

 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved.

Document number: DEN0022D.b

Arm Power State Coordination Interface
Platform Design Document

Non-Confidential

Page 2 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved DEN0022D.b
 Non-Confidential

Table of Contents

About this document .. 4

 Introduction .. 9

1.1 References ... 9
1.2 Terms and abbreviations .. 10
1.3 Feedback .. 11

 Background .. 12

 Assumptions and recommendations ... 14

3.1 PSCI intended use .. 14
3.2 Exception levels, the Armv7 privilege levels, and highest privilege 14
3.3 Software stacks on Arm-based systems ... 16
3.4 Conduits ... 17
3.5 Secure world software and power management ... 17
3.6 Virtualization and core power policy .. 17

 PSCI Use Cases and Use Case Requirements... 19

4.1 Idle management .. 19
4.2 Power state system topologies and coordination .. 20
4.3 CPU hotplug and secondary CPU boot ... 24
4.4 System shutdown, reset and suspend .. 25

 Functions ... 26

5.1 Function prototypes .. 26
5.2 Arguments and return values in PSCI ... 42
5.3 PSCI_VERSION ... 43
5.4 CPU_SUSPEND ... 44
5.5 CPU_OFF ... 48
5.6 CPU_ON .. 50
5.7 AFFINITY_INFO ... 51
5.8 MIGRATE ... 52
5.9 MIGRATE_INFO_TYPE and MIGRATE_INFO_UP_CPU ... 53
5.10 SYSTEM_OFF .. 54
5.11 SYSTEM_RESET ... 55
5.12 SYSTEM_RESET2 ... 55
5.13 MEM_PROTECT .. 57
5.14 MEM_PROTECT_CHECK_RANGE ... 58
5.15 PSCI_FEATURES .. 58
5.16 CPU_FREEZE .. 59
5.17 CPU_DEFAULT_SUSPEND ... 61
5.18 NODE_HW_STATE .. 62
5.19 SYSTEM_SUSPEND .. 63
5.20 PSCI_SET_SUSPEND_MODE .. 64
5.21 PSCI_STAT_RESIDENCY/COUNT .. 65

Power State Coordination Interface

Page 3 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 Additional Implementation Details ... 67

6.1 PSCI call flows .. 67
6.2 OS and Implementation View of Cores State .. 69
6.3 Races in OS-initiated mode .. 70
6.4 Initial state after CPU_ON, CPU_SUSPEND .. 74
6.5 Recommended StateID Encoding ... 77
6.6 Implementation CPU_ON/CPU_OFF races .. 79
6.7 Discoverability .. 81
6.8 Preserving the execution context .. 82
6.9 Compliance with the PSCI Specification ... 86

Power State Coordination Interface

Page 4 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

About this document

Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved.

Release information

The Change History table lists the changes that are made to this document.

Table 1 Change history

Date Issue Confidentiality Change

13 August 2012 A Non-Confidential First release.

24 June 2013 B Non-Confidential Second release, PSCI version 0.2.

This version of the specification has the following functional changes

from the first draft proposal version of PSCI:

• Provided values for Function ID parameter of all functions.

• Added context ID parameters to CPU_ON and

CPU_SUSPEND.

• Removed DENIED return value of CPU_SUSPEND.

• Removed power_state parameter for CPU_OFF.

• Removed INVALID_PARAMETERS for CPU_OFF.

• Specified the format for the target_cpu parameter of a

CPU_ON call to be based on MPIDR.

• Removed DENIED return value of CPU_ON.

• Added ALREADY_ON return value of CPU_ON.

• Added ON_PENDING return value of CPU_ON.

• Added INTERNAL_FAILURE return value of CPU_ON and

MIGRATE.

• Added NOT_PRESENT return value to MIGRATE.

• Renamed -3 error code from “Core Not Available” to DENIED

for MIGRATE.

• Added the following functions:

• PSCI_VERSION.

• AFFINITY_INFO.

• MIGRATE_INFO_TYPE.

• MIGRATE_INFO_UP_CPU.

• SYSTEM_OFF.

• SYSTEM_RESET.

• Defined a version number for PSCI, at the time of writing, 0.2.

• Made all functions apart from MIGRATE and

MIGRATE_INFO_UP_CPU compulsory, and consequently

removed NOT_SUPPORTED return code from CPU_ON,

CPU_SUSPEND, and CPU_OFF.

Power State Coordination Interface

Page 5 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• Note that the errata fix in release C makes

MIGRATE_INFO_UP_CPU optional by allowing

NOT_SUPPORTED as a return code.

25 Jun 2013 B.b Non-Confidential Removed inappropriate watermark, PSCI version 0.2.

30 January

2015

C Non-Confidential PSCI 1.0 release, and errata fix for PSCI 0.2.

PSCI 1.0 version of the specification has the following functional

changes from version PSCI 0.2:

• Added PSCI_FEATURES.

• Added CPU_FREEZE.

• Added CPU_DEFAULT_SUSPEND.

• Added NODE_HW_STATE.

• Added SYSTEM_SUSPEND.

• Added OS-initiated and platform coordinated mode

descriptions. This affects returns values for CPU_SUSPEND

which now adds DENIED as a possible return value.

• Added PSCI_SET_SUSPEND_MODE.

• Added PSCI_STAT_RESIDENCY.

• Added PSCI_STAT_COUNT.

• Made MIGRATE_INFO_TYPE optional by letting it return

NOT_SUPPORTED. This indicates that MIGRATE is not

required. This change applies retroactively to version 0.2 of

PSCI as an errata change.

• Relaxed requirement that caches on all CPUs must be

cleaned in the SYSTEM_OFF function (SWARCH-13).

• Clarified early returns in the CPU_SUSPEND case, both the

return value and return path (SWARCH-14, SWARCH-5).

• Clarified mandatory functions (SWARCH-4).

• Fixed MIGRATE target_cpu parameter type (SWARCH-16).

• Removed NOT_PRESENT as a possible return code for

AFFINTY_INFO. This was an erratum (SWARCH-6).

• States now pertain to power domain levels rather than affinity

levels. This ensures that affinity levels (as defined by MPIDR)

are independent from the power domain levels actually

implemented

• Relaxed AFFINITY_INFO so that it does not need to work at

affinity levels higher than zero. NODE_HW_STATE provides

alternative functionality.

• Introduced the INVALID_ADDRESS return code on functions

that take address parameters (CPU_SUSPEND, CPU_ON,

CPU_DEFAULT_SUSPEND, SYTEM_SUSPEND).

Power State Coordination Interface

Page 6 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• Closer alignment between PSCI and the SMC Calling

Conventions [4], by relaxing the need to return

INVALID_PARAMETERS when there is a mismatch between

the Execution state of the caller (AArch32/64) and the SMC

function identifier (SMC32/SMC64) From PSCI1.0, every

AArch32 call to an SMC64 call will return NOT_SUPPORTED,

and an AArch64 OS is free to call an SMC32 call (SWARCH-

1). This affects: CPU_SUSPEND, CPU_ON, AFFINITY_INFO,

MIGRATE, and MIGRATE_INFO_CPU.

21 April 2017 D Non-Confidential PSCI 1.1. release.

PSCI 1.1 is a minor revision update, with the following changes:

• Introduced SYSTEM_RESET2 and MEM_PROTECT and

MEM_PROTECT_CHECK_RANGE.

• Added additional details on registers that should be initialized

when EL2 is not used.

• Updated save restore language to make it more generic. See

section 6.8.

• Removed big.LITTLE migration language.

• Added flexibility in encoding of power state parameters in

statistics calls.

• Added clarification to GICv3 ITS save and restore.

June 2021 D.b Non-Confidential PSCI 1.1 issue D.b.

This is an update with the following changes:

• Change License terms.

• Replace terms master with requester.

• Miscellaneous fixes and formatting changes.

• Reflect introduction of S-EL2 in Armv8.4.

• Add support, via PSCI_FEATURES, for discovering if

SMCCC_VERSION is implemented. This change is retrospectively

applicable from PSCIv1.0.

Power State Coordination Interface

Page 7 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes
no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licensee
is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon giving
written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or by
Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of this
Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

 This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between
the English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to

Power State Coordination Interface

Page 8 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
https://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

Power State Coordination Interface

Page 9 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 Introduction

This document defines a standard interface for power management that can be used by OS vendors for
supervisory software working at different levels of privilege on an Arm device. Rich operating systems
like Linux and Windows, hypervisors, secure firmware, and Trusted OS implementations must
interoperate when power is being managed. The aim of this standard is to ease the integration between
supervisory software from different vendors working at different privilege levels.

The interface is aimed at the generalization of code in the following power management scenarios:

• Core idle management.

• Dynamic addition and removal of cores, and secondary core boot.

• System shutdown and reset.

The interface does not cover Dynamic Voltage and Frequency Scaling (DVFS) or device power
management (for example, management of peripherals such as GPUs).

The interface is designed so that it can work in conjunction with hardware discovery technologies such
as Advanced Configuration and Power Interface (ACPI) and Flattened Device Tree (FDT). It is not a
replacement for ACPI or FDT.

This document describes PSCI versions 1.1, 1.0, and 0.2. For PSCI 0.2, the document provides an
errata fix update. The PSCI 0.2 erratum applies to a single function and is described in section 5.1.7.

The document is arranged into the following sections:

• Section 1 provides this introduction and references.

• Section 2-4 provide background materials, including:

o Intended uses of PSCI.

o Background definitions of power state terms.

o Methods by which PSCI requests are made.

o Arm architecture background.

• Section 5 provides the main description of the PSCI functions.

• Section 6 provides additional implementation details.

• Sections 7 and 8 provide a revision history of the PSCI specification and a glossary.

Readers already familiar with PSCI can skip straight to section 5.

1.1 References

This section lists publications by Arm and by third parties.

See http://developer.arm.com for access to Arm documentation.

1.1.1 Arm publications

The following documents contain information that is relevant to this document:

[1] Arm Architecture Reference Manual Armv7-A and Armv7-R edition (ARM DDI 0406).

[2] Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).

[3] Program Flow Trace Architecture Specification (ARM IHI 0035).

http://developer.arm.com/

Power State Coordination Interface

Page 10 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

[4] SMC Calling Convention (ARM DEN 0028).

[5] Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile (ARM DDI 0487).

[6] Advanced Configuration and Power Interface Specification.
See http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf.

[7] PSCI device tree definition.
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt.

[8] Arm Trusted Firmware.
See https://github.com/ARM-software/arm-trusted-firmware

[9] Power Control System Architecture Specification (ARM DEN 0050).

[10] Firmware Framework for Arm v8-A (ARM DEN 0077)

1.2 Terms and abbreviations

The following table describes some of the terms used in this document.

See also Arm Glossary https://developer.arm.com/documentation/aeg0014/latest.

Term Meaning

ACPI The Advanced Configuration and Power Interface specification. This

defines a standard for device configuration and power management by an

OS.

FDT Flattened Device Tree. This is a hardware description standard. Firmware

tables are constructed that describe the hardware. These tables are

passed to the OS at boot time. An OS can interrogate the data they contain

when it needs to discover the hardware properties of a device.

HVC The Hypervisor Call instruction or the associated exception. This requests

a hypervisor function, causing the core to enter EL2.

MP (Multi-

Processor)

A software stack, typically an OS that supports simultaneous operation

across multiple cores.

Normal world The execution environment when the core is in the Non-secure state.

OSPM

Operating System-directed Power Management. Typically, this acronym

refers to the components of an OS that provide power management for the

platform. In this document OSPM refers to software components that are

involved in the selection and application of power states for individual cores

or clusters, or overall system states.

Requester An agent in a computing system that is capable of initiating memory

transactions.

Rich OS Application OS such as Linux or Windows.

Secure

Partition (SP)

Software component that executes in S-EL1 or S-EL0 under the control of

the Secure Partition Manager (SPM). A SP could implement a variety of

use cases e.g., a Trusted OS, device driver stack or a security service. For

more details refer to Firmware Framework for Arm v8-A [10].

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://github.com/ARM-software/arm-trusted-firmware
https://developer.arm.com/documentation/aeg0014/latest

Power State Coordination Interface

Page 11 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Secure

Partition

Manager

(SPM)

Software component that resides in Secure Platform Firmware (SPF) and

is responsible for managing SPs. For more details refer to Firmware

Framework for Arm v8-A [10].

Secure

Platform

Firmware

(SPF)

Owned by the silicon vendor and OEM. This firmware layer is the first thing

that runs at boot on an application processor. It provides several services,

including platform initialization, the installation of the Trusted OS or SP,

and routing of Secure Monitor Calls. Some calls are destined for the SPF

and some are destined for the Trusted OS or SP. SPF can run in EL3,

Secure EL2 and Secure EL1 on Armv8 systems using AArch64 in EL3. For

Armv7 systems, or Armv8 systems using AArch32 at EL3, SPF executes in

EL3. The SPF must include the implementation that acts on power

management requests made via the Power State Coordination Interface.

Secure world The execution environment when the core is in the Secure state. When the

core is executing in EL3 it is in Secure state.

SMC The Secure Monitor Call instruction or the associated exception. This

requests a Secure Monitor function, causing the core to enter EL3 a higher

exception level.

Trusted OS This is the OS running in the Secure world. It provides a Trusted Execution

Environment.

UP

(Uniprocessor)

A software stack typically an OS that does not support simultaneous

operation across multiple cores.

1.3 Feedback

Arm welcomes feedback on its documentation.

1.3.1 Feedback on this manual

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Provide:

• The title.

• The document and version number, DEN0022D.b.

• The page numbers to which your comments apply.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

file://///vboxsrv/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/02U2SM8S/errata@arm.com

Power State Coordination Interface

Page 12 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 Background

Power management aware operating systems dynamically change the power states of cores, balancing
the available compute capacity to match the current workload, while striving to use the minimum
amount of power. Some of these techniques dynamically switch cores on and off or place them in
quiescent states, where they no longer perform computation. This means they consume very little
power. The main examples of these techniques are:

Idle Management: When the kernel in an OS has no threads to schedule on a core, it places that core
into a clock-gated, retention, or even fully power-gated state. However, the core remains
available to the OS.

Hotplug: Cores are physically switched off when compute demand is low, and then brought back online
when it increases. The OS migrates all interrupts and threads away from the cores that are
taken offline and rebalances the load when they are brought back online.

Although it would be simpler to consider the software of an embedded system to be provided by a
single vendor, in most situations this is not the case, even when the end device is delivered with fixed
functionality. The Arm architecture defines a set of Exception levels [5] that support the required
partitioning of the software stack used on a device. Table 2 shows this partitioning and indicates the
typical vendor of each level of the stack:

Table 2 Typical partitioning of software on a system that complies with the Arm architecture

AArch32 state AArch64 state Stack and typical vendor

Non-secure EL0 (PL0) Non-secure EL0
Unprivileged applications, such as applications
downloaded from an App Store.

Non-secure EL1 (PL1) Non-secure EL1
Rich OS kernels from, for example, Linux,
Microsoft Windows, iOS.

Non-secure EL2 (PL2) Non-secure EL2
Hypervisors, from vendors such as Citrix,
VMWare, or OK-Labs.

Secure EL0 (PL0) Secure EL0 Trusted OS applications.

Secure EL3 (PL1) Secure EL1
Trusted OS kernels from Trusted OS vendors
such as Trustonic.

Not Applicable
Secure EL2
(Armv8.4 and later)

Secure Partition Managers such as Hafnium.

Secure EL3 (PL1) Secure EL3

Secure Monitor, executing secure platform
firmware provided by Silicon vendors and
OEMs.

Arm Trusted Firmware.

Power State Coordination Interface

Page 13 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Note: AArch32 state is the 32-bit Armv8 Execution state, and the Execution state used by all Arm
processors before Armv8. In an Armv7 processor, the Exception levels are implicit, and not
identified by the processor documentation. The Virtualization Extensions provide the EL2
functionality, and the Security Extensions provide the EL3 functionality, and within a Security
state the Privilege level (PL) identifies the Exception level hierarchy. For more information,
see section 3.2.

As various operating systems from different vendors can be present in an Arm system, performing
power control requires a method of collaboration. Considering operation in Non-secure state, if a
supervisory system that is managing power, whether it is executing at the OS level (EL1) or at
hypervisor level (EL2), wants to enter an idle state, power up or power down a core, or reset or shut
down the system, supervisory systems at other Exception levels will need to react to the power state
change request.

Equally, if the power state of a core is changed by a wakeup event, it might be necessary for
supervisory systems running at Exception levels to perform actions such as restoring context. PSCI
provides a standard interface definition to support this interoperation and integration across the various
supervisory systems. This document defines such an interface, the Power State Coordination Interface,
and describes its use for idle, hotplug, shutdown, and reset.

Power State Coordination Interface

Page 14 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 Assumptions and recommendations

This document defines an API that can be used to coordinate power control among supervisory
systems concurrently running on a device. As the following sections explain, the API allows a
supervisory system to request cores to be powered up or down, and to request context transfer of
secure context from one core to another, which might be needed when dealing with trusted OSs or SPs.
Throughout the description, the document generally assumes that EL2 and EL3 are both implemented,
but also covers other cases.

3.1 PSCI intended use

PSCI has the following intended uses:

• Provides a generic interface that supervisory software can use to manage power in the following
situations:

• Core idle management.

• Dynamic addition of cores to and removal of cores from the system, often referred to as
hotplug.

• Secondary core boot.

• Moving trusted OS context from one core to another.

• System shutdown and reset.

• Provides an interface that supervisory software can use in conjunction with Firmware Table (FDT
and ACPI) descriptions to support the generalization of power management code.

PSCI does not cover:

• Peripheral idle management. PSCI only applies to idle management of the cores used by the central
scheduler of supervisory software.

• Dynamic Voltage and Frequency Scaling. PSCI does not provide interfaces for the management of
core clock frequencies on a device.

PSCI does not provide power state representations to supervisory software. However, it is designed so
that it can also be used with hardware description technologies such as ACPI or FDT.

3.2 Exception levels, the Armv7 privilege levels, and highest privilege

Armv8 introduces explicit Exception levels that also define the software execution privilege hierarchy
within a Security state. An increase in Exception level, for example from EL0 to EL1, corresponds to an
increase in execution privilege.

In Armv7, the Exception level hierarchy is implicit in the architecture:

• The Virtualization Extensions provide the EL2 functionality. This is present only in Non-secure state.

• The Security Extensions provide the EL3 functionality, including the support for two Security states.
The control features of this functionality are provided by a Monitor mode that is present only in
Secure state.

The Armv7 architecture [1] uses Privilege levels (PLs) to describe the software execution privilege
hierarchy. Because Monitor mode was defined as a peer of the other Secure state privileged processor

Power State Coordination Interface

Page 15 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

modes, this means the Armv7 privilege levels are asymmetrical between Non-secure state and Secure
state, as follows:

• In Non-secure state, the privilege level hierarchy is:

• PL0, unprivileged. Applies to User mode.

• PL1, OS-level privilege. Applies to System, FIQ, IRQ, Supervisor, Abort, and Undefined
modes.

• PL2, hypervisor privilege. Applies to Hyp mode.

• In Secure state, the privilege level hierarchy is:

• Secure PL0, unprivileged. Applies only to User mode.

• Secure PL1, Trusted OS, and Monitor level privilege. Applies to System, FIQ, IRQ,
Supervisor, Abort, Undefined, and Monitor modes.

In the AArch32 description of execution privilege [5], which applies to both Armv7 and Armv8
implementations, the processor modes map to the Exception levels as follows:

• In Non-secure state, the processor modes implemented at each Exception level are:

• EL0: User mode.

• EL1: System, FIQ, IRQ, Supervisor, Abort, and Undefined modes.

• EL2: Hyp mode.

• In Secure state, the processor modes implemented at each Exception level are:

• Secure EL0: User mode.

• EL3: System, FIQ, IRQ, Supervisor, Abort, Undefined, and Monitor modes.

Note: In an Armv8 implementation, this mapping of the Secure modes applies only when EL3 is using
AArch32. When EL3 is using AArch64, Monitor mode is not implemented, and if Secure EL1 is
using AArch32 then Secure System, FIQ, IRQ, Supervisor, Abort, and Undefined modes are
implemented as part of Secure EL1. For more information see [5].

This document generally uses Exception level terminology. In the document:

• References to EL2, EL1 and EL0 refer to Non-secure exception levels unless otherwise indicated.
Secure EL2, Secure EL1 and Secure EL0 are also referred to as S-EL2, S-EL1 and S-EL0.

• Highest privilege refers to the first implemented Exception level in the following sequence, which
runs from highest to lowest: EL3, Secure EL2, Secure EL1, Non-secure EL2, Non-secure EL1.

Power State Coordination Interface

Page 16 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

3.3 Software stacks on Arm-based systems

On a given Arm device there can be several supervisory software kernels or privileged software
components.

Figure 1 Software Layers of an Arm system

Figure 1 illustrates these various layers. The Normal (Non-secure) world has the following privileged
components:

Rich OS kernels: Examples include Linux or Windows running in Non-secure EL1. When running
under a hypervisor, the Rich OS kernels can be running as guests or hosts depending on the
hypervisor model.

Hypervisor: This component runs at Non-secure EL2. This component, when present and enabled,
provides virtualization services to guests running Rich OS kernels.

