and Trace

Generic Interrupt Controller

Cortex-R7 processor

L1
Instruction

Cache

L1 Data
Cache

Core 0

SCU ACP

Data TCM

Instruction TCM

Floating point
unit

MPU
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-7
ID071714 Non-Confidential

ARM Architecture and Processors
2.3 Development platforms
There are off-the-shelf ARM processor based platforms that are suitable for students and
hobbyists:

MCBTMS570
The MCBTMS570 Development Kit is an Cortex-R4 based board set that can be
used use to generate and test application programs for the Texas Instruments
TMS570x microcontroller. The MCBTMS570 Board contains all the hardware
components required in a single-chip TMS570x system.
The TMS570LS series is a high performance automotive grade microcontroller
family that has been certified for use in IEC 61508 SIL3 safety systems and
integrates the Cortex-R4F processor running at 1.6DMIPS/MHz, and has
configurations that can run up to 160 MHz providing more than 250 DMIPS. The
TMS570LS series also provides different Flash (1MB or 2MB) and data SRAM
(128KB or 160KB) options with single bit error correction and double bit error
detection.
The TMS570LS series is an ideal solution for high performance real time control
applications with safety critical requirements.

Hercules The Hercules safety microcontroller platform consists of two Cortex R4-based
microcontroller families: TMS570 and RM4x. Designed specifically for IEC
61508 and ISO 26262 safety critical applications, the Hercules platform provides
advanced integrated safety features while delivering scalable performance,
connectivity, and memory options.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-8
ID071714 Non-Confidential

ARM Architecture and Processors
2.4 Operating systems for Cortex-R processors
Code running on Cortex-R processors might be running as bare-metal applications without an
operating system, or use a Real-Time Operating System (RTOS). Real-time operating systems
include:
• Integrity from Green Hills
• Nucleus from Mentor Graphics
• Extended T-Kernel from eSOL.

Many other operating systems are available. Cortex-R processors can also run suitably modified
versions of Linux, configured to run without the use of a full MMU.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 2-9
ID071714 Non-Confidential

Chapter 3
ARM Processor modes and Registers

The ARMv7-R architecture is a modal architecture. There are six privileged modes and a
non-privileged user mode. Privilege, in this case, is the ability to perform certain tasks that cannot
be done from User (unprivileged) mode. In User mode, there are limitations on operations that
affect overall system configuration. For example, only privileged modes can change the operating
mode. Modes are associated with exception events, described in Chapter 11 Exceptions and
Interrupts

The introduction of the TrustZone Security Extensions in the ARMv6Z architecture created two
security states (Secure and Non-secure) that are independent of Privilege and processor mode. The
ARMv7-A architecture Virtualization Extensions also add a hypervisor mode (Hyp) in addition to

Table 3-1 ARM processor modes

Mode Function Privilege

User (USR) Mode in which most programs and applications run Unprivileged

FIQ Entered on an FIQ interrupt exception

Privileged

IRQ Entered on an IRQ interrupt exception

Supervisor (SVC) Entered on reset or when a Supervisor Call instruction (SVC)
is executed

Abort (ABT) Entered on a memory access exception

Undef (UND) Entered when an undefined instruction is executed

System (SYS) Runs tasks that require a privileged processor mode, shares
the register view with User mode.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-1
ID071714 Non-Confidential

ARM Processor modes and Registers
the existing privileged modes. While the ARMv7-R architecture profile does not implement
either the Security Extensions or Virtualization Extensions, their existence in the ARMv7
architecture has led to the redefinition of privileged (unprivileged or privileged) modes of
operation in terms of Privilege levels.

Every memory access has an access privilege, that is either unprivileged or privileged.

The ARMv7-R architecture profile defines the following privilege levels:

PL0 The privilege level of application software, that executes in User mode.
Therefore, software executed in User mode is described as unprivileged software.
This software cannot access some features of the system. In particular, it cannot
change many of the configuration settings.
Software executing at PL0 makes only unprivileged memory accesses.

PL1 Software execution in all modes other than User mode is at PL1. Normally,
operating system software executes at PL1.
The PL1 modes refers to all the modes other than User mode.

We can therefore redefine the processor modes in terms of privilege levels.

The current processor mode and execution state is contained in the Current Program Status
Register (CPSR). Changing processor state and modes can be either explicit by privileged
software, or as a result of taking exceptions.

Table 3-2 ARM processor modes

Mode Function Privilege level

User (USR) Mode in which most programs and applications run PL0

FIQ Entered on an FIQ interrupt exception PL1

IRQ Entered on an IRQ interrupt exception PL1

Supervisor (SVC) Entered on reset or when a Supervisor Call instruction (SVC)
is executed

PL1

Abort (ABT) Entered on a memory access exception PL1

Undef (UND) Entered when an undefined instruction executed PL1

System (SYS) Runs tasks that require a privileged processor mode, shares
the register view with User mode.

PL1
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-2
ID071714 Non-Confidential

ARM Processor modes and Registers
3.1 Registers
The ARMv7-R architecture provides sixteen 32-bit general purpose registers (R0-R15) for
software use. Fifteen of them (R0-R14) can be used for general purpose data storage, while R15
is the program counter whose value is altered as the core executes instructions. An explicit write
to R15 by software will alter program flow. Software can also access the CPSR and, in
privileged modes a saved copy of the CPSR from the previously executed mode, called the
Saved Program Status Register (SPSR).

Figure 3-1 Programmer visible registers for user code

Although software can access the registers, depending on the mode the software is executing in
and the register being accessed, a register might correspond to a different physical storage
location. This is called banking, the shaded registers in Figure 3-2 on page 3-4 are banked. They
use physically distinct storage and are usually accessible only when a process is executing in
that particular mode.

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

Stack pointer

Link register

Program Counter

Current Program Status Register

General Purpose
Registers

Low Registers

High Registers
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-3
ID071714 Non-Confidential

ARM Processor modes and Registers
Figure 3-2 The ARMv7-R register set

In all modes, 'Low Registers' and R15 share the same physical storage location. Figure 3-2
shows that some 'High Registers' are banked for certain modes. For example, R8 to R12 are
banked for FIQ mode, that is, accesses to them go to a different physical storage location. For
all modes other than User and System modes, R13, R14 and the SPSRs are banked.

Note
 The stack pointer, R13, can be used as a general-purpose register only in ARM code but not in
Thumb code.

In the case of banked registers, software does not normally specify the instance of the banked
register. The instance of the banked register is implied by the mode from which the access is
made. For example, a program executing in User mode that specifies R13 accesses R13_usr. A
program executing in SVC mode that specifies R13 accesses R13_svc.

R14 (the Link Register) holds the return address from a subroutine entered when you use the
branch with link (BL) instruction. It can be used as a general purpose register when it is not
supporting returns from subroutines. R14_svc, R14_irq, R14_fiq, R14_abt and R14_und are
used similarly to hold the return address when interrupts and exceptions arise, or when Branch
and Link instructions are executed within interrupt or exception routines.

R15 is the program counter and holds the current program address (actually, it always points
eight bytes ahead of the current instruction in ARM state and four bytes ahead of the current
instruction in Thumb state, a legacy of the three stage pipeline of the original ARM1 processor).
In ARM state, bits[1:0] of R15 always read as zero. In Thumb state, bit[0] of R15 always reads
as zero.

(A/C)PSR

User FIQ IRQ ABT SVC UND

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (sp)

R14 (lr)

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

SP_fiq

LR_fiq

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_irq

LR_irq

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_abt

LR_abt

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_svc

LR_svc

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_und

LR_und

R15 (pc)

SPSR_fiq

CPSR

SPSR_irq

CPSR

SPSR_abt

CPSR

SPSR_svc

CPSR

SPSR_und

CPSR

Banked

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (sp)

R14 (lr)

R15 (pc)

Sys
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-4
ID071714 Non-Confidential

ARM Processor modes and Registers
The reset values of R0-R14 are unpredictable. SP, the stack pointer, must be initialized, for each
mode, by boot code before making use of the stack. The AAPCS or AEABI specifies how
software should use the general purpose registers to interoperate between different toolchains
or programming languages.

3.1.1 Program Status Registers

At any given moment, you have access to 16 registers (R0-R15) and the Current Program Status
Register (CPSR). In User mode, a restricted form of the CPSR called the Application Program
Status Register (APSR) is accessed instead.

The Current Program Status Register (CPSR) is used to store:

• The APSR flags.

• The current processor mode.

• Interrupt disable flags.

• The current processor state, that is, ARM, Thumb, ThumbEE, or Jazelle.

• The endianness.

• Execution state bits for the IT block.

The Program Status Registers (PSRs) form an additional set of banked registers. Each exception
mode has its own Saved Program Status Register (SPSR) where a copy of the pre-exception
CPSR is stored automatically when an exception occurs. These are not accessible from User
mode.

Application programmers must use the APSR to access the parts of the CPSR that can be
changed in unprivileged mode. The APSR must be used only to access the N, Z, C, V, Q, and
GE[3:0] bits. These bits are not normally accessed directly, but instead set by condition code
setting instructions and tested by instructions that are executed conditionally.

For example CMP R0, R1 compares the values of R0 and R1 and sets the zero flag (Z) if R0 and
R1 are equal.

The CPSR contains condition code flags, the current mode bits, and other information as
Figure 3-3 shows.

Figure 3-3 CPSR bits

The individual bits represent the following:

N Negative result from ALU.

Z Zero result from ALU.

C ALU operation Carry out.

V ALU operation oVerflowed.

Q Cumulative saturation (also described as sticky bit).

J Indicates whether the processor is in Jazelle state.

N Z C V Q IT
[1:0] J Reserved GE[3:0] IT[7:2] E A I F T M[4:0]

31 27 26 25 24 23 20 19 16 15 10 9 8 7 6 5 4 0
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-5
ID071714 Non-Confidential

ARM Processor modes and Registers
GE[3:0] Used by SIMD instructions.

IT[7:0], bits [15:10, 26:25]
If-Then conditional execution of Thumb instruction groups.

E Controls endianness for load and store operations.

A Value of 1 disables asynchronous aborts.

I Value of 1 disables IRQ.

F Value of 1 disables FIQ.

T Indicates whether the processor is in Thumb state.

M[4:0] Specifies the processor mode (see Table 3-2 on page 3-2).

The processor can change between modes using instructions that directly write to the CPSR
mode bits. More commonly, the processor changes mode automatically as a result of exception
events. In User mode, you cannot manipulate bits [4:0] that control the processor mode or the
A, I and F bits that govern the exceptions to be enabled or disabled.

3.1.2 Coprocessor 15

CP15, the System Control coprocessor, is (despite the name coprocessor) an integral part of the
processor and provides control of many features. It can contain up to 16 primary registers, each
of size 32 bits. However access to CP15 is privilege controlled and not all registers are available
in User (unprivileged) mode.

The CP15 register access instructions specify the required primary register, with the other fields
in the instruction used to define the access more precisely and increase the number of physical
32-bit registers in CP15. The 16 primary registers in CP15 are named c0 to c15, but are often
referred to by a series of letters.

For example, the CP15 System Control Register is named CP15.SCTLR. Table 3-3 summarizes
the function of some of the more relevant registers used in Cortex-R series processors. We will
consider some of these in more detail when we look at the operation of the cache and MPU.

Table 3-3 CP15 Register summary

Register Description

Main ID Register (MIDR) Gives identification information for the
processor, including implementer code and
device ID.

Multiprocessor Affinity Register (MPIDR) Provides a way to uniquely identify
individual processors within a
multi-processor system.

CP15 c1 System Control registers

System Control Register (SCTLR) The main processor control register, see
System Control Register (SCTLR) on
page 3-9.

Auxiliary Control Register (ACTLR) IMPLEMENTATION DEFINED.
Implementation specific additional control
and configuration options.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-6
ID071714 Non-Confidential

ARM Processor modes and Registers
Coprocessor Access Control Register (CPACR) Controls access to all coprocessors except
CP14 and CP15.

CP15 c5 and c6, memory system registers

Data Fault Status Register (DFSR) Gives status information about the last data
fault (see Chapter 11 Exceptions and
Interrupts).

Instruction Fault Status Register (IFSR) Gives status information about the last
instruction fault (see Chapter 11 Exceptions
and Interrupts).

Data Fault Address Register (DFAR) Gives the address of the access that caused
the most recent precise data abort (see
Chapter 11 Exceptions and Interrupts).

Instruction Fault Address Register (IFAR) Gives the address of the access that caused
the most recent precise prefetch abort (see
Chapter 11 Exceptions and Interrupts).

MPU Region Base Address Register Describes the base address of the region
specified by the Memory Region Number
Register. (See c6, MPU Region Base
Address Register on page 9-8)

MPU Region Size and Enable Register Specifies the size of the region specified by
the Memory Region Number Register.
Identifies the address ranges that are used
for a particular region.
Enables or disables the region, and its
sub-regions, specified by the Memory
Region Number Register. (See c6, MPU
Region Size and Enable Register on
page 9-8)

MPU Region Access Control Register Holds the region attributes and access
permissions for the region specified by the
Memory Region Number Register. (Seec6,
MPU Region Access Control Register on
page 9-9) on page 9-9

MPU Region Number Register Multiple registers with one register for each
memory region implemented. The value
contained determines which of the multiple
registers is accessed.

CP15 c7, cache maintenance and other functions

Cache and branch predictor maintenance functions See Chapter 7 Caches.

Data and instruction barrier operations See Chapter 10 Memory Ordering.

CP15 c9, performance monitors

CP15 c13, process, context and thread ID registers

Context ID Register (CONTEXTIDR) Holds a process identification value for the
running process. It is available in Privileged
mode only.

Table 3-3 CP15 Register summary (continued)

Register Description
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-7
ID071714 Non-Confidential

ARM Processor modes and Registers
All system architecture functions are controlled by reading or writing a general purpose
processor register (Rt) from or to a set of registers (CRn) located within Coprocessor 15. The
Op1, Op2, and CRm fields of the instruction can also be used to select registers or operations.
The format is shown in Example 3-1.

Example 3-1 CP15 Instruction syntax

MRC p15, Op1, Rt, CRn, CRm, Op2 ; read a CP15 register into an ARM register

MCR p15, Op1, Rt, CRn, CRm, Op2 ; write a CP15 register from an ARM register

We will not go through each of the various CP15 registers in detail, as this would duplicate
reference information that can readily be obtained from the ARM Architecture Reference
Manual or product documentation. We will look at two examples, the read-only Main ID
Register (MIDR), the format of which is shown in Figure 3-4 and the System Control Register
(SCTLR) on page 3-9.

Figure 3-4 Main ID Register format

In a privileged mode, we can read this register, using the instruction

MRC p15, 0, <Rt>, c0, c0, 0

The result, placed in register Rt, tells software the processor it is running on. For a Cortex-R
series processor conforming to the ARMv7-R architecture the results will be as follows:

• Bits [31:24] – implementer, is 0x41 for an ARM designed processor.

• Bits [23:20] – variant, shows the revision number of the processor.

• Bits [19:16] – architecture, is 0xF for ARM architecture v7.

• Bits [15:4] – part number (for example 0xC15 for the Cortex-R5 processor).

• Bits [3:0] – revision, shows the patch revision number of the processor.

Software thread ID registers Provide locations to store the IDs of
software threads and processes of the
operating system.

CP15 c15, IMPLEMENTATION DEFINED registers

Configuration Base Address Register (CBAR) Provides a base address for the GIC and
Local timer type peripherals.

Table 3-3 CP15 Register summary (continued)

Register Description

31 24 23 20 19 16 15 3 0

Implementer Variant Arch Primary part number Rev

4

ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-8
ID071714 Non-Confidential

ARM Processor modes and Registers
3.1.3 System Control Register (SCTLR)

The System Control Register (SCTLR) can be accessed using CP15. It:

• Controls standard memory.

• Controls system facilities.

• Provides status information for functions implemented in the core.

The SCTLR is only accessible from PL1 (privileged mode).

Figure 3-5 Simplified view of the System Control Register

The individual bits represent the following:

IE Instruction Endianness (not on Cortex-R7 processor). This controls the
endianness of instructions issued to the processor:
• Value 0 for little-endian.
• Value 1 for Big-endian.

TE Thumb exception enable. This controls whether exceptions are taken in ARM or
Thumb state:
• Value 0 for ARM state
• Value 1 for Thumb state.

NMFI Non-maskable FIQ (NMFI) support.

EE Exception endianness. This defines the value of the CPSR.E bit on entry to an
exception:
• Value 0 for Little-endian
• Value 1 for Big-endian.

U Not on Cortex-R7 processor. Indicates use of the alignment model.

FI Fast interrupts configuration enable.
• Value 0 to enable all performance features.
• Value 1 to enable low interrupt latency. Disables some features.

DZ Divide by zero fault bit.
• Value 0. Divide by zero returns zero, and no exception is taken.
• Value 1. Divide by zero cause as Undefined Instruction exception.

BR Background region bit. See Implementing a Protected Memory System with
Regions on page 9-4.
• Value 0. Any access to an address that is not mapped to an MPU region

generates a Background fault memory abort.
• Value 1. The default memory map is used as a background region.

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 0

I Z C

1821 20 19 9

V

NMFI

MA

22

U

TE EE FIIE DZ

17

BR RR SW
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-9
ID071714 Non-Confidential

ARM Processor modes and Registers
RR Not on Cortex-R7 processor. Round Robin bit for cache implementation policy.
• Value 0. Normal replacement strategy, for example, random replacement.
• Value 1. Predictable strategy, for example, round-robin replacement.

V This bit selects the base address of the exception vector table.
• Value 0 for low exception vectors, base address 0x00000000.
• Value 1 for high exception vectors, base address 0xFFFF0000.

I Instruction cache enable bit.
• Value 0 to disable instruction caches.
• Value 1 to enable instruction caches.

Z Branch prediction enable bit.
• Value 0 to disable branch prediction.
• Value 1 to enable branch prediction.

SW SWP/SWPB enable bit.
• Value 0 to disable branch prediction.
• Value 1 to enable branch prediction.
ARM recommends that an ARMv7-R implementation does not include support
for these instructions. When use of this bit is supported, at reset, this bit disables
SWP and SWPB. This means that operating systems have to choose to use SWP and
SWPB.

C Cache enable bit.
• Value 0 to disable data and unified caches.
• Value 1 to enable data and unified caches.

A Alignment check enable bit.
• Value 0 to disable alignment fault checking.
• Value 1 to enable alignment fault checking.

M Enable the MPU. See Implementing a Protected Memory System with Regions on
page 9-4.
• Value 0 disables MPU.
• Value 1 enables MPU.

Part of the boot code sequence will typically set the Z bit in the CP15:SCTLR, System Control
Register, that enables branch prediction. A code sequence to do this is shown in Example 3-2.

Example 3-2 Setting bits in the SCTLR

MRC p15, 0, r0, c1, c0, 0 ; Read System Control Register configuration data
ORR r0, r0, #(1 << 2) ; Set C bit
ORR r0, r0, #(1 << 12) ; Set I bit
ORR r0, r0, #(1 << 11) ; Set Z bit
MCR p15, 0, r0, c1, c0, 0 ; Write System Control Register configuration data

A similar form of this code can be found in Example 15-3 on page 15-3.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-10
ID071714 Non-Confidential

ARM Processor modes and Registers
Data endianness is controlled by the CPSR.E and SCTLR.EE bits. The CPSR.E bit can be
changed using the SETEND instruction (see SETEND on page A-35). It also provides instructions
for converting the format of data held in registers. These include the REV and REV16 instructions.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 3-11
ID071714 Non-Confidential

Chapter 4
Introduction to Assembly Language

Assembly language is a low-level programming language. There is in general a one-to-one
relationship between assembly language instructions (mnemonics) and the actual binary opcode
executed by the processor.

Many programmers writing at the application level have little need to code in assembly language.
However, knowledge of assembly code can be useful in cases where highly optimized code is
required, when writing compilers, or where low level use of features not directly available in C is
required. It might be required for portions of boot code, device drivers or when performing OS
development. Finally, it can be useful to be able to read assembly code when debugging C, and
particularly, to understand the mapping between assembly instructions and C statements.

Programmers seeking a more detailed description of ARM assembly language can also refer to the
ARM Compiler Toolchain Assembler Reference or the ARM Architecture Reference Manual.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-1
ID071714 Non-Confidential

Introduction to Assembly Language
4.1 Comparison with other assembly languages
An ARM processor is typically a Reduced Instruction Set Computer (RISC) processor. Complex
Instruction Set Computer (CISC) processors, like the x86, have a rich instruction set capable of
doing complex things with a single instruction. Such processors often have significant amounts
of internal logic that decode machine instructions to sequences of internal operations
(microcode). RISC architectures, in contrast, have a smaller number of more general purpose
instructions, that might be executed with significantly fewer transistors, making the silicon
cheaper and more power efficient. Like other RISC architectures, ARM processors have a large
number of general-purpose registers and many instructions execute in a single cycle. It has
simple addressing modes, where all load/store addresses can be determined from register
contents and instruction fields.

The ARMv7 architecture has basic data processing instructions that permit them to perform
arithmetic operations (such as ADD) and logical bit manipulation (such as AND). They also have
branch instructions that transfer program execution from one part of the program to another, to
support loops and conditional statements. The architecture also has instructions to read and
write external memory.

The ARM instruction set is generally considered to be simple, logical, and efficient. It has
features not found in other processors, while at the same time lacking operations found in others.
For example, it cannot perform data processing operations directly on memory. To increment a
value in a memory location, the value must be loaded to an ARM register, the register
incremented and a third instruction is required to write the updated value back to memory. The
Instruction Set Architecture (ISA) includes instructions that combine a shift with an arithmetic
or logical operation, auto-increment and auto-decrement addressing modes for optimized
program loops, Load, and Store Multiple instructions that enable efficient stack and heap
operations, plus block copying capability and conditional execution of almost all instructions.

Like the x86 processors (but unlike the 68K processor), ARM instructions typically have a two
or three operand format, with the first operand in most cases specifying the destination for the
result. Load multiple and store instructions are an exception to this rule. The 68K, by contrast,
places the destination as the last operand. For ARM instructions, there are generally no
restrictions on which registers can be used as operands. Example 4-1 and Example 4-2 give a
flavor of the differences between the different assembly languages.

Example 4-1 Instructions to add 100 to a value in a register

x86: add eax, #100
68K: ADD #100, D0
ARM: add r0, r0, 100

Example 4-2 Load a register with a 32-bit value from a register pointer

x86: mov eax, DWORD PTR [ebx]
68K: MOVE.L (A0), D0
ARM: ldr r0, [r1]
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-2
ID071714 Non-Confidential

Introduction to Assembly Language
4.2 The ARM instruction sets
The ARMv7 architecture is a 32-bit processor architecture. It is a load/store architecture,
meaning that data-processing instructions operate on values in general purpose registers. Only
load and store instructions access memory. General purpose registers are also 32 bits.
Throughout this book, when we refer to a word, we mean 32 bits. A doubleword is therefore 64
bits and a halfword is 16 bits wide.

Though the ARMv7 architecture is a 32-bit architecture, individual processor implementations
do not necessarily have 32-bit width for all blocks and interconnections. For example, it is
possible to have 64-bit, or wider paths for instruction fetches or data accesses.

Most ARM processors support a number of different instruction sets, while some (for example,
the Cortex-M3 processor) do not in fact execute the original ARM instruction set. There are at
least two instruction sets that ARM processors can use.

ARM (32-bit instructions)
This is the original ARM instruction set.

Thumb The Thumb instruction set was first added in the ARM7TDMI processor and
contained only 16-bit instructions, that gave much smaller programs (memory
footprint can be a major concern in smaller embedded systems) at the cost of
some performance. Recent processors, including those in the Cortex-R series,
support Thumb-2 technology, that extends the Thumb instruction set to provide a
mix of 16-bit and 32-bit instructions. This gives the best of both worlds,
performance similar to that of ARM, with code size similar to that of Thumb.
Because of its size and performance advantages, it is increasingly common for all
code to be compiled or assembled to take advantage of Thumb-2 technology.

Older ARM processors often contained code that was compiled for ARM state and code that
was compiled for Thumb state. ARM code, with 32-bit instructions, was more powerful and
required fewer instructions to perform a particular task and so might be preferred for
performance critical parts of the system. It was also used for exception handler code, because
exceptions could not be handled in Thumb state on ARM7 or ARM9 Series processors.

Thumb code, using 16-bit instructions, requires more instructions to carry out the same task,
when compared with ARM code. Thumb code can typically encode smaller constant values
within instructions and has shorter relative branches. See Branches on page 5-12. The available
range for relative branches is approximately ±32MB for ARM instructions and ±16MB for the
Thumb-2 extension. Thumb is also limited where only 16-bit instructions are used, with
conditional branches having a range of ±256 Bytes and unconditional relative branches being
limited to ±2048 bytes.

However, because Thumb instructions are only half of the size, programs are typically a third
smaller than their ARM code equivalent. Thumb instructions are therefore used when code
density is important, and to reduce system memory requirements. Thumb code can also
outperform ARM when the processor is directly connected to a narrow (16-bit) memory,
without the benefit of cache. One Thumb instruction can be fetched on each cycle, whereas each
32-bit ARM instruction requires two clock cycles per fetch.

When executing a Thumb instruction, the PC reads as the address of the current instruction plus
4. The only 16-bit Thumb instructions that can directly modify the PC are certain encodings of
MOV and ADD. The value written to the PC is forced to be halfword-aligned by ignoring its least
significant bit, treating that bit as being 0.

In ARMCC, the option --thumb or –arm (the default) enables selection of the instruction set used
for compilation. A program can branch between these two instruction sets at run-time.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-3
ID071714 Non-Confidential

Introduction to Assembly Language
The currently used instruction set is indicated by the CPSR T bit and the core is said to be in
ARM state (T = 0) or Thumb state (T = 1). Code has to be explicitly compiled or assembled to
one state or the other. An explicit instruction is used to change between instruction sets. Calling
functions that are compiled for a different state is known as interworking. We’ll take a more
detailed look at this in Interworking on page 4-11.

For Thumb assembly code, there is often a choice of 16-bit and 32-bit instruction encodings,
with the 16-bit versions being generated by default. The .W (32-bit) and .N (16-bit) width
specifiers can be used to force a particular encoding (if such an encoding exists), for example:.

BCS.W label ; forces 32-bit instruction even for a short branch
B.N label ; faults if label out of range for 16-bit instruction

4.2.1 Thumb-2

Despite continued rumours to the contrary, there is no such thing as a Thumb-2 instruction set.
Thumb-2 technology was introduced in ARMv6T2, and is required in ARMv7. This technology
extends the original 16-bit Thumb instruction set to include 32-bit instructions. The range of
32-bit Thumb instructions included in ARMv6T2 permits Thumb code to achieve performance
similar to ARM code, with code density better than that of the purely 16-bit Thumb code.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-4
ID071714 Non-Confidential

Introduction to Assembly Language
4.3 Introduction to the GNU Assembler
The GNU Assembler, part of the GNU tools, is used to convert assembly language source code
into binary object files. The assembler is extensively documented in the GNU Assembler
Manual, which can be found online at http://sourceware.org/binutils/docs/as/index.html or
(if you have GNU tools installed on your system) in the gnutools/doc sub-directory. GNU
Assembler documentation is also available in the /gcc-doc/ package on Ubuntu.

What follows is a brief description, intended to highlight differences in syntax between the GNU
Assembler and standard ARM assembly language, and provide enough information to let you
get started with the tools.

The names of GNU tool components have prefixes indicating the target options selected,
including operating system. An example would be arm-none-eabi-gcc, that might be used for
bare metal systems using the ARM EABI.

4.3.1 Invoking the GNU Assembler

You can assemble the contents of an ARM assembly language source file by running the
arm-none-eabi-as program.

arm-none-eabi-as -g -o filename.o filename.s

The option -g requests the assembler to include debug information in the output file.

When all of your source files have been assembled into binary object files (with the extension
.o), you use the GNU Linker to create the final executable in ELF format.

This is done by executing:

arm-none-eabi-ld -o filename.elf filename.o

For more complex programs, where there are many separate source files, it is more common to
use a utility like make to control the build process.

You can use the debugger provided by either arm-none-eabi-gdb or arm-none-eabi-insight to run
the executable files on your host machine, as an alternative to a real target processor.

4.3.2 GNU Assembler syntax

The GNU Assembler can target many different processor architectures and is not ARM-specific.
This means that its syntax is somewhat different from other ARM assemblers, such as the ARM
toolchain. The GNU Assembler uses the same syntax for all of the many processor architectures
that it supports.

Assembly language source files consist of a sequence of statements, one per line.

Each statement has three optional parts, ordered as follows:

label: instruction @ comment

A label lets you identify the address of this instruction. This can then be used as a target for
branch instructions or for load and store instructions. A label can be a letter followed
(optionally) by a sequence of alphanumeric characters, followed by a colon.

The instruction can be either an ARM assembly instruction, or an assembler directive. These
are pseudo-instructions that tell the assembler itself to do something. These are required,
amongst other things, to control sections and alignment, or create data.

Everything on the line after the @ symbol is treated as a comment and ignored (unless it is inside
a string). C style comment delimiters “/*” and “*/” can also be used.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-5
ID071714 Non-Confidential

http://sourceware.org/binutils/docs/as/index.html

Introduction to Assembly Language
At link time an entry point can be specified on the command line if one has not been explicitly
provided in the source code.

4.3.3 Sections

An executable program with code will have at least one section, that by convention is called
.text. Data can be included in a .data section.

Directives with these names enable you to specify which of the two sections should hold what
follows in the source file. Executable code should appear in a .text section and read or write
data in the .data section. Also read-only constants can appear in a .rodata section. Zero
initialized data appears in .bss. The Block Started by Symbol (bss) segment defines the space
for uninitialized static data.

4.3.4 Assembler directives

This is a key area of difference between GNU tools and other assemblers.

All assembler directives begin with a period “.” A full list of these is described in the GNU
documentation. Here, we give a subset of commonly used directives.

.align This causes the assembler to pad the binary with bytes of zero value, in data
sections, or NOP instructions in code, ensuring the next location is on a word
boundary. The .align n gives 2n alignment on ARM processors.

.ascii “string”
 Insert the string literal into the object file exactly as specified, without a NUL
character to terminate. Multiple strings can be specified using commas as
separators.

.asciiz Does the same as .ascii, but this time additionally followed by a NUL character
(a byte with the value 0 (zero)).

.byte expression, .hword expression, .word expression
Inserts a byte, halfword, or word value into the object file. Multiple values can be
specified using commas as separators. The synonyms .2byte and .4byte can also
be used.

.data Causes the following statements to be placed in the data section of the final
executable.

.end Marks the end of this source code file. The assembler does not process anything
in the file after this point.

.equ symbol, expression
Sets the value of symbol to expression. The “=” symbol and .set have the same
effect.

.extern symbol
Indicates that symbol is defined in another source code file.

.global symbol
Tells the assembler that symbol is to be made globally visible to other source files
and to the linker.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-6
ID071714 Non-Confidential

Introduction to Assembly Language
.include “filename”
Inserts the contents of filename into the current source file and is typically used
to include header files containing shared definitions.

.text This switches the destination of following statements into the text section of the
final output object file. Assembly instructions must always be in the text section.

For reference, Table 4-1 shows common assembler directives alongside GNU and ARM tools.
Not all directives are listed, and in some cases there is not a 100% correspondence between
them.

Table 4-1 Comparison of syntax

GNU
Assembler armasm Description

@ ; Comment

#& #0x An immediate hex value

.if IFDEF, IF Conditional (not 100% equivalent)

.else ELSE

.elseif ELSEIF

.endif ENDIF

.ltorg LTORG

| :OR: OR

& :AND: AND

<< :SHL: Shift Left

>> :SHR: Shift Right

.macro MACRO Start macro definition

.endm ENDM End macro definition

.include INCLUDE GNU Assembler requires “filename”

.word DCD A data word

.short DCW

.long DCD

.byte DCB

.req RN

.global IMPORT,
EXPORT

.equ EQU
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-7
ID071714 Non-Confidential

Introduction to Assembly Language
4.3.5 Expressions

Assembly instructions and assembler directives often require an integer operand. In the
assembler, this is represented as an expression to be evaluated. Typically, this is an integer
number specified in decimal, hexadecimal (with a 0x prefix) or binary (with a 0b prefix) or as
an ASCII character surrounded by single quotes.

In addition, standard mathematical and logical expressions can be evaluated by the assembler
to generate a constant value. These can utilize labels and other pre-defined values. These
expressions produce either absolute or relative values. Absolute values are
position-independent and constant. Relative values are specified relative to some linker-defined
address, determined when the executable image is produced – such as target addresses for
branches.

4.3.6 GNU tools naming conventions

Registers are named in GCC as follows:

• General registers: R0 - R15.

• Stack pointer register: SP (R13).

• Frame pointer register: FP (R11).

• Link register: LR (R14).

• Program counter: PC (R15).

• Program Status Register flags: xPSR, xPSR_all, xPSR_f, xPSR_x, xPSR_ctl, xPSR_fs,
xPSR_fx, xPSR_f, xPSR_cs, xPSR_cf, xPSR_cx (where x = C current or S saved). See
Program Status Registers on page 3-5.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-8
ID071714 Non-Confidential

Introduction to Assembly Language
4.4 ARM tools assembly language
The Unified Assembly Language (UAL) format now used by ARM tools enables the same
canonical syntax to be used for both ARM and Thumb instruction sets. The assembler syntax of
ARM tools is not identical to that used by the GNU Assembler, particularly for preprocessing
and pseudo-instructions that do not map directly to opcodes. In the next chapter, we will look at
the individual assembly language instructions in a little more detail. Before doing that, we take
a look at the basic syntax used to specify instructions and registers. Assembly language
examples in this book use both UAL and GNU Assembly syntax.

UAL gives the ability to write assembler code that can be assembled to run on all ARM
processors. In the past, it was necessary to write code explicitly for ARM or Thumb state. Using
UAL the same code can be assembled for different instruction sets at the time of assembly, not
at the time the code is written. This can be either through the use of command line switches or
inline directives. Legacy code will still assemble correctly. It is worth noting that GNU
Assembler now supports UAL through use of the .syntax directive, though it might not be
identical syntax to the ARM tools assembler.

4.4.1 ARM assembler syntax

ARM assembler source files consist of a sequence of statements, one per line.

Each statement has three optional parts, ordered as follows:

label instruction ; comment

A label lets you identify the address of this instruction. This can then be used as a target for
branch instructions or for load and store instructions.

The instruction can be either an assembly instruction, or an assembler directive. These are
pseudo-instructions that tell the assembler itself to do something. These are required, amongst
other things, to control sections and alignment, or create data.

Everything on the line after the ; symbol is treated as a comment and ignored (unless it is inside
a string). C style comment delimiters “/*” and “*/” can also be used.

4.4.2 Labels

A label is required to start in the first character of a line. If the line does not have a label, a space
or tab delimiter is required to start the line. If there is a label, the assembler makes the label equal
to the address in the object file of the corresponding instruction. Labels can then be used as the
target for branches or for loads and stores.

Example 4-3 A simple example showing use of a label

Loop MUL R5, R5, R1
SUBS R1, R1, #1
BNE Loop

In Example 4-3, Loop is a label and the conditional branch instruction (BNE Loop) is assembled in
a way that makes the offset encoded in the branch instruction point to the address of the MUL
instruction that is associated with the label Loop.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-9
ID071714 Non-Confidential

Introduction to Assembly Language
4.4.3 Directives

Most lines will normally have an assembly language instruction, to be converted by the tool into
its binary equivalent, or a directive which tells the assembler to do something. It can also be a
pseudo-instruction, that is, one that is converted into one or more real instructions by the
assembler. We’ll look at the actual instructions available in hardware in Chapter 5 and focus
mainly on the assembler directives here. These perform a wide range of tasks. They can be used
to place code or data at a particular address in memory, create references to other programs and
so forth.

For example, the Define Constant (DCD, DCB, DCW) directives let us place data into a piece of code.
This can be expressed numerically (in decimal, hex, binary) or as ASCII characters. It can be a
single item or a comma separated list. DCB is for byte sized data, DCD can be used for word sized
data, and DCW for half-word sized data items.

For example, you might have:

MESSAGE DCB “Hello World!”,0

This will produce a series of bytes corresponding to the ASCII characters in the string, with a 0
termination. MESSAGE is a label that you can use to get the address of this data. Similarly, you
might have data items expressed in hex:

Masks DCD 0x100, 0x80, 0x40, 0x20, 0x10

The EQU directive lets us assign names to address or data values. For example:

CtrlD EQU 4
TUBE EQU 0x30000000

You can then use these labels in other instructions, as parts of expressions to be evaluated. EQU
does not actually cause anything to be placed in the program executable – it merely sets a name
to a value, for use in other instructions, in the symbol table for the assembler. It is convenient to
use such names to make code easier to read, but also so that if you change the address or value
of something in a piece of code, you only have to modify the original definition, rather than
having to change all of the references to it individually. It is usual to group EQU definitions
together, often at the start of a program or function, or in separate include files.

The AREA pseudo-instruction is used to tell the assembler about how to group together code or
data into logical sections for later placement by the linker. For example, exception vectors might
have to be placed at a fixed address. The assembler keeps track of where each instruction or
piece of data is located in memory. The AREA directive can be used to modify that location.

The ALIGN directive lets you align the current location to a specified boundary. It usually does
this by padding (where necessary) with zeros or NOP instructions, although it is also possible to
specify a pad value with the directive. The default behavior is to set the current location to the
next word (four byte) boundary, but larger boundary sizes and offsets from that boundary can
also be specified. This can be required to meet alignment requirements of certain instructions
(for example LDRD and STRD doubleword memory transfers), or to align with cache boundaries.
As with the .align directive on GNU Assembler, the ALIGN n directive gives 2n alignment on
ARM processors.

END is used to denote the end of the assembly language source program. Failure to use the END
directive will result in an error being returned. INCLUDE tells the assembler to include the contents
of another file into the current file. Include files can be used as an easy mechanism for sharing
definitions between related files.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-10
ID071714 Non-Confidential

Introduction to Assembly Language
4.5 Interworking
When the processor executes ARM instructions, it is said to be operating in ARM state. When
it is operating in Thumb state, it is executing Thumb instructions. A processor in a particular
state can only sensibly execute instructions from that instruction set. You must make sure that
the processor does not receive instructions of the wrong instruction set.

Each instruction set includes instructions to change processor state. ARM and Thumb code can
be mixed, if the code conforms to the requirements of the ARM and Thumb Procedure Call
Standards. Compiler generated code will always do so, but assembly language programmers
must take care to follow the specified rules.

Selection of processor state is controlled by the T bit in the CPSR. see Figure 3-3 on page 3-5.
When T is 1, the processor is in Thumb state. When T is 0, the processor is in ARM state.
However, when the T bit is modified, it is also necessary to flush the instruction pipeline (to
avoid problems with instructions being decoded in one state and then executed in another).
Special instructions are used to accomplish this. These are BX (Branch with eXchange) and BLX
(Branch and Link with eXchange). LDR of PC and POP/LDM of PC also have this behavior. In addition
to changing the processor state with these instructions, assembly programmers must also use the
appropriate directive to tell the assembler to generate code for the appropriate state.

The BX or BLX instruction branches to an address contained in the specified register, or an offset
specified in the opcode. The value of bit [0] of the branch target address determines whether
execution continues in ARM state or Thumb state. This only applies to the forms of BX/BLX
which take a register. The PC-relative forms cannot generate an address with lsb anything other
than zero so will always change state regardless. Both ARM (aligned to a word boundary) and
Thumb (aligned to a halfword boundary) instructions do not use bit [0] to form an address. This
bit can therefore safely be used to provide the additional information about whether the BX or
BLX instruction should change the state to ARM (address bit [0] = 0) or Thumb (address bit [0]
= 1). The BL label can be turned into a BLX label as appropriate at link time if the instruction set
of the caller is different from the instruction set of label, assuming that it is unconditional.

A typical use of these instructions is when a call from one function to another is made using the
BL or BLX instruction, and a return from that function is made using the BX LR instruction.
Alternatively, you can have a non-leaf function, that pushes the link register onto the stack on
entry and pops the stored link register from the stack into the program counter, on exit. Here,
instead of using the BX LR instruction to return, you instead have a memory load. Memory load
instructions that modify the PC might also change the processor state depending on the value of
bit [0] of the loaded address.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-11
ID071714 Non-Confidential

Introduction to Assembly Language
4.6 Identifying assembly code
When faced with a piece of assembly language source code, it can be useful to be able to
determine which instruction set is used and which kind of assembler it is targeted at.

Older ARM Assembly language code can have three (or even four) operand instructions present
(for example, ADD R0, R1, R2) or conditional execution of non-branch instructions (for example,
ADDNE R0, R0, #1). Filename extensions will typically be .s or .S.

Code targeted for the newer UAL, will contain the directive .syntax unified but will otherwise
appear similar to traditional ARM Assembly language. The pound (or hash) symbol # can be
omitted in front of immediate operands. Conditional instruction sequences must be preceded
immediately by the IT instruction described in Chapter 5. Such code assembles either to
fixed-size 32-bit (ARM) instructions, or mixed-size (16-bit and 32-bit) Thumb instructions,
depending on the presence of the directives .thumb or .arm.

You can, on occasion, encounter code written in 16-bit Thumb assembly language. This can
contain directives such as .code 16, .thumb or .thumb_func but will not specify .syntax unified.
It uses two operands for most instructions, although ADD and SUB can sometimes have three. Only
branches can be executed conditionally.

All GCC inline assembler, for example, .c, .h, .cpp, .cxx, and .c++ code can be built for Thumb
or ARM, depending on GCC configuration and command-line switches (-marm or –mthumb).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 4-12
ID071714 Non-Confidential

Chapter 5
Unified Assembly Language Instructions

This chapter is a general introduction to Unified Assembly Language. It does not provide detailed
coverage of every instruction.

Instructions can broadly be placed in one of a number of classes:

• Data operations (ALU operations such as ADD).

• Memory operations (load and stores to memory).

• Branches (for loops, goto, conditional code and other program flow control).

• DSP (operations on packed data, saturated mathematics and other special instructions,
targeting codecs).

• Miscellaneous (coprocessor, debug, mode changes and so forth).

We’ll take a brief look at each of those in turn. Before we do that, let us examine capabilities that
are common to different instruction classes.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-1
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.1 Instruction set basics
ARMv7-R architecture added support for hardware divide, the UDIV and SDIV instructions, which
were unsupported on other architecture profiles. The behavior of data processing instructions
that write to the PC on Cortex-R cores is also different. Previously data processing instructions
could not cause a state change, except when returning from an exception. In ARMv7-R any data
processing instruction that writes to the PC can change the state, based on bit [0] of the address.
There are however, still a number of features common to all parts of the instruction set.

5.1.1 Constant and immediate values

ARM or Thumb assembly language instructions have a length of only 16 or 32 bits. This
presents something of a problem. It means that you cannot encode an arbitrary 32-bit value
within the opcode.

In the ARM instruction set, as opcode bits are used to specify condition codes, the instruction
itself and the registers to be used, only 12 bits are available to specify an immediate value. We
have to be somewhat creative in how these 12 bits are used. Rather than enabling a constant of
size –2048 to +2047 to be specified, instead the 12 bits are divided into an 8-bit constant and
4-bit rotate value. The rotate value enables the 8-bit constant value to be rotated right by a
number of places from 0 to 30 in steps of 2, that is, 0, 2, 4, 6, 8...

So, you can have immediate values like 0x23 or 0xFF. You can produce other useful immediate
values, for example, addresses of peripherals or blocks of memory. As an example, 0x23000000
can be produced by expressing it as 0x23 ROR 8. But many other constants, like 0x3FF, cannot be
produced within a single instruction. For these values, you must either construct them in
multiple instructions, or load them from memory. Programmers do not typically concern
themselves with this, except where the assembler gives an error complaining about an invalid
constant. Instead, you can use assembly language pseudo-instructions to do whatever is
necessary to generate the required constant

Constant values encoded in an instruction can be one of the following in Thumb:

• a constant that can be produced by rotating an 8-bit value by any even number of bits
within a 32-bit word

• a constant of the form 0x00XY00XY

• a constant of the form 0xXY00XY00

• a constant of the form 0xXYXYXYXY.

where XY is a hexadecimal number in the range 0x00 to 0xFF.

The MOVW instruction (move wide), will move a 16-bit constant into a register, while zeroing the
top 16 bits of the target register. MOVT (move top) will move a 16-bit constant into the top half of
a given register, without changing the bottom 16 bits. This permits a MOV32 pseudo-instruction
to construct any 32-bit constant. The assembler provides some more help here. The prefixes
:upper16: and :lower16: enable you to extract the corresponding half from a 32-bit constant:

MOVW R0, #:lower16:label
MOVT R0, #:upper16:label

Although this requires two instructions, it does not require any extra space to store the constant,
and there is no requirement to read a data item from memory.

You can also use pseudo-instructions such as LDR Rn, =<constant> or LDR Rn, =label. (This was
the only option for older processors that lacked MOVW and MOVT.) The assembler will then use the
best sequence to generate the constant in the specified register (one of MOV, MVN or an LDR from a
literal pool). A literal pool is an area of constant data held within the code section, typically after
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-2
ID071714 Non-Confidential

Unified Assembly Language Instructions
the end of a function and before the start of another. If it is necessary to manually control literal
pool placement, this can be done with an assembler directive – LTORG for armasm, or .ltorg
when using GNU tools. The register loaded could be the program counter, would cause a branch.

This can be useful for absolute addressing or for references outside the current section;
obviously this will result in position-dependent code. The value of the constant can be
determined either by the assembler, or by the linker.

ARM tools also provides the related pseudo-instruction ADR Rn, =label. This uses a PC-relative
ADD or SUB, to place the address of the label into the specified register, using a single instruction.
If the address is too far away to be generated this way, the ADRL pseudo-instruction is used. This
requires two instructions, that gives a better range. This can be used to generate addresses for
position-independent code, but only within the same code section.

5.1.2 Conditional execution

A feature of the ARM instruction set is that nearly all instructions are conditional. On most other
architectures, only branches or jumps can be executed conditionally. This can be useful in
avoiding conditional branches in small if/then/else constructs or for compound comparisons.

As an example of this, consider code to find the smaller of two values, in registers R0 and R1
and place the result in R2. This is shown in Example 5-1. The suffix LT indicates that the
instruction should be executed only if the most recent flag-setting instruction returned less than;
GE means greater than or equal.

