Tutorial Version 1.03 ARMKE"—

Creating a USB Data Logger Application using Middleware and CMSIS Microcontroller Tools

AbstraCt The latest version of this document is here: www.keil.com/appnotes/docs/apnt_273.asp

This tutorial shows how to implement a data logger application that collects information from A/D channels and digital 1/0
ports, recording the data into files inside a micro SD card. When connected to a computer it’s enumerated as an USB
Composite Device, allowing the access to the files and the transmission of a command to start/stop recording. The tutorial
explains the required steps to create the application on an Infineon XMC4500 Relax Kit board but can be easily ported to
other underlying hardware as it is using MDK-Professional Middleware and CMSIS, the Cortex Microcontroller Software
Interface Standard.

Contents
A 1] - Vo OSSPSR 1
Ao T [Tod 4T] o PSSR 2
SOTEWATE STACK ...ttt b bt e et e bt bt bt b £ e b e e R e e s b e eb e bt £ E e eH £ e b e e R b e s b e e b e b e e R e eb e e Reem b e e e eb e b e e bt et e e neenre e 3
L e =T BT =TSSR 4
Set uUp the WOrKShOP ENVIFONIMENT ...ttt bbbt bbbt b e et b bbb r et 4
STEP L1 CFEALE 8 PFOJECT. . ..vieiiiitiietiit ettt bbb bbb bbb bt e b b e b e bbb e b bbbt e bt bbb b e n bbbt ab e 5
Create a New Project for the EValuation BOAIUc.ooveiiiiiii et te et et e s e sneennes 5
0 o e =T oTU o Ao F- T o] (- ST SSOSPSR 6
Step 2: Add CMSIS-RTOS THread and TIMET ..o bbb ettt et 7
Add and configure CMSIS-RTOS Thread and TIMELc.ooiiiirieiienieisie ettt 7
RT X KEINEI AWAIEINESSttt ettt bbbt b e h e e e b e bt e bt b £ e b e ek e s e e a e et eb e eb £ bt eh £ e e e b e beSheeb e e b e e b e e s e enbenbesbenbeebeabeenes 8
Step 3: Add Interfaces to the Board COMPONENTS.ccuiiiiii ittt te e ste e e s e ste e s e e teestesseessaeaneesreenreenseans 9
StEP 42 A File SYSTEM SUPPOIT.....uitiiiitiiteeit sttt b bbbt bbbt b e b b e bbbt bt bbbt b eb bt ene b et ens 10
Add the File System cOmMPONENt t0 the PrOJECT.......c.oiuiiiiiiiite ettt bbbttt nnes 10
Configure the SPI Pins fOr the CIMSIS-DIIVELc.iiiiiie ettt et ta e te e te s e e s re e saeesbeenbeenaeeneeenee e 10
Configure the stack and thread MEMOIY FESOUITESccviiieiieieeite et ee st e e e ste e te e et e st esta e teeste e beeseesrsesneesreesreensaenseans 11
Step 5: Add the USB AEVICE CIASSESc.eiuiieiiitiieeeit ittt bbbttt b b h bbbt bbb bbb ens 12
Add the USB COMPONENES 10 TNE PIOJECT......c.eiuiieiiitirieieite ettt bttt b ek bbbttt sb ettt sbe e eb bt e 12
Step 6: Implement the Data Logger FUNCLIONS.........coiiiii ettt e st et este e teeaeaneesreenaeenas 14
IMPIEMENE @ FEAI TIME CIOCKttt bt bbbt s e e b e bbbt e bt e s e e ee b e nbesbeebeeneeneennens 14
Add the USEr COAE 10 the TNFEAM.o bbbt bbb st b et n bt b e s ans 14
Add the USB coOmMMANG NANATINGoviviitiieiiiie ettt ettt sttt b bbbt s bt s e bt neans 17
O g To (e B v oo o =] TSROSO SOUPUURPRPRURO 17
Step 7: Improve Data ReCOrdiNg OPEIAtIONSc.oiiiiiiitiieiiee ettt e et st sb et st se e s et et sbesbeaneeneas 18
SEFIAL WITE VIBWET SUMIMATY ...ttt sttt ettt et eb st b bbb e b b e b e e b et s e e bt e e Rt e bt es bt ben e bt e st ab et neans 20
DOCUMENT RESOUICESeuteiiutiiitie ettt ettt ettt kee et e ekt e e bt e e s be e e bt e sk et et e e e sbe e e be e e b e e e ket e eb e e e eb bt e ebe e e nh bt e ebee e nb b e e abbeenb b e e abbeenbbeenaneenbreens 21
BIOOKS ...ttt bt bRt R £ R £ E oAb eRe R e Re R £ oA £ oA £ oAb e AR e AR e eReeR £ e R £ oAb e Rt eRe AR e Re e R e e Rt et e b eheebe Rt ene e e enras 21
F N o] o] o 1A T 18 [0 OO TP U TP PRURORRN 21
USETUI ARIM WWEDSITES ...ttt ettt ekt bbbt b bbbt b ket b bt b bt b et bbb et n e ebe s 21

Keil Products and Contact INTOIMAtIONoceiiiiiiie ettt s e s st e e s abe s s b e s sbbe s sabessrbessabessabesanes 22

http://www.keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Introduction
This workshop explains how to create a software framework for a sophisticated microcontroller application using CMSIS and
Middleware components. During this workshop a demo application is created that implements the following functions:

Collect data from A/D channels and digital 1/0 ports and blink LEDs.
Create files and write data onto the MicroSD card which is connected to the board through the SPI interface.

)
[)
e Access the MicroSD Card files from the computer through the USB Mass Storage interface.
e Send commands to the board from the computer through the USB HID interface.

Application

main.c
v

USBD_User MSC.c USBD_User HID.c

CMSIS-RTOSRTX

Timer.c

Thread.c File System USB Device

CMSIS-Driver l

LED
SPI

Buttons

ADC

Device
Startup XMC4 Low Level Driver API XMC4Lib Framework

startup_XMC4500.s .
system_XMC4500.c GPIO N system_XMC4500.h RTE_Device.h

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 2 keil.com/appnotes/docs/apnt_273.asp

CMSIS-CORE

Creating a USB Data Logger Application using Middleware and CMSIS

Software Stack

The application is created by using user code templates. These templates are part of software components such as the
Middleware, CMSIS-RTOS or the XMC4000 Device Family Pack (DFP).

CMSIS-RTOS RTX is a real-time operating system that is part of MDK and adheres to the CMSIS specification. It is used
to control the application.

The board support files enable the user to quickly develop code for the hardware that is used here. It provides a simple API
to control LEDs, push buttons, A/D converters or other external devices.

Middleware provides stacks for TCP/IP networking, USB communication, graphics, and file access. The Middleware used
in this application is part of MDK-Professional and uses several CMSIS-Driver components.

CMSIS-Driver is an API that defines generic peripheral driver interfaces for middleware making it reusable across
compliant devices. It connects microcontroller peripherals with middleware that implements for example communication
stacks, file systems, or graphic user interfaces. CMSIS-Drivers are available for several microcontroller families and are part
of the DFPs. The DFP contains the support for the device in terms of startup and system code, a configuration file for the
CMSIS-Driver and a device family specific software framework with hardware abstraction layer (HAL) or low level drivers
(LLD).