The Secure world has the following privileged components:

Secure Platform Firmware (SPF): Owned by the silicon vendor and OEM. On an application
processor, this firmware layer must be the first thing that runs at boot time. It provides several
services, including platform initialization, the installation of the Trusted OS or SP, and routing of
Secure Monitor Calls. Some calls target the SPF, and some target the Trusted OS or Secure
Partition (SP). SPF can run in EL3, S-EL2 and S-EL1 on Armv8 systems using AArch64 at EL3.
Arm strongly recommends using EL3 for SPF. For Armv7 systems, or Armv8 systems using
AArch32 at EL3, SPF executes in EL3. The implementation that acts on power management
requests issued by the Power State Coordination Interface must reside in the SPF. A reference
implementation for secure platform FW is provided by the Arm Trusted Firmware open-source
project [8].

Trusted OS: This provides secure services to the Normal world and provides a runtime environment for
executing secure applications. In AArch32 state Trusted OS software executes in Secure EL3,
and in AArch64 state it primarily executes in Secure EL1.

Note: The Arm Architecture Reference Manuals [1, 5] define two Security states, Secure and Non-
secure, and Arm processor documentation uses these state names. Arm software documentation
often refers to these states as Secure and Normal world, respectively. This reflects the fact that
software normally executes in Non-secure state.

Power State Coordination Interface

Page 17 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

The PSCI specification focuses on the interface between Secure and Normal worlds for power
management. It provides a method for issuing power management requests. To deal with the requests,
the SPF must include a PSCI implementation. The Arm Trusted Firmware project [8] provides a
reference implementation of the PSCI specification.

A PSCI implementation might require communication between the SPF and a Trusted OS or SP.
Currently, how this communication is handled is specific to individual vendors. Arm recommends using
the Firmware Framework for Arm v8-A [10] to handle this communication.

Although the PSCI specification focuses on power management requests between Secure and Normal
worlds, the interface can also be reused easily at the junction between Rich OS kernels and
hypervisors.

3.4 Conduits

The PSCI interface must support interaction at all levels of execution implemented on the device, where
multiple levels of supervisory software might be executing. For the caller operating in the Normal world,
the interface must forward a message to the Secure world. In a system that implements EL2, it must be
possible to trap interface calls made by the EL1 kernel context to the hypervisor (EL2). If the hypervisor
determines that a change of physical power state is required, it must then be able to use the same
interface to inform the Secure world.

The conduits available to transfer a message from one Exception level to another depend on the
implemented Exception levels. For further information on the description of possible conduits, see [4].

3.5 Secure world software and power management

Many Trusted OS implementations are not SMP-capable. When running on MP devices, they are tied to
a single core. Secure Monitor Calls destined for the Trusted OS are only expected to come from that
core. The lack of MP support in the OS helps to keep Trusted code simple and small, which in turn aids
certification. Trusted OS services are invoked from the Normal world through Rich OS drivers or
daemons that are provided with the Trusted OS implementations. The threads associated with these
drivers and daemons are normally affinitized to the core used by the Trusted OS.

Arm systems generally include a power controller, or control logic, that can manage core power. This
normally provides interfaces that support several power management functions. Often these include
support for transitioning cores, clusters, or a superset into low-power states. In the low-power state, the
cores are either fully switched off or in quiescent states where they are not executing code. Arm
strongly recommends that the Secure world is responsible for the control of these states.
Otherwise, cleanup of the Secure state, including Secure cache clean, is not possible prior to entering
the low-power state. Other forms of power management, such as dynamic performance management
through voltage and frequency scaling, are not covered by this interface. Arm strongly recommends
that all policy in power and performance management is performed in the Normal world. The
Normal world has greater visibility of the current use and purpose of a given device. Where the Secure
world has performance requirements, Arm recommends that IMPLEMENTATION DEFINED
mechanisms are used to communicate those requirements to the Normal world.

3.6 Virtualization and core power policy

Hypervisors are broadly split into two basic types:

Type 1: Sometimes described as native or bare metal. Type 1 hypervisors execute directly on the
hardware. Any application guest OS sees a virtualized view of this hardware.

Power State Coordination Interface

Page 18 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Type 2: Sometimes described as hosted. Type 2 hypervisors run within a host OS. The host OS has a
physical view of the hardware it runs on, but guest operating systems see a virtualized view.

This is a very broad categorization. In reality, there are variations on the above. The Armv8 architecture
allows running a type 2 hypervisor at EL1 or EL2. This blurs the differences between type 1 and type 2.
From a power management perspective, and for the purposes of this document, a type 2 hypervisor or
host running at EL2, is analogous to a type 1 hypervisor. However, in general terms these two
abstractions capture the forms of power management required by the hypervisors.

From the point of view of power management and virtualization there are two types of OSPM:

Physical OSPM: This comprises the software components that select the physical power states.

Virtual OSPM: This is an OSPM that is present in a guest OS running a virtual machine, which selects
virtual, rather than physical power states.

With type 2 hypervisors, the physical OSPM resides in the host. Actual power policy is controlled from a
Rich OS typically running at EL1. The physical OSPM is contained in this Rich OS. This layer has a
physical view of the cores. An example of this is shown in Figure 2 on the left-hand side.

Figure 2 Typical Power management models in virtualization

For the power management functions covered in this document, type 2 hypervisor behavior depends on
the caller. If the caller is the host, the hypervisor complies with the power request or allows the call to
pass straight through to the secure platform firmware. The hypervisor typically only performs any
necessary operations resulting from the call, for example, saving state on a powerdown if needed. From
this point onwards, the hypervisor calls through to the secure platform firmware using the parameters
supplied by the caller. If no special operations are required, the hypervisor does not even trap calls from
the host, and instead routes them directly to the secure platform firmware. Guests, on the other hand,
use a virtual OSPM. They can also issue power requests through the PSCI APIs, but the requests are
issued in relation to virtual cores and virtual power states. These requests are trapped by the
hypervisor, which issues them back to the physical OSPM. This component can then determine
whether physical power management is required. For these guests, the power calls effectively terminate
at the hypervisor.

With a type 1 hypervisor, power policy is typically owned entirely by the hypervisor. This is shown on
the right-hand side in Figure 2. The physical OSPM is implemented in the hypervisor. In this case all
guests have a virtualized view of the cores. The hypervisor determines from the virtual power states of
the guests whether physical power control is required, and if so, uses the PSCI API to coordinate with
the secure platform firmware. Guests can also use this API to communicate virtual power requirements
to the hypervisor. For these guests, the calls effectively terminate at the hypervisor.

In some cases, type 1 hypervisors delegate power management to a privileged guest. In these cases,
the physical OSPM is implemented in that privileged guest. This power management approach is
equivalent to the model for type 2 hypervisors that is shown in Figure 2.

Power State Coordination Interface

Page 19 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 PSCI Use Cases and Use Case Requirements

4.1 Idle management

When a core is idle, the OSPM transitions it into a low-power state. Typically, a choice of states is
available, with different entry and exit latencies, and different levels of power consumption associated
with each state. The state that is used typically depends on how quickly the core will be needed again.
The power states that can be used at any one time might also depend on the activity of other
components in a SoC, in addition to the cores. Each state is defined by the set of components that are
clock-gated or power-gated when the state is entered. States are sometimes described as being
shallow or deep. Typically, a state X is said to be deeper than a state Y if:

• The set of components that are powered down in state X subsumes and is a superset of the
corresponding set for state Y.

• The set of components that is powered down in state X is the same as the corresponding set for
state Y, but various power modes are supported, and the modes used in state X save more
power than those used in state Y.

The time required to move from a low-power state to a running state is known as the wakeup latency.
Generally, deeper power states have longer wakeup latencies, but this is not necessarily always the
case.

Although idle power management is driven by thread behavior on a core, the OSPM can place the
platform into states that affect many other components beyond the core itself. For example, if the last
core in a SoC goes idle, the OSPM can target power states that affect the whole SoC. The choice is
also driven by the use of other components in the system, and therefore might require coordination
among multiple agents. A typical example is placing the system into a state where memory is in self-
refresh when all cores, and any other requesters, are idle. The OSPM has to provide the necessary
power management software infrastructure to determine the correct choice of state.

In idle management, when a core has been placed into a low-power state, it can be reactivated at any
time by a wakeup event, which is an event that might wake up a core from a low-power state, such as
an interrupt. No explicit command is required by the OSPM to bring the core or cluster back into
operation. The OSPM considers the affected core or cores to be always available even if they are
currently in a low-power state.

An Arm core can be in any of the following power states:

Run: The core is powered up and operational.

Standby: The core is powered up, but measures are employed to reduce energy consumption. In a
typical implementation, the core enters standby by executing a WFI or WFE instruction and exits
on a corresponding wakeup event. The core preserves all core state. Changing from standby to
running operation does not require a reset of the core. In standby, all core context is maintained,
and can be directly accessed on wakeup. No special actions are required by the OS to ensure
that context is maintained. An external debugger can access debug registers in the core power
domain [1,5].

Retention: The core state, including the debug settings, is preserved in low-power structures, allowing
the core to be at least partially turned off. Changing from low-power retention to running
operation does not require a reset of the core. The saved core state is restored on changing
from low-power retention state to running operation. From an OS point of view, there is no
difference between a retention state and standby state, other than the method of entry, latency,
and usage-related constraints. However, from an external debugger point of view, the states

Power State Coordination Interface

Page 20 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

differ as External Debug Request debug events stay pending and debug registers in the core
power domain cannot be accessed [1, 5].

Powerdown: In this state the core is powered off. Software on the device needs to save all core state,
 so that it can be preserved over the powerdown. Changing from powerdown to running
 operation must include:

• A reset of the core, after the power has been restored.

• Restoring the saved core state.

The defining characteristic of powerdown states is that they are destructive of context. This affects all
the components that are switched off in the state, including the core, and in deeper states other
components of the system such as the GIC or platform-specific IP. Depending on how debug and trace
power domains are organized, in some powerdown states one or both of debug and trace contexts
might be lost. Mechanisms must be provided to enable the OS to perform the relevant context saving
and restoring for each given state. Resumption of execution starts at the reset vector, after which each
OS must restore its context.

To an OS that is managing power, a standby state is mostly indistinguishable from a retention state.
The difference is evident to an external debugger, and in hardware implementation, but not evident to
the idle management subsystem of an OS. Consequently, unless otherwise stated, this document uses
the term standby to refer to both standby and retention states.

An interface is required so that the OSPM can place a core into a low-power state when it has no work
for it. The messages sent through this interface must be received by all relevant levels of execution.
That is, if EL2 and EL3 are implemented, a message sent by a Rich OS must be received by a
hypervisor and the Secure world. Within the Secure world the message needs to be seen by a Trusted
OS or SP, if present, and by any secure platform firmware. This means that each level of supervisory
software can determine whether it must perform context saving.

Arm expects the Exception level with the highest privilege, as defined in section 3.2, to be the
component that can program the power controller to enter an idle state. Typically, this is the secure
platform firmware. PSCI provides a mechanism for the OSPM to pass the desired idle state to the next
Exception level.

For standby states that do not require any explicit programming of the power controller, no specific
interface is required. The OSPM can use WFI or WFE instructions directly. However, for deeper standby

or retention states that require programming a power controller, PSCI provides an interface that can
hide the platform-specific code that accesses the power controller.

Powerdown states require an interface so that each level of execution can save and restore its context
appropriately. For powerdown states, the interface requires a return address. This is the address at
which the calling OS expects resumption of execution on wakeup at its Exception level. From a
powered-down state, the core restarts at the reset vector, in Secure state if the implementation includes
EL3. After initializing, the Secure world must re-start execution of the OS that called the powerdown
interface, at the required return address. PSCI provides a method of specifying return addresses, and
cookies that can be used for pointers to saved context.

4.2 Power state system topologies and coordination

Multiprocessor systems can have several different power domains to power different elements of the
system. Each power domain might contain a combination of one or more processing elements (such as
cores, coprocessors, or GPUs), memories (caches, DRAMs), and fabric (for example inter-cluster and
intra-cluster coherency fabric). PSCA [1] provides detailed descriptions of how power domains can be
constructed in systems that use Arm components.

Power State Coordination Interface

Page 21 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Each component in a power domain has a set of power states that affect the components in the
domain. Although physically the power domains are not necessarily built in a hierarchical fashion, from
a software control point of view, they are arranged in a logical hierarchy. The hierarchy arises out of
ordering dependencies that are required when placing the power domains into different power states.
For example, consider a power domain that encompasses a shared cache, and power domains for the
cores that use it. In such a system, the core power domains must be powered down before the shared
cache domain, to guarantee correct operation.

System Level

Power States:

• Retention

• Power-Down

Cluster Level

Cluster 1

Power States:

• Retention

• Power-Down

Cluster Level

Cluster 0

Power States:

• Retention

• Power-Down

Core Level

Core 0

Power States:

• Standby (clock gate)

• Retention

• Power-Down

Core Level

Core 1

Power States:

• Standby (clock gate)

• Retention

• Power-Down

Core Level

Core 2

Power States:

• Standby (clock gate)

• Retention

• Power-Down

Core Level

Core 3

Power States:

• Standby (clock gate)

• Retention

• Power-Down

Figure 3 Example power domain topology

The diagram above shows the power domain topology of an example system. The example shows a
system-level power domain that supports two power states. This power domain has two children power
domains, each of which includes a cluster and supports a set of cluster power states. Each cluster
power domain has two children core-level power domains. Each of the core-level power domains
includes a core and supports additional power states.

From a hardware perspective, a system is divided into multiple exclusive or shared power domains.
Each power domain can be represented as a node in a power domain topology tree. Sibling power
domains are mutually exclusive. Parent power domains are shared by the children. The various levels
in the tree (core, cluster, and system in the example) are referred to as power levels. Higher levels are
closer to the root of the tree (system) and lower levels are closer to the leaves (the cores).

4.2.1 Local power states and composite power states

Individual nodes in a topology have their own specific power states, which are referred to here as local
power states. When an OS, running on an idle core, requests a power state, it might need to express
not just a local power state for the core, but also for any parent nodes. For instance, taking our example
system from Figure 3, if Core 1 was the last to go idle in Cluster 0, it would make sense for the OS to
request a local power state for the cluster as well as the core. We refer to the combined power state
that an OS might request as a composite power state. Not every combination of local states is possible.
When a node at a power level is in a certain local power state, parent nodes at higher power levels
cannot be in a deeper local state. In other words:

1. A powerdown in a higher-level node can only be combined with powerdown states in lower-
level children.

Power State Coordination Interface

Page 22 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

2. A retention state in a higher-level node might only be combined with retention or powerdown
states in lower-level children.

3. A standby (clock-gated) state in a higher-level node allows lower-level children to be in standby,
retention, or powerdown states.

4. A running state in a higher-level node allows lower-level children to be in any state.

Note: The PSCI specification is only concerned with power states that require explicit software control.
Hardware power modes, which are not exposed to software, are not relevant to PSCI.

Taking these rules into account, Table 3 illustrates the valid low-power composite states for the
example system described in Figure 3.

Table 3 Valid local state combinations for composite power states in the example system

System Level State Cluster Level State Core Level State

Run Run Standby

Run Run Retention

Run Run Powerdown

Run Retention Retention

Run Retention Powerdown

Run Powerdown Powerdown

Retention Retention Retention

Retention Retention Powerdown

Retention Powerdown Powerdown

Powerdown Powerdown Powerdown

4.2.2 Affinity hierarchy

Arm systems can have multiple cores or even multiple clusters of cores. This specification uses the
term affinity hierarchy to describe the hierarchical arrangement of cores. This often, but not always,
maps directly to the processor power topology of the system.

This specification uses the term affinity level to describe a level in the affinity hierarchy, for example, the
level of cores or clusters. Finally, the term affinity instance is used to refer to an individual entry in the
affinity hierarchy, for example, an individual core or cluster.

4.2.3 Power state coordination

Entry into local power states for high-level nodes in a power topology (for example, clusters or system)
requires coordinating children nodes. For example, entry into a cluster powerdown state is only possible
when all cores in the cluster are powered down. To achieve this, every core but the last one must be
placed into a powerdown state, and the last one places itself and the cluster into a powerdown state.

PSCI supports two modes of power state coordination, platform-coordinated mode, and OS-initiated
mode.

Power State Coordination Interface

Page 23 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

4.2.3.1 Platform-coordinated mode

This is the default mode of coordination. In this mode, the PSCI implementation is responsible for
coordinating power states. When a core has no more work to do, the OSPM requests the deepest state
it can tolerate for that core and its parent nodes. For power state requests that affect a topology node
above the core level, the implementation chooses the deepest power state that can be tolerated by all
the cores in the node. In effect, the power state request expresses the following two constraints:

1. The caller allows entry to states up to this depth, but no deeper.

2. The caller cannot tolerate a higher wakeup latency than that associated with the requested
state.

The PSCI implementation then determines the deepest state that satisfies the constraints expressed by
each core in a given node. Table 4 builds on the example system of Figure 3, and shows how
composite power state requests are arbitrated for that system. In the example, the abbreviations Ret
and PD denote retention and powerdown, respectively. The example is not exhaustive and assumes
that Cluster 1 has already been powered down. The example shows requests from Core0 and Core1,
and the resulting power state for the clusters and the system.

Table 4 Example platform coordination of power state requests.

Composite state requested Power state granted

Core 0 Core 1

Cluster 0

Cluster 1
(we assume this
has already
powered down)

 System C
o

re

C
lu

s
te

r

S
y
s
te

m

C
o

re

C
lu

s
te

r

S
y
s
te

m

Ret Run Run Ret Run Run Run Powerdown Run

Ret Ret Run Ret Run Run Run Powerdown Run

Ret Ret Run Ret Ret Run Retention Powerdown Run

Ret Ret Ret Ret Ret Run Retention Powerdown Run

Ret Ret Ret Ret Ret Ret Retention Powerdown Retention

PD Ret Ret Ret Ret Ret Retention Powerdown Retention

PD PD Ret PD Ret Ret Retention Powerdown Retention

PD PD Ret PD PD Ret Powerdown Powerdown Retention

PD PD PD PD PD Ret Powerdown Powerdown Retention

PD PD PD PD PD PD Powerdown Powerdown Powerdown

As a general rule, wakeup latency increases with depth of state, so in the example above we are
assuming that the retention (for core, cluster, or system) has smaller wakeup latency than powerdown.
However, this is not necessarily the case. There might be systems where this ordering breaks. As
stated by the second constraint above, the state chosen by the implementation must satisfy the wakeup
time associated with every core’s request. Consider a dual core system that has three system-level
states, ordered by increasing depth, state A, state B, and state C, but where wakeup latency ordering is
state A < state C < state B. If Core 0 chooses State B and Core 1 chooses State C, the system will
need to enter state A. State C is not possible as Core 0 does not want to go that deep, and State B is
not possible as Core 1 cannot tolerate its longer wakeup latency.

Versions of PSCI prior to 1.0 support only the platform-coordinated mode.

Power State Coordination Interface

Page 24 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

4.2.3.2 OS-initiated mode

Introduced in PSCI 1.0, OS-initiated mode places the responsibility for coordination on the calling OS.
In the OS-initiated coordination scheme, OSPM only requests an idle state for a particular topology
node when the last underlying core goes idle.

When a core goes idle it always selects an idle state for itself, but idle states for higher-level nodes such
as clusters are only selected when the last running core in the node goes idle. In addition, the
implementation only considers the most recent request for a particular node when deciding on its idle
state. Using the above example of a dual cluster, dual core per cluster system, the following table
illustrates the steps involved in taking Cluster0 into a powerdown state. In the example, abbreviations
R, Ret, and PD, denote run, retention and powerdown, respectively. In addition, states where OS view
and implementation view differ are marked in red, and states that change during a step are underlined.

Table 5 Example flow: Cluster powerdown entry

Step

OS View PSCI View
C

o
re

0

C
o

re
1

C
lu

s
te

r0

C
o

re
0

C
o

re
1

C
lu

s
te

r0

1: OS on Core0 requests Core0
powerdown

before R R R R R R

after PD R R R R R

2: PSCI Implementation observes
request and places Core0 into
powerdown

before PD R R R R R

after PD R R PD R R

3: OS on Core1 requests Core1
powerdown and, knowing it is last in the
cluster, Cluster0 powerdown

before PD R R PD R R

after PD PD PD PD R R

4: PSCI Implementation observes
requests for Core1 and Cluster0 and
processes them

before PD PD PD PD R R

after PD PD PD PD PD PD

As the table illustrates, there are periods (marked in red) where the OS view of core state and the
implementation view of core state do not match. This might happen after the OS requests a state, but
before the implementation has processed the request. This can also happen when a core powers up, as
the implementation sees the core before the OS. To implement OS-initiated mode, it is necessary to
deal with the races that arise due to the differing views of core state. Solving the races gives rise to the
following requirements:

• The implementation must deny any requests from the calling OS that are inconsistent with its
view of core state.

• The calling OS must indicate when the calling core is the last running core at a particular power
hierarchy level. It must also specify which power hierarchy level the core is last in, for example,
whether it is the last core in the cluster or the last core in the system.

A full discussion of the reasoning behind these requirements, and races that arise is described in
sections 6.2 and 6.3.

4.3 CPU hotplug and secondary CPU boot

CPU hotplug is a technique that can dynamically switch cores on or off. Hotplug can be used by an
OSPM to change available compute capacity based on current compute requirements. Hotplug is also

Power State Coordination Interface

Page 25 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

sometimes used for reliability reasons. There are several differences between using hotplug and using
a powerdown state in idle management:

1) When a core is hot unplugged, the supervisory software stops all use of that core in interrupt
and thread processing. The calling supervisory software regards the core as no longer available.

2) The supervisory software must issue an explicit command to bring a core back online, that is, to
hotplug a core. The appropriate supervisory software only starts using that core in thread
scheduling, or interrupt service routines, after this command.