Example 5-1 Example code showing branches (GNU)

@ Code using branches
CMP R0, R1
BLT .Lsmaller @ if R0<R1 jump over
MOV R2, R1 @ R1 is less than or equal to R0
B .Lend @ finish

.Lsmaller:
MOV R2, R0 @ R0 is less than R1

.Lend:

Now look at the same code written using conditional MOV instructions, rather than branches, in
Example 5-2

Example 5-2 Same example using conditional execution

CMP R0, R1
MOVGE R2, R1 @ R1 is less than or equal to R1
MOVLT R2, R0 @ R0 is less than R1

The latter piece of code is both smaller and, on older ARM processors, is faster to execute.
However, this code can actually be slower on some processors where inter-instruction
dependencies could cause longer stalls than a branch, and branch prediction can reduce, or
potentially eliminate the cost of branches.

As a reminder, this style of programming relies on the fact that status flags can be set optionally
on some instructions. If the MOVGE instruction in Example 5-2 automatically set the flags, the
program might not work correctly. Load and Store instructions never set the flags. For data
processing operations, however, you have a choice. By default, flags are preserved during such
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-3
ID071714 Non-Confidential

Unified Assembly Language Instructions
instructions. If the instruction is suffixed with an S (for example, MOVS rather than MOV), the
instruction will set the flags. The S suffix is not required, or permitted, for the explicit
comparison instructions. The flags can also be set manually, by using the dedicated PSR
manipulation instruction (MSR). Some instructions set the Carry flag (C) based on the carry from
the ALU and others based on the barrel shifter carry (that shifts a data word by a specified
number of bits in one clock cycle).

Thumb code has a somewhat different mechanism for conditional execution. Branches can be
executed conditionally. Instructions can also be conditionally executed by using the Compare
and Branch on Zero (CBZ) and Compare and Branch on Non-Zero (CBNZ) instructions. These
compare the value of a register against zero and branch on the result.

Thumb-2 technology also introduced the If-Then (IT) instruction, providing conditional
execution for up to four consecutive instructions. The conditions might all be identical, or some
might be the inverse of the others. Instructions within an IT block must also specify the
condition code to be applied.

IT is a 16-bit instruction that enables nearly all Thumb instructions to be conditionally executed,
depending on the value of the ALU flags, using the condition code suffix.The syntax of the
instruction is IT{x{y{z}}} where x, y and z specify the condition switch for the optional
instructions in the IT block, either Then (T) or Else (E), for example, ITTET.

ITT EQ
SUBEQ r1, r1, #1
ADDEQ r0, r0, #60

Typically, IT instructions are auto-generated by the assembler, rather than being hand-coded.
16-bit instructions that normally change the condition code flags, will not do so inside an IT
block, except for CMP, CMN and TST whose only action is to set flags. There are some restrictions
on which instructions can be used within an IT block. Exceptions can occur within IT blocks,
the current if-then status is stored in the CPSR and so is copied into the SPSR on exception entry,
so that when the exception returns, the execution of the IT block resumes correctly.

Certain instructions always set the flags and have no other effect. These are CMP, CMN, TST and
TEQ, that are analogous to SUBS, ADDS, ANDS and EORS but with the result of the ALU calculation
being used only to update the flags and not being placed in a register.

Table 5-1 lists the 15 condition codes that can be attached to most instructions.

Table 5-1 Condition code suffixes

Sign Suffix Meaning Flags

EQ Equal Z = 1

NE Not equal Z = 0

CS Carry set (identical to HS) C = 1

CC Carry clear (identical to LO) C = 0

MI Minus or negative result N = 1

PL Positive or zero result N = 0

VS Overflow V = 1

VC Now overflow V = 0

AL Always. This is the default -
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-4
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.1.3 Status flags and condition codes

Program Status Registers on page 3-5, stated that the ARM processor has a Current Program
Status Register (CPSR) that contains four status flags, (Z)ero, (N)egative, (C)arry and
o(V)erflow. Table 5-2 indicates the value of these bits for flag setting operations.

The C flag is set if the result of an unsigned operation overflows the 32-bit result register. This
bit might be used to implement 64-bit (or longer) arithmetic using 32-bit operations, for
example.

The V flag operates in the same way as the C flag, but for signed operations. 0x7FFFFFFF is the
largest signed positive integer that can be represented in 32 bits. If, for example, you add 2 to
this value, you will produce 0x80000001, a large negative number. The V bit is set to indicate the
overflow or underflow, from bit [30] to bit [31].

Unsigned HI Higher C = 1 AND Z = 0

HS Higher or same C = 1

LS Lower or same C = 0 OR Z = 1

LO Lower (identical to CC) C = 0

Signed GT Greater than Z = 0 AND N = V

GE Greater than or equal N = V

LE Less than or equal Z = 1 OR N != V

LT Less than N != V

Table 5-1 Condition code suffixes (continued)

Sign Suffix Meaning Flags

Table 5-2 Summary of PSR flag bits

Flag Bit Name Description

N 31 Negative Set to the same value as bit[31] of the result. For a 32-bit signed integer, bit[31] being set indicates
that the value is negative.

Z 30 Zero Set to 1 if the result is zero, otherwise it is set to 0.

C 29 Carry Set to the carry-out value from result, or to the value of the last bit shifted out from a shift
operation.

V 28 Overflow Set to 1 if signed overflow or underflow occurred, otherwise it is set to 0.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-5
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.2 Data processing operations
These are essentially the fundamental arithmetic and logical operations of the processor.
Multiplies can be considered a special case of these – they typically have slightly different
format and rules and are executed in a dedicated unit of the processor.

The ARM processors can only perform data processing on registers, never directly on memory.
Data processing instructions (for the most part) use one destination register and two source
operands. The basic format can be considered to be the opcode, optionally followed by a
condition code, optionally followed by S (set flags), as follows:

Operation{cond}{s} Rd, Rn, Operand2

Table 5-3 summarizes the data processing assembly language instructions, giving their
mnemonic opcode, operands and a brief description of their function.

The purpose and function of many of these instructions should be apparent to most
programmers, but some require additional explanation.

Table 5-3 Summary of data processing operations in assembly language

Opcode Operands Description Function

Arithmetic operations

ADC Rd, Rn, Op2 Add with carry Rd = Rn + Op2 + C

ADD Rd, Rn, Op2 Add Rd = Rn + Op2

MOV Rd, Op2 Move Rd = Op2

MVN Rd, Op2 Move NOT Rd = ~Op2

RSB Rd, Rn, Op2 Reverse Subtract Rd = Op2 – Rn

RSC Rd, Rn, Op2 Reverse Subtract with
Carry

Rd = Op2 – Rn - !C

SBC Rd, Rn, Op2 Subtract with carry Rd = Rn – Op2 -!C

SUB Rd, Rn, Op2 Subtract Rd = Rn – Op2

Logical operations

AND Rd, Rn, Op2 AND Rd = Rn & Op2

BIC Rd, Rn, Op2 Bit Clear Rd = Rn & ~ Op2

EOR Rd, Rn, Op2 Exclusive OR Rd = Rn ^ Op2

ORR Rd, Rn, Op2 OR Rd = Rn | Op2
(OR NOT)
Rd = Rn | ~Op2

Flag setting instructions

CMP Rn, Op2 Compare Rn – Op2

CMN Rn, Op2 Compare Negative Rn + Op2

TEQ Rn, Op2 Test EQuivalence Rn ^ Op2

TST Rn, Op2 Test Rn & Op2
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-6
ID071714 Non-Confidential

Unified Assembly Language Instructions
In the arithmetic operations, notice that the move operations MOV and MVN require only one
operand (and this is treated as an operand 2 for maximum flexibility, as we shall see). RSB does
a reverse subtract – that is to say it subtracts the first operand from the second operand. This
instruction is required because the first operand is inflexible – it can only be a register value. So
to write R0 = 100 – R1, you must use RSB R0,R1,#100, as SUB R0,#100,R1 is an illegal instruction.
The operations ADC, RSC and SBC perform additions and subtractions with carry. This lets you
synthesize arithmetic operations on values larger than 32 bits.

The logical operations are essentially the same as the corresponding C operators. Notice the use
of ORR rather than OR (this is because the original ARM instruction set had three letter acronyms
for all data-processing operations). The BIC instruction does an AND of a register with the
inverted value of operand 2. If, for example, you want to clear bit [11] of register R0, you can
do it with the instruction BIC R0, R0, #0x800.

The second operand 0x800 has only bit [11] set to one, with all other bits at zero. The BIC
instruction inverts this operand, setting all bits except bit [11] to logical one. ANDing this value
with the value in R0 has the effect of clearing bit [11] and this result is then written back into R0.

The compare and test instructions modify the CPSR and have no other effect.

5.2.1 Operand 2 and the barrel shifter

The first operand for all data processing operations must always be a register. The second
operand is much more flexible and can be either an immediate value (#x), a register (Rm), or a
register shifted by an immediate value or register “Rm, shift #x” or “Rm, shift Rs”. There are
five shift operations: logical left shift (LSL), logical right-shift (LSR), arithmetic right-shift (ASR),
rotate-right (ROR) and rotate-right extended (RRX).

A right shift creates empty positions at the top of the register. In that case, you must differentiate
between a logical shift, that inserts 0 into the most significant bit(s) and an arithmetic shift, that
fills vacant bits with the sign bit, from bit [31] of the register. So an ASR operation might be used
on a signed value, with LSR used on an unsigned value. No such distinction is required on
left-shifts, that always insert 0 to the least significant position.

So, unlike many assembly languages, ARM assembly language does not require explicit shift
instructions. Instead, the MOV instruction can be used for shifts and rotates. R0 = R1 >> 2 is done
as MOV R0, R1, LSR #2. Equally, it is common to combine shifts with ADD, SUB or other instructions.
For example, to multiply R0 by 5, you might write:

ADD R0, R0, R0, LSL #2

A left shift of n places is effectively a multiply by 2 to the power of n, so this effectively makes
R0 = R0 + (4 × R0). A right shift provides the corresponding divide operation, although ASR
rounds negative values differently than would division in C.

Apart from multiply and divide, another common use for shifted operands is array index
look-up. Consider the case where R1 points to the base element of an array of int (32-bit)
values and R2 is the index that points to the nth element in that array. You can obtain the array
value with a single load instruction that uses the calculation R1 + (R2 × 4) to get the appropriate
address. Example 5-3 on page 5-8 provides examples of differing operand 2 types used in ARM
instructions.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-7
ID071714 Non-Confidential

Unified Assembly Language Instructions
Example 5-3 ARM instructions showing a variety of operand 2 types

add R0, R1, #1 @ R0 = R1 + 1
add R0, R1, R2 @ R0 = R1 + R2
add R0, R1, R2, LSL #4 @ R0 = R1 + R2<<#4
add R0, R1, R2, LSL R3 @ R0 = R1 + R2<<R3

5.2.2 Multiplication operations

The multiply operations are readily understandable. A key limitation is that there is no scope to
multiply by an immediate value. Multiplies operate only on values in registers. Multiplication
by a constant might require that constant to be loaded into a register first. Later versions of the
ARM processor add significantly more multiply instructions, giving a range of possibilities for
8, 16 and 32-bit data. We will consider these in Integer SIMD instructions on page 5-16 when
looking at the DSP instructions.

Table 5-4 summarizes the multiplication assembly language instructions, giving their
mnemonic opcode, operands and a brief description of their function.

5.2.3 Additional multiplies

We saw in the data-processing instructions that we have the ability to multiply one 32-bit
register with another, to produce either a 32-bit result or a 64-bit signed or unsigned result. In
all cases, there is the option to accumulate a 32-bit or 64-bit value into the result. Additional
multiply instructions have been added. There are signed most-significant word multiplies,
SMMUL, SMMLA and SMMLS. These perform a 32 × 32-bit multiply in which the result is the top 32
bits of the product, with the bottom 32 bits discarded. The result can be rounded by applying an
R suffix, otherwise it is truncated. The UMAAL (Unsigned Multiply Accumulate Accumulate
Long) instruction performs a 32 × 32-bit multiply and adds in the contents of two 32-bit
registers.

Table 5-4 Summary of multiplication operations in assembly language

Opcode Operands Description Function

Multiplies

MLA Rd, Rn, Rm, Ra Multiply accumulate (MAC) Rd = Ra + (Rn × Rm)

MLS Rd, Rn, Rm, Ra Multiply and Subtract Rd = Ra - (Rm × Rn)

MUL Rd, Rn, Rm Multiply Rd = Rn × Rm

SMLAL RdLo, RdHi, Rn, Rm Signed 32-bit multiply with a
64-bit accumulate

RdHiLo += Rn × Rm

SMULL RdLo, RdHi, Rn, Rm Signed 32-bit multiply with
64-bit result

RdHiLo = Rn × Rm

UMLAL RdLo, RdHi, Rn, Rm Unsigned 32-bit MAC with a
64-bit result.

RdHiLo += Rn × Rm

UMULL RdLo, RdHi, Rn, Rm Unsigned 32-bit multiply with
a 64-bit result

RdHiLo = Rn × Rm
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-8
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.2.4 Hardware divide operations

The SDIV and UDIV hardware divide instructions are available in all implementations of the
ARMv7-R architecture profile, but only in some ARMv7-A implementations. SDIV performs a
signed 32-bit integer division. UDIV performs an unsigned 32-bit integer division.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-9
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.3 Memory instructions
ARM processors perform Arithmetic Logic Unit (ALU) operations only on registers. The only
supported memory operations are the load (that read data from memory into registers) or store
(that write data from registers to memory). A LDR and STR can be conditionally executed, in the
same fashion as other instructions.

You can specify the size of the Load or Store transfer by appending a B for Byte, H for
Halfword, or D for doubleword (64 bits) to the instruction, for example, LDRB. For loads only, an
extra S can be used to indicate a signed byte or halfword (SB for Signed Byte or SH for Signed
Halfword).

This approach can be useful, because if you load an 8-bit or 16-bit quantity into a 32-bit register
you must decide what to do with the most significant bits of the register. For an unsigned
number, you zero-extend, that is, you write the most significant 16 or 24 bits of the register to
zero. But for a signed number, it is necessary to copy the sign bit (bit [7] for a byte, or bit [15]
for a halfword) into the top 16 (or 24) bits of the register.

5.3.1 Addressing modes

There are multiple addressing modes that can be used for loads and stores. The number in
parentheses refers to Example 5-4:

• Register addressing– the address is in a register (1).

• Pre-indexed addressing – an offset to the base register is added before the memory access.
The base form of this is LDR Rd, [Rn, Op2]. The offset can be positive or negative and can
be an immediate value or another register with an optional shift applied.(2),(3).

• Pre-indexed with write-back – this is indicated with an exclamation mark (!) added after
the instruction. After the memory access has occurred, this updates the base register by
adding the offset value (4).

• Post-index with write-back – here, the offset value is written after the square bracket. The
address from the base register only is used for the memory access, with the offset value
added to the base register after the memory access (5).

Example 5-4 Examples of addressing modes

(1) LDR R0, [R1] @ address pointed to by R1
(2) LDR R0, [R1, R2] @ address pointed to by R1 + R2
(3) LDR R0, [R1, R2, LSL #2] @ address is R1 + (R2*4)
(4) LDR R0, [R1, #32]! @ address pointed to by R1 + 32, then R1:=R1 + 32
(5) LDR R0, [R1], #32 @ read R0 from address pointed to by R1, then R1:=R1 + 32

5.3.2 Multiple transfers

Load and Store Multiple instructions enable successive words to be read from or written to
memory. These are extremely useful for stack operations and for memory copying. Only word
values can be transferred in this way and a word aligned address must be used.

The operands are a base register with a list of registers between braces. The optional ! denotes
write-back of the base register. The register list is comma separated, with hyphens used to
indicate ranges. The order in which the registers are loaded or stored has nothing to do with the
order specified in this list. Instead, the operation proceeds in a fixed fashion, in increasing
register order, with the lowest numbered register always mapped to the lowest address.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-10
ID071714 Non-Confidential

Unified Assembly Language Instructions
For example:

LDMIA R10!, { R0-R3, R12 }

This instruction reads five registers from the addresses pointed to by register (R10) and because
write-back is specified, increments R10 by 20 (5 × 4 bytes) at the end.

The instruction must also specify how to proceed from the base register Rd. The four
possibilities are: IA/IB (Increment After/Before) and DA/DB (Decrement After/Before). These
can also be specified using aliases (FD, FA, ED and EA) that work from a stack point of view
and specify whether the stack pointer points to a full or empty top of the stack, and whether the
stack ascends or descends in memory.

By convention, only the Full Descending (FD) option is used for stacks in ARM processor based
systems. This means that the stack pointer points to the last filled location in stack memory and
will decrement with each new item of data pushed to the stack.

For example:

STMFD sp!, {r0-r5} ; Push onto a Full Descending Stack
LDMFD sp!, {r0-r5} ; Pop from a Full Descending Stack

Figure 5-1 shows a push of two registers to the stack. Before the STMFD (PUSH) instruction is
executed, the stack pointer points to the last occupied word of the stack. After the instruction is
completed, the stack pointer has been decremented by 8 (two words) and the contents of the two
registers have been written to memory, with the lowest numbered register being written to the
lowest memory address.

Figure 5-1 Stack push operation

SP

Address Memory Memory

1111

2222

1111

2222

SP

Stack
Pointer

decremented

Register
contents

R1

R2
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-11
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.4 Branches
The instruction set provides a number of different kinds of branch instruction. For simple
relative branches (those to an offset from the current address), the B instruction is used. Calls to
subroutines, where it is necessary for the return address to be stored in the link register, use the
BL instruction.

If you want to change instruction set (from ARM to Thumb or Thumb to ARM), use BX, or BLX.

You can also specify the PC as the destination register for the result of normal data processing
operations such as ADD or SUB, but this is generally deprecated and is unsupported in Thumb. An
additional type of branch instruction can be implemented using either a load (LDR) with the PC
as the target, load multiple (LDM), or stack-pop (POP) instruction with PC in the list of registers to
be loaded.

Thumb has the compare and branch instruction. This fuses a CMP instruction and a conditional
branch, but does not change the CPSR condition code flags. There are two opcodes, CBZ
(compare and branch to label if Rn is zero) and CBNZ (compare and branch to label if Rn is not
zero). These instructions can only branch forward between 4 and 130 bytes. Thumb also has the
TBB (Table Branch Byte) and TBH (Table Branch Halfword) instructions. These instructions read
a value from a table of offsets (either byte or halfword size) and perform a forward PC-relative
branch of twice the value of the byte or the halfword returned from the table. These instructions
require the base address of the table to be specified in one register, and the index in another.

Knowledge of the processor behavior with branches can be useful when writing highly
optimized code. The hardware performance monitor counters can generate information about
the numbers of branches correctly or incorrectly predicted.

When moving or modifying code at an address from which code has already been executed in
the system, it might be necessary (and is always prudent) to remove stale entries from the branch
history logic by using the CP15 instruction that invalidates all entries.

5.4.1 Direct and indirect branches

Branches can be split into two categories, direct and indirect branches. Direct branches are PC
relative, and branch to an offset from the current address. The range of a direct branch is limited,
for example, +/-32MB for an ARM B or BL instruction. Because the branch destination is
PC-relative, it can be determined exactly at an early stage of the pipeline.

Example 5-5 Direct branch examples

B <label>
BL <label>
BLX <label>
TBB [Rn, Rm]
TBH [Rn, Rm]

Indirect branches perform an absolute branch, so can branch to any location in the address space.
However, because the destination is specified in a register or loaded from memory, the
destination cannot be easily predicted by the processor.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-12
ID071714 Non-Confidential

Unified Assembly Language Instructions
Example 5-6 Indirect branch examples

BX <Rd>
LDR pc, [Rd]
ADD pc, Rn, Rm
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-13
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.5 Branch prediction
Many branch instructions are conditional. For conditional branches, whether the branch should
be taken cannot be determined until the instruction is executed. The processor makes a
prediction about whether the branch will be taken and fetches based on the prediction. The
processor must also be able to detect when it gets the prediction wrong, and re-fetch from the
correct location.

Branch prediction logic is an important factor in achieving high throughput in Cortex-R series
processors. With no branch prediction, you would have to wait until a conditional branch
executes before you could determine where to fetch the next instruction from.

The branch prediction logic predicts:

• Whether there is a branch instruction at a given address.

• The type of the branch:
— Unconditional or conditional.
— Immediate or load.
— Normal branch, function call, or function return.

• The target address and the state of the branch, either ARM or Thumb.

• The direction of conditional branch, either taken or not taken.

There are two branch prediction methods:

• Static branch prediction.

• Dynamic branch prediction.

5.5.1 Static branch prediction

The static branch prediction method is simple as it requires no prior information about the
branch. The prediction happens at the decode stage. A fetch decision cannot be made before this
stage. The first time that a conditional branch instruction is fetched, there is little information
on which to base a prediction about the address of the next instruction. It speculatively takes
backward branches rather than forward branches.

A backward branch has a target address that is lower than its own address. It can therefore look
at a single opcode bit to determine the branch direction. This technique can give reasonable
prediction accuracy because of the prevalence of loops, where backward-pointing branches are
taken more often than not taken.

5.5.2 Dynamic branch prediction

Because of the longer pipeline length, complex branch prediction schemes, such as dynamic
prediction, gives better prediction accuracy. Dynamic prediction hardware can reduce the
average branch penalty by making use of historical information about whether conditional
branches were taken or not taken on previous execution. It can speculatively fetch a chosen
branch of the execution code.

A Branch Target Address Cache (BTAC), in the Cortex-R7 processor, is a cache that holds
information about previous branch instruction execution. Dynamic branch prediction avoids
unnecessary instruction cache lookup and memory accesses. The prediction quality is higher for
previously seen branches. By default, the processor uses dynamic branch prediction. If there is
no history information, then it uses static branch prediction.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-14
ID071714 Non-Confidential

Unified Assembly Language Instructions
The processor must still evaluate the condition code attached to a branch instruction. If the
branch prediction hardware predicts correctly, the pipeline does not have to be stalled. If the
branch prediction hardware speculation was wrong, the processor will flush the pipeline and
refill it.

5.5.3 Return stack prediction

For most branch instructions, the target address is fixed and encoded in the instruction.
However, there is a class of branches where the branch target destination cannot be determined
by looking at the instruction. For example, if you perform a data processing operation that
modifies the PC (for example, MOV, ADD or SUB) you must wait for the ALU to evaluate the result
before you can know the branch target. Similarly if you load the PC from memory, using an LDR,
LDM or POP instruction, you cannot know the target address until the load completes.

Such branches are called indirect branches and generally cannot be predicted in hardware. A
common indirect branch case is the function return, though this can be optimized, using a Last
In First Out (LIFO) stack in the pre-fetch hardware, the return stack.

The Return Stack for the Cortex-R4 and Cortex-R5 processors consists of a four entry LIFO
buffer. The Cortex-R7 processor has a eight stack FIFO buffer. When a function call instruction
is executed, the generated LR is pushed onto the LIFO buffer. When a function return is
detected, the pipeline predicts that the destination is the top entry of the LIFO buffer.

Recognized function calls:

BL immediate
BLX immediate
BLX Rm

Recognized function returns:

POP {..,pc}
LDMIB Rn{!}, {..,pc}
LDMDA Rn{!}, {..,pc}
LDMDB Rn{!}, {..,pc}
LDR pc, [sp], #4
BX Rm
BX LR

Not all possible return sequences are predicted. For example, the return stack does not recognize
MOV pc, lr that might be present in legacy code.

When a function call (BL or BLX) instruction is executed, you should enter the address of the
following instruction into this stack. When you encounter an instruction that is recognized as a
function return instruction, you can speculatively pop an entry from the stack and start fetching
instructions from that address. When the return instruction actually executes, the hardware
compares the address generated by the instruction with that predicted by the stack. If there is a
mismatch, the pipeline is flushed and you restart from the correct location.

The return stack is of a fixed size. If a particular code sequence contains a large number of
nested function calls, an eight entry return stack can predict only the first eight function returns.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-15
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.6 Integer SIMD instructions
This section describes the SIMD (Single Instruction, Multiple Data) operations added in the
ARMv6 architecture. SIMD is one of four classifications of computer architectures defined by
Michael J. Flynn in 1966 based on the number of instruction and data streams available in the
architecture.

These instructions provide the ability to pack, extract and unpack 8-bit and 16-bit quantities
within 32-bit registers and to perform multiple arithmetic operations such as add, subtract,
compare or multiply to such packed data, with a single instruction.

Note
 The SIMD instructions are part of the ARM and Thumb instruction set.

5.6.1 Integer register SIMD instructions

SIMD operations make use of the GE (greater than or equal) flags within the CPSR. These are
distinct from the normal condition flags. There is a flag corresponding to each of the four byte
positions within a word. Normal data processing operations produce one value and set the N, Z,
C and V flags (as seen in Figure 3-3 on page 3-5). The SIMD operations produce up to four
outputs and set only the GE flags, to indicate overflow. The MSR and MRS instructions can be used
to write or read these flags directly.

The general form of the SIMD instructions are that subword quantities in each register are
operated on in parallel (for example, four ADDs on four bytes can be performed) and the GE flags
are set or cleared according to the results of the instruction. Different types of add and subtract
can be specified using appropriate prefixes. For example, QADD16 performs saturating addition
on halfwords within a register. SADD/UADD8 and SSUB/USUB8 set the GE bits individually while
SADD/UADD16 and SSUB/USUB16 set GE bits [3:2] together based on the top halfword result, and
[1:0] together on the bottom halfword result.

Also available are the ASX and SAX class of instructions, that reverse halfwords of one operand
and add/subtract or subtract/add parallel pairs. Like the previously described ADD and Subtract
instructions, these exist as unsigned (UASX/USAX), signed (SASX/SSAX) and saturated (QASX/QSAX)
versions.

Figure 5-2 ADD v6 SIMD example

R3 R0

R1

SADD16 R1, R3, R0

GE[1:0]GE[3:2]
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-16
ID071714 Non-Confidential

Unified Assembly Language Instructions
The SADD16 instruction shown in Figure 5-2 on page 5-16 shows how two separate addition
operations are performed by a single instruction. The top halfwords of registers R3 and R0 are
added, with the result going into the top halfword of register R1 and the bottom halfwords of
registers R3 and R0 are added, with the result going into the bottom halfword of register R1.
GE[3:2] bits in the CPSR are set based on the top halfword result and GE[1:0] based on the
bottom halfword result. In each case the carry flag is duplicated in the specified pair of bits. The
two operations are entirely separate. In particular, there is no overflow from bit 15 (the top of
the lower addition) to bit 16 (the bottom of the higher).

5.6.2 Integer register SIMD multiplies

Like the other SIMD operations, these operate in parallel, on subword quantities within
registers. The instruction can also include an accumulate option, with add or subtract being able
to be specified. The instructions are SMUAD (SIMD multiply and add with no accumulate), SMUSD
(SIMD multiply and subtract with no accumulate), SMLAD (multiply and add with accumulate)
and SMLSD (multiply and subtract with accumulate).

Adding an L (long) before D indicates 64-bit accumulation.

Using the X (eXchange) suffix indicates halfwords in Rm are swapped before calculation.

The Q flag is set if accumulation overflows.

The SMUSD instruction shown in Figure 5-3 performs two signed 16-bit multiplies (top × top and
bottom × bottom) and then subtracts the two results. This kind of operation is useful when
performing operations on complex numbers (with a real and imaginary component), a common
task for filter algorithms.

Figure 5-3 v6 SIMD signed dual multiply subtract example

5.6.3 Sum of absolute differences

Calculating the sum of absolute differences is a key operation in the motion vector estimation
component of common video codecs and is carried out over arrays of pixel data. The USADA8 Rd,
Rn, Rm, Ra instruction is illustrated in Figure 5-4 on page 5-18. It calculates the sum of absolute
differences of the bytes within a word in registers Rn and Rm, adds in the value stored in Ra and
places the result in Rd.

Rn Rm

Rd

SMUSD Rd, Rn, Rm

-

ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-17
ID071714 Non-Confidential

Unified Assembly Language Instructions
Figure 5-4 Sum of absolute differences

5.6.4 Data packing and unpacking

Packed data is common in many video and audio codecs (video data is usually expressed as
packed arrays of 8-bit pixel data, audio data can use packed 16-bit samples), and also in network
protocols. Before additional instructions were added in the ARMv6 architecture, this data had
to be either loaded with LDRH and LDRB instructions or loaded as words and then unpacked using
Shift and Bit Clear operations; both are relatively inefficient. Pack (PKHBT, PKHTB) instructions
enable 16-bit or 8-bit values to be extracted from any position in a register and packed into
another register. Unpack instructions (UXTH, UXTB, plus many variants, including signed, with
addition) can extract 8-bit or 16-bit values from any bit position within a register.

This enables sequences of packed data in memory to be loaded efficiently using word or
doubleword loads, unpacked into separate register values, operated on and then packed back
into registers for efficient writing out to memory.

Figure 5-5 Packing and unpacking of 16-bit data in 32-bit registers

In the simple example shown in Figure 5-5, R0 contains two separate 16-bit values, denoted A
and B. You can use the UXTH instruction to unpack the two halfwords into registers for additional
processing and you can then use the PKHBT instruction to pack halfword data from two registers

Rn Rm

Ra

Rd

Optional accumulation

ABSDIFFABSDIFFABSDIFFABSDIFF

USADA8 Rd, Rn, Rm, Ra

UXTH r1, r0, ROR #16 UXTH r2, r0

PKHBT r0, r2, r1, LSL #16

B R0A

B R200...00AR2 00...00

B R0A
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-18
ID071714 Non-Confidential

Unified Assembly Language Instructions
into one. It would be possible to replace the unpack instruction in each case with a MOV and either
LSL or LSR instructions, but in this case you use a single instruction intended to work on parts of
registers.

5.6.5 Byte selection

The SEL instruction enables us to select each byte of the result from the corresponding byte in
either the first or the second operand, based on the value of the GE[3:0] bits in the CPSR. The
packed data arithmetic operations set these bits as a result of add or subtract operations, and SEL
can be used after these to extract parts of the data – for example, to find the smaller of the two
bytes in each position.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-19
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.7 Saturating arithmetic
Saturated arithmetic is commonly used in audio and video codecs. Calculations that return a
value higher (or lower) than the largest positive (or negative) number that can be represented do
not overflow. Instead the result is set to the largest positive or negative value (saturated). The
ARM instruction set includes a number of instructions that enables easy implementation of such
algorithms.

5.7.1 Saturated math instructions

The ARM saturated arithmetic instructions can operate on byte, word or halfword sized values.
For example, the 8 of the QADD8 and QSUB8 instructions indicate that they operate on byte sized
values. The result of the operation is saturated to the largest possible positive or negative
number. If the result would have overflowed and has been saturated, the overflow flag (CPSR
Q bit) is set. This flag is said to be sticky. When set it will remain set until explicitly cleared by
a write to the CPSR.

The instruction set provides special instructions with this behavior, QSUB and QADD. Additionally,
QDSUB and QDADD are provided in support of Q15 or Q31 fixed point arithmetic. These instructions
double and saturate their second operand before performing the specified add or subtract.

The Count Leading Zeros (CLZ) instruction returns the number of 0 bits before the most
significant bit that is set. This can be useful for normalization and for certain division
algorithms. To saturate a value to a specific bit position (effectively saturate to a power of two),
you can use the USAT or SSAT (unsigned or signed) saturate operations. USAT16 and SSAT16 permit
saturation of two halfword values packed within a register.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-20
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.8 Miscellaneous instructions
The remaining instructions cover coprocessor, supervisor call, PSR modification, byte reversal,
cache preload, bit manipulation and a few others.

5.8.1 Coprocessor instructions

Coprocessor instructions occupy part of the ARM instruction set. Up to 16 coprocessors can be
implemented, numbered 0 to 15 (CP0, CP1 … CP15). These can either be internal (built-in to
the processor) or connected externally, through a dedicated interface. Use of external
coprocessors is uncommon in older processors and is not supported at all in the Cortex-R series.

• Coprocessor 15 is a built-in coprocessor that provides control over many processor
features, including cache and MPU.

• Coprocessor 14 is a built-in coprocessor that controls the hardware debug facilities of the
processor, such as breakpoint units (described in Chapter 17 Debug).

• Coprocessors 10 and 11 give access to the floating-point hardware in the system
(described in Chapter 6 Floating-Point).

If a coprocessor instruction is executed, but the appropriate coprocessor is not present in the
system, an undefined instruction exception occurs.

There are five classes of coprocessor instruction

• CDP – initiate a coprocessor data processing operation.

• MRC – move to ARM register from coprocessor register.

• MCR – move to coprocessor register from ARM register.

• LDC – load coprocessor register from memory.

• STC – store from coprocessor register to memory.

Multiple register and other variants of these instructions are also available:

• MRRC – transfers a value from a Coprocessor to a pair of ARM registers.

• MCCR – transfers a pair of ARM register to a coprocessor.

• LDCL – reads multiple words of memory from a coprocessor register,

• STCL – writes multiple words of memory to a coprocessor register,

These and other variants are described more fully in Appendix A Instruction Summary.

5.8.2 SVC

The SVC (supervisor call) instruction, when executed, causes a supervisor call exception. This is
described in Chapter 11 Exceptions and Interrupts. The instruction includes a 24-bit (ARM) or
8-bit (Thumb) number value, that can be examined by the SVC handler code. Through the SVC
mechanism, an operating system can specify a set of privileged operations that applications
running in User mode can request. This instruction was originally called SWI (Software
Interrupt).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-21
ID071714 Non-Confidential

Unified Assembly Language Instructions
5.8.3 PSR modification

Several instructions enable the PSR to be written to, or read from:

• MRS transfers the CPSR or SPSR value to a general purpose register. MSR transfers a general
purpose register to the CPSR or SPSR. Either the whole status register, or part of it can be
updated. In User mode, all bits can be read, but only the condition flags (_f) are permitted
to be modified.

• In a privileged mode the Change Processor State (CPS) instruction can be used to directly
modify the mode and interrupt-enable or disable (I and F) bits in the CPSR. See Figure 3-3
on page 3-5.

• SETEND modifies a single CPSR bit, the E (Endian) bit. This can be used in systems with
mixed endian data to temporarily switch between little- and big-endian data access.

5.8.4 Bit manipulation

There are instructions that permit bit manipulation of values in registers:

• The Bit Field Insert (BFI) instruction enables a series of adjacent bits from the bottom of
one register (specified by supplying a width value and LSB position) to be placed into any
position in the destination register.

• The Bit Field Clear (BFC) instruction enables adjacent bits within a register to be cleared.

• The SBFX and UBFX instructions (Signed and Unsigned Bit Field Extract) copy adjacent bits
from one register to the least significant bits of a second register, and sign extend or zero
extend the value to 32 bits.

• The RBIT instruction reverses the order of all bits within a register.

5.8.5 Cache preload

Two instructions are provided, PLD (data cache preload) and PLI (instruction cache preload).
Both instructions act as hints to the memory system that an access to the specified address is
likely to occur soon. An illegal address specified as a parameter to the PLD instruction will not
result in a data abort exception.

5.8.6 Byte reversal

Instructions to reverse byte order can be useful for dealing with quantities of the opposite
endianness or other data re-ordering operations.

• The REV instruction reverses the bytes in a word

• The REV16 reverses the bytes in each halfword of a register

• The REVSH reverses the bottom two bytes, and sign extends the result to 32 bits.

Figure 5-6 on page 5-23 illustrates the operation of the REV instruction, showing how four bytes
within a register have their ordering within a word reversed.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-22
ID071714 Non-Confidential

Unified Assembly Language Instructions
Figure 5-6 Operation of the REV instruction

5.8.7 Other instructions

A few other instructions are available:

• The breakpoint instruction (BKPT) will either cause a prefetch abort (see Types of exception
on page 11-2) or cause the processor to enter debug state (depending on the whether the
processor is configured for monitor or halt mode debug). This instruction is used by
debuggers. See Debug events on page 17-2.

• Wait For Interrupt (WFI) puts the processor into standby mode, described in Chapter 16
Power Management. The processor stops execution until woken by an interrupt or debug
event. If WFI is executed with interrupts disabled, an interrupt will still wake the processor,
but no interrupt exception is taken. The processor proceeds to the instruction after the WFI.
In older ARM processors, WFI was implemented as a CP15 operation.

• A NOP instruction (no-operation) does nothing. It may or may not take time to execute, so
the NOP instruction should not be used to insert timing delays into code. It is intended to
be used as padding.

• A Wait for Event (WFE) instruction puts the core into standby mode in a similar way to
WFI. The core will sleep until woken by an event generated by another core executing a
REV instruction. An interrupt or a bug event will also cause the core to wake up.

• The SEV (Send Event) instruction is used to generate wake-up events that might wake-up
other cores in the cluster.

Bit[31:24] Bit[23:16] Bit15:8 Bit[7:0]

07 815 1623 2431
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 5-23
ID071714 Non-Confidential

Chapter 6
Floating-Point

All computer programs deal with numbers. Floating-point numbers, however, can sometimes
appear counter-intuitive to programmers who are not familiar with their detailed implementation.
Before looking at floating-point implementation on ARM processors, a short overview of
floating-point fundamentals is included. Programmers with prior floating-point experience might
want to skip the following section.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-1
ID071714 Non-Confidential

Floating-Point
6.1 Floating-point basics and the IEEE-754 standard
The IEEE-754 standard is the reference for almost all modern computer floating-point
mathematics implementations, including ARM floating-point systems. The original
IEEE-754-1985 standard was updated with the publication of IEEE-754-2008. The standard
defines precisely what result is produced by each of the fundamental floating-point operations
over all of the possible input values. It describes what a compliant implementation should do
with respect to rounding of results that cannot be expressed precisely. A simple example of such
a calculation would be 1.0 ÷ 3.0, that would require an infinite number of digits to express
precisely in decimal or binary notation.

IEEE-754 provides a number of different rounding options to cope with this (round towards
positive infinity, round towards negative infinity, round toward zero, and two forms of round to
nearest, see Rounding algorithms on page 6-4). IEEE-754 also specifies the outcome when an
exceptional operation occurs. This means a calculation which potentially represents a problem.
These conditions can be tested, either by querying the FPSCR (on ARM processors) or by
setting up trap handlers (on some systems). Examples of exceptional operations are as follows:

Overflow A result that is too large to represent.

Underflow A result that is so small that precision is lost.

Inexact A result that cannot be represented without some loss of precision. It is
clear that many floating-point calculations will fall into this category.

Invalid For example, attempting to calculate the square root of a negative number.

Division by zero Attempting to divide by zero.

The specification also describes what action should be taken when one of the above exceptional
operations is detected. Possible outcomes include the generation of a NaN (Not a Number) result
for invalid operations, positive or negative infinity, for overflow or division by zero, or
denormalized numbers in the case of underflow. The standard defines what results should be
produced if subsequent floating-point calculations operate on NaN or infinities.

One of the things that IEEE-754 defines is how floating-point numbers are represented within
the hardware. Floating-point numbers are typically represented using either single precision
(32-bit) or double-precision (64-bit). VFP supports single-precision (32-bit) and
double-precision (64-bit) formats in hardware. In addition, VFPv3 can have half-precision
extensions to enable 16-bit values to be used for storage.

Floating-point formats use the available space to store three pieces of information about a
floating-point number:

• A sign bit (S) that shows whether the number is positive (0) or negative (1).

• An exponent giving its order of magnitude.

• A mantissa giving the fractional binary digits of the number.

For a single precision float, for example, bit [31] of the word is the sign bit [S], bits [30: 23]
give the exponent and bits [22:0] give the mantissa. See Figure 6-1 on page 6-3.

The value of the number is then ±m × 2exp, where m is derived from the mantissa and exp is
derived from the exponent.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-2
ID071714 Non-Confidential

Floating-Point
Figure 6-1 Single precision floating-point format

The mantissa is not generated by directly taking the 23-bit binary value, but rather, it is
interpreted as being to the right of the binary point, with a 1 present to the left. In other words,
the binary mantissa must be greater than or equal to one and less than two. In the case where the
number is zero, this is represented by setting all of the exponent and mantissa bits to 0. There
are other special-case representations, for positive and negative infinity, and for the
not-a-number (NaN) values. A special case is that of denormalized values.

The sign bit lets us distinguish positive and negative infinity and NaN representations.
Similarly, the 8-bit exponent value is used to give a value in the range +128 to –127, so there is
an implicit offset of -127 in the encoding. Table 6-1 summarizes this.

Let’s consider an example:

The decimal value +0.5 is represented as a single precision float by the hexadecimal value
0x3F000000. This has a sign value of 0 (positive).

The value of the mantissa is 1.0, though the integral part (1) is implicit and is not stored. The
exponent value is specified in bits [30:23] – that hold 0b01111110, or 126 – offset by 127 to
represent an exponent of -1.

The value is therefore given by (-1)sign × mantissa × 2exponent = 1 × 1 × 2-1 = 0.5 (decimal)

Denormal numbers are a special case. If you set the exponent bits to zero, you can represent very
small numbers other than zero, by setting mantissa bits. Because normal values have an implied
leading 1, the closest value to zero you can represent as a normal value is ±2-126.

To get smaller numbers, the 1.m interpretation of the mantissa value is replaced with a 0.m
interpretation. Now, the number's magnitude is determined only by bit positions. When using
these extremely-small numbers, the available precision does not scale with the magnitude of the
value. Without the implied 1 attached to the mantissa, all bits to the left of the lowest set bit are
leading zeros, so the smallest representable number is 1.401298464e-45, represented by
0x00000001.

For performance reasons, such denormal values are often ignored and are flushed to zero. This
is strictly a violation of IEEE-754, but denormal values are used rarely enough in real programs
that the performance benefit is worth more than correct handling of these extremely small
numbers. Cortex processors with VFP enable code to select between flush-to-zero mode and full
denormal support.

31 22 030 23

MantissaExponentS

Table 6-1 Single precision floating-point representation

Exponent Mantissa Description

–127 0 ±0

–127 !=0 Subnormal values

128 0 ±INFINITY

128 !=0 NaN values

Other Any Normal values +/-1.<mantissa> × 2<exp>
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-3
ID071714 Non-Confidential

Floating-Point
Because a 32-bit floating-point number has a 23-bit mantissa there are many values of a 32-bit
int that if converted to 32-bit float cannot be represented exactly. This is referred to as loss of
precision. If you convert one of these values to float and back to int you will get a different,
nearby value. In the case of double-precision floating-point numbers, the exponent field has 11
bits (giving an exponent range from –1022 to +1023) and a mantissa field with 52 bits.

6.1.1 Rounding algorithms

The IEEE 754-1985 standard defines four different ways in which results can be rounded, as
follows:

• Round to nearest (ties to even). This mode causes rounding to the nearest value. If a
number is exactly midway between two possible values, it is rounded to the nearest value
with a zero least significant bit.

• Round toward 0. This causes numbers to always be rounded towards zero (this can be also
be viewed as truncation).

• Round toward +∞ .This selects rounding towards positive infinity.

• Round toward -∞. This selects rounding towards negative infinity.

The IEEE 754-2008 standard adds an additional rounding mode. In the case of round to nearest,
it is now also possible to round numbers that are exactly halfway between two values, away
from zero (in other words, upwards for positive numbers and downwards for negative numbers).
This is in addition to the option to round to the nearest value with a zero least significant bit. At
present VFP does not support this rounding mode.

6.1.2 ARM VFP

VFP is an optional (but rarely omitted) extension to the instruction sets in the ARMv7-R
architecture conforming to the IEEE 754 standard. It can be implemented with either thirty-two,
or sixteen double-word registers. The terms VFPv3-D32 and VFPv3-D16 are used to
distinguish between these two options. VFPv3 can also be optionally extended by the
half-precision extensions that provide conversion functions in both directions between
half-precision floating-point (16-bit) and single-precision floating-point (32-bit). These
operations only permit half-precision floats to be converted to and from other formats.

VFPv4 adds both the half-precision extensions and the Fused Multiply-Add instructions to the
features of VFPv3. In a Fused Multiply-Add operation, only a single rounding occurs at the end.
This is one of the new facets of the IEEE 754-2008 specification. Fused operations can improve
the accuracy of calculations that repeatedly accumulate products, such as matrix multiplication
or dot product calculation. The VFP version supported by individual Cortex-R series processors
is given in Table 2-2 on page 2-4.

There are a number of other VFP registers. These are listed below.

Floating-Point System ID Register (FPSID)
This can be read by system software to determine which floating-point features
are supported in hardware.

Floating-Point Status and Control register (FPSCR)
This holds comparison results and flags for exceptions. Control bits select
rounding options and enable floating-point exception trapping.

Floating-Point Exception Register (FPEXC)
The FPEXC register contains bits that enable system software that handles
exceptions to determine what has happened.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-4
ID071714 Non-Confidential

Floating-Point
Media and VFP Feature registers 0 and 1 (MVFR0 and MVFR1)
These registers enable system software to determine which Advanced SIMD and
floating-point features are provided on the processor implementation.

User mode code can only access the FPCSR. One implication of this is that applications cannot
read the FPSID to determine which features are supported unless the host OS provides this
information. Linux provides this using/proc/cpuinfo, for example, but the information is not
nearly as detailed as that provided by the VFP hardware registers.

Unlike ARM integer instructions, no VFP operations will affect the flags in the APSR directly.
The flags are stored in the FPSCR. Before the result of a floating-point comparison can be used
by the integer processor, the flags set by a floating-point comparison must be transferred to the
APSR, using the VMRS instruction. This includes use of the flags for conditional execution, even
of other VFP instructions. Example 6-1 shows a simple piece of code to illustrate this. The VCMP
instruction performs a comparison the values in VFP registers d0 and d1 and sets FPSCR flags
as a result. These flags must then be transferred to the integer processor APSR, using the VMRS
instruction. You can then conditionally execute instructions based on this.

Example 6-1 Example code illustrating usage of floating-point flags

VCMP d0, d1
VMRS APSR_nzcv, FPSCR
BNE label

Flag meanings

The integer comparison flags support comparisons that are not applicable to floating-point
numbers. For example, floating-point values are always signed, so there is no requirement for
unsigned comparisons. On the other hand, floating-point comparisons can result in the
unordered result (meaning that one or both operands was NaN, or Not a Number). IEEE-754
defines four testable relationships between two floating-point values, that map onto the ARM
condition codes as follows:

Compare with zero

Unlike the integer instructions, most VFP instructions can operate only on registers, and cannot
accept immediate values encoded in the instruction stream. The VCMP instruction is a notable
exception in that it has a special-case variant that enables quick and easy comparison with zero.