The basis for the software framework is CMSIS-Core that implements the basic run-time system for a Cortex-M device and
gives the user access to the processor core and the device peripherals. The device header files adhere to the CMSIS-Core
standard and help the user to access the underlying hardware.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 3 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Prerequisites
To run through the workshop you need to install the following software. Directions are given below:

MDK-ARM Version 5.14 or later (https://www.keil.com/demo/eval/arm.htm).

A valid MDK-Professional license.

Keil::MDK-Middleware 6.3 or higher.

Infineon::XMC4000_DFP 2.2.0 or later which includes the XMC4500 Relax Kit Board Support Package (BSP). We
will download this from the Internet using Pack Installer.

XMC4500 Relax Kit (http://www.keil.com/boards2/infineon/xmc4500relaxlitekit/).

e Text snippets for copy and paste and completed projects are here: www.keil.com/appnotes/docs/apnt_273.asp

This tutorial assumes you have some experience with the MDK development tool and a basic knowledge of C.

Set up the Workshop Environment
Install MDK:
e Install MDK-ARM Version 5.14 or later. Use the default folder C:\Keil_v5 for the purposes of this tutorial.
e After the initial MDK installation, the Pack Installer utility opens up. Read the Welcome message and close it.

Install the XMC4000 Device Family Pack:

e If Pack Installer is not open, first open pVision®: . Then open Pack Installer by clicking on its icon:
e The bottom right corner should display ONLINE: lenmme [|f jt displays OFFLINE, connect your PC to the Internet.

o Locate Keil::XMC4000_DFP. Click Install. The installation will commence.
e Once the Pack is installed this will be displayed indicating a successful installation.

Install the Middleware Software Pack:
e Locate Keil::MDK-Middleware. Click Update

e Close Pack Installer by selecting File/Exit.

Install your MDK-Professional license.

o InFile/License Management, select the 7 day license. This button is only displayed if you are eligible for this offer.
It can be used Only once. Evaluate MDK Professional |

e You may contact our sales team to request a time-limited license for this workshop: www.keil.com/contact

e For more information and license installation instructions see: www.keil.com/download/license/

Connect the XMC4500 Relax Kit to your PC:

e Use the USB-Micro cable to connect your computer and the XMC4500 Relax Kit board using the port labeled as
“X100 Debug”.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 4 keil.com/appnotes/docs/apnt_273.asp

https://www.keil.com/demo/eval/arm.htm
http://www.keil.com/boards2/infineon/xmc4500relaxlitekit/
http://www.keil.com/appnotes/docs/apnt_273.asp
http://www.keil.com/contact
https://www.keil.com/download/license/

Creating a USB Data Logger Application using Middleware and CMSIS

Step 1: Create a Project

Create a New Project for the Evaluation Board
Create a project with initialization files and the main module:

1. Inthe main pVision menu, select Project - New pVision Project. The Create New Project window opens up.
2. Create a suitable folder in the normal fashion and name your project. We will use
C:\Datalogger and the project name will be Datalogger. When you save the project the
project file name will be Datalogger.uvprojx.
The Select Device for Target window opens. Select XMC4500-F100x1024:
3. Click on OK and the Manage Run-Time Environment window opens:
Expand the various options as shown and select:
- CMSIS:Core
- CMSIS:RTOS (API):Keil RTX

=7 XMC4500 Series
£ XMC4500-E144:1024

€3 XMC4500-F100:1024

€1 XMC4500-FL00x768

Version
XMC4500 Relax Lite ... 1.0.0

Software Component Sel. Variant

@ Board Support

Description
AMC4500 Relax Lite Kit Board Support

- DeVice:Stal’tup =] @ CMSIS Cortex Micrecontroller Software Interface Components
. . . ¥ CORE [« 3400 CMSIS-CORE for Cortex-M, SC000. and 5C300
4. CIICk OKtO CIO_Se thls WlndOW ¥ DsP r 142 CMSIS-DSP Library for Cortex-M, 5C000, and 5C300
5. Inthe Project window expand all the =4 RTOS (AP 10 CIMSIS-RTOS API for Cortex-M, 5C000, and 5C300
|tems and have a |00k at the f||e5 ¥ Keill RTX [+ 4.75.0 CMSIS-RTOS RTX implementation for Cortex-h, SC000, and SC300
HVISIOI’] has added to your prOJeCt & CMsls Dr?ver Unified Device Drivers compliant to CMSIS-Driver Specifications
& CMGSIS Driver Selftest
Project o @ @ Compiler
=% Project: Datalogger =] @ Device Startup. System Setup
=gz Targetl W RTE_Device r 1.0.0 RTE Device
=5 Source Group 1 ¥ Startup v 100 Systemn Startup for Infineon XMC4000 family
11 main.c & XMClib
B@ CMSIS @ File System MDK-Pro 6.2.5 File Access on various storage devices
ﬁ RTX_CM4_IFX.lib (RTOS:Keil RTX) @ Graphics MDK-Pro 5261 User Interface on graphical LCD displays
] RTX_Conf_CM.c (RTOS:Keil RTX) @ Metwork MDK-Pro 6.2.0 IP Metworking using Ethernet or Serial protocols
=] (:} Device @ USE MDK-Pro 6.2.9 USE Communication with various device classes

] startup_XMCA4500.5 (Startup)
L1 system_XMC4500.c (Startup)

[E]ProJECt @E-:--:-I; {} Functions [],Template:-

=] Project |@E-:--:-I s | £} Functions [l.;Temp\jte:-

] RTX_Conf CM.c

Add the main.c file:

. . Epand Al | Collpse Al Help I~ Show Grid
1. Right click on Source Group 1 and select Add New Item Option v
to Group ‘Source Group 1°... & Thread Configuration
2. Inthe window that opens, select User Code Template. Number of concurrent running user threads 6
-y . Default Thread stack size [bytes] 200
Se_lect CMSIS-RTOS “main’ function. Main Thread stack sze [bytes] 20
3. CI |Ck on Add MNumber of threads with user-provided stack size 0

Total stack size [bytes] for threads with user-provided stack size 0
Check for stack overflow [¥
Processor mode for thread execution
- RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer [+

Privileged mode

Set the RTOS clock frequency:
1. Inthe Project tab under CMSIS, double-click on the file

RTX_Conf_CM.c to open it il e
2. Inthe Configuration Wizard tab, set the RTOS Kernel £ System Configuration
Timer input clock frequency [Hz] to 120000000. &-Round-Robin Thread switching I
Round-Reobin Timeout [ticks] 5
H [=--User Timers [«
3. Select File > Save All or press ﬂ S igh
R R . - Timer Thread stack size [bytes] 200
4. Compile the project source files: Timer Callback Que size 4
ISR FIFQ Queue size 16 entries

There will be no errors or warnings displayed in the Build
Output window. If you get any errors or warnings, please correct this before moving on to configure the JLINK
Debug Adapter.

What we have at this point: We have created a new MDK 5 project called Datalogger.uvprojx. We have set the RTOS clock
frequency, added the CMSIS environment, a main.c file and compiled the source files to test everything.