3) With hotplug, wakeup events that could restart a powered-down core are not expected on the
cores that have been hot unplugged.

Operating systems typically perform much of the kernel boot process on one primary core, bringing
secondary cores online at a later stage. For systems that support hotplug, the operations involved in
booting a core for secondary boot or hotplug, are the same. Therefore, they can be provided as a single
interface.

When using a uniprocessor Trusted OS, hot removal of a core might not be possible without first
migrating the Trusted OS.

PSCI provides an interface with the following properties:

1) The supervisory software can request that a core be powered up. The supervisory software
must provide an appropriate start address for the Non-secure Exception Level where it will
resume operation when it exits the secure platform firmware. The provision of a start address
means the caller can shortcut any bootloader-related code when onlining a core, by providing an
entry point directly in its own OS address space. Different addresses can be provided to handle
different startup reasons. Alternatively, the supervisory software can use internal per-core data
structures for this purpose.

2) The supervisory software can request powering down the core and inform higher Exception
levels that it is doing so.

3) The supervisory software can request that the Trusted OS, if present, be migrated to another
core.

4.4 System shutdown, reset and suspend

PSCI provides an interface to allow an OS to request system shutdown, system reset, and system
suspend (suspend to RAM). This allows a silicon vendor to provide a common implementation of these
functions that is independent of the supervisory software running on the device. No explicit function is
provided for suspend to disk, as this is a special case of system shutdown.

The usage of the term system in the PSCI function definitions refers to the machine view that is
available to the calling OS. If the caller is a guest running in a virtual machine system, shutdown, reset,
and suspend operations affect the virtual machine and might not result in any physical power changes.
However, if a hypervisor is not present, or the caller is a hypervisor, the result is physical changes in
power. Even if the caller is running on a physical machine, the term system might not mean the entire
physical machine. For example, consider an advanced server system consisting of multiple boards,
each with a board management controller (BMC), and each containing multiple SoCs. Such a system
could run an OS instance per SoC. In this example, a PSCI command to shut down the system applies
to a single SoC, while powering down the entire board requires access to the BMC through an
administration interface that is beyond the reach of the calling OS or a PSCI implementation. In this
document, the term system refers only to the machine view that is visible to an OS. In the example
above, this maps to a single SoC.

Power State Coordination Interface

Page 26 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 Functions

This section introduces the functions for Power State Coordination.

The APIs are described here without reference to the underlying conduit (SMC or HVC). However, the
functions adhere to the SMC Calling Conventions [4]. In an implementation that includes EL2 but not
EL3, a hypervisor providing support to a PSCI-compliant EL1 Rich OS can use HVC as the conduit. In
the HVC case, the format of the call, in terms of immediate value, and register usage, is the same as in
the SMC case. PSCI functions can only be called from the Normal world (EL1 or EL2).

5.1 Function prototypes

5.1.1 PSCI_VERSION

Description

Return the version of PSCI implemented. See section 5.3 for more details.

Parameters

Declaration Value

uint32 Function ID 0x8400 0000

Return

Declaration Value

uint32
• Bits[31:16] Major Version

• Bits[15:0] Minor Version

5.1.2 CPU_SUSPEND

Description

Suspend execution on a core or higher-level topology node. This call is intended for

use in idle subsystems where the core is expected to return to execution through a

wakeup event. See section 5.4 for more details.

Parameters

Declaration Value

uint32 Function ID
• 0x8400 0001 SMC32 version

• 0xC400 0001 SMC64 version

uint32

power_state
This parameter is described in section 5.4.2

Power State Coordination Interface

Page 27 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

SMC32 uint32

SMC64 uint64

entry_point_address

Address at which the core must resume execution, when it
enters the return Non-secure Exception level, following
wakeup from a powerdown state.

This parameter is only valid if the target power state is a
powerdown state. For standby states, the value passed in is
ignored.

For the SMC64 version, this parameter is a 64-bit entry point
Physical Address (PA) or Intermediate Physical Address
(IPA).

For the SMC32 version, this parameter is a 32-bit entry point
PA or IPA.

Note: An Armv7 system must use the SMC32 version of
the function. This limits the entry point addresses to
32 bits, even if the implementation includes the
Large Physical Address Extension (LPAE), as the
MMU will be disabled when the platform reenters at
this address.

SMC32 uint32

SMC64 uint64

context_id

This parameter is only valid if the target power state is a
powerdown state. For standby states the value is ignored.

For the SMC64 version, this parameter is a 64-bit value.
Following wakeup from a powerdown state, when the calling
core first enters the return Non-secure Exception level, this
value must be present in X0.

For the SMC32 version, this parameter is a 32-bit value.
Following wakeup from a powerdown state, when the calling
core first enters the return Non-secure Exception level, this
value must be present in R0.

Return

Declaration Value

int32

• SUCCESS

• INVALID_PARAMETERS

• INVALID_ADDRESS

• DENIED – Only in OS-initiated mode. See sections
4.2.3.2 and 5.4.

See section 5.2.2 for integer values associated with each return
code.

5.1.3 CPU_OFF

Description

Power down the calling core. This call is intended for use in hotplug. A core that is

powered down by CPU_OFF can only be powered up again in response to a

CPU_ON. See section 5.5 for more details.

Power State Coordination Interface

Page 28 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Parameters

Declaration Value

uint32 Function
ID

0x8400 0002

Return

Declaration Value

int32

• The call does not return when successful.

• Otherwise, it returns:

• DENIED

See section 5.2.2 for integer values associated with each return
code.

5.1.4 CPU_ON

Description

Power up a core. This call is used to power up cores that either:

• Have not yet been booted into the calling supervisory software.

• Have been previously powered down with a CPU_OFF call.

See section 5.6 for more details.

Parameters

Declaration Value

uint32 Function ID
• 0x8400 0003 SMC32 version

• 0xC400 0003 SMC64 version

Power State Coordination Interface

Page 29 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

SMC32 uint32

SMC64 uint64

target_cpu

This parameter contains a copy of the affinity fields of the
MPIDR register (See [1,5]).

If the calling Exception level is using AArch32, the format is:

• Bits[24:31]: Must be zero.

• Bits[16:23] Aff2: Match Aff2 of target core MPIDR

• Bits[8:15] Aff1: Match Aff1 of target core MPIDR

• Bits[0:7] Aff0: Match Aff0 of target core MPIDR

If the calling Exception level is using AArch64, the format is:

• Bits[40:63]: Must be zero

• Bits[32:39] Aff3: Match Aff3 of target core MPIDR

• Bits[24:31] Must be zero

• Bits[16:23] Aff2: Match Aff2 of target core MPIDR

• Bits[8:15] Aff1: Match Aff1 of target core MPIDR

• Bits[0:7] Aff0: Match Aff0 of target core MPIDR

SMC32 uint32

SMC64 uint64

entry_point_address

For the SMC64 version, this parameter is a 64-bit entry point
physical address (PA) or intermediate physical address (IPA).

For the SMC32 version this parameter is a 32-bit entry point
physical address (or IPA).

Address at which the core must commence execution, when it
enters the return Non-secure Exception level.

SMC32 uint32

SMC64 uint64

context_id

For the SMC64 version this parameter is a 64-bit value. When
the core identified by target_cpu first enters the return Non-

secure Exception level, this value must be present in X0.

For the SMC32 version this parameter is a 32-bit value. When
the core identified by target_cpu first enters the return Non-

secure Exception level, this value must be present in R0.

Return

Declaration Value

int32

• SUCCESS

• INVALID_PARAMETERS

• INVALID_ADDRESS

• ALREADY_ON

• ON_PENDING

• INTERNAL_FAILURE

See section 5.2.2 for integer values associated with each return
code.

Power State Coordination Interface

Page 30 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.1.5 AFFINITY_INFO

Description

Enable the caller to request status of an affinity instance (as defined in section 4.2.2).
See section 5.7 for more details.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 0004 SMC32 version

• 0xC400 0004 SMC64 version

SMC32 uint32

SMC64 uint64

target_affinity

In SMC32 version this is a uint32 value.

In SMC64 version this is a uint64 value.

This follows the same format as the target_cpu parameter of a
CPU_ON call (see section 5.1.4).

uint32

lowest_affinity_level

Denotes the lowest affinity level field that is valid in the
target_affinity parameter. This argument allows the caller

of AFFINITY_INFO to request information about affinity levels
higher than 0.

Possible values are:

0: All affinity level fields in target_affinity are valid. In a system
where processors are not hardware threaded, the target_affinity
parameter would represent an individual core.

1: Aff0 field must be ignored. The target_affinity parameter
denotes an affinity level 1 processing unit.

2: Aff0 and Aff1 fields must be ignored. The target_affinity
parameter denotes an affinity level 2 processing unit.

3: Aff0, Aff1 and Aff2 fields must be ignored. The target_affinity
parameter denotes an affinity level 3 processing unit.

From version 1.0 of PSCI onwards, AFFINITY_INFO is no

longer required to support affinity levels higher than 0. For more
details on return values when this parameter is non-zero, see
section 5.7.1.

Return

Declaration Value

Power State Coordination Interface

Page 31 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

int32

• 2 ON_PENDING: the affinity instance is transitioning to
an ON state

• 1 OFF

• 0 ON: At least one core in the affinity instance is ON

• INVALID_PARAMETERS

• DISABLED

See section 5.2.2 for integer values associated with each return
code.

5.1.6 MIGRATE

Description

Optional. This is used to ask a uniprocessor Trusted OS to migrate its context to a
specific core. See section 5.8 for more details.

Parameters

Declaration Value

uint32 Function
ID:

• 0x8400 0005 SMC32 version

• 0xC400 0005 SMC64 version

uint32/uint64
target_cpu

This field follows the same format as the target_cpu parameter of
a CPU_ON call (see section 5.1.4)

Return

Declaration Value

int32

• SUCCESS

• NOT_SUPPORTED

• INVALID_PARAMETERS

• DENIED

• INTERNAL_FAILURE

• NOT_PRESENT

See section 5.2.2 for integer values associated with each return
code.

5.1.7 MIGRATE_INFO_TYPE

Description

Optional. This function allows a caller to identify the level of multicore support present
in the Trusted OS. See section 5.9 for more details.

Parameters

Power State Coordination Interface

Page 32 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Declaration Value

uint32 Function ID: 0x8400 0006

Return

Declaration Value

int32

• 0 Uniprocessor migrate capable Trusted OS. The Trusted
OS will only run on one core. The Trusted OS supports
the MIGRATE function and can be migrated to any core
that has not been turned off with CPU_OFF. Attempts to
call CPU_OFF on the core where the Trusted OS is
resident, will fail with DENIED.

• 1 Uniprocessor not migrate capable Trusted OS. The
Trusted OS will only run one core. The Trusted OS does
not support the MIGRATE function . Calls to MIGRATE will
fail with DENIED. Attempts to call CPU_OFF on the core
where the Trusted OS is resident fail with DENIED.

• 2 Trusted OS is either not present or does not require
migration. A system of this type does not require the caller
to use the MIGRATE function. MIGRATE function calls
return NOT_SUPPORTED.

• NOT_SUPPORTED can be treated by the calling OS as
an indication that MIGRATE is not required, so that the
behavior is the same as for a return value of 2. This
effectively makes this function optional, as for SMC32 a
return value of NOT_SUPPORTED must be returned if the
function is not implemented.

Note that for issue B.b of this document
MIGRATE_INFO_TYPE was compulsory, and

NOT_SUPPORTED was not a valid return value. This was fixed

in issue C of this document, which acts a release of PSCI 1.0,
and an errata fix release for PSCI 0.2. Therefore, this change
applies to all versions of PSCI from 0.2 onwards.

5.1.8 MIGRATE_INFO_UP_CPU

Description

Optional. For a uniprocessor Trusted OS, this function returns the current resident
core. See section 5.9 for more details.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 0007 SMC32 version

• 0xC400 0007 SMC64 version

Power State Coordination Interface

Page 33 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Return

Declaration Value

SMC32 uint32

SMC64 uint64

• UNDEFINED if MIGRATE_INFO_TYPE returns 2 or
NOT_SUPPORTED.

• MPIDR-based value of core where the Trusted OS
is resident if return value of MIGRATE_INFO_TYPE
is 0 or 1. This field follows the same format as the
target_cpu parameter of a CPU_ON call. See
section 5.1.4 for further details.

See section 5.2.2 for integer values associated with
each return code.

5.1.9 SYSTEM_OFF

Description

Shut down the system. See section 5.10 for more details.

Parameters

Declaration Value

uint32 Function ID 0x8400 0008

Return

Declaration Value

void Does not return

5.1.10 SYSTEM_RESET

Description

Reset the system. See section 5.11 for more details.

Parameters

Declaration Value

uint32 Function ID 0x8400 0009

Return

Declaration Value

void Does not return

Power State Coordination Interface

Page 34 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.1.11 SYSTEM_RESET2

Description

Introduced in PSCI 1.1.

Optional.

This function extends SYSTEM_RESET. It provides:

• Architectural reset definitions.

• Support for vendor-specific resets.

See 5.12 for more details.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 0012 SMC32 version

• 0xC400 0012 SMC64 version

uint32 reset_type

This parameter is broken into the following fields:

• Bit[31] Reserved must be zero.

o Set to 1 for vendor-specific resets.

o Set to 0 for architectural resets.

• Bits[30:0]

o For vendor-specific resets, the format of
these bits is IMPLEMENTATION DEFINED.

o For architectural resets, the following values
are defined:

- 0x0 SYSTEM_WARM_RESET.

- All other values are reserved.

SMC32 uint32

SMC64 uint64 cookie

This parameter can be used to pass additional reset
information.

Return

Declaration Value

Int32

This call does not return when successful.

Architectural resets can use any of the following return
values on failure:

• NOT_SUPPORTED

• INVALID_PARAMETERS

Vendor-specific resets can use additional error codes.
For more information, see section 5.12.

See section 5.2.2 for integer values associated with
each return code.

Power State Coordination Interface

Page 35 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.1.12 MEM_PROTECT

Description

Introduced in PSCI 1.1.

Optional.

This function provides protection against cold reboot attacks, by ensuring that memory
is overwritten before it is handed over to an operating system loader.

See 5.13 for more details.

Parameters

Declaration Value

uint32 Function ID: 0x8400 0013

uint32 enable
A non-zero value indicates that memory protection must
be enabled. A value of zero indicates that memory
protection must be disabled.

Return

Declaration Value

Int32

On success, the call returns the previous state of
memory protection:

• 1 Enabled: Memory protection was previously

enabled.

• 0 Disabled: Memory protection was

previously disabled.

On failure, the call can return the following errors:

• NOT_SUPPORTED

See section 5.2.2 for the integer values that are
associated with each return code.

5.1.13 MEM_PROTECT_CHECK_RANGE

Description

Introduced in PSCI 1.1.

Optional.

This function can be used to check whether a memory range is protected by
MEM_PROTECT.

See 5.14 for more details.

Parameters

Declaration Value

Power State Coordination Interface

Page 36 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

uint32 Function ID:
• 0x8400 0014 SMC32 version

• 0xC400 0014 SMC64 version

uint32/64 base Base address of the region to be checked

uint32/64 length Length of the region to be checked

Return

Declaration Value

Int32

• SUCCESS

• DENIED

• NOT_SUPPORTED

See section 5.2.2 for the integer values that are
associated with each return code.

5.1.14 PSCI_FEATURES

Description

Introduced in PSCI 1.0.

Query API that allows discovering whether SMCCC_VERSION (refer SMC Calling
Convention [4]) or a specific PSCI function is implemented and its features. See
section 5.15.1 for more details.

Parameters

Declaration Value

uint32 Function
ID:

0x8400 000A

uint32
psci_func_id

Function ID of:

• PSCI Function, or

• SMCCC_VERSION

Return

Declaration Value

Power State Coordination Interface

Page 37 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Int32

• NOT_SUPPORTED if the function identified by
psci_func_id is not implemented or is an invalid

function ID.

• A set of feature flags associated with the implemented
function indicated by psci_func_id is implemented.

Feature flags are specific to each function. In all cases
the format is:

• Bit[31] is zero

• Bits[30:0] represent the feature flags. See section
5.15.2 for the defined flags.

See section 5.2.2 for integer values associated with each return
code.

5.1.15 CPU_FREEZE

Description

Introduced in PSCI 1.0.

Optional.

Places the core into an IMPLEMENTATION DEFINED low-power state. Unlike
CPU_OFF, it is still valid for interrupts to be targeted to the core. However, the core
must remain in the low-power state until a CPU_ON command is issued for it. See
section 5.16 for more details.

Parameters

Declaration Value

uint32 Function
ID:

0x8400 000B

Return

Declaration Value

Int32

• This call does not return when successful.

• Otherwise, the return values are:

• NOT_SUPPORTED

• DENIED

See section 5.2.2 for integer values associated with each return
code.

Power State Coordination Interface

Page 38 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.1.16 CPU_DEFAULT_SUSPEND

Description

Introduced in PSCI 1.0.

Optional.

Places a core into an IMPLEMENTATION DEFINED low-power state. Unlike
CPU_SUSPEND, the caller need not specify a power_state parameter. See section
5.17 for more details.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 000C SMC32 version

• 0xC400 000C SMC64 version

SMC32 uint32

SMC64 uint64

entry_point_address

As described for the CPU_SUSPEND function in section
5.1.2.

SMC32 uint32

SMC64 uint64

context_id

As described for the CPU_SUSPEND function in section
5.1.2.

Return

Declaration Value

Int32

• SUCCESS

• INVALID_ADDRESS

See section 5.2.2 for integer values associated with each
return code.

5.1.17 NODE_HW_STATE

Description

Introduced in PSCI 1.0.

Optional.

This API is intended to return the true HW state of a node in the power domain
topology of the system. See section 5.18 more details.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 000D SMC32 version

• 0xC400 000D SMC64 version

Power State Coordination Interface

Page 39 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

SMC32 uint32

SMC64 uint64

target_cpu

This field follows the same format as the target_cpu
parameter of a CPU_ON call (see section 5.1.4).

uint32 power_level

This parameter describes the power domain level for the
node. The power level parameter format is
IMPLEMENTATION DEFINED, however the value of 0 is
reserved to represent cores (or for SMT systems,
hardware threads).

Return

Declaration Value

int32

• 2 HW_STANDBY: The power control logic
indicates that the node is in a standby or retention
power state, as defined in section 4.1

• 1 HW_OFF: The power control logic indicates that
the node is fully powered down, meaning that it is
in a powerdown state, as described in section 4.1

• 0 HW_ON: The power control logic indicates that
the node is operational, and is not in a low-power
state but is in the run state described in section
4.1.

• NOT_SUPPORTED

• INVALID_PARAMETERS

See section 5.2.2 for integer values associated with each
return code.

5.1.18 SYSTEM_SUSPEND

Description

Introduced in PSCI 1.0.

Optional.

Used to implement suspend to RAM. The semantics are equivalent to a
CPU_SUSPEND to the deepest low-power state. Further detail can be found in
section 5.19.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 000E SMC32 version

• 0xC400 000E SMC64 version

Power State Coordination Interface

Page 40 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

SMC32 uint32

SMC64 uint64

entry_point_address

As described for the CPU_SUSPEND function in section
5.4.3

SMC32 uint32

SMC64 uint64

context_id

As described for the CPU_SUSPEND function in section
5.4.4.

Return

Declaration Value

Int32

• This call does not return when successful

• Otherwise, the return values are:

• NOT_SUPPORTED

• INVALID_ADDRESS

• ALREADY_ON

See section 5.2.2 for the integer values associated with
each return code.

5.1.19 PSCI_SET_ SUSPEND_MODE

Description

Introduced in PSCI 1.0.

Optional.

This API allows setting the mode used by CPU_SUSPEND to coordinate power states.

See section 4.2 for a description of coordination modes and section 5.20 for a full
description of this function.

Parameters

Declaration Value

uint32 Function ID: 0x8400 000F

uint32 mode
• 0: platform-coordinated mode

• 1: OS-initiated mode

Return

Declaration Value

Power State Coordination Interface

Page 41 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Int32

• SUCCESS

• NOT_SUPPORTED

• INVALID_PARAMETERS

• DENIED

See section 5.2.2 for integer values associated with
each return code.

5.1.20 PSCI_STAT_RESIDENCY

Description

Introduced in PSCI 1.0.

Optional.

Returns the amount of time the platform has spent in the given power state since cold
boot. See section 5.21 for more details.

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 0010 SMC32 version

• 0xC400 0010 SMC64 version

SMC32 uint32

SMC64 uint64

target_cpu

This parameter follows the same format as the
target_cpu parameter of a CPU_ON call (see section
5.1.4).

uint32 power_state Described in section 5.21.1.

Return

Declaration Value

SMC32 uint32

SMC64 uint64

residency

Returns the amount of time, in microseconds, spent in a
local state, identified by power_state, by the

topology node represented by the target_cpu and

the highest power level of power_state.

5.1.21 PSCI_STAT_COUNT

Description

Introduced in PSCI 1.0.

Optional.

Return the number of times the platform has used the given power state since cold
boot. See section 5.21 for more details.

Power State Coordination Interface

Page 42 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Parameters

Declaration Value

uint32 Function ID:
• 0x8400 0011 SMC32 version

• 0xC400 0011 SMC64 version

SMC32 uint32

SMC64 uint64

target_cpu

This parameter follows the same format as the
target_cpu parameter of a CPU_ON call (see section
5.1.4).

uint32 power_state Described in section 5.21.1.