Table 6-2 ARM APSR flags

IEEE-754 relationship ARM APSR flags

N Z C V

Equal 0 1 1 0

Less Than (LT) 1 0 0 0

Greater Than (GT) 0 0 1 0

Unordered (At least one argument was NaN) 0 0 1 1
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-5
ID071714 Non-Confidential

Floating-Point
Interpreting the flags

When the flags are in the APSR, they can be used almost as if an integer comparison had set the
flags. However, floating-point comparisons support different relationships, so the integer
condition codes do not always make sense. Table 6-3 describes floating-point comparisons
rather than integer comparisons:

It should be obvious that the condition code is attached to the instruction reading the flags, and
the source of the flags makes no difference to the flags that are tested. Similarly, it is clear that
the opposite conditions still hold. (For example, HS is still the opposite of LO.)

When set by CMP the flags generally have analogous meanings to the flags set by VCMP. For
example, GT still means greater than. However, the unordered condition and the removal of the
signed conditions can confuse matters. Often, for example, it is desirable to use LO, normally
an unsigned less than check, in place of LT, because it does not match in the unordered case.

6.1.3 Instructions

VFP instructions are provided that perform arithmetic and data processing, load and stores to
memory, and register transfers (between VFP registers and to or from ARM registers). These
instructions are encoded with ARM coprocessor instructions, but are typically viewed as part of
the main instruction set, rather than as coprocessor operations. VFP offers all the common
arithmetic operations, format conversions, a few complex arithmetic operations (for example,
Multiply accumulate, VMLA, and square root, VSQRT), along with memory access instructions.

Table 6-3 Interpreting the flags

Code Meaning (when set by cmp) Flags tested

EQ Equal to Z =1

NE Not equal to. Z = 0

CS Carry set (identical to HS) C = 1

HS Unsigned higher or same C = 1

CC Carry clear (identical to LO) C = 0

LO Unsigned lower (identical to CC) = 0

MI Negative. N = 1

PL Positive or zero. N = 0

VS Signed overflow. V = 1

VC No signed overflow. V = 0

HI Greater than (unsigned). (C = 1) && (Z = 0)

LS Less than or equal to (unsigned). (C = 0) || (Z = 1)

GE Greater than or equal to (signed). N==V

LT Less than (signed). N!=V

GT Greater than (signed). (Z==0) && (N==V)

LE Less than or equal to (signed). (Z==1) || (N!=V)

AL (or omitted) Always executed. None tested.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-6
ID071714 Non-Confidential

Floating-Point
6.1.4 VFP support in GCC

Use of VFP is fully supported by GCC (although some builds can be configured to default to
assume no VFP support, in which case floating-point calculations will use library code).

The main option to use for VFP support is:

• -mfpu=vfp specifies that the target has VFP hardware.

Other options can be used to specify support for a specific VFP implementation on an ARM
Cortex-R series processor:
• -mfpu=vfpv3
• -mfpu=vfpv3-d16.

These options can be used for code that will run only on these VFP implementations, and do not
require backward compatibility with older VFP implementations.

The options that specify which ABI to use to enable the use of VFP:
• -mfloat-abi=softfp

• -mfloat-abi=hard.

softfp uses a Procedure Call Standard compatible with software floating-point, and so provides
binary compatibility with legacy code. This permits running older soft float code with new
libraries that support hardware floating-point, but still makes use of hardware floating-point
registers between function calls. hard has floating-point values passed in floating-point
registers. This is more efficient but is not backward compatible with the softfp ABI variant.
Particular care is required with libraries, including the C platform library.

C programmers should note that there can be a significant function call overhead when using
-mfloat-abi=softfp, if many floating-point values are being passed.

6.1.5 Enabling VFP

If an ARMv7 processor includes VFP hardware, it must be explicitly enabled before
applications can make use of it.

• The EN bit in the FPEXC register must be set.

• Access to CP10 and CP11 must be enabled in the Coprocessor Access Control Register
(CP15.CACR). This can be done on demand by the operating system.

6.1.6 VFP in the Cortex-R processors

The Cortex-R4F, Cortex-R5F, and Cortex-R7 processors implement the VFPv3-D16
floating-point architecture and the Common VFP Sub-Architecture v2. They are IEEE-754
standard compliant. In the Cortex-R7 processors, each core has the option to implement the
Floating-Point Unit (FPU).

• The Cortex-R4F processor implements a floating-point unit, with support for
single-precision and double-precision floats.

• The Cortex-R5F processor has the option to implement the full FPU, with support for
single-precision and double-precision floats or an optimized single-precision only FPU.

• The Cortex-R7 processor has the option to implement the full FPU, with support for
single-precision, half-precision and double-precision floats or an optimized
single-precision and half-precision only FPU.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-7
ID071714 Non-Confidential

Floating-Point
6.2 VFP support in the ARM Compiler
Use of VFP is fully supported by the ARM Compiler (although some builds can be configured
by default to assume no VFP support, in which case floating-point calculations will use library
code).

The main option to use with the ARM Compiler for VFP support is:

• --fpu=name that lets you specify the target floating-point hardware.

The options used to specify support for a specific VFP implementation on an ARM Cortex-R
series processor are:
• --fpu=vfpv3
• --fpu=vfpv3_d16.

These options can be used for code that will run only on these VFP implementations, and do not
require backward compatibility with older VFP implementations. Use --fpu=list to see the full
list of FPUs supported.

The following options can be used for linkage support:
• --apcs=/hardfp generates code for hardware floating-point linkage
• --apcs=/softfp generates code for software floating-point linkage.

Hardware floating-point linkage uses the FPU registers to pass the arguments and return values.
Software floating-point linkage means that the parameters and return value for a function are
passed using the ARM integer registers R0 to R3 and the stack. --apcs=/hardfp and
--apcs=/softfp interact with or override explicit or implicit use of --fpu.

To compile with or without hard floating point, ARM Compiler 5 provides these compile
switches:
• --cpu=Cortex-R4 (no hardfp)

• --cpu=Cortex-R4F (hardfp)

• --cpu=Cortex-R5 (no hardfp)

• --cpu=Cortex-R5F (hardfp)

• --cpu=Cortex-R7 (hardfp)

• --cpu=Cortex-R7.no_vfp (no hardfp)
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-8
ID071714 Non-Confidential

Floating-Point
6.3 Floating-point optimization
This section contains some suggestions for developers writing FP assembly code. Some caution
is required when applying these points, as recommendations can be specific to a particular piece
of hardware. A code sequence that is optimal for one processor can be sub-optimal on different
hardware.

• Moves to and from VFP system control registers, such as FPSCR are not typically present
in high-performance code, and might not be optimized. These should therefore not be
placed in time-critical loops, if possible. For example, accesses to control registers on the
Cortex-R7 processor are serializing, and will have a significant performance impact if
used in tight loops or performance-critical code.

• Register transfer between the integer processor register bank and the floating-point
register bank should similarly be avoided in time-critical loops.

• Load/store multiple operations are preferred to the use of multiple, individual
floating-point loads and stores, to make efficient use of available transfer bandwidth.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 6-9
ID071714 Non-Confidential

Chapter 7
Caches

Essentially, a processor cache is a small, fast block of memory that sits between the core and main
memory. It holds copies of recently accessed items in main memory. Accesses to the cache memory
happen significantly faster than those to main memory. As the cache holds only a subset of the
contents of main memory, it must store both the address of the item in main memory and the
associated data. Whenever the core wants to read or write a particular address, it will first look for
it in the cache. Should it find the address in the cache, it will use the data in the cache, rather than
having to perform an access to main memory.

This significantly increases the potential performance of the system, by reducing the effect of slow
external memory access times. It also reduces the power consumption of the system, by avoiding
the requirement to drive external signals. Cortex-R series processors possess an alternative fast
access memory in the form of Tightly Coupled Memory (TCM) described in Chapter 8.

When the ARM architecture was first developed, the clock speed of the processor and the access
speeds of memory were broadly similar. Processor cores today are much more complicated and can
be clocked orders of magnitude faster. However, the frequency of the external buses and of memory
devices has not scaled to the same extent. It is possible to implement small blocks of on-chip
SRAM that can operate as fast as the core. But such RAM is very expensive in comparison to
standard DRAM blocks, that can have thousands of times greater capacity. In many ARM
processor-based systems, access to external memory will take tens or even hundreds of core cycles.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-1
ID071714 Non-Confidential

Caches
Figure 7-1 A basic cache arrangement

Cache sizes are small relative to the overall memory used in the system. Larger caches make for
more expensive chips. In addition, making an internal core cache larger can potentially limit the
maximum speed of the core. Significant research has gone into identifying how hardware can
determine what it should keep in the cache. Efficient use of this limited resource is a key part of
writing efficient applications to run on a core.

Caches speed up execution because program execution is not random. Programs often access
the same set of data repeatedly and execute the same set of instructions repeatedly. By moving
code or data into faster memory during their first access, subsequent accesses to that code or
data become much faster. The initial access that provided the data to the cache is no faster than
normal. Because of these subsequent accesses to the cached values the performance increases.
The processor hardware checks all instruction fetches, and data reads or writes in the cache. As
the cache holds only a subset of main memory, there has to be a way to determine whether the
required address is in the cache quickly.

On-chip SRAM can be used to implement caches, that hold temporary copies of instructions and
data from main memory. Code and data have the properties of temporal and spatial locality. This
means that programs tend to re-use the same addresses over time (temporal locality) and tend to
use addresses that are near to each other (spatial locality). Code, for instance, can contain loops,
meaning that the same code gets executed repeatedly or a function can be called multiple times.
Data accesses (for example, to the stack) can be limited to small regions of memory. Access to
RAM by the core exhibits such locality and is not truly random. This enables caches to be very
effective.

The write buffer is a block that decouples processor writes being done by the core when
executing store instructions from the external memory bus. The core places the address, control,
and data values associated with the store into a set of hardware buffers. This is the write buffer.
Like the cache, it sits between the core and main memory. This enables the core to move on and
execute the next instruction without the requirement to stop and wait for the main memory to
actually complete the write operation.

Internal cache
(L1 Cache)

Core

External cache
(L2 cache)

Bus

Main memory
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-2
ID071714 Non-Confidential

Caches
7.1 Cache drawbacks
Caches and write buffers are seen as a benefit as they speed up program execution. However,
they also add some problems that are not present in an uncached core. One such drawback is
that program execution time can become non-deterministic.

What this means is that, because the cache is small and holds only a subset of the main memory,
it fills rapidly as a program executes. When the cache is full, existing code or data is replaced,
to make room for new items. So at any given time, it is not normally possible for an application
to be certain whether or not a particular instruction or data item is in the cache.

This means that the execution time of a particular piece of code can vary significantly. This can
be something of a problem in hard real-time systems where strongly deterministic behavior is
required. As a result, you will more than likely require a way to control how different parts of
memory are accessed by the cache and write buffer.

In some cases, you want the core to read up-to-date data from an external device, such as a
peripheral. It would not be sensible to use a cached value of a timer peripheral, for example.
Sometimes you want the core to stop and wait for a store to complete. So, caches and write
buffers give you some extra work to do.

Occasionally the contents of cache and external memory might not be the same, this is because
in some caching modes, the processor can update the cache contents, that have not yet been
written back to main memory. Alternatively, an agent might update main memory after a core
has taken its own copy. This is a problem of coherency. This can be a problem when there are
multiple cores or memory agents like an external DMA controller.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-3
ID071714 Non-Confidential

Caches
7.2 Memory hierarchy
In computer science, a memory hierarchy refers to a hierarchy of memory types, with faster and
smaller memories closer to the core and slower and larger memory further away. In most
systems, you can have secondary storage, such as disk drives and primary storage such as flash,
SRAM and DRAM. In embedded systems, this is typically sub-divided into on-chip and
off-chip memory. Memory that is on the same chip (or at least in the same package) as the core
will typically be much faster.

A cache can be included at any level in the hierarchy and should improve system performance
where there is an access time difference between different parts of the memory system.

The Cortex-R processors have level 1 (L1) caches, connected directly to the core logic that
fetches instructions. The caches handle instruction fetches, and load and store instructions.
These are Harvard caches, so there are separate caches for instructions and for data.

Figure 7-2 Typical Harvard cache

Over the years, the size of L1 caches has increased, because of SRAM size and speed
improvements. At the time of writing, 16KB or 32KB cache sizes are most common, as these
are the largest RAM sizes capable of providing single cycle access at a core speed of 1GHz or
more.

Cortex-R series processors have an interface to an external level 2 (L2) cache. This is larger than
the L1 cache (typically 256KB, 512KB or 1MB), but slower and unified (holding both
instructions and data). The ARM L2C-310 is an example of such an external L2 cache controller
block.

In addition, cores can be implemented in clusters where each core has its own cache. Such
systems require mechanisms to maintain coherency between caches, so that when one core
changes a memory location, that change is made visible to other cores sharing that memory.

Data
cache Core

L2 cache

Bus

Main memory

Instruction
cache
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-4
ID071714 Non-Confidential

Caches
7.3 Cache architecture
In a von Neumann architecture, a single cache is used for instruction and data (a unified cache).
A modified Harvard architecture has separate instruction and data buses, which leads to the
existence of two caches, an instruction cache (I-cache) and a data cache (D-cache). In many
ARM systems, there are distinct instruction and data level 1 caches backed by a unified level 2
cache.

The cache must hold an address, data, and status information. The top bits of the 32-bit address
tells the cache where the information came from in main memory and is known as the tag. The
total cache size is a measure of the amount of data it can hold. The RAM used to hold tag values
is not included in the calculation. The tag does, however, take up physical space in the cache.

It would be inefficient to hold one word of data for each tag address, so we typically group
several locations together under the same tag. This logical block is commonly known as a cache
line. The middle bits of the address, or index, identify the line. The index is used as address for
the cache RAMs and does not require to be stored as a part of the tag. A cache line is said to be
valid when it contains cached data or instructions, and invalid when it does not.

This means that the bottom few bits of the address, the offset, are not required to be stored in
the tag. The processor stores the address of a line, not of each byte within the line. So the five
or six least significant bits will always be 0.

Associated with each line of data are one or more status bits. Typically, there is a valid bit,
marking the line as containing data that can be used. This means that the address tag represents
some real value. In a data cache there is also one or more dirty bits that mark whether the cache
line, or part of it, holds data that is not the same as the contents of main memory.

7.3.1 Cache terminology

A brief summary of some of the terms used might be helpful:

Figure 7-3 Cache terminology

• A line refers to the smallest loadable unit of a cache, a block of contiguous words from
main memory.

• The index is the part of a memory address that determines in which line of the cache the
address can be found.

• A way is a subdivision of a cache, each way being of equal size and indexed in the same
fashion. The line associated with a particular index value from each cache way grouped
together forms a set.

Tag Index Offset

32-bit address

Data RAM Tag RAM

Offset

Index

Set
Way Tag

Line 031
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-5
ID071714 Non-Confidential

Caches
• The tag is the part of a memory address stored within the cache that identifies the main
memory address associated with a line of data.

7.3.2 Direct mapped caches

We now look at various different ways of implementing caches starting with the simplest, a
direct mapped cache.

In a direct mapped cache, each location in main memory maps to a single location in the cache.
However, as main memory is many times larger than the cache, many addresses will map to the
same cache location.

Figure 7-4 Direct mapped cache operation

Figure 7-4 shows a small cache, with four words per line and four lines. This means that the
cache controller will use two bits of the address (bits [3:2]) as the offset to select a word within
the line and two bits of the address (bits [5:4]) as the index to select one of the four available
lines. The remaining bits of the address (bits [31:6]) is stored as a tag value.

Figure 7-5 Cache address

To look up a particular address in the cache, the hardware extracts the index bits from the
address and reads the tag value associated with that line in the cache. If the two are the same and
the valid bit indicates that the line contains valid data, it has a hit. It can then extract the data
value from the relevant word of the cache line, using the offset and byte portion of the address.
The cache does not generate a hit if the tag shows that the cache holds a different address in main
memory. If the line contains valid data, but does not generate a hit then the cache line is removed
and is replaced by data from the requested address.

It should be clear that all main memory addresses with the same value of bits [5:4] will map to
the same line in the cache. Only one of those lines can be in the cache at any given time. This
means that you can easily get a problem called thrashing. Consider a loop that repeatedly
accesses address 0x00, 0x40, and 0x80 as in the code below:

CacheMain memory

0x0000.0000

0x0000.0010

0x0000.0020

0x0000.0030

0x0000.0040

0x0000.0050

0x0000.0060

0x0000.0070

0x0000.0080

0x0000.0090

Address

Tag

31 6

Index
5 4

Line
3 2 1 0
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-6
ID071714 Non-Confidential

Caches
 void add_array(int *data1, int *data2, int *result, int size)
 {

int i;

for (i=0 ; i<size ; i++) {
result[i] = data1[i] + data2[i];

}
}

In this code example, if result, data1, and data2 are pointers to 0x00, 0x40, and 0x80 respectively
then this loop will cause repeated accesses to memory locations that all map to the same line in
the basic cache, as shown in.Figure 7-4 on page 7-6.

• At the first read of address 0x40, it will not be in the cache and so a linefill takes place
putting the data from 0x40 to 0x4F into the cache.

• Then at the read of address 0x80, it will not be in the cache and so a linefill takes place
putting the data from 0x80 to 0x8F into the cache. And in the process the cache loses the
data from address 0x40 to 0x4F.

• The result is written to 0x00. Depending on the allocation policy this might cause another
line fill. The data from 0x80 to 0x8F might be lost.

• The same thing happens on each iteration of the loop and the software runs slowly. Direct
mapped caches are therefore not typically used in the main caches of ARM processors.
They are used for example in the branch target address cache of the ARM1136 processor.

Processors can have hardware optimizations for situations where the whole cache line is being
written to. This is a condition that can take a significant proportion of total cycle time in some
systems. For example, this can happen when functions, such as memcpy() or memset(), that
perform block copies or zero initialization of large blocks are executed. In such cases, there is
no benefit in first reading the data values that is over-written. This can lead to situations where
the performance characteristics of the cache are different to what might normally be expected.

Cache allocate policies act as a hint to the core, they do not guarantee that a piece of memory
will be read into the cache, and as a result, programmers should not rely on that.

7.3.3 Set associative caches

The main caches of ARM cores are always implemented using a set associative cache. This
significantly reduces the likelihood of the cache thrashing seen with direct mapped caches,
improving program execution speed and giving more deterministic execution. It has an
increased hardware complexity and a slight increase in power use because multiple tags are
compared on each cycle.

Set associative caches are divided into a number of equal sized pieces, called ways. A memory
location can then map to a way rather than a line. The index field of the address continues to be
used to select a particular line, but now it points to an individual line in each way. Commonly
there are 2-ways or 4-ways, but some ARM implementations have higher number of ways.

External level 2 cache implementations, such as the ARM L2C-310, can have larger numbers
of ways (higher associativity) because of their much larger size. The cache lines with the same
index value are said to belong to a set. To check for a hit, the processor looks at each of the tags
in the set.

Figure 7-6 on page 7-8 shows a cache with 2-ways. Data from address 0x00, 0x40, or 0x80 might
be in line 0 of either, but not both, of the two cache ways.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-7
ID071714 Non-Confidential

Caches
Figure 7-6 A 2-way set-associative cache

Increasing the associativity of the cache reduces the probability of thrashing. The ideal case is
a fully associative cache, where any main memory location can map anywhere within the cache.
However, building such a cache is impractical for anything other than very small caches (for
example, see Chapter 9 The Memory Protection Unit). In practice, performance improvements
are minimal for Level 1 caches above 4-way associativity, with 8-way or 16-way associativity
being more useful for larger level 2 caches.

7.3.4 A real-life example

Figure 7-7 on page 7-9 is a 4-way set associative 32KB data cache, with an 8-word cache line
length.

The cache line length is eight words (32 bytes) and you have 4-ways. 32KB divided by 4,
divided by 32 gives a figure of 256 lines in each way. This requires eight bits to index a line
within a way (bits [12:5]). Bits [4:2] of the address are used to select from the eight words within
the line. The remaining bits [31:13] is used as a tag.

Cache way 0Main memory

0x0000.0000

0x0000.0010

0x0000.0020

0x0000.0030

0x0000.0040

0x0000.0050

0x0000.0060

0x0000.0070

0x0000.0080

0x0000.0090

Cache way 1
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-8
ID071714 Non-Confidential

Caches
Figure 7-7 A 32KB 4-way set associative cache

7.3.5 Cache controller

This is a hardware block that has the task of managing the cache memory, in a way that is
invisible to the program. It automatically writes code or data from main memory into the cache.
It takes read and write memory requests from the core and performs the necessary actions to the
cache memory or the external memory.

When it receives a request from the core it must check to see whether the requested address is
in the cache. This is known as a cache look-up. It does this by comparing a subset of the address
bits of the request with tag values associated with lines in the cache. If there is a match and the
line is marked valid then the read or write will happen using the cache memory.

When the core requests instructions or data from a particular address, but there is no match with
the cache tags, or the tag is not valid, a cache miss results and the request must be passed to the
next level of the memory hierarchy, that might be an L2 cache, or external memory. It can also
cause a cache linefill. A cache linefill causes the contents of a piece of main memory to be
copied into the cache. At the same time, the requested data or instructions are streamed to the
core. This process happens transparently and is not directly visible to you.

The core does not have to wait for the linefill to complete before using the data. The cache
controller will typically access the critical word within the cache line first. For example, if a load
instruction misses in the cache and triggers a cache linefill, the first read to external memory is
that of the actual address supplied by the load instruction. This critical data is supplied to the
processor pipeline, while the cache hardware and external bus interface then read the rest of the
cache line, in the background.

Address

Data line 0TagV D

Data line 1

Data line 2

Data line 3

Data line 254

Data line 255

Tag

31 13

Set (=Index)
12 5

Word
4 2

Byte
1 0

D01234567

19 8 3

V=valid bit D=dirty bit

Cache line

V

V

V

V
V

D

D

D

D

D

ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-9
ID071714 Non-Confidential

Caches
7.4 Cache policies
There are a number of different choices that affect cache operation. For example:

Allocation policy considers what causes a line from external memory to be placed into the
cache.

Replacement policy controls how the controller decides which line within a set associative
cache to use for the incoming data.

Write policy controls what happens when the processor performs a write that hits in the
cache.

7.4.1 Allocation policy

When the core does a cache look-up and the address it wants is not in the cache, it must
determine whether or not to perform a cache linefill and copy that address from memory.

• A read allocate policy allocates a cache line only on a read. If a write is performed by the
core that misses in the cache, the cache is not affected and the write goes to the next level
of the hierarchy.

• A write allocate policy allocates a cache line for either a read or write that misses in the
cache. And so this might more accurately be called a read-write cache allocate policy. For
both memory reads that miss in the cache and memory writes that miss in the cache, a
cache linefill is performed. This is typically used in combination with a write-back write
policy on current ARM cores. For more information see Write policy on page 7-11.

7.4.2 Replacement policy

When there is a cache miss, the cache controller must select one of the cache lines in the set for
the incoming data. The cache line selected is called the victim. If the victim contains valid, dirty
data, the contents of that line must be written to main memory before new data can be written
to the victim cache line. This is called eviction.

The replacement policy is what controls the victim selection process. The index bits of the
address are used to select the set of cache lines, and the replacement policy selects the specific
cache line from that set that is to be replaced.

Most ARM processors support:

• Round-robin or cyclic replacement means that there is a counter, called the victim counter,
that cycles through the available ways and cycles back to 0 when it reaches the maximum
number of ways.

• Pseudo-random replacement randomly selects the next cache line in a set to replace. The
victim counter is incremented in a pseudo-random fashion and can point to any line in the
set.

The Cortex-R4, Cortex-R5, and Cortex-R7 processors only support the pseudo-random policy.

A round-robin replacement policy is generally more predictable, but can suffer from poor
performance in certain use cases and for this reason, the pseudo-random policy is often
preferred.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-10
ID071714 Non-Confidential

Caches
7.4.3 Write policy

When the core executes a store instruction, a cache lookup on the address to be written is
performed. For a cache hit on a write, there are two choices.

• Write-through. With this policy writes are performed to both the cache and main memory.
This means that the cache and main memory are kept coherent. As there are more writes
to main memory, a write-through policy is slower than a write-back policy if the write
buffer fills. Therefore write-through is less commonly used, although it can be useful for
debug. Regions marked as write-through are treated as non-cacheable.
The Cortex-R4 and Cortex-R5 processors use write-through when RAM parity protection
is enabled. The Cortex-R5 processor also uses write-through so that the Micro Snoop
Control Unit (µSCU) can maintain coherency between the L1 cache and the master
connected to the Accelerator Coherency Port (ACP).

• Write-back. In this case, writes are performed only to the cache, and not to main memory.
This means that cache lines and main memory can contain different data. The cache line
holds newer data, and main memory contains older data (said to be stale). To mark these
lines, each line of the cache has an associated dirty bit (or bits). When a write happens that
updates the cache, but not main memory, the dirty bit is set. If the cache later evicts a cache
line whose dirty bit is set (a dirty line), it writes the line out to main memory. Using a
write-back cache policy can significantly reduce traffic to slow external memory and
therefore improve performance and save power. However, if there are other agents in the
system that can access memory at the same time as the processor, there might be
coherency issues.
The Cortex-R7 processor only supports the write-back policy.

7.4.4 Choosing the best write policy

System designers should evaluate the policy for cache operation best suited to their
requirements. If a write-back policy is used then the cache will often have to be cleaned as
described before switching context so that coherency in the memory system is maintained. This
can require lots of writes to CP15 registers prior to switching. Alternatively, choosing a
write-through policy can reduce system performance and increase power consumption as
coherency is maintained on every cache operation, which is sometimes unnecessary. However,
this means that the cache is being cleaned continuously and so cache maintenance will typically
take less time.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-11
ID071714 Non-Confidential

Caches
7.5 Write and Fetch buffers
A write buffer is a hardware block inside the core implemented using a number of buffers.
Sometimes it is present in other parts of the system as well. It accepts address, data, and control
values associated with core writes to memory. When the core executes a store instruction, it
might place the relevant details, such as the location to write to, the data to be written, and the
transaction size into the buffer. The core does not have to wait for the write to be completed to
main memory. It can proceed executing the next instruction. The write buffer itself will drain
the writes accepted from the core, to the memory system.

A write buffer can increase the performance of the system because the core does not have to wait
for stores to complete. In effect, provided there is space in the write buffer, the write buffer is a
way to hide latency. If the number of writes is low or well spaced, the write buffer will not
become full. If the core generates writes faster than they can be drained to memory, the write
buffer will eventually fill and there is little performance benefit.

Some write buffers support write merging, also called write combining. They can take multiple
writes, for example, a stream of writes to adjacent bytes, and merge them into one single burst.
This can reduce the write traffic to external memory and therefore boost performance.

It will be obvious to the experienced programmer that sometimes the behavior of the write
buffer is not as expected. When accessing a peripheral you might want the core to stop and wait
for the write to complete before proceeding to the next step. Sometimes you might want a stream
of bytes to be written and do not want the stores to be combined. ARM memory ordering model
on page 10-3, looks at memory types supported by the ARM architecture and how to use these
to control how the caches and write buffers are used for particular devices or parts of the
memory map.

Similar components, called fetch buffers, can be used for reads in some systems. In particular,
cores typically contain prefetch buffers that read instructions from memory ahead of them
actually being inserted into the pipeline. In general, such buffers are transparent to you. Some
possible hazards associated with this will be considered when we look at memory ordering rules
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-12
ID071714 Non-Confidential

Caches
7.6 Cache performance and hit rate
The hit rate is defined as the number of cache hits divided by the number of memory requests
made to the cache during a specified time, normally calculated as a percentage. Similarly, the
miss rate is the number of total cache misses divided by the total number of memory requests
made to the cache. You can also calculate the number of hits or misses on reads or writes only.

Clearly, a higher hit rate will generally result in higher performance. It is not really possible to
quote example figures for typical software, the hit rate is very dependent on the size and spatial
locality of the critical parts of the code or data operated on and of course, the size of the cache.

There are some simple rules that can be followed to give better performance. The most obvious
of these is to enable caches and write buffers and to use them wherever possible. The rules can
be used for all parts of the memory system that contain code, and more generally for RAM and
ROM, but not peripherals. Performance is considerably increased if instruction memory is
cached. Placing frequently accessed data together in memory can also be helpful. For example,
a frequently accessed array will benefit from having a base address at the start of a cache line.

Fetching a data value in memory involves fetching a whole cache line. If none of the other words
in the cache line is used, there is little or no performance gain. Smaller code might cache better
than larger code and this can sometimes give paradoxical results. For example, a piece of C code
might fit entirely within the cache when compiled for Thumb, or for the smallest size, but not
when compiled for ARM or for maximum performance. As a consequence it can run faster than
the more optimized version.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-13
ID071714 Non-Confidential

Caches
7.7 Invalidating and cleaning cache memory
Cleaning and invalidation can be required when the contents of external memory have been
changed and you want to remove stale data from the cache. It can also be required after MPU
related activity such as changing access permissions or cache policies.

The word flush is often used in descriptions of clean and invalidate operations. ARM generally
uses only the terms clean and invalidate.

• Invalidation of a cache or cache line means to clear it of data. This is done by clearing the
valid bit of one or more cache lines. The cache must always be invalidated after reset as
its contents are undefined. If the cache contains dirty data, it is generally incorrect to
invalidate it. Any updated data in the cache from writes to write-back cacheable regions
would be lost by simple invalidation.

• Cleaning a cache or cache line means writing the contents of dirty cache lines out to main
memory and clearing the dirty bits in the cache line. This makes the contents of the cache
line and main memory coherent with each other. This is only applicable for data caches in
which a write-back policy is used.
Cache invalidate, and clean operations can be performed by cache set, or way, or by
specifying a particular address.

Self-modifying code, or copying code from one location to another, might mean you have to
clean or invalidate the cache. The memory copy code will use load and store instructions and
these will operate on the data side of the processor. If the data cache is using a write-back policy
for the area to which code is written, it is necessary to clean that data from the cache before the
code can be executed. This ensures that the instructions stored as data go out into main memory
and are then available for the instruction fetch logic. In addition, if the area to which code is
written was previously used for some other program, the instruction cache could contain stale
code from before main memory was re-written. Therefore, it might also be necessary to
invalidate the instruction cache before branching to the newly copied code.

The commands to either clean or invalidate the cache are CP15 operations. They are available
only to privileged code and cannot be executed in User mode.

CP15 instructions exist that will clean, invalidate, or clean and invalidate level 1 data or
instruction caches. Invalidation without cleaning is safe only when it is known that the cache
cannot contain dirty data, for example a Harvard instruction cache. You can perform the
operation on the entire cache, or on individual lines. These individual lines can be specified
either by giving the address to be cleaned or to be invalidated, or by specifying a line number in
a particular set, in cases where the hardware structure is known. The same operations can be
performed on the L2 or outer caches. For more information see Level 2 cache controller on
page 7-19. A typical example of such code can be found in Setting up caches, MPU and branch
predictors on page 15-3.

A common situation where cleaning or invalidation can be required is Direct Memory Access
(DMA). When it is required to make changes made by the processor visible to external memory,
so that it can be read by a DMA controller, it might be necessary to clean the cache. When
external memory is written by a DMA controller and it is necessary to make those changes
visible to the processor, the affected addresses must be invalidated in the cache.

Example 7-1 Preparing the caches

setup_caches
 MRC p15, 0, r1, c1, c0, 0 ; Read System Control Register (SCTLR)
 BIC r1, r1, #1 ; mpu off
 BIC r1, r1, #(1 << 12) ; i-cache off
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-14
ID071714 Non-Confidential

Caches
 BIC r1, r1, #(1 << 2) ; d-cache & L2-$ off
 MCR p15, 0, r1, c1, c0, 0 ; Write System Control Register (SCTLR)
 ;---
 ; 1.MPU, L1$ disable
 ;---
 MRC p15, 0, r1, c1, c0, 0 ; Read System Control Register (SCTLR)
 BIC r1, r1, #1 ; mpu off
 BIC r1, r1, #(1 << 12) ; i-cache off
 BIC r1, r1, #(1 << 2) ; d-cache & L2-$ off
 MCR p15, 0, r1, c1, c0, 0 ; Write System Control Register (SCTLR)
 ;---
 ; 2. invalidate: L1$, branch predictor
 ;---
 MOV r0, #0
 MCR p15, 0, r0, c7, c5, 0 ; Invalidate Instruction Cache
 MCR p15, 0, r0, c7, c5, 6 ; Invalidate branch prediction array
 ISB ; Instruction Synchronization Barrier
 ;---
 ; 2.a. Enable I cache + branch prediction
 ;---
 MRC p15, 0, r0, c1, c0, 0 ; System control register
 ORR r0, r0, #1 << 12 ; Instruction cache enable
 ORR r0, r0, #1 << 11 ; Program flow prediction
 MCR p15, 0, r0, c1, c0, 0 ; System control register
 ;---
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-15
ID071714 Non-Confidential

Caches
7.8 Point of coherency and unification
For set-based or way-based clean and invalidate, the operation is performed on a specific level
of cache. The architecture defines two conceptual points for operations that use an address.

Point of Coherency (PoC)
For a particular address, the PoC is the point at which all blocks, for example,
cores, DSPs, or DMA engines, that can access memory are guaranteed to see the
same copy of a memory location. Typically, this is the main external system
memory.

Figure 7-8 Point of Coherency

Point of Unification (PoU)
The PoU for a core is the point at which the instruction and data caches of the core
are guaranteed to see the same copy of a memory location. If no external cache is
present, main memory would be the Point of Unification.

Point of Coherency

System control
Coprocessor CP15

System control
Coprocessor CP15

I D I DData cache Data cache
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-16
ID071714 Non-Confidential

Caches
Figure 7-9 Point of Unification

If no external cache is present, main memory would be the PoU.

Knowledge of the PoU enables self-modifying code to ensure future instruction fetches are
correctly made from the modified version of the code. They can do this by using a two-stage
process:

1. Clean the relevant data cache entries (by address).

2. Invalidate instruction cache entries (by address).

In addition, the use of memory barriers is required.

7.8.1 Example code for cache maintenance operations

The following code illustrates a generic mechanism for cleaning the entire data or unified cache
to the point of coherency.

Note
 In the case of a cluster where multiple cores share a cache before the point of coherency, running
this sequence on multiple cores results in the operations being repeated on the shared cache

MRC p15, 1, R0, c0, c0, 1 ; Read CLIDR into R0
ANDS R3, R0, #0x07000000
MOV R3, R3, LSR #23 ; Cache level value (naturally aligned)
BEQ Finished
MOV R10, #0

Loop1
ADD R2, R10, R10, LSR #1 ; Work out 3 x cachelevel
MOV R1, R0, LSR R2 ; bottom 3 bits are the Cache type for this level
AND R1, R1, #7 ; get those 3 bits alone
CMP R1, #2
BLT Skip ; no cache or only instruction cache at this level
MCR p15, 2, R10, c0, c0, 0 ; write CSSELR from R10
ISB ; ISB to sync the change to the CCSIDR

Point of Unification

Instruction
cache Data cacheI D

System control coprocessor
CP15
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-17
ID071714 Non-Confidential

Caches
MRC p15, 1, R1, c0, c0, 0 ; read current CCSIDR to R1
AND R2, R1, #7 ; extract the line length field
ADD R2, R2, #4 ; add 4 for the line length offset (log2 16 bytes)
LDR R4, =0x3FF
ANDS R4, R4, R1, LSR #3 ; R4 is the max number on the way size (right aligned)
CLZ R5, R4 ; R5 is the bit position of the way size increment
MOV R9, R4 ; R9 working copy of the max way size (right aligned)

Loop2
LDR R7, =0x00007FFF
ANDS R7, R7, R1, LSR #13 ; R7 is the max num of the index size (right aligned)

Loop3
ORR R11, R10, R9, LSL R5 ; factor in the way number and cache number into R11
ORR R11, R11, R7, LSL R2 ; factor in the index number
MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
SUBS R7, R7, #1 ; decrement the index
BGE Loop3
SUBS R9, R9, #1 ; decrement the way number
BGE Loop2

Skip
ADD R10, R10, #2 ; increment the cache number
CMP R3, R10
BGT Loop1
DSB

Finished
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-18
ID071714 Non-Confidential

Caches
7.9 Level 2 cache controller
The Cortex-R series processors do not have an integrated level 2 cache. However, the system
designer can connect the ARM L2 cache controller (L2C-310) outside of the processor instance.

The L2C-310 cache controller can support a cache of up 8MB in size, with a set associativity of
between four and sixteen ways. The size and associativity are fixed by the SoC designer. The
level 2 cache can be shared between multiple processors, or between the processor and other
agents, for example a graphics processor. It is possible to lockdown cache data on a per-master
per-way basis, enabling management of cache sharing between multiple components.

7.9.1 Level 2 cache maintenance

You might at some point have to clean or invalidate some or all of an external cache. This can
be done by writing to memory-mapped registers within the L2 cache controller in the case where
the cache is external to the processor, or through CP15, where the level 2 cache is implemented
inside the processor. The registers themselves are not cached, that makes this feasible. Where
such operations are performed by having the processor perform memory-mapped writes, the
processor requires a way of determining when the operation is complete. It does this by polling
a memory-mapped register within the L2 cache controller.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 7-19
ID071714 Non-Confidential

Chapter 8
Tightly Coupled Memory

Tightly Coupled Memory (TCM) provides low-latency memory accesses that the core can use
without the unpredictability of access time that is a feature of caches. When using external,
cacheable memory a requested instruction or piece of data might be in the cache, giving a fast
access, or might not be in the cache, requiring a slower access to external memory. When using
TCM the access time is consistent.

The TCM can be used to hold time-critical routines, such as interrupt handling routines or real-time
tasks where the indeterminacy of a cache is undesirable. In addition, you can use it to hold ordinary
variables, data types whose locality properties are not well suited to caching, and critical data
structures such as interrupt stacks.

A TCM is physically located very close to the processor core. Accesses to the TCM will typically
be configured to capture or return data in a single cycle. By storing time-critical routines such as
exception handlers in the TCM, the processor can have immediate access to the sub-routine rather
than having to wait for an initial code fetch from external memory.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-1
ID071714 Non-Confidential

Tightly Coupled Memory
Figure 8-1 Example of an internal TCM

In Figure 8-1 the instruction and data TCMs have been integrated into the core. There are
separate paths to each TCM, one for fetching instructions and one for loading or storing data.
These paths are independent and can both be active at the same time. Both code and data can be
copied to the TCMs by application or library code.

Figure 8-2 Example of an internal TCM

In Figure 8-2 the instruction and data TCMs are independent of the processor core. The
processor core has two ports, one for instructions and one for data. Integrating the TCMs into
the processor core allows the implementation to be optimized for performance. Implementing
the TCMs externally to the core allows the implementation greater flexibility but might reduce
the maximum performance.

I D

I
RAM

D
RAM

I D

I
RAM

D
RAM
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-2
ID071714 Non-Confidential

Tightly Coupled Memory
Figure 8-3 TCM arbitration

In Figure 8-3 there are two external TCMs that can be configured to only store instructions, only
data, or a mixture of the two. Enabling a TCM to include both instructions and data provides
more flexibility from a system perspective but might limit performance compared with
optimizing a TCM to solely store instructions or data. The BTCM is accessible via two ports.
This indicates that the TCM has been implemented as two separate banks of RAM so that the
two banks can be accessed simultaneously.

As well as the processor core these two TCM instances are also accessible from a slave port.
The presence of the slave port means that the TCMs can be preloaded with values: instruction
code can be loaded into the TCMs directly from the slave port after system power up and the
processor can then fetch instructions directly from the TCMs without having to access external
memory.

Accesses from the processor core, the instruction fetches and data loads and data stores, and
accesses from the slave will need to be arbitrated internally. Separate accesses to the ATCM and
BTCM could take place simultaneously but when there is contention for access to a TCM then
the internal arbitration will need to prioritize accesses from different sources. Typically the data
accesses, loads and store, will have highest priority, then instruction fetches and accesses from
the slave port will have the lowest priority.

I D

A
RAM

B
RAM

TCM arbitration AXI Slave port
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-3
ID071714 Non-Confidential

Tightly Coupled Memory
8.1 Location of the TCM in the memory map
A TCM is used as part of the physical memory map of the system, and, unlike a cache, does not
have to be backed by a level of external memory with the same physical addresses. Each TCM
has a dedicated base address, and typically the TCMs can be positioned anywhere within the
32-bit address space, at any naturally aligned address, with the proviso that separate TCM
regions must not overlap with each other and that each region is located on an address boundary
which is a multiple of its size. In Figure 8-4, both A and B are equally valid locations. TCM
location can be changed at run time through CP15.

Figure 8-4 Location of TCM in physical memory

Accesses are sent directly to the TCM interface with no accesses required on the external
memory bus.

Anything in the external memory at the same address locations as the TCM is not accessible to
the processor when the TCM is enabled. This means that you have to be careful when enabling
or disabling a TCM or when re-locating a TCM in the memory map. You have to ensure that all
memory accesses go where they are intended, either to external memory or to the TCM.
Memory barriers must therefore be used before and after enabling or disabling the TCMs.

Figure 8-5 TCM configuration

When a block of TCM memory is enabled, it will exist as memory in the physical memory map.
If external memory already exists at this physical address, the TCM memory will have priority
and any accesses to that memory range will go to TCM.

Physical
Memory

Physical
Memory

A B

Data TCM

Instruction TCM

Instruction TCM

Data TCM

SizeBase address

01261231

Enable
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-4
ID071714 Non-Confidential

Tightly Coupled Memory
The size of the TCM is set by the implementation. However it is possible to control the location
of the TCM in the processor memory map. It is also possible for privileged code running on the
processor to enable and disable the TCM. The TCMs can also be configured to be enabled out
of reset at a particular address location. Enabling or disabling the TCMs does not act as a data
or instruction memory barrier. You must take care of this yourself. One example of when you
might want use these operations is shown in Example 8-1.

Example 8-1 Setting TCM location

DSB ; Data synchronization barrier
MOV r0, #0x800000001 ; Set base address, with enable bit set
MCR p15, 0, r0, c9, c1, 0 ; Write TCM region register
ISB ; Instruction synchronization barrier
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-5
ID071714 Non-Confidential

Tightly Coupled Memory
8.2 Performance of TCM compared to cache
In certain situations, TCM performance is better than cache performance. In other situations,
cache performance is better than TCM performance.

If an instruction or data fetch misses in the cache, the processor fetches from the external
memory. In this case the performance of the TCM is significantly better than the cache. This is
because the cache miss requires an external memory fetch and allocation of data into the cache.

However, if the instructions and data have been pre-fetched from external memory, populating
the processor caches, then for subsequent fetches of the cached instructions and data, the cache
performance compared to TCM performance is different:

• For data fetches, TCM performance will generally be comparable to cache performance,
when there is a cache hit.

• For instruction fetches, TCM performance is a little lower than cache performance.

When instructions include literal pool accesses, the processor must fetch a constant value from
memory to interpret the instruction. In this situation cache performs faster than TCM:
• If the instruction has a hit in the instruction cache then the processor fetches the literal

pool value from the data cache. This leaves the instruction cache interface available to
fetch additional instructions.

• If the instructions are stored in a TCM then the processor must access the TCM interface
twice:
— To fetch the original instruction.
— To fetch the literal pool value.

It might be tempting to make the TCMs as large as possible to benefit from the faster access time
for as much code as possible, however this might not provide the best system performance.

As the size of the TCM is increased, it becomes more difficult to meet the timing requirements
of the design during the implementation on silicon. This can limit the performance of the
processor.

Also, large areas of SRAM local to the processor is more expensive from a silicon
manufacturing perspective compared with the cost of using external memory devices.

Another consideration is that the TCMs are local to the processor and so the instructions and
data are non-shareable. Instructions and data that are shareable must be placed in common areas
of memory.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-6
ID071714 Non-Confidential

Tightly Coupled Memory
8.3 Loading values into TCMs
It is common in Cortex-R series processors to store exception handler code in a TCM. The first
exception routine encountered is the reset handler. Ideally the processor then fetches the reset
handler routine from the TCM. However, when the processor is powered up, the TCM is
uninitialized. There are three possible solutions to this problem:

• Define part of or the whole of the TCM as non-volatile memory and hard-code the
exception handler routines. However, this is not a practical solution.

• Store the initial reset handler in external memory.
When the system powers up, the processor fetches the initial reset handler from external
memory. The processor then copies the exception handlers from external memory into the
TCM and relocates the TCM to the vector table location. The relocation step is necessary
because the external memory and the TCM cannot appear at the same location in the
physical memory map when the memory copying is in progress.

• Use an external device to copy data from the external memory into the TCM before the
processor starts to fetch the instructions.
Cortex-R series processors include an AXI slave interface that enables an external bus
master to write and read from the TCMs. When the processor comes out of reset it is
prevented from fetching instruction code by the assertion of a control signal. The external
master can then pre-load the TCM instances with the instructions from external memory.
When the preload is complete the control signal is released and the processor can fetch the
reset handler from the TCM.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-7
ID071714 Non-Confidential

Tightly Coupled Memory
8.4 TCM Properties in the Cortex-R4 and Cortex-R5 processors
The TCMs in the Cortex-R4 and Cortex-R5 processors are separate from the main processor.
The reason for this is to increase implementation flexibility.

Each TCM can be up to 8 MB in size. The TCMs can run at full processor speed or the TCMs
can delay accesses by one or more cycles. This can improve the timing closure of the TCMs,
especially for larger TCMs, at the expense of one or more additional cycles of latency. The
TCMs can be implemented as SRAM or ROM.

The TCMs can also be implemented with error detection and correction features. For more
information, see Chapter 12 Fault Detection and Control Features.

The processor can be pin configured to enable one or both of the TCMs when the processor
comes out of reset. At reset, one of the TCMs is located at address 0x00000000 and the other TCM
is located at an implementation defined address. Asserting the nCPUHALT pin while the
processor is in reset prevents the processor from fetching instructions immediately out of reset.
The TCM located at address 0x00000000 would then be preloaded using the AXI slave interface.
When the nCPUHALT signal is released the processor will fetch instructions directly from the
TCM.