App Note 273
Creating a USB Data Logger Application using Middleware and CMSIS 5

Copyright © 2015 ARM Ltd. All rights reserved
keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Setup the Debug Adapter
Select the J-LINK / J-TRACE Cortex debug adapter:

1. Select Target Options &N or ALT-F7. Select the Debug tab. Linker Debug | Uiifties |
2. Inthe Use box select “J-LINK / J-TRACE Cortex”. & Use: [ILINK/JTRACE Cotex v Settings
3. Click on Settings. In the Port box, select SW (for Serial-Wire
Debug SWD).
4. Inthe SW Device box you must see a valid IDCODE and SV Dovice
ARM CoreSight SW-DP. This indicates that pVision is Sone .
connected to the J-LINK’s debug module. SWD | @ 2BADIAT7 ARM CoreSight SW.DP [s |
If you see an error or nothing in the SW Device box, you must fix J

this before you can continue. Make sure the board is connected.
Configure the Serial Wire Viewer (SWV):

1. Select the Trace tab. In the Core Clock box, enter 120 MHz and select Trace Enable. This sets the speed of the
SWO UART signal and debugger timing displays.
2. Unselect EXCTRC (Exception Tracing). Leave all other settings at their defaults.

Insert a global variable in the Watch window:

1. Inthe Project tab under Device, double-click on system_XMC4500.c to open it up.

2. Find the variable SystemCoreClock. It is declared near line 283.

3. Right click on it and select Add SystemCoreClock to... and select Watch 1. Watch 1 will automatically open if it
is not already open and display this variable.

4. Inthe Watch 1 window, right click on SystemCoreClock in the =~ Watet
Name column and unselect Hexadecimal Display. Name Value Type
SystemCoreClock will now be displayed with the correct :Enf:::r:fe:;;'f‘k 120000000 EREESNE
frequency of 120 MHz.
Note: You can add variables to the Watch and Memory T Call Stack - Locals | Watch1 [Memony 1
windows while your program is running.

What we have at this point: We have selected the debug adapter, enabled the Serial Wire Viewer trace and demonstrated
how to display the CPU clock in a Watch window.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 6 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Step 2: Add CMSIS-RTOS Thread and Timer

Add and configure CMSIS-RTOS Thread and Timer

Add the Thread.c source file and its initialization:
In the Project window under Target 1, right click Source Group 1 and select Add New Item Group 'Source Group 1'...

oukrwnpE

In the window that opens, select User Code Template. Select CMSIS-RTOS Thread.

Click on Add. Note Thread.c is added to the Source Group 1 in the Project window.

Click on the main.c tab to bring it in focus in order to edit it.

In main.c near line 8, add this line: extern int Init Thread(void) ;

In main.c near line 19 and before osKernelStart() ;, add Init_Thread() ;

In Thread.c, replace the content of the while loop, inside the function Thread near line 24, by this code:
osSignalWait (0x01,osWaitForever) ;

It will suspend the execution of this thread until the specified signal flag is set.

Add the Timer.c source file and its initialization:

1.

Noakown

9.

10.

In the Project window under Target 1, right click Source Group 1 and select Add New Item Group 'Source
Group 1'...

In the window that opens, select User Code Template. Select CMSIS-RTOS Timer.

Click on Add. Note Timer.c is added to the Source Group 1 in the Project window.

Click on the main.c tab to bring it in focus in order to edit it.

In main.c near line 9, add this line: extern void Init_Timers (void) ;

In main.c near line 18 and after osKernelInitialize () ;,add Init Timers() ;

Init_Timers creates two timers: Timerl (a one-shot) and Timer2 which is a 1 second periodic timer. In this
application two periodic timers will be used and then the Timerl has to be modified. In Timer.c near line 42, change
the second parameter of the call osTimerCreate from osTimerOnce t0 osTimerPeriodic:

idl = osTimerCreate (osTimer (Timerl), osTimerPeriodic, &execl) ;

In Timer.c near line 8, add this line: extern osThreadld tid Thread;

In Timer.c near line 19, inside the function Timerl Callback, add this line:

osSignalSet(tid Thread, 0x01) ;

It will set the specified thread’s signal flag, allowing its execution periodically.

Select File = Save All or .

Compile the project source files by clicking on the Rebuild icon . There will be no errors or warnings in the
Build Output window. If there are any errors or warnings, please correct them before continuing.

Demonstrating the Thread is Working:

1.

N

Program the Flash and enter Debug mode: @ Click on the RUN icon.

TIP: To program the Flash manually, select the Load icon: 3
The program is running. _

20 Hwvoid Thread (void const *argument) {

In Thread.c, near line 24, set a breakpoint by clicking on the -~

gray box. A red circle will appear. The gray box indicates 22F] while (1) { _

that assembly language instructions are present and a - o e
hardware breakpoint will be legal. 25 |}

The program will soon stop here.

Click on RUN and in 100 milliseconds it will stop here again when the thread’s execution is resumed.

What we have at this point: We added the RTX Thread and Timer to your project. We enabled a periodic Timer and
demonstrated that the thread is running periodically.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved

Creating a USB Data Logger Application using Middleware and CMSIS 7 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using M

iddleware and CMSIS

RTX Kernel Awareness
System and Thread Viewer:

) . System and Thread Viewer
1. With the program running, open broperty Value
Debug > OS Support and select 9 Sysem
System and Thread Viewer. This Tick Timer: 1.000 mSec
WlndOW OpenS up gz:nd‘ R-‘rohbin 'dl'i;'neoku:. ;60000 mSec
. - ault Thread Stack Size:
NOte OS—IdIe—demon and Thread Stack Overflow Check: Yes
OSTlmerThread threads haVe been Thread Usage: Aovailable: 7, Used: 2
already created.
2. When you click on RUN, the status _ : :
of these two threads will be updated = ™%
. . . 1 osTimerThread High Wait_MBX 40%
in real-time until the program stops. 3 Thread Nogrmal Wait_AND G000 (00001 |40%
3. Note the various other fields that 255 | os idle_demon 0 Running 0%
describe RTX.
Event Viewer: i 4
1' Open Debug 9 OS Support and Load... | Min Time Max Time Grid Zoom Update Screen Jump to Transiion |[~ Taskinfo [~ Cursor
Select Event VIEWGF The fo”ow"]g ||U.944833ms [79.101365 [soms !\ In |[out[Al |!| stop |[Clear |!|Code [[Trace] [prev|[Mext] I~ Show Cydes
- . . y y 3 y ! y | y . . 1
window opens. Resize it for : : 3 5 @L : : : 3 : @L
convenience. If this window does not Al Tasks We@ss) [|de@sy | de@x) [jdeRss | jde@s) | |ide@5)
display any information, the most § § § § § § § § §
likely cause is that the SWV is not B — | ' i | ‘ i | i | ' i | ‘ i |
enabled or the CPU clock frequency is g g g § §
incorrect. See Serial Wire Viewer main (2 i i i ; i
Summary on the last page for useful
SWV hints. Thesd 0 | 1
2. Click on RUN. Ide (255) I
3. Qsmg In, Out :clnd All in the Zoom 45250185 po—
field, set the grid for about 50ms. | |
4. It iS easy to see When the threads are Event Viewer | System and Thread Viewer
running. Note most of the time the Idle thread is running.
5. You can tell at a glance the timing of your RTX implementation and if it is behaving as you expect.
6. Asyou add new tasks, they will be automatically added. The Event Viewer uses the Serial Wire Viewer (SWV).
7. Exit Debug mode: Q