Return

Declaration Value

SMC32 uint32

SMC64 uint64

count

Returns the number of times a local state, identified by
power_state, has been leveraged since cold boot by

the topology node represented by the target_cpu

and the highest power level of power_state.

5.2 Arguments and return values in PSCI

5.2.1 Register usage in arguments and return values

The SMC Calling Conventions [4] provide support for calls using only 32-bit parameters (SMC32), and
for calls using 32-bit and 64-bit parameters (SMC64). Some of the PSCI functions defined above use
only SMC32, some of the functions have both an SMC32 and an SMC64 version.

For PSCI functions that use only 32-bit parameters, the arguments are passed in R0 to R3 (AArch32) or
W0 to W3 (AArch64), with return values in R0 or W0.

For versions using 64-bit parameters, the arguments are passed in X0 to X3, with return values in X0 or
W0, depending on the return parameter size.

In line with the SMC Calling Conventions, the immediate value used with an SMC (or HVC) instruction
must be 0.

Adherence to the SMC Calling Conventions implies that any AArch32 caller of an SMC64 function will
get a return code of 0xFFFFFFFF (int32). This matches the NOT_SUPPORTED error code used in PSCI.

As some PSCI functions have SMC32 and SMC64 versions, it is also possible for an AArch64 client to
call an SMC32 function. In these cases, it is assumed that the caller understands the limitations of using
SMC32, and limits itself to 32-bit parameters, and the implementation is not required to provide any
specific error returns.

Note: PSCI 0.2 instead used INVALID_PARAMETERS as the return code when an AArch32 caller
used an SMC64 API, or when an AArch64 caller used an SMC32 API. This requirement has been
dropped since PSCI 1.0 to improve alignment with the SMC Calling Conventions [4].

PSCI calls between a guest and hypervisor can use the HVC conduit instead of SMC. In this case, the
rules described above apply. Where this document uses SMC32, the reader can assume HVC32 if the
conduit is HVC. Equally, SMC64 maps to HVC64.

Power State Coordination Interface

Page 43 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.2.2 Return error codes

Table 6 defines the values for error codes used with PSCI functions. All errors are 32-bit signed
integers.

Table 6 Return error codes

SUCCESS 0

NOT_SUPPORTED -1

INVALID_PARAMETERS -2

DENIED -3

ALREADY_ON -4

ON_PENDING -5

INTERNAL_FAILURE -6

NOT_PRESENT -7

DISABLED -8

INVALID_ADDRESS -9

5.3 PSCI_VERSION

5.3.1 Intended use

A caller can use the PSCI_VERSION function to ascertain the current version of the interface. The
version number is a 31-bit unsigned integer, with the upper 15 bits denoting the major revision, and the
lower 16 bits denoting the minor revision.

The following rules apply to the version numbering:

• Different major revision values indicate possibly incompatible functions.

• For two revisions, A and B, for which the major revision values are identical, if the minor revision
value of revision B is greater than the minor revision value of revision A, then every function in
revision A must work in a compatible way with revision B. However, it is possible for revision B
to have a higher function count than revision A.

For the revision history of the PSCI specification, see Table 1.

5.3.2 Implementation responsibilities

An implementation conforming to the PSCI specification described in this document must implement
and support all the functions described, unless it is explicitly stated that a function is optional. This does
not mean that supervisory software using the implementation is required to use all the functions
implemented. Any function that is not implemented must return NOT_SUPPORTED in accordance with
the SMC Calling Conventions [4]. In addition, PSCI_FEATURES must also return NOT_SUPPORTED for
any non-implemented function. Table 18 in section 6.9 lists all the compulsory and optional functions for
a given PSCI version.

Power State Coordination Interface

Page 44 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Note: Any implementation conforming to issue D or D.b of this specification must return a minor
version of 1 and a major version of 1. An implementation conforming to issue C must return a minor
version number of 0 and a major version number of 1. An implementation conforming to issue B.b
must return a minor version of 2 and major version of 0.

5.4 CPU_SUSPEND

5.4.1 Intended use

The CPU_SUSPEND API is used to move a topology node into a low-power state. The function is called
from a specific core in that topology node, and indicates that the caller intends to make use of the core
in the future, but that it has no current work for it. The CPU_SUSPEND API is called by an OSPM as part
of idle management.

The following sections describe the parameters of CPU_SUSPEND in detail as well as caller and
implementation responsibilities.

A description of the call flow can be found in section 6.1.1.

5.4.2 CPU_SUSPEND parameters: power_state

From PSCI1.0, two formats are supported for the power_state parameter.

5.4.2.1 Original format

This is the only format that is supported by versions of PSCI prior to 1.0. When this format is in use,
bit[1] of the flags field returned by PSCI_FEATURES with a CPU_SUSPEND function ID is set to 0.

In this format, the power_state parameter is broken into the following fields:

Table 7 power_state parameter bit fields in Original format

Bit field Description

31:26 Reserved. Must be zero.

25:24 PowerLevel

23:17 Reserved. Must be zero.

16 StateType

15:0 StateID

The fields are described below.

PowerLevel:

This field describes the power level, as defined in section 4.2, to be powered down, such as core,
cluster, or group of clusters. Note that it is only possible to call CPU_SUSPEND from the current core,
that is, it is not possible to request suspension of another core.

Note: Versions of PSCI prior to 1.0 called this field AffinityLevel. This name has been changed in
acknowledgement of the fact that MPIDR-based levels of affinity do not necessarily map to power
domain implementations.

Power State Coordination Interface

Page 45 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

How the power levels are numbered is IMPLEMENTATION DEFINED, however, as described in section
4.2, it is expected that lower numbers are closer to the core and higher numbers are closer to the
system. For the example system depicted in Figure 3, a logical numbering scheme is:

• Level 0: for cores

• Level 1: for clusters

• Level 2: for system

StateType:

A value of 0 indicates a standby or retention state as defined in section 4.1.

A value of 1 indicates a powerdown state as defined in section 4.1. This also indicates that
entry_point_address and context_id fields contain valid data.

The state type is always considered to be powerdown if any core context is lost, even if, at power levels
higher than a core, there is no loss of context. For example, if the state implies powering down a core
but keeping a cluster in retention, the StateType field would denote powerdown.

StateID:

Field to express a platform-specific state ID. Contents are IMPLEMENTATION DEFINED.

This field can be used to distinguish which combination of local states is being requested.

Using StateID and the other fields in the power_state parameter, it must be possible to uniquely

describe every composite power state that the calling OS can use. In addition, in OS-initiated mode, the
StateID encoding must allow expressing the power level in which the calling core is the last to go idle.
The method by which this is done must be expressed to the OSPM through firmware tables (FDT or
ACPI), so that it can add this information to the StateID when requesting a power state.

A recommended encoding for StateID is discussed in section 6.5.

5.4.2.2 Extended StateID format

A given platform supports a fixed set of states for each core, cluster, or overall system. These states
give rise to a set of valid power_state values. These states are expressed through firmware tables,

for example, ACPI or FDT, to OSPMs. PSCI 1.0 introduces a new extended StateID format. This
provides higher flexibility for the implementers of PSCI and acknowledges improvements in ACPI and
FDT power state descriptions, which make some of the original format fields redundant.

When this format is in use, bit[1] of the flags field returned by PSCI_FEATURES with a CPU_SUSPEND

function ID is set to 1.

Note that it is not possible for an implementation to mix formats. It either uses the original format or the
extended ID format but not both. This is a static design-time decision and cannot be changed at
runtime.

Table 8 describes the bit fields in the power_state parameter, when the extended StateID format is

used. The fields retain the same definitions as in the original format.

A recommended encoding for StateID is discussed in section 6.5.

Power State Coordination Interface

Page 46 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Table 8 power_state parameter bit fields in Extended StateID format

Bit field Description

31 Reserved. Must be zero.

30 StateType

29:28 Reserved. Must be zero.

27:0 StateID

5.4.3 CPU_SUSPEND parameters: entry_point_address

The entry_point_address parameter is used by the caller to specify where code execution needs to
resume at wakeup time. The parameter must be a Physical Address (PA), or, for a guest OS in a
virtualized platform, an Intermediate Physical Address (IPA). In this case, the hypervisor must trap the
call. Further details can be found in section 6.4.

5.4.4 CPU_SUSPEND parameters: context_id

The context_id parameter is only meaningful to the caller. The PSCI implementation must preserve a
copy of the value passed in this parameter. Following wakeup from a powerdown state, the PSCI
implementation must place this value in R0, W0, or X0, when it enters the first Non-secure Exception
level, as defined in section 6.4. The context identifier can be used by the caller to point to the saved
context that must be restored on a core when it starts up at the return Exception level. The caller can
use other methods to implement this functionality.

5.4.5 Caller responsibilities

Before a CPU_SUSPEND call, the Normal world must observe the following:

• For a powerdown request, the calling supervisory software must have saved all the state it
requires to enable resumption of operation on reset. The context saved must reflect all caller-
visible state that is lost if the power level indicated by the power state parameter is powered
down. For more information on the required state following the application of power after a
CPU_SUSPEND or CPU_ON call, see section 6.4.3.

• For a powerdown request, the caller is not required to perform any cache or coherency
management. This management must be performed by the PSCI implementation.

• The caller must not assume that a powerdown request will return using the specified entry point
address. The powerdown request might not complete due, for example, to pending interrupts. It
is also possible that, because of coordination with other cores, the actual state entered is
shallower than the one requested. Because of this it is possible for an implementation to
downgrade the powerdown state request to a standby state. In the case of a downgrade to
standby, the implementation returns at the instruction following the PSCI call, at the Exception
level of the caller, instead of returning by the specified entry point address. The return code in
this case is SUCCESS. In the case of an early return due to a pending wakeup event, the
implementation can return at the next instruction, with a return code of SUCCESS, or resume at
the specified entry point address.

• The caller must ensure that appropriate wakeup events are enabled to allow resumption from
that state.

Power State Coordination Interface

Page 47 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• The entry point address provided by the CPU_SUSPEND call must be a physical address from
the point of view of the caller.

• The context identifier is meaningful only to the caller. The value is preserved by the
implementation and presented to the core when it is started up at the return Exception level.

The caller must be able to handle potential return error codes:

• INVALID_PARAMETERS is returned if any of the following is true:

• The power state parameter supplied is invalid. It is expected that the valid lists of power
states are supplied by platform firmware tables, for example, ACPI or Flattened Device Tree.

• In OS-initiated mode, this error is also returned when the following two conditions are
true:

▪ A low-power state is requested for a higher-than-core-level topology node.

▪ At least one of the children in that node is in a local low-power state that is
incompatible with the request.

For example, a core makes a request to place the system level node into a powerdown
state, and another core in the system node is in retention.

• INVALID_ADDRESS is returned when the entry point address is known by the implementation to
be invalid, because it is in a range that is known not to be available to the caller.

Note: Versions of PSCI prior to 1.0 use INVALID_PARAMETERS where INVALID_ADDRESS applies.

• In OS-initiated mode, a return value of DENIED is returned if the following two conditions are
true:

• A low-power state is requested for a higher-than-core-level topology node.

• All the cores that are in an incompatible state with the request are running, as opposed
to being in a low-power state.

In OS-initiated mode, INVALID_PARAMETERS can also be returned if the system is in a state that is
inconsistent with the caller’s request. The differences are:

• In the DENIED case, the inconsistent cores must be running. This can arise through
errors in the calling OS or races due to the different views of node state between the calling
OS and the implementation. See section 6.2 for more details.

• In the INVALID_PARAMETERS case, inconsistent nodes must be in a low-power state,
and the inconsistency can only arise through errors in the calling OS.

5.4.6 Implementation responsibilities: State coordination

In platform-coordinated mode, the semantic expressed by the caller through the power state parameter
is not a mandatory requirement to enter the specific state. Instead, the power state parameter indicates
the deepest state the caller can tolerate. The PSCI implementation is expected to coordinate requests
coming from all idle cores to determine the deepest state that the cores can tolerate. For the purposes
of this coordination, a core that has not been powered up through a call to CPU_ON, or that has been
powered down through a call to CPU_OFF, is assumed to have requested the deepest platform state
available. More details on platform coordination can be found in section 4.2.3.1.

In OS-initiated mode, the caller is making an explicit request for a specific power state, as opposed to
expressing a vote. The implementation must comply with the request unless it is not consistent with the
implementation’s view of the current state of the system. In that case, the call must return immediately

Power State Coordination Interface

Page 48 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

with DENIED or INVALID_PARAMETERS, as described above. More information on OS-initiated mode
can be found in section 4.2.3.2.

5.4.7 Implementation responsibilities: Interaction with a Trusted OS or SP

When a caller requests a power state, the PSCI implementation in the secure platform firmware might
need to communicate with a Trusted OS or SP. A method for interfacing between SPF and a Trusted
OS or SP is specified by Firmware Framework for Arm v8-A [10]. However, the specification requires
the Trusted OS or SP to always comply with CPU_SUSPEND requests. The SPF can inform the Trusted
OS or SP that a power state needs to be entered, and the Trusted OS or SP can use this information to
take any preparatory actions. For example, it might have to save its context. However, this
communication must not allow the Trusted OS or SP to modify or prevent the power state requested.

The Trusted OS or SP might not be able to tolerate a particular state, for latency or other reasons. In
this case, Arm recommends that the Trusted OS or SP uses an IMPLEMENTATION DEFINED

mechanism to communicate with the Normal world to ensure its constraints are considered in the power
requests originating from the Normal world.

5.4.8 Implementation responsibilities: Cache and coherency management

Powerdown states generally require a cache clean. Prior to powering down a topology node, the PSCI
implementation must perform a cache clean operation for all the caches present in that node, and the
last children of that node that are being powered down. The implementation must also perform any
required coherency management. In addition, the PSCI implementation needs to perform invalidation of
caches on booting, unless this is automatically supported by the hardware, and to manage coherency.
Sequences to be observed when powering cores up or down can be found in the Technical Reference
Manuals for the relevant processors and interconnect IP.

5.4.9 Implementation responsibilities: State on return

When returning from a standby state, the caller must observe no change in core state, other than any
timer changes expected because of the time spent in the state, and changes in the CPU interface
because of the wakeup reason. To the core, a standby state is indistinguishable from the use of a WFI

instruction. The only exceptions are the registers used in making the SMC call that follow the SMC
Calling Conventions [4]. The return value expected in R0 or W0 is the return error code. For standby
states, SUCCESS must be returned on success. Powerdown states do not return on success because
restart is through the entry point address at wakeup. If not successful, the error code indicates the
reason.

The core state when it exits the Secure world following wakeup from a powerdown state, or a CPU_ON
call, is described in described in section 6.4.

5.5 CPU_OFF

5.5.1 Intended use

CPU_OFF is designed for dynamic removal of the calling core from the system. When SPF receives a
CPU_OFF call, it must power down the calling core.

Unlike CPU_SUSPEND, the call is not expected to return. With this function the calling supervisory
software is explicitly stating that it will no longer use a core. This situation is only reversed when a
CPU_ON call is used to bring the core back online.

CPU_OFF calls can only originate from the Normal world. If the Secure world needs to manage the
number of active cores, it needs to use Trusted OS or SP specific IMPLEMENTATION DEFINED
communication with the Normal world to achieve its aims. It must not be possible for Secure world to

Power State Coordination Interface

Page 49 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

allow a core to be seen as powered up and available by the Trusted OS or SP, while the Normal world
sees the core as being powered down.

A description of the call flow can be found in section 6.1.2.

5.5.2 Caller responsibilities

Before a CPU_OFF call, the following must be observed:

• The calling OS must have migrated all threads and interrupts away from the core that is being
powered down. Asynchronous wakeups on a core that has been switched off through a PSCI
CPU_OFF call result in an erroneous state. When this erroneous state is observed, it is
IMPLEMENTATION DEFINED how the PSCI implementation reacts. Possible actions are:

• The PSCI implementation ignores the wakeup and keeps the core powered down.

• The PSCI implementation resets the system.

• The caller is not required to perform any cache or coherency management. This management
must be performed by the PSCI implementation.

• CPU_OFF can have varying latency in the time it takes to complete, depending on the power
domain level that is being powered down. The caller must not make any assumptions about
latency.

• A core can only power itself down.

• CPU_OFF calls are always platform-coordinated with each other, regardless of the suspend
mode of operation (platform-coordinated or OS-initiated). That is, if all cores in a topology node
call CPU_OFF, the last core will power the node down.

• In an OS-initiated mode, CPU_OFF calls are considered to platform-coordinate
between themselves. If only a subset of cores has called CPU_OFF, an OS-initiated
OS can assume they have powered down to the highest power level possible.
Referring to the example system in Figure 3, if all cores except Core 3 have called
CPU_OFF, the OS can assume that Cluster 0 and Core 2 are in the powerdown state
and that Core 3 is the last man in the system (and cluster 1). Therefore, in this mode
the OS could power down the system through a CPU_SUSPEND call from Core 3.
However, this coordination only works for calls to CPU_SUSPEND that take place
after calls to CPU_OFF. Coordination in the opposite order cannot be assumed. If, in
our example, Core 3 was the penultimate core and this called CPU_SUSPEND, and
Core 2 was the last one, and it called CPU_OFF, Cluster 1 (and the system) would
not be able to power down. This is because Core 3 would not be a last man, at either
the cluster or the system level, and consequently it could not request a power state at
that level.

• In platform coordinate mode, a call to CPU_OFF is consistent with a call to
CPU_SUSPEND for powerdown at maximum power level. If only a subset of the cores
in a node call CPU_OFF, the node must only be powered down if the remaining cores
have called CPU_SUSPEND, requesting a powerdown state at that power level, or a
power state at a higher power level.

CPU_OFF can return the following errors:

• DENIED, if called on a core where the Trusted OS is resident, see section 5.9.1.

Power State Coordination Interface

Page 50 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.5.3 Implementation responsibilities: Cache and coherency management

The PSCI implementation must perform a cache clean operation for all the caches present in the nodes
being powered down. PSCI must also perform any required coherency management. In a multicluster
implementation, powering down a core typically requires:

1. Disabling the data cache to prevent data cache allocation.

2. Cleaning and invalidating any caches that are private to the core. This prevents any new data
cache snoops or data cache maintenance operations from other cores being issued to the core
that is powering down.

3. If the core is the last in a cluster, and the cluster is being powered down, cleaning and
invalidating any shared caches that are private to that cluster.

4. Taking the core out of coherency within that cluster. This is typically controlled by an
IMPLEMENTATION DEFINED method, for example ACTLR.SMP.

5. If the core is the last in a cluster, and the cluster is being powered down, taking the cluster out of
coherency.

The operations required depend on the specific cores and topology, as well as any cache coherent
interconnects that might be in use. For more information, see the Technical Reference Manuals (TRMs)
of the components.

5.6 CPU_ON

5.6.1 Intended use

CPU_ON is intended for dynamic addition of cores, for example in secondary boot or hotplug. When an

OS at an Exception level requires another core, it calls the CPU_ON function, providing an entry point
address and a context identifier.

The PSCI implementation provides the necessary platform-specific code to program the power
controller as required to turn on a core, and then restart its execution at the entry point address. The
context identifier value must be present in R0, W0, or X0 when the core first enters the return Exception
level. Section 6.4.1 describes the return Exception level, and section 6.4.3 describes the expected state
for a core when it accesses the entry point address. Both CPU_ON and CPU_OFF calls can only
originate from the Normal world. If a Trusted OS or SP needs to manage the number of cores, it needs
to use a Trusted OS or SP specific IMPLEMENTATION DEFINED communication with the Normal
world to achieve its aims.

A description of the call flow can be found in section 6.1.3.

5.6.2 Caller responsibilities

Before a CPU_ON call the following must observed:

• CPU_ON must be implemented asynchronously. The mechanism by which supervisory software
can detect that the core is finally powered up is IMPLEMENTATION DEFINED. However, the
provision of caller-specific entry point and context identifier parameters allows the calling
supervisory software to implement such a mechanism.

• The entry point address provided needs to be physical from the point of view of the caller.

• The context identifier is meaningful only to the caller. The value is preserved by the
implementation and presented to the core when it starts up at the return Exception level (section
6.4).

Power State Coordination Interface

Page 51 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

CPU_ON can return the following errors:

• INVALID_PARAMETERS is returned if target_cpu describes an invalid MPIDR.

• INVALID_ADDRESS is returned when the entry point address is known by the implementation
to be invalid, because it is in a range that is known not to be available to the caller.

Note: Versions of PSCI prior to 1.0 use INVALID_PARAMETERS where INVALID_ADDRESS
applies.

• ALREADY_ON is returned if in the PSCI implementation the core is already in an ON state. See
section 6.6.

• ON_PENDING is returned if a call to CPU_ON on the target core has already been made, and
the core is not yet ON in the PSCI implementation. See section 6.6.

• INTERNAL_FAILURE can be returned if a core cannot be powered up for physical reasons.
Examples include lack of power, thermal constraints, manufacturing faults, or reliability reasons.

5.6.3 Implementation responsibilities: cache management

For CPU_ON, the PSCI implementation must:

• Perform invalidation of caches on boot unless this invalidation is automatically performed by the
hardware.

• Manage coherency.

5.7 AFFINITY_INFO

5.7.1 Intended use

The valid states that can be returned by AFFINITY_INFO are:

ON: At least one core in the affinity instance, as defined in section 4.2.2, meets both of the following
conditions:

• The core has been enabled with a call to CPU_ON or is the cold boot primary core.

• The core has not called CPU_OFF.

Idling cores that have called CPU_SUSPEND are considered to be in the ON state. Therefore, a core

in this state will be running or in a low-power mode.