Accesses to the TCM are controlled by the MPU though the TCM itself must have the properties
of normal memory. In addition, Device or Strongly-ordered memory in the MPU has the
Execute-Never (XN) property, and it would not be possible to fetch instructions from TCM
address ranges which have accidentally been made Device or Strongly-ordered.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-8
ID071714 Non-Confidential

Tightly Coupled Memory
8.5 TCM properties in the Cortex-R7 processor
The TCMs in the Cortex-R7 processor are fully integrated into the design to optimize
performance.

There are separate TCM instances for instruction code and data. Each TCM can be up to 128
KB in size.

The data TCM has to run at the full processor speed whereas the instruction TCM can be
configured to delay accesses by a single cycle. This can improve timing closure of the
instruction TCM at the expense of an extra cycle of latency when fetching instructions. The
TCMs must be implemented as SRAM, not ROM.

The TCMs can also be implemented with error detection and correction features. For more
information, see Chapter 12 Fault Detection and Control Features.

The processor can be pin configured to enable the instruction TCM when the processor comes
out of reset. Asserting the nCPUHALT pin while the processor is in reset prevents the processor
from fetching instructions immediately out of reset. The instruction TCM would then be
preloaded using the AXI slave interface. When the nCPUHALT signal is released, the
processor fetches instructions directly from the TCM.

Accesses to the TCM are controlled by the MPU though the TCM itself must have the properties
of normal memory.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-9
ID071714 Non-Confidential

Tightly Coupled Memory
8.6 Quality of Service
The Cortex-R7 processor has an out-of-order pipeline, in contrast to the primarily in-order
pipeline of the Cortex-R4 and Cortex-R5 processors. This means that the Cortex-R7 processor
is more optimized towards performance than the Cortex-R4 and Cortex-R5 processors. This
also means that the Cortex-R7 processor is inherently less deterministic. However the
Cortex-R7 processor also includes features to help prioritize more critical code. These features
are called Quality of Service (QoS) features.

The memory subsystem of the Cortex-R7 processor is specifically designed to support these
QoS features. Typically the most timing-critical code is stored in the Tightly Coupled
Memories. The timing-critical peripherals are connected using the peripheral port. The
Cortex-R7 processor is configured with two AXI master ports. The two master ports then
connect to distinct memory subsystems and address filtering is then used to differentiate
between the two subsystems.

One area of the memory map is dedicated to more time-critical code. Typically this AXI master
port, master port M1, connects to a region of on-chip SRAM that can provide a considerably
faster response time than off-chip memory. Finally, the least timing-critical code and peripherals
are connected to the main memory subsystem, accessed using the AXI master port 0 in the
Cortex-R7 processor.

Quality of Service features are then enabled to optimize the accesses into this memory system.

The Quality of Service features can be used to ensure that low priority cacheable traffic does not
block the flow of accesses from:

• Peripherals connected on the peripheral port.

• Data TCM accesses.

• Cacheable traffic connected on the optional external AXI master port 1, when used with
address filtering.

Transfers going through AXI master port 0, are considered to have low priority.

The QoS bit in the Auxiliary Control Register is used to enable QoS:

• If this bit is set, some hardware resources are reserved solely for high priority traffic.
These resources are not accessible by low priority traffic. This means that high priority
traffic, such as an Interrupt Service Routine (ISR), has the necessary resources to start
executing even if low priority transactions are in progress. When the low priority traffic
completes its pending transfers, the high priority traffic is then be able to use all the
hardware resources.

• If this bit is not set, no hardware resources are reserved for high priority traffic, and both
the low and high priority traffic share and use all the available resources. This
configuration has better average performance, because all hardware resources are
available to all traffic.

You can set the QoS bit on a per core basis to ensure that low priority cacheable traffic, with
significant memory latencies, does not block the flow of traffic from these tasks. The SCU offers
some QoS as soon as the filtering is enabled on the AXI master ports.

You can use the QoS bit to set different mixes of traffic flows:
• If the QoS bit is not set, all traffic can use all hardware resources regardless of priority.
• If the QoS bit is set, low priority traffic cannot use all the hardware resources.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-10
ID071714 Non-Confidential

Tightly Coupled Memory
8.6.1 Access to peripherals

The Cortex-R5 and Cortex-R7 processors include an additional AXI port specifically to provide
access to time-critical peripherals. Only those peripherals closely coupled to the performance of
the processor must be connected to this port.

For example, this port could be used to access an external interrupt controller for the Cortex-R5
processor. This might also include peripherals that generate high priority interrupts for the
processor. Having the dedicated ports means that accesses to these peripherals do not contend
with lower priority memory accesses in the rest of the memory subsystem.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 8-11
ID071714 Non-Confidential

Chapter 9
The Memory Protection Unit

Many real-time systems operate with a multitasking operating system (OS). The OS provides a
facility to ensure that the task currently executing does not disrupt the operation of other tasks.
System resources, the code, and data of other tasks are protected. The protection system typically
relies on both hardware and software.

In a system with no hardware protection support, each task must work in a cooperative way with
other tasks and follow rules. In contrast, a system with dedicated protection hardware will check
and restrict access to system resources, preventing hostile or unintentional access to forbidden
resources. Tasks are still required to follow a set of OS rules, but these are also enforced by
hardware, that gives more robust protection.

ARM provides all of the Cortex-R series processors with this capability using a Memory Protection
Unit (MPU). This provides hardware protection over a number of software-programmed regions,
but does not provide a full virtual memory system with address translation.

The Cortex-R series processors implement the ARM Protected Memory System Architecture
(PMSA).

The PMSA is based on a Memory Protection Unit (MPU). The PMSA provides a much simpler
memory protection scheme than the MMU based Virtual Memory System Architecture (VMSA).
The simplification applies to both the hardware and the software.

The main simplification is that the MPU does not use translation tables. Instead, the System Control
Coprocessor (CP15) registers define protection regions. The protection regions eliminate the need
for hardware to perform translation table walks and software to set up and maintain translation
tables.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-1
ID071714 Non-Confidential

The Memory Protection Unit
The use of protection regions has the benefit of making the memory checking fully
deterministic. However, the level of control is region based rather than page based, meaning the
control is considerably less precise than in the VMSA.

A second simplification is that the PMSA does not support virtual to physical address mapping.

In the Cortex-A series processors, a Memory Management Unit (MMU) controls access to the
memory subsystem. This provides greater flexibility in controlling the memory accesses but
requires that some configuration data for the MMU is stored in external memory. This means
that memory access times can vary considerably when using an MMU. In contrast, all the
configuration of the Memory Protection Unit (MPU) is internal to the Cortex-R processors and
so the use of the MPU will not impact the memory access latency.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-2
ID071714 Non-Confidential

The Memory Protection Unit
9.1 Memory subsystem
The use of a Memory Protection Unit (MPU) and Tightly Coupled Memories in the Cortex-R
processor implementations can help ensure fast access to critical subroutines in the code. The
MPU controls access to the different regions of the memory map.

The ARM MPU uses these regions to manage system protection. A region is a set of attributes
associated with an area of memory. The core holds these attributes in CP15 registers and
identifies each region with a number.

The memory boundaries of a region are defined by its base address and its size. Each region
possesses additional attributes that define access rights, memory type and the cache policies.
Because peripherals are memory-mapped in ARM systems, the same protection mechanism is
used for both system peripherals and task memory.

Each region consists of:

• A base address.

• Region Size and Enable.

• Memory Type and Access Control.

• Optional sub-regions.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-3
ID071714 Non-Confidential

The Memory Protection Unit
9.2 Implementing a Protected Memory System with Regions
To implement a protected system, the OS must define a number of regions to cover the different
areas in the main memory map. This can be done as a static (fixed) scheme, during the boot
sequence, that persists while the system is running. Alternatively, more complex systems can
assign (and remove) regions dynamically as tasks start and finish, or as the software context
switches.

There are a number of points to consider when dealing with regions:

• Regions are assigned a priority number that is independent of the privileges assigned to
the region.

• Regions can overlap other regions. In this case, the attributes of the region with the highest
priority number take precedence over the other regions (only for the addresses within the
areas that overlap).

• The size of a region can be any power of two between 32 Bytes and 4 GB.

• Accessing an area of memory outside of a defined region might result in an abort.

Overlapping regions provide a greater flexibility when assigning access permissions. A useful
feature provided by overlapping regions is a background region. A low priority region is used
to assign the same attributes to a large memory area. Other regions with higher priority are then
placed over this background region to change the attributes of a smaller part of the memory map.

Figure 9-1 Single region and overlapping regions

For example, if an embedded system defines a large low priority region with privileged access
only, it can then overlay a smaller region with user mode access permitted on top of this. The
location of the smaller region can be moved over different areas of the privileged region on
context switches to give a number of different user task-specific spaces. Each time that the

Region 0

Region 1Base

SizeRegion 0
Region 2
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-4
ID071714 Non-Confidential

The Memory Protection Unit
smaller user-accessible region is moved, the previously covered area becomes protected by the
privileged region. This means that with only one or two instructions writing to the appropriate
CP15 register. you can provide an area of memory specific to each task, protected from all other
tasks.

It is common practice to define a region that covers the entire 4GB physical address map, that
has lower priority than any other region and that provides the memory attributes for accesses
that do not match any of the other defined memory regions. If you require such accesses to
generate a memory abort, this can be done using the SCTLR.BR bit, that provides this behavior
without having to program region 0 to do so. Alternatively, the default memory map can be used
to define the background region for privileged accesses.

Figure 9-2 Example Static MPU Region configuration with background region

The Base address of a region must always be aligned to the region size. This means, for
example, that a 32KB region must have a base address aligned to a 32KB boundary.

Initialization and additional programming of the MPU regions is achieved through CP15 MCR
instructions.

None of the regions are defined or enabled after reset. Any access that lies outside a defined and
enabled region when the MPU is enabled will cause an abort. Therefore, at least one region must
be defined before enabling the MPU after reset. If the MPU is enabled and no regions are
defined, the processor enters a state from which it is recoverable only by an additional reset.

Flash

Peripherals

SRAM

Background

- Privileged
- Read Only
- Normal, Shared

- Privileged
- Device, Not Shared
- Execute never

- Read/Write
- Normal, Shared

0x00000000

0x0003FFFF

0x10000000

0x1FFFFFFF

0x24000000

0x25FFFFFF
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-5
ID071714 Non-Confidential

The Memory Protection Unit
However, the Cortex-R series processors can be configured to permit privileged accesses to use
the default memory map if no region has been defined for a particular address location.

The code enabling the MPU, by setting the SCTLR.M bit in the System Control Register, must
be in a memory location that is defined as executable, otherwise the core will immediately take
an abort exception when the MPU is enabled.

The available memory types are Normal, Device and Strongly Ordered. For Normal memory
there are a number of possible cache policies, such as write-back and write-through, that can be
selected for a region. This means that, for example, one region can be marked as using
write-back cache policy, while another is noncacheable.

For the purposes of memory protection, it is the Access Control settings that are of interest.
Access to a region in memory can be set as read-write, read-only, or no access. It is qualified by
the current processor mode, that can be either privileged or non-privileged (user).

When the processor accesses a memory address, the MPU determines the attributes of the region
applying to that address and compares the access permission attributes of the region with the
current processor mode to determine what action is required. If the access is permitted by the
region access criteria, the read or write to main memory (or TCM) occurs. If it is not permitted,
the access to memory does not occur and an abort is generated. This is either a prefetch or data
abort, and the appropriate abort handler is called.

The MPU in the Cortex-R series processors is software programmable. The protection
configuration might change during a context switch and so should be reprogrammed.

Note
 Usually there is no requirement to flush all caches whenever the MPU is reprogrammed. Doing
so can significantly degrade system performance.

In the Cortex-R4 and Cortex-R5 processors, the presence of the programmable MPU is optional
although it is generally included. If present, there might be either 8, 12 or 16 regions. The
number of regions is defined by the hardware implementer at RTL configuration stage.

In the Cortex-R7 processor the programmable MPU is required and might have either 12 or 16
regions, as defined by the hardware implementer at RTL configuration stage.

The smallest size of a region in the Cortex-R4 and Cortex-R5 processor is 32 bytes. The smallest
size of a region in the Cortex-R7 processor is 256 bytes.

If a region is of 256 bytes or more, it might be divided into 8 sub-regions.The regions are
common to both instruction and data accesses. However, it is possible to use the Execute Never
(XN) attribute to disallow instruction execution from a peripheral or data region.

If the MPU is disabled or not present, the processor uses the default memory map and default
protection settings. Figure 9-3 on page 9-7 shows the default memory map and the base address
for each region.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-6
ID071714 Non-Confidential

The Memory Protection Unit
Figure 9-3 Default memory map

Note
 • In the instruction memory type, the top 256MB is Normal Executable only when HIVECS

is enabled. Otherwise it is treated as Execute Never.

• If instruction cache is disabled, then the Cacheable regions in the instruction memory type
become Noncacheable.

• If data cache is disabled, then the Cacheable, Non-shared regions in the data memory type
become Noncacheable, Shared.

9.2.1 Sub-Regions

Each region larger than 256 bytes can be split into eight equal sized non-overlapping
sub-regions. This means the granularity of protection and memory attributes can be increased
without significant increase in hardware complexity and reduces the number of regions that
must be used to align protection boundaries to unaligned addresses.

Each of the sub-regions can be individually enabled or disabled. An access to a memory address
in a disabled sub-region does not use the attributes and permissions defined for that region.
Instead, it uses the attributes and permissions of a lower priority region or generates a
background fault if no other regions overlap at that address. This enables increased protection
and memory attribute granularity.

Disabling sub-regions provides backward compatibility with the ARMv6 architecture.

Strongly
ordered

Device
Shared

Normal
Non-cacheable

Shared

Normal
Cacheable
Non-shared

Normal
/ XN

Execute
Never (XN)

Device
Non-shared

Normal
Cacheable
Non-shared

Data Instructions
0x00000000

0x60000000

0x80000000

0xA0000000

0xC0000000

0xF0000000

0x80000000

0x00000000
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-7
ID071714 Non-Confidential

The Memory Protection Unit
9.2.2 MPU memory region programming registers

The MPU memory region programming registers program the MPU regions.

There is one register that specifies which one of the sets of region registers is to be accessed.
Each region has its own registers to specify:
• Region base address.
• Region size and enable.
• Region access control.

You can implement the processor with 12 or 16 regions, or entirely without an MPU. If you
implement the processor without an MPU, then there are no regions and no region programming
registers.

When the MPU is enabled:

• The MPU determines the access permissions for all accesses to memory, including the
TCMs. Therefore, you must ensure that the memory regions in the MPU are programmed
to cover the complete TCM address space with the appropriate access permissions. You
must define at least one of the regions in the MPU.

• An access to an undefined area of memory normally generates a background fault.

For the TCM space the processor uses the access permissions but ignores the region attributes
from MPU.

c6, MPU Region Base Address Register

The MPU Region Base Address Register describes the base address of the region specified by
the Memory Region Number Register.

Figure 9-4 Region base address register

To access an MPU Region Base Address Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 0 ; Read MPU Region Base Address Register
MCR p15, 0, <Rd>, c6, c1, 0 ; Write MPU Region Base Address Register

c6, MPU Region Size and Enable Register

The MPU Region Size and Enable Register specifies the size of the region specified by the
Memory Region Number Register, identifies the address ranges that are used for a particular
region and enables or disables the region, and its sub-regions, specified by the Memory Region
Number Register.

31 0

Base address

45

Reserved
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-8
ID071714 Non-Confidential

The Memory Protection Unit
Figure 9-5 Region size and enable register

To access an MPU Region Size and Enable Register, read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 2 ; Read Data MPU Region Size and Enable Register
MCR p15, 0, <Rd>, c6, c1, 2 ; Write Data MPU Region Size and Enable Register

Writing a region size that is outside the range results in Unpredictable behavior.

c6, MPU Region Access Control Register

The MPU Region Access Control Register holds the region attributes and access permissions
for the region specified by the Memory Region Number Register.

Figure 9-6 Region access control register

To access the MPU Region Access Control Registers read or write CP15 with:

MRC p15, 0, <Rd>, c6, c1, 4 ; Read MPU Region Access Control Register
MCR p15, 0, <Rd>, c6, c1, 4 ; Write MPU Region Access Control Register

To execute instructions in User and Privileged modes:
• The region must have read access as defined by the AP bits.
• The XN bit must be set to 0.

9.2.3 MPU control registers in CP15

This section provides a brief summary of the CP15 registers and instructions used to control the
MPU.

• Memory Region Register Number (MCR p15, 0, Rd, c6, c2, 0)
— Rd[3:0] contains the region number to select.
— Controls which region number the following accesses apply to.

• Region Base (MCR p15, 0, Rd, c6, c1, 0)
— Rd[31:5] contains MSBs of the base address.
— This must be aligned to the size of the region. For example, if the size is 1KB,

bits [9:5] must be zero.

• Region Size and Enable (MCR p15, 0, Rd, c6, c1, 2)
— Rd[5:1] sets the size.

Reserved Sub-region disable

31 6 5 0

Region size

1781516

Reserved
Enable

Reserved BC

31 3 0

TEX S

12567811 1012

XN AP

Reserved

13
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-9
ID071714 Non-Confidential

The Memory Protection Unit
— In the Cortex-R4 and Cortex-R5 processors, valid values are from 0b00100 (32
bytes) to 0b11111 (4GB).

— In the Cortex-R7 processor, valid values are from 0b00111 (256 bytes) to 0b11111
(4GB).

— Rd[0] is the enable bit.
— At least one valid, enabled region is required prior to enabling the MPU.

• Region Access Control (MCR p15, 0, Rd, c6, c1, 4)
— Rd[12]: Execute Never (XN) determines if a region of memory is Executable.
— Rd[10:8]: Access Permission (AP).
— Defines the data access permissions.
— Rd[5:3]: Type Extensions (TEX) defines the Type Extensions attributes of the

region.
— Combined with the S, C and B bits to determine the memory type.
— Rd[2]: Shared (S).
— Rd[1]: Cacheable (C).
— Rd[0]: Bufferable (B).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-10
ID071714 Non-Confidential

The Memory Protection Unit
9.3 Memory attributes
The MPU specifies a number of attributes, including access permissions, memory type, and
cache policies.

9.3.1 Memory Access Permissions

The Access Permission (AP) bits in the region configuration give the access permissions for a
region. See Table 9-1.

An access that does not have the necessary permission (or that faults) is aborted. On a data
access, this will result in a precise data abort exception. On an instruction fetch, the access is
marked as aborted and if the instruction is not subsequently flushed before execution, a prefetch
abort exception is taken. Faults generated by an external access will not, in general, be
synchronous.

Information about the address of the faulting location and the reason for the fault is stored in the
fault address and fault status registers. The abort handler can then take appropriate action – for
example, modifying the region configuration to remedy the problem and then returning to the
application to retry the access. If there is no available solution, the application that generated the
abort must be terminated.

9.3.2 Memory types

Earlier ARM architecture versions enabled you to specify the memory access behavior of
regions by configuring whether the cache and write buffer could be used for that location. This
simple scheme is inadequate for today’s more complex systems and processors, where you can
have multiple levels of caches, hardware managed coherency between multiple processors
sharing memory and processors that can speculatively fetch both instructions and data.

Three mutually exclusive memory types are defined in the ARM architecture. All regions of
memory are configured as one of these three types:
• Strongly-ordered
• Device
• Normal.

Table 9-1 Summary of Access Permission encodings

AP Privileged Unprivileged Description

00 No access No access Permission fault

01 Read/Write No access Privileged Access only

10 Read/Write Read No user-mode write

11 Read/Write Read/Write Full access

00 - - Reserved

01 Read No access Privileged Read only

10 Read Read Read only

11 - - Reserved
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-11
ID071714 Non-Confidential

The Memory Protection Unit
These are used to describe the memory regions. A summary of the memory types is shown in
Table 9-2.

Table 9-3 shows how the TEX, C and B bits within the memory type and access control registers
are used to set the memory types of a region and also the cache policies to be used. The meaning
of each of the memory types is described in Chapter 10 Memory Ordering, while the cache
policies were described in Chapter 7 Caches.

The final entry within the table requires more explanation. For normal cacheable memory, the
two least significant bits of the TEX field are used to provide the outer cache policy, as in
Table 9-4 on page 9-13, while the C and B bits give the inner cache policy (for level 1 and any
other cache that is to be treated as inner cache). This enables you to specify different cache

Table 9-2 Memory attributes

Memory type
Shareable/
Non-shareable

Cacheable Description

Normal Shareable Yes Designed to handle normal memory that is shared between
multiple cores.

Non-shareable Yes Designed to handle normal memory that is used only by a
single core.

Device - No Designed to handle memory-mapped peripherals.
Shared memory was originally used to distinguish between
accesses directed to the “peripheral private port” found on
several ARM11 processors.
All memory accesses to Device memory occur in program order.

Strongly-ordered - No All memory accesses to Strongly-ordered memory occur in
program order. All Strongly-ordered accesses are assumed to be
shared.

Table 9-3 Memory type and cacheable properties encoding in the region configuration
entry

TEX C B Description Memory type

000 0 0 Strongly-ordered Strongly-ordered

000 0 1 Shareable device Device

000 1 0 Outer and Inner write-through, no allocate on write Normal

000 1 1 Outer and Inner write-back, no allocate on write Normal

001 0 0 Outer and Inner non-cacheable Normal

001 - - Reserved -

010 0 0 Non-shareable device Device

010 - - Reserved -

011 - - Reserved -

1XX Y Y Cached memory
XX = Outer policy
YY = Inner policy

Normal
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-12
ID071714 Non-Confidential

The Memory Protection Unit
policies for both the inner and outer cache. For the Cortex-R processors inner cache properties
only apply to the L1 caches. On some older processors, outer cache might support write allocate,
while the L1 cache might not. Such processors must still behave correctly when running code
that requests this cache policy.

9.3.3 Execute Never

When set, the Execute Never (XN) bit in the translation table entry prevents speculative
instruction fetches taking place from required memory locations and will cause a prefetch abort
to occur if execution from the memory location is attempted. Typically device memory regions
are marked as Execute Never to prevent accidental execution from such locations, and to
prevent undesirable side-effects that might be caused by speculative instruction fetches.

Table 9-4 Outer cache policy encoding

Memory attribute encoding Cache policy

00 Non-cacheable

01 Write-back, write allocate

10 Write through, no write allocate

11 Write-back, no write allocate
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-13
ID071714 Non-Confidential

The Memory Protection Unit
9.4 Attributes and cache maintenance
The MPU configuration is programmed using CP15. For each region you must specify:

• Base address.

• Size.

• Attributes.

The MPU can be programmed so that any given memory address can appear in more than one
region, in which case the highest numbered matching region will set the attributes for that
address. This is called ‘resolving the attributes’ for that address. The final attributes for the given
address are termed the ‘resolved attributes’.

MPU attributes for the Cortex-R series processors are:

• Memory type (Normal, Device, Strongly-Ordered).

• Cacheability.

• Shareability.

• Permission control (User/Privileged, Read/Write, Executable).

Note
 The permission controls for access to a particular address are always controlled by the MPU.
However the cacheability and shareability attributes for a region can be treated as hints by the
processor and the attribute overriden.

For example, a TCM is by definition a Normal, Non-cacheable, Non-shareable memory region
and so in the Cortex-R5 processor the TCM is always treated as Normal, Non-cacheable,
Non-shareable memory, regardless of the MPU region settings.

Any of the above attributes can be changed without disabling and re-enabling the MPU, so long
as care is taken to ensure that the resolved attributes for the code (and its data) performing the
MPU update are not changed.

Cache maintenance is required when the memory type, cacheability, or shareability attributes
for a memory location are changed by reprogramming the MPU. Coherency in both Level-1
Instruction and Data caches and any Level-2 caches (if present) must then be restored by
performing the following operations:

• I-cache: invalidate all.

• D-cache: clean and invalidate all.
For a description of how to do this for the Cortex-R7, see Example 15-3 on page 15-3.

It is not necessary to disable and re-enable the MPU while restoring coherency in this way.

An alternative strategy might be to invalidate by address (or clean and invalidate for the
D-cache) for all addresses that used to be cacheable but now are not. However this will not
usually result in improved performance.

Write-Through (WT) and Write-Back (WB) are both different cacheability attributes and any
change to them will require cache maintenance, for example, changing from WB to WT is not
safe without a clean and invalidate (or at least a clean).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-14
ID071714 Non-Confidential

The Memory Protection Unit
9.5 Managing the MPU in context switches
Context switches that only change permission control attributes do not require cache
maintenance operations. In this case, the caches continue to operate correctly without any loss
of coherency.

In processors that use an MPU to control memory accesses, context switches will typically only
modify the permission control for memory locations but will not modify the memory type,
cacheability, or shareability attributes. Therefore context switching can be performed efficiently
with the MPU remaining enabled and without having to do any cache maintenance.

Note
 To enable or disable the MPU:

• The L1 caches must be invalidated.

• The L1 data cache must be cleaned.

However, when the MPU is reprogrammed, for example on a context switch, these steps are
rarely necessary.

9.5.1 Permission modification in context switching

Suppose that the operating system programs the MPU as follows:

MPU Region 0: Address from 0x00000000 to 0xFFFFFFFF

Described as Normal memory, Enabled, Cacheable using Write-Back

Executable = No. Permission = No Access

MPU Region 1: Address from 0x10000000 to 0x1FFFFFFF

Described as Normal memory, Enabled, Cacheable using Write-Back

Executable = Yes. Permission = User Read/Write.

The address range 0x10000000 to 0x1FFFFFFF corresponds to the memory range for Task 1 and
part of Region 1 is cached during the task.

A context switch requires a move to Task 2 in which:

MPU Region 0: Stays the same

MPU Region 1: Is now relocated to address range 0x20000000 to 0x2FFFFFFF, and therefore the
addresses in the range 0x10000000 to 0x1FFFFFFF hit in Region 0 and do not have access
permission.

Because only the permissions have changed there is no requirement to perform cache
maintenance when switching between Task 1 and Task 2.

If the processor attempts to read or write memory at 0x10001000 during Task 2, it will violate the
access permission. In this case:

• It will generate a Synchronous Data Abort.

• The cache might be read, depending on the implementation, but the data will always be
discarded.

• The target register will not be updated.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-15
ID071714 Non-Confidential

The Memory Protection Unit
• If the address is not in the cache the processor will not start a line fill.

• Writes will not be issued to the memory system.

Note
 When the MPU is configured and has switched from Task 1 to Task 2 as described above, any
dirty cache lines corresponding to address range 0x10000000 to 0x1FFFFFFF will still be evicted
as normal, despite no longer being accessible for reads or writes.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-16
ID071714 Non-Confidential

The Memory Protection Unit
9.6 Cache maintenance recommendations
It is sometimes necessary to perform cache maintenance operations, such as cleaning or
invalidating the cache, when MPU region attributes are changed.

For the Cortex-R series processors, changing from a less restrictive to a more restrictive
attribute requires cache maintenance. An example is when changing a region’s resolved
attribute from cacheable to noncacheable. Therefore it is possible to identify changes in the
memory type, cacheability, or shareability attributes that do not require cache maintenance
operations.

However, ARM recommends that cache is always maintained when changes are made to the
memory type, cacheability, or shareability attributes so that programs remain platform
independent. Additional implications might also exist in the level-2 memory system that are
outside the domain of the processor and are system-specific.

For any given memory location, ARM recommends that you have fixed values for the memory
type, cacheability, or shareability attributes and that these attribute values are independent of the
currently executing context.

Failure to guarantee this will mean that the OS must explicitly manage the mismatched
attributes, that will involve cache maintenance and other considerations.

Note
 In most MPU based systems, attribute changes that require cache maintenance, such as changes
to memory type or cacheability, do not typically occur after system start-up.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 9-17
ID071714 Non-Confidential

Chapter 10
Memory Ordering

Early implementations of the ARM architecture such as the ARM7TDMI executed all instructions
in program order. Each instruction was fully executed before the next instruction was started.

Newer processors employ a number of optimizations that relate to the order in which instructions
are executed and the way memory accesses are performed. As we have seen, the speed of execution
of instructions by the core is significantly higher than the speed of external memory. Caches and
write buffers are used to partially hide the latency associated with this difference in speed. One
potential effect of this is for memory addresses to be re-ordered. This would mean that the order in
which load and store instructions are executed by the core will not necessarily be the same as the
order in which the accesses are seen by external devices.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-1
ID071714 Non-Confidential

Memory Ordering
Figure 10-1 Memory ordering example

In Figure 10-1, we have three instructions listed in program order. The first instruction performs
a write to external memory that in this example, misses in the cache (Access 1). It is followed
in program order by two reads, one that misses in the cache (Access 2) and one that hits in the
cache (Access 3). Both of the read accesses could complete before the write buffer completes
the write associated with Access 1. Hit-under-miss behaviors in the cache mean that a load that
hits in the cache (like Access 3) can complete before a load earlier in the program that missed
in the cache (like Access 2).

It is still possible to preserve the illusion that the hardware executes instructions in the order you
wrote them. There are generally only a few cases where you have to worry about such effects.
For example, if you are modifying CP15 registers, copying or otherwise changing code in
memory, it might be necessary to explicitly make the core wait for such operations to complete.

For very high performance cores that support speculative data accesses, multi-issuing of
instructions, cache coherency protocols and out-of-order execution to make additional
performance gains, there are even greater possibilities for re-ordering. In general, the effects of
this re-ordering are invisible to you, in a single core system. The hardware takes care of many
possible hazards. It will ensure that data dependencies are respected and ensure the correct value
is returned by a read, allowing for potential modifications caused by earlier writes.

However, in cases where you have multiple cores that communicate through shared memory (or
share data in other ways), memory ordering considerations become more important. In general,
you are most likely to care about exact memory ordering at points where multiple execution
threads must be synchronized.

Processors that conform to the ARM v7-R architecture employ a weakly-ordered model of
memory, this means that the order of memory accesses is not required to be the same as the
program order for load and store operations. The model can reorder memory read operations
(from LDR, LDM and LDD instructions) with respect to each other, to store operations, and certain
other instructions. Reads and writes to Normal memory can be re-ordered by hardware, with
such re-ordering being subject only to data dependencies and explicit memory barrier
instructions. In cases where stronger ordering rules are observed, this is communicated to the
processor through the memory type attribute of the region configuration that describes that
memory. Enforcing ordering rules on the core limits the possible hardware optimizations and
therefore reduces performance and increases power consumption.

STR R12, [R1] @Access 1.

Program Order of Instructions Instruction ExecutionTimeline

Access 1 goes into write buffer

Time

Access 2 causes a cache lookup which misses

Access 3 causes a cache lookup which hits

Access 3 returns data into ARM register

Cache linefill triggered by Access 2 returns data

Memory store triggered by Access 1 is performed

LDR R0, [SP], #4 @Access 2.

LDR R2, [R3,#8] @Access 3.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-2
ID071714 Non-Confidential

Memory Ordering
10.1 ARM memory ordering model
As we have said, Cortex-R series processors employ a weakly ordered memory model.
However, within this model specific regions of memory can be marked as Strongly-ordered. In
this case memory transactions are guaranteed to occur in the order they are issued,

Three mutually exclusive memory types are defined. All regions of memory are configured as
one of these three types:
• Strongly-ordered
• Device
• Normal.

In addition, for Normal and Device memory, it is possible to specify whether the memory is
Shareable (accessed by other agents) or not. For Normal memory, Inner and Outer cacheable
properties can be specified.

In Table 10-1 A1 and A2 are two accesses to non-overlapping addresses. A1 occurs before A2
in program code, but writes can be issued out of order.

10.1.1 Strongly-ordered and Device memory

Accesses to Strongly-ordered and Device memory have the same memory-ordering model.
Access rules for this memory are as follows:

• The number and size of accesses is preserved. Accesses are atomic, and will not be
interrupted part way through.

• Both read and write accesses can have side effects. Accesses are never cached.
Speculative accesses will never be performed.

• Accesses cannot be unaligned.

• The order of accesses arriving at Device memory is guaranteed to correspond to the
program order of instructions that access Strongly-ordered or Device memory. This
guarantee applies only to accesses within the same peripheral or block of memory. The
size of such a block is implementation defined, but has a minimum size of 1KB.

• In the ARMv7 architecture, the processor can re-order Normal memory accesses around
Strongly-ordered or Device memory accesses.

The only difference between Device and Strongly-ordered memory is that:

• A write to Strongly-ordered memory can complete only when it reaches the peripheral or
memory component accessed by the write.

Table 10-1 Memory type access order

A2 Normal Device
Strongly-
ordered

A1
Normal No order enforced No order enforced No order enforced

Device No order enforced Issued in program order Issued in program order

Strongly-
ordered

No order enforced Issued in program order Issued in program order
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-3
ID071714 Non-Confidential

Memory Ordering
• A write to Device memory is permitted to complete before it reaches the peripheral or
memory component accessed by the write.

System peripherals will almost always be mapped as Device memory.

Regions of Device memory type can be described using the Shareable attribute.

On some ARMv6 processors, the Shareable attribute of Device accesses is used to determine
which memory interface is used for the access, with memory accesses to areas marked as
Device, Non-Shareable performed using a dedicated interface, the private peripheral port. This
mechanism is not used on ARMv7 processors.

Note
 These memory ordering rules provide guarantees only about explicit memory accesses (those
caused by load and store instructions). The architecture does not provide similar guarantees
about the ordering of instruction fetches with respect to such explicit memory accesses.

10.1.2 Normal memory

Normal memory is used to describe most parts of the memory system. All ROM and RAM
devices are considered to be Normal memory. All code to be executed by the processor must be
in Normal memory. The architecture does not permit code to be in a region of memory that is
marked as Device or Strongly-ordered.

The properties of Normal memory are as follows:

• The processor can repeat read and some write accesses.

• The processor can pre-fetch or speculatively access additional memory locations, with no
side effects (if permitted by MPU access permission settings). The processor will not
perform speculative writes, however.

• Unaligned accesses can be performed.

• Multiple accesses can be merged by processor hardware into a smaller number of accesses
of a larger size. Multiple byte writes could be merged into a single double-word write, for
example.

Cacheability attributes

Regions of Normal memory must also have cacheability attributes described (see Chapter 7
Caches for details of the supported cache policies). The ARM architecture supports cacheability
attributes for Normal memory for two levels of cache, the inner and outer cache. The mapping
between these levels of cache and the implemented physical levels of cache is implementation
defined.

Inner refers to the innermost caches, and always includes the processor Level 1 cache. An
implementation might not have any outer cache, or it can apply the outer cacheability attribute
to an Level 2 cache. For example, in a system containing a Cortex-R7 processor and the
L2C-310 Level 2 cache controller, the L2C-310 is considered to be the outer cache.

Note
 Some parts of memory such as those containing peripheral devices are non-cacheable.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-4
ID071714 Non-Confidential

Memory Ordering
Shareable attributes

Normal memory must also be identified either as Shareable or Non-Shareable. A region of
Normal memory with the Non-Shareable attribute is one that is used only by this core. There is
no requirement for the core to make accesses to this location coherent with other cores. If other
cores do share this memory, any coherency issues must be handled in software. For example,
this can be done by having individual cores perform cache maintenance and barrier operations.

A region with the Shareable attribute set is one that can be accessed by other agents in the
system. Accesses to memory in this region by other processors within the same shareability
domain are coherent. This means that you can safely ignore the effects of data or caches.
Without the Shareable attribute, in situations where cache coherency is not maintained between
processors for a region of shared memory, you would have to explicitly manage coherency
yourself.

The ARMv7 architecture enables you to specify Shareable memory as Inner Shareable or Outer
Shareable (this latter case means that the location is both Inner and Outer Shareable). The
Cortex-R processors do not distinguish between outer and inner shareable memory.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-5
ID071714 Non-Confidential

Memory Ordering
10.2 Memory barriers
A memory barrier is an instruction that requires the processor to apply an ordering constraint
between memory operations that occur before and after the memory barrier instruction in the
program. Such instructions are also known as memory fences in other architectures.

The term memory barrier can also be used to refer to a compiler mechanism that prevents the
compiler from scheduling data access instructions across the barrier when performing
optimizations. For example in GCC, you can use the inline assembler memory clobber, to
indicate that the instruction changes memory and therefore the optimizer cannot re-order
memory accesses across the barrier. The syntax is as follows:

asm volatile("" ::: "memory");

ARM RealView Compilation Tools (RVCT) includes a similar intrinsic, called
__schedule_barrier().

Here, however, we are looking at hardware memory barriers, provided through dedicated ARM
assembly language instructions. As we have seen, processor optimizations such as caches, write
buffers and out-of-order execution can result in memory operations occurring in an order
different from that specified in the executing code. Normally, this re-ordering is invisible to you.
Application developers do not normally have to worry about memory barriers. However, there
are cases where you might have to take care of such ordering issues, for example in device
drivers or when you have multiple observers of the data that have to be synchronized.

The ARM architecture specifies memory barrier instructions, that enable you to force the core
to wait for memory accesses to complete. These instructions are available in both ARM and
Thumb code, in both user and privileged modes. In older versions of the architecture, these were
performed using CP15 operations in ARM code only. Use of these is now deprecated, although
preserved for compatibility.

Let’s start by looking at the practical effect of these instructions in a single core processor. This
description is a simplified version of that given in the ARM Architecture Reference Manual,
what is written here is intended to introduce the usage of these instructions. The term explicit
access is used to describe a data access resulting from a load or store instruction in the program.
It does not include instruction fetches.

Data Synchronization Barrier (DSB)
This instruction forces the processor to wait for all pending explicit data accesses
to complete before any additional instructions stages can be executed. There is no
effect on pre-fetching of instructions.

Data Memory Barrier (DMB)
This instruction ensures that all memory accesses in program order before the
barrier are observed in the system before any explicit memory accesses that
appear in program order after the barrier. It does not affect the ordering of any
other instructions executing on the processor, or of instruction fetches.

Instruction Synchronization Barrier (ISB)
This flushes the pipeline and prefetch buffer(s) in the processor, so that all
instructions following the ISB are fetched from cache or memory, after the
instruction has completed. This ensures that the effects of context altering
operations (for example, CP15 or branch predictor operations), executed before
the ISB instruction are visible to any instructions fetched after the ISB. This does
not in itself cause synchronization between data and instruction caches, but is
required as a part of such an operation.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-6
ID071714 Non-Confidential

Memory Ordering
Several options can be specified with the DMB or DSB instructions, to provide the type of access
and the shareability domain it should apply to, as follows:

SY This is the default and means that the barrier applies to the full system, including
all processors and peripherals.

ST A barrier that waits only for stores to complete.

ISH A barrier that applies only to the Inner Shareable domain.

ISHST A barrier that combines ST and ISH (that is, it only stores to the Inner Shareable.

NSH A barrier only to the Point of Unification (PoU). (See Point of coherency and
unification on page 7-16).

NSHST A barrier that waits only for stores to complete and only out to the point of
unification.

OSH Barrier operation only to the Outer Shareable domain.

OSHST Barrier operation that waits only for stores to complete, and only to the Outer
Shareable domain.

To make sense of this, you must use a more general definition of the DMB and DSB operations in
a multi-core system. The use of the word processor (or agent) in the following text does not
necessarily mean a processor and also could refer to a DSP, DMA controller, hardware
accelerator or any other block that accesses shared memory.

The DMB instruction has the effect of enforcing memory access ordering within a shareability
domain. All processors within the shareability domain are guaranteed to observe all explicit
memory accesses before the DMB instruction, before they observe any of the explicit memory
accesses after it.

The DSB instruction has the same effect as the DMB, but in addition to this, it also synchronizes the
memory accesses with the full instruction stream, not just other memory accesses. This means
that when a DSB is issued, execution will stall until all outstanding explicit memory accesses have
completed. When all outstanding reads have completed and the write buffer is drained,
execution resumes as normal.

It might be easier to appreciate the effect of the barriers by considering an example. Consider
the case of a dual-core Cortex-R7 processor. These cores operate as an SMP cluster and form a
single Inner Shareable domain. When a single core within the cluster executes a DMB instruction,
that core will ensure that all data memory accesses in program order before the barrier complete,
before any explicit memory accesses that appear in program-order after the barrier. This way, it
can be guaranteed that all cores within the cluster will see the accesses on either side of that
barrier in the same order as the core that performs them.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-7
ID071714 Non-Confidential

Memory Ordering
10.2.1 Memory barrier use example

Consider the case where you have two cores A and B and two addresses in Normal memory
(Addr1 and Addr2) held in core registers. Each core executes two instructions as shown in
Example 10-1:

Example 10-1 Code example showing memory ordering issues

Core A:
STR R0, [Addr1]
LDR R1, [Addr2]

Core B:
STR R2, [Addr2]
LDR R3, [Addr1]

Here, there is no ordering requirement and you can make no statement about the order in which
any of the transactions occur. The addresses Addr1 and Addr2 are independent and there is no
requirement on either core to execute the load and store in the order written in the program, or
to care about the activity of the other core.

There are therefore four possible legal outcomes of this piece of code, with four different sets
of values from memory ending up in core A, register R1 and core B, register R3:

• A gets the old value, B gets the old value.

• A gets the old value, B gets the new value.

• A gets the new value, B gets the old value.

• A gets the new value, B gets the new value.

If it were possible to involve a third core, C, you must also note that there is no requirement that
it would observe either of the stores in the same order as either of the other cores. It is perfectly
permissible for both A and B to see an old value in Addr1 and Addr2, but for C to see the new
values.

Consider the case where the code on B looks for a flag being set by A and then reads memory,
for example, if you are passing a message from A to B. You might have code similar to that in
Example 10-2:

Example 10-2 Possible ordering hazard with postbox

Core A:
STR R0, [Msg] @ write some new data into postbox
STR R1, [Flag] @ new data is ready to read

Core B:
Poll_loop:

LDR R1, [Flag]
CMP R1,#0 @ is the flag set yet?
BEQ Poll_loop
LDR R0, [Msg] @ read new data.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-8
ID071714 Non-Confidential

Memory Ordering
Again, this might not behave in the way that is expected. There is no reason why core B is not
permitted to speculatively perform the read from [Msg] before the read from [Flag]. This is
normal, weakly-ordered memory and the core has no knowledge of a possible dependency
between the two. You must explicitly enforce the dependency by inserting a memory barrier. In
this example, you actually require two memory barriers. Core A requires a DMB between the two
store operations, to make sure they happen in the order you originally specified. Core B requires
a DMB before the LDR R0, [Msg] to be sure that the message is not read until the flag is set.

10.2.2 Avoiding deadlocks with a barrier

Another situation that can cause a deadlock if barrier instructions are not used is where a core
writes to an address and then polls for an acknowledge value to be applied by a peripheral.

Example 10-3 shows the type of code that can cause a problem.

Example 10-3 Deadlock

STR R0, [Addr] @ write a command to a peripheral register
DSB
Poll_loop:

LDR R1, [Flag]
CMP R1,#0 @ wait for an acknowledge/state flag to be set
BEQ Poll_loop

The ARMv7 architecture without multiprocessing extensions does not strictly require the core’s
store to [Addr] to ever complete (it could be sitting in a write buffer while the memory system is
kept busy reading the flag), so both cores could potentially deadlock, each waiting for the other.
Inserting a DSB after the STR of the core forces its store to be observed before it will read from
Flag.

10.2.3 WFE and WFI Interaction with barriers

The WFE (Wait For Event) and WFI (Wait For Interrupt) instructions enable you to stop execution
and enter a low-power state. To ensure that all memory accesses prior to executing WFI or WFE
have been completed (and made visible to other cores), you must insert a DSB instruction.

An additional consideration relates to usage of WFE and SEV (Send Event) in an MP system. These
instructions enable you to reduce the power consumption associated with a lock acquire loop (a
spinlock). A processor that is attempting to acquire a mutex can find that some other processor
already has the lock. Instead of having the processor repeatedly poll the lock, you can suspend
execution and enter a low-power state, using the WFE instruction.

The core wakes either when an interrupt or other asynchronous exception is recognized, or
another core sends an event (with the SEV instruction). The core that had the lock will use the SEV
instruction to wake-up other cores in the WFE state after the lock has been released. For the
purposes of memory barrier instructions, the event signal is not treated as an explicit memory
access. You therefore have to take care that the update to memory that releases the lock is
actually visible to other processors before the SEV instruction is executed. This requires the use
of a DSB. DMB is not sufficient as it only affects the ordering of memory accesses without
synchronizing them to a particular instruction, whereas DSB will prevent the SEV from executing
until all preceding memory accesses have been seen by other cores.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-9
ID071714 Non-Confidential

Memory Ordering
10.3 Cache coherency implications
The caches are largely invisible to the application programmer. However they can become
visible when memory locations are changed elsewhere in the system or when memory updates
made from the application code must be made visible to other parts of the system.

A system containing an external DMA device and a core provides a simple example of possible
problems. There are two situations in which a breakdown of coherency can occur. If the DMA
reads data from main memory while newer data is held in the core cache, the DMA will read the
old data. Similarly, if a DMA writes data to main memory and stale data is present in the core
cache, the core can continue to use the old data.

Dirty data in the core data cache must be explicitly cleaned before the DMA starts. Similarly, if
the DMA is copying data to be read by the core, it must be certain that the core data cache does
not contain stale data. The cache will not be updated by the DMA writing memory and this
might require the core to clean or invalidate the affected memory areas from the caches before
starting the DMA. As all ARMv7-R processors can do speculative memory accesses, it will also
be necessary to invalidate after using the DMA.

10.3.1 Issues with copying code

Boot code, kernel code or JIT compilers can copy programs from one location to another, or
modify code in memory. There is no hardware mechanism to maintain coherency between
instruction and data caches. You must invalidate stale code from the instruction cache by
invalidating the affected areas, and ensure that the code written has actually reached the main
memory. Specific code sequences including instruction barriers are required if the core is then
intended to branch to the modified code.

10.3.2 Compiler re-ordering optimizations

It is important to understand that memory barrier instructions apply only to hardware
re-ordering of memory accesses. Inserting a hardware memory barrier instruction might not
have any direct effect on compiler re-ordering of operations. The volatile type qualifier in C
tells the compiler that the variable can be changed by something other than the currently
executing code that is accessing it. This is often used for C language access to memory mapped
I/O, enabling such devices to be safely accessed through a pointer to a volatile variable. The C
standard does not provide rules relating to the use of volatile in systems with multiple cores.
So, although you can be sure that volatile loads and stores will happen in program specified
order with respect to each other, there are no such guarantees about re-ordering of accesses
relative to non-volatile loads or stores. This means that volatile does not provide a shortcut to
implement mutexes.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 10-10
ID071714 Non-Confidential

Chapter 11
Exceptions and Interrupts

An exception is any condition that requires the core to halt normal execution and instead execute a
dedicated software routine known as an exception handler. There is typically an exception handler
associated with each exception type. Exceptions are conditions or system events that usually
requires remedial action or an update of system status by privileged software to ensure smooth
functioning of the system. This is called handling an exception.