App Note 273
Creating a USB Data Logger Application using Middleware and CMSIS

Copyright © 2015 ARM Ltd. All rights reserved
keil.com/appnotes/docs/apnt_273.asp

8

Creating a USB Data Logger Application using Middleware and CMSIS

Step 3: Add Interfaces to the Board Components

Manage Run-Time Environment @
As we want to collect data from board
- - Software Component Sel. Variant Version Description
perlpherals, as well as blink the LEDs, we =4 Board Support XMC4500 Relex Lite .| 100 | XIMC4500 Relax Lite Kit Board Support R
need to add the correspondent board support 5 € A/D Converter (AP) 100 |A/D ConverterInterface
- . ¥ AfD Converter [1.00 A/D Converter interface for XMC4500 Relax Lite Kit
Components to the prOJECt. -4 Buttons (APT) 1.00 Buttons Interface
@ Buttons cd 100 Button driver for XMCAS00 Relax Lite Kit
. =4 LED (APD 100 LED Interface
1' Open the Manage Run_TIme ¥ LED [1.00 LED driver for XMC4500 Relax Lite Kit
Envi ronment WlndOW @ and |© CMSIS Cortex Microcentroller Software Interface Com uneitiﬂ
SeIeCt' Validation Output Description
- Board Support:A/D Converter =L, Infineon XMCA300 Relax Lite Kit:Board Support:A/D C... | Additional software components required
. = require Device:XMC4Lib:GPIO Select component from list
- Board Support' BUttonS @ Infineon:Device:XMCALib:GPIO General Purpose Input/Output (GPIO) driver for XMC4000
- Board Support;LED - require Device:XMCALIb:VADC Select companent from list
. @ Infineon:Device:XMCALIb:VADC Versatile Analog-to-Digital Converter (VADC) driver for XMC4000
2' CIICk ReSOIV? to add Other =4 Infineon.XMC4500 Relax Lite Kit:Board Support:LED Additional software compenents required
mandatory middleware components. £ require DeviceXMCALIBIGPIO Select component from list
H H H @ Infineon:Device:XMCALib:GPIO General Purpose Input/Output (GPIO) driver for XMC4000
3' CIICk OK tO C|OSE thls WIndOW =4 InfineonXMC4500 Relax Lite Kit:Board Support:Buttons | Additional software components required
=) require Device:XMCALib:GPIO Select component from list
L. R ¥ Infineon:Device:XMCALIb:GPIO General Purpose Input/Output (GPIO) driver for XMC4000
Initialize board support components:
1. In main.c near line 8, add the [Fesolve) |[Setect Packe] [_Detmis_] oK Cance Helo
include directives:
#include "Board Buttons.h"
#include "Board LED.h"
#include "Board ADC.h"
2. In main.c near line 22, add the initialization calls:

LED Initialize();
Buttons_Initialize();
ADC_TInitialize();

Blink the LEDs:

e

© ©oN o O

In Thread.c, near line 3, add the include directive:

#include "Board LED.h"

Note: An error % might display on this line. Please ignore this for now. Make sure the source lines are typed in
exactly as shown to avoid errors. Use your best judgment as to where the source code should be added. Line
numbers can change with different versions of the software templates.

In Thread.c near line 22, inside the function Thread, declare the following variable:

uint8 t led state = 0x01;

In Thread.c near line 26, inside the while loop, add the following code:

LED_SetOut(led_state);

led state = ~led state;

Select File/Save All or ﬂ

Compile the project: There will be no errors or warnings in the Build Output window.
Program the Flash and enter Debug mode: @

Click on RUN.
The two red LEDs will blink alternately.

Exit Debug mode: @

What we have at this point: We have selected and initialized board peripheral drivers from the CMSIS-Pack BSP. We have
created a simple thread that toggles the LEDs alternately according to a timer event every 100ms.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 9 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Step 4. Add File System Support

Add the File System component to the project

As we want to create files and save data into the SD card, we need to add support for the File System:

1.

Open the Manage Run-Time Environment window @
and select:

- File System:CORE:LFN

- File System: Memory Card

Click Resolve to add other mandatory middleware
components.

Click OK to close this window.

Connect the File System component to the SPI driver:

1.

In the Project window under the File System heading,
double click on FS_Config_MC_0.c to open it.

Click on its Configuration Wizard tab and then on Expand
All.

Set Connect to hardware via Driver_SPI#to 1.

Set Memory Card Interface Mode to SPI.

Initialize the File System:

1.

2.

In main.c near line 10, add the include directive:
#include "rl fs.h"

In main.c near line 26, add the initialization calls:
finit ("MO:");

fmount ("MO:");

Configure the SPI pins for the CMSIS-Driver

1.

In the Project window, under the Device header, double click
on RTE_Device.h to open it for editing.

Click on its Configuration Wizard tab.
Enable SPI11 (Serial peripheral interface) as shown here:

Set the hardware parameters for the SPI1 interface exactly as
shown here:

- SPI1 TX MOSI (master) MISO (slave) Pin =P3_5

- SPI1 RX MISO (master) MOSI (slave) Pin=P4_0

- SPI1CLK OUTPUT Pin=P3_6

- SPI1SLAVE SELECT LINEOPIn=P4_1

You can check if the pin assignment is correct in the board
schematics, available in pVision under the Books tab.

Select File/Save All or 'ﬂ

& Graphics

‘ Device
=4 File Systemn

MDK-Pro
¥ CORE ¥ |LFN [~]

=] ’ Drive

#% Memory Card

% NAND

@ NOR

¢ RAM

W USB

olleelm

MDK-Pro

_] Fs_Config_MC_0.h

Expand Al I

Collapse Al Help ™ Show Grd

Option Value
= Memaory Card Drive 0

Connect to hardware via Driver_MCI# 0

Connect to hardware via Driver_SPI# 1
Mernory Card Interface Mode 5P1

Drive Cache Size 4 KB

[&-Locate Drive Cache and Drive Buffer r

0x7FD0 0000
Filename Cache Size 0
Use FAT Journal r

Base address

SPI0 (Serial peripheral interface) [Driver_SPI0] r

=1-5PT1 (Serial peripheral interface) [Driver_SPI1] v

SPI TX MOSI{master) MISO(slave) Pin P35
SPI R MISO{master) MOSI(slave) Pin P40
SPIL_CLK OUTPUT Pin P36
= 5SPIL_SLAVE SELECT Pins
[=--SLAVE SELECT LINED [
SPIL_SLAVE SELECT LINE 0 Pin P41

SLAVE SELECT LIME1 r

E m Board Data Books

e User Manual (XMC4500 CPU Board - General Purpose (CPU_454))
e User Manual (XMC4500 Relax Lite Kit)

i Schematics (XMC4500 CPU Board - General Purpose (CPU_454))

: 0 Schematics (XMC4500 Relax Lite Kit)l
XMC4500 Relax / Relax Lite Kit Web Page (XMC4500 Relax Lite Kit)

15 TOJeC Q0Ks unclions emplates
E rroject €FBooks | {} Functions | Oy Templat

App Note 273

Creating a USB Data Logger Application using Middleware and CMSIS

10

Copyright © 2015 ARM Ltd. All rights reserved
keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Configure the stack and thread memory resources

The resource requirements of the Middleware
components, as the File System and the USB, can

