
Test automation with MDK and ULINKplus 

AN 307, January 2018, V 1.0 

feedback@keil.com 

AN 307 – Test automation with MDK and ULINKplus  Copyright © 2017 Arm Ltd. All rights reserved 

  www.keil.com/appnotes/docs/apnt_307.asp 1 

Abstract 
Modern application development is not a single-user task anymore. Large teams – often covering various time 
zones – require that the application software must be tested fully automated regularly to let the engineering 
management check the progress daily. But not only large teams have adapted a workflow that uses test 
automation and continuous integration, also smaller teams are using build servers to run nightly build tests of 
their embedded project. 

This application note shows how to use debug scripts to: 

▪ communicate with the target under test using the I/Os on the ULINKplus 
▪ emulate user input 
▪ change the program flow for test purposes 
▪ read and write memory as well as core registers 
▪ check the states of microcontroller I/Os. 

This document is the first in a series of technical papers that will help you to understand the needs of modern 
application development. The series explains how these needs can be fulfilled with MDK and the new debug 
adapter, ULINKplus. 

Contents 
Abstract ......................................................................................................................................................................1 

Introduction ................................................................................................................................................................1 

Test example ..............................................................................................................................................................2 

Step 1: Connect the hardware ................................................................................................................................2 

Step 2: Download the project and build the code ..................................................................................................3 

Step 3: Run the test in batch mode ........................................................................................................................3 

Test details..................................................................................................................................................................3 

Debug procedure based on Test.ini ........................................................................................................................3 

Troubleshooting ......................................................................................................................................................4 

Appendix .....................................................................................................................................................................5 

Introduction 
This application note explains how to run a project fully automated using the µVision command line and debug 
script engine, and how to use ULINKplus for simulated user interaction. 

Prerequisites 

To run through the material, the following software and hardware is required: 

- A Keil MCBSTM32F400 development board (but any development board will do if you have access to 
some of the I/Os and an on-board 10-pin Arm Cortex debug connector) 

- A ULINKplus debug adapter 
- MDK v5.25 pre-release (www.keil.com/mdk5/525) or newer 

http://www.keil.com/mdk5/525


AN 307 – Test automation with MDK and ULINKplus  Copyright © 2018 Arm Ltd. All rights reserved 

  www.keil.com/appnotes/docs/apnt_307.asp 2 

Test example 
The example project runs several tests to verify the correct functionality of the processor, hardware, and 
software. For further information on the tests that are executed, refer to the “Test details” chapter. To setup 
and run the test, follow these three steps: 

Step 1: Connect the hardware 
Attach the ULINKplus to the 10-pin Cortex Debug connector on the target board. Use jumper wires to connect 
the ULINKplus I/Os to the development board I/Os: 

ULINKplus  MCBSTM32F400 Board function 

IO0 PH3 LED0 

IO1 PI10 LED3 

IO2 PG6 LED4 

IO3 PH2 LED7 

IO4 PA0 WAKEUP button 

 

Connect the ULINKplus and the MCBSTM32F400 development board to your computer using Micro-USB cables. 

 

 



AN 307 – Test automation with MDK and ULINKplus  Copyright © 2018 Arm Ltd. All rights reserved 

  www.keil.com/appnotes/docs/apnt_307.asp 3 

Step 2: Download the project and build the code 
Download the project from www.keil.com/appnotes/docs/apnt_307.asp and open it. It is a simple project using 
one thread to light up the eight LEDs on the MCBSTM32F400 development board. It is using Keil RTX5 as the 
underlying real-time operating system. 

Build and flash the project to verify the correct behavior. You should see the eight LEDs below the LCD screen 
blinking.  

Step 3: Run the test in batch mode 
The project contains a batch file, called Test.bat that runs the automated test and checks the results. To run 
the test from the Windows command line, enter the following in a Command Prompt window: 

C:\> Test.bat C:\Keil_v5\UV\UV4.exe 

 

Adjust the path to your MDK installation if necessary. If you are using this standard installation path, you can 
omit it and just call Test.bat. 

The batch file first builds the application, then flashes it onto the target 
hardware, and finally runs the debug session. To verify the proper 
operation, it checks for the availability of the test results and prints them 
onto the command line (see Figure 1). 

Note: all calls of µVision are using the -j0 option that suppresses the GUI. 
This is called headless mode which is especially important for automated 
building and testing as usually no one is checking the graphical output. 

 

 

Test details 
 In the project, two debug scripts are used to run the automated test: 

1. Debug_UlinkPlus.ini: this file is available as a template from your MDK installation (refer to the 
Appendix). Using this file, you can configure the I/O pins and enable power measurement. Here, it sets 
the I/Os and includes the Test.ini debug script. When the test has finished, it exits the debug session. 

2. Test.ini: This file is used to run the application specific tests. 

Debug procedure based on Test.ini 
In the Test.ini file, the actual debug procedure starts at line 487 by removing all previously set breakpoints, 
so that the following test can run undisturbed. Then, it calls the function OpenLog to start logging the output of 
the script. 

Execution breakpoint 

At line 493, an execution breakpoint is set on the line with the LED_On statement in main.c. Execution 
breakpoints halt the program execution or execute a command when the specified code address is reached. For 
every BreakSet command, you can specify the number of counts that determines the number of times a 
breakpoint condition is met before the target program halts or the specified command is executed. 