When the exception has been handled, privileged software prepares the core to resume whatever it
was doing before taking the exception. Other architectures might refer to what ARM calls
exceptions as traps or interrupts, however, in the ARM architecture, these terms are reserved for
specific types of exceptions, described in Types of exception on page 11-2

In normal program execution, the program counter increments through the address space, with
explicit branches in the program modifying the flow of execution, for example, for function calls,
loops, and conditional code. When an exception occurs, this pre-determined sequence of execution
is interrupted, and temporarily switches to a routine to handle the exception.

In addition to responding to external interrupts, there are a number of other things that can cause
the core to take an exception, both external, such as resets, external aborts from the memory system,
and internal, such calls using the SVC instruction. You will recall from Chapter 3 that dealing with
exceptions causes the core to switch between modes and copy some registers into others. Readers
new to the ARM architecture might want to refresh their understanding of the modes and registers
described in Chapter 3, before continuing with this chapter.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-1
ID071714 Non-Confidential

Exceptions and Interrupts
11.1 Types of exception
Table 3-1 on page 3-1, describes how the ARMv7-R architecture supports a number of
processor modes, six privileged modes called FIQ, IRQ, Supervisor, Abort, Undefined and
System, and the non-privileged User mode. The current mode can change under privileged
software control or automatically when taking an exception.

Unprivileged user mode cannot directly affect the exception behavior of a core, but can generate
an SVC exception to request privileged services. This is how user applications requests the
Operating System to accomplish tasks on behalf of them. The unprivileged User mode can
switch to another mode only by generating an exception.

When an exception occurs, the core saves the current status and the return address, enters a
specific mode and possibly disables hardware interrupts. Execution handling for a given
exception starts from a fixed memory address called an exception vector for that exception.
Privileged software can program the location of a set of exception vectors into system registers,
and they are executed automatically when respective exceptions are taken.

The following types of exception exist:

Interrupts Processors that implement the ARMv7-R profile provide two interrupt types,
called IRQ and FIQ.
FIQ is higher priority than IRQ. FIQ also has some potential speed advantages
owing to its position in the vector table and the higher number of banked registers
available in FIQ mode. This potentially saves clock cycles on pushing registers to
the stack within the handler. Both of these kinds of exception are typically
associated with input pins on the processor. External hardware asserts an interrupt
request line and the corresponding exception type is raised when the current
instruction finishes executing, assuming that the interrupt is not disabled.

Aborts Aborts can be generated either on failed instruction fetches (prefetch aborts) or
failed data accesses (data aborts). They can come from the external memory
system giving an error response on a memory access. This might indicate that the
specified address does not correspond to real memory in the system.
Alternatively, the abort can be generated by the MPU.
An instruction can be marked within the pipeline as aborted, when it is fetched.
The prefetch abort exception is taken only if the core then tries to execute it. The
exception takes place before the instruction executes. If the pipeline is flushed
before the aborted instruction reaches the execute stage of the pipeline, the abort
exception will not occur. A data abort exception happens as a result of a load or
store instruction and is considered to happen after the data read or write has been
attempted.
An abort is described as synchronous if it is generated as a result of execution or
attempted execution of the instruction stream, and where the return address will
provide details of the instruction that caused it.
An asynchronous abort is not generated by executing instructions, while the
return address might not always provide details of what caused the abort.
The ARMv7 architecture distinguishes between precise and imprecise
asynchronous aborts. Aborts generated by the MPU are always synchronous. The
architecture does not require particular classes of externally aborted accesses to
be synchronous.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-2
ID071714 Non-Confidential

Exceptions and Interrupts
For precise asynchronous aborts, the abort handler can be certain which
instruction caused the abort and that no additional instructions were executed
after that instruction. This is in contrast to an imprecise asynchronous abort, the
result when the external memory system reports an error on an unidentifiable
access.
In this case, the abort handler cannot determine which instruction caused the
problem, or if additional instructions might have executed after the one that
generated the abort.
For example, if a buffered write receives an error response from the external
memory system, additional instructions will have been executed after the store.
This means that it is impossible for the abort handler to fix the problem and return
to the application. All it can do is to kill the application that caused the problem.
Device probing therefore requires special handling, as externally reported aborts
on reads to non-existent areas will generate imprecise synchronous aborts even
when such memory is marked as Strongly-ordered, or Device.
Detection of asynchronous aborts is controlled by the CPSR A bit. If the A bit is
set, asynchronous aborts from the external memory system are recognized by the
core, but no abort exception is generated. Instead, the core keeps the abort
pending until the A bit is cleared and takes an exception at that time. Kernel code
will use a barrier instruction to ensure that pending asynchronous aborts are
recognized against the correct application. If a thread has to be killed because of
an imprecise abort, it must be the correct one.

Reset All cores have a reset input and will take the reset exception immediately after
they have been reset. It is the highest priority exception and cannot be masked.
This exception is used to execute code on the core to initialize it, after power up

Exception generating instructions
There are two classes of instruction that can cause exceptions on an ARM core.
The first is the Supervisor Call (SVC). This is typically used to provide a
mechanism by which User mode programs can pass control to privileged, kernel
code in the OS to perform OS-level tasks. The second is an UNDEFINED
instruction. The architecture defines certain bit-patterns as corresponding to
undefined opcodes. Trying to execute one of these causes an UNDEFINED
Instruction exception to be taken. Executing coprocessor instructions for which
there is no corresponding coprocessor hardware will also cause this trap to
happen. Some instructions can be executed only in a privileged mode and
executing these from User mode will cause an undefined instruction exception.

When an exception occurs, the core executes the handler corresponding to that exception. The
location in memory where the handler is stored is called the exception vector. In the ARM
architecture, exception vectors are stored in a table, called the exception vector table. Vectors
for individual exception are located at fixed offsets from the beginning of the table. The table
base is programmed in a system register by privileged software so that the core can locate the
respective handler when an exception occurs. The fixed offsets for exceptions are shown in
Table 11-1 on page 11-4.

You can write the exception handlers in either ARM or Thumb code. The CP15 SCTLR.TE bit
specifies whether exception handlers use ARM or Thumb code. When handling exceptions, the
prior mode, state, and registers of the processor must be preserved so that the program can be
resumed after the exception has been handled.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-3
ID071714 Non-Confidential

Exceptions and Interrupts
11.1.1 Exception priorities
When exceptions occur simultaneously, each exception is handled in turn before returning to the
original application. It is not possible for all exceptions to occur concurrently. For example, the
Undefined instruction (Undef) and supervisor call (SVC) exceptions are mutually exclusive
because they are both triggered by executing an instruction.

Note
 The ARM architecture does not define when asynchronous exceptions are taken. Therefore the
prioritization of asynchronous exceptions relative to other exceptions, both synchronous and
asynchronous, is implementation defined.

All exceptions disable IRQ on entry to the handler, only FIQ and reset disable FIQ. This is done
by the core automatically setting the CPSR I (IRQ) and F (FIQ) bits.

So, unless the handler explicitly disables it, an FIQ exception can interrupt an abort handler or
IRQ exception. In the case of a data abort and FIQ occurring simultaneously, the data abort is
taken first. This lets the core record the return address for the data abort. But as FIQ is not
disabled by data abort, the core then takes the FIQ exception immediately. At the end of the FIQ
you return back to the data abort handler.

Exception handling on the core is controlled through the use of an area of memory called the
vector table. This is located by default at the bottom of the memory map in word-aligned
addresses from 0x00 to 0x1C. Most of the cached cores enable the vector table to be moved from
0x0 to 0xFFFF0000.

Table 11-1 Summary of exception behavior

Normal
Vector offset

High vector address Exception

0x0 0xFFFF0000 Not used

0x4 0xFFFF0004 UNDEFINED instruction

0x8 0xFFFF0008 Supervisor Call

0xC 0xFFFF000C Prefetch Abort

0x10 0xFFFF0010 Data Abort

0x14 0xFFFF0014 Not used

0x18 0xFFFF0018 IRQ interrupt

0x1C 0xFFFF001C FIQ interrupt
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-4
ID071714 Non-Confidential

Exceptions and Interrupts
11.1.2 Exception mode summary

Table 11-2 lists the state of the interrupt disabling I and F bits of the CPSR on entering an
exception handler.

11.1.3 The Vector table

The first column in Table 11-1 on page 11-4 gives the vector offset within the vector table
associated with the particular type of exception. This is a table of instructions that the ARM
processor jumps to when an exception is raised. These instructions are located in a specific place
in memory. The normal vector base address is 0x00000000, but Cortex-R Series processors
enable the vector base address to be moved to 0xFFFF0000 (or HIVECS).

You can discover whether HIVECS is in use by reading bit [13], the SCTLR.V bit using similar
code to that in CP15 Instruction syntax on page 3-8.

You will notice that there is a single word address associated with each exception type.
Therefore, only a single instruction can be placed in the vector table for each exception
(although, in theory, two 16-bit Thumb instructions could be used). FIQ is different. See, FIQ
and IRQ. Therefore, the vector table entry almost always contains one of the various forms of
branches.

B <label>
This performs a PC-relative branch. It is suitable for calling exception handler
code that is close enough in memory that the 24-bit field provided in the branch
instruction is large enough to encode the offset.

LDR PC, [PC, #offset]
This loads the PC from a memory location whose address is defined relative to
the address of the exception instruction. This lets the exception handler be placed
at any arbitrary address within the full 32-bit memory space, but takes some extra
cycles relative to the simple branch.

11.1.4 FIQ and IRQ

FIQ is typically reserved for a single, high-priority interrupt source that requires a guaranteed
fast response time, with IRQ used for all of the other interrupts in the system.

Table 11-2 CPSR behavior

Exception Mode CPSR interrupt mask

Reset Supervisor F = 1
I = 1

UNDEFINED instruction Undef I = 1

Supervisor Call Supervisor I = 1

Prefetch Abort Abort I = 1

Data Abort Abort I = 1

Not used - -

IRQ interrupt IRQ I = 1

FIQ interrupt FIQ F = 1
I = 1
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-5
ID071714 Non-Confidential

Exceptions and Interrupts
As FIQ is the last entry in the vector table, the FIQ handler can be placed directly at the vector
location and run sequentially from that address. This avoids a branch instruction and any
associated delay, speeding up FIQ response times. The extra banked registers available in FIQ
mode relative to other modes enables state to be retained between calls to the FIQ handler, again
increasing execution speed by removing the need to push some registers before using them.

A additional key difference between IRQ and FIQ is that the FIQ handler is not expected to
generate any other exceptions. FIQ is therefore reserved for special system-specific devices that
have all their memory mapped and no need to make SVC calls to access kernel functions (so
FIQ can be used only by code that does not have to use the kernel API).

11.1.5 The return instruction

The Link Register (LR) is used to store the appropriate return address for the PC after the
exception has been handled. Its value has to be modified as shown in Table 11-3, depending on
the type of exception occurred. The ARM Architecture Reference Manual defines the LR values
that are appropriate (the definition derives from the values that were convenient for early
hardware implementations).

Table 11-3 Link Register Adjustments

Exception Adjustment Return instruction Instruction returned to

SVC 0 MOVS PC, R14 Next instruction

Undef 0 MOVS PC, R14 Next instruction

Prefetch Abort -4 SUBS PC, R14, #4 Aborting instruction

Data abort -8 SUBS PC, R14, #8 Aborting instruction if precise

FIQ -4 SUBS PC, R14, #4 Next instruction

IRQ -4 SUBS PC, R14, #4 Next instruction
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-6
ID071714 Non-Confidential

Exceptions and Interrupts
11.2 Exception handling
When an exception occurs, the ARM core automatically does the following:

1. Copies the CPSR to the SPSR_<mode>, the banked register specific to the (non-user)
mode of operation.

2. Stores a return address in the Link Register (LR) of the new mode.

3. Modifies the CPSR mode bits to the mode associated with the exception type.
• The other CPSR mode bits are set to values determined by bits in the CP15 System

Control Register.
• The T bit is set to the value given by the CP15 TE bit.
• The J bit is cleared and the E bit (Endianness) is set to the value of the EE

(Exception Endianness) bit.
This enables exceptions to always run in ARM or Thumb state and in little or big-endian,
irrespective of the state the core was in before the exception.

4. Sets the PC to point to the relevant instruction from the exception vector table.

Figure 11-1 Taking the exception

When in the new mode the core will access the register associated with that mode, as shown in
Figure 3-2 on page 3-4.

It will almost always be necessary for the exception handler software to save registers onto the
stack immediately on exception entry. FIQ mode has more banked registers and so a simple
handler might be able to be written in a way that requires no stack usage.

A special assembly language instruction is provided to assist with saving the necessary registers,
called SRS (Store Return State). This instruction pushes the LR and SPSR onto the stack of any
mode; the stack to be used is specified by the instruction operand.

11.2.1 Exit from an exception handler

To return from an exception handler, two separate operations must take place atomically:

1. Restore the CPSR from the saved SPSR.

2. Set the PC to the return address, see Table 11-3 on page 11-6.

1

Save status
Change status

Program
flow
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-7
ID071714 Non-Confidential

Exceptions and Interrupts
Figure 11-2 Returning from an exception

In the ARM architecture this can be achieved either by using the RFE instruction or any
flag-setting data processing operation (with the S suffix) with the PC as the destination register,
such as SUBS PC, LR, #offset (note the S). The Return From Exception (RFE) instruction pops the
link register and SPSR off the current mode stack.

There are a number of ways to achieve this.

• You can use a data processing instruction to adjust and copy the LR into the PC, for
example:

SUBS pc, lr, #4

Specifying the S means the SPSR is copied to the CPSR at the same time.
If the exception handler entry code uses the stack to store registers that must be preserved
while it handles the exception, it can return using a load multiple instruction with the ^
qualifier. For example, an exception handler can return in one instruction using:
LDMFD sp! {pc}^
LDMFD sp!,{R0-R12,pc}^

The ^ qualifier in this example means the SPSR is copied to the CPSR at the same time.
To do this, the exception handler must save the following onto the stack:
— All the work registers in use when the handler is invoked.
— The link register, modified to produce the same effect as the data processing

instructions.

Note
 You cannot use 16-bit Thumb instructions to return from exceptions because these are

unable to restore the CPSR.

• The RFE instruction (See RFE on page A-31) restores the PC and SPSR from the stack of
the current mode.
RFEFD sp!

1

Save status
Change status

Program
flow

2
Return from
exception

Exception
handler
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-8
ID071714 Non-Confidential

Exceptions and Interrupts
11.3 Other exception handlers
This section briefly describes handlers for aborts, undefined instructions and SVC instructions
and considers how interrupts are handled by the Linux kernel. Reset handlers are covered in
depth in Chapter 15 Boot Code.

11.3.1 Abort handler

Abort handler code can vary significantly between systems. In many embedded systems, an
abort indicates an unexpected error and the handler will record any diagnostic information,
report the error and have the application (or system) quit gracefully.

CP15 registers provide the address of the memory access that caused the abort (the Fault
Address Register) and the reason for the abort (Fault Status Register). The reason might be lack
of access permission or an external abort. In addition, the link register (with a –8 or –4
adjustment, depending on whether the abort was caused by an instruction fetch or a data access),
gives the address of the instruction executing before the abort exception. By examining these
registers, the last instruction executed and possibly other things in the system (for example, page
table entries), the abort handler can determine what action to take.

11.3.2 Undefined instruction handling

An undefined instruction exception is taken if the processor tries to execute an instruction with
an opcode that is described as UNDEFINED in the ARM architecture specification, or when a
coprocessor instruction is executed but no coprocessor recognizes it as an instruction that it can
execute.

In some systems, it is possible that code includes instructions for a coprocessor (such as a VFP
coprocessor), but that no corresponding VFP hardware is present in the system. In addition, it
might be that the VFP hardware cannot handle the particular instruction and wants to call
software to emulate it. Alternatively, the VFP hardware is disabled, and we take the exception
so that we can enable it and re-execute the instruction.

Such emulators are called through the undefined instruction vector. They examine the
instruction opcode that caused the exception and determine what action to take (for example,
perform the appropriate floating-point operation in software). In some cases, such handlers
might have to be daisy-chained together, for example, there might be multiple coprocessors to
emulate.

If there is no software making use of undefined or coprocessor instructions, the handler for the
exception should record suitable debug information and kill the application that failed because
of this unexpected event.

An additional use for the undefined instruction exception in some cases is to implement user
breakpoints, see Chapter 17 Debug for more information on breakpoints. (See also the
description of the Linux context switch for VFP in Chapter 6 Floating-Point.)

11.3.3 SVC exception handling

A supervisor call (SVC) is typically used to permit User mode code to access OS functions. For
example, if user code wants to access privileged parts of the system (for example to perform file
I/O) it will typically do this using an SVC instruction.

Parameters can be passed to the SVC handler either in registers or (less frequently) by using the
comment field within the opcode.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-9
ID071714 Non-Confidential

Exceptions and Interrupts
An example of the use of the SVC instruction can be seen by application developers. Tools
developed by ARM use SVC 0x123456 (ARM state) or SVC 0xAB (Thumb) to represent semihosting
debug functions (for example, outputting a character on a debugger window).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-10
ID071714 Non-Confidential

Exceptions and Interrupts
11.4 External interrupt requests
All microprocessors must respond to external asynchronous events, such as a button being
pressed, or a clock reaching a certain value. Normally, there is specialized hardware that
activates input lines to the core. This causes the core to temporarily stop the current program
sequence and execute a special privileged handler routine. The speed that a core can respond to
such events might be a critical issue in system design, and is called interrupt latency. Indeed in
many embedded systems, there is no main program. All the functions of the system are handled
by code that runs from interrupts, and assigning priorities to these is a key area of design. Rather
than the core constantly testing flags from different parts of the system to see if there is
something to be done, the system informs the core that something has to happen, by generating
an interrupt. Complex systems have many interrupt sources with different levels of priority and
requirements for nested interrupt handling in which a higher priority interrupt can interrupt a
lower priority one.

Older versions of the ARM architecture allowed implementers considerable freedom in the
design of an external interrupt controller, with no agreement over the number or types of
interrupts or the software model to be used to interface to the interrupt controller block. The GIC
architecture provides a much more tightly controlled specification, with a greater degree of
consistency between interrupt controllers from different manufacturers. This enables interrupt
handler code to be more portable.

Types of exception on page 11-2, describes how all ARM processors have two external interrupt
requests, FIQ and IRQ. Both of these are level-sensitive active-LOW inputs. Individual
implementations have interrupt controllers that accept interrupt requests from a wide variety of
external sources and map them onto FIQ or IRQ, causing the processor to take an exception.

In general, an interrupt exception can be taken only when the appropriate CPSR disable bit (the
F and I bits respectively) is clear.

The CPS instruction provides a simple mechanism to enable or disable the exceptions controlled
by CPSR A, I and F bits (asynchronous abort, IRQ and FIQ respectively). CPS can be used
additionally to change mode, as shown below.

CPS #<mode>
CPSIE <aif>{, mode}
CPSID <aif>{, mode}

where <mode> is the number of the mode to change to. If this option is omitted, no mode change
occurs. The values of these modes are listed in Table 3-1 on page 3-1.

IE or ID will enable or disable exceptions respectively. The exceptions to be enabled or disabled
are specified using one or more of the letters A, I and F. Exceptions whose corresponding letters
are omitted will not be modified.

In Cortex-R series processors, it is possible to configure the processor so that FIQs cannot be
masked by software. This is known as Non-Maskable FIQ and is controlled by a hardware
configuration input signal that is sampled when the processor is reset. They will still be masked
automatically on taking an FIQ exception.

11.4.1 Assigning interrupts

A system will always have an interrupt controller that accepts interrupt requests from multiple
pieces of external hardware. This typically contains a number of registers enabling software
running on the core to mask individual interrupt sources, to acknowledge interrupts from
external devices and to determine that interrupt sources are currently requesting attention or
require servicing.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-11
ID071714 Non-Confidential

Exceptions and Interrupts
This interrupt controller can be a design specific to the system, or it can be an implementation
of the ARM Generic Interrupt Controller (GIC) architecture, described in The Generic
Interrupt Controller on page 11-18.

The Cortex-R4 and Cortex-R5 processors have an interface that enables the core to work with
a Vectored Interrupt Controller. In addition to signalling the interrupt to the processor the
Vectored Interrupt Controller also provides the address in memory for the interrupt Service
Routine. Historically this could speed up the number of cycles in which the core could start the
interrupt service routine for the interrupt, because the core could branch directly to the correct
handler routine. However, with more recent implementations of the processors it would be less
typical to use a Vectored Interrupt Controller as frequency advances in silicon technology mean
that it is possible to run the combination of the core and the Generic Interrupt Controller
significantly faster than the core and the Vectored Interrupt Controller. This means that typically
the Generic Interrupt Controller can provide comparable performance to the Vectored Interrupt
Controller but can provide considerably more interrupt lines.

11.4.2 Simplistic interrupt handling

This represents the simplest kind of interrupt handler. On taking an interrupt, additional
interrupts of the same kind are disabled until explicitly enabled later. We can only handle
additional interrupts at the completion of the first interrupt request and there is no scope for a
higher priority or more urgent interrupt to be handled during this time. Such an interrupt handler
is described as nonreentrant.This is not generally suitable for complex embedded systems, but
it is useful to examine before proceeding to a more realistic example.

The steps taken to handle an interrupt are as follows:

1. An IRQ exception is raised by external hardware. The core performs several steps
automatically:
• The contents of the PC in the current execution mode are stored in LR_IRQ.
• The CPSR register is copied to SPSR_IRQ.
• The CPSR content is updated so that the mode bits reflects the IRQ mode, and the

I bit is set to mask additional IRQs.
• The PC is set to the IRQ entry in the vector table.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-12
ID071714 Non-Confidential

Exceptions and Interrupts
Figure 11-3 Save the context of the program

2. The instruction at the IRQ entry in the vector table (a branch to the interrupt handler) is
executed.

3. The interrupt handler saves the context of the interrupted program, that is, it pushes onto
the stack any registers that will be corrupted by the handler. These registers are popped
from the stack when the handler finishes execution.

Figure 11-4

4. The interrupt handler determines which interrupt source must be processed and calls the
appropriate service routine.

Program
flow

PC ->
 LR

_ir
q

CPSR ->
 S

PRR_ir
q

ASM
IRQ

Handler

Program
flow

PC ->
 LR

_ir
q

CPSR ->
 S

PRR_ir
q

ASM
IRQ

Handler

Stack LR_irq
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-13
ID071714 Non-Confidential

Exceptions and Interrupts
5. Prepare the core to switch to previous execution state by copying the SPSR_IRQ to CPSR,
and restoring the context saved earlier, and finally the PC is restored from LR_IRQ.

Figure 11-5

11.4.3 Nested interrupt handling

Nested interrupt handling is where the software is prepared to accept another interrupt, even
before it finishes handling the current interrupt. This enables you to prioritize interrupts and
make significant improvements to the latency of high priority events at the cost of additional
complexity. It is worth noting that nested interrupt handling is a choice made by the software,
by virtue of interrupt priority configuration and interrupt control, rather than imposed by
hardware.

A reentrant interrupt handler must save the IRQ state and then switch core mode, and save the
state for the new core mode, before it branches to a nested subroutine or C function with
interrupts enabled. This is because a fresh interrupt could occur at any time, which would cause
the core to store the return address of the new interrupt and overwrite the original interrupt
return address in the Link Register. When the original interrupt attempts to return to the main
program, it will cause the system to fail. The nested handler must switch to an alternative kernel
mode before re-enabling interrupts to prevent this.

Program
flow

PC ->
 LR

_ir
q

CPSR ->
 S

PRR_ir
q

ASM
IRQ

Handler

Stack LR_irq

SPSR_irq -> CPSR

LR_irq -> PC
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-14
ID071714 Non-Confidential

Exceptions and Interrupts
Figure 11-6 Nested interrupts

Note
 A computer program is reentrant if it can be interrupted in the middle of its execution and then
be called again before the previous instance has completed.

In Figure 11-6 the value of SPSR must be preserved before interrupts are re-enabled. If it is not,
any new interrupt will overwrite the value of SPSR_irq. The solution to this is to stack the SPSR
before re-enabling the interrupts by using the following (which also saves LR):

SRSFD sp!, #0x12

Additionally, using the BL instruction within the interrupt handler code will overwrite LR_IRQ.
The solution is to switch to Supervisor mode before using the BL instruction.

A reentrant interrupt handler must therefore take the following steps after an IRQ exception is
raised and control is transferred to the interrupt handler in the way previously described.

1. The interrupt handler saves the context of the interrupted program (that is, it pushes onto
the SVC mode stack any registers that will be corrupted by the handler, including the
return address and SPSR_IRQ).

2. It determines which interrupt source must be processed and clears the source in the
external hardware (preventing it from immediately triggering another interrupt).

3. The interrupt handler changes to SVC mode, leaving the CPSR I bit set (interrupts are still
disabled).

4. The interrupt handler saves the exception return address on the SVC stack and re-enables
interrupts.

5. It calls the appropriate handler code.

6. On completion, the interrupt handler disables IRQ and pops the exception return address
from the stack.

Program
flow

CPSR ->
 S

PSR_ir
q

ASM
IRQ

Handler

CPSR ->
 S

PSR_ir
q

SPSR_irq is
corrupted
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-15
ID071714 Non-Confidential

Exceptions and Interrupts
7. It restores the context of the interrupted program directly from the SVC mode stack. This
includes restoring the PC, and the CPSR which switches back to the previous execution
mode. If the SPSR does not have the I bit set then the operation also re-enables interrupts.

Sample code for a nested interrupt handler (for non-vectored interrupts) is given in
Example 11-1.

Example 11-1 Nested interrupt handler

IRQ_Handler
SUB lr, lr, #4

SRSFD sp!, #0x1f @ use SRS to save LR_irq and SPSR_irq in one step onto the
@ SVC mode stack

CPS #0x1f @ Use CPS to switch to SVC mode

PUSH {r0-r3, r12} @S tore remaining AAPCS registers on the System mode stack
AND r1, sp, #4 @ Ensure stack is 8-byte aligned. Store adjustment and

@ LR_svc to stack
SUB sp, sp, r1
PUSH {r1, lr}

BL @ identify_and_clear_source

CPSIE i @ Enable IRQ with CPS

BL C_irq_handler

CPSID i @ Disable IRQ with CPS

POP {r1, lr} @ Restore LR_svc
ADD sp, sp, r1 @ Unadjust stack
POP {r0-r3, r12} @ Restore AAPCS registers
RFEFD sp! @ Return using RFE from the SVC mode stack.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-16
ID071714 Non-Confidential

Exceptions and Interrupts
11.5 Low latency interrupts
Interrupt latency is the time between the arrival of an interrupt and the start of the corresponding
Interrupt Service Routine (ISR).

Cortex-R processors contain a number of features that provide deterministic timing and low
interrupt latency for hard real-time applications. These features are collectively referred to as
Low Latency Interrupt features.

The low latency interrupt mode can increase the entry speed into an ISR at the cost of a slight
reduction in global processor performance.

When the low latency interrupt mode is disabled, all instructions in the pipeline must finish their
execution before starting to execute new instructions from the interrupt handler. Some
instructions may take considerable time to execute and this can have an effect on interrupt
latency if they cannot be interrupted.

When the low latency interrupt mode is enabled, instructions are flushed if they can be restarted
without any side effects. These instructions can include:
• All loads and stores that have not started.
• Loads and stores to normal memory that have already started.
• FDIV and FSQRT operations.
• Certain cache maintenance operations.
• Any pending DMB or DSB operations
• Instructions that follow these that are already in the pipeline.

Loads and stores to Strongly Ordered or Device memory regions cannot be flushed from the
pipeline in the Cortex-R4 and Cortex-R5 processors. In the case of the Cortex-R7 processor
with low latency interrupts enabled, accesses to Device or Strongly ordered memory can be
flushed from the pipeline until they reach the Load Store Unit stage.

LDM and STM accesses to Strongly Ordered or Device memory regions could significantly delay
the entry into the interrupt service routine as they cannot be abandoned when they have been
issued. Where possible, you should try to limit the use of LDM and STM accesses to Strongly
Ordered or Device memory regions.

In the Cortex-R5 processor accesses to the peripheral ports cannot be abandoned when they
have started. So if possible, you should limit the use of STM and LDM instructions to the peripheral
port address range.

In the Cortex-R7 processor the peripheral port address region must be defined as
Strongly-ordered or device memory. So again, it is best to try and limit STM and LDM instructions
to this address range.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-17
ID071714 Non-Confidential

Exceptions and Interrupts
11.6 The Generic Interrupt Controller
The GIC architecture defines a Generic Interrupt Controller (GIC) that comprises a set of
hardware resources for managing interrupts in a single or multi-core system. The GIC provides
memory-mapped registers that can be used to manage interrupt sources and behavior and (in
multi-core systems) for routing interrupts to individual cores. It enables software to mask,
enable and disable interrupts from individual sources, to prioritize (in hardware) individual
sources and to generate software interrupts. The GIC accepts interrupts asserted at the system
level and can signal them to each core it is connected to, potentially resulting in an IRQ or FIQ
exception being taken.

From a software perspective, a GIC has two major functional blocks:

Distributor
to which all interrupt sources in the system are wired. The distributor has registers
to control the properties of individual interrupts such as priority, state, security,
routing information and enable status. The distributor determines which interrupt
is to be forwarded to a core, through the attached CPU interface.

CPU Interface
through which a core receives an interrupt. The CPU interface hosts registers to
mask, identify and control states of interrupts forwarded to that core. There is a
separate CPU interface for each core in the system.

Interrupts are identified in the software by a number, called an interrupt ID. An interrupt ID
uniquely corresponds to an interrupt source. Software can use the interrupt ID to identify the
source of interrupt and to invoke the corresponding handler to service the interrupt. The exact
interrupt ID presented to the software is determined by the system design,

Interrupts can be of a number of different types:

Software Generated Interrupt (SGI)
This is generated explicitly by software by writing to a dedicated distributor
register, the Software Generated Interrupt Register (ICDSGIR). It is most
commonly used for inter-core communication. SGIs can be targeted at all, or a
selected group of cores in the system. Interrupt numbers 0-15 are reserved for
this. The exact interrupt number used for communication is at the discretion of
software.

Private Peripheral Interrupt (PPI)
This is generated by a peripheral that is private to an individual core. Interrupt
numbers 16-31 are reserved for this. These identify interrupt sources private to
the core, and is independent of the same source on another core, for example,
per-core timer.

Shared Peripheral Interrupt (SPI)
This is generated by a peripheral that the Interrupt Controller can route to more
than one core. Interrupt numbers 32-1020 are used for this. SPIs are used to signal
interrupts from various peripherals accessible across the whole the system.

Interrupts can either be edge-triggered (considered to be asserted when the Interrupt Controller
detects a rising edge on the relevant input – and to remain asserted until cleared) or
level-sensitive (considered to be asserted only when the relevant input to the Interrupt
Controller is HIGH).
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-18
ID071714 Non-Confidential

Exceptions and Interrupts
An interrupt can be in a number of different states:

• Inactive – this means that the interrupt is not asserted yet.

• Pending – this means that the interrupt source has been asserted, but is waiting to be
handled by a core. Pending interrupts are candidates to be forwarded to the CPU interface
and then later on to the core.

• Active – this describes an interrupt that has been acknowledged by a core and is currently
being serviced.

• Active and pending – this describes the situation where a core is servicing the interrupt
and the GIC also has a pending interrupt from the same source.

The priority and list of cores to which an interrupt can be delivered to are all configured in the
distributor. An interrupt asserted to the distributor by a peripheral will be in the Pending state
(or Active and Pending if was already Active). The distributor determines the highest priority
pending interrupt that can be delivered to a core and forwards that to the CPU interface of the
core. At the CPU interface, the interrupt is in turn signalled to the core, at which point the core
takes the FIQ or IRQ exception.

The core executes the exception handler in response. The handler must query the interrupt ID
from a CPU interface register and begin servicing the interrupt source. When finished, the
handler must write to a CPU interface register to report the end of processing. Later on the CPU
interface is prepared to signal the next interrupt forwarded to it by the distributor.

While servicing an interrupt, the distributor cycles through Pending, Active states, ending in
Inactive state when it has finished. The state of an interrupt is therefore reflected in the
distributor registers.

11.6.1 Configuration

The GIC is accessed as a memory-mapped peripheral. All cores can access the common
distributor block, but the CPU interface is banked, that is, each core uses the same address to
access its own private CPU interface. It is not possible for a core to access the CPU interface of
another core.

The distributor hosts a number of registers that you can use to configure the properties of
individual interrupts. These configurable properties are:

• An interrupt priority. The distributor uses this to determine which interrupt is next
forwarded to the CPU interface.

• An interrupt configuration. This determines if an interrupt is level- or edge-sensitive.

• An interrupt target. This determines a list of cores to which an interrupt can be forwarded.

• Interrupt enable or disable status. Only those interrupts that are enabled in the distributor
are eligible to be forwarded when they become pending.

• Interrupt security determines whether the interrupt is allocated to Secure or Normal world
software.

• An Interrupt state.

The distributor also provides priority masking by which interrupts below a certain priority are
prevented from reaching the core. The distributor uses this when determining whether a pending
interrupt can be forwarded to a particular core.

The CPU interfaces on each core helps with fine-tuning interrupt control and handling on that
core:
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-19
ID071714 Non-Confidential

Exceptions and Interrupts
11.6.2 Initialization

Both the distributor and the CPU interfaces are disabled at reset.The GIC must be initialized
after reset before it can deliver interrupts to the core.

In the distributor, software must configure the priority, target, security and enable individual
interrupts. The distributor block must subsequently be enabled through its control register. For
each CPU interface, software must program the priority mask and preemption settings.

Each CPU interface block itself must be enabled through its control register. This prepares the
GIC to deliver interrupts to the core.

Before interrupts are expected in the core, software prepares the core to take interrupts by setting
a valid interrupt vector in the vector table, and clearing interrupt masks bits in the CPSR.

The entire interrupt mechanism in the system can be disabled by disabling the distributor block.
Interrupt delivery to an individual core can be disabled by disabling its CPU interface block, or
by setting mask bits in CPSR of that core. Individual interrupts can also be disabled (or enabled)
in the distributor.

For an interrupt to reach the core, the individual interrupt, distributor and CPU interface must
all be enabled, and the CPSR interrupt mask bits cleared.

11.6.3 Interrupt handling

When the core takes an interrupt, it jumps to the top-level interrupt vector obtained from the
vector table and begins execution.

The top-level interrupt handler reads the Interrupt Acknowledge Register from the CPU
Interface block to obtain the interrupt ID.

In addition to returning the interrupt ID, the read causes the interrupt to be marked as active in
the distributor. When the interrupt ID is known (identifying the interrupt source), the top-level
handler can now dispatch a device-specific handler to service the interrupt.

When the device-specific handler finishes execution, the top-level handler writes the same
interrupt ID to the End of Interrupt register in the CPU Interface block, indicating the end of
interrupt processing.

Apart from removing the active status, which will make the final interrupt status either Inactive,
or Pending (if the state was Active and Pending), this will enable the CPU Interface to forward
more pending interrupts to the core. This concludes the processing of a single interrupt.

It is possible for there to be more than one interrupt waiting to be serviced on the same core, but
the CPU Interface can signal only one interrupt at a time. The top-level interrupt handler repeats
the sequence until it reads the special interrupt ID value 1023, indicating that there are no more
interrupts pending at this core. This special interrupt ID is called the spurious interrupt ID.

The spurious interrupt ID is a reserved value, and cannot be assigned to any device in the
system. When the top-level handler has read the spurious interrupt ID it can complete its
execution, and prepare the core to resume the task it was doing before taking the interrupt.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 11-20
ID071714 Non-Confidential

Chapter 12
Fault Detection and Control Features

In silicon devices, stray radiation and other effects can cause the data stored in RAM to be
corrupted. Error detection and correction techniques can be used to help mitigate the effect of such
errors. The Cortex-R processors include features that provide a means of detecting some of these
errors, potentially correcting the incorrect value and alerting the processor or the system to the
event so that corrective or protective action can be taken in a predictable manner, making them
suitable for use in safety-related systems.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-1
ID071714 Non-Confidential

Fault Detection and Control Features
12.1 Types of errors
The fault detection and control features of the Cortex-R processors are primarily aimed at bit
errors in TCMs or level one caches. A bit error refers to an incorrect binary digit in a RAM
chunk. For example, an alpha particle strike can invert one or more bits of data stored in RAM.

Errors can be classified into:

• Soft errors.

• Hard errors.

• Fatal errors.

Soft errors are errors that do not persist. A new value can be written to the RAM and read back
correctly. They are usually caused by interference but could also be because of hardware failure.
The Cortex-R processors can detect and correct soft errors.

Soft errors are an increasing concern in modern systems. Smaller transistor geometries and
lower voltages give circuits an increased sensitivity to perturbation by cosmic radiation, alpha
particles from silicon packages, electrical noise, or other background radiation. This is
particularly true for memory devices that rely on storing small amounts of charge and that also
occupy large proportions of total silicon area. Without sufficient protection against soft errors,
the mean time between failure could be seconds.

Hard errors are bit errors that persist even after correction. These are usually because of a
hardware failure of the RAM circuit. For example, a faulty RAM location might always read
high for a particular data bit. The processor is not able to correct this error as it cannot
consistently write the correct data to the RAM location. However, the safety features enable the
processor to recognise the presence of hard errors and mitigate the effects.

A fatal error is one in which the processor is not able to recover the correct data value, either
through error correction or through a memory access. The implication here is that the corrupted
data value has the potential to cause a program to execute incorrectly.

For safety-related applications, a fatal error should be considered serious. For safety critical
applications, the solution to recover from a fatal error might be:

• Reloading a memory.

• Restarting a subroutine.

• Resetting the processor.

However, in applications that are not safety critical, fatal errors can be ignored. An example is
when driving an output, that is fault tolerant, such as a display.

Bit errors can also be classified into:

• Correctable errors.

• Non-correctable errors.

A bit error is correctable if the original data can be recovered using only the ECC bits. A
non-correctable error is a bit error where the original data cannot be recovered using the ECC
bits alone. A non-correctable error is not a fatal error if the correct data can be fetched from
another memory.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-2
ID071714 Non-Confidential

Fault Detection and Control Features
12.2 Error detection methods
The Cortex-R processors implement two methods of error checking in caches and TCMs:

• Parity.

• Error Checking and Correction.

The Cortex-R processors implement one method of error detection in processor operation.

• Redundant logic on page 12-4.

12.2.1 Parity

The parity method is a simple method to check single bit errors. It uses an additional bit to mark
whether there is an even or odd number of bits with value 1. The additional bit is called the parity
bit. A parity bit can be allocated per data chunk, typically this data chunk might be a byte or a
word.

With even parity the value of the parity bit is set so that there is an even number of [1] bits in
the chunk of data. With odd parity the value of the parity bit is set so that there is an odd number
of [1] bits in the chunk of data.

When the data and parity bit are read back from the memory the total number of [1] bits are
checked. If the number of [1] bits does not match the parity settings then there is an error in the
data. It is not possible to identify which bit of data is faulty.

Parity checking is only able to detect an odd number of faulty bits, if an even number of bits
have incorrect values the parity check will not detect the error.

With parity checking enabled, the Cortex-R processors normally store one parity bit per byte.
This makes it possible to detect errors in individual bytes.

Parity is checked on reads and writes, and can be implemented on both tag and data RAMs (and
TCMs, in the case of the Cortex-R4 processor). Parity mismatch generates a prefetch or data
abort exception, and the fault status address registers are updated appropriately.

When a parity error is detected it is not possible to determine which bit is incorrect and so the
value in the RAM cannot be corrected. However, if the error is detected in a clean cache line
then it is still possible to recover from the error by invalidating the line and re-fetching the
relevant data from the external memory.

12.2.2 Error Checking and Correction

Error Checking and Correction (ECC) is a method of detecting and correcting one or more bit
errors in a chunk of data. All the Cortex-R class ECC schemes can correct a single bit error and
can detect when there are two bit errors but will not be able to correct the two bit errors. As a
result these are called Single-bit Error-Correction, Double -bit Error Detection (SEC-DED)
ECC schemes.

When the SEC-DED ECC scheme is used to protect the RAMs several additional bits of data
are saved for each chunk of data. This could be for only a few bits of data or perhaps for a 64-bit
double word. For each data chunk a number of redundant code bits are computed and stored with
the data. When the processor reads the data it can detect up to two errors in the data chunk or its
code bits. It can correct any single error in the data chunk or its associated code bits.

If there are more than two errors in a data chunk and its associated code bits, they might or might
not be detected. The error scheme might interpret such a condition as a single error and make
an unsuccessful attempt at a correction.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-3
ID071714 Non-Confidential

Fault Detection and Control Features
Recovery calculations can take several cycles.

ECC schemes require more redundant data than a simple parity check, for the SEC-DED ECC
scheme used in the Cortex-R processors:
• 3 bits data requires 4 bits ECC code.
• 32 bits data requires 7 bits ECC code.
• 64 bits data requires 8 bits ECC code.

If the full data width covered by ECC is not provided in a store operation, the processor must
do an additional read before it can calculate the new ECC value. This is called a
read-modify-write operation.

When a single bit ECC error is detected, Cortex-R series processors can correct the value in the
RAM. When a double bit ECC error is detected in a clean cache line, the processors can often
recover from the error by invalidating the line and re-fetching the relevant data from the external
memory. However if a double-bit ECC error is detected in a dirty cache-line or TCM, the
processor will not be able to fully recover from the error. The core must analyze the source of
the issue and determine whether any protective action must be taken. This could involve
disabling the caches or even initiating a shutdown of the processor.

12.2.3 ECC and parity initialization

Both ECC and Parity require the full data chunk in order to correctly calculate the parity or ECC
bits. When the location is updated with an access smaller than the data chunk the processor
needs to know the values of the current data chunk in order to correctly update the parity or ECC
bits. Typically this achieved with a Read-Modify-Write approach: the data chunk is first read,
this data is updated with the new data, the new parity or ECC bits are calculated and then the
updated data is written back.

When a RAM first comes out of reset the RAM values will have random values and so this
read-modify-write approach will not work. This means that the first write to a RAM must be for
the full data chunk to ensure that the parity or ECC bits are generated correctly.

12.2.4 Redundant logic

The redundant logic safety feature replicates an entire block of logic or replicates the entire core
in the design. Both the primary logic and the redundant logic are driven with exactly the same
code and data values. The outputs from the blocks are compared. If there is a difference in the
outputs it indicates that an error has occurred somewhere.

The redundant core performs the same work as the primary core but operates a number of clock
cycles behind the master core. This mode of operation is called lock-step.

When there is a mismatch between the outputs of the primary logic and the redundant logic, the
processor or an external monitor must determine what protective action is required.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-4
ID071714 Non-Confidential

Fault Detection and Control Features
12.3 Error signalling
When an error is detected it might be necessary to signal to the software that the error has
occurred. The processor would then analyze the error and determine what corrective or
protective action is required.

12.3.1 No signal

When an error is fully corrected by the hardware it might not be necessary to signal to the
processor that the error has occurred. It is likely that the design monitors such errors. If there
were a significant number of such errors, it might indicate a systemic issue.

12.3.2 Abort

The processor could be designed to take an abort exception when an error is detected. When the
abort exception occurs the abort handler identifies that the abort was because of the detection of
an error and will then determine what corrective or protective action is required.

Using an abort exception ensures that the processor is able to analyze the error quickly and will
help ensure that the processor does not execute instructions with incorrect data. However this
could be disruptive to the normal flow of operation, especially if an abort is signalled for a
correctable error.

12.3.3 Interrupt

The processor could generate an output event or interrupt when an error is detected. This can
then be used to trigger an interrupt to the processor. When the processor takes the interrupt, the
interrupt handler determines that the interrupt was because of the detection of an error and then
determines what corrective or protective action is required.

Using an interrupt to signal the error is likely to be less disruptive to the normal flow of
operation of the processor as the interrupts can typically be prioritized in an interrupt controller
so that the signalling of the error can be prioritized accordingly. However, this does mean that
the processor might execute instructions with incorrect data if the interrupt for a non-correctable
error is not able to interrupt the program flow quickly enough.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-5
ID071714 Non-Confidential

Fault Detection and Control Features
12.4 Recovering from hard errors
If there is a hard error in a RAM, for example if a bit becomes permanently stuck at 1 or 0, then
this RAM location can no longer be used to correctly store data, because ECC and Parity
protection schemes cannot recover from such errors.

The presence of hard errors can adversely affect the behavior of ECC or parity logic. If an error
is detected during a cache look-up or when data is read from a TCM then this data must be
corrected before it is used by the processor. When the processor attempts to correct the data it
is unable to do so as it cannot change the value of the stuck bit. When the processor attempts the
access again, it detects the same error and again attempts to correct the issue. It is possible for
a processor to enter a live-lock loop as it continually attempts to correct and then re-read the
data.

To guard against live-lock, the processor might include error banks to mask the location that
contains the error. After the processor has first detected and attempted to correct the error, the
RAM location is saved in a register bank. When the processor retries the access it finds the
location in the error bank and either reads the correct data from the register bank itself or from
external memory.

Alternatively the processor might guard against live-lock by monitoring repeated accesses to the
same location and signalling an event if the same location is accessed continuously.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-6
ID071714 Non-Confidential

Fault Detection and Control Features
12.5 Power and performance
The use of parity, ECC protection, or redundant logic will have a cost in terms of power
consumption and area because of the additional logic that is required, and because the use of
parity and ECC logic restricts writes to the cache or TCM. There is a relatively low percentage
increase in power and area for parity and ECC protection. When using redundant logic it is
possible to replicate the entire processor or only a few parts of the processor in the design.

Whenever a write is made to the cache or TCM, the ECC or parity bits must be calculated and
updated in the RAM. To update the parity or ECC bits correctly the full chunk of data must be
written to the RAM. If the parity or ECC bits are calculated on a full word or doubleword, then
to update a byte in that chunk of data, using the read-modify-write process, the processor must:

1. Read the current data from the cache.

2. Calculate the new parity or ECC.

3. Write the full data back to RAM.

These additional reads from the caches or TCMs can affect the performance of code that
contains a significant number of byte or half word memory accesses.