OFF: All the cores in the affinity instance have called CPU_OFF and each of these calls has been
processed by the PSCI implementation.

ON_PENDING: At least one core in the affinity instance is in the ON_PENDING state, as described in
section 5.5. All other cores in the affinity instance are OFF.

It is also possible for AFFINITY_INFO to return the DISABLED code when the processing unit described
by the input parameters is valid, but is disabled for physical reasons, for example, because a core is
faulty.

For versions of PSCI prior to 1.0, an implementation must track the states of all the cores in an affinity
instance to produce the overall return value. From version 1.0 of PSCI, it is no longer required for
AFFINITY_INFO to support affinity levels greater than 0. If a caller requests the state of an affinity
instance above level 0, the implementation can respond in one of two ways:

• Provide a valid return value, behaving in a compatible fashion with a version of PSCI prior to
1.0.

Power State Coordination Interface

Page 52 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• Return INVALID_PARAMETERS.

5.7.2 Caller responsibilities

Callers must be aware that the state returned by the AFFINITY_INFO call is affected by calls to CPU_ON
and CPU_OFF, both of which could be in flight at the same time.

The caller must deal with any errors arising from the call:

• INVALID_PARAMETERS is returned if the lowest_affinity_level and target_affinity parameters
describe an affinity instance that is not present in the platform.

• DISABLED is returned if the parameters describe an affinity instance that is disabled for physical
reasons, for example, because the core is faulty.

5.8 MIGRATE

5.8.1 Intended use

The MIGRATE function supports powering down a core where a uniprocessor (UP) migrate-capable
Trusted OS is resident. The function is used to move the Trusted OS to another core, and therefore
enable the original core to call CPU_OFF to power down.

5.8.2 Caller responsibilities

The following must be observed by the caller:

• The migration target core must be powered up before any call to MIGRATE.

• The target core must not make requests for Trusted OS services until after the migration has
completed.

• MIGRATE must only be called from the core on which the Trusted OS is present. If called from
another core, the implementation must return a NOT_PRESENT error.

MIGRATE can return the following errors:

• NOT_SUPPORTED, if the function is not supported, or if migration is not required (see section
5.8).

• INVALID_PARAMETERS, if target_cpu describes an invalid MPIDR. This value is also

returned if the register width of the caller does not match the register width of the function ID
used in the call.

• DENIED can be returned if the Trusted OS is UP but not migrate-capable, see section
5.8.

• INTERNAL_FAILURE is returned for an IMPLEMENTATION DEFINED reason why the
MIGRATE was not possible. For example, the target core was not awake or did not
respond within an acceptable time.

• NOT_PRESENT, if called on a core where the Trusted OS is not currently resident.

5.8.3 Implementation responsibilities

Implementation of the MIGRATE function is optional.

The mechanism by which the secure platform firmware coordinates with a Trusted OS to migrate
context is IMPLEMENTATION DEFINED. However, Arm suggests that a callback registration scheme is

Power State Coordination Interface

Page 53 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

provided by the secure platform firmware to the Trusted OS vendor. The secure platform firmware can
use this to notify the Trusted OS when key PSCI functions like MIGRATE are received.

A UP Trusted OS that is migrate-capable can register for the callbacks. The secure platform firmware
must track the resident core of a UP Trusted OS. This way it can directly respond to several error
conditions for a MIGRATE call without having to call into the Trusted OS. It is possible to handle the
following errors directly from the secure platform firmware:

• NOT_SUPPORTED

• INVALID_PARAMETERS

• DENIED

• NOT_PRESENT

5.9 MIGRATE_INFO_TYPE and MIGRATE_INFO_UP_CPU

5.9.1 Intended use

Trusted operating systems must be rigorously audited to ensure they meet their security requirements.
This means that they must be kept simple. Often this leads to simple uniprocessor kernels, to avoid the
inherent complexities of multicore programming. This has implications for when it is possible to hot
unplug the core where the Trusted OS is resident.

The MIGRATE function provides a method to request a uniprocessor Trusted OS to move to another
core. However, this might not be supported by the Trusted OS vendor. The Normal world can use the
MIGRATE_INFO functions to determine whether it can use CPU_OFF and MIGRATE for a given Trusted
OS. MIGRATE_INFO_TYPE takes no parameters and returns:

• Uniprocessor (UP) and migrate capable 0: This indicates a Trusted OS that can run on only
one core. The core it runs on can be changed dynamically through use of the MIGRATE function.
Calls to CPU_OFF on the core where the Trusted OS is currently residing return a DENIED error.

• Uniprocessor (UP) not migrate capable 1: This indicates a Trusted OS that does not support
migration. Calls to hot unplug the core on which the Trusted OS is running return a DENIED
error. Calls to MIGRATE return the same error.

• Multiprocessor (MP) capable or not present 2: This indicates that the Trusted OS is fully MP-
aware and has no special requirements for migration, or a system that does not use a Trusted
OS. Any core can be hot unplugged without first asking the Trusted OS to migrate to another
core. In this case, calls to MIGRATE are not relevant. They return NOT_SUPPORTED and have
no other effect.

In addition, MIGRATE_INFO_UP_CPU takes no parameters and returns an MPIDR-based value to
indicate where the Trusted OS currently resides. The value returned uses the same format as the
target_cpu parameters of CPU_ON and MIGRATE, see section 5.1.4. The returned value is only valid if
MIGRATE_INFO_TYPE returns 0 or 1. The returned value of MIGRATE_INFO_UP_CPU is UNDEFINED if
MIGRATE_INFO_TYPE returns 2.

For each possible return value of MIGRATE_INFO_TYPE, Table 9 shows the expected return values for
calls to MIGRATE and CPU_OFF, when called on the CPU where the Trusted OS currently resides. The
table assumes that valid parameters are passed, that is, that valid target_cpu expressions are passed.

The information returned by MIGRATE_INFO_TYPE must be constant and not change on subsequent
calls.

Power State Coordination Interface

Page 54 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Table 9 Return values for calls to MIGRATE and CPU_OFF (on resident core)

MIGRATE_INFO_TYPE
Return value of
MIGRATE

Return value of
CPU_OFF

MP or not present (2) or
NOT_SUPPORTED

NOT_SUPPORTED does not return

UP not migrate capable (1) DENIED DENIED

UP migrate capable (0) SUCCESS DENIED

5.9.2 Caller responsibilities

The caller can target any core with the MIGRATE_INFO functions. The caller can also assume that the
value returned by MIGRATE_INFO_TYPE is constant and does not change from one invocation to
another.

The caller must avoid races between MIGRATE and MIGRATE_INFO_UP_CPU. Arm expects that the
latter function will be used once by a caller, on initial boot. From then on, a migrating OS can make use
of the success or failure of MIGRATE calls to track Trusted OS residency.

5.9.3 Implementation responsibilities

MIGRATE_INFO functions can be called from any core. How the Secure world obtains and tracks the
information provided through these functions is IMPLEMENTATION DEFINED. However, Arm expects
that, at cold boot, the secure platform firmware optionally installs a Trusted OS. As part of the
installation process, an API can be defined between the secure platform firmware and the Trusted OS
that, in turn, can be used to provide the required return values of MIGRATE_INFO_TYPE. The secure
platform firmware is aware of which core the Trusted OS is being installed on. By using this information,
and tracking the success or failure of MIGRATE calls, the secure platform firmware can directly respond
to MIGRATE_INFO calls from any core.

5.10 SYSTEM_OFF

5.10.1 Intended use

SYSTEM_OFF provides a system shutdown API.

As detailed in section 4.4, the shutdown command applies to the machine view of the calling OS.

The caller must place all cores in a known state prior to the call. Like all other APIs presented here, the
calls can only originate in the Normal world. On a SYSTEM_OFF call, the implementation completely

removes power from highest power level.

The following start must be a cold boot from the point of view of the caller.

5.10.2 Implementation responsibilities

• The implementation must support SYSTEM_OFF calls from every core in the system. If a UP Trusted

OS is present, and the call does not come from the core on which it is resident, then the
implementation has two options:

• If the Trusted OS requires it, provide an IMPLEMENTATION DEFINED mechanism to inform
the Trusted OS of the impending shutdown.

• Use a Trusted OS that can cope with the shutdown. In mobile applications Trusted
Operating Systems must be able to deal with a sudden loss of power.

Power State Coordination Interface

Page 55 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• The implementation must ensure that any data it requires is saved to non-volatile storage.

5.10.3 Caller responsibilities

The caller must perform any necessary operations to ensure a clean shutdown in its OS:

• Ensure cores are in a known state and that any necessary data has been saved to non-volatile
storage.

• It is up to the calling supervisory software to store any information it requires on restart in
storage that will survive the shutdown.

One way in which cores can be placed into a known state is to use calls to CPU_OFF on all online cores
except for the last one, which instead uses SYSTEM_OFF. If a UP Trusted OS is present, this method
only works if the core that calls SYSTEM_OFF is the one where the Trusted OS is resident, as calls to
CPU_OFF on this core return a DENIED error. Any core can call SYSTEM_OFF.

5.11 SYSTEM_RESET

5.11.1 Intended use

This function provides a method for performing a system cold reset. To the caller, the behavior is
equivalent to a hardware power-cycle sequence. As detailed in section 4.4, the reset command applies
to the machine view of the calling OS.

5.11.2 Caller responsibilities

Where possible, cores should be placed in a known state. No specific coordination is required between
cores. Apart from the case when the response to the call is virtualized, when one core calls
SYSTEM_RESET, the system power cycles.

5.12 SYSTEM_RESET2

Introduced in PSCI 1.1. This function is optional.

5.12.1 Intended use

This function provides methods to reset the system. The function describes architectural resets, where
the semantics of the reset are described by this specification. The function also allows for vendor-
specific resets. As detailed in section 4.4, the reset command applies to the machine view of the calling
OS.

Bit[31] of the reset_type parameter indicates whether a reset is architectural or vendor specific.

When bit[31] has a value of 0, the reset is architectural. A value of 1 indicates a vendor-specific reset.

5.12.2 Architectural resets

Bits[30:0] of the reset_type indicate which architectural reset is being requested.

Table 10 Architectural resets

Bits[30:0] of

reset_type
Description

0x0 SYSTEM_WARM_RESET

0x1-0x7FFFFFFF Reserved for future use.

Power State Coordination Interface

Page 56 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.12.2.1 System Warm reset

This reset is selected when reset_type is 0x0 (SYSTEM_WARM_RESET).

The function is intended to provide a fast reboot path that guarantees not to reset system main memory.
This is defined as volatile memory accessible by cores when executing in the calling operating system.
This definition does not extend to caches or to memory-mapped IO.

The memory that is to be preserved and not trashed by boot firmware needs to be described by
firmware table technologies such as ACPI [6] and Device Tree [7] and does not need to cover all
available system main memory.

When this reset is selected, the cookie parameter is ignored by the implementation.

5.12.3 Vendor-specific resets

Values in the range 0x80000000-0xFFFFFFFF of the reset_type parameter can be used to request

vendor-specific resets or shutdowns. In this case, the cookie parameter can be used to pass

additional data to the implementation.

5.12.4 Caller responsibilities

The calling OS uses the PSCI_FEATURES API, with the SYSTEM_RESET2 function ID, to discover

whether the function is present:

• If the function is implemented, PSCI_FEATURES returns a value of 0.

• If the function is not implemented, PSCI_FEATURES returns NOT_SUPPORTED.

See also section 5.1.14.

For architectural resets, where possible, cores should be placed in a known state. No specific
coordination is required between cores.

Regardless of the values in reset_type and cookie, a call to SYSTEM_RESET2 returns

NOT_SUPPORTED if SYSTEM_RESET2 is not implemented.

For architectural resets, the following errors can also apply:

• INVALID_PARAMETERS, if reset_type is not a valid value for an architectural reset as

defined in Table 10.

Vendor-specific resets can also use other return values. Guidelines are provided in section 5.12.5.

5.12.5 Implementation responsibilities

The implementation must ensure that the semantics of the reset are observed. For the architectural
system warm reset this implies that requesters, which can affect the contents of main memory, must be
reset.

The implementation can also gather error syndrome information before or after the reset, and prior to
handing over to the first Non-secure Exception level.

Vendor-specific resets might need vendor-specific error return codes. The following requirements must
hold for vendor-specific error return codes:

• The implementation can use the other PSCI error codes that are defined in section 5.2.2, with
the exception of NOT_SUPPORTED.

• If the error codes defined in section 5.2.2 are not sufficient, the implementation must return
error codes that are signed integers with a value less than -256.

Power State Coordination Interface

Page 57 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.13 MEM_PROTECT

Introduced in PSCI1.1. This function is optional.

5.13.1 Intended use

This function provides protection for cold reboot attacks, which exploit the fact that DRAM retains
content for several seconds after the removal of power. This property allows an attacker to reboot a
system and then discover secrets that were left in memory.

When this function is called, the implementation overwrites all the volatile memory, that is accessible by
the caller, when booting the system following a system reset. The calling operating system can modify
this behavior by either disabling memory protection through a second call to MEM_PROTECT, or, where

implemented, by using a SYSTEM_WARM_RESET architectural reset (see 5.1.11).

5.13.2 Caller responsibilities

The calling OS uses the PSCI_FEATURES API, with the MEM_PROTECT function ID, to discover whether

the function is present:

• If the function is implemented, PSCI_FEATURES returns a value of 0.

• If the function is not implemented, PSCI_FEATURES returns NOT_SUPPORTED.

See also section 5.1.14. Furthermore, if the function is not implemented, a call to MEM_PROTECT returns

NOT_SUPPORTED.

Following a cold boot, and entry into the calling operating system, volatile memory will not be protected
until the function is called with a non-zero enable value. Therefore, the caller must not place secrets in

memory before this point. At boot time, memory protection is disabled by default. Therefore, to
guarantee that the memory is always protected, the calling OS must call this function every time the
system boots.

A successful call to MEM_PROTECT, which either enables or disables memory protection, returns the

previous state of the protection:

• A return value of 0 indicates that, prior to the call, memory protection was disabled.

• A return value of 1 indicates that, prior to the call, memory protection was enabled.

• If the function is not implemented, a call to MEM_PROTECT returns NOT_SUPPORTED.

5.13.3 Implementation responsibilities

If this function is implemented, MEM_PROTECT_CHECK_RANGE must also be implemented.

When MEM_PROTECT is called, the implementation must ensure that all volatile memory that is

accessible by the caller is overwritten on the following boot, if this is due to:

• A non-architectural reset that follows a SYSTEM_RESET2 call (see 5.12).

• An architectural reset that was invoked through calling SYSTEM_RESET2 with a request other

than a SYSTEM_WARM_RESET.

• A system reset that follows a SYSTEM_RESET call (see 5.11).

• Removal of power, or any mechanism to reset or shutdown the system that is not described by
this specification.

After a SYSTEM_OFF call, it is IMPLEMENTATION DEFINED whether the memory is overwritten.

Overwritten memory includes all volatile memory that can be accessed by the caller. This includes:

• Architectural and non-architectural caches that can be accessed by the caller.

Power State Coordination Interface

Page 58 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• Any volatile memory that can be accessed either directly, via CPU load, or other means such as
a debug interface or DMA.

The caller can give explicit permission for skipping the memory overwrite by calling SYSTEM_RESET2,

to request a SYSTEM_WARM_RESET architectural reset. In this case, the memory is not overwritten, and

is preserved. The caller can also disable memory protection by calling MEM_PROTECT with an enable

value of 0.

Following the memory overwrite, and prior to handing over to an OS boot loader, memory protection
must be disabled. This is the default state that is expected by the caller on a system boot.

5.14 MEM_PROTECT_CHECK_RANGE

Introduced in PSCI1.1. This function is optional.

5.14.1 Intended use

Non-volatile memory and IO are not affected by MEM_PROTECT (see section 5.13).

MEM_PROTECT_CHECK_RAGE can be used to check whether a memory address range is protected by

MEM_PROTECT. The caller can pass a base address and length. The function returns SUCCESS if the

entire range, which is accessed through addresses base to base+length-1, is included in the memory
that is protected by MEM_PROTECT.

5.14.2 Caller responsibilities

The calling OS uses the PSCI_FEATURES API, with the MEM_PROTECT_RANGE function ID, to discover

whether the function is present:

• If the function is implemented, PSCI_FEATURES returns a value of 0.

• If the function is not implemented, PSCI_FEATURES returns NOT_SUPPORTED.

See also section 5.1.14.

The caller can also discover whether the function is present by calling the function directly. If the
function is not implemented, the error value NOT_SUPPORTED is returned.

The function can return the following errors:

• DENIED if the memory range is not protected.

5.14.3 Implementation responsibilities

If this function is implemented, MEM_PROTECT must also be implemented.

5.15 PSCI_FEATURES

Introduced in PSCI 1.0, this function is mandatory.

5.15.1 Intended use

This function allows the caller to detect which PSCI functions have been implemented and their
properties. In addition, PSCI_FEATURES can be used to discover if SMCCC_VERSION is implemented.

PSCI functions generally return NOT_SUPPORTED when they are not implemented. However, it is not
always convenient to use that mechanism for discovery. Optional APIs such as
CPU_DEFAULT_SUSPEND or CPU_FREEZE can cause entry of a CPU into a low-power state.

Consequently, calling the functions is not an appropriate mechanism for discovering their presence. The

Power State Coordination Interface

Page 59 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

PSCI_FEATURES API identifies whether a function is present or not without needing to call the specific

function.

The caller passes the function ID in the psci_func_id parameter. The implementation returns:

• If the function is implemented, a set of feature flag bits. In this case, bit[31] is always zero. Thus,
positive 32-bit integers indicate implemented functions.

• NOT_SUPPORTED, if the function is not implemented.

Table 18 in section 6.9 lists all the compulsory and optional functions for a given PSCI version.

5.15.2 Implementation responsibilities

PSCI_FEATURES should report the presence of SMCCC_VERSION in secure platform firmware

compliant with PSCI v1.0 and later revisions. For more details refer to SMC Calling Convention [4].

If a function described by psci_func_id is not implemented, the implementation must return

NOT_SUPPORTED. For functions that are implemented, Table 11 lists possible return values.

Table 11 Return values if a function is implemented

psci_func_id parameter Feature Flags

Function ID for CPU_SUSPEND

(0x8400 0001 SMC32 version

0xC400 0001 SMC 64 version)

Bits[31:2] Reserved, must be zero.

Bit[1] Parameter Format bit

0 if the implementation uses Original
Format (PSCI0.2) for the power_state

parameter.

1 if the implementation uses the new
extended StateID Format for the
power_state parameter.

Bit[0] OS-initiated mode.

0 if the platform does not support OS-
initiated mode.

 1 if the platform supports OS-initiated
mode.

Function ID for any function
other than CPU_SUSPEND

Bits[31:0] Reserved, must be zero

5.16 CPU_FREEZE

Introduced in PSCI1.0, this function is optional.

5.16.1 Intended use

This API places a core in an IMPLEMENTATION DEFINED low-power state. It differs from other APIs
that place cores into low-power states in the following ways:

• Unlike CPU_SUSPEND or CPU_DEFAULT_SUSPEND, an interrupt does not return the core back

into a running state. Instead, the interrupt must remain pending or active.

Power State Coordination Interface

Page 60 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• Unlike CPU_OFF, the calling OS is not required to migrate interrupts away from the core prior to

calling CPU_FREEZE.

The effect of interrupts on a core that is powered down with a PSCI API is described in Table 12.

Table 12 Effect of wake interrupts

PSCI Function Interrupt Effect

CPU_SUSPEND Wake up

CPU_DEFAULT_SUSPEND Wake up

CPU_OFF Error condition, effect is IMPLEMENTATION DEFINED

CPU_FREEZE Core must remain in powerdown, and interrupt must pend

The function must only be implemented if the power controller or power controlling logic of the platform
allows wakeup interrupts for a given core to be ignored.

This API is meant for debug cases where an OS wants to allow powering down of any core that is not
running a debugger.

5.16.2 Implementation responsibilities

The power state into which the platform places the calling core is IMPLEMENTATION DEFINED. The
level of coordination that is performed in this power state is also IMPLEMENTATION DEFINED. For
example, if all cores in a cluster call CPU_FREEZE, the implementation can choose to power down the

cluster. Although the choice of state and coordination is up to the implementation, it must not be
possible for the platform to enter a thermally critical condition if all except one core has called
CPU_FREEZE.

The implementation must be able to ensure that wakeup interrupts will not bring the core back into
execution. If this is not possible, CPU_FREEZE must not be provided.

5.16.3 Caller responsibilities

The caller must follow a standard powerdown sequence appropriate to the core. Return to execution is
performed through a call to CPU_ON. Therefore, the caller must observe the following conditions:

• The caller must save all state required to enable resumption of execution through the call to
CPU_ON.

• The caller is not required to perform any cache or coherency management. This management
must be performed by the PSCI implementation.

• As the power state entered by a CPU_FREEZE is IMPLEMENTATION DEFINED, the caller

cannot make assumptions about what power state the core is in. Equally the level of
coordination with power states in other cores in the topology is IMPLEMENTATION DEFINED
and therefore the calling OS cannot make any assumptions about it. For example, if all cores in
a cluster call CPU_FREEZE, it is not safe to assume that any core or the cluster is fully power-

gated. For a given topology node, it is only safe to make assumptions about its power state
when all children cores have been resumed from CPU_FREEZE.

When using OS-initiated Idle, a simple scheme to prevent errors in idling when cores have called
CPU_FREEZE is for the OS to consider those as running cores in its last man tracking algorithm.