& Cornpiler
‘ Device

Startup, Systern Setup

be found in the Middleware documentation that is $ File System MDK-Pro 625 [File/iccess on various storage devices |
access'ble us'ng the I|nk neXt tO the Component |n ’ Graphics MDK-Pro 5.26.1 User Interface on graphical LCD displays
. . . i @ Network MDK-Pro 6.2.0 IP Metwerking using Ethernet or Serial protocels
the Manage Run'Tlme EnVlronment WlndOW- & use MDK-Pro 6.29 |USE Communication with vanious device classesl
Configure Thread Stack sizes:
1. Under the CMSIS heading, double click on o
RTX Conf CM cto open It = Thread Configuration
) ! . Mumber of concurrent running user threads 6
2. Click on its Configuration Wizard tab and then on Default Thread stack size [bytes] 1024
EXpand A” Main Thread stack size [bytes] 512
3. Change Default Thread stack size [bytes] to 1024. Number of threads with user-provided stack size _ 0
4. Change Main Thread StaCk SiZe [byteS] to 512. Total stack size [bytes] for threads with user-provided stack size 0
Check for stack overflow [+
5. Se|eCt File/Save A” or ﬂ . Processor mode for thread execution Privileged mode
. i
6. Compile the project:

No errors or warnings will be generated as shown in the Build Output window. Please correct any errors or warnings before
you continue.

What we have at this point: We have added, configured and initialized the File System component and the CMSIS-Driver
for the SPI interface. This configuration allows our application to easily access files in the SD card connected through SPI.

App Note 273
Creating a USB Data Logger Application using Middleware and CMSIS

Copyright © 2015 ARM Ltd. All rights reserved

keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Step 5: Add the USB device classes

In order to access the files in the SD card from a computer, our device has to be recognized as an USB Mass Storage (MSC).
We want also to send commands to the device to start and stop the data logger recording, so we need an USB Human
Interface Device (HID). Such peripheral device, that supports more than one device class, is called USB Composite Device.

Add the USB components to the project

Open the Manage Run-Time Environment window L and select;

- CMSIS Driver:USB Device (API)

- USB:CORE

- USB:Device =1

- USB:Device:HID =1

- USB:Device:MSC =1

Click Resolve to add other mandatory middleware components.
Click OK to close this window.

Configure USB components:

1.

w

o

In the Project window under the USB heading, double click on
USBD_Config_0.c to open it.

Click on its Configuration Wizard tab and then on Expand All.

Set Product ID to 0x0000.
In the Project window under the USB heading, double click on
USBD_Config_HID_0.c to open it.

Click on its Configuration Wizard tab and then on Expand All.

Set Interrupt IN Endpoint Number to 2.
Set Interrupt OUT Endpoint Number to 2.

Add USB template files:

1.

Right click on Source Group 1 and select Add New Item to
Group “Source Group 1°...

In the window that opens, select User Code Template. Select
USB Device HID (Human Interface Device).

Click on Add.

Repeat the previous steps to add the USB Device MSC (Mass

Storage Class) and USB Device MSC Media Ownership Control

templates.

Note USBD_User_HID.c, USBD_User_MSC.c, USBD_MSC.c and

USBD_MSC.h are added to the Source Group 1 in the Project
window.

Initialize USB components:

1.

In main.c near line 11, add the include directives:
#include "rl usb.h"
#include "USBD MSC 0.h"

In main.c near line 30, add the initialization calls:
USBD_Initialize (0);

USBD_Connect (0) ;
USBD_MSCO_SetMediaOwnerUSB() ;

=4 USE

¥ CORE [+
% Device :
% Host 0

[y

= @ Device

@ ADC
@ CDC
% Custom Class
@ HID
@ MSC

= R olaolo

@ Host

= USB Device: Human Interface Device class (HID) 0
Assign Device Class to USB Device # 0
= Interrupt Endpoint Settings
= Interrupt IN Endpoint Settings

IInterrupt IN Endpoint Mumber 2 I

= Endpoint Settings
= Full/Low-speed (High-speed disabled)

Maximum Endpoint Packet Size (in bytes) 4
Endpoint polling Interval {in ms) 16
=-High-speed
Maximurm Endpoint Packet Size (in bytes) 4
Additional transactions per microframe Mone
Endpoint polling Interval {in 125 us intervals) 2
= Interrupt OUT Endpoint Settings
IInterrupt OUT Endpoint Mumber 2 I

[=-Endpoint Settings
= Full/Low-speed (High-speed disabled)

Maximum Endpoint Packet Size (in bytes) 4
Endpoint pelling Interval {in ms) 16
[=l-High-speed
Maximum Endpoint Packet Size (in bytes) 4
Additional transactions per microframe Mone
Endpoint polling Interval {in 125 us intervals) 16
€ CMsis
o4 UsB
Device:HID JUSB Device HID (Human Interface Device) |
Device:HID U5B Device HID Mouse
Device:MSC USE Device MSC (Mass Storage Class)
Device:MSC USE Device MSC Media Ownership Control

Project

BT Project: Datalogger
g Targetl

=45 Source Group 1
1 main.c
1 Timer.c
_1 Thread.c
] USBD_User_HID_0.c
|] USBD_User MSC 0.c
L] USBD_MSC D.c
_] USBD_MSC_0.h
= <:> Board Support
_1 ADC_XMC4500.c (A/D Converter)
|1 Buttons XMC#500.c (Buttons)
] LED_XMC4500.c (LED)

App Note 273

Creating a USB Data Logger Application using Middleware and CMSIS

Copyright © 2015 ARM Ltd. All rights reserved

keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Configure Thread Stack sizes:

1. Under the CMSIS heading, double click on
RTX_Conf_CM.c to open it.

2. Click on its Configuration Wizard tab and then on
Expand All.

3. Change Number of Threads with user-provided
stack size to 3.

4. Change Total stack size [bytes] for threads with
user-provided stack size to 2048.

5. Select File/Save All or 'ii

6. Compile the project:

Install and test the USB Composite Device:

Program the Flash and enter Debug mode: @

=~ Thread Configuration

Murnber of concurrent running user threads 6
Default Thread stack size [bytes] 1024
Main Thread stack size [bytes] 512
MNurnber of threads with user-provided stack size 3
Total stack size [bytes] for threads with user-provided stack size 2048

Check for stack overflow

Processor mode for thread execution

o

Privileged mode

=5 Device Manager EI@
File Action View Help

e @ HEl e

4y E103773 it

> {8 Computer
4 Disk drives

o Keil Disk 01.0 USE Device

m

- AutoPlay

-

General options

E=8 il =)

Remaovable Disk (D3

Open folder to view files
using Windows Explorer

¥ ?_’1 Speed up my syste)
— ng Windows Re

View more AutoPlay options in Control Panel

1- \J ST3320413A5
N % Display adapters
2. Click on RUN. b3 DVS;‘CYD-RC?I:A drives
3. Insert an SD Card in the slot labelled “X300”. ‘UF":—UTES I”te'falceDed"i‘es
4. Connect your computer using a USB-Micro cable to gm
the port labelled “X3”. U5, UsB Input Device
P P P L. USB Input Device
5. The board will be installed as a USB Composite . DEATAATAP] contralles
Device and two new interfaces will appear among
the computer devices: a Disk drive and a HID-
compliant device.
6. You can access the files stored in the SD card through the Removable Disk
drive that is created in your computer.
7. Exit Debug mode: Q

What we have at this point: We have added the USB component with the MSC and HID interfaces and configured the

thread stack size. From the computer we can access the files in the SD Card.

