

Arm Debugger Tutorial
Revision: NA

Using the ELA-500 with Arm DS

Non-Confidential Issue 0.0
Copyright © 2021 Arm Limited (or its affiliates).
All rights reserved.

NA

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Issue 0.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 19

Arm Debugger Tutorial

Using the ELA-500 with Arm DS

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0.0 8th of April
2021

Non-
Confidential

First version

Confidential Proprietary Notice

This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement
between you and Arm or the terms of the agreement between you and the party authorized by Arm to
disclose this document to you.

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information: (i) for the purposes of determining whether
implementations infringe any third party patents; (ii) for developing technology or products which
avoid any of Arm's intellectual property; or (iii) as a reference for modifying existing patents or patent
applications or creating any continuation, continuation in part, or extension of existing patents or
patent applications; or (iv) for generating data for publication or disclosure to third parties, which
compares the performance or functionality of the Arm technology described in this document with any
other products created by you or a third party, without obtaining Arm's prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Issue 0.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 19

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to
create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed
written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please follow
Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20348

Confidentiality Status

This document is Confidential. This document may only be used and distributed in accordance with the
terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is release quality.

Web Address

33Thttp://www.arm.com33T

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Issue 0.0

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 19

Contents

1 Introduction ... 5

1.1.1 The problem with traditional debug methods ... 5

1.1.2 About the CoreSight ELA-500 ... 6

1.1.3 The example board ... 6

2 Before you begin ... 7

3 Importing the ELA-500 DTSL use case scripts ... 8

4 Configuring the ELA-500 use case scripts .. 10

5 Running the ELA use case scripts .. 16

6 Capturing the ELA trace data ... 17

7 Analyzing the ELA trace capture ... 19

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Issue 0.0

Introduction

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 19

1 Introduction
The Arm CoreSight ELA-500 Embedded Logic Analyzer (ELA-500) provides low-level signal
visibility into Arm IP and third-party IP. When used with a processor, the ELA-500 provides
visibility of:

 Load

 Stores

 Speculative fetches

 Cache activity

 Transaction life cycle.

None of previous items are available through instruction tracing.

CoreSight ELA-500 enables fast hardware assisted debug of hard-to-trace issues, including
data corruption and dead or live locks. The ELA-500 also accelerates debug cycles during
complex IP bring-up and assists with post deployment debug.

CoreSight ELA-500 offers on-chip visibility of both Arm and proprietary IP blocks. Program
trigger conditions over standard debug interfaces either by an on-chip processor or an external
debugger.

1.1.1 The problem with traditional debug methods

Processors can stop functioning because they are locked-up, also known as deadlocked. One
common deadlock scenario happens when a processor initiates memory transactions to a
location in the system that cannot response or handle the request. A deadlock might happen if
there is no bus Completer or the bus Completer has limitations like it does not support Burst
transactions.

In a perfect world, systems are designed so the entire physical memory map is fully populated. A
fully populated memory map means that all memory transactions, to all addresses, correctly
respond with either a valid transaction result or a bus fault. However, for certain designs, this
memory model is not implemented.

Places in the memory map that are not populated can be referred to as “holes”. Aggressive
speculation and prefetching performed by Arm processors means memory map “holes” are
more likely to be exposed during execution. This exposure can happen even if the software does
not explicitly reference the memory “holes”.

Software can prevent memory “hole”-related issues by correctly configuring the MMU
translation tables to accurately describe the physical memory map. Software can configure any
memory map “holes” as being invalid. Configuring the MMU this way prevents the processor

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Introduction

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 19

from making any physical bus transactions to a “hole”, which prevents a deadlock scenario.

Debugging memory “hole”-related deadlock scenarios cause an issue when debugging using
traditional methods, like external debug, and instruction and data trace. If an incomplete
memory transaction occurs, a processor might not enter halt mode debug. If the core does not
enter halt mode debug, the external debugger is unable to break the processor and inspect its
internal state. In this situation, trace capture might still be available. However, trace does not
provide a record of the Speculative or prefetched transactions that could be responsible for the
deadlock.