Power State Coordination Interface

Page 61 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

CPU_FREEZE does not return when it is successful, but might return the following error codes:

• NOT_SUPPORTED, if the API is not implemented.

• DENIED, in the same cases as those where CPU_OFF also returns DENIED, as described in

section 5.9.1.

5.17 CPU_DEFAULT_SUSPEND

Introduced in PSCI 1.0, this function is optional.

5.17.1 Intended use

From the point of view of the caller, this API is equivalent to calling CPU_SUSPEND with a power_state
parameter reflecting a core powerdown state, as defined in section 4.1. Unlike CPU_SUSPEND,
however, the power_state parameter is omitted. The actual power state entered is IMPLEMENTATION
DEFINED.

In every other way, the semantics are like a CPU_SUSPEND and are therefore primarily described in
section 5.4.

The CPU_DEFAULT_SUSPEND function is optional. The function is meant for systems where all the
information required to use CPU_SUSPEND, that is the power states and their properties, is available in

the later phases of boot. In these systems, CPU_DEFAULT_SUSPEND provides an alternative to WFI

that can be used during early boot.

5.17.2 Implementation responsibilities

The power state into which the platform places the calling core is IMPLEMENTATION DEFINED. The
level of coordination that is performed in this power state is also IMPLEMENTATION DEFINED. For
example, if all cores in a cluster call CPU_DEFAULT_SUSPEND, the implementation can choose to

power down the cluster. Although the choice of state and coordination are up to the implementation, it
must not be possible for the platform to enter a thermally critical condition if all cores have entered a
low-power state as a result of calling CPU_DEFAULT_SUSPEND.

5.17.3 Caller responsibilities

Before a CPU_DEFAULT_SUSPEND call, the Normal world must observe the following conditions:

• The calling supervisory software must have saved all the state it requires to enable resumption
of operation on reset. The context saved must reflect all caller-visible state that would be lost by
the core. For more information on the required state following the application of power after a
CPU_SUSPEND, CPU_DEFAULT_SUSPEND, or CPU_ON call, see section 6.4.3.

• The caller is not required to perform any cache or coherency management. This management
must be performed by the PSCI implementation.

• The caller must not assume that a powerdown state is entered. The actual state used is
IMPLEMENTATION DEFINED and can be a standby state. In addition, the request might not
complete due, for example, to pending interrupts. Therefore, the function might return at the next
instruction, or return at the specified entry point address. If returning at the next instruction due
to pending interrupts, or because the implemented state is a standby state, the return code is
SUCCESS.

Power State Coordination Interface

Page 62 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• The caller must be able to handle potential return error codes:

• INVALID_ADDRESS is returned if the entry point address is known by the implementation to
be invalid because it is in a range that is known not to be available the caller.

• The caller must ensure that appropriate wakeup events are enabled to allow resumption from
that state.

• The entry point address provided by the CPU_DEFAULT_SUSPEND call must be a physical
address from the point of view of the caller.

• The context identifier is meaningful only to the caller. The value is preserved by the
implementation and presented to the core when it is started up at the return Exception level
(section 6.4.1).

• The power state entered by a CPU_DEFAULT_SUSPEND is IMPLEMENTATION DEFINED. The

caller cannot make assumptions about what the power state might be. Equally, the level of
coordination with power states in other cores in the topology is IMPLEMENTATION DEFINED
and therefore the calling OS cannot make any assumptions about it. For example, if all cores in
a cluster call CPU_DEFAULT_SUSPEND, it is not safe to assume that any core or the cluster will

be fully power gated. For a given topology node, it is only safe to make assumptions about its
power state when all children cores been resumed from CPU_DEFAULT_SUSPEND. When using

OS-initiated Idle, a simple scheme to prevent errors in idling when cores have called
CPU_DEFAULT_SUSPEND is for the OS to consider those as running cores in its last man

tracking algorithm.

5.18 NODE_HW_STATE

Introduced in PSCI 1.0, this function is optional.

5.18.1 Intended use

This API allows the power state of a node to be determined directly from the power controller or power
controlling logic. Unlike AFFINITY_INFO, which returns the view of state of the implementation, this

API returns the physical view of power state.

5.18.2 Caller responsibilities

The node is uniquely represented using two parameters:

target_cpu:Derived from the MPIDR, this parameter follows the same format as the target_cpu
parameter of CPU_ON.

power_level: This parameter denotes the power domain level for the node. The format of this

parameter is IMPLEMENTATION DEFINED, however 0 is always reserved to represent a core, or HW
thread, in an SMT system.

Note: It is acknowledged that an SMT system is highly unlikely to have a power domain around
hardware thread. However, it is useful to use 0 to uniquely identify the level that aligns to an operating
system’s view of a core.

Together, both parameters allow indexing any individual node in the power node topology of the
system. Power level values to be used for this function must be described alongside the power domain
topology using firmware table approaches such as FDT or ACPI. More details can be found in section
6.7.

Power State Coordination Interface

Page 63 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

The calling OS must recognize that the returned value is a snapshot of the state of the node at a point
in time and might therefore be stale by the time it is interpreted. In addition, the call can return the
following errors:

• NOT_SUPPORTED, if not implemented.

• INVALID_PARAMETERS, if the target_cpu and power_level values describe an invalid

node.

5.18.3 Implementation responsibilities

This API must only be implemented if the supporting power control logic allows detection of the power
state of nodes in the system. The values returned by this function must reflect the view of the power
controlling logic.

If successful, the values returned by NODE_HW_STATE are described below:

• HW_STANDBY(2), if the node is seen by the power control logic as being in a retention of
standby state, as defined by the semantics described in Section 4.1.

• HW_OFF(1), if the node is seen by the power control logic as being in a powerdown state, as
defined by the semantics described in Section 4.1.

• HW_ON(0), if the node is seen by the power control logic as being in a run state, as defined by
the semantics described in Section 4.1.

5.19 SYSTEM_SUSPEND

Introduced in PSCI 1.0, this function is optional.

5.19.1 Intended use

In a typical implementation, the semantics are equivalent to a CPU_SUSPEND to the deepest low-power
state. However, it is possible that an implementation might reserve a deeper state for
SYSTEM_SUSPEND than those used with CPU_SUSPEND. This function might be used to implement a

system suspend to RAM, as described by the S2 and S3 states in the ACPI specification [6]. Note that
entering the system into S2 or S3 carries with it several preconditions. For example, all devices in the
system must be in a state that is compatible with entry into the system state. These preconditions are
beyond the scope of this specification and are therefore not described here. The SYSTEM_SUSPEND
function limits itself to providing the mechanism by which the calling OS can request entry into S2 or S3,
having met all necessary preconditions. While ACPI distinguishes between two system-level suspend to
RAM states, S2 and S3, PSCI provides a single API. In practice, operating systems use only one
suspend to RAM state, so this is not seen as a limitation. Note that this specification is using the state
definitions of S2 and S3 provided by ACPI but does not limit use of this PSCI function to ACPI-based
systems. Semantics such as those described for sleep states S2 and S3 are used in non-ACPI based
systems.

As is the case with SYSTEM_SHUTDOWN and SYSTEM_RESET, this function applies to the machine view

that is available to the calling OS. See section 4.4 for more details.

To use this API, a calling OS must power down all but one core through calls to CPU_OFF. From this

point on, the remaining core can call SYSTEM_SUSPEND, passing the necessary

entry_point_address and context_id parameters to enable resumption on wakeup. A calling OS

can use the AFFINITY_INFO function to ensure that all cores are OFF prior to calling

SYSTEM_SUSPEND.

Power State Coordination Interface

Page 64 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5.19.2 Caller responsibilities

The caller needs to ensure that every core apart from the one calling is in an OFF state, as returned by
the AFFINITY_INFO function. The caller must be able to cope with the following error return codes:

• NOT_SUPPORTED, if system suspend is not implemented.

• INVALID_ADDRESS, if the entry point address is known by the implementation to be invalid
because it is in a range that is known not to be available to the caller.

• DENIED, if the implementation views a core, other than the one calling, as not being in the OFF
state.

Prior to the call, the OS must disable all sources of wakeup other than those it needs to support for its
implementation of suspend to RAM. The call is equivalent to using the CPU_SUSPEND call for the

deepest possible platform powerdown state. Consequently, the caller must observe all the rules
described for CPU_SUSPEND. See section 5.4.

5.20 PSCI_SET_SUSPEND_MODE

Introduced in PSCI 1.0, this function is optional.

5.20.1 Intended use

This function is used to switch between the two different power state coordination modes described in
section 4.2.

The platform will boot in platform-coordinated mode. If the calling OS uses OS-initiated mode, the API
must be called once during OS boot. CPU_DEFAULT_SUSPEND can be used before the suspend mode

is set.

Some operating systems support rebooting a new kernel within their Exception level, and without
resetting the system as a whole. In this case, the calling OS must place the PSCI implementation back
into a platform-coordinated mode before rebooting.

5.20.2 Implementation responsibilities

Switching from platform-coordinated to OS-initiated modes (see section 4.2) is only allowed if the
following conditions are met:

• All cores are in one of the following states:

• Running.

• OFF, through a call to CPU_OFF or not yet booted.

• Suspended, through a call to CPU_DEFAULT_SUSPEND.

• None of the processors has called CPU_SUSPEND since the last change of mode or boot.

A switch from OS-initiated mode to platform-coordinated mode is only possible if all cores other than the
calling one are OFF, either through a call to CPU_OFF or not yet booted.

If these conditions are not met, the platform must return DENIED.

The default coordination mode is platform-coordinated.

5.20.3 Caller responsibilities

The caller must be able to cope with the following error return codes:

Power State Coordination Interface

Page 65 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• NOT_SUPPORTED, in which case the calling OS can assume the platform will work in platform-
coordinated mode. In this case, the PSCI_FEATURES feature flag 0 for CPU_SUSPEND is also 0.

• INVALID_PARAMETERS, if the parameter mode is not a valid value (0 or 1).

• DENIED:

• If any core is not in the correct state, as detailed in the previous section.

• When switching to OS-initiated mode if a core has made use of CPU_SUSPEND.

5.21 PSCI_STAT_RESIDENCY/COUNT

Introduced in PSCI 1.0, these functions are optional.

5.21.1 Intended use

These APIs provide residency statistics for power states that have been used by the platform. The
statistics must be counted regardless of the entry mechanism to state, and therefore, any of the PSCI
calls that can result in a power state being entered can contribute to the statistics.

The functions take two input parameters:

• target_cpu: This parameter follows the same format as the target_cpu parameter of a

 CPU_ON call. See section 5.1.4.

• power_state: Identifier for a specific local state. Generally, this parameter takes the same

 form as the power_state parameter described for CPU_SUSPEND in section 5.4.2.

Together, both parameters can be used by the platform to index a unique state affecting a unique node
of the processor power topology of the system, for example, a specific core or a specific cluster.

Only local low-power states, and not running states, are tracked by the statistic functions. However, the
composite power state expressed through the power_state parameter can reflect a combination of

local states for the various power levels in the system. The functions return the appropriate count or
residency time of the local state for the highest power level expressed in the composite power_state.

In OS-initiated mode, the implementation must disregard the section of the power_state parameter

that describes the power level in which the calling core is the last man. For example, consider the
following example of state encoding:

Core level state, Bits[3:0]: 0 Run, 1 Standby, 2 Retention, 3 Powerdown.

Cluster level state, Bits[7:4]: 0 Run, 2 Retention, 3 Powerdown.

System level state, Bits[11:8]: 0 Run, 2 Retention, 3 Powerdown.

Core is last in Level, Bits[15:12]: 0 Core, 1 Cluster, 2 System.

power_state parameters with StateIDs of 0x#223 and 0x#233 both return statistics for the system

level retention state. Encodings that permit indexing a local state directly are also allowed. In the
example above, the local state for system level retention carries a state ID of 0x#200. A recommended
encoding for the StateIDs is described in section 6.5.

It is strongly recommended that, for a given power state, the power_state parameter used in

statistics functions matches the power_state parameter used in the CPU_SUSPEND function, as

described above. However, it is permissible for the power_state parameter encoding scheme that is

used in these functions to differ from the scheme used with CPU_SUSPEND. In this case, for a given

Power State Coordination Interface

Page 66 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

power state, firmware tables must describe the value used for power state entry separately from the
value used for gathering statistics on state usage.

PSCI_STAT_COUNT returns the number of times a power_state has been used by the node

represented by the target_cpu and the highest power level of power_state. Note that an OS

internal count of state usage (by tracking calls to PSCI) and the value returned by this API might not
always agree. This can be for a variety of reasons, for example, the power state requested by the OS
and the state entered by the implementation can differ.

PSCI_STAT_RESIDENCY returns the amount of time spent in power_state in microseconds, by the

node represented by the target_cpu and the highest level of power_state.

Both functions return zero if the node and power_state do not represent a valid combination. This

can happen if the target_cpu represents a node that is not present or if the node does not support

the state passed in power_state. Firmware tables, FDT or ACPI, describe the valid states that the

calling OS can request from any given core.

5.21.2 Implementation responsibilities

The implementation needs to observe the following conditions:

• The statistics count time spent in a low-power state, regardless of the entry method. This
includes power states entered through CPU_OFF, CPU_FREEZE, or SYSTEM_SUSPEND.

• Statistics only track local power states. This does not include the time spent in a run state by a
node.

• Statistics are set to zero at cold boot. SYSTEM_RESET and SYSTEM_SHUTDOWN have the same

effect, because from the perspective of the caller the next boot will be a cold boot.

• It is IMPLEMENTATION DEFINED whether the PSCI_STAT_COUNT updates on entry to or exit

from a power state.

• For the purposes of measuring residency time, an implementation might only update the count
for a given power state and node, when the node exits that power state. When a node enters a
given state, it is IMPLEMENTATION DEFINED whether a call to PSCI_STAT_RESIDENCY, for

that node and state, will include the time since it last entered the state or not.

• Though these functions are optional, both must be implemented together if statistics are
supported.

5.21.3 Caller responsibilities

The functions use the full resolution of the returned parameters (count or residency). Therefore, the
functions do not support error codes for return values. If the functions are not implemented, the returned
value is NOT_SUPPORTED, but the OS cannot rely on this value to determine whether the functions are

implemented. The calling OS must discover if the functions are present by using the PSCI_FEATURES

API (see section 5.1.14).

The calling OS must be aware that the returned count or residency values wrap when they overflow the
available resolution. This is not a problem for the SMC64 version of the call, but for the SMC32
PSCI_STAT_RESIDENCY function, a wrap is possible in just over 1 hour, 11 minutes, and 34 seconds.

Power State Coordination Interface

Page 67 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 Additional Implementation Details

6.1 PSCI call flows

6.1.1 CPU_SUSPEND, CPU_DEFAULT_SUSPEND, and SYSTEM_SUSPEND call flow

Figure 4 shows how a CPU_SUSPEND call (or other suspend calls) for a powerdown state can flow
through the Exception levels and terminate in secure platform firmware. The diagram also shows how
the state is saved and restored at each stage. In the model above, the hypervisor traps Non-secure EL1
power requests. This allows a hypervisor at EL2 to save its context, the entry point, and the context ID
of the caller, before making its own power state request to the Secure world.

Figure 4 Example call flow for a CPU_SUSPEND call

The Secure world works in a similar way, saving its state, the entry point, and the context ID of its caller,
and setting a startup reason, before shutting down the core. When a wakeup event occurs, the power
controller boots the core. On initializing, the Secure world sees the startup reason, restores context, and
then restarts the caller process at the saved entry point, supplying the saved context ID. The hypervisor
then can do the same with the Non-secure EL1 process.

Power State Coordination Interface

Page 68 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Figure 4 is an example of how the call flow might work when all Exception levels are implemented. As
described in Figure 4, the return Exception level that the Secure world restores to is the highest Non-
secure Exception level implemented. This rule allows for the model described above.

In systems that implement EL2 and EL3, this rule also permits bypassing EL2, by allowing a call to go
directly from Non-secure EL1 to the Secure world. However, the return path must go through EL2. How
this is coordinated is determined by the hypervisor implementation. An example of this approach could
be a type 2 system, which enables Non-secure EL1 calls to go directly to the Secure world on the host,
but traps at EL2 for guests.

Systems that do not implement EL3, and therefore do not access the Secure world, can still provide a
PSCI interface to Non-secure EL1 rich operating systems that are PSCI-compliant by using an HVC
conduit.

6.1.2 CPU_OFF call flow

Figure 5 Example call flow for a CPU_OFF call

Figure 5 shows how a CPU_OFF call can be propagated through the Exception levels in a system that
implements EL2 and EL3. Whether the call is trapped at EL2 or not is defined by the hypervisor
implementation.

6.1.3 CPU_ON call flow

As is the case with a call to CPU_SUSPEND, a call to CPU_ON can go through the various Exception

levels.

Power State Coordination Interface

Page 69 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Figure 6 Example call flow for a CPU_OFF call

Figure 6 is an example of how the call flow might work when all Exception levels are implemented. In
the example, CPU_0 is requesting a powerup of CPU_1. The flow follows a similar model to the
CPU_SUSPEND flow, described above. CPU_0 requests powering up of CPU_1 and supplies an entry
point address and a context identifier for NS-EL1. In the example, the hypervisor at EL2 traps the call,
saving the requisite entry point address and context ID, before making the same call to secure platform
firmware and supplying an EL2 entry point address and context ID. The Secure platform FW then starts
up CPU_1, initializes it and resumes it at EL2 using the supplied entry point address and context ID.
Finally, the hypervisor having initialized on CPU_1, resumes the core at NS-EL1, using the originally
supplied entry point address and context identifier.

As described in Figure 6, the return Exception level for a CPU_ON call is the highest Non secure
Exception level implemented. This rule allows for the model described above, where the hypervisor
traps the call.

In systems that implement EL2 and EL3, this rule also allows bypassing of EL2, that is, it enables a call
to go directly from Non-secure EL1 to the Secure world. However, the start-up path has to go through
EL2. This requires IMPLEMENTATION DEFINED mechanisms for the OS at NS-EL1 to supply a valid
EL2 entry point address and context identifier to the secure platform firmware, and for the NS-EL1
return address and context identifier. This is discussed further in section 6.4.

6.2 OS and Implementation View of Cores State

One of the challenges in power state coordination is that the OS and the implementation have individual
views of the current state of a node. This can lead to periods where the view of current core state differs
between the implementation and the calling OS. This is illustrated in Figure 7.

Power State Coordination Interface

Page 70 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Figure 7 Periods where OS view of Core state differs from implementation view

When an OS powers down the core, it needs to update its internal view of core state before calling into
the implementation to actually perform the powerdown. This gives rise to a period during which the OS
sees the core as being powered down, whereas the implementation sees it as running, as it has not yet
processed the command. This is illustrated in the upper half of Figure 7. Equally, when a core powers
up, it is seen by the PSCI implementation before it is seen by the calling OS. This situation results in a
window where the implementation sees the core as being in a running state, while the OS considers it
to be powered down. This is illustrated in the bottom half of Figure 7.

6.3 Races in OS-initiated mode

With OS-initiated mode, the implementation is still responsible for ensuring functional correctness. As
described above, there are race windows where the OS view and implementation view of core state
differ. Therefore, it is possible for the OS to make reasonable requests, from its point of view, which
cannot be satisfied by the implementation given its view of core state. For example, the OS might
request a powerdown state for a node from one core, while at the same time the implementation
observes that another core in the node is powering up. This section provides a number of example
flows to illustrate how these races are solved. In the examples, abbreviations R, Ret, and PD denote
run, retention, and powerdown, respectively. In addition, states where OS view and implementation
view differ are marked in red, and states that change during a step in the example are underlined.

With OS-initiated coordination, the ordering of requests from different cores is critically important. If the
implementation does not process requests in the order the calling OS intended, then it can put the
implementation into the wrong state. Consider the following scenario based on our example system
from Figure 3 (dual cluster, dual core per cluster):

Power State Coordination Interface

Page 71 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Table 13 Example race

Step

OS View PSCI View

C
o

re
0

C
o

re
1

C
lu

s
te

r0

C
o

re
0

C
o

re
1

C
lu

s
te

r0

0: Initial state. Core0 is in powerdown, and Core1 is running.
before PD R R PD R R

after PD R R PD R R

1: Core1 goes idle. The OSPM requests that Core1 enter
powerdown and Cluster0 enter Retention state.

before PD R R PD R R

after PD PD Ret PD R R

2: Core0 receives an interrupt and wakes up into the PSCI
implementation in the secure platform firmware.

before PD PD Ret PD R R

after PD PD Ret R R R

3: Core0 moves into OSPM and starts processing interrupts.
before PD PD Ret R R R

after R PD R R R R

4: Core0 goes idle and OSPM requests Core0 powerdown,
Cluster0 powerdown.

before R PD R R R R

after PD PD PD R R R

5: Core0’s idle request overtakes Core1’s request. The
implementation puts Core0 into powerdown but ignores the
cluster request since it sees Core1 is still running.

before PD PD PD R R R

after PD PD PD PD R R

6: The implementation observes Core1’s request and puts Core1
to powerdown and Cluster0 to retention.

before PD PD PD PD R R

after PD PD PD PD PD Ret

The race described above arises because the order in which the OSPM issues requests is not the order
observed by the implementation. In rare cases, this might happen for a variety of potential reasons, for
example, different frequencies on different cores, or different cache behavior. This sequence of events
results in the implementation incorrectly acting on the stale Cluster0 request from Core1 rather than the
latest request from Core0. The net result is that Cluster0 is left in the wrong state until the next wakeup.