The use of redundant logic can have an effect on performance. This is because the maximum
frequency that can be achieved by the primary processor can be restricted by:

• Sharing input signals to each block of logic.

• Capture and analysis of the output signals from each block of logic.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-7
ID071714 Non-Confidential

Fault Detection and Control Features
12.6 Fault detection and control features in the Cortex-R4 processor
Each of the Cortex-R series processors contain a number of features that enhance their
suitability for safety-related applications. Semiconductor manufacturers may choose, or not
choose, to implement these fault detection features in their processor implementation. These
should not be assumed to be present in all Cortex-R devices

The Cortex-R4 processor provides the following optional fault detection features:

• Parity in Cache RAM in the Cortex-R4 processor.

• ECC for the Cache RAM in the Cortex-R4 processor on page 12-9.

• Parity for the TCM in the Cortex-R4 processor on page 12-10.

• ECC for the TCMs in the Cortex-R4 processor on page 12-11.

• Hard error banks in the Cortex-R4 processor on page 12-12.

• Bus protection on the Cortex-R4 processor on page 12-12.

• Redundant core in the Cortex-R4 processor on page 12-13.

• Test of the fault detection and control features on the Cortex-R4 processor on page 12-13.

12.6.1 Parity in Cache RAM in the Cortex-R4 processor

Parity bit generation and checking can be configured for the cache RAMs in the Cortex-R4
processor during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[8:7] = 0b01 Parity on icache
; bits[6:5] = 0b01 Parity on dcache

Enabling parity protection forces the caches to operate in write-through mode. Regions of
memory marked as write-back are treated as write-through memory. This ensures that the core
can recover from soft-parity errors. On detection of a parity error the processor invalidates the
relevant cache line and then re-fetches the line from external memory.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b101
BIC r1, r1, #(0x1 << 4) ; to enable parity
ORR r1, r1, #(0x1 << 3)
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

The processor can be configured to generate an abort when a parity error occurs. The abort
handler can then read the correctable fault location register and determine whether to take any
protective action.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
BIC r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b000
BIC r1, r1, #(0x1 << 4) ; to enable parity and force an
BIC r1, r1, #(0x1 << 3) ; abort on all parity detected errors
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

.........

MRC p15, 0, r0, c15, c3, 0 ; Read CFLR

Parity errors are signalled with events. These events can be captured and monitored by external
hardware or the Performance Monitoring Unit for analysis.

MOV r0, #0 ; Select Counter 0
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-8
ID071714 Non-Confidential

Fault Detection and Control Features
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x4D ; Data cache data RAM parity error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

12.6.2 ECC for the Cache RAM in the Cortex-R4 processor

ECC generation and checking can be configured for the cache RAMs in the Cortex-R4
processor during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[8:7] = 0b11 ECC on icache
; bits[6:5] = 0b10 ECC on dcache

When enabling ECC it is possible to force the caches to operate in write-through mode.
Write-back memory regions are treated as write-through memory. This ensures that the core can
recover from soft ECC errors. On detection of an ECC error the processor invalidates the
relevant cache line and then re-fetches the line from external memory.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b110
BIC r1, r1, #(0x1 << 4) ; to enable ECC with forced
ORR r1, r1, #(0x1 << 3) ; write-through
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

It is also possible to use ECC with write-back memory regions.When configured to use
write-back memory, the core can recover from some ECC errors.

If hardware recovery is enabled then:

• On detection of an ECC error in a clean cache line the processor invalidates the line and
then re-fetches the line from external memory.

• On detection of a single-bit error in a dirty cache line the line is evicted and corrected
in-line before being written back to main memory, the line is invalidated and the corrected
data re-fetched from external memory.

• On detection of a double-bit error in a dirty cache line the line is evicted and written back
to main memory. As the error cannot be corrected, the word or words containing the
double bit error will not be written back to main memory. The line is invalidated and an
abort is generated by the processor so that the error can be analyzed.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b101
BIC r1, r1, #(0x1 << 4) ; to enable ECC no forced
ORR r1, r1, #(0x1 << 3) ; write-through
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

The processor can be configured to generate an abort whenever an ECC error occurs. The abort
handler would then read the correctable fault location register and determine whether any
protective action should be taken. (Double-bit errors will always generate aborts.)

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b010
BIC r1, r1, #(0x1 << 4) ; to enable ECC with forced
ORR r1, r1, #(0x1 << 3) ; write-through. Generates abort

; on error detection.
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
BIC r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b000
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-9
ID071714 Non-Confidential

Fault Detection and Control Features
BIC r1, r1, #(0x1 << 4) ; to enable ECC no forced
BIC r1, r1, #(0x1 << 3) ; write through. Generates abort
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

.........

MRC p15, 0, r0, c15, c3, 0 ; Read CFLR

ECC errors are signalled with events and so these events can be captured and monitored by
external hardware or the Performance Monitor unit and used for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x4D ; Data cache data RAM correctable ECC error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x60 ; Data cache data RAM fatal ECC error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

12.6.3 Parity for the TCM in the Cortex-R4 processor

Parity bit generation and checking can be configured for the TCMs in the Cortex-R4 processor
during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[27:26] = 0b01 Parity on ATCM
; bits[25:24] = 0b01 Parity on BTCM

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 27) ; Enable parity detection on B1TCM port
ORR r1, r1, #(0x1 << 26) ; Enable parity detection on B0TCM port
ORR r1, r1, #(0x1 << 25) ; Enable parity detection on ATCM port
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

On detection of a parity error, the processor generates an abort. The abort handler must
determine an appropriate corrective or protective action.

MRC p15, 0, r0, c5, c0, 0 ; Read DFSR, DFSR[10,3:1] = 0b1100 indicates a
; parity error

...........................
MRC p15, 0, r0, c5, c0, 1 ; Read IFSR, IFSR[10,3:1] = 0b1100 indicates a

; parity error

Parity errors are signalled with events. These events can be captured and monitored by external
hardware or the Performance Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x4E ; Data cache data RAM fatal ECC error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-10
ID071714 Non-Confidential

Fault Detection and Control Features
12.6.4 ECC for the TCMs in the Cortex-R4 processor

ECC generation and checking can be configured for the TCM RAM in the Cortex-R4 processor
during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[27:26] = 0b10 32 bit ECC on ATCM
; bits[25:24] = 0b10 32 bit ECC on BTCM
; bits[27:26] = 0b11 64 bit ECC on ATCM
; bits[25:24] = 0b10 64 bit ECC on BTCM

On detection of a single-bit error the processor corrects the data and writes it back to the TCM.
The processor then re-reads the corrected data from the address location.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 27) ; Enable parity detection on B1TCM port
ORR r1, r1, #(0x1 << 26) ; Enable parity detection on B0TCM port
ORR r1, r1, #(0x1 << 25) ; Enable parity detection on ATCM port
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

Alternatively, instead of correcting the data, the processor could be configured to take an abort.
The abort handler must determine the appropriate corrective or protective action.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 27) ; Enable parity detection on B1TCM port
ORR r1, r1, #(0x1 << 26) ; Enable parity detection on B0TCM port
ORR r1, r1, #(0x1 << 25) ; Enable parity detection on ATCM port
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

MRC p15, 0, r1, c1, c0, 0 ; Read Secondary Auxiliary Control Register
ORR r1, r1, #(0x1 << 3) ; Disable parity detection on BTCM
ORR r1, r1, #(0x1 << 2) ; Disable parity detection on BTCM
MCR p15, 0, r1, c1, c0, 1 ; Write Secondary Auxiliary Control Register

On detection of a double-bit error the data cannot be corrected automatically and so the
processor takes an abort. The abort handler must determine the appropriate corrective or
protective action.

MRC p15, 0, r0, c5, c0, 0 ; Read DFSR, DFSR[10,3:1] = 0b1100 indicates an
; ECC error

................
MRC p15, 0, r0, c5, c0, 1 ; Read IFSR, IFSR[10,3:1] = 0b1100 indicates an

; ECC error

ECC errors are signalled with events. These events can be captured and monitored by external
hardware or the Performance Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x6B ; TCM correctable ECC error reported by the PFU
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

.................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x4E ; TCM fatal ECC error reported by the PFU
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-11
ID071714 Non-Confidential

Fault Detection and Control Features
ECC checking can also be configured externally to the Cortex-R4, as part of the TCM RAM
instance. If an error is detected by this external TCM logic an error is signalled to the Cortex-R4
processor, if the error is uncorrectable the processor will take an abort.

MRC p15, 0, r0, c5, c0, 0 ; Read DFSR, DFSR[10,3:1] = 0b1100 indicates an
; External synchronous abort

................
MRC p15, 0, r0, c5, c0, 1 ; Read IFSR, IFSR[10,3:1] = 0b1100 indicates an

; External Synchronous Abort

12.6.5 Hard error banks in the Cortex-R4 processor

The Cortex-R4 processor can be configured to include a hard error bank for the TCMs. The error
bank helps protect the TCM error correction logic against livelocks, which can occur in the
presence of hard errors.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bit[4] = 0b0 Includes hard error cache

The Cortex-R4 processor includes an error bank for the caches. The error bank helps protect the
cache error correction logic against livelocks, which can occur in the presence of hard errors.
This bank can be enabled or disabled using the system control registers.

MRC p15, 0, r1, c1, c0, 0 ; Read Secondary Auxiliary Control Register
BIC r1, r1, #(0x1 << 22) ; Enable hard-error support in the caches
MCR p15, 0, r1, c1, c0, 0 ; Write Secondary Auxiliary Control Register

..................

MRC p15, 0, r1, c1, c0, 0 ; Read Secondary Auxiliary Control Register
ORR r1, r1, #(0x1 << 22) ; Disable hard-error support in the caches
MCR p15, 0, r1, c1, c0, 0 ; Write Secondary Auxiliary Control Register

The Cortex-R4 processor includes an event to indicate if the processor is in livelock due to hard
errors. This event can be captured and monitored by external hardware or the Performance
Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x62 ; Processor livelock
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

12.6.6 Bus protection on the Cortex-R4 processor

The Main AXI master interface, AXI slave port and TCM interfaces can be configured with
parity generation and checking on the buses.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bit[10] = 0b1 Includes TCM Bus Parity
; bit[3] = 0b1 Includes AXI Bus Parity

The core will generate the parity bits for output signals and will check the parity bits for input
signals. If the core detects an error on one of the buses, it will generate an abort.

MRC p15, 0, r0, c5, c0, 0 ; Read DFSR, DFSR[10,3:0] = 0b10110 indicates an
; External asynchronous abort

................
MRC p15, 0, r0, c5, c0, 1 ; Read IFSR, IFSR[10,3:0] = 0b01000 indicates an

; External Synchronous Abort
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-12
ID071714 Non-Confidential

Fault Detection and Control Features
To use the bus parity protection the system design around the core must also include the
complementary parity bit generation and checking.

12.6.7 Redundant core in the Cortex-R4 processor

There is an implementation option in the Cortex-R4 processor to include a fully redundant copy
of the processor implementation on the silicon. The outputs from the functional and redundant
processors are compared with user defined logic to identify any differences in behavior. If a
difference is detected then this would be signalled with an event that might be sent to the
processor or another logic block for analysis.

In the Cortex-R4 processor, the redundant core typically operates 1.5 cycles behind the primary
core.

The exact behavior of the redundant core comparison logic is implementation defined.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bit[31] = 0b1 Includes Redundant Core.

12.6.8 Test of the fault detection and control features on the Cortex-R4 processor

There are two mechanisms to test that the ECC and parity features are working correctly in the
Cortex-R4 processor.

The AXI slave provides an interface to access the caches. Using this, it is possible to deliberately
induce errors in the caches that can then be detected and corrected when accessed via
instructions from the processor.

The AXI slave can be used to preload the TCMs but cannot be used to test errors in the TCMs.

The processor itself can be used to induce errors in the TCMs. ECC checking is enabled and
disabled through the CP15. While ECC checking is disabled a sub-word access to a TCM
location will not induce a read-modify-write process. This means that by doing sub-word
accesses to TCM locations while ECC checking is disabled it is possible to generate a mismatch
between the data value and the ECC code.

; Setup - these addresses MUST be doubleword aligned
LDR r10,=0x40000000 ; Address of victim TCM location to insert error
LDR r11,=0x40000008 ; Address of scratch memory location

LDR r0,=0xDEAFBEEF
LDR r1,=0xCAFEBABE

STR r0,[r10]
STR r1,[r10,#0x4]

; Disable ECC - ATCM
MRC p15,0,r0,c1,c0,1 ; Read aux ctl
BIC r0,r0,#0x02000000
MCR p15,0,r0,c1,c0,1

; Memory barrier to ensure all previous accesses have completed
DMB

; Read data and introduce ECC error
LDRD r0,[r10] ; Read data to corrupt
STRD r0,[r11] ; Store data to corrupt in scratch location

LSR r2, r0, #16 ; Only interested in 3rd byte
EOR r2, #0x2 ; Toggle one bit
STRB r2,[r11,#2] ; Store byte to corrupt data and ECC
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-13
ID071714 Non-Confidential

Fault Detection and Control Features
LDRD r0,[r11] ; Load corrupted data back to set up
; internal registers

BFI r0, r1, #0, #8 ; Merge byte 0 from upper word into lower word
ROR r0, r0, #24 ; Shift byte 3 into byte 0 position,

; byte 0 into byte 1 position.
STRH r0, [r10,#3] ; Store byte - data unchanged, but ECC changed

; Enable ECC
MRC p15,0,r0,c1,c0,1 ; Read aux ctl
ORR r0,r0,#0x02000000
MCR p15,0,r0,c1,c0,1

; Read data - should get corrected from 0xDEAFBEEF
; to 0xDEADBEEF

LDRD r0,[r10]
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-14
ID071714 Non-Confidential

Fault Detection and Control Features
12.7 Fault detection and control features in the Cortex-R5 processor
Each of the Cortex-R series processors contain a number of features that enhance their
suitability for safety-related applications. Semiconductor manufacturers may choose, or not
choose, to implement these fault detection features in their processor implementation. These
should not be assumed to be present in all Cortex-R devices

The Cortex-R5 processor provides the following optional fault detection features:

• Parity in Cache RAM in the Cortex-R5 processor

• ECC for the Cache RAM in the Cortex-R5 processor on page 12-16

• ECC for the TCMs in the Cortex-R5 processor on page 12-17

• Hard error banks in the Cortex-R5 processor on page 12-18.

• Bus protection on the Cortex-R5 processor on page 12-19

• Redundant core in the Cortex-R5 processor on page 12-19

• Test of the fault detection and control features on the Cortex-R5 processor on page 12-20

12.7.1 Parity in Cache RAM in the Cortex-R5 processor

Parity bit generation and checking can be configured for the cache RAM in the Cortex-R5
processor during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[8:7] = 0b01 Parity on icache
; bits[6:5] = 0b01 parity on dcache

Enabling parity protection forces the caches to operate in write-through mode. Regions of
memory marked as write-back are treated as write-through memory. This ensures that the core
can recover from soft-parity errors. On detection of a parity error the processor invalidates the
relevant cache line and then re-fetches the line from external memory.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b101
BIC r1, r1, #(0x1 << 4) ; to enable parity
ORR r1, r1, #(0x1 << 3)
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

The processor can be configured to generate an abort when a parity error occurs. The abort
handler can then read the correctable fault location register and determine whether to take any
protective action.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
BIC r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b000
BIC r1, r1, #(0x1 << 4) ; to enable parity and force an
BIC r1, r1, #(0x1 << 3) ; abort on all parity detected errors
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

.........

MRC p15, 0, r0, c15, c3, 0 ; Read CFLR

Parity errors are signalled with events. These events can be captured and monitored by external
hardware or the Performance Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-15
ID071714 Non-Confidential

Fault Detection and Control Features
MOV r1, #0x4D ; Data cache data RAM parity error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

12.7.2 ECC for the Cache RAM in the Cortex-R5 processor

ECC generation and checking can be configured for the cache RAM in the Cortex-R5 processor
during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[8:7] = 0b01 ECC on icache
; bits[6:5] = 0b01 ECC on dcache

When enabling ECC it is possible to force the caches to operate in write-through mode.
Write-back memory regions are treated as write-through memory. This ensures that the core can
recover from soft ECC errors. On detection of an ECC error the core invalidates the relevant
cache line and then re-fetches the line from external memory.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b110
BIC r1, r1, #(0x1 << 4) ; to enable ECC with forced
ORR r1, r1, #(0x1 << 3) ; write-through
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

It is also possible to use ECC with write-back memory regions.When configured to use
write-back memory, the core can recover from some ECC errors.

If hardware recovery is enabled then:

• On detection of an ECC error in a clean cache line the processor invalidates the line and
then re-fetches the line from external memory.

• On detection of a single-bit error in a dirty cache line the line is evicted and corrected
in-line before being written back to main memory, the line is invalidated and the corrected
data re-fetched from external memory.

• On detection of a double-bit error in a dirty cache line the line is evicted and written back
to main memory. As the error cannot be corrected, the word or words containing the
double bit error will not be written back to main memory. The line is invalidated and an
abort is generated by the processor so that the error can be analyzed.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b101
BIC r1, r1, #(0x1 << 4) ; to enable ECC no forced
ORR r1, r1, #(0x1 << 3) ; write-through
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

The processor can be configured to generate an abort whenever an ECC error occurs. The abort
handler would then read the correctable fault location register and determine whether any
protective action should be taken. (Double-bit errors will always generate aborts.)

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b010
BIC r1, r1, #(0x1 << 4) ; to enable ECC with forced
ORR r1, r1, #(0x1 << 3) ; write-through. Generates abort

; on error detection.
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
BIC r1, r1, #(0x1 << 5) ; Set Bits [5:3] = 0b000
BIC r1, r1, #(0x1 << 4) ; to enable ECC no forced
BIC r1, r1, #(0x1 << 3) ; write through. Generates abort
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-16
ID071714 Non-Confidential

Fault Detection and Control Features
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

.........

MRC p15, 0, r0, c15, c3, 0 ; Read CFLR

ECC errors are signalled with events and so these events can be captured and monitored by
external hardware or the Performance Monitor unit and used for analysis purposes.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x4D ; Data cache data RAM correctable ECC error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x60 ; Data cache data RAM fatal ECC error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

12.7.3 ECC for the TCMs in the Cortex-R5 processor

ECC generation and checking can be configured for the TCM RAM in the Cortex-R5 processor
during implementation.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bits[27:26] = 0b10 32 bit ECC on ATCM
; bits[25:24] = 0b10 32 bit ECC on BTCM
; bits[27:26] = 0b11 64 bit ECC on ATCM
; bits[25:24] = 0b10 64 bit ECC on BTCM

When a single-bit error is detected the core corrects the data and writes it back to the TCM. The
core then re-reads the corrected data from the address location.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 27) ; Enable parity detection on B1TCM port
ORR r1, r1, #(0x1 << 26) ; Enable parity detection on B0TCM port
ORR r1, r1, #(0x1 << 25) ; Enable parity detection on ATCM port
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

Alternatively, instead of correcting the data, the core can be configured to take an abort. The
abort handler must then determine the appropriate corrective or protective action.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 27) ; Enable parity detection on B1TCM port
ORR r1, r1, #(0x1 << 26) ; Enable parity detection on B0TCM port
ORR r1, r1, #(0x1 << 25) ; Enable parity detection on ATCM port
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR

MRC p15, 0, r1, c1, c0, 0 ; Read Secondary Auxiliary Control Register
ORR r1, r1, #(0x1 << 3) ; Disable parity detection on BTCM
ORR r1, r1, #(0x1 << 2) ; Disable parity detection on BTCM
MCR p15, 0, r1, c1, c0, 1 ; Write Secondary Auxiliary Control Register

When a double-bit error is detected the data cannot be corrected automatically and so the core
takes an abort. The abort handler must again determine the appropriate corrective or protective
action.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-17
ID071714 Non-Confidential

Fault Detection and Control Features
MRC p15, 0, r0, c5, c0, 0 ; Read DFSR, DFSR[10,3:1] = 0b1100 indicates an
; ECC error

................
MRC p15, 0, r0, c5, c0, 1 ; Read IFSR, IFSR[10,3:1] = 0b1100 indicates an

; ECC error

ECC errors are signalled with events. These events can be captured and monitored by external
hardware or the Performance Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x6B ; TCM correctable ECC error reported by PFU
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x4E ; Data cache data RAM fatal ECC error
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

ECC checking can also be configured externally to the Cortex-R5, as part of the TCM RAM
instance. If an error is detected by this external TCM logic an error is signalled to the Cortex-R5
processor, if the error is uncorrectable the processor will take an abort.

MRC p15, 0, r0, c5, c0, 0 ; Read DFSR, DFSR[10,3:0] = 0b10110 indicates an
; External synchronous abort

................
MRC p15, 0, r0, c5, c0, 1 ; Read IFSR, IFSR[10,3:0] = 0b01000 indicates an

; External synchronous abort

12.7.4 Hard error banks in the Cortex-R5 processor

The Cortex-R5 processor can be configured to include a hard error bank for the TCMs. The error
bank helps protect the TCM error correction logic against livelocks, which can occur in the
presence of hard errors.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bit[4] = 0b0 Includes hard error cache

The Cortex-R5 processor includes an error bank for the caches. The error bank helps protect the
cache error correction logic against livelocks, which can occur in the presence of hard errors.
This bank can be enabled or disabled using the system control registers.

MRC p15, 0, r1, c1, c0, 0 ; Read Secondary Auxiliary Control Register
BIC r1, r1, #(0x1 << 22) ; Enable hard-error support in the caches
MCR p15, 0, r1, c1, c0, 0 ; Write Secondary Auxiliary Control Register

..................

MRC p15, 0, r1, c1, c0, 0 ; Read Secondary Auxiliary Control Register
ORR r1, r1, #(0x1 << 22) ; Disable hard-error support in the caches
MCR p15, 0, r1, c1, c0, 0 ; Write Secondary Auxiliary Control Register

The Cortex-R5 processor includes an event to indicate if the processor is in livelock due to hard
errors. This event can be captured and monitored by external hardware or the Performance
Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-18
ID071714 Non-Confidential

Fault Detection and Control Features
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x62 ; Processor livelock
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

12.7.5 Bus protection on the Cortex-R5 processor

The Main AXI master interfaces, AXI peripheral ports, AHB peripheral ports, ACP ports and
AXI slave port can be configured to include ECC generation and checking on the data buses,
and parity generation and checking on the control buses. The TCM interfaces can be configured
with parity generation and checking on the buses.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
; bit[10] = 0b1 Includes TCM Bus Parity
; bit[3] = 0b1 Includes AMBA Bus ECC

The core will generate ECC or parity bits for output signals and will check ECC or parity bits
for input signals.

If the core detects an error on one of the buses, it will signal the error with an event.

If the ECC checking detects a single bit ECC error, it will correct the error in-line in addition to
signalling the error with an event.

These events can be captured and monitored by external hardware or the performance monitor
unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x70 ; Correctable Bus Fault
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x71 ; Fatal Bus Fault
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

To use the bus ECC and parity protection the system design around the core must also include
the complementary parity and ECC bit generation and checking.

12.7.6 Redundant core in the Cortex-R5 processor

There is an implementation option in the Cortex-R5 processor to include a fully redundant copy
of the processor implementation on the silicon. The outputs from the functional and redundant
processors are compared with user defined logic to identify any differences in behavior. If a
difference is detected then this would be signalled with an event that might be sent to the
processor or another logic block for analysis.

In the Cortex-R5 processor, the redundant core typically operates two cycles behind the primary
core.

The exact behavior of the redundant core is implementation defined.

MRC p15, 0, r0, c15, c2, 1 ; read Build Options 2 Register
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-19
ID071714 Non-Confidential

Fault Detection and Control Features
; bit[31] = 0b1 Includes Redundant Core

12.7.7 Test of the fault detection and control features on the Cortex-R5 processor

There are two mechanisms to test that the ECC and parity features are working correctly in the
Cortex-R5 processor

The AXI slave provides an interface to access the caches. Using this, it is possible to deliberately
induce errors in the caches that can then be detected and corrected when accessed via
instructions from the processor.

The AXI slave can be used to preload the TCMs but cannot be used to test errors in the TCMs.

The processor itself can be used to induce errors in the TCMs. ECC checking is enabled and
disabled through the CP15. While ECC checking is disabled a sub-word access to a TCM
location will not induce a read-modify-write process. This means that by doing sub-word
accesses to TCM locations while ECC checking is disabled it is possible to generate a mismatch
between the data value and the ECC code.

; Setup - these addresses MUST be doubleword aligned
LDR r10,=0x40000000 ; Address of victim TCM location to insert error
LDR r11,=0x40000008 ; Address of scratch memory location

LDR r0,=0xDEAFBEEF
LDR r1,=0xCAFEBABE

STR r0,[r10]
STR r1,[r10,#0x4]

; Disable ECC - ATCM
MRC p15,0,r0,c1,c0,1 ; Read aux ctl
BIC r0,r0,#0x02000000
MCR p15,0,r0,c1,c0,1

; Memory barrier to ensure all previous accesses have completed
DMB

; Read data and introduce ECC error
LDRD r0,[r10] ; Read data to corrupt
STRD r0,[r11] ; Store data to corrupt in scratch location

LSR r2, r0, #16 ; Only interested in 3rd byte
EOR r2, #0x2 ; Toggle one bit
STRB r2,[r11,#2] ; Store byte to corrupt data and ECC
LDRD r0,[r11] ; Load corrupted data back to set up

; internal registers
BFI r0, r1, #0, #8 ; Merge byte 0 from upper word into lower word
ROR r0, r0, #24 ; Shift byte 3 into byte 0 position,

; byte 0 into byte 1 position.
STRH r0, [r10,#3] ; Store byte - data unchanged, but ECC changed

; Enable ECC
MRC p15,0,r0,c1,c0,1 ; Read aux ctl
ORR r0,r0,#0x02000000
MCR p15,0,r0,c1,c0,1

; Read data - should get corrected from 0xDEAFBEEF
; to 0xDEADBEEF

LDRD r0,[r10]
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-20
ID071714 Non-Confidential

Fault Detection and Control Features
12.8 Fault detection and control features in the Cortex-R7 processor
Each of the Cortex-R series processors contain a number of features that enhance their
suitability for safety-related applications. Semiconductor manufacturers may choose, or not
choose, to implement these fault detection features in their processor implementation. These
should not be assumed to be present in all Cortex-R devices

The Cortex-R7 processor provides the following optional fault detection features:

• ECC for Cache RAMs in the Cortex-R7 processor.

• ECC for the TCMs on the Cortex-R7 processor on page 12-22.

• BTAC and PRED RAM in the Cortex-R7 processor on page 12-23.

• Hard error banks on the Cortex-R7 processor on page 12-23.

• Bus protection on the Cortex-R7 processor on page 12-24.

• Redundant core in the Cortex-R processors on page 12-25.

• Test of the fault detection and control features on the Cortex-R7 processor on page 12-25.

An additional feature of the Cortex-R7 processor is an MBIST interface for external analysis of
errors. This cannot be used when the processor is running. However, it can be used when the
processor is in WFI (Wait For Interrupt) state.

12.8.1 ECC for Cache RAMs in the Cortex-R7 processor

ECC generation and checking can be configured for the cache RAMs in the Cortex-R7
processor during implementation.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 9) ; Enable ECC detection on caches
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR
MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR, bit[9] = 0, ECC not implemented

On detection of an ECC error in a clean cache line, the processor invalidates the line and then
re-fetches the data from external memory.

On detection of a single-bit error in a dirty cache line the processor evicts the line, corrects it
in-line, and then writes it back to main memory. The processor then invalidates the line and
re-fetches the corrected data from external memory.

On detection of a double-bit error in a dirty cache line, the processor evicts the line and writes
the data back to main memory. As the error cannot be corrected the words containing the
double-bit error will not be written back to main memory. The processor invalidates the line and
re-fetches the partially corrected data from external memory. This means that the instruction
might use incorrect data.

When possible the location of the detected error is added to an Error bank, ready for analysis.

The ECC errors are signalled with events. These events can be captured and monitored by
external hardware or the Performance Monitor Unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x65 ; Detected ECC errors on instruction cachet
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-21
ID071714 Non-Confidential

Fault Detection and Control Features
...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x66 ; Detected ECC errors on data cache
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

The ECC events must also be used to signal to the processor, using an interrupt, that an error
event occurred. The Interrupt handler must analyze the data in the Error banks to determine the
location where the error occurred, whether the error is hard or soft, and what corrective or
protective action must be taken.

MRC p15, 0, r0, c15, c2, 0 ; Read DEER0, Data Cache Error Bank 0
BIC r0, r0, #(0x1 << 0) ; Clear Valid bit
MCR p15, 0, r0, c15, c2, 0 ; Write DEER0, Data Cache Error Bank 0

.........................

MRC p15, 0, r0, c15, c3, 2 ; Read IEER2, Instruction Cache Error Bank 2
ORR r0, r0, #(0x1 << 1) ; Set Hard Error bit
MCR p15, 0, r0, c15, c3, 2 ; Write IEER2, Instruction Cache Error Bank 2

............................

12.8.2 ECC for the TCMs on the Cortex-R7 processor

ECC generation and checking can be configured for the TCM RAMs on the Cortex-R7
processor during implmentation.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 10) ; Enable ECC detection on ITCM
ORR r1, r1, #(0x1 << 9) ; Enable ECC detection on DTCM
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR
MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR, bit[10:9] = 0b00 ECC not included

On detection of a single-bit error the data can be corrected and written back to the TCM. The
core can then re-read the corrected data read from the same address.

On detection of a double-bit error the data cannot be corrected automatically. The core writes
zeros to the corrupted data line.

When possible the location of the detected error is added to an Error bank, ready for analysis.

The ECC errors are signalled with events. These events can be captured and monitored by
external hardware or the Performance Monitor unit for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x63 ; Detected ECC errors on ITCM
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x64 ; Detected ECC errors on DTCM
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-22
ID071714 Non-Confidential

Fault Detection and Control Features
The ECC events must also be used to signal to the core, using an interrupt, that an error event
occurred. The Interrupt handler analyses the data in the Error banks to determine the location
where the error occurred, whether the error is hard or soft, and what corrective or protective
action must be taken.

MRC p15, 0, r0, c15, c4, 0 ; Read DTCMEER DTCM Error Bank
BIC r0, r0, #(0x1 << 0) ; Clear Valid bit
MCR p15, 0, r0, c15, c4, 0 ; Write DTCMEER DTCM Error Bank

........................

MRC p15, 0, r0, c15, c5, 0 ; Read ITCMEER ITCM Error Bank
ORR r0, r0, #(0x1 << 1) ; Set Hard Error bit
MCR p15, 0, r0, c15, c5, 0 ; Write ITCMEER ITCM Error Bank

12.8.3 BTAC and PRED RAM in the Cortex-R7 processor

Parity bit generation and checking can be included for the BTAC and Prediction RAM in the
Cortex-R7 processor.

MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR
ORR r1, r1, #(0x1 << 9) ; Enable ECC detection on caches
MCR p15, 0, r1, c1, c0, 1 ; Write ACTLR
MRC p15, 0, r1, c1, c0, 1 ; Read ACTLR, bit[9] = 0b0,

; PRED and BTAC parity not implemented

Parity errors are signalled with events. These events can be captured and monitored by external
hardware or the Performance Monitor Unit and for analysis.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x61 ; Parity error on PRED
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

...............................

MOV r0, #1 ; Select Counter 1
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x62 ; Parity error on BTAC
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB

No corrective action is taken by the processor on detection of a parity error in the BTAC or
Prediction RAMs. An error in these RAMs can generate a mis-prediction in the instruction
prefetch logic, this can have an impact on processor performance but will not affect the
functionality of the core.

12.8.4 Hard error banks on the Cortex-R7 processor

The Cortex-R7 processor includes hard error banks for the caches and TCMs. The error bank
helps protect the cache and TCM error correction logic against livelocks, which can occur in the
presence of hard errors.

The Cortex-R7 processor provides a bank of eight registers for errors:

• 3 for the instruction cache.

• 3 for the data cache.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-23
ID071714 Non-Confidential

Fault Detection and Control Features
• 1 for ITCM.

• 1 for DTCM.

The error registers contain the location of the error and specify whether it is a hard error or not.
These registers are automatically filled with the error location whenever an error is detected.
However, whether it is a hard error or not is filled in by the core software instead of the
hardware. These error registers can be accessed using the MCR and MRC instructions when the
core is in privileged mode.

MRC p15, 0, r0, c15, c2, 0 ; Read DEER0, Data Cache Error Bank 0
MCR p15, 0, r0, c15, c2, 0 ; Write DEER0, Data Cache Error Bank 0

MRC p15, 0, r0, c15, c2, 1 ; Read DEER1, Data Cache Error Bank 1
MCR p15, 0, r0, c15, c2, 1 ; Write DEER1, Data Cache Error Bank 1

MRC p15, 0, r0, c15, c2, 2 ; Read DEER2, Data Cache Error Bank 2
MCR p15, 0, r0, c15, c2, 2 ; Write DEER2, Data Cache Error Bank 2

MRC p15, 0, r0, c15, c3, 0 ; Read IEER0, Instruction Cache Error Bank 0
MCR p15, 0, r0, c15, c3, 0 ; Write IEER0, Instruction Cache Error Bank 0

MRC p15, 0, r0, c15, c3, 1 ; Read IEER1, Instruction Cache Error Bank 1
MCR p15, 0, r0, c15, c3, 1 ; Write IEER1, Instruction Cache Error Bank 1

MRC p15, 0, r0, c15, c3, 2 ; Read IEER2, Instruction Cache Error Bank 3
MCR p15, 0, r0, c15, c3, 2 ; Write IEER2, Instruction Cache Error Bank 3

MRC p15, 0, r0, c15, c4, 0 ; Read DTCMEER DTCM Error Bank
MCR p15, 0, r0, c15, c4, 0 ; Write DTCMEER DTCM Error Bank

MRC p15, 0, r0, c15, c5, 0 ; Read ITCMEER ITCM Error Bank
MCR p15, 0, r0, c15, c5, 0 ; Write ITCMEER ITCM Error Bank

12.8.5 Bus protection on the Cortex-R7 processor

Parity and ECC generation and checking can be configured for some of the Cortex-R7 processor
AXI bus signals. The Main AXI master interfaces, AXI peripheral port and ACP port can be
configured to include ECC generation and checking on the data buses, and parity generation and
checking on the control buses.

Note
 There is no register in the Cortex-R7 processor that indicates whether bus protection has been
included in the configuration. However, bus protection can only be included if the RAM ECC
has also been included.

The Cortex-R7 processor will generate ECC or parity bits for output signals and will check ECC
or parity bits for input signals.

If the core detects an error on one of the buses it will signal the error with an event.

If the ECC checking detects a single bit ECC error it will correct the error in-line and will signal
the error with an event.

MOV r0, #0 ; Select Counter 0
MCR p15, 0, r0, c9, c12, 5 ; Write PMNXSEL Register
ISB
MOV r1, #0x6A ; Correctable ECC error on master 0 bus
MCR p15, 0, r1, c9, c13, 1 ; Write EVTSELx Register
ISB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-24
ID071714 Non-Confidential

Fault Detection and Control Features
To use the bus ECC and parity protection, the system design around the core must also include
the complementary parity and ECC bit generation and checking.

12.8.6 Redundant core in the Cortex-R processors

There is an implementation option in the Cortex-R7 processor to include a fully redundant copy
of the core implementation on the silicon. The outputs from the functional and redundant core
are compared with user defined logic to identify any differences in behavior. If a difference is
detected then this would be signalled with an event that might be sent to the core or another logic
block for analysis.

In the Cortex-R7 processor, the redundant core typically operates 2 cycles behind the primary
core.

The exact behavior of the redundant core comparison logic is implementation defined.

There is no register in the Cortex-R7 processor that indicates whether a redundant core has been
included in the configuration.

12.8.7 Test of the fault detection and control features on the Cortex-R7 processor

Unlike the Cortex-R5 and Cortex-R4 processors, the Cortex-R7 processor provides a method
for writing to the TCMs and caches using system control registers:

Cache and TCM Debug Operation Register (CTDOR)
This is used to detail and trigger the required access (RAM selection,
address/index, read/write).

RAM Access Data Register (RADRLO and RADRHI)
This stores data values for the RAM operation.
RADRLO is used for the 32 bit data RAM accesses.
RADRLO and RADRHI are used for the 64 instruction RAM accesses.

RAM Access ECC Regisrer (RAECCR)
This stores the ECC value for the CTDOR RAM operation.

With these registers it is possible to introduce errors easily because data stored in the TCM or
cache can be changed without updating the ECC. It is also possible to change the ECC without
changing the data in the TCM. Using this feature it is possible to deliberately induce errors in a
TCM or cache that can then be detected and corrected when accessed by instructions from the
processor.

; Modify Data stored in the Data Cache, Way 2, Index 4, Word 3

; First read the cache location using CTDOR
MOV r1, #0
ORR r1, r1, #2<<30 ; Way selection
ORR r1, r1, #1<<22 ; Cache/TCM RAM selection, select Cache
ORR r1, r1, #1<<21 ; Data/Tag RAM selection, select Data
ORR r1, r1, #0<<20 ; Instruction/Data selection, select Data
ORR r1, r1, #4<<5 ; Index selection
ORR r1, r1, #3<<2 ; Word selection
ORR r1, r1, #0<<0 ; Read operation

MCR p15, 0, r1, c15, c1, 0 ; Write CTDOR with operation selected above

; The CTDOR access updates the value in the low RAM Access Data Register
; and RAM Access ECC Register
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-25
ID071714 Non-Confidential

Fault Detection and Control Features
MRC p15, 0, r3, c15, c1, 1 ; Read data from low RAM Access Data Register
MOV r2, #0
ORR r2, r2, #1<<5
EOR r3, r2, ; Deliberately corrupt bit 5 in read word
MRC p15, 0, r3, c15, c1, 1 ; Copy corrupted data to CP15 register

ORR r1, r1, #1<<0 ; Select CTDOR Write operation
MCR p15, 0, r1, c15, c1, 0 ; Update CTDOR and trigger write of

; corrupted data to data cache

...............................

; Modify ECC code stored for the Instruction Cache, Way 0, Index 3,
; Words 6 and 7.

; First read the cache location using CTDOR
MOV r1, #0
ORR r1, r1, #2<<30 ; Way selection
ORR r1, r1, #1<<22 ; Cache/TCM RAM selection, select Cache
ORR r1, r1, #1<<21 ; Data/Tag RAM selection, select Data
ORR r1, r1, #1<<20 ; Instruction/Data selection, select Instruction
ORR r1, r1, #3<<5 ; Index selection
ORR r1, r1, #6<<2 ; Word selection
ORR r1, r1, #0<<0 ; Read operation

MCR p15, 0, r1, c15, c1, 0 ; Write CTDOR with operation selected above

MRC p15, 0, r4, c15, c1, 3 ; Read ECC chunk from RAM Access ECC Register
MOV r2, #0
ORR r2, r2, #1<<2
EOR r3, r2 ; Deliberately corrupt bit 2 in ECC word
MRC p15, 0, r4, c15, c1, 3 ; Copy corrupted ECC chunk to CP15 register

; (useless in this case)

ORR r1, r1, #1<<0 ; Select CTDOR Write operation
MCR p15, 0, r1, c15, c1, 0 ; Update CTDOR and trigger write of

; corrupted ECC to instruction cache
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 12-26
ID071714 Non-Confidential

Chapter 13
Profiling

Profiling is a technique that lets you identify sections of code that consume large proportions of the
total execution time. It is usually more productive to focus optimization efforts on code segments
that are executed very frequently, or that take a significant proportion of total execution time than
to optimize rarely used functions or code that takes only a small proportion of total execution time.
A profiler will tell you which parts of the code are frequently executed and which occupy the most
core cycles. A profiler can help you identify bottlenecks, situations where the performance of the
system is constrained by a small number of functions. This data is collected using instrumentation,
an execution trace or sampling.

When you have identified some slow part of your code it is important to consider whether you can
change the algorithm, before attempting to improve the existing code. For example, if the time is
being spent searching a linked list, it is probably much more beneficial to change to using a tree or
hash table instead of spending effort to speed up the linked list search.

Profiling can be considered as a form of dynamic code analysis. Profiling tools can gather
information in a number of different ways. There are two basic approaches to gathering
information:

Time based sampling
The state of the system is sampled at a periodic, time-based interval. The size of this
interval can affect the results. A smaller sampling interval can increase execution
time but produce more detailed data.

Event based sampling
Sampling is driven by occurrences of an event, which means that the time between
sampling intervals is usually variable. Events can often be hardware related, for
example, cache misses.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 13-1
ID071714 Non-Confidential

Profiling
It is also important to understand that profilers typically operate on a statistical basis. They
might not necessarily produce absolute counts of events. In complex systems, it might be
necessary to control profiling information by using annotation options to specify:

• Which events are to be recorded.

• Which events are to be shown.

• Thresholds to avoid displaying large numbers of functions with low count numbers.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 13-2
ID071714 Non-Confidential

Profiling
13.1 Profiler output
Profiler tools normally provide two kinds of information:

Call graph The call graph tells you the number of times each function was called. This can
help point out which function calls can be eliminated or replaced and shows
inter-relations between different functions. Viewing a call graph can suggest code
to optimize and reveal hidden bugs, for example, if code is unexpectedly calling
an error function many times. Collecting call graph information can require
building the code with special options.

Flat profile A flat profile, as in Example 13-1 shows how much core time each function uses
and the number of times it was called. This enables a simple identification of
which functions consume large fractions of run-time and should therefore be
considered first for possible optimizations.

Example 13-1 Example flat profile

Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 33.34 0.02 0.02 6275 0.00 0.00 start
 16.67 0.03 0.01 192 0.07 0.21 func1
 16.67 0.04 0.01 15 1.20 1.20 memcpy
 16.67 0.05 0.01 7 1.41 1.41 write
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 13-3
ID071714 Non-Confidential

Profiling
13.2 Performance Monitor Unit
The Cortex-R series processors include a Performance Monitor Unit (PMU). The PMU is a
powerful profiling feature that measures and analyzes the processor performance.

The PMU hardware is able to count several events, using multiple counters. Combining values
from different counters provides useful parameters to optimize. For example, if the PMU counts
the total number of clock cycles and the number of instructions executed, then these can be used
to calculate the cycles per instruction. The cycles per instruction is a useful proxy for the
efficiency with which the core is operating. It is possible to generate information about cache
hit or miss rates, separately for both L1 data and instruction caches. It is possible to examine
how code changes can affect these parameters.

The Cortex-R series processors contain event counting hardware which can be used to:
• Profile and benchmark code.
• Generate cycle and instruction count figures.
• Derive figures for cache misses and other parameters.

The performance counter block contains a cycle counter which can count core cycles, or be
configured to count every 64 cycles. There are also a number of configurable 32-bit wide event
counters which can be set to count instances of events from a wide-ranging list, for example,
instructions executed, or exceptions taken.

These counters can be accessed through debug tools, or by software running on the core, through
the CP15 PMU registers. They provide a non-invasive debug feature and do not change the
behavior of the core. CP15 also provides a number of controls for enabling and resetting the
counters, and to indicate overflows. There is an option to generate an interrupt on a counter
overflow. The cycle counter can be enabled independently of the event counters.

The PMU registers are accessible in privileged modes. You can use the User Enable
(PMUSERENR) Register to make all the PMU registers, except for the Interrupt Enable Set
(PMINTENSET) and Interrupt Enable Clear (PMINTENCLR) Registers, accessible in User
mode.

It is important to understand that information generated by such counters might not be exact. In
a superscalar, out-of-order processor, for example, it can be difficult to guarantee that the
number of instructions executed is precise at the time any other counter is updated.

Table 13-1 lists the standard countable events common to all ARMv7-R based processors. There
are additional events that can be monitored. For more information, see the Technical Reference
Manual for the processor.

Table 13-1 Performance monitor events

Number Event counted

0x00 Software increment of the Software Increment Register

0x01 Instruction fetch that causes a Level 1 instruction cache refill

0x03 Data fetch that causes a Level 1 data cache refill

0x04 Data Read or Write operation that causes a Level 1 data cache access

0x06 Memory-reading instruction executed

0x07 Memory-writing instruction executed

0x08 Instruction architecturally executed
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 13-4
ID071714 Non-Confidential

Profiling
0x09 Exception taken

0x0A Exception return executed

0x0B Instruction that writes to the Context ID register

0x0C Software change of program counter

0x0D Immediate branch instruction executed

0x0E Procedure return, other than exception return

0x0F Unaligned load or store

0x10 Branch mispredicted or not predicted

0x11 Cycle count; the register is incremented on every cycle

0x12 Predictable branch speculatively executed

Table 13-1 Performance monitor events (continued)

Number Event counted
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 13-5
ID071714 Non-Confidential

Chapter 14
Coding for Cortex-R Processors

You can optimize code for power, speed, code density or memory footprint. There are many GNU
GCC and ARM Compiler features that take advantage of the Cortex-R series design to generate
optimized code.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-1
ID071714 Non-Confidential

Coding for Cortex-R Processors
14.1 Compiler optimizations
The ARM Compiler and GNU GCC provide a wide range of options to increase the speed, or
reduce the size, of the executable files they generate. For each line in the source code, there are
generally many possible choices of assembly instructions that could be used. The compiler must
trade-off a number of resources, such as registers, stack and heap space, code size, number of
instructions, compilation time, ease of debug, and number of cycles per instruction to produce
an optimized image file.

14.1.1 Idiom recognition

The ARM and Thumb instructions sets include a number of specialist instructions that do not
map easily to C operations. These can be system control instructions, such as enabling or
disabling interrupts, or specialist data processing instructions.

An example of a specialist data processing instruction would be the REV instruction. This
instruction reverses the order of bytes in a register, changing the endian format. Because the
concept of endianness is not understood by C directly, it is difficult to express in C that this is
what you want to do. The compiler attempts to recognize common code fragments that
implement such behavior, and use the specialist instructions. This is known as idiom
recognition. The table shows code compiled using RVCT 4.0 build 870, with –O2 optimization
level:

The compiler might not recognize all cases where a specialist instruction is required. In these
cases the code can be re-written in assembler or using compiler intrinsics. An intrinsic tells the
compiler to use a specific instruction. For example:

 __usat()

This kind of optimization is quite intensive in terms of a developer’s time. Typically such effort
can only be justified for frequently used code, or code that forms part of a critical section of the
application. The PMU can be used to help identify such critical sections.