App Note 273
Creating a USB Data Logger Application using Middleware and CMSIS

13

Copyright © 2015 ARM Ltd. All rights reserved

keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Step 6: Implement the Data Logger Functions

Implement a real time clock

In order to print timestamps associated to the collected data, we will implement a clock with our previously created CMSIS-
RTOS Timer.

1. Double click on Timer.c to open it for editing.
2. Near line 3, add the include directive:
#include <stdio.h>

3. Near line 11, add the definition:

struct clock {
unsigned char hour;
unsigned char min;
unsigned char sec;
unsigned short msec;
};

static struct clock time;

4. Near line 41, inside the Timer2_Callback, insert the code:

if (++time.msec == 100) {
time.msec = 0;
if (++time.sec == 60) {
time.sec = 0;
if (++time.min == 60) {
time.min = O;
if (++time.hour == 24) {
time.hour = 0;
}
}
}
}

5. Near line 78, change the Timer2 interval from 1000ms to 10ms:
status = osTimerStart (id2, 10);

6. Inthe end of the file near line 85, append this function:

void PrintTimeStamp (FILE *f) ({
fprintf (£,"%02d:%02d:%02d.%024d",
time.hour,
time.min,
time. sec,
time .msec) ;

Add the user code to the thread

We will modify our previously created CMSIS-RTOS Thread to implement the data logger functionalities: collect data from
AJD converter and sample the state of the pushbuttons. Every 100ms the measurement from the A/D converter is stored into a
file, together with a timestamp. The same happens when the state of a pushbutton changes.

To allow file access we add the following application code in the module Thread.c:

1. Double click on Thread.c to open it for editing.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 14 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

2. Near line 4, add the include directives:
#include "Board Buttons.h"
#include "Board ADC.h"
#include "rl fs.h"
#include "rl usb.h"
#include "USBD_MSC 0.h"
#include <stdio.h>

3. Near line 18, add the code:

extern void PrintTimeStamp (FILE *f) ;

typedef enum {
DEV_IDLE,
DEV_START RECORD,
DEV_STOP_RECORD,
DEV_RECORDING

} DeviceState;

DeviceState gState = DEV_IDLE;

void SetRecording(bool bMode) ({
if (bMode) {
if (gState==DEV_IDLE) gState = DEV_START RECORD;
} else {
if (gState==DEV_RECORDING) gState = DEV_STOP_ RECORD;
}
}

void LogButton (uint8 t button, uint8 t state) {

FILE *f;
const char ButName[][7] = {"1", "2"};
const char ButState[][9] = {"Released", "Pressed"}:;

f = fopen("ButtonslLog.txt",6"a");
if (£ '= NULL) {

PrintTimeStamp (f) ;
fprintf (£," - Button %s %s\n",ButName[button] , ButState[state]) ;
fclose (£f):;

}
}

void LogADC (uintl6é_t wval) {
FILE *f;
f = fopen("AdcLog.txt","a");
if (£ !'= NULL) {

PrintTimeStamp (f) ;
fprintf (£," - 0x%04X - %4.2fV\n", val,

(float) (val * 3.3 / (1 << ADC_GetResolution ())));
fclose (f):;

}

4. Near line 66, replace the content of the function Thread with the code:

void Thread (void const *argument) ({
uint8 t led state = 0x01;
uint8 t but_ current;
uint8 t but_last;
uint8 t but_changed;
uint8 t but num;

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 15 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

uintlé_t adc_val;

while (1) {

switch (gState) {

}

case DEV_IDLE:

break;

case DEV_START RECORD:

// hide logical unit
USBD_MSCO_SetMediaOwnerFS () ;
finit("MO0:") ;

fmount ("MO:") ;
ADC_StartConversion() ;
gState = DEV_RECORDING;
break;

case DEV_STOP_RECORD:

LED_SetOut(0) ;

// show logical unit
USBD_MSCO_SetMediaOwnerUSB() ;
gState = DEV_IDLE;

break;

case DEV_RECORDING:

// Buttons sampling
but_current = (Buttons_GetState())
but_changed = but_current # but last;
but_last = but_current;
but num = 0;
while (but_changed)
{
if (but_changedé&l) {
LogButton (but_num,but currenté&l) ;
}
but_num++;
but_changed>>=1;
but_current>>=1;

}

// ADC sampling

if (ADC_ConversionDone() == 0) {
adc_val = ADC_GetValue() ;
LogADC (adc_val) ;

}

ADC_StartConversion() ;

// Toggle leds
LED_SetOut(led_state);
led state = ~led_state;
break;

osSignalWait (0x01,osWaitForever) ;

}

App Note 273
Creating a USB Data Logger Application using Middleware and CMSIS

Copyright © 2015 ARM Ltd. All rights reserved
keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Add the USB command handling

As previously stated, the USB HID Client will be used to start/stop recording.
The HID Client running on a PC sends an HID output report that is handled by our application.

Modify USBD_User_HID _0.c:
1. Double click on USBD_User_HID_0.c to open it for editing.

2. Near line 43, add the declaration:

extern void SetRecording(bool bMode) ;
3. Near line 119, add the call:

SetRecording ((*buf) &0x01) ;

Note this call switches the state machine executed by our thread.

8. Select File/Save All or ﬂ

9. Compile the project:

Using the Data Logger

1. Program the Flash and enter Debug mode: @

g HID Client ==
ol
2. Click on RUN: Human Interface Device

Device: [ISE_HIDO |

3. Inorder to send the command to start recording, run the HID Client software
that is located at the following path: T EBEE A8 DS
C:\Keil_v5\ARM\Utilities\HID_Client\Release\HIDClient.exe UL il il el il i

Outputz [LED=)

BB 4 3 2110
TR ol el el el el il 2

Inputs [Buttons)

=]

4. Inthe HID Client window, select the Device USB_HIDO.

5. Check the checkbox “0” under the Outputs (LEDs) tab. This action sends an
HID output report to the board and the data logger starts recording.
The Removable Disk is hidden from the computer because at this moment the data logger application has exclusive
access to the file system. The LEDs blink alternately.
The A/D Converter measures the input pin P14.0 and the values are recorded every 100ms.
If you press buttons 1 and 2 in the board, the press and release events are recorded too.

6. Uncheck the checkbox “0” under the Outputs (LEDs) tab. ... —— Type -
The data logger stops recording and the LEDs turn off. - 1S 00 et Dt S
In the computer the Removable Disk pops up again and the angs'mgm CUOLA0121200 Tort Document .

files can be accessed.