To be able to check whether the number of times is correct, the variable bpExecCounter is added to the C code. 
The code execution continues until it hits the breakpoint. The function CheckBpExec checks whether 
bpTestCounter has the right value. 

Figure 1 Command window output 

http://www.keil.com/appnotes/docs/apnt_307.asp
https://www2.keil.com/mdk5/cmsis/rtx


AN 307 – Test automation with MDK and ULINKplus  Copyright © 2018 Arm Ltd. All rights reserved 

  www.keil.com/appnotes/docs/apnt_307.asp 4 

Using ULINKplus to enter a special test mode 

To change the execution flow, a signal is sent to the application by setting I/O0 of the ULINKplus to high. The C 
code sets the LEDs 0, 3, 4, and 7 to signal the test mode. The CheckLEDs function compares the ULINKplus 
inputs against the expected values. 

Read access breakpoint 

A breakpoint is set to the variable test_success to monitor read accesses to this symbol. The code execution is 
continued. The function CheckBpRead checks if the variable is read at the right program counter using the 
helper variable bpReadCounter.  

Memory write test 

The function MemWrite fills the array test_array1 with test data (256 values; incremented from 0x1000). In the 
application, this data is copied to test_array2 and later verified for correctness. 

Register read and write test 

The function RegReadWrite reads and writes the internal registers of the Cortex-M4. First, the internal 
registers are read and it is checked that they are read correctly. In a second step, they are written and the 
content is verified. 

Write access breakpoint 

A write access breakpoint is set to the variable test_success to monitor accesses to this symbol. Eight single 
steps are executed to step over the first occurrence of a write access to test_success. Register R6 is modified to 
set the number of elements that are copied in the program from one array to the other to the right value. 

The code execution is continued. The function CheckBpWrite checks if the variable is written at the right 
program counter using the helper variable bpWriteCounter.  

Memory write test 

The function MemRead validates the data in test_array2. If all previous operations have been successful, the data 
should be the same as the one that has been written to test_array1 previously. 

Test evaluation 

Finally, the success of all tests is evaluated and printed out on the command line and into a separate 
Test_results.txt file. In a continuous integration environment, you can use this file to measure the success 
of your build test. Use the EvalSuccess function to adapt the text file’s output to your needs. 

Troubleshooting 
If your test run does not pass, you can start a debug session without the script by commenting out these lines in 
the UlinkPlus_Debug.ini script: 

// INCLUDE .\Test.ini 

… 

// EXIT 

When entering debug, you then stop at main. 



AN 307 – Test automation with MDK and ULINKplus  Copyright © 2018 Arm Ltd. All rights reserved 

  www.keil.com/appnotes/docs/apnt_307.asp 5 

Appendix 

ULINKplus introduction videos 

A set of videos showing how to use ULINKplus is available here: www.keil.com/ulink/plus 

ULINKplus user’s guide 

For more information, visit www.keil.com/support/man/docs/ulinkplus 

Debug_UlinkPlus.ini template debug script 

This template debug script is shipped with µVision. It contains methods to set up the ULINKplus I/Os and to 
enable the power measurement, as well as functions that you can use to generate analog or digital signal 
patterns on the ULINKplus outputs. This script is available from the 
[Installation_directory]\ARM\ULINK\Templates. 

µVision Command Line 

Invoke µVision from a command line to build a project, start the debugger, or download a program to Flash. The 
command applies to project and multiple-project files. 

For more information, visit www.keil.com/support/man/docs/uv4/uv4_commandline.htm 

Debug Commands 

Debug Commands can be used in the µVision Command window and in debug functions. Debug commands can 
be built using expressions that include numbers, debug objects, operands, program variables (symbols), fully 
qualified symbols, system variables, or virtual registers (VTREGs). 

For more information, visit: www.keil.com/support/man/docs/uv4/uv4_debug_commands.htm 

Expressions 

Many debug commands accept numeric expressions as parameters. A numeric expression is a number or a 
complex expression that contains numbers, debug objects, or operands. 

For more information, visit www.keil.com/support/man/docs/uv4/uv4_db_expressions.htm 

ULINKplus Virtual Registers (VTREGs) 

The ULINKplus I/O pins can be accessed using Virtual Simulation Registers, or VTREGs. This makes them usable 
for test automation by scripting logic digital levels or applying/measuring analog signals. 

For more information, visit www.keil.com/support/man/docs/ulinkplus/ulinkplus_using_ios.htm 

 

 

http://www.keil.com/ulink/plus
http://www.keil.com/support/man/docs/ulinkplus
http://www.keil.com/support/man/docs/uv4/uv4_commandline.htm
http://www.keil.com/support/man/docs/uv4/uv4_debug_commands.htm
http://www.keil.com/support/man/docs/uv4/uv4_db_expressions.htm
http://www.keil.com/support/man/docs/ulinkplus/ulinkplus_using_ios.htm

	Abstract
	Introduction
	Test example
	Step 1: Connect the hardware
	Step 2: Download the project and build the code
	Step 3: Run the test in batch mode

	Test details
	Debug procedure based on Test.ini
	Troubleshooting

	Appendix