To address such race conditions and ensure that the implementation and the calling OS have a
consistent view of the request ordering, OS-initiated idle state requests include a dependency check.
When the implementation receives a request, it must check whether the requesting core is really the
last core to go idle in the requested domain and reject the request if not. When performing this check,
the implementation can start treating a particular core as being in a low-power state when it has
observed the core’s request. This allows it to be correctly ordered relative to other calling OS requests.
The implementation must start treating a core as running before returning control to the calling OS on
wakeup from the idle state.

With this dependency check, the above example changes as follows:

Power State Coordination Interface

Page 72 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Step

OS View PSCI View

C
o

re
0

C
o

re
1

C
lu

s
te

r0

C
o

re
0

C
o

re
1

C
lu

s
te

r0

Resuming from Step 4 above
before R PD R R R R

after PD PD PD R R R

5: Core0’s idle request overtakes Core1’s request. The
implementation rejects Core0’s request since it includes Cluster0
and Core1 is still awake.

before PD PD PD R R R

after PD PD PD R R R

6: The implementation observes Core1’s request and rejects it since it
includes Cluster0 but Core0 is still awake.

before PD PD PD R R R

after PD PD PD R R R

7: The OS resumes on Core 0.
before PD PD PD R R R

after R PD R R R R

8: The OS resumes on Core 1.
before R PD R R R R

after R R R R R R

Once control is returned to the calling OS, it can handle the situation as it sees fit, probably by re-
evaluating the idle state on both cores. When requests are received out of order, some overhead is
introduced by rejecting the command and forcing the OS to re-evaluate, but this is expected to be rare.
Requests sent by the calling OS are seen by the implementation in the same order most of the time,
and in this case, the idle command proceeds as requested.

It is possible that the calling OS might choose to keep a node running, even if all CPUs underneath it
are idle. This gives rise to another potential corner case as demonstrated below:

Step

OS View PSCI View

C
o

re
0

C
o

re
1

C
lu

s
te

r0

C
o

re
0

C
o

re
1

C
lu

s
te

r0

0: Initial state Core0 in powerdown, and Core1 is running
before PD R R PD R R

after PD R R PD R R

1: Core1 goes idle – the OSPM requests Core1 powerdown and Cluster0
retention

before PD R R PD R R

after PD PD Ret PD R R

2: Core0 receives an interrupt and wakes up into the implementation
before PD PD Ret PD R R

after PD PD Ret R R R

3: Core0 moves into OSPM and starts processing interrupts
before PD PD Ret R R R

after R PD R R R R

4: Core0 goes idle and OSPM requests Core0 powerdown, Cluster0 to stay
Running

before R PD R R R R

after PD PD R R R R

Power State Coordination Interface

Page 73 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

5: Core0’s idle request overtakes Core1’s request. The implementation puts
Core0 to powerdown.

Even though the OS made a request for the cluster to run, the
implementation does not know to reject Core0’s request, since it
doesn’t include a Cluster state

before PD PD R R R R

after PD PD R PD R R

6: Core1’s request is observed by the implementation. The implementation
puts Core1 to Power Down and Cluster0 to retention

before PD PD R PD R R

after PD PD R PD PD Ret

The problem here is that the implementation cannot deduce which level of hierarchy a power request
applies to simply from the requested power states. In step 5 above, even though Core 0 wanted to keep
the cluster running, because the request does not include an actual cluster power state, the
implementation cannot infer that the power request applies to the cluster. To mitigate against this, each
idle state request must include a power level parameter specifying the highest power level for which the
OS sees the calling core as the last running core (last man). Even if the OS does not want some higher-
level node to enter an idle state, it should indicate if the core is the last core to power down for that
node. This allows the implementation to understand the OS’s view of the state of the power topology
and ensure ordering of requests.

This enhancement is illustrated in this example:

Step

OS View PSCI View

C
o

re
0

C
o

re
1

C
lu

s
te

r0

C
o

re
0

C
o

re
1

C
lu

s
te

r0

0: Initial state Core0 in powerdown, and Core1 is running
before PD R R PD R R

after PD R R PD R R

1: Core1 goes idle – the OSPM requests Core1 powerdown and
Cluster0 retention and identifies itself as last down in Cluster0

before PD R R PD R R

after PD PD Ret PD R R

2: Core0 receives an interrupt and wakes up into the
implementation

before PD PD Ret PD R R

after PD PD Ret R R R

3: Core0 moves into OSPM and starts processing interrupt
before PD PD Ret R R R

after R PD R R R R

4: Core0 goes idle and OSPM requests Core0 powerdown,
Cluster0 to stay Running, and identifies itself as last down in
Cluster0

before R PD R R R R

after PD PD R R R R

5: Core0’s idle request overtakes Core1’s request. The
implementation rejects it, as it is a cluster request and Core 1 is
still running

before PD PD R R R R

after PD PD R R R R

6: Core1’s request is observed by the implementation. The
implementation rejects it, as it is a cluster request and Core 0 is
still running.

before PD PD R R R R

after PD PD R R R R

7: OS resumes on Core 0
before PD PD R R R R

after R PD R R R R

Power State Coordination Interface

Page 74 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

8: OS resumes on Core 1
before R PD R R R R

after R R R R R R

As before, when control is returned to the calling OS, it can handle it as it sees fit, typically by re-
requesting the idle state on both cores.

6.4 Initial state after CPU_ON, CPU_SUSPEND

The following sections describe the expected state of a core when it starts up, following a call to
CPU_ON, or on wakeup from a powerdown state, following a CPU_SUSPEND call. This section also
applies to calls that share semantics with CPU_SUSPEND, that is, CPU_DEFAULT_SUSPEND and
SYSTEM_SUSPEND.

6.4.1 First Non-secure Exception level

When returning from a CPU_SUSPEND call after a powerdown, or following a CPU_ON call, the first Non-
secure Exception level that the Secure world must move the core to is the highest implemented Non-
secure Exception level. This is described here as ELNS.

In a system that implements EL3 and EL2, it is not possible to use any services of a hypervisor until the
Secure world has enabled use of the HVC instruction. This is controlled by the Secure configuration

register HCE field, SCR.HCE or SCR_EL3.HCE. If the hypervisor has been enabled in this way, ELNS is
EL2, otherwise it is EL1. For the entry to ELNS:

• If ELNS is using AArch32, the initialization code must set the processor mode to be entered.

• If ELNS is using AArch64, the initialization code must set the stack pointer to be used. With PSCI,
the stack pointer must be the one associated with ELNS, that is, SP_ELNS, denoted as EL2h or
EL1h.

The following table shows this requirement:

Table 14 First Non-secure Exception level and state on entry

 Caller using AArch32 Caller using AArch64

 Caller Callee ELNS
Processor

mode
ELNS

Stack
pointer

Hypervisor
enabled

EL1 SPF EL2 Hyp EL2 EL2h

EL2 SPF EL2 Hyp EL2 EL2h

Hypervisor
not enabled

EL1 SPF EL1 Svc EL1 EL1h

When control passes from EL2 to EL1, the startup state must be:

• Supervisor mode, if EL1 is using AArch32.

• The EL1h stack pointer state, if EL1 is using AArch64.

Power State Coordination Interface

Page 75 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

6.4.2 Entry point address

The entry point address parameter passed in calls to CPU_ON or CPU_SUSPEND must be a valid
physical address at ELNS. For systems using virtualization, this might mean that PSCI calls from Non-
secure EL1 need to be trapped to EL2. This applies when the physical OSPM as defined in section 3.6
resides at EL1. There are two possible schemes:

1. Calls from EL1 bypass EL2 altogether and are routed directly to the secure platform firmware. In
this case, the OS at EL1 that is making the PSCI calls must either:

• Ensure that stage 2 address translation is disabled.

Note: Stage 2 address translation is controlled from EL2, by HCR.VM or HCR_EL2.VM. The
mechanism by which an OS at EL1 can determine whether Stage 2 translation is disabled
is IMPLEMENTATION DEFINED.

• Use an IMPLEMENTATION DEFINED mechanism to obtain a valid physical address for the
entry point. In this case, the hypervisor at EL2 and the OS at EL1 must have an
IMPLEMENTATION DEFINED mechanism to determine the address at which EL1 resumes
execution.

2. EL1 calls are trapped by EL2, either by setting the HCR.TSC or HCR_EL2.TSC bit to 1 or by
enforcing use of an HVC conduit. EL2, knowing that the caller contains the physical OSPM,
forwards the PSCI call to the secure platform firmware using an appropriate entry point address.

6.4.3 Initial core configuration

For an Exception level to start execution, higher Exception levels must perform appropriate initialization.
From Armv8, platform reset values are defined to provide the minimal functional set for the highest
implemented Exception level to start execution. This Exception level then must set up enough state for
a lower Exception level to execute.

This section describes the items that must be correctly initialized when a core starts up in response to a
powerdown state wakeup for CPU_SUSPEND, or through a call to CPU_ON.

6.4.3.1 Execution state on Armv8 systems

The Armv8 architecture defines two Execution states [5], AArch32 and AArch64. On an Armv8 system,
the Execution state entered when starting up a lower Exception level must match the Execution state in
use by that Exception level when the PSCI call is made. Table 15 shows this requirement.

Table 15 Required Execution state on Exception level startup

Implemented
Exception levels

Caller Callee Transition Required Execution state

EL1, EL2, and EL3 EL1 EL3 EL3->EL2 EL2 Execution state at time of call

EL2->EL1 EL1 Execution state at time of call

EL1 EL2 EL2->EL1 EL1 Execution state at time of call

EL1 and EL2 EL1 EL2 EL2->EL1 EL1 Execution state at time of call

EL1 and EL3 EL1 EL3 EL3->EL1 EL1 Execution state at time of call

Power State Coordination Interface

Page 76 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

6.4.3.2 Endianness

The caller endianness must be restored when starting up the core at the Exception level from which the
call was made. This means, for the Execution level where execution is restarting:

• If starting in AArch32 state, CPSR.E must be set to the appropriate value.

• If starting in AArch64 state, SCTLR_ELx.EE must be set to the appropriate value. ELx is the
Exception level being returned to.

Note that only the highest implemented Exception level has a defined reset value for SCTLR_ELx.EE.

6.4.3.3 Exceptions

The appropriate asynchronous exception masks must be set when starting up the core at the Exception
level from which the call was made, or at ELNS. Typically, this means that for the Exception level where
execution is restarting:

• If starting in AArch32 state, the CPSR.{A,I,F} bits should be set to {1,1,1}.

Note: On an Armv7 implementation that includes EL3 (the Security Extensions) but does not
include EL2 (the Virtualization Extensions), setting mask bits to 1 in the CPSR masks the
interrupts for all Security states and processor modes, regardless of the values of
SCR.{FIQ, IRQ, EA, FW AW}. For these implementations, if secure platform firmware, or
the Trusted OS, requires FIQs and asynchronous aborts to be routed to the Secure world,
the secure platform firmware must start Non-secure EL1 with CPSR.{A, F} set to {0, 0}.

• If starting in AArch64 state, the SPSR_ELx.{D,A,I,F} bits must be set to {1, 1, 1, 1}. ELx is the
Exception level being returned to.

6.4.3.4 MMU, cache and branch predictor enables

When starting up the core at the Exception level from which the call was made, execution must start
with the stage 1 MMU and caches disabled. Also, if starting up in an Exception level that is using
AArch32, branch predictors must be disabled. This means:

• If starting in AArch32 state, the SCTLR.{I, C, M} bits must be set to {0, 0, 0}. In addition, the Z bit
must be set in a way that is consistent with the reset behavior of the platform.

• If starting in AArch64 state, the SCTLR_ELx.{ I, C, M} bits must be set to {0, 0, 0}. ELx is the
Exception level being returned to.

On start-up, from the point of view of the caller the caches must be clean and coherent with main
memory.

6.4.3.5 T32 support

If the caller is using AArch32 state, and the entry point address specified in a call to CPU_ON or
CPU_SUSPEND has bit[0] set to 1, the core must be started in T32 state at the return Exception level. In
this case the entry point address specified by the caller is equivalent to the address passed in the call,
but with bit[0] set to 0.

6.4.3.6 Generic Timer

CNTFREQ holds the frequency of the Generic Timer. This register must be initialized by the Secure
world, to enable use of the Generic Timer.

Power State Coordination Interface

Page 77 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

6.4.3.7 Context ID

When the core first enters the return Exception level, the context ID value supplied in the
CPU_SUSPEND or CPU_ON call must be present in:

• X0 if the caller was using AArch64.

• R0 if the caller was using AArch32.

6.4.3.8 EL2 state when EL2 is disabled

In systems where EL2 is present but has been disabled by clearing SCR_EL3.HCE, it is necessary to
initialize EL2 state so that an NS-EL1 operating system will be able to execute. EL2 must be configured
to allow NS-EL1 full access to all CPU resources that are not specific to EL2. This typically involves:

• Disabling traps to EL2. This affects HCR_EL2, CPTR_EL2, and CNTHCTL_EL2 among other
System registers. NS-EL1 must be allowed to access the physical counter and physical timer.

• HCR_EL2.RW must be set to 1 to allow lower levels to use AArch64 where appropriate.

• HCR_EL2.VM must be set to zero, disabling stage2 translation.

• CNTVOFF_EL2 must be set to zero.

• VMIDR_EL2 must be made equal to MIDR_EL1.

• VMPIDIR_EL2 must be made equal to MPIDR_EL1.

An implementation of these requirements can be found in the Arm Trusted Firmware project [8].

6.5 Recommended StateID Encoding

The contents of the CPU_SUSPEND power_state parameter StateID field are IMPLEMENTATION

DEFINED. However, it must be set so that each composite power state possible has a unique value.
The power_state parameter reflects a composite, as opposed to a local power state, as discussed in

section 4.2.1. The StateID field of the parameter can be used to describe the specific combination of
local power states being requested. A simple way of doing this is to reserve bit fields for the various
power levels in the system. This allows a simple additive mechanism to be used when constructing a
composite state from local state indices.

For OS-initiated mode, it is also necessary to pass an index for the power level where the calling core is
last to go idle. The format of this field matches the power_level parameter of the NODE_HW_STATE

function, see section 5.18.1. If a bit field is reserved, the OS can use a simple additive scheme to place
the information into a StateID field when it is making a request. Consider the example in Figure 3. Given
the number of local states at each power level, a simple encoding could use one nibble of the StateID
field as a local state index for each power level, and another nibble for the OS-initiated last level index.
This would give rise to the following encoding:

Table 16 StateID sample encoding

Bit field Description

15:12

Core is last in Power Level:

• 0: Core Level

• 1: Cluster Level

• 2: System Level

Power State Coordination Interface

Page 78 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

11:8

System Level Local Power State

• 0: Run

• 2: Retention

• 3: Powerdown

7:4

Cluster Level Local Power State

• 0: Run

• 2: Retention

• 3: Powerdown

3:0

Core Level Local Power State

• 0: Run

• 1: Standby

• 2: Retention

• 3: Powerdown

The above method uses 1-based indices for local states in a power level. Thus, at core level, the states
standby, retention, and powerdown are indexed 1, 2, and 3, respectively. For consistency, cluster and
system states are numbered 2 and 3 for retention and powerdown, respectively. The value of 0 is
reserved to indicate a running state. Using a simple additive composition method, and considering only
the local power states, this encoding results in the possible composite power state parameters identified
in Table 17.

 Table 17 StateID encodings for local and composite states in example system

Last in
Level

Bits[15:12]

System
Local States
Bits[11:8]

Cluster
Local
States
Bits[7:4]

Core Local
States

Bits[3:0]

Composite States

(Sum of Local States)

0x#000

Run

0x000

Run

0x000

Standby

0x001

Run|Run|Standby

0x#000+0x000+0x000+x001=0x#001

0x#000

Run

0x000

Run

0x000

Retention

0x002

Run|Run|Retention

0x#000+0x000+0x000+x002=0x#002

0x#000

Run

0x000

Run

0x000

Powerdown

0x003

Run|Run|Powerdown

0x#000+0x000+0x000+x003=0x#003

0x#000

Run

0x000

Retention

0x020

Retention

0x002

Run|Retention|Retention

0x#000+0x000+0x020+x002=0x#022

0x#000

Run

0x000

Retention

0x020

Powerdown

0x003

Run|Retention|Powerdown

0x#000+0x000+0x020+x003=0x#023

0x#000

Run

0x000

Powerdown

0x030

Powerdown

0x003

Run| Powerdown|Powerdown

0x#000+0x000+0x030+x003=0x#033

0x#000

Retention

0x200

Retention

0x020

Retention

0x002

Retention |Retention| Retention

0x#000+0x200+0x020+x002=0x#222

Power State Coordination Interface

Page 79 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

0x#000

Retention

0x200

Retention

0x020

Powerdown

0x003

Retention |Retention| Powerdown

0x#000+0x200+0x020+x003=0x#223

0x#000

Retention

0x200

Powerdown

0x030

Powerdown

0x003

Retention |Powerdown| Powerdown

0x#000+0x200+0x030+x003=0x#233

0x#000

Powerdown

0x300

Powerdown

0x030

Powerdown

0x003

Powerdown | Powerdown| Powerdown

0x#000+0x300+0x030+x003=0x#333

The last-in-level information is encoded in the fourth nibble. In a system like this, firmware tables
describe the power levels as 0x0000, 0x1000, and 0x2000 for core, cluster, and system, respectively.
These values are used when adding the last-in-level value of the StateID portion of a power_state

parameter, for a CPU_SUSPEND call in OS-initiated mode. These values are also used for the
power_level parameter of the NODE_HW_STATE function (see section 5.18.1).

This method provides the required unique composite state power_state parameters. This scheme

also provides the ability to uniquely refer to local states as well as composite states, which is useful,
though not required, for the PSCI_STAT_COUNT and RESIDENCY functions. Furthermore, the scheme

is additive, so composite state IDs can be obtained by simply adding the local states for each power
level, and in the OS-initiated case, also adding the last-in-level index.

Note that more compact additive schemes are also possible, by using the same approach by which
multidimensional arrays are flattened to single dimensional arrays.

6.6 Implementation CPU_ON/CPU_OFF races

Implementation of CPU_ON and CPU_OFF requires special care to avoid races. Both the calling
supervisory software and the PSCI implementation must use appropriate locks to maintain the correct
state representation of a core.

The AFFINITY_INFO function defines a set of valid states for a core, see section 5.7.1. As seen from the
PSCI implementation, a core can be in any of the following states:

ON: This core has at some point been enabled with a call to CPU_ON, or is the cold boot primary core,
and has not called CPU_OFF. In practice, the core might be running or in a low-power mode, either
WFI or deeper because of a call to CPU_SUSPEND. The term ON reflects the fact that the core is
considered to be available for computation.

OFF: This core has called CPU_OFF, and the call has been processed by the PSCI implementation, or
the core has not been booted yet. The core is not available for computation.

ON_PENDING: CPU_ON has been called on the target core, but it is still in the process of booting and
has not transitioned to an ON state.

The state diagram shown in Figure 8 illustrates the valid transitions that an implementation must
provide. Circles represent the states, and a state transition is represented as an arrow between two
circles. The arrow label denotes the state transition such that:

1. The transition takes place while the original state is TRUE.

2. A transition can include a post transition event. This is indicated by the text that follows a forward
slash character “/”. This event happens when the destination state is TRUE.

3. After the transition, the destination state is TRUE.

Power State Coordination Interface

Page 80 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Figure 8 CPU_ON/CPU_OFF PSCI implementation state machine

Figure 8 shows the following transitions:

CPU_OFF (1): The implementation receives a CPU_OFF call from the client running on the core in
question.

CPU_ON (2): The implementation receives a CPU_ON call for the core in question.

PSCI_INIT (3): The core in question initializes and starts executing PSCI implementation firmware as
part of the boot sequence. After this transition, when the PSCI implementation sets the core state to
ON, the core reenters the return Exception level at the specified entry point address.

The diagram also describes failures to transition when invalid calls are observed. In particular:

CPU_ON (4): Fails with an ALREADY_ON error because the PSCI implementation sees the core as
being ON.

CPU_ON (5): Fails with an ON_PENDING error because a valid CPU_ON call has already been made to
the target core, but the core has not initialized yet, meaning it has not made transition 3 (PSCI_INIT).

An actual implementation can distinguish between further internal states. However, externally it must
guarantee the states and transitions shown in Figure 8.

A caller of PSCI might maintain a similar set of states, and therefore a caller might consider any cores
to be ON, OFF, or ON_PENDING. The following pseudocode shows an example implementation from the
perspective of the caller to CPU_ON and CPU_OFF.

void os_cpu_off()
{
 lock(psci_state[current_cpu]);
 assert(psci_state[cpu] == ON);
 psci_state[cpu] = OFF;
 unlock(psci_state[cpu]);
 /* race window starts here */
 CPU_OFF();

 assert(0); /* CPU_OFF() failed */
}

int os_cpu_on(cpu,contexID)
{
 int r = 0;

 lock(psci_state[cpu]);

Power State Coordination Interface

Page 81 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

 if (psci_state[cpu]==ON) r = E ERROR_ALREADY_ON;
 if (psci_state[cpu]==ON_PENDING) r = ERROR_ON_PENDING;

 if (r) {
 unlock(psci_state[cpu]);
 return r;
 }

 do {
 r = CPU_ON(cpu, physical_addr(os_entry_point), contextID);
 } while (r == ERROR_ALREADY_ON);

 assert(!r);
 psci_state[cpu]=ON_PENDING;
 unlock(psci_state[cpu]);

 return r;
}

This example implementation maintains a lock for each core, and uses the states described in this
section, ON, OFF, ON_PENDING, but these states represent the view of the caller of the core status.