The data are stored in text files: AdcLog.txt and 00:06:17.80 — 0x0009 - 0.01¥ (Q:06:2Q.30 - Sutton 1 Pressed
ButtonsLog.txt. 00:08:17.90 - OxO1ED - 0.40V 00:06:20.50 - Button 1 Released
00:06:18.00 - 0x0511 - 1.04V 00:06:21.,20 - Button 2 Pressed
00:06:18.10 — Ox0839 - 1.70V 00:06:21.40 — Button 2 Released
. @ 00:06:18.20 - OX09EC - 2.05V
7. Exit Debug mode: 00:06:18.30 — 0XOCED - 2.59V
00:06:18.40 — OXOFSE — 3.17V
00:06:18.50 — OxOFFF — 3.30V
00:06:18.60 — OxOFFF — 3.30V

What we have at this point: The data logger application is complete. We can use the HID Client to start/stop data recording
and we can read the logged data in the Removable Disk that automatically pops up.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 17 keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Step 7: Improve Data Recording Operations

Analyzing the source code of the Thread.c file, where the data logger functionalities are implemented, we can see that files
are being opened and closed every time an event is triggered. It’s a robust implementation that reduces the risk of data loss
since the fclose function effectively writes the file stream to the media and flushes the associated buffers.

However such implementation needs relatively high CPU resources as we can see in the Event Viewer.

Viewing RTX Activity with the Event Viewer:

1.
2.

3.

Enter in Debug mode: @ and RUN:

Select the Event Viewer tab or if not already open: Select Debug 2>

OS Support 2> Event Viewer.

Adjust the column width so the entire Thread names are visible as
shown below. Data will be visible if the Serial Wire Viewer (SWV) is

configured properly.

Start the data logger recording as described in the previous chapter.

Near line 123, at the end of the
DEV_RECORDING case, set a
breakpoint by clicking on the gray
area:

Select Stop in the Update Screen
box.

Set the grid using Zoom In and Out.
Scroll back and forth in time and you
can see when the other threads were
active.

Enable the Cursor and Task Info
boxes to measure timings of these
events.

Note the Threads visible: The
Thread (6) data shows the activity of
this thread.

In this example the thread takes about
~12ms for each file recording
operation.

10. Clear the breakpoint by clicking on it.

11. Exit Debug mode: Q
We can have a less resource-hungry implementation by calling the fopen and fclose functions only when respectively starting

and stopping the data recording. Follow the steps:

1.
2.

Event Viewer

Load.. Mir
[Load...][,

All Threads

osTimerThread (1)

main 2)

USBD_HIDO_Thread (3)

USBD_MSCO_Thread

USBDO_CoreThread (5)

Thread (8)

Idle (255)

L

in Time

Max Time
0.999117ms | 11211465 | 1m:

Grid

I

120 ff Toggle leds

121 LED SetOut(led state);
122 led state = ~led state;
123 break;

124

on | [¥ Thread Info ' Cursar

Zoom Update Screen | Jumpto | Transi
= |[In Jout][Al] [stop [clear J|[Cc |[Trace] [erev][Next] [show cycles

ide (255)

'hwead (G}i

11.09863s

Idle (255) -

osTimer

e (255)

read (11}

i110185%]

><Thlead (2]
Idie 55|

Double click on Thread.c to open it for editing.

Near line 19, add the declarations:
FILE *f but;
FILE *f adc;

Near line 39, remove the local declaration:

FILE *f;
Near line 41, remove the call:
f =

fopen ("ButtonsLog. txt","a") ;

In the following line, replace f with f_but:

if (f but '= NULL) {

Near line 44, remove the call:
fclose (£f):;

Near line 48, remove the local declaration and the call:

FILE *f;
f =

fopen ("ButtonsLog. txt" ,"a") ;

Thread (Thread No. 6, @0x05003dba)

Slats (Thread):

Event Count: Current

Cursars

Avera

Min Max ge
3041667 us 9.996258 ms 23839 ms
Total

urre,
319 3

Reference
11101455

Mouse Differen
1111343 s 11.97235 ms | 83.525791 Hz

App Note 273

Creating a USB Data Logger Application using Middleware and CMSIS

18

Copyright © 2015 ARM Ltd. All rights reserved
keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

8. Inthe following line, replace f with f_adc:
if (f_adc !'= NULL) {
9. Near line 51, remove the call:
fclose (f):;
10. Near line 82, after fmount, add the following calls:
f but = fopen ("ButtonsLog.txt","a");
f adc = fopen("AdcLog.txt","a");
11. Near line 89, after case DEV_STOP_RECORD:, add the following calls:
fclose (f_but);
fclose (f_adc);
12. Select File/Save All or Event viewer B
Min Time MaxTime Grid Zoom Update Screen | Jumpto | Transition | [Thread Info ¥ Cursor
ﬂ 0.959417 ms 15.?012% 50 us ‘I‘n HDutH‘Aﬂ il sm? | Clear ‘| |Cude\\Tracz\ ‘Pvau”NExdlr Show Cydes
All Threads Idle [255}. Thread (ﬂ i ‘ . Idle (255)
13. Compile the project: T el Tl) 5(:@*‘“““:
14. Program the Flash and frerTee=d (0 - .
main {2)
enter Debug mode: @
USBD_HIDO_Thread (3).
15. Click on RUN.
16. Start the data recording =
and check the Thread USBD0_CoreThvesd (5
optimization in the Event e
VIEWEI‘ as preVIOUSIy Thread [Emread N;‘s, @um:suusdsul
. K . s Ide (255) :
described: now in this L et e e
example it takes only B e i I o e verge
about 0 4ms 2991667 us 5143408 ms 0.129225 ms
1 . Event Count: Current Total
348
17. Exit Debug mode: @ cumere loibess ibiBi baokishme= 2a2054001 v
App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
19

Creating a USB Data Logger Application using Middleware and CMSIS

keil.com/appnotes/docs/apnt_273.asp

Creating a USB Data Logger Application using Middleware and CMSIS

Serial Wire Viewer Summary

Serial Wire Viewer (SWV) is a 1 bit data trace. It is output on the SWO pin which is shared with the JTAG TDO pin. This
means you cannot use JTAG and SWYV together. Instead, use Serial Wire Debug (SWD or SW) which is a two pin alternative
to JTAG and has about the same capabilities. SWD is selected inside the pVision IDE amd is easy to use.

1.

The Core Clock: is the CPU frequency and must be set accurately. In this tutorial, 120 MHz is used. If you see ITM
frames in the Trace Records window of number other than 0 or 31, or no frames at all, the clock frequency is
probably wrong.

SWV is configured in the Cortex-M Target Setup in the Trace tab. In Edit mode: Select Target Options AN or
ALT-F7 and select the Debug tab. Select Settings: Then select the Trace tab. In Debug mode: Select Debug/Debug
Settings.. and then select the Trace tab.

If SWV stops working, you can get it working by exiting and re-entering Debug mode. In rare cases, you might also
have to cycle the board power.

SWYV outputs its data over a 1 bit SWO pin. Overloading can be common depending on how much information you
have selected to be displayed. Reduce the information to only that which you really need helps as does limiting the
activity of variables. Using a ULINKpro on boards equipped with a 20 CoreSight ETM connector enables the SWV
information to be output on the 4 bit ETM trace port.

For more information on XMC4500 Relax Kit see: http://www.keil.com/boards2/infineon/xmc4500relaxlitekit

Watch, Memory windows and Serial Wire Viewer can display:

Global and Static variables. Raw addresses: i.e. *((unsigned long *)0x20000004)
Structures.

Peripheral registers — just read or write to them.

Can’t see local variables. (just make them global or static).

Cannot see DMA transfers — DMA bypasses CPU and CoreSight and CPU by definition.
You might have to fully qualify your variables or copy them from the Symbol window.

Serial Wire Viewer (SWV) displays in various ways:

PC Samples.

A printf facility that does not use a UART.