14.1.2 Function inlining

When a function is called, there is a certain overhead. A called function must store its own return
address on the stack if it has to reuse R14. Instructions might also be required to place arguments
in the appropriate registers and push registers on the stack, in accordance with the Procedure
Call Standard. There is a possible overhead when returning to the original point of execution
when the function ends, again requiring a branch (and corresponding instruction pipeline flush)
and possibly popping registers from the stack. However, the pipeline will not be flushed if the
return is correctly predicted using the return stack. This function-call overhead can become
significant when there are functions that contain only a few instructions, and where these
functions represent a significant amount of the total run-time. Also, executing branches uses

Table 14-1 Comparing assembler and C code

C --cpu=v5TE --cpu=Cortex-R4F

uint32_t rev (uint32_t a)
{
return
((a<<24) & 0xFF000000U) |
((a<< 8) & 0x00FF0000U) |
((a>> 8) & 0x0000FF00U) |
((a>>24) & 0x000000FFU);
}

rev PROC
MOV r1,#0xff0000
AND r1,r1,r0,LSL #8
MOV r2,#0xff00
ORR r1,r1,r0,LSL #24
AND r2,r2,r0,LSR #8
ORR r1,r1,r2
ORR r0,r1,r0,LSR #24
BX lr
ENDP

rev PROC
REV r0,r0
BX lr
ENDP
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-2
ID071714 Non-Confidential

Coding for Cortex-R Processors
branch predictor resources, that can affect overall program performance. Function inlining
eliminates this overhead by replacing calls to a function by a copy of the actual code of the
function itself (known as placing the code inline).

Inlining for critical code paths is always a worthwhile optimization if there is only one place
where the function is called. It is always worthwhile if calling the function requires more
instructions (memory) than inlining the function body. An additional consideration is that
inlining can help permit other optimizations. Clearly, increasing the number of times that a
function is called will increase the number of inlined copies of the function that are made and
this will increase the cost in code size.

GCC performs inlining only within each compilation unit. The inline keyword can be used to
request that a specific function must be inlined wherever possible, even in other files. The GCC
documentation gives more details of this and how its use can be combined with static and
extern.

We will look at inlining in a little more detail when we consider cache optimizations.

14.1.3 Eliminating common sub-expressions

Another simple source-level optimization is re-using already computed results in a later
expression. This common sub-expression elimination is performed automatically when
optimization command line switches are used and can make code both smaller and faster.
However, the compiler might not necessarily catch all cases, and it can sometimes be more
useful to do this by hand.

Example 14-1 illustrates how this works:

Example 14-1 Common sub-expression

i = a * b + c;
j = a * b * d;

The compiler can treat this code as if it had been written as in Example 14-2. It must be noted
though, that it can only do this if neither a nor b is volatile.

Example 14-2 Common sub-expression elimination

tmp = a * b;
i = tmp + c;
j = tmp * d;

This reduces both the instruction count and cycle count.

14.1.4 Loop unrolling

Every iteration of a loop has a certain penalty associated with it. Every conditional loop must
include a test for the end of loop on each iteration. Additionally, there is a branch instruction to
iterate over the loop, that can take a number of cycles to execute. You can avoid this penalty by
unrolling loops, partially or fully.

Consider the simple code shown in Example 14-4 on page 14-4, to initialize an array.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-3
ID071714 Non-Confidential

Coding for Cortex-R Processors
Example 14-3 Initializing an array

for (i = 0; i < 10; i++)
{

x[i] = i;
}

Each iteration of the loop contains an assembler sequence of the form in Example 14-4.

Example 14-4 Loop termination assembly code

CMP i,#10
BLT for_loop

A large proportion of the total run time will have been spent checking if the loop has terminated
and in executing a branch to re-execute the loop.

The same code can be written by unrolling the loop, as shown in Example 14-5.

Example 14-5 Unrolled loop

x[0] = 0;
x[1] = 1;
x[2] = 2;
x[3] = 3;
x[4] = 4;
x[5] = 5;
x[6] = 6;
x[7] = 7;
x[8] = 8;
x[9] = 9;

When the code is written in this way, you remove the compare and branch instruction and have
a sequence of stores and adds. This is clearly larger than the original code but can execute
considerably faster.

Conventionally, loop unrolling is often considered to increase the speed of the program but at
the expense of an increase in code size (except for very short loops). However, in practice this
might not always be the case on many hardware platforms. In many systems, an access to
external memory takes significant numbers of cycles and an instruction cache is provided. Code
that loops will often fit into the cache very well. The code is fetched into the cache during the
first loop iteration and is executed directly from cache after that. Unrolling the loop can mean
that the code is executed only once and, because it is larger, does not cache so well. This is more
likely to be the case for functions that are executed only once. Loops that are executed
frequently might be cached whether they are unrolled or not. An additional consideration is that
modern ARM processors typically include branch prediction logic that can hide the effect of
pipeline flushes from you by speculatively predicting whether a branch will or will not be taken
ahead of the actual evaluation of a condition. In some cases, the branch instruction can be
folded, so that it does not require an actual processor cycle to execute.

Cortex-R series processors can have long, complex instruction pipelines, with
interdependencies between instructions, particularly loads and instructions that set condition
code flags. The compiler understands the rules associated with a particular processor and can
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-4
ID071714 Non-Confidential

Coding for Cortex-R Processors
often re-arrange instructions so that pipeline interlocks are avoided. This is called scheduling
and typically involves re-arranging the order of instructions in ways that do not alter the logical
correctness of the program or its size, but that reduce its execution time. This can significantly
increase the compiler effort, increasing both the time and memory required for the compilation.
It can also restrict the ability to perform source level debug. There might no longer be a strict
one-to-one link between a line of C source and a sequence of assembly instructions. You can
instead have a couple of instructions from a C statement followed by instructions for the next
statement and then some more instructions for the first statement.

14.1.5 GCC optimization options

GCC has a range of optimization levels, plus individual options to enable or disable particular
optimizations.

The overall compiler optimization level is controlled by the command line option, where n is the
required optimization level, as follows:

• -O0. (default). No optimization is performed. Each source code command relates directly
to the corresponding instructions in the executable file. This gives the clearest view for
source level debugging.

• -O1. This enables most common forms of optimization that requires no size versus speed
decisions, including function inlining. It can often actually produce a faster compile than
–O0, because the resulting files are smaller.

• -O2.This enables additional optimizations, such as instruction scheduling. Again,
optimizations that can have speed versus size implications will not be used.

• -O3. This enables additional optimizations, such as aggressive function inlining and can
therefore increase the speed at the expense of image size.

• -funroll-loops. This option is independent of the -On option, and enables loop unrolling.
Loop unrolling can increase code size and might not have a beneficial effect in all cases.

• -Os. This selects optimizations that attempt to minimize the size of the image, even at the
expense of speed.

Higher levels of optimization can restrict debug visibility and increase compile times. It is usual
to use -O0 for debugging, and -O2 for finished code. When using these optimization options with
the –g (debug) switch, it can be difficult to see what is happening. The optimizations can change
the order of statements or remove (or add) temporary variables among other things. But an
understanding of the kinds of things the compiler will do means that satisfactory debug is
normally still possible with –O2 -g.

For optimal code, it is important to specify to the compiler as much detailed information about
the target platform as practically possible. Many useful options are documented on
http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html.

The main platform-specifying parameters are:

-march=<arch>

where <arch> is the architecture version to compile for. This defines the instruction set
supported, It can make a significant difference to performance to specify –march=armv7-a if this
is supported by your platform but is not used by default by your compiler.

-mcpu=<cpu>

More specific than –march, -mcpu specifies which processor to optimize for, including scheduling
instructions in the way most efficient for that processor’s pipeline.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-5
ID071714 Non-Confidential

http://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html

Coding for Cortex-R Processors
-mtune=<cpu>

This option provides processor specific tuning options for code, even when only an architecture
version is specified on the command line. For instance, the command line might contain
-march=armv5te -mtune=cortex-r7. This selects instructions for the architecture ARMv5TE but
tunes the selected instructions for execution on the Cortex-R7 processor.

-mfpu=<fpu>

If your target platform supports hardware floating-point, specify this to ensure that the compiler
can make use of these instructions. For a Cortex-R5F target, you would specify
–mfpu=vfpv3-d16.

-mfloat-abi=<name>

This option specifies the floating-point ABI to use. Values for <name> are:

soft causes GCC to generate code containing calls to the software floating-point
library for floating-point operations.

softfp enables GCC to generate code containing hardware floating-point instructions,
but still uses the software floating-point linkage.

hard enables GCC to generate code containing hardware floating-point instructions
and uses FPU-specific hardware floating-point linkage.

The default depends on the target configuration. You must compile your entire program with the
same ABI, and link with a compatible set of libraries.

Table 14-2 shows a few examples of code generation for floating-point operations.

14.1.6 armcc optimization options

The armcc compiler enables you to compile your C and C++ code. It is an optimizing compiler
with a range of command-line options to enable you to control the level of optimization.

The command line option gives a choice of optimization levels, as follows:

• -Ospace. This option instructs the compiler to perform optimizations to reduce image size
at the expense of a possible increase in execution time.

• -Otime. This option instructs the compiler to perform optimizations to reduce execution
time at the expense of a possible increase in image size.

• -O0. Turns off most optimizations. It gives the best possible debug view and the lowest
level of optimization.

• -O1. Removes unused inline functions and unused static functions. Turns off optimizations
that seriously degrade the debug view. If used with --debug, this option gives a satisfactory
debug view with good code density.

Table 14-2 Floating-point code generation

-mfpu -mfloat-abi Resultant code

Any value soft Floating-point emulation using software floating-point library

vfpv3 softfp VFPv3 floating-point code

vfpv3-d16 softfp VFPv3 floating-point code
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-6
ID071714 Non-Confidential

Coding for Cortex-R Processors
• -O2 (default). High optimization. If used with --debug, the debug view might be less
satisfactory because the mapping of object code to source code is not always clear.

• -O3. performs the same optimizations as -O2 however the balance between space and time
optimizations in the generated code is more heavily weighted towards space or time
compared with -O2. That is:
— -O3 -Otime aims to produce faster code than -O2 -Otime, at the risk of

increasing your image size
— -O3 -Ospace aims to produce smaller code than -O2 -Ospace, but performance might

be degraded.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-7
ID071714 Non-Confidential

Coding for Cortex-R Processors
14.2 Endianness
There are two basic ways of viewing bytes in memory – little-endian and big-endian. On
big-endian machines, the most significant byte of an object in memory is stored at the least
significant (closest to zero) address. On little-endian machines, the most significant byte is
stored at the highest address.

The term byte-ordering can also be used rather than endian. Other kinds of endianness do exist,
notably middle-endian and bit-endian, but we will not describe these.

Consider the following simple piece of code:

Example 14-6 Endian access

int i = 0x44332211;
unsigned char c = *(unsigned char *)&i;

On a 32-bit big-endian machine, c is given the value of the most significant byte of i: 0x44. On
little-endian machines, c is the least significant byte of i: 0x11.

Figure 14-1 on page 14-9 illustrates the two differing views of memory. It should be stated at
this point that many people find endianness confusing and that even the act of drawing a
diagram to illustrate it can reveal a personal bias. The diagram shows a 32-bit value in a register
being written to address 0x1000, using a STR instruction. The core then performs a read of a byte,
using a LDRB instruction. A different value will be returned by this instruction sequence
depending on whether you have a little- or big-endian memory system.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-8
ID071714 Non-Confidential

Coding for Cortex-R Processors
Figure 14-1 Different endian behaviors

ARM cores support both modes, but are most commonly used in, and typically default to
little-endian mode. Most Linux distributions for ARM tend to be little-endian only. The x86
architecture is little-endian.

So, there are two issues to consider, code portability and data sharing. Systems are built from
multiple blocks and can include one or more cores, DSPs, peripherals, memory, and network
connections. Whenever data is shared between these elements, there is a potential endianness
conflict. If code is being ported from a system with one endianness to a system with different
endianness, it might be necessary to modify that code, either to make it endian-neutral or to
work with the opposite byte-ordering.

Cortex-R series processors provide support for systems of either endian configuration,
controlled by the CPSR E bit that enables software to switch dynamically between viewing data
as little or big-endian. Instructions in memory are always treated as little-endian. The REV
instruction (see Byte reversal on page 5-22) can be used to reverse bytes within an ARM
register, providing simple conversion between big and little-endian formats.

Note
 The Cortex-R4 and Cortex-R5 can be configured to support big-endian Instruction code. This
is to support legacy systems.

In principle, it is straightforward to support mixed endian systems. Typically this means the
system is natively of one endian configuration, but there are peripherals which are of the
opposite endianness. The CPSR E bit can be modified dynamically by software, and there is a

0x44 0x33 0x22 0x11

031

STR r0, [r1]

LDRB r2, [r1]

0x220x44 0x33 0x11

0x00 0x11

031

3 2 1 0

r0=0x44332211

External
device or
memory

Little-endian Big-endian

Bit index

Address offset (bytes)

r2=0x110x000x00

LDRB r2, [r1]

0x330x11 0x22 0x44

0x00 0x44

031

3 2 1 0
External
device or
memory

Address offset (bytes)

r2=0x440x000x00

Storing (writing)

0x44 0x33 0x22 0x11

031

LDR r0, [r1]

0x220x44 0x33 0x11

3 2 1 0

r0=0x44332211

External
device or
memory

Little-endian Big-endian

Bit index

Address offset

Loading (reading)

r0=0x112233440x11 0x22 0x33 0x44

031 Bit index
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-9
ID071714 Non-Confidential

Coding for Cortex-R Processors
SETEND instruction provided to do this. The CP15:SCTLR (System Control Register, c1),
contains the EE bit (see Coprocessor 15 on page 3-6) that defines the endian mode to switch to
on an exception.

Modern ARM processors support a big-endian format known architecturally as BE-8 that is
only applied to the data memory system. Older ARM processors used a different format known
as BE-32 that applied to both instructions and data. BE-8 corresponds to what most other
computer architectures call big-endian.

Example 14-7 provides a simple piece of code that behaves differently when run on
architectures with different endianness.

Example 14-7 Non-portable code

int i- 0x12345678;
char *buf = (char*)&i;
char i0, i1, i2, i3;

i0 = buf[0];
i1 = buf[1];
i2 = buf[2];
i3 = buf[3];

The values of i0…i3 are not guaranteed to be the same if the system endianness changes. This
kind of code is therefore inherently non-portable.

When inspecting code in which you suspect endianness problems, you must look for the
following potential causes of problems:

Unions A union can hold objects of different types and sizes. You must keep track of what
the data member represents at any particular time. Code that uses unions must be
carefully checked. If the union is used to access the same data, but with different
data types, there exists a possible endianness, alignment, and packing problem.
Any time that halfword, word (or longer) data types are combined or viewed as
an array of bytes is a potential issue.

Casting of data types
Anywhere that data is accessed in a way outside of its native data type is a
potential problem. Similarly, if there are arrays of bytes, they must not be
accessed other than as a byte data type. Casting of pointers changes how data is
addressed and can be endian sensitive.

Bitfields To avoid endianness problems code that defines bitfields or performs bit
operations must not be used in code that is intended to be portable.

Data sharing
Any code that reads shared data from another block, or exports data to another
block, must be checked to see whether the two blocks agree endian definitions. If
the two are different, it might be necessary to implement byte swapping at one
location.

Network code
Code that accesses networking or other I/O devices must be reviewed to see if
there is any endian dependency. Again, it might be necessary to re-write code for
greater efficiency, or swap bytes at the interface.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-10
ID071714 Non-Confidential

Coding for Cortex-R Processors
14.3 ARM memory system optimizations
Writing code that is optimal for the system it will run on is a key part of the art of programming.
It requires you to understand how the compiler and underlying hardware will carry out the tasks
described in the lines of code. If the processor performs the tasks on-chip, with fewer access to
external memory, it reduces the power consumption. Additionally, by accessing the external
memory less frequently, it improves the system performance, enabling software to run faster.
This also means that the processor can be clocked slower, to save power.

14.3.1 Use of cache

The Cortex-R series processors are optimized for execution from the caches or TCM. Operating
from non-cached external memory will often have a significant impact.

Performance is also affected by different caching strategies, for example:
• read-allocate or write-allocate
• write-through or write-back.

Write-back, write allocate is often a good choice for stack space. Data is written first (pushed)
and then read back (popped), that fits a write-allocate strategy. Because the memory is also
frequently re-written, write-back prevents unnecessary updates of memory. However, when
using parity checking on the caches write-back is not supported.

Code should be structured in a way that ensures maximum re-use of data already loaded into the
cache. It is this principle of data locality, the degree to which accesses to the same cache line are
concentrated during program execution, in both space and time, that gives best performance.

14.3.2 Loop tiling

Loop tiling divides loop iterations into smaller pieces, in a way which promotes data cache
re-use. Large arrays are divided into smaller blocks (tiles) that match the accessed array
elements to the cache size. The classic example to illustrate this approach is a large matrix vector
product.

Consider two square matrices a and b, each of size 1024 × 1024. Example 14-8 shows code to
compute a matrix vector product. This requires you to multiply each element in each array with
each element in the other array.

Example 14-8 Matrix vector product code

for (i = 0; i < 1024; i++)
for (j = 0; j < 1024; j++)
for (k = 0; k < 1024; k++)

result[i][j] = result[i][j] + a[i][k] * b[k][j];

In this case, the contents of matrix a are accessed sequentially, but matrix b advances in the inner
loop, by row. It is therefore, highly probable that you will encounter a cache miss for each
multiply operation.

It is obvious that the order in which the additions for each element of the result matrix are
calculated does not change the result, ignoring the effect of such things as overflows. Code can
be rewritten in a way that improves the cache hit rate. In the example, the elements of matrix b
are accessed in the following way (0,0), (1,0), (2,0)… (1023, 0), (0,1), (1,1)… (1023,1). The
elements are stored in memory in the order (0,0), (0,1) etc. For word sized elements, it means
that the elements (0,0), (0,1)…(0,7) is stored in the same cache line. For simplicity, we will
assume that the start address of the matrix is aligned to a cache line. Alignment will be
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-11
ID071714 Non-Confidential

Coding for Cortex-R Processors
mentioned again in Structure alignment on page 14-13. Therefore, elements (0,0), (0,1), (0,2),
... will be in the same cache line; when you load (0,0) into the cache, you get (0,1...7) too. By
the time the inner loop completes, it is likely that this cache line will be evicted.

If you modify the code so that two (or indeed four, or eight) iterations of the middle loop are
performed immediately while executing the inner loop, as in Example 14-9 you can make a big
improvement. Similarly, you can unroll the outer loop two (or four, or eight) times as well.

Example 14-9 Code using tiles

for (io = 0; io < 1024; io += 8)
for (jo = 0; jo < 1024; jo += 8)
for (ko = 0; ko < 1024; ko += 8)
for (ii = 0, rresult = &result[io][jo],
ra = &a[io][ko]; ii < 8;
ii++, rresult += 1024, ra += 1024)
for (ki = 0, rb = &b[ko][jo];
ki < 8; ki++, rb += 1024)
for (ji = 0; ji < 8; ji++)

rresult[ji] += ra[ki] * rb[ji];

There are now six nested loops. The outer loops iterate with steps of 8, representing the fact that
eight int sized elements are stored in each line of the level 1 cache. Some additional
optimizations have also been introduced. The order of ji and ki has been reversed as only one
expression uses ki, but two use ji. In addition, you can optimize by removing common
expressions from the inner loops. All pointer accesses are potential sources of aliasing in C, so
by using result, ra and rb to access array elements, the array indexing is speeded up. This is
covered in more detail in Source code modifications on page 14-16.

Figure 14-2 illustrates the changing cache access pattern that results from changes to the C code.

Figure 14-2 Effect of tiling on cache usage

14.3.3 Loop interchange

In many programs, there are nested loops. Avery simple example would be code that stepped
through the items in a 2-dimensional array. For reasonably complex code, you can sometimes
get better performance by re-arrangement of the loops. It is better to have the loop with the
smaller number of iterations as the outer loop and the one with the highest iteration count as the
innermost loop.

This gives two potential advantages. One is that the compiler can potentially unroll the inner
loop. Perhaps more importantly for complex loops where the size of the nested loop is
sufficiently large that it might not all be held in the level 1 cache at the same time, the overall
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-12
ID071714 Non-Confidential

Coding for Cortex-R Processors
cache hit rate is improved by this change. Some compilers can make this change automatically
at higher levels of optimization. For example, GCC 4.4 adds the switch -floop-interchange to
do this.

14.3.4 Structure alignment

Efficient placement of structure elements and alignment are not the only aspects of data
structures that influence cache efficiency. Where code has a large working set, it is important to
make efficient use of the available cache space. To achieve this, it might be necessary to
rearrange data structures.

It is common to have data structures that span multiple cache lines, but where the program uses
only a few parts of the structure at any particular time. If there are many objects of this type, it
can make sense to try to split the structure so that it fits within a cache line. For example, you
can split an array of structures into two or more arrays of smaller structures. This only makes
sense if the object itself is aligned to a cache boundary. For example, consider the case where
you have a very large array of instances of a 64-byte structure (much larger than the cache size).
Within that structure, you have a byte-sized quantity and you have a commonly used function
that iterates through the array looking only at that byte-sized quantity. This function would make
inefficient use of the cache, as you would have to load an entire cache line to read the 8-bit value.
If instead those 8-bit values were stored in their own array (rather than as part of a larger
structure), you would get 32 or 64 values per cache linefill.

Unaligned accesses are supported, but can take extra cycles in comparison to aligned accesses.
For performance reasons, therefore, it can be sensible to remove or reduce unaligned accesses.

14.3.5 Associativity effects

As we have seen, ARM L1 caches are normally 4-way set-associative, but L2 caches typically
have 8- or 16-way associativity. There can be performance problems if more than four of the
locations in the data fall into the same cache set, as there can be repeated cache misses, even
though other parts of the cache can be unused. The ARM L1 Cache uses physical rather than
virtual addresses, so it can be difficult for programmers operating in User mode to take care of
this.

A particularly common cause of this problem is arranging data so that it is on boundaries of
powers of two. If the cache size is 16KB, each way is 4KB in size. If you have multiple blocks
of data arranged on boundaries that are multiples of 4KB, the first access to each block will go
into line 0 of a way. If code accesses the first line in several such blocks then you can get cache
misses even if only five cache lines in total are being used. Unaligned accesses can increase the
likelihood of this, as each access might require two cache lines rather than one.

14.3.6 Optimizing instruction cache usage

The C programmer does not directly have control over how the instruction cache is used by
code. Code is linear between branch instructions and this pattern of sequential accesses uses the
cache efficiently. The branch prediction logic of the core will try to minimize the stalls because
of branches, so there is little you can do to assist. The main goal for you is to reduce the code
footprint. Many of the compiler optimizations enabled at -O2 and -O3 for the ARM Compiler and
GCC deal with loop optimizations and function inlining. These optimizations will improve
performance if the code accounts for a significant part of the total program execution. In
particular, function inlining has multiple potential benefits. Obviously, it can reduce branch
penalties by removing branches on both function call and exit, and potentially also stack usage.
Equally importantly, it enables the compiler to optimize over a larger block of code that can lead
to better optimizations for value range propagation and elimination of unused code.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-13
ID071714 Non-Confidential

Coding for Cortex-R Processors
However, modifications intended for speed optimizations that increase code size can actually
reduce performance because of cache issues. Larger code is less likely to fit in the L1 cache (or
indeed the L2 cache) and the performance lost by the additional cache linefills can well
outweigh any benefits of the optimization. It is often better to use the armcc -Ospace or gcc –Os
option to optimize for code density rather than speed. Clearly, using Thumb code will also
improve code density and cache efficiency.

There are some interesting decisions to be made around function inlining and in some cases
human judgment can improve on that of the compiler. A function that is only ever called from
one place will always give a benefit if inlined. One might think that inlining very small functions
always gives a benefit, but this is not the case. An instance of a tiny function that is called from
many places is likely to be re-used many times within the instruction cache. If the same function
is repeatedly inlined, it is much more likely that it will cause a cache miss and also evict other
potentially useful code from the cache. The branch prediction logic within Cortex-R series
processors is efficient and an unconditional function call and return consumes few cycles, much
less than would be used for a cache linefill. You might want to use the GCC function attributes
noinline or always_inline to control such cases.

This is a general problem and not specific to inlining functions. Whenever conditional execution
is used and it is lopsided, that is, the expression far more often leads to one result than the other,
there is the potential for false static branch prediction and bubbles (a delay in execution of an
instruction) in the pipeline. It is usually better to order conditional blocks so that the
often-executed code is linear, while the less commonly executed code has to be branched to and
does not get pre-fetched unless it is actually used. The GCC attribute __builtin_expect used
with the –freorder-blocks optimization option can help with this.

The performance monitor block of the processor can be used to measure branch prediction rates
in code. There are two effects at play here. Correct branch prediction saves clock cycles by
avoiding pipeline flushes, but taking fewer conditional branches that skip forward over code can
help performance by making more of the program fit within the L1 cache.

14.3.7 Prefetching a memory block access

ARM Cortex-R processors contain sophisticated cache systems and support for instruction
prefetching that can hide latencies associated with external memory accesses. The Cortex-R7
processor also includes support for out of order execution that can reduce the memory access
latency even further.

However, accesses to the external memory system are usually sufficiently slow that there will
still be some penalty. If the processor prefetches instructions or data into the cache before
requiring them, then it can hide this latency.

Note
 The Cortex-R4 and Cortex-R5 processors have minimal support for out of order execution. Only
the Divide instructions and some Floating point operations can complete out of order.

ARM processors provide support for preloading of data, using the PLD instruction. The PLD
instruction is a hint that enables you to request that data is loaded to the data cache in advance
of it actually being read or written by the application. The PLD operation might generate a cache
linefill or a data cache miss, independent of load and store instruction execution, while the core
continues to execute other instructions. If supported and used correctly, PLD can significantly
improve performance by hiding memory access latencies.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-14
ID071714 Non-Confidential

Coding for Cortex-R Processors
In addition to this programmer-initiated prefetch, the core might also support automatic data
prefetching. Essentially, the core can detect a series of sequential accesses to memory. When it
does, it automatically requests the following cache lines speculatively, in advance of the
program actually using them.

In many systems, significant numbers of cycles are consumed initializing or moving blocks of
memory, using the memset() or memcpy() functions. Optimized ARM libraries will typically
implement such functions by using Store Multiple instructions, with each store aligned to a
cache line boundary.

14.3.8 Branch predictability

Flushing the pipeline has a performance penalty. To avoid unnecessary pipeline flushes the
Cortex-R series processors include branch prediction logic.

In compiled C, branching are used for:
• Function calls.
• Function returns.
• Loops.
• Conditional statements such as if else.

Some forms of branching are more predictable than others. The for loop in Example 14-10 is
more predictable than the while loop in Example 14-11. This is because in Example 14-11 the
number of iterations is dependent on an external condition.

Example 14-10 For loop

for (i=10; i > 0; i--)
{
doSomething();

}

Example 14-11 While

while (TRUE == pMyPeripheral->uiFlagReg)
{
doSomething();

}

The purpose of these examples is not to say that you should never write code similar to
Example 14-11. Rather, that you should be aware of its effect on branch prediction.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-15
ID071714 Non-Confidential

Coding for Cortex-R Processors
14.4 Source code modifications
Profiling tools enable you to identify code segments or functions that can benefit from
optimization and how different compiler options can enable compiler optimizations to our code.
We will now consider a variety of source code modifications that can yield faster or smaller code
on the ARM.

14.4.1 Loop termination

For loops that have been identified by the profiler, it might be appropriate to have integer loop
counters that end at 0 (zero), rather than start from 0 (zero). This is because a compare with zero
comes for free with the ADD or SUB instruction used to update the loop counter, whereas a compare
with a non-zero value will typically require an explicit CMP instruction.

Replace a loop that counts up to a terminating value:

for (i = 1; i<= total; i++)

with one that counts down to zero:

for (i = total; i != 0; i--)

This will remove a CMP instruction from each iteration of the loop.

It is also good practice to use int (32-bit) variables for loop counters. This is because the ARM
is natively a 32-bit machine. Its ADD assembly language instruction operates on two 32-bit
registers. If it carries out an ADD (or other data processing operation) with a smaller quantity, the
compiler might insert additional instructions to handle overflow (see also Variable selection on
page 14-17).

14.4.2 Loop fusion

This is one of a variety of other possible loop techniques that can be employed either by you, or
by an optimizing compiler. It essentially means merging loops that have the same iteration count
and no interdependencies (Example 14-12 and Example 14-13).

Example 14-12 Loop fusion

for (i = 0; i < 10; i++)
{
x[i] = 1;

}
for (j = 0; j < 10; j++)
{
y[j] = j;

}

It is immediately apparent that this can be optimized to:

Example 14-13 Fused loops

for (i = 0; i < 10; i++)
{
x[i] = 1;
y[i] = i;
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-16
ID071714 Non-Confidential

Coding for Cortex-R Processors
}

It is worth mentioning that this approach can sometimes lead to a reduction in performance
because of cache effects such as thrashing, depending on the cache associativity and the
addresses of the data being accessed.

14.4.3 Reducing stack and heap usage

In general, it is a good idea to try to minimize memory usage by code. The ARM processor has
a register set that provides a relatively limited set of resources for the compiler to keep variables
in. When all registers are allocated with currently live variables, additional variables are spilled
to the stack, causing memory operations and extra cycles for the code to execute. There are a
number of ways available to you, to try to help. A key rule is to try to limit the number of live
variables at any one time.

Up to four parameters can be passed in registers to a function. Additional parameters are passed
on the stack. It is therefore significantly more efficient to pass four or fewer parameters than to
pass five or more. Of course, the ARM registers in question are 32-bits in size and therefore if
you pass a 64-bit variable, it will take two of our four register slots. For similar reasons,
recursive functions do not typically yield efficient processor register usage. Remember also that
non-static C++ functions also consume one argument slot with the this pointer.

14.4.4 Variable selection

ARM integer registers are 32-bit sized and optimal code is therefore produced most readily
when using 32-bit sized variables, as this avoids the requirement to provide extra code to deal
with the case where a 32-bit result overflows an 8-bit or 16-bit sized variable.

Consider the following code:

unsigned int i, j, k;
i = j+k;

The compiler would typically emit assembly code similar to:

ADD R0, R1, R2

If these variables were instead short (16-bit) or char (8-bit), the compiler must ensure the result
does not overflow the halfword or byte.

The same code might be as shown in Example 14-14, for signed halfwords (shorts).

Example 14-14 Addition of 2 signed shorts (assembly code)

ADD R0, R1, R2
SXTH R0, R0

Or for unsigned halfwords as in Example 14-15.

Example 14-15 Addition of 2 unsigned shorts (assembly code)

ADD R0, R1, R2
BIC R0, R0, #0x10000
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-17
ID071714 Non-Confidential

Coding for Cortex-R Processors
This has the effect of clipping the result to the defined size.

Although the compiler can sometimes cope with such things as an incorrect type specification
for a loop counter variable, it is generally best to use the correct type in the first place.

14.4.5 Pointer aliasing

If a function has two pointers pa and pb, with the same value, we say the pointers alias each
other. This introduces constraints on the order of instruction execution. If two write accesses that
alias occur in program order, they must happen in the same order on the processor and cannot
be re-ordered. This is also the case for a write followed by a read, or a read followed by a write.
Two read accesses to aliases are safe to re-order. Because any pointer could alias any other
pointer in C, the compiler must assume that memory regions accessed through these pointers
can overlap, which prevents many possible optimizations. C++ enables more optimizations, as
pointer arguments will not be treated as possible aliases if they point to different types.

C99 introduces the restrict keyword that specifies that a particular pointer argument does not
alias any other. If you know that pointers do not overlap, using this keyword to give the compiler
this information can yield significant improvements. However, misusing it can lead to incorrect
program function. The restrict keyword qualifies the pointer and not the object being pointed to.
This consideration is not specific to the ARM architecture. When using GCC, you can enable
the C99 standard by adding -std=c99 to your compilation flags.

In code that cannot be compiled with C99, use either __restrict or __restrict__ to enable the
keyword as a GCC extension.

Consider the following simple code sequence:

void foo(unsigned int *ptr1, unsigned int *ptr2, unsigned int *i)
{
*ptr1 += *i;
*ptr2 += *i;

}

The pointers could possibly refer to the same memory location and this causes the compiler to
generate code that is less efficient. In this example, it must read the value *i from memory twice,
once for each add, as it cannot be certain that changing the value of *ptr1 does not also change
the value of *i.

If the function is instead declared as:

void foo(unsigned int *restrict ptr1, unsigned int *restrict ptr2, unsigned int
*restrict i)

This means that the compiler can assume that the three pointers might not refer to the same
location and optimize accordingly. You must ensure that the pointers never overlap.

14.4.6 Division

As division is slower than multiplication, in performance-critical code it is almost always worth
avoiding divides or replacing them with multiplies. This must be done as a trade-off against
code maintainability.

Division with a fixed divisor, that is, one that is known at compile time, is faster than dividing
two variable quantities.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-18
ID071714 Non-Confidential

Coding for Cortex-R Processors
14.4.7 Extern data

Accessing external variables requires the processor to execute a series of load instructions to
acquire the address of the variable through a base pointer and then read the actual variable value.
If multiple variables are defined as members of a structure, they can share a base pointer, saving
cycles and instructions. It is therefore good practice to define the variables inside the same
struct.

14.4.8 Inline or embedded assembler

In some cases, it can be a worthwhile optimization to use assembly code, in addition to C. The
general principle here is for you to code in a high level language, use a profiler to determine
which sections will produce the most benefit if optimized and then inspect the
compiler-produced assembly code to look for possible improvements.

If a code section is identified as being a performance bottleneck, don’t reach immediately for
the assembly language manual. Improvements to the algorithm should first be sought and then
compiler optimizations tried before considering use of assembly code. Even then, it is often the
case that poor performance is because of cache misses and memory access delays rather than
the actual assembly code.

The ARM Compiler, GCC, and most other C compilers use the –s flag to tell the compiler to
produce assembly code output. The –fverbose-asm command line option can also be useful in
gcc. Interleaved source and assembler can be produced by the ARM Compiler with the
--interleave option.

14.4.9 Complex addressing modes

It is often better to avoid complex addressing modes. In cases where the address to be used for
a load or store requires a complex calculation, dual-issue of instructions is not possible. Only
the addressing mode that uses a base register plus an offset, specified either by a register or an
immediate value, with an optional shift left by an immediate value of two is fast. Other, less
commonly used, addressing modes can be executed more quickly by splitting into two
instructions that might be dual-issued. For example:

MOV R2, R1 LSL#3; LDR R2,[R0, R2]

can be faster than

LDR R2, [R0, R1 LSL #3]

LDRH and LDRB have no extra penalty, but LDRSH and LDRSB have a single cycle load-use penalty,
but no early forwarding path and can incur additional latency if a subsequent instruction uses
the loaded value.

14.4.10 Unaligned access

Unaligned LDRs have an extra cycle penalty compared with aligned loads, but unaligned LDRs
that cross cache-lines have many cycles of additional penalty. In general, stores are less likely
to stall the system compared to loads. STRB and STRH have similar performance to STR, because
of the merging write buffer. Because there are four slots in the load/store unit, more than four
consecutive pending loads will always cause a pipeline stall.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-19
ID071714 Non-Confidential

Coding for Cortex-R Processors
14.4.11 Linker optimizations

Some code optimizations can be performed at the link, rather than the compile stage of the build,
for example, unused section elimination and linker feedback. Multi-file optimization can be
carried out across multiple C files, and unused sections can be removed. Similarly, multi-file
compilation enables the compiler to perform optimization across multiple files instead of on
individual files.

14.4.12 Floating point operations

The Cortex-R series processors have an option to include an FPU that implements the
VFPv3-D16 architecture. This provides support for both single and double precision. However,
the implementation is optimized for single precision.

Therefore, to improve performance, use the single precision type in preference to the double
precision type where possible.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 14-20
ID071714 Non-Confidential

Chapter 15
Boot Code

This chapter looks at what the boot code running in an ARM processor based system does. This
examines code that runs immediately after the processor comes out of reset, on a bare-metal system.
A bare-metal system is one in which code runs without the use of an operating system.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 15-1
ID071714 Non-Confidential

Boot Code
15.1 Booting a bare-metal system
When the processor is reset, it commences execution at the location of the reset vector in the
exception vector table. The exception vector table might be either at address 0x00000000 or at
address 0xFFFF0000. The reset handler code must do some or all of the following:

• In a multi-core system, put non-primary cores to sleep.

• Initialize exception vectors.

• Initialize the memory system, including the MPU.

• Initialize core mode stacks and registers.

• Initialize any critical I/O devices.

• Perform any necessary initialization of VFP.

• Enable interrupts.

• Change core mode or state.

• Call the main() application.

The first consideration is placement of the exception vector table. You must make sure that it
contains a valid set of instructions that branch to the appropriate handlers.

The _start directive in the GNU Assembler tells the linker to locate code at a particular address
and can be used to place code in the vector table. It is likely that you will want to access the
vector table from a TCM during the main program execution, to provide fast access to exception
handlers. The system might be configured to copy the boot code from non-volatile memory into
the TCM using the slave port interface prior to the processor boot.

When the core comes out of reset the prefetch unit can be stalled while the boot code is copied
into a TCM located at the vector table, when the boot code is copied into the TCM the
prefetching logic is released and will fetch code directly from the TCM.

Alternatively the vector table and exception handlers might be copied from the external ROM
into the TCM as part of the power-on reset initialization code. When the code has been copied
into the TCM the TCM is relocated to the vector table base address.

Example 15-1 shows an example of code that can be placed in the exception vector table.

Example 15-1 Typical exception vector table code

start
B Reset_Handler
B Undefined_Handler
B SVC_Handler
B Prefetch_Handler
B Data_Handler
NOP @ Reserved vector
B IRQ_Handler

@ FIQ_Handler will follow directly after this table

You might then have to initialize stack pointers for the various modes that your application can
make use of. Example 15-2 on page 15-3 shows code which initializes the stack pointers for FIQ
and IRQ modes.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 15-2
ID071714 Non-Confidential

Boot Code
Example 15-2 Code to initialize the stack pointers

LDR R0, stack_base
@ Enter each mode in turn and set up the stack pointer
MSR CPSR_c, #Mode_FIQ:OR:I_Bit:OR:F_Bit
MOV SP, R0
SUB R0, R0, #FIQ_Stack_Size
MSR CPSR_c, #Mode_IRQ:OR:I_Bit:OR:F_Bit
MOV SP, R0

The next step is to set up the caches, MPU and branch predictors. An example of such code is
shown in Example 15-3. You begin by disabling the MPU and caches and invalidating the
caches. The example code is for the Cortex-R7 processor.

For the Cortex-R4 and Cortex-R5 processors, data cache invalidation can be done with a single
CP15 instruction, MCR p15, 0, r0, c15, c5, 0, but for the Cortex-R7 processor, boot code
must explicitly cycle through the lines of the cache and invalidate them.

In the Cortex-R4 and Cortex-R5 processors branch prediction is enabled when the processor
comes out of reset. In the Cortex-R7 branch prediction can be safely enabled when the Branch
target address cache has been invalidated. Enabling branch prediction will typically improve the
performance of the initialization code.

Example 15-3 Setting up caches, MPU and branch predictors

@ Disable MPU and caches
DSB
MRC p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
BIC r1, r1, #0x1 @ Disable MPU
BIC r1, r1, #(0x1 << 12) @ Disable I Cache
BIC r1, r1, #(0x1 << 2) @ Disable D Cache
MCR p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Invalidate BTAC
MCR p15, 0, r0, c7, c5, 6

@ Program Flow Prediction Enable
MOV r1, #0
MRC p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR r1, r1, #(0x1 << 11) @ Branch Prediction Enable bit
MCR p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Invalidate L1 Caches
@ Invalidate Instruction cache
MOV r1, #0
MCR p15, 0, r1, c7, c5, 0

@ Instruction cache Enable prior to Data Cache Invalidation
DSB
MRC p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR r1, r1, #(0x1 << 12) @ Enable I Cache
MCR p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data

@ Invalidate Data cache
@ to make the code general purpose, we calculate the
@ cache size first and loop through each set + way

MRC p15, 1, r0, c0, c0, 0 @ Read Cache Size ID
MOV r3, #0x1ff
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 15-3
ID071714 Non-Confidential

Boot Code
AND r0, r3, r0, LSR #13 @ r0 = no. of sets - 1

MOV r1, #0 @ r1 = way counter way_loop
way_loop:
MOV r3, #0 @ r3 = set counter set_loop

set_loop:
MOV r2, r1, LSL #30 @
ORR r2, r3, LSL #5 @ r2 = set/way cache operation format

format:
MCR p15, 0, r2, c7, c6, 2 @ Invalidate line described by r2
ADD r3, r3, #1 @ Increment set counter
CMP r0, r3 @ Last set reached yet?
BGT set_loop @ if not, iterate set_loop
ADD r1, r1, #1 @ else, next
CMP r1, #4 @ Last way reached yet?
BNE way_loop @ if not, iterate way_loop

After this, you can program some regions of the MPU, as shown in the example code of
Example 15-4.

Example 15-4 Create MPU regions

@ region 0: all memory with r/w access for everyone
MOV r0,#0
MCR p15,0,r0,c6,c2,0 @ region number
MOV r0,#0x0 @ base address
MCR p15,0,r0,c6,c1,0 @ base addr
MOV r0,#0x3f @ 4GB, all memory
MCR p15,0,r0,c6,c1,2 @ size & enable
MOV r0,#0x30f @ write-back cacheable, shareable full access
MCR p15,0,r0,c6,c1,4 @ access control
@ region 1: Device Memory for Peripherals
MOV r0,#1
MCR p15,0,r0,c6,c2,0 @ region number
MOV r0,#0xC0000000
MCR p15,0,r0,c6,c1,0 @ base addr
MOV r0,#0x29 @ 2MB
MCR p15,0,r0,c6,c1,2 @ size & enable
MOV r0,#0x1301 @ Shareable Device Memory, XN, full access
MCR p15,0,r0,c6,c1,4 @ access control

@ Enable MPU and Data Cache
DSB
MRC p15, 0, r1, c1, c0, 0 @ Read Control Register configuration data
ORR r1, r1, #(0x1 << 0) @ Enable MPU
ORR r1, r1, #(0x1 << 2) @ Enable D Cache
MCR p15, 0, r1, c1, c0, 0 @ Write Control Register configuration data
ISB

The TCMs might have to be relocated in the memory map and enabled as part of the boot code.
As Example 15-5 shows.

Example 15-5 TCM relocation

@ Relocate and enable TCM

DSB
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 15-4
ID071714 Non-Confidential

Boot Code
ORR r0, #0x00000000 @ set base address to 0x00000000
MOV r0, #0x1 @ enable TCM
MCR p15, 0, r0, c9, c1, 1 @ write TCM region register
ISB

A level 2 cache, if present, and if running without an operating system, might also have to be
invalidated and enabled at this point. VFP access must also be enabled.

The next steps will depend on the exact nature of the system. It might be necessary, for example,
to:

• Zero-initialize memory that will hold uninitialized C variables.

• Copy the initial values of other variables from a ROM image to RAM

• Set up application stack and heap spaces

• Initialize C library functions

• Call top-level constructors (for C++ code)

• Do other standard embedded C initialization.

For multi-core processors, such as the Cortex-R7 processor, a common approach is to permit a
single core within the cluster to perform system initialization. If the same code runs on a
different core, it will cause it to enter WFI state and sleep, as described in Chapter 16 Power
Management. The other core might wake up after CPU0 has initialized the SCU Tag RAMs.
Example 15-6 shows example code that determines which processor it is running on and then
either branches to initialization code, if running on CPU0, or goes to sleep otherwise. The SMP
OS usually wakes up the secondary cores later.

Example 15-6 Determining which processor is running

@ Only CPU 0 performs initialization. Other CPUs go into WFI
@ to do this, first work out which CPU this is
@ this code typically is run before any other initialization step

MRC p15, 0, r1, c0, c0, 5 @ Read Multiprocessor Affinity Register
AND r1, r1, #0x3 @ Extract CPU ID bits
CMP r1, #0
BEQ initialize @ if we’re on CPU0 goto the start

wait_loop:
@ Other CPUs are left powered-down
.....
.....
.....

initialize:
@ next section of boot code goes here
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 15-5
ID071714 Non-Confidential

Chapter 16
Power Management

Many ARM processors are in battery-powered mobile devices. In such systems, optimization of
power usage is a key design constraint. Programmers often spend significant amounts of time
trying to save battery life in such systems. Power-saving can also be of concern even in systems
that do not use batteries. For example, you might want to minimize energy usage for reduction of
electricity costs to the consumer or for environmental reasons.

Built into ARM processors are many hardware design methods aimed at reducing power usage.

Energy usage can be divided into two components – dynamic and static. Both are important. Static
power consumption occurs whenever the processor logic or RAM blocks have power applied to
them. In general terms, the leakage currents (any current that flows when the ideal current is zero)
are proportional to the total silicon area – the bigger the chip, the more the leakage. The proportion
of power consumption due to leakage gets significantly higher as we move to more advanced
manufacturing process – they are much worse on fabrication geometries of 130nm and below.
Dynamic power consumption occurs because of transistors switching and is a function of the
processor clock speed and the numbers of transistors that change state per cycle. Clearly, higher
clock speeds and more complex processors will consume more power.

Power management aware operating systems dynamically change the power states of cores,
balancing the available compute capacity to the current workload, while striving to use the
minimum amount of power. Some of these techniques dynamically switch cores on and off, or place
them into quiescent states, where they no longer perform computation. This means they consume
very little power. The main example is Idle management on page 16-2.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 16-1
ID071714 Non-Confidential

Power Management
16.1 Idle management
When a core is idle the Operating System Power Management (OSPM) transitions it into a low
power state. Typically, a choice of states is available, with different entry and exit latencies, and
different levels of power consumption, associated with each state. The state that is used typically
depends on how quickly the core is required again. The power states that can be used at any one
time might also depend on the activity of other components in an SoC, beside the cores. Each
state is defined by the set of components that are clock-gated or power-gated when the state is
entered. States are sometimes described as being shallow or deep.