When deadlock scenarios occur, to trace the external bus transactions made by the processor,
use the CoreSight ELA-500. Depending on the board implementation, the ELA-500 allows you
to trace both explicit and Speculative transactions. This tutorial shows how to work with the
use case scripting capabilities of Arm Development Studio (Arm DS). In particular,
demonstrating the example CoreSight ELA-500 use case scripts shipped with Arm DS.

1.1.2 About the CoreSight ELA-500

The ELA-500 implements up to 12 Signal Groups, each containing 64-bit, 128-bit, or 256-bit
signals. The connections between the signals in the Signal Groups depend on the system and
the IP that it is connected to. The specific signal interfaces are documented in the relevant IP
documentation. These documents might only be available to Arm IP licensees. Arm IP
connected to an ELA is supplied with a JSON file. The JSON file documents and annotates the
signal group connections for that particular IP, in a machine-readable format. Arm DS
interprets the JSON file to allow seamless debugging of a piece of IP using Arm DS and the
ELA-500.

Signals typically consist of debug signals like status or output, and qualifiers like triggers.
Qualifier signals might be required to determine that the debug signal is valid. Debug signals
are valid when the qualifier signal is asserted.

1.1.3 The example board

This tutorial uses a board with a Cortex-A72 and an ELA-500 to explore a lock-up scenario. This
Cortex-A72 and ELA-500 system utilizes the LAK-500A. The LAK-500A is an Integration Kit
for the ELA-500 and the Cortex-A72. The Integration Kit is an add-on to the ELA-500.
The LAK-500A exposes some pre-defined debug observation ports to the Cortex-A72 ELA
Signal Groups, and provides the corresponding JSON signal-mapping file.

As part of the LAK-500A, a Cortex-A72 debug observation port exposes the physical read
address signal bus ARADDR and an address valid signal, ARVALID.

Note: For this tutorial, these signal names are obfuscated.

These signals are required to determine the read addresses issued by the core, before the lock-
up scenario. In this tutorial, while a memory copy routine is executed, we monitor these signals
with the ELA-500 so we can do a post analysis of the core read transactions. Analyzing the read
transactions helps us identify which transaction might have caused the core lock-up.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Before you begin

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 19

2 Before you begin
Arm DS ships with use case scripts to allow Arm DS to configure and use the ELA-500.

You must have the following before you begin using the ELA-500 with Arm DS:

 An installation of Arm Development Studio.

 A target with an CoreSight ELA-500 implemented.

 An Arm DS platform configuration for the board.

o In the platform configuration, you must name the CoreSight ELA-500 device as
ELA-500.

 A JSON signal-mapping file listing the signals coming into the ELA-500 Signal Groups.

o To run the Decode trace data script, name the JSON file for the ELA
example_ela_connection.json.

o The example_ela_connection.json JSON file must be available in the
DTSLELA-500 project directory.

Further information about using the ELA-500 with Arm DS is available in the "Embedded Logic
Analyzer (ELA)" section of the Arm Development Studio User Guide.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Importing the ELA-500 DTSL use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 19

3 Importing the ELA-500 DTSL use
case scripts

1. Launch the Arm DS IDE.

2. If prompted, select a Workspace for your Arm DS projects. The default workspace is
fine.

3. Select File > Import... to open the Import dialog.

4. Select Arm Development Studio > Examples and Programming Libraries.

5. Click Next

6. Select Examples > Debug and Trace Services Layer (DTSL) > DTSLELA-500.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Importing the ELA-500 DTSL use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 19

7. Click Finish.

Result: The Project Explorer view shows a DTSLELA-500 project.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Configuring the ELA-500 use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 19

4 Configuring the ELA-500 use
case scripts
To configure the ELA-500, you can either edit a use case script or use the configuration GUI
interface. The application-specific use case script allows you to script a specific debug recipe.
The debug recipe is used to debug a specific debug scenario with the ELA-500.