Data reads. Graphical format display in the Logic Analyzer: Up to 4 variables can be graphed.
Exception and interrupt events.

All these are Timestamped.

CPU counters.

Instruction Trace (ETM):

ETM Trace records where the program has been. Assembly instructions are all recorded.
Assembly is linked to C source when available (this is up to your program).

A recorded history of the program execution in the order it happened.

Provides Performance Analysis and Code Coverage. Higher SWV performance.

ETM needs a Keil ULINKpro to provide the connection to the 4 bit Trace Port.

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved

Creating a USB Data Logger Application using Middleware and CMSIS

20

keil.com/appnotes/docs/apnt_273.asp

http://www.keil.com/boards2/infineon/xmc4500relaxlitekit

Creating a USB Data Logger Application using Middleware and CMSIS

Document Resources

Books

NEW! Getting Started MDK 5:

www.keil.com/mdk5/.

A good list of books on ARM processors is found at; www.arm.com/support/resources/arm-books/index.php

pVision contains a window titled Books. Many documents including data sheets are located there.
A list of resources is located at: www.arm.com/products/processors/cortex-m/index.php (Resources tab).

The Definitive Guide to the ARM Cortex-M0/MO0+ by Joseph Yiu. Search the web for retailers.
The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.
Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.

MOOC: Massive Open Online Class: University of Texas:

Application Notes

1.

© © N o g A~ WD PP wDd

Overview of application notes:

NEW! Keil MDK for Functional Safety Applications:
Using DAVE with pVision:

Using Cortex-M3 and Cortex-M4 Fault Exceptions
CAN Primer using NXP LPC1700:

CAN Primer using the STM32F Discovery Kit
Segger emWin GUIBuilder with pVision™
Porting an mbed project to Keil MDK™
MDK-ARM™ Compiler Optimizations

Using pVision with CodeSourcery GNU

RTX CMSIS-RTOS in MDK 5

Lazy Stacking on the Cortex-M4

10. Sending ITM printf to external Windows applications:

11. Barrier Instructions

12. Cortex Debug Connectors:

http://users.ece.utexas.edu/~valvano/

www.keil.com/appnotes

www.keil.com/safety

www.keil.com/appnotes/files/apnt 258.pdf

www.keil.com/appnotes/files/apnt209.pdf

www.keil.com/appnotes/files/apnt 247.pdf

www. keil.com/appnotes/docs/apnt_236.asp

www.keil.com/appnotes/files/apnt_234.pdf

www.keil.com/appnotes/docs/apnt_207.asp

www.keil.com/appnotes/docs/apnt_202.asp

www.keil.com/appnotes/docs/apnt_199.asp

http://www.keil.com/pack/doc/cmsis_rtx/index.html

www.arm.com and search for DAI0298A

www.keil.com/appnotes/docs/apnt_240.asp

http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html

http://www.keil.com/support/man/docs/ulinkpro/ulinkpro _cs _connectors.htm

Useful ARM Websites

Nogk~wnE

Keil Forum:

ARM Connected Community Forum:
ARM University Program:

ARM Accredited Engineer Program:
MTM:

CMSIS standard:

CMSIS documentation:

For comments or corrections on this document please email

www.keil.com/forum
http://cc.arm.com/groups/tools
www.arm.com/university
Www.arm.com/aae
http://mbed.org
Www.arm.com/cmsis
www.keil.com/cmsis

feedback@Kkeil.com

App Note 273
Creating a USB Data Logger Application using Middleware and CMSIS 21

Copyright © 2015 ARM Ltd. All rights reserved
keil.com/appnotes/docs/apnt_273.asp

http://www2.keil.com/mdk5/
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://users.ece.utexas.edu/~valvano/
http://www.keil.com/appnotes
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt_258.pdf
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/docs/apnt_236.asp
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
http://www.keil.com/pack/doc/cmsis_rtx/index.html
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm
http://www.keil.com/forum
http://cc.arm.com/groups/tools/content
http://www.arm.com/
http://www.arm.com/aae
http://mbed.org/
http://www.arm.com/cmsis
http://www.keil.com/cmsis
mailto:feedback@keil.com

Creating a USB Data Logger Application using Middleware and CMSIS

Keil Products and Contact Information
Keil Microcontroller Development Kit (MDK-ARM™)

MDK-Lite (Evaluation version) - $0

MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit)

MDK-Standard (unlimited compile and debug code and data size Cortex-M, ARM7 and ARM9)
MDK-Professional (Includes Flash File, TCP/IP, CAN and USB driver libraries and Graphic User Interface (GUI)
NEW! ARM Compiler Qualification Kit: for Safety Certification Applications

USB-JTAG adapter (for Flash programming too)

ULINK2 - (ULINK2 and ME - SWV only —no ETM)

ULINK-ME - sold only with a board by Keil or OEM.

ULINKpro — Faster operation and Flash programming, Cortex-Mx SWV & ETM trace.

NEW! ULINKpro D — Faster operation and Flash programming, Cortex-Mx SWV, no ETM trace.

For special promotional or quantity pricing and offers, please contact Keil Sales.
Contact sales.us@keil.com 800-348-8051 for USA prices.
Contact sales.intl@keil.com +49 89/456040-20 for pricing in other countries.

CMSIS-RTOS RTX is now provided under a BSD license. This makes it free.

All versions, including MDK-Lite, include CMSIS-RTOS RTX with source
code!

Keil includes free DSP libraries for the Cortex-M0, M0+, M3, M4 and M7. - -

Call Keil Sales for details on current pricing, specials and quantity discounts. = et
Sales can also provide advice about the various tools options available to you. i
They will help you find various labs and appnotes that are useful. : =

All products are available from stock.
All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com/university
to view various programs and resources.

Keil supports many other Infineon processors including 8051 and C166 series
processors. See the Keil Device Database® on www.keil.com/dd for the complete list of Infineon support. This information is
also included in MDK.

Development K\n‘

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.inti@keil.com.

COMPLIANT

ARM? Cortex” Microcontroller

Sortueare Tntertace Standara Microcontroller Tools

ARMCORTEX gcmsm ARMKEIL

Processor Technology

App Note 273 Copyright © 2015 ARM Ltd. All rights reserved
Creating a USB Data Logger Application using Middleware and CMSIS 22 keil.com/appnotes/docs/apnt_273.asp

mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.arm.com/
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com

	Abstract
	Introduction
	Software Stack
	Prerequisites
	Set up the Workshop Environment
	Step 1: Create a Project
	Create a New Project for the Evaluation Board
	Setup the Debug Adapter

	Step 2: Add CMSIS-RTOS Thread and Timer
	Add and configure CMSIS-RTOS Thread and Timer
	RTX Kernel Awareness

	Step 3: Add Interfaces to the Board Components
	Step 4: Add File System Support
	Add the File System component to the project
	Configure the SPI pins for the CMSIS-Driver
	Configure the stack and thread memory resources

	Step 5: Add the USB device classes
	Add the USB components to the project

	Step 6: Implement the Data Logger Functions
	Implement a real time clock
	Add the user code to the thread
	Add the USB command handling
	Using the Data Logger

	Step 7: Improve Data Recording Operations
	Serial Wire Viewer Summary
	Document Resources
	Books
	Application Notes
	Useful ARM Websites

	Keil Products and Contact Information