There is race opportunity, while a caller is transitioning a core to OFF, from the point of view of the
caller, but before the PSCI implementation has set the state to OFF, from the point of view of the PSCI
implementation. Red text signals the start of the race window. During this time, the caller might consider
the core to be OFF, while the PSCI implementation sees the core as being ON. The race closes when
the PSCI implementation performs the atomic update of the state of the core to OFF.

The race is solved using the ALREADY_ON error. When a CPU_ON call on the same core arrives during
this window, the PSCI returns an ALREADY_ON error as the implementation sees that core as still being
in the ON state. A caller can use this error code to identify this situation and retry the call. The time
spent retrying depends on the following factors:

1. The time between a caller setting the core state to OFF and calling CPU_OFF.

2. The time it takes the PSCI implementation to transition its representation of the core state to
OFF.

Both time windows should be as short as possible. Finally, when a core enters the calling Exception
level, it can transition the state to ON:

void os_entry_point()
{
 ...
 lock(psci_state[cpu]);
 psci_state[cpu]=ON;
 unlock(psci_state[cpu]);
 ...
}

6.7 Discoverability

Both ACPI [6] and Device Tree [7] provide the ability to:

• Discover whether PSCI is implemented or not.

• Discover whether the conduit to be used with PSCI calls is SMC or HVC.

• Discover the processor power domain topology of the system.

Power State Coordination Interface

Page 82 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• Describe the composite and local power states, and the resultant power state parameters that
are used in CPU_SUSPEND and PSCI_STAT_* calls.

6.8 Preserving the execution context

Use of powerdown states in idle management, where context is lost, requires the ability to resume
execution on a previously powered-down core. The return to execution must be transparent to the
applications that were executing on the core before its shutdown. To achieve this, supervisory software
must save the context of execution for the core. When a core resumes, its context must be restored so
that execution can restart from the same point with the same context. The execution context comprises
architectural and non-architectural context. The context can also be categorized based on its visibility to
the Normal and Secure worlds.

To enable preservation of context, every OS or supervisory software, running at each impacted
Exception level, must provide a software stack that can:

• Save the architectural context that is otherwise lost when power is removed.

• Save the non-architectural state that is otherwise lost when power is removed. There might be
SoC implementation-specific components that have a state that needs to be saved.

• Perform basic initialization and restoration of non-architectural and architectural context when
power is reapplied.

Figure 9 depicts the components involved in such a stack across all levels of supervisory software that
might be executing on an Arm system. The PSCI specification focuses primarily on the interface
between the Normal world and the Secure world, shown by the red arrow in Figure 9. PSCI also covers
the interface between rich operating systems and hypervisors, shown by the orange arrow. This
specification does not document the interface between the secure platform firmware and a Trusted OS
or SP.

RichOSRichOS

Idle/Switch/Hot Plug

Non Arch

State

Arch

State

Hypervisor (Optional)

Non Arch

State

Arch

State

Non Arch

State

Arch

State

Trusted OS

SecureNon-Secure

Non Arch

State

Arch

State

Secure platform FW

Figure 9 Save and restoring context across operating systems

A non-exhaustive list of architectural state to consider preserving is provided below:

• The general-purpose register bank.

• The SVE, NEON and floating-point register bank.

Power State Coordination Interface

Page 83 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

• System control registers, for example, MMU and Generic Timer System control registers.

• Debug context.

• Trace context.

The following list provides an example of the save and restore operations that are required for GIC
management:

• During a CPU_SUSPEND:
o Save and restore CPU interface registers, for example, binary point, priority mask, and

control registers, if the CPU interface power domain is being powered down.

• During a CPU_OFF:
o Ensure no interrupts are pending on the target core prior to powerdown.
o Retarget Shared Peripheral Interrupts (SPIs) away from the CPU interface of the target
 core.
o Prevent triggering of any Private Peripheral Interrupts (PPIs) & Software Generated
 Interrupts (SGIs) on the target core while in powerdown state.
o Initialize the CPU interface registers on exit from powerdown state, following a CPU_ON
 command.

• Some systems might implement the ability to power down the GIC distributor because of
 SYSTEM_SUSPEND or deep CPU_SUSPEND call. In this case:

o Save and restore CPU interface registers, for example, binary point, priority mask, and
 control register, on the last and first core, respectively.
o Save and restore the distributor interface registers, for example, group, set-enable, clear-
 enable, priority, and configuration registers for all interrupt types, on the last and first
 core, respectively.

Note: For systems using GICv3 or above, the OS is not always capable of saving all state. ITS
state can be implemented in hardware and have no architecturally defined mechanism to enable
saving and restoring it. In cases where the hardware supports ITS power down and a
mechanism to save and restore its state, the PSCI implementation must perform saving and
restoring of all ITS state. This applies to all versions of PSCI.

In all cases, before powering down a core, its CPU interface must be placed in a quiescent state. This
ensures that the final WFI instruction, which signals to a power controller that the core can be powered
down, does not complete if an interrupt is pending.

6.8.1 Debug and Trace save and restore

The Arm architecture provides support for external debug and for self-hosted debug. External
debuggers provide hardware-assisted debug that can modify core and memory data. The external
debugger can also modify debug context to manage debug events such as breakpoints and
watchpoints. Finally, an external debugger can also affect the power state of a core by acting as a
source of wakeup events, or by preventing powerdowns. For more information see [1], [5].

6.8.1.1 Saving and restoring invasive debug context

Support for debug on multicore systems is complicated by the fact that system software can move the
software threads being debugged from one core to another. Therefore, supporting debug requires a
strategy that either prevents this migration or that appropriately duplicates debug context on every core.
Duplicate programming provides a more realistic debug method from a scheduling point of view, as
there is no need for pinning.

Regardless of the method chosen, when using an external debugger, the debugger might interact with a
core that is powered down. Any attempts by the debugger to access a debug register when the core

Power State Coordination Interface

Page 84 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

power domain is powered down, or in a low-power state where the core power domain registers cannot
be accessed, returns an error. The debugger can retry the access. However, if the core power domain
is regularly put into such a state, this might lead to unreliable debugger behavior. In a multicore system
utilizing dynamic power control, it might be rare for all the cores to be powered up simultaneously, but
this is necessary for duplicating programming across all cores. There are two options an external
debugger can use in this case:

1. A debugger can request emulation of powerdown, using DBGNOPWRDWN and
DBGPWRUPREQ, as documented in [1] and [5]. This approach prevents use of debug over a
powerdown.

2. If the supervisory software supports debug over powerdown, the debugger can allow full power
cycling of cores. Under this scheme, the debugger keeps a valid central copy of the debug
context. When a user changes this context, the debugger must change the context of the cores
to match. If any core is powered down, the debugger can use the OS Unlock Catch debug event
to halt the core after it has woken up and completed its debug context restore sequence. At this
point, the debugger can program the debug registers from debug context. This method means
the debugger can avoid using emulation of powerdown.

The second option requires a method the debugger can use to inform the supervisory software that it
must save and restore debug registers during a powerdown transition. Arm recommends the use of
CLAIM tag registers for this purpose. CLAIM tags can also be used to prevent conflicts between
external debug and self-hosted debug use of debug registers. The following CLAIM tags bits should be
used for controlling save and restore of debug context:

DBGCLAIM[0] should be set to 1 to indicate that debug is in use by the external debugger. If this bit is
set to 1, it is expected that:

1. The supervisory software must perform a save or restore sequence of the debug context.

2. Debug context will not be overwritten by self-hosted debug software.

DBGCLAIM[1] should be set to 1 to indicate that debug is in use by a self-hosted debugger. This bit
can be used to indicate to power management software that it must save and restore debug context
when power cycling.

In an AArch32 implementation that is using v7 Debug, DBGCLAIM[6] should be set to 1 by the
supervisory software as an acknowledgement for bit[0]. This step is only required for compatibility with
v7 Debug.

These claim tags can be used to indicate that debug context requires a save/restore sequence.

Note: For AArch32 implementations that use v7 Debug, Arm recommends that DBGCLAIM[6] is
reserved for the OS to acknowledge that it will perform save/restore. The external debugger can
write to DBGCLAIM when the core is powered down, meaning it should either not clear
DBGPRCR.CORENPDRQ or not program any volatile context until the powerdown software
acknowledges that it will save/restore the context by setting DBGCLAIM[6] to 1.

Debug CLAIM tags should be programmed by the external debugger or self-hosted debug agent using
the following sequence:

1. Check CLAIM tags. If ownership is clear (bits[1:0]), proceed, otherwise fail, or retry later.

2. Claim ownership by setting bit[0], for external debugger, or bit[1] for self-hosted debug agent.

3. Check CLAIM tags again:

a. If only the bit programmed in step 2 is set, and the other bit is clear, then claim tags have
been successfully programmed.

Power State Coordination Interface

Page 85 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

b. If both bits are set, then clear the bit set in step 2 and fail or retry later.

Self-hosted debug does not always require a save and restore sequence of the debug context used in
invasive debug to support power management transitions. Breakpoint and watchpoint registers are
associated with threads, and these can be migrated from one core to another through OS scheduling.
Therefore, the OS might already implicitly save and restore breakpoint and watchpoint data with every
context switch. However, generic events that are not associated with a specific thread must be saved
and restored for powerdown states, using the sequences described in [1], [5].

6.8.1.2 Saving and restoring Performance Monitoring Units

Performance Monitoring Units (PMUs) also require some management on MP systems. Once again,
external and self-hosted debuggers must ensure that they do not conflict with the use of PMUs. In
addition, the external debugger might require save and restore of PMU registers during a power
transition. Arm recommends the use of CLAIM tag bits to indicate whether PMUs are in use by the
external debugger or self-hosted debug as follows:

DBGCLAIM[2] should be set to 1 to indicate that PMUs are in use by the external debugger. If this bit is
set to 1, it is expected that:

1. The supervisory software will perform a save/restore sequence of the PMU context.

2. PMU context will not be overwritten by self-hosted debug software.

DBGCLAIM[3] should be set to 1 to indicate that PMUs are in use by a self-hosted debugger. This bit
can be used to indicate to power management software that it must save and restore debug context
over a power cycle.

In an AArch32 implementation that is using v7 Debug, DBGCLAIM[7] should be set to 1 by the
supervisory software as an acknowledgement for bit[2]. For more information see the Note for
DBGCLAIM[1] .

6.8.1.3 Saving and restoring trace context

Using a similar handshake to that proposed for debug context, Arm recommends the use of ETMCLAIM
registers to indicate whether an external or a self-hosted debugger is using trace, and to indicate the
need to save and restore:

ETMCLAIM[0] should be set to 1 to indicate that trace is in use by the external debugger. If this bit is
set to 1, it is expected that:

1. The supervisory software will perform a save and restore sequence of the trace context.

2. Trace context will not be overwritten by self-hosted debug software.

ETMCLAIM[1] should be set to 1 to indicate that debug is in use by the self-hosted debugger. This bit
can be used to indicate to power management software that it must save and restore trace context
when power cycling.

In an AArch32 implementation that is using ETMv3.4 or PFTv1.0, ETMCLAIM[6] should be set to 1 by
the supervisory software as an acknowledgement for bit[0].

The save and restore sequence must be appropriate for the type of trace architecture implemented by
the core, and this might differ depending on core type. For example, the Cortex®-A15 processor uses
Program Flow Trace Architecture [3], whereas the Cortex-A7 processor uses the Embedded Trace
Macrocell Architecture [2]. Both architectures support ETMCLAIM tags.

6.8.1.4 Saving and restoring debug context and Exception levels

Power State Coordination Interface

Page 86 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

Save and restore sequences for debug and trace context can be performed at any privileged Exception
level that is making use of the services. It might be that virtualized access is being provided to debug
services by higher Exception levels. In this case, the higher Exception levels must trap accesses as
appropriate.

In all cases, the save sequence must use the CLAIM tags to decide whether a save and restore
sequence is required, and whether it needs to include the subset of registers affected by self-hosted
debug, or the set affected by external debug. For descriptions of the save and restore sequences see
the Armv7 Arm [1], or the Armv8 Arm [5], as well as the Program Flow Trace Architecture Specification
[3], or the Embedded Trace Macrocell Architecture Specification [2].

6.9 Compliance with the PSCI Specification

The functions that must be implemented to be fully compliant with a PSCI at a specified version are
listed below:

Table 18 Mandatory and optional functions for a given version of PSCI

FUNCTION PSCI 0.2 PSCI 1.0 PSCI 1.1

PSCI_VERSION Mandatory Mandatory Mandatory

CPU_SUSPEND Mandatory Mandatory Mandatory

CPU_OFF Mandatory Mandatory Mandatory

CPU_ON Mandatory Mandatory Mandatory

AFFINITY_INFO Mandatory Mandatory Mandatory

MIGRATE Optional Optional Optional

MIGRATE_INFO_TYPE Optional(a) Optional(a) Optional(a)

MIGRATE_INFO_CPU Optional(b) Optional(b) Optional(b)

SYSTEM_OFF Mandatory Mandatory Mandatory

SYSTEM_RESET Mandatory Mandatory Mandatory

PSCI_FEATURES Not Applicable Mandatory Mandatory

CPU_FREEZE Not Applicable Optional Optional

CPU_DEFAULT_SUSPEND Not Applicable Optional Optional

NODE_HW_STATE Not Applicable Optional Optional

SYSTEM_SUSPEND Not Applicable Optional Optional

PSCI_SET_SUSPEND_MODE Not Applicable Optional Optional

PSCI_STAT_RESIDENCY Not Applicable Optional(c) Optional(c)

PSCI_STAT_COUNT Not Applicable Optional(c) Optional(c)

SYSTEM_RESET2 Not Applicable Not Applicable Optional

Power State Coordination Interface

Page 87 of 87 Copyright © 2012, 2013, 2015, 2017 - 2021 Arm Limited or its affiliates. All rights reserved. DEN0022D.b
 Non-Confidential

MEM_PROTECT Not Applicable Not Applicable Optional(d)

MEM_PROTECT_CHECK_RANGE Not Applicable Not Applicable Optional(d)

(a)Note that for issue B.b of this document MIGRATE_INFO_TYPE was compulsory, and
NOT_SUPPORTED was not a valid return value. This was fixed in issue C of this document, which
represents both a release of PSCI 1.0 and an errata fix release for PSCI 0.2. Therefore, this change
applies to all versions of PSCI from 0.2 onwards.

(b) Mandatory if MIGRATE is implemented.

(c) If present, then both PSCI_STAT_RESIDENCY and PSCI_STAT_COUNT must be implemented.

(d) If present, then MEM_PROTECT, MEM_PROTECT_CHECK_RANGE, must be implemented.

	About this document
	1 Introduction
	1.1 References
	1.1.1 Arm publications

	1.2 Terms and abbreviations
	1.3 Feedback
	1.3.1 Feedback on this manual

	2 Background
	3 Assumptions and recommendations
	3.1 PSCI intended use
	3.2 Exception levels, the Armv7 privilege levels, and highest privilege
	3.3 Software stacks on Arm-based systems
	3.4 Conduits
	3.5 Secure world software and power management
	3.6 Virtualization and core power policy

	4 PSCI Use Cases and Use Case Requirements
	4.1 Idle management
	4.2 Power state system topologies and coordination
	4.2.1 Local power states and composite power states
	4.2.2 Affinity hierarchy
	4.2.3 Power state coordination
	4.2.3.1 Platform-coordinated mode
	4.2.3.2 OS-initiated mode

	4.3 CPU hotplug and secondary CPU boot
	4.4 System shutdown, reset and suspend

	5 Functions
	5.1 Function prototypes
	5.1.1 PSCI_VERSION
	5.1.2 CPU_SUSPEND
	5.1.3 CPU_OFF
	5.1.4 CPU_ON
	5.1.5 AFFINITY_INFO
	5.1.6 MIGRATE
	5.1.7 MIGRATE_INFO_TYPE
	5.1.8 MIGRATE_INFO_UP_CPU
	5.1.9 SYSTEM_OFF
	5.1.10 SYSTEM_RESET
	5.1.11 SYSTEM_RESET2
	5.1.12 MEM_PROTECT
	5.1.13 MEM_PROTECT_CHECK_RANGE
	5.1.14 PSCI_FEATURES
	5.1.15 CPU_FREEZE
	5.1.16 CPU_DEFAULT_SUSPEND
	5.1.17 NODE_HW_STATE
	5.1.18 SYSTEM_SUSPEND
	5.1.19 PSCI_SET_ SUSPEND_MODE
	5.1.20 PSCI_STAT_RESIDENCY
	5.1.21 PSCI_STAT_COUNT

	5.2 Arguments and return values in PSCI
	5.2.1 Register usage in arguments and return values
	5.2.2 Return error codes

	5.3 PSCI_VERSION
	5.3.1 Intended use
	5.3.2 Implementation responsibilities

	5.4 CPU_SUSPEND
	5.4.1 Intended use
	5.4.2 CPU_SUSPEND parameters: power_state
	5.4.2.1 Original format
	5.4.2.2 Extended StateID format

	5.4.3 CPU_SUSPEND parameters: entry_point_address
	5.4.4 CPU_SUSPEND parameters: context_id
	5.4.5 Caller responsibilities
	5.4.6 Implementation responsibilities: State coordination
	5.4.7 Implementation responsibilities: Interaction with a Trusted OS or SP
	5.4.8 Implementation responsibilities: Cache and coherency management
	5.4.9 Implementation responsibilities: State on return

	5.5 CPU_OFF
	5.5.1 Intended use
	5.5.2 Caller responsibilities
	5.5.3 Implementation responsibilities: Cache and coherency management

	5.6 CPU_ON
	5.6.1 Intended use
	5.6.2 Caller responsibilities
	5.6.3 Implementation responsibilities: cache management

	5.7 AFFINITY_INFO
	5.7.1 Intended use
	5.7.2 Caller responsibilities

	5.8 MIGRATE
	5.8.1 Intended use
	5.8.2 Caller responsibilities
	5.8.3 Implementation responsibilities

	5.9 MIGRATE_INFO_TYPE and MIGRATE_INFO_UP_CPU
	5.9.1 Intended use
	5.9.2 Caller responsibilities
	5.9.3 Implementation responsibilities

	5.10 SYSTEM_OFF
	5.10.1 Intended use
	5.10.2 Implementation responsibilities
	5.10.3 Caller responsibilities

	5.11 SYSTEM_RESET
	5.11.1 Intended use
	5.11.2 Caller responsibilities

	5.12 SYSTEM_RESET2
	5.12.1 Intended use
	5.12.2 Architectural resets
	5.12.2.1 System Warm reset

	5.12.3 Vendor-specific resets
	5.12.4 Caller responsibilities
	5.12.5 Implementation responsibilities

	5.13 MEM_PROTECT
	5.13.1 Intended use
	5.13.2 Caller responsibilities
	5.13.3 Implementation responsibilities

	5.14 MEM_PROTECT_CHECK_RANGE
	5.14.1 Intended use
	5.14.2 Caller responsibilities
	5.14.3 Implementation responsibilities

	5.15 PSCI_FEATURES
	5.15.1 Intended use
	5.15.2 Implementation responsibilities

	5.16 CPU_FREEZE
	5.16.1 Intended use
	5.16.2 Implementation responsibilities
	5.16.3 Caller responsibilities

	5.17 CPU_DEFAULT_SUSPEND
	5.17.1 Intended use
	5.17.2 Implementation responsibilities
	5.17.3 Caller responsibilities

	5.18 NODE_HW_STATE
	5.18.1 Intended use
	5.18.2 Caller responsibilities
	5.18.3 Implementation responsibilities

	5.19 SYSTEM_SUSPEND
	5.19.1 Intended use
	5.19.2 Caller responsibilities

	5.20 PSCI_SET_SUSPEND_MODE
	5.20.1 Intended use
	5.20.2 Implementation responsibilities
	5.20.3 Caller responsibilities

	5.21 PSCI_STAT_RESIDENCY/COUNT
	5.21.1 Intended use
	5.21.2 Implementation responsibilities
	5.21.3 Caller responsibilities

	6 Additional Implementation Details
	6.1 PSCI call flows
	6.1.1 CPU_SUSPEND, CPU_DEFAULT_SUSPEND, and SYSTEM_SUSPEND call flow
	6.1.2 CPU_OFF call flow
	6.1.3 CPU_ON call flow

	6.2 OS and Implementation View of Cores State
	6.3 Races in OS-initiated mode
	6.4 Initial state after CPU_ON, CPU_SUSPEND
	6.4.1 First Non-secure Exception level
	6.4.2 Entry point address
	6.4.3 Initial core configuration
	6.4.3.1 Execution state on Armv8 systems
	6.4.3.2 Endianness
	6.4.3.3 Exceptions
	6.4.3.4 MMU, cache and branch predictor enables
	6.4.3.5 T32 support
	6.4.3.6 Generic Timer
	6.4.3.7 Context ID
	6.4.3.8 EL2 state when EL2 is disabled

	6.5 Recommended StateID Encoding
	6.6 Implementation CPU_ON/CPU_OFF races
	6.7 Discoverability
	6.8 Preserving the execution context
	6.8.1 Debug and Trace save and restore
	6.8.1.1 Saving and restoring invasive debug context
	6.8.1.2 Saving and restoring Performance Monitoring Units
	6.8.1.3 Saving and restoring trace context
	6.8.1.4 Saving and restoring debug context and Exception levels

	6.9 Compliance with the PSCI Specification