The GUI configuration utility represents the ELA-500 registers and register bit assignments as
fields, tickboxes, or drop-down items. For example, the ELA-500 Actions registers bit
assignments are shown as the following in the GUI configuration utility:

Actions register bit assignments ELA-500 GUI configuration utility
representation

ELAOUTPUT[7:4] Value to drive on ELAOUT[3:0] field

TRACE[3] Enable trace tickbox

STOPCLOCK[2] Value to drive on STOPCLOCK tickbox

CTTRIGOUTPUT[1:0] Value to drive on CTTRIGOUTPUT[1:0] field

In this tutorial, we use the ELA-500 GUI configuration utility to configure the ELA-500 to
debug a deadlock situation.

To add the DTSLELA-500 project use case scripts to the Scripts view in Arm DS, do the
following:

1. Connect to a target with Arm DS.

Learn how to connect to a target with Arm DS, read the "Configuring debug
connections in Arm Debugger" section of the Arm Development Studio User Guide.

2. If the Scripts view is not open, click Window > Show View > Scripts.

3. In the Scripts view, click Import a Script or Directory > Add Use Case Script Directory….

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Configuring the ELA-500 use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 19

4. In the Select Folder dialog, browse to the DTSLELA-500 project in your Arm DS
Workspace and click Select Folder.

In the Scripts view, the DTSLELA-500 use case scripts appear under Use Case > Scripts in
<path to Arm Development Studio Workspace>\DTSLELA-500\.

The following steps show how to use the GUI ELA-500 Configuration Utility to configure the
ELA-500 for our deadlock scenario:

1. If you have not already, connect to a target.

Note: You must connect to a target to configure and run the ELA-500 use case scripts.

2. Open the GUI ELA-500 configuration utility:

a. Go to Scripts view > Use case > Scripts in <path to Arm Development Studio
Workspace>\DTSLELA-500 > ela_lowlevel.py > Configure ELA.

b. Right-click Configure ELA and select Configure… .

3. Configure the common controls:

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Configuring the ELA-500 use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 19

a. In the Common tab, in the Pre-trigger action section, select Enable trace.

This setting configures the ELA to start tracing when it is enabled. This field sets
PTACTION.TRACE so that trace is active when the ELA-500 is enabled. When
trace is active, one of the following controls trace capture:

i. Each ELA clock cycle

ii. A Trigger Signal Comparison match

iii. A Trigger Counter Comparison match.

b. Click Apply.

4. We now must configure our initial trigger:

a. Open the Trigger State 0 tab.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Configuring the ELA-500 use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 19

b. Set Select Signal Group to 0x1.

On our example board, Cortex-72 + ELA-500 + LAK-500A, the RVALID signal
goes into Signal Group 0. To locate the RVALID signal location for other
targets, check your IPs corresponding JSON file or documentation.

To trigger on the RVALID signal in Signal Group 0, we set the Trigger State 0
Select Signal Group value to 0x1. This step sets the ELA-500 Signal Select
register 0 (SIGSEL0) to 0x1. The ELA-500 uses a 'ones hot' encoding for the
Signal Group in the Signal Select registers.

Trigger State 0 is now associated with the signals coming into Signal Group 0.

c. Set Signal Comparison (COMP) to Equal.

This step sets the Trigger Signal Comparison type select (COMP) of the Trigger
State 0 Trigger Control register 0 (TRIGCTRL0). In this case, we want to trigger
when the ARVALID signal is valid (active-HIGH).

d. Set the Next state value to 0x1.

Here we set the Next state. If the Trigger Condition is met, the ELA enters the
state assigned to the Next State register. This configuration sets the Trigger
State 0 Next state register 0 (NEXTSTATE0) to Trigger State 0. In our case, we
want to capture on each ARVALID assertion, which uses the 'ones hot' for
Trigger State 0.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Configuring the ELA-500 use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 19

e. Set both the Signal Mask [95:64] and Signal Compare [95:64] fields to
0x00080000.

We must set Trigger State 0 Signal Compare 0 (SIGCOMP0) and Signal Mask 0
(SIGMASK0) registers for Signal Group 0 to monitor the ARVALID signal. The
bit position of the ARVALID signal is documented in your IPs corresponding
JSON file or documentation.