The time required to move from a low power state to a running state, known as the wakeup
latency, is longer in deeper states. Although idle power management is driven by thread
behavior on a core, the OSPM can place the platform into states that affect many other
components beyond the core itself. If the last core in a cluster becomes idle, the OSPM can
target power states that affect the whole cluster. Equally, if the last core in a SoC goes idle the
OSPM can target power states that affect the whole SoC. The choice is also driven by the usage
of other components in the system. A typical example is placing memory in self-refresh when
all cores, and any other bus masters, are idle.

The OSPM has to provide the necessary power management software infrastructure to
determine the correct choice of state. In idle management, once a core or cluster has been placed
into a low power state, it can be reactivated at any time by a processor wakeup event. That is,
an event that can wake up a core from a low power state, such as interrupt. No explicit command
is required by the OSPM to bring the core or cluster back into operation. The OSPM considers
the affected core or cores to be available at all times even if they are currently in a low power
state.

16.1.1 Power and clocking

One way you can reduce energy usage is to remove power, that removes both dynamic and static
currents (sometimes called power gating) or to stop the clock of the core that removes dynamic
power consumption only and can be referred to as clock gating.

ARM processors typically support a number of levels of power management, as follows:

• Standby.

• Retention on page 16-3.

• Power down on page 16-3.

• Dormant mode on page 16-4.

For certain operations, there is a requirement to save and restore state before and after removing
power and both the time taken to do this and power consumed by this extra work can be an
important factor in software selection of the appropriate power management activity.

The SoC device that includes the core can have additional low power states, with names such
as “STOP” and “Deep sleep.” These refer to the ability for the hardware Phase Locked Loop
(PLL) and voltage regulators to be controlled by power management software.

16.1.2 Standby

In the standby mode of operation, the core is left powered-up, but most of its clocks are stopped,
or clock-gated. This means that almost all parts of the processor are in a static state and the only
power drawn is because of leakage currents and the clocking of the small amount of logic that
looks out for the wake-up condition.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 16-2
ID071714 Non-Confidential

Power Management
This mode is entered using either the WFI (Wait For Interrupt) or WFE (Wait For Event)
instructions. ARM recommends the use of a Data Sychronization Barrier (DSB) instruction
before WFI or WFE, to ensure that pending memory transactions complete before changing state.

If a debug channel is active, it will remain active. The core stops execution until a wakeup event
is detected. The wakeup condition is dependent on the entry instruction. For WFI an interrupt or
external debug request will wake the core. For WFE, a number of specified events exist, including
another core in the cluster executing the SEV instruction. A request from the Snoop Control Unit
(SCU) can also wake up the clock for a cache coherency operation in an multi-core system. This
means that the cache of a core that is in standby state will continue to be coherent with caches
of other cores. A core reset will always force the core to exit from the standby condition.

Various forms of dynamic clock gating can also be implemented in hardware. For example the
SCU, GIC, timers, CP15, and instruction pipeline can be automatically clock gated when an idle
condition is detected, to save power.

Standby mode can be entered and exited quickly (typically in two-clock-cycles). It therefore has
an almost negligible affect on the latency and responsiveness of the core.

To an operating system managing power, a standby state is mostly indistinguishable from a
retention state. The difference is evident to an external debugger, and in hardware
implementation, but not evident to the idle management subsystem of an operating system.

16.1.3 Retention

The core state, including the debug settings, is preserved in low-power structures, enabling the
core to be at least partially turned off. Changing from low- power retention to running operation
does not require a reset of the core. The saved core state is restored on changing from low-power
retention state to running operation. From an operating system point of view there is no
difference between a retention state and standby state, other than method of entry, latency and
usage- related constraints. However, from an external debugger point of view the states differ
as External Debug Request debug events stay pending and debug registers in the core power
domain cannot be accessed.

16.1.4 Power down

In this state the core is powered off. Software on the device has to save all core state, so that it
can be preserved over the power-down. Changing from power-down to running operation must
include:

• A reset of the core, after the power level has been restored.

• Restoring the saved core state.

The defining characteristic of power down states is that they are destructive of context. This
affects all the components that are switched off in a given state, including the core, and in deeper
states other components of the system such as the GIC or platform-specific IP. Depending on
how debug and trace power domains are organized, in some power-down states one or both of
debug and trace context might be lost. Mechanisms must be provided to enable the operating
system to perform the relevant context saving and restoring for each given state. Resumption of
execution starts at the reset vector, after which each OS must restore its context.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 16-3
ID071714 Non-Confidential

Power Management
16.1.5 Dormant mode

In dormant mode, the core logic is powered down, but the cache and TCM RAMs are left
powered up. Often the RAMs are held in a low-power retention state where they hold their
contents but are not otherwise functional. This provides a far faster restart than complete
shutdown, as live data and code persists in the caches. Again, in a multi-core system, individual
cores can be placed in dormant mode.

In a multi-core system where individual cores within the cluster are able to go into dormant
mode, there is no scope for maintaining coherency while the core has its power removed. Such
cores must therefore first isolate themselves from the coherence domain. They will clean all
dirty data before doing this and will typically be woken up using another core signaling the
external logic to re-apply power.

The woken core must then restore the original core state before rejoining the coherency domain.
As the memory state might have changed while the core was in dormant mode, it might have to
invalidate the caches anyway. Dormant mode is therefore much more likely to be useful in a
single core environment rather than in a cluster. This is because of the additional expense of
leaving and rejoining the coherency domain. In a cluster, dormant mode is typically likely to be
used only by the last core when the other cores have already been shutdown.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 16-4
ID071714 Non-Confidential

Power Management
16.2 Assembly language power instructions
ARM assembly language includes instructions that can be used to place the core in a low power
state. The architecture defines these instructions as hints – the processor is not required to take
any specific action when it executes them. In the Cortex-R processor family, however, these
instructions are implemented in a way that shuts down the clock to almost all parts of the core.
This means that the power consumption of the processor is significantly reduced – only static
leakage currents are drawn, and there is no dynamic power consumption.

The WFI instruction has the effect of suspending execution until the processor is woken up by
one of the following conditions:

• An IRQ interrupt, even if the CPSR I-bit is set.

• An FIQ interrupt, even if the CPSR F-bit is set.

• An asynchronous abort.

• A Debug Entry request, even if JTAG Debug is disabled.

In the event of the core being woken by an interrupt when the relevant CPSR interrupt flag is
disabled, the core will implement the next instruction after WFI. On older versions of the ARM
architecture, the wait for interrupt function (also called standby mode) was accessed using a
CP15 operation, rather than a dedicated instruction.

The WFI instruction is widely used in systems that are battery powered. For example, mobile
telephones can place the processor in standby mode many times a second, while waiting for you
to press a button.

WFE is similar to WFI. It suspends execution until an event occurs. This can be one the events listed
above, or an additional possibility – an event signaled by another core in a cluster. Other cores
can signal events by executing the SEV instruction. SEV signals an event to all cores in a cluster.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 16-5
ID071714 Non-Confidential

Chapter 17
Debug

Debugging is a key part of software development and is often considered to be the most time
consuming (and therefore expensive) part of the process. Bugs can be difficult to detect, reproduce
and fix and it can be difficult to predict how long it will take to resolve a defect. The cost of
resolving problems grows significantly when the product is delivered to a customer. In many cases,
when a product has a small time window for sales, if the product is late, it can miss the market
opportunity. Therefore, the debug facilities provided by a system are a vital consideration for any
developer.

Many embedded systems using ARM cores have limited input/output facilities. This means that
traditional desktop debug methods (such as use of printf()) might not be appropriate. In such
systems in the past, developers might have used expensive hardware tools like logic analyzers or
oscilloscopes to observe the behavior of programs. The cores described in this book have caches
and are part of a complex system-on-chip containing memory and many other blocks. There might
be no core signals that are visible off-chip and therefore no ability to monitor behavior by
connecting up a logic analyzer (or similar). For this reason, ARM systems typically include
dedicated hardware to provide wide-ranging control and observation facilities for debug.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-1
ID071714 Non-Confidential

Debug
17.1 ARM debug hardware
Cortex-R series processors provide hardware features that enable debug tools to provide
significant levels of control over core activity and to non-invasively collect large amounts of
data about program execution. We can sub-divide the hardware features into two broad classes,
invasive and non-invasive.

Invasive debug provides facilities that enable us to stop programs and step through them line by
line (either at the C source level, or stepping through assembly language instructions). This can
be by means of an external device that connects to the processor using the chip JTAG pins, or
(less commonly) by means of debug monitor code in system ROM. JTAG stands for Joint Test
Action Group and refers to the IEEE-1149.1 specification, that was originally designed to
standardize testing of electronic devices on boards, but is now widely re-used for processor
debug connection. A JTAG connection typically has five pins, two inputs, plus a clock, a reset
and an output.

The debugger gives the ability to control execution of the program, enabling you to run code to
a certain point, halt the processor, step through code and resume execution. We can set
breakpoints on specific instructions (causing the debugger to take control when the processor
reaches that instruction). These work using one of two different methods. Software breakpoints
work by replacing the instruction with the opcode of the BKPT instruction. Obviously, these can
only be used on code that is stored in RAM, but have the advantage that they can be used in large
numbers. The debug software must keep track of where it has placed software breakpoints and
what opcodes were originally located at those addresses, so that it can put the correct code back
when you want to execute the instruction where the software breakpoint was located. Hardware
breakpoints use comparators built into the processor and stop execution when execution reaches
the specified address. These can be used anywhere in memory, as they do not require changes
to code, but the hardware provides limited numbers of hardware breakpoint units, for example
six in the Cortex-R7 processor. Debug tools can support more complex breakpoints (for
example stopping on any instruction in a range of addresses, or only when a specific sequence
of events occurs or hardware is in a specific state). Data watchpoints give debugger control
when a particular data address or address range is read or written. These can also be called data
breakpoints.

On hitting a breakpoint, or when single-stepping, you can inspect and change the contents of
ARM registers and memory. A special case of changing memory is code download. Debug tools
typically enable you to change your code, recompile and then download the new image to the
system.

17.1.1 Single stepping

Single step refers to the ability of the debugger to move through a piece of code, one instruction
at a time. The difference between “Step-In” and “Step-Over” can be explained with reference to
a function call. If you “Step-Over” the function call, the entire function is executed as one step,
enabling you to continue after a function that you do not want to step through. “Step-in” would
mean that you instead single step through the function itself.

17.1.2 Debug events

A debug event is some part of the process being debugged that causes the system to notify the
debugger. Debug events can be synchronous or asynchronous. Breakpoints, the BKPT instruction,
and Watchpoints are all synchronous debug events. When any of these events occur, the
processor can respond in one of a number of ways:

• It can ignore the debug event.

• It can takes a debug exception.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-2
ID071714 Non-Confidential

Debug
• It will enter one of two debug modes, depending on the setup of the Debug Status and
Control Register (DSCR):
— Monitor debug mode.
— Halt Debug mode.

Both of these are examples of invasive debug.

Halt debug mode

In Halt Debug mode, a debug event causes the processor to enter Debug state. The processor is
halted and isolated from the rest of the system. This means that the debugger displays memory
as seen by the processor, and the effects of memory management and cache operations will
become visible.

In Debug state, the processor stops executing instructions from the location indicated by the
program counter, and is instead controlled through the external debug interface, in particular
using the Debug Instruction Transfer Register (DBGITR). This enables an external agent, such
as a debugger, to interrogate processor context and control all subsequent instruction execution.
Both the processor and system state can be modified. Because the processor is stopped, no
interrupts are handled until execution is restarted by the debugger.

Monitor debug-mode

In Monitor debug-mode, a debug event causes a debug exception to occur, either related to the
instruction execution that generates a Prefetch Abort exception, or a data access that generates
a Data Abort exception. Both of these must be handled by the software debug monitor. Because
the processor is still operating, interrupts can still be serviced.

17.1.3 Semihosting debug

Semihosting is a mechanism that enables code running on an ARM target to use the facilities
provided on a host computer running a debugger.

Examples of this might include keyboard input, screen output, and disk I/O. For example, you
might use this mechanism to permit C library functions, such as printf() and scanf(), to use
the screen and keyboard of the host. Development hardware often does not have a full range of
input and output facilities, but semihosting enables the host computer to provide these facilities.

Semihosting is implemented by a set of defined software instructions that generate an exception.
The application invokes the appropriate semihosting call and the debug agent then handles the
exception. The debug agent provides the required communication with the host.

The semihosting interface is common across all debug agents provided by ARM. Tools from
ARM use SVC 0x123456 (ARM state) or SVC 0xAB (Thumb) to represent semihosting debug
functions.

Of course, outside of the development environment, a debugger running on a host is not
normally connected to the system. It is therefore necessary for the developer to re-target any C
library functions that use semihosting, for example, by using fputc(). This would involve
replacing the library code that used an SVC call with code that could output a character.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-3
ID071714 Non-Confidential

Debug
17.2 ARM trace hardware
Non-invasive debug, often called trace in ARM documentation, enables observation of the core
behavior while it is executing. It is possible to record memory accesses performed (including
address and data values) and generate a real-time trace of the program, seeing peripheral
accesses, stack and heap accesses and changes to variables. For many real-time systems, it is not
possible to use invasive debug methods. Consider, for example, an engine management system.
While you can stop the core at a particular point, the engine will keep moving and you will not
be able to do useful debug. Even in systems with less onerous real-time requirements, trace can
be very useful.

Trace is typically provided by an external hardware block connected to the core. This is known
as an Embedded Trace Macrocell (ETM) or Program Trace Macrocell (PTM) and is an optional
part of an ARM processor based system. System-on-chip designers can omit this block from
their silicon to reduce costs. These blocks observe, but do not affect core behavior and are able
to monitor instruction execution and data accesses.

There are two main problems with capturing trace. The first is that with today’s very high
processor clock speeds, even a few seconds of operation can mean trillions of cycles of
execution. Clearly, to look at this volume of information would be extremely difficult. The
second, related problem is that today’s processors can potentially perform one or more 64-bit
cache accesses per cycle, and to record both the data address and data values can require a large
bandwidth.

This presents a problem in that typically, only a few pins might be provided on the chip and these
outputs can be switched at significantly lower rates than the core can be clocked. If the processor
generates 100 bits of information every cycle at a speed of 1GHz, but the chip can only output
four bits of trace at a speed of 200MHz, then there is a problem. To solve this latter problem, the
trace macrocell will try to compress information to reduce the bandwidth required. However,
the main method to deal with these issues is to control the trace block so that only selected trace
information is gathered. For example, you might trace only execution, without recording data
values, or you might trace only data accesses to a particular peripheral or during execution of a
particular function.

In addition, it is common to store trace information in an on-chip memory buffer (the Embedded
Trace Buffer (ETB)). This alleviates the problem of getting information off-chip at speed, but
has an additional cost in terms of silicon area (and therefore price of the chip) and also provides
a fixed limit on the amount of trace that can be captured.

The ETB stores the compressed trace information in a circular fashion, continuously capturing
trace information until stopped. The size of the ETB varies between chip implementations, but
a buffer of 8 or 16KB is typically enough to hold a few thousand lines of program trace.

When a program fails, if the trace buffer is enabled, you can see a portion of program history.
With this program history, it is easier to walk back through your program to see what happened
before the point of failure. This is particularly useful for investigating intermittent and real-time
failures, that can be difficult to identify through traditional debug methods that require stopping
and starting the processor. The use of hardware tracing can significantly reduce the amount of
time required to find these failures, as the trace shows exactly what was executed, what the
timing was and what data accesses occurred.

17.2.1 CoreSight

The ARM CoreSight™ technology expands on the capabilities provided by the ETM. Again its
presence and capabilities in a particular system are defined by the system designer. CoreSight
provides a number of extremely powerful debug facilities. It enables debug of multi-processor
systems (both asymmetric and SMP) that can share debug access and trace pins, with full control
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-4
ID071714 Non-Confidential

Debug
of which processors are being traced at which times. The embedded cross trigger mechanism
enables tools to control multiple cores in a synchronized fashion, so that, for example when one
core hits a breakpoint, all of the other cores will also be stopped.

Commercial debug tools can use trace data to provide features such as real-time views of
processor registers, memory and peripherals, enabling you to step forward and backward
through the program execution. Profiling tools can use the data to show where the program is
spending its time and what performance bottlenecks exist. Code coverage tools can use trace
data to provide call graph exploration. Operating system aware debuggers can make use of trace
(and in some cases additional code instrumentation) to provide high level system context
information. Here, we list some of the available CoreSight components and give a brief
description of their purpose:

Debug Access Port (DAP)
The DAP is an optional part of an ARM CoreSight system. Not every
device will contain a DAP. It enables an external debugger to directly
access the memory space of the system without having to put the processor
into debug state. To read or write memory without a DAP might require
the debugger to stop the processor and have it execute Load or Store
instructions.The primary function of the DAP is to provide connectivity
between an external debug tool (connected via JTAG or SWD) and the
CoreSight debug components contained in the SoC, that is, the external
debug tool connectivity to the debug APB. The DAP can also provide
connectivity to the main SoC system bus(es). This is common and allows
a debug tool to access physical system memory. The DAP can also provide
connectivity to further JTAG scan chains. This is quite rare and is typically
only used to connect legacy ARM cores into a CoreSight system (though
is not limited to this use case).

Embedded Cross Trigger (ECT)
The ECT block is a CoreSight component that can be included within in a
CoreSight system. Its purpose is to link together the debug capabilities of
multiple devices in the system. For example, you can have two cores that
run independently of each other. When you set a breakpoint on a program
running on one core, it would be useful to be able to specify that when that
core stops at the breakpoint, the other one should also be stopped
(regardless of which instruction it is currently executing). The Cross
Trigger Matrix and Interface within the ECT enable debug status and
control information to be propagated between cores and trace macrocells.

AHB Trace Macrocell
The AMBA AHB Trace Macrocell enables the debugger to have visibility
of what is happening on the system memory bus. This information is not
directly obtainable from the processor ETM, as the core is unable to
determine whether data comes from a cache or external memory.

CoreSight Serial Wire
CoreSight Serial Wire Debug gives a 2-pin connection using a Debug
Access Port (DAP) that is equivalent in function to a 5-pin JTAG interface.

System Trace Macrocell (STM)
This provides a way for multiple processors (and processes) to perform
printf() style debugging. Software running on any master in the system
is able to access STM channels without having to be aware of use by
others, using very simple fragments of code. This enables timestamped
software instrumentation of both kernel and user space code. The
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-5
ID071714 Non-Confidential

Debug
timestamp information gives a delta with respect to previous events and
can be extremely useful. The STM also provides for a number of hardware
inputs which can generate trace message upon change of state.

Trace Memory Controller (TMC)
As already described, adding additional pins to a packaged IC can
significantly increase its cost. In situations where you have multiple cores
(or other blocks capable of generating trace information) on a single
device, it is likely that economics preclude the possibility of providing
multiple trace ports. The CoreSight Trace Memory Controller can be used
to combine multiple trace sources into a single bus. Controls are provided
to enable prioritize and select between these multiple input sources. The
trace information can be exported off-chip using a dedicated trace port,
through the JTAG or serial wire interface or by re-using I/O ports of the
SoC. Trace information can be stored in an ETB or in system memory. A
CoreSight Trace Funnel is used when there is more than one trace source.
The CSTF combines multiple trace sources into a single bus (the ATB).
The TMC has three uses:
1. It can be configured to operate as a FIFO to smooth out any

burstiness in trace packets.
2. It can be configured to operate as a trace buffer itself
3. It can be configured to route the ATB either to another trace sink -

such as an TPIU or to an area of system memory which is then used
as the trace buffer.

You must consult documentation specific to the device they are using to determine what trace
capabilities are present and which tools are available to make use of them.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-6
ID071714 Non-Confidential

Debug
17.3 Debug monitor
We have seen how the ARM architecture provides a wide range of features accessible to an
external debugger. Many of these facilities can also be used by code running on the processor –
a so called debug monitor, that is resident on the target system. Monitor systems can be
inexpensive, as they might not require any additional hardware. However, they take up memory
space in the system and can only be used if the target system itself is actually running. They are
of little value on a system that does not at least boot correctly. The breakpoint and watchpoint
hardware facilities of the processor are available to a debug monitor. When Monitor mode
debug is selected, breakpoint units can be programmed by code running on the ARM processor.
If a BKPT instruction is executed, or a hardware breakpoint unit matches, the system behaves
differently in Monitor mode. Instead of stopping the processor under control of an external
hardware debugger, the processor instead takes an abort exception and this can recognize that
the abort was generated by a debug event and call the Monitor code.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-7
ID071714 Non-Confidential

Debug
17.4 ARM DS-5
ARM DS-5 is a professional software development solution suitable for Real-time operating
system environments and bare-metal embedded systems based on ARM processor based
hardware platforms. DS-5 covers all the stages in development, from boot code and kernel
porting to application debug. See http://ds.arm.com/.

ARM DS-5 features an application and kernel space graphical debugger with trace, system-wide
performance analyzer, real-time system simulator, and compiler. These features are included in
an Eclipse-based IDE.

Figure 17-1 DS-5 Debugger

A full list of the hardware platforms that are supported by DS-5 is available from
http://ds.arm.com/supported-devices/.

ARM DS-5 includes the following components:

• Eclipse-based IDE combines software development with the compilation technology of
the DS-5 tools. Tools include a powerful C/C++ editor, project manager and integrated
productivity utilities such as the Remote System Explorer (RSE), SSH and Telnet
terminals.

• DS-5 Compilation Tools include both GCC and the ARM Compiler.

• The DS-5 Debugger, shown in Figure 17-1, together with a supported debug target.
It gives complete control over the flow of program execution to quickly isolate and correct
errors. It provides comprehensive and intuitive views, including synchronized source and
disassembly, call stack, memory, registers, expressions, variables, threads, breakpoints,
and trace.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-8
ID071714 Non-Confidential

http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://www.arm.com/products/tools/software-tools/ds-5/supported-platforms.php
http://www.arm.com/products/tools/software-tools/ds-5/supported-platforms.php

Debug
A set of example projects are provided, including bare-metal startup code examples for
the range of ARM processors, including Cortex-R4, Cortex-R5 and Cortex-R7
processors.

17.4.1 DS-5 debug and trace

DS-5 Debugger takes care of downloading and connecting to the debug hardware, such as
DSTREAM debug and trace unit. Developers must specify the platform and the IP address. This
reduces a complex task using several applications and a terminal to a couple of steps in the IDE.

In addition, DS-5 Debugger supports ARM CoreSight to provide non-intrusive program trace
that enables you to review instructions (and the associated source code) as they have occurred.
It also provides the ability to debug time-sensitive issues that would otherwise not be picked up
with conventional intrusive stepping techniques. The DS-5 Debugger currently uses
DSTREAM to capture trace on the Embedded Trace Buffer (ETB) a small (typically 8K)
on-chip trace buffer. This buffer is accessible from DSTREAM and many third party probes.
DSTREAM also supports connection to the Trace Port Interface Unit (TPIU) for collection of
up to 4GB of trace data.

The DS-5 Debugger provides a powerful tool for debugging applications on both hardware
targets and models using ARM architecture-based processors. You can have complete control
over the flow of the execution so that you can quickly isolate and correct errors.

The following features are provided in the DS-5 Debugger:

• Loading images and symbols.

• Running images.

• Breakpoints and watchpoints.

• Source and instruction level stepping.

• Controlling variables and register values.

• Viewing the call stack.

• Support for handling exceptions and Linux signals.

• Debug of multi-threaded Linux applications.

• Debug of Linux kernel modules, boot code and kernel porting.

The debugger supports a comprehensive set of DS-5 Debugger commands that can be executed
in the Eclipse IDE, script files, or a command-line console. Python scripting is also supported.
In addition, there is a small subset of CMM-style commands sufficient for running target
initialization scripts.

DS-5 Debugger supports bare-metal debug using JTAG, Linux application debug using
gdbserver, Linux kernel debug using JTAG, and Linux kernel module debug using JTAG. Debug
and trace support is included for bare-metal SMP systems, including cross-triggering and
core-dependent views and breakpoints and ETM/PTM trace. This support is described in the
following sections.

17.4.2 Debugging a multi-threaded applications using DS-5

DS-5 Debugger tracks the current thread using the debugger variable, $thread. You can use this
variable in print commands or in expressions. Threads are displayed in the Debug Control view
with a unique ID that is used by the debugger and a unique ID from the Operating System (OS).
For example:
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-9
ID071714 Non-Confidential

Debug
Thread 1 (OS ID 1036)

where Thread 1 is the ID used by the debugger and OS ID 1036 is the ID from the OS.

A separate call stack is maintained for each thread and the selected stack frame is shown in bold
text. All the views in the DS-5 Debug perspective are associated with the selected stack frame
and are updated when you select another frame.

Figure 17-2 Threading call stacks in the DS-5 Debug Control view

17.4.3 Trace support in DS-5

DS-5 enables you to perform trace on your application or system. You can capture in real-time
a historical, non-intrusive trace of instructions. Tracing is a powerful tool that enables you to
investigate problems while the system runs at full speed. These problems can be intermittent,
and are difficult to identify through traditional debugging methods that require starting and
stopping the processor. Tracing is also useful when trying to identify potential bottlenecks or to
improve performance-critical areas of your application.

Before the debugger can trace function executions in your application you must ensure that:

• You have a debug hardware agent, for example, an ARM DSTREAM unit with a
connection to a trace stream.

• The debugger is connected to the debug hardware agent.

Trace view

When the trace has been captured the debugger extracts the information from the trace stream
and decompresses it to provide a full disassembly, with symbols, of the executed code.

This view shows a graphical navigation chart that displays function executions with a
navigational timeline. In addition, the disassembly trace shows function calls with associated
addresses and if selected, instructions. Clicking on a specific time in the chart synchronizes the
disassembly view.

In the left-hand column of the chart, percentages are shown for each function of the total trace.
For example, if a total of 1000 instructions are executed and 300 of these instructions are
associated with myFunction() then this function is displayed with 30%.

In the navigational timeline, the color coding is a “heat” map showing the executed instructions
and the amount of instructions each function executes in each timeline. The darker red color
showing more instructions and the lighter yellow color showing less instructions. At a scale of
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-10
ID071714 Non-Confidential

Debug
1:1 however, the color scheme changes to display memory access instructions as a darker red
color, branch instructions as a medium orange color, and all the other instructions as a lighter
green color.

Figure 17-3 DS-5 Debugger Trace view

Trace-based profiling

Based on trace data received from a trace buffer such as the ETB, The DS-5 Debugger can
generate timeline charts with information to help developers to quickly understand how their
software executes on the target and which functions are using the processor the most. The
timeline offers various zoom levels, and can display a heat-map based on the number of
instructions per time unit or, at its highest resolution, provide per-instruction visualization
color-coded by the typical latency of each group of instructions.
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. 17-11
ID071714 Non-Confidential

Index
A
Aborts

Abort handlers 11-9
Accelerator Coherency Port 7-11
Access to peripherals 8-11
Additional multipliers 5-8
AHB Trace Macrocell 17-5
AHB trace macrocell 17-5
Allocation policy 7-10
Application Program Status Register 3-5
APSR 3-5
ARM Assembler 4-9

Comparison with other forms 4-2
Identifying 4-12
Interworking 4-11
Syntax 4-9

Directives 4-10
Label 4-9

ARM Compiler toolchain 4-1
ARM DS-5 17-8
ARM Instruction Set 4-3, 5-8, 5-21

Basics 5-2
Bit manipulation instructions 5-22
Branches 5-12
Byte reversal 5-22
Cache preload 5-22
Condition Codes 5-5
Conditional execution 5-3
Constant values 5-2

Coprocessor instructions 5-21
Data processing 5-6
Memory instructions 5-10
Miscellaneous instructions 5-21
Operand2 5-7
PRS modification 5-22
Saturating arithmetic 5-20
Status Flags 5-5

ARM Registers 3-3
ARM tools assembly language 4-9
armcc optimization options 14-6
Assembly language 4-1
Assigning interrupts 11-11

B
Bare-metal booting 15-2
BE-32 endianness 14-10
BE8 endianness 14-10
Bit manipulation instructions 5-22
BKPT (Instruction) 5-23
Boot code 15-1
Booting a bare-metal system 15-2
Branch prediction 5-14
Branch prediction logic 5-14

C
Caches 7-1

Allocation policies
Read 7-10
Write 7-10

Allocation policy 7-10
Architecture 7-5
Cache controller 7-9
Cache look-up 7-9
Choosing a policy 7-11
Cleaning 7-14
Direct mapped 7-6
Drawbacks 7-3
Hit rate 7-13
Hit-under-miss 10-2
Invalidating 7-14
Maintenance 9-14, 9-17
Memory hierarchy 7-4
Miss rate 7-13
Performance and hit rate 7-13
Policies 7-10
Replacement policy 7-10
Set associative 7-7
Terminology 7-5

Index 7-5
Line 7-5
Set 7-5
Tag 7-6
Way 7-5
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. Index-1
ID071714 Non-Confidential

Index
Write and fetch buffers 7-12
Write policy 7-11

CISC 4-2
Complex Instruction Set computer 4-2
Condition codes 5-5
Coprocessor 15 3-6

Instruction syntax 3-8
Register summary 3-6

CoreSight 17-4
CoreSight Serial Wire 17-5
Cortex-R series architecture

Cortex-R4 2-4, 2-5, 12-8
Cortex-R5 2-4, 2-5, 12-15
Cortex-R7 2-4, 2-6, 12-21

Cortex-R4
Safety features 12-8
TCM 8-7, 8-8

Cortex-R5
Safety features 12-15
TCM 8-8

Cortex-R7
Safety features 12-21
TCM 8-9

CPSR 3-5
CPSR E bit 14-9
CP15 3-6

Instruction syntax 3-8
register summary 3-6

Current Program Status Register 3-5
Cyclic replacement policy 7-10

D
DAP 17-5
Data packing/unpacking 5-18

Byte selection 5-19
Data processing instructions 5-6
Debug 17-1, 17-5

ARM trace hardware 17-4
CoreSight 17-4
Debug Access Port (DAP) 17-5
Debug and Trace 17-9
Embedded cross trigger 17-5
Hardware 17-2
Monitor 17-7
System trace macrocell 17-5
Trace memory controller 17-6

Debug Access Port 17-5
Debug events 17-2
Determinism 1-4

Access to peripherals 1-4
Low latency interrupts 1-4
Quality of Service 1-4

Device memory 10-3
Direct mapped caches 7-6
Direct Memory Access 7-3, 7-14
Dirty bits 7-11
Dirty line 7-11
DMA 7-3
Dormant mode 16-4
DS-5 17-8

Trace support in 17-10

E
ECT 17-5
Embedded Cross Trigger 17-5
Endianness 14-8
Exception handling 11-1
Exceptions

Entering an exception handler 11-7
Exception mode summary 11-5
Exit from an exception handler 11-7
Types 11-2

Aborts 11-2
Exceptional instructrions 11-3
Interrupts 11-2
Reset 11-3

Execute Never 9-13
Execute Never (XN) 9-13
External interrupt request 11-11

F
FIQ 11-2, 11-5
Floating point 6-1, 6-4

Basics 6-2
Flag meanings 6-5
Interpreting the flags 6-6
Optimization 6-9
Rounding algorithm 6-4

Floating Point Exception Register 6-4
Floating Point System and Control Register

6-4
Floating Point System ID Register 6-4
FPEXC 6-4
FPSCR 6-4
FPSID 6-4
Function inlining 14-2

G
GCC optimization options 14-5
Generic Interrupt Controller 11-18, 11-19,

11-20
Configuration 11-19
Distributor 11-18
Initialization 11-20
Interrupt handling 11-20
Private Peripheral Interrupt (PPI) 11-18
Shared Peripheral Interrupt (PPI) 11-18
Shared Peripheral Interrupt (SPI) 11-18
Software Generated Interrupt (SGI)

11-18
GIC 11-18, 11-19, 11-20
GNU Assembler 4-10

Directives 4-6
Expressions 4-8
Introduction 4-5
Invoking 4-5
Sections 4-6
Syntax 4-5

GNU tools 4-8

H
Halt debug mode 17-3

I
Identifying assembler 4-12
IEEE-754 6-2
Inlining 14-2
Instruction Set Architecture 4-2
Instruction sets 4-3

ARM 4-3
Thumb 4-3

Instructions
SVC 5-21, 11-3
WFI 16-5

Interrupts 11-11
Nested handling 11-14
Non-nested handling 11-12
Simplistic handling 11-12

Invalidating and cleaning cache memory
7-14

IRQ 11-2, 11-5
ISA 4-2

L
Link register(R14) 3-4
Literal pool 8-6
Loop unrolling 14-3
L2 Cache

Controller 7-19
Maintenance 7-19

M
Memory access permissions 9-11
Memory attributes 9-11, 9-12

translation table entries 9-11
Memory instructions 5-10

Addressing modes 5-10
Multiple transfers 5-10

Memory Protection Unit 9-3
Memory Protection Unit (MPU) 9-1
Memory subsystem 9-3
Memory types

Device memory 10-3
Strongly-ordered 10-3

Micro SCU 7-11
Micro-architecture optimization

Complex addressing modes 14-19
Monitor debug mode 17-3
MPU 9-1, 9-3

Control registers in CP15 9-9
Implementing regions 9-4
Memory regions 9-3
Sub-regions 9-7

MPU Attributes 9-14
MPU region access control register 9-9
MPU region base address register 9-8
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. Index-2
ID071714 Non-Confidential

Index
MPU region size and enable register 9-8
Multiplication instructions 5-8
MVFR0/1

Media and VFP Feature Registers 6-5

N
Nested interrupt handling 11-14
Non-nested interrupt handling 11-12
Non-shareable memory 10-5
NOP (Instruction) 5-23

O
Optimization 13-1
Optimizing 14-3

armcc options 14-6
Associativity effects 14-13
Eliminating common sub-expressions

14-3
Floating point 6-9
GCC options 14-5
Instruction cache usage 14-13
Loop interchange 14-12
Loop tiling 14-11
Prefetching memory block access 14-14
Source code modification 14-16
Structure alignment 14-13

P
Permission modification 9-15
PoC 7-16
Point of Coherency 7-16
Point of Unification 7-16
PoU 7-16
Power and Clocking 16-2
Power management 16-1
Private Peripheral Interrupt (PPI) 11-18
Privilege 3-1
Profiler output 13-3
Profiling 13-1

Event based sampling 13-1
Protected Memory System Architecture

(PMSA) 9-1
Protection regions 9-1
Pseudo-random replacement policy 7-10

Q
Quality of Service (QoS) 8-10

R
Reduced Instruction Set Computer 4-2
Reentrant 11-15
Region programming registers 9-8
Registers

VFP 6-4
Replacement policy 7-10
Retention 16-3
Return stack 5-15
RISC 4-2
Round-robin replacement policy 7-10
R14 3-4

S
Safety features

Cortex-R4 12-8
Cortex-R5 12-15
Cortex-R7 12-21

Saturating arithmetic 5-20
SCTLR.BR 9-5
SCTLR.EE 3-11
SCTLR.M 9-6
SCTLR.Z 3-10
Set associative caches 7-7
SEV (Instruction) 5-23
Shareable memory 10-5
Shared Peripheral Interrupt 11-18
Shared Peripheral Interrupt (SPI) 11-18
SIMD instructions

Data packing/unpacking 5-18
Sum of absolute differences 5-17

Simplistic interrupt handling 11-12
Software Generated Interrupt (SGI) 11-18
Source code optimization

Division/modulo 14-18
Inline assembler 14-19
Linker 14-20
Loop fusion 14-16
Loop termination 14-16
Pointer aliasing 14-18
Reducing stack/heap use 14-16, 14-17
Variable selection 14-17

Standby mode 16-2
Status flags 5-5
STM 17-5
Strongly-ordered memory 10-3
SVC (Instruction) 5-21, 11-3
System Trace Macrocell 17-5

T
TCM

Comparison with cache 8-6
Loading values 8-7

TCM (Tightly Coupled Memory) 8-1
Thumb-2 technology 4-4
Tightly Coupled Memory (TCM) 8-1
TMC 17-6
Trace memory Controller 17-6
Translation table Entries

Memory attributes 9-11

U
UAL 4-9
Unaligned access 14-19
Unified Assembly Language 4-9
Unprivileged mode 3-1
uSCU 7-11

V
VFP 6-4

Support in ARM Compiler 6-8
Support in GCC 6-7

VFP Instructions 6-6
VFP Registers 6-4
Virtual Memory System Architecture 9-1
VMSA 9-1

W
WFE (Instruction) 5-23
WFI (Instruction) 5-23, 16-5
Write and fetch buffers 7-12
Write-back 7-11
Write-through 7-11
ARM DEN 0042A Copyright © 2014 ARM. All rights reserved. Index-3
ID071714 Non-Confidential

	ARM Cortex-R Series Programmer’s Guide
	Contents
	Preface
	Glossary
	Feedback on this book
	References

	1: Introduction
	1.1 Determinism

	2: ARM Architecture and Processors
	2.1 Processor properties
	2.2 Cortex-R series processors
	2.2.1 The Cortex-R4 processor
	2.2.2 The Cortex-R5 processor
	2.2.3 The Cortex-R7 processor

	2.3 Development platforms
	2.4 Operating systems for Cortex-R processors

	3: ARM Processor modes and Registers
	3.1 Registers
	3.1.1 Program Status Registers
	3.1.2 Coprocessor 15
	3.1.3 System Control Register (SCTLR)

	4: Introduction to Assembly Language
	4.1 Comparison with other assembly languages
	4.2 The ARM instruction sets
	4.2.1 Thumb-2

	4.3 Introduction to the GNU Assembler
	4.3.1 Invoking the GNU Assembler
	4.3.2 GNU Assembler syntax
	4.3.3 Sections
	4.3.4 Assembler directives
	4.3.5 Expressions
	4.3.6 GNU tools naming conventions

	4.4 ARM tools assembly language
	4.4.1 ARM assembler syntax
	4.4.2 Labels
	4.4.3 Directives

	4.5 Interworking
	4.6 Identifying assembly code

	5: Unified Assembly Language Instructions
	5.1 Instruction set basics
	5.1.1 Constant and immediate values
	5.1.2 Conditional execution
	5.1.3 Status flags and condition codes

	5.2 Data processing operations
	5.2.1 Operand 2 and the barrel shifter
	5.2.2 Multiplication operations
	5.2.3 Additional multiplies
	5.2.4 Hardware divide operations

	5.3 Memory instructions
	5.3.1 Addressing modes
	5.3.2 Multiple transfers

	5.4 Branches
	5.4.1 Direct and indirect branches

	5.5 Branch prediction
	5.5.1 Static branch prediction
	5.5.2 Dynamic branch prediction
	5.5.3 Return stack prediction

	5.6 Integer SIMD instructions
	5.6.1 Integer register SIMD instructions
	5.6.2 Integer register SIMD multiplies
	5.6.3 Sum of absolute differences
	5.6.4 Data packing and unpacking
	5.6.5 Byte selection

	5.7 Saturating arithmetic
	5.7.1 Saturated math instructions

	5.8 Miscellaneous instructions
	5.8.1 Coprocessor instructions
	5.8.2 SVC
	5.8.3 PSR modification
	5.8.4 Bit manipulation
	5.8.5 Cache preload
	5.8.6 Byte reversal
	5.8.7 Other instructions

	6: Floating-Point
	6.1 Floating-point basics and the IEEE-754 standard
	6.1.1 Rounding algorithms
	6.1.2 ARM VFP
	6.1.3 Instructions
	6.1.4 VFP support in GCC
	6.1.5 Enabling VFP
	6.1.6 VFP in the Cortex-R processors

	6.2 VFP support in the ARM Compiler
	6.3 Floating-point optimization

	7: Caches
	7.1 Cache drawbacks
	7.2 Memory hierarchy
	7.3 Cache architecture
	7.3.1 Cache terminology
	7.3.2 Direct mapped caches
	7.3.3 Set associative caches
	7.3.4 A real-life example
	7.3.5 Cache controller

	7.4 Cache policies
	7.4.1 Allocation policy
	7.4.2 Replacement policy
	7.4.3 Write policy
	7.4.4 Choosing the best write policy

	7.5 Write and Fetch buffers
	7.6 Cache performance and hit rate
	7.7 Invalidating and cleaning cache memory
	7.8 Point of coherency and unification
	7.8.1 Example code for cache maintenance operations

	7.9 Level 2 cache controller
	7.9.1 Level 2 cache maintenance

	8: Tightly Coupled Memory
	8.1 Location of the TCM in the memory map
	8.2 Performance of TCM compared to cache
	8.3 Loading values into TCMs
	8.4 TCM Properties in the Cortex-R4 and Cortex-R5 processors
	8.5 TCM properties in the Cortex-R7 processor
	8.6 Quality of Service
	8.6.1 Access to peripherals

	9: The Memory Protection Unit
	9.1 Memory subsystem
	9.2 Implementing a Protected Memory System with Regions
	9.2.1 Sub-Regions
	9.2.2 MPU memory region programming registers
	9.2.3 MPU control registers in CP15

	9.3 Memory attributes
	9.3.1 Memory Access Permissions
	9.3.2 Memory types
	9.3.3 Execute Never

	9.4 Attributes and cache maintenance
	9.5 Managing the MPU in context switches
	9.5.1 Permission modification in context switching

	9.6 Cache maintenance recommendations

	10: Memory Ordering
	10.1 ARM memory ordering model
	10.1.1 Strongly-ordered and Device memory
	10.1.2 Normal memory

	10.2 Memory barriers
	10.2.1 Memory barrier use example
	10.2.2 Avoiding deadlocks with a barrier
	10.2.3 WFE and WFI Interaction with barriers

	10.3 Cache coherency implications
	10.3.1 Issues with copying code
	10.3.2 Compiler re-ordering optimizations

	11: Exceptions and Interrupts
	11.1 Types of exception
	11.1.1 Exception priorities
	11.1.2 Exception mode summary
	11.1.3 The Vector table
	11.1.4 FIQ and IRQ
	11.1.5 The return instruction

	11.2 Exception handling
	11.2.1 Exit from an exception handler

	11.3 Other exception handlers
	11.3.1 Abort handler
	11.3.2 Undefined instruction handling
	11.3.3 SVC exception handling

	11.4 External interrupt requests
	11.4.1 Assigning interrupts
	11.4.2 Simplistic interrupt handling
	11.4.3 Nested interrupt handling

	11.5 Low latency interrupts
	11.6 The Generic Interrupt Controller
	11.6.1 Configuration
	11.6.2 Initialization
	11.6.3 Interrupt handling

	12: Fault Detection and Control Features
	12.1 Types of errors
	12.2 Error detection methods
	12.2.1 Parity
	12.2.2 Error Checking and Correction
	12.2.3 ECC and parity initialization
	12.2.4 Redundant logic

	12.3 Error signalling
	12.3.1 No signal
	12.3.2 Abort
	12.3.3 Interrupt

	12.4 Recovering from hard errors
	12.5 Power and performance
	12.6 Fault detection and control features in the Cortex-R4 processor
	12.6.1 Parity in Cache RAM in the Cortex-R4 processor
	12.6.2 ECC for the Cache RAM in the Cortex-R4 processor
	12.6.3 Parity for the TCM in the Cortex-R4 processor
	12.6.4 ECC for the TCMs in the Cortex-R4 processor
	12.6.5 Hard error banks in the Cortex-R4 processor
	12.6.6 Bus protection on the Cortex-R4 processor
	12.6.7 Redundant core in the Cortex-R4 processor
	12.6.8 Test of the fault detection and control features on the Cortex-R4 processor

	12.7 Fault detection and control features in the Cortex-R5 processor
	12.7.1 Parity in Cache RAM in the Cortex-R5 processor
	12.7.2 ECC for the Cache RAM in the Cortex-R5 processor
	12.7.3 ECC for the TCMs in the Cortex-R5 processor
	12.7.4 Hard error banks in the Cortex-R5 processor
	12.7.5 Bus protection on the Cortex-R5 processor
	12.7.6 Redundant core in the Cortex-R5 processor
	12.7.7 Test of the fault detection and control features on the Cortex-R5 processor

	12.8 Fault detection and control features in the Cortex-R7 processor
	12.8.1 ECC for Cache RAMs in the Cortex-R7 processor
	12.8.2 ECC for the TCMs on the Cortex-R7 processor
	12.8.3 BTAC and PRED RAM in the Cortex-R7 processor
	12.8.4 Hard error banks on the Cortex-R7 processor
	12.8.5 Bus protection on the Cortex-R7 processor
	12.8.6 Redundant core in the Cortex-R processors
	12.8.7 Test of the fault detection and control features on the Cortex-R7 processor

	13: Profiling
	13.1 Profiler output
	13.2 Performance Monitor Unit

	14: Coding for Cortex-R Processors
	14.1 Compiler optimizations
	14.1.1 Idiom recognition
	14.1.2 Function inlining
	14.1.3 Eliminating common sub-expressions
	14.1.4 Loop unrolling
	14.1.5 GCC optimization options
	14.1.6 armcc optimization options

	14.2 Endianness
	14.3 ARM memory system optimizations
	14.3.1 Use of cache
	14.3.2 Loop tiling
	14.3.3 Loop interchange
	14.3.4 Structure alignment
	14.3.5 Associativity effects
	14.3.6 Optimizing instruction cache usage
	14.3.7 Prefetching a memory block access
	14.3.8 Branch predictability

	14.4 Source code modifications
	14.4.1 Loop termination
	14.4.2 Loop fusion
	14.4.3 Reducing stack and heap usage
	14.4.4 Variable selection
	14.4.5 Pointer aliasing
	14.4.6 Division
	14.4.7 Extern data
	14.4.8 Inline or embedded assembler
	14.4.9 Complex addressing modes
	14.4.10 Unaligned access
	14.4.11 Linker optimizations
	14.4.12 Floating point operations

	15: Boot Code
	15.1 Booting a bare-metal system

	16: Power Management
	16.1 Idle management
	16.1.1 Power and clocking
	16.1.2 Standby
	16.1.3 Retention
	16.1.4 Power down
	16.1.5 Dormant mode

	16.2 Assembly language power instructions

	17: Debug
	17.1 ARM debug hardware
	17.1.1 Single stepping
	17.1.2 Debug events
	17.1.3 Semihosting debug

	17.2 ARM trace hardware
	17.2.1 CoreSight

	17.3 Debug monitor
	17.4 ARM DS-5
	17.4.1 DS-5 debug and trace
	17.4.2 Debugging a multi-threaded applications using DS-5
	17.4.3 Trace support in DS-5

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

