
AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 1

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_315.asp

asdfasdfasdfwwww.keil.com/appnotes/docs/apnt_291.asp

Programming Microchip SAM L11 in Arm MDK

MDK Tutorial

AN315, Summer 2018, V 1.0 feedback@keil.com

Abstract
The Application Note describes how to partition and use the secure and non-secure domains of Microchip’s
Arm® Cortex® -M23 based SAM L11 device in Arm MDK. The details are explained with an example project
present in the SAML11 device family pack.

Prerequisites

MDK v5.26 provides support for creating and debugging secure and non-secure applications for ARMv8-M based
devices, including SAML10 and SAML11 devices from Microchip.

To be able to use the examples provided in this application note, you need to have a valid MDK license. The
MDK-Essential edition allows you to develop and debug non-secure applications on Cortex-M23/M33 devices
while the MDK-Plus and MDK-Professional editions also allow you to develop and debug secure applications.

Note: there is an evaluation version available for MDK-Professional.

Additionally, the following software packs are required:

- ARM.CMSIS.5.0.1.pack (or higher)
- Keil.SAML11_DFP-1.0.81 (or higher)

Contents
Programming Microchip SAM L11 in Arm MDK ...1

Abstract ..1

Prerequisites ...1

Introduction ..2

Secure and non-secure domains with TrustZone for ARMv8-M ..2

SAM L11 system partitioning ..3

Configuring SAM L11 device in MDK ..3

Example: TrustZone for SAML11 No RTOS ...5

Multi-project workspace setup ...5

Secure project configuration ..6

Non-secure project configuration ...8

Summary .. 11

Useful links .. 11

http://www.keil.com/appnotes/docs/apnt_315.asp
http://www.keil.com/appnotes/docs/apnt_291.asp
http://www2.keil.com/mdk5/editions/essential
http://www2.keil.com/mdk5/editions/plus
http://www2.keil.com/mdk5/editions/pro
http://www.keil.com/support/man/docs/license/license_eval.htm
http://www2.keil.com/mdk5/editions/pro

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 2

Introduction
The SAM L11 Microcontroller family from Microchip is based on the Arm®
Cortex®-M23 core, featuring TrustZone® for Armv8-M, a programmable
environment that provides hardware isolation between certified libraries, IP and
application code.

ARM® TrustZone® technology is a System on Chip (SoC) and CPU system-wide approach to security. The
TrustZone for ARMv8-M security extension is optimized for ultra-low power embedded applications. It enables
multiple software security domains that restrict access to secure memory and I/O to trusted software only.

TrustZone for ARMv8-M:

• preserves low interrupt latencies for both secure and non-secure domains.

• does not impose code overhead, cycle overhead or the complexity of a virtualization-based solution.

• introduces efficient instructions for calls to the secure domain with minimal overhead.

In addition to TrustZone, the SAM L11 security features include an on-board cryptographic module supporting
Advanced Encryption Standard (AES), Galois Counter Mode (GCM) and Secure Hash Algorithm (SHA). The secure
boot and secure key storage with tamper detection capabilities establish hardware root of trust. It also offers
secure bootloader for secure firmware upgrades.

To show a real-world example, in this tutorial a SAML11 Xplained Pro Evaluation Kit is used as a target for the
Subsequent Chapters provide details for this example.

Secure and non-secure domains with TrustZone for ARMv8-M

Arm TrustZone for Cortex-M enables the system (Flash, RAM, and peripherals) and the software code to be
partitioned in Secure and Non-Secure domains.

Secure software is executed in a secure state and can access both Secure and Non-secure memories and
resources, while Non-Secure software is running in non-secure state and can only access Non-secure memories
and resources.

Figure 1 shows an example of an embedded
application split into a Non-Secure User project
and a Secure Firmware project.

System Start: after power-on or reset, an
ARMv8-M system starts code execution in the
secure state.

User Application: control can be transferred to
the non-secure state to execute user code. This
code can only call functions in the secure state,
which are marked for execution with the SG
(secure gate) instruction and additional memory
attributes. Any other attempt to access memory
or peripherals that are assigned to the secure

Firmware callbacks: code running in the secure
state can execute code in the non-secure state using call-back function pointers. For example, a communication
stack (protected firmware) could use an I/O driver that is configured in user space.

For a real use-case refer to Example: TrustZone for SAML11 No RTOS.

Figure 1 Secure/non-secure embedded application

https://developer.arm.com/products/processors/cortex-m/cortex-m23
https://developer.arm.com/products/processors/cortex-m/cortex-m23
https://developer.arm.com/technologies/trustzone

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 3

SAM L11 system partitioning
Memory partitioning

Memory partitioning to Non-Secure and Secure domains is done on SAM L11 devices using a centralized
Implementation Defined Attribution Unit (IDAU), which is a hardware unit external to the core. The Security
Attribution Unit (SAU) is not supported.