In our example, ARVALID is mapped to bit 83, so we must specify 0x00080000
in both the Signal Mask [95:64] and Signal Compare [95:64] fields.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Configuring the ELA-500 use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 19

f. Click Apply > OK.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Running the ELA use case scripts

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 19

5 Running the ELA use case scripts
1. Program the ELA configuration registers:

a. Navigate to: Scripts view > Use case > Scripts in <path to Arm Development
Studio Workspace>\DTSLELA-500 > ela_lowlevel.py > Configure ELA.

b. Right-click Configure ELA and select Run ela_lowlevel.py::Configure ELA.

2. Run the ELA:

a. Navigate to: Scripts view > Use case > Scripts in <path to Arm Development
Studio Workspace>\DTSLELA-500 > ela_control.py > Run ELA-500.

b. Right-click Run ELA-500 and select Run ela_control.py::Run ELA-500.

3. In Development Studio, run the target.

Result: The target runs and the ELA monitors the input Signal Group 0 for the trigger condition.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Capturing the ELA trace data

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 19

6 Capturing the ELA trace data
1. The core is unable to enter halt mode debug in our debug scenario, so we must stop the

ELA:

a. Navigate to Scripts view > Use case > Scripts in <path to Arm Development
Studio Workspace>\DTSLELA-500 > ela_control.py > Stop ELA-500.

b. Right-click Stop ELA-500 and select Run ela_control.py::Stop ELA-500.

2. Dump and decode the ELA trace:

a. Navigate to: Scripts view > Use case > Scripts in <path to Arm Development
Studio Workspace>\DTSLELA-500 > ela_example.py > Decode trace data.

Note: To run the Decode trace data script, name the JSON file for the ELA
example_ela_connection.json. Also, the
example_ela_connection.json JSON file must be available in the
DTSLELA-500 project directory.

b. Right-click Decode trace data and select Configure… .

c. Under Signal groups, set State 0 to 0 and click OK.

Note: In the platform configuration, you must name the CoreSight ELA-500
device as ELA-500. This naming is done so the ELA-500 device name in the
platform configuration matches the ELA-500 device name in the Decode trace
data script.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Capturing the ELA trace data

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 19

d. Right-click Decode trace data and select Run ela_example.py::Decode trace
data.

Result: Arm DS collects the captured ELA trace data, decodes it, and outputs into
Development Studio.

Arm Debugger Tutorial Using the ELA-500 with Arm DS NA
Version 0.0

Analyzing the ELA trace capture

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 19

7 Analyzing the ELA trace capture
After performing all the previous steps, the ELA traces each read transaction and stores them
into a circular buffer. The circular buffer holds x number of read transactions, where x relates
to the size of the ELA-500 SRAM and number of signals. The read transactions came from both
explicit reads and Speculative reads. You can identify rogue accesses to the potential holes in
the memory map by analyzing the read transactions.

The following example trace capture shows several accesses, explicitly called, which were
outside the bounds of the run memory copy routine. The last address explicitly read by the core
was 0x01001fc0. The processor prefetcher continued to read memory from 0x01002000,
0x01002040, and 0x01002080. These memory accesses were to addresses that were
outside the internal target SRAM. Performing accesses outside the internal target SRAM can
cause execution issues like deadlocks. To fix any potential issues, we could configure addresses
outside the internal SRAM in the translation tables as Invalid. Configuring the translations
tables as Invalid prevent the prefetcher from prefetching from problematic regions of
memory.

Address read valid = 0x1
Shareability = Inner Shareable
Execution state = AARCH64
Cache Attr = Write-back, read/write allocate
Access size = 64 bytes
Read address = 0x01001fc0

Address read valid = 0x1
Sharability = Inner Shareable
Execution state = AARCH64
Cache Attr = Write-back, read/write allocate
Access size = 64 bytes
Read address = 0x01002000

Address read valid = 0x1
Shareability = Inner Shareable
Execution state = AARCH64
Cache Attr = Write-back, read/write allocate
Access size = 64 bytes
Read address = 0x01002040

Address read valid = 0x1
Shareability = Inner Shareable
Execution state = AARCH64
Cache Attr = Write-back, read/write allocate
Access size = 64 bytes
Read address = 0x01002080