The IDAU is used to indicate the processor if a memory region is Secure (S), Non-secure Callable (NSC), or Non-
secure (NS). It can also mark a memory region to be exempted from security checking.

The IDAU security configuration is done performed via settings in Non-Volatile Memory User Row (UROW),
which are read after each reset and are loaded into their respective registers. See section Configuring SAM L11
device in MDK explaining how this configuration is done in µVision.

Peripheral partitioning

The Peripheral Access Controller (PAC) configures the security privileges for each individual peripheral in the
system. Each peripheral can only be configured either in Secure or in Non-Secure mode.

The PAC security configuration is performed via settings in Non-Volatile Memory User Row (UROW), which are
read after each reset and are loaded into their respective registers. See section Configuring SAM L11 device in
MDK explaining how this configuration is done in µVision.

Debug access

The SAM L11 allows three debug access levels (DAL):

• DAL2: Highest debug level access with no restrictions in term of memory and peripheral accesses.

• DAL1: Access is limited to the Non-Secure memory regions. Secure memory regions accesses are
forbidden.

• DAL0: No access is authorized except from the debugger communicating with the Boot ROM in
interactive mode.

Configuring SAM L11 device in MDK

The SAM L11 device can be configured in MDK via special debug configuration file. File template is included in
the device family pack for SAM L11 and is also present in the example projects for both secure and non-secure
applications in .\DebugConfig directory. The debug configuration file will be copied automatically to the project
if not present yet, or in case a new project is created.

The use of such debug configuration file is given via Options for Target…  Debug  Settings..  Pack tab

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 4

For device programming and debugging the µVision relies on the Debug Descriptions as well as Flash Sequences
provided with the SAM L11 device family pack. Hence corresponding options shall be enabled.

Press Edit.. to open the file in the editor.

The file is best viewed with Configuration Wizard. It organizes configurable parameters into two main
categories: Debugger Setup and Device Setup.

Debugger setup parameters

This category contains the chip erase parameters that shall be used by µVision during device programming
operations. In particular, the Chip Erase level and Chip Erase keys shall be configured here. Note that these
parameters are not being programmed to the target device.

By default, the SAML11 devices are delivered with the Chip Erase keys set at “All 1s” and so are the default
values set in the debug configuration file. Note that setting a Chip Erase key to “All 0s” disables corresponding
chip erase option. This can be especially critical for CE2 as then it is impossible to get to DAL2 level anymore.

Device setup parameters

In this category user can configure following parameters:

• Debug Access Level

• NVM User Configuration Row (UROW) parameters

• NVM Boot Configuration Row (BOCOR) parameters

These are persistent parameters that get programmed into Non-Volatile Memory (NVM) of the device during
debug and load operations.

Some parameters (especially memory and peripheral partitioning) are accessible only by a secure application,
while others can be modified also by a non-secure application. The access rights Details about access rights are
provided in SAML11 device datasheet.

Note that the parameters in the debug configuration file are not updated from the connected device. µVision
only replaces the current device configuration with these values during the next load or debug operation.

Debug Access Level (DAL)

Details about the operation of all debug access levels are provided in SAML11 device datasheet.

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 5

NVM UROW settings

NVM User Configuration Row (UROW) contains parameters for
the watchdog and brown-out detection as well as settings for
memory and peripheral partitioning into secure and non-secure
domains.

If programming of the UROW is required, then the Program User
Configuration Row (UROW) shall be enabled to become active.
The parameter Write Enable should be enabled as well. After
that, individual parameters can be modified.

A detailed explanation of all parameters is available in SAML11
device datasheet.

NVM BOCOR settings

NVM Boot Configuration Row (BOCOR) contains parameters for
the boot flash partitioning as well as Chip Erase Keys.

If programming of the BOCOR is required, enable Program Boot
Configuration Row (BOCOR) to become active. Continue with
modifying individual parameters.

A detailed explanation of all parameters is available in SAML11
device datasheet.

Example: TrustZone for SAML11 No RTOS

This example project shows a basic TrustZone configuration on a SAM L11 device. The application demonstrates
function calls between secure and non-secure states. The secure application sets up the system and starts the
non-secure application which calls a secure function from the non-secure state. All variables used in this
application can be viewed in the µVision Debugger Watch window.

Multi-project workspace setup

To demonstrate the split into secure and non-secure domains the example
application is organized as a multi-project workspace. Once you have opened the
project NoRTOS.uvmpw, you will see two projects in the Project window. The
secure project is called sApp and the non-secure project is named nsApp.

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 6

Project Build

The workspace is configured so that a batch operation (build, clean, rebuild) is performed over both projects –
first sApp and then nsApp.

To build both projects at once, go to Project  Batch Build… or use the batch build icon . This will generate
two firmware images: one image for the secure project (sApp\Objects\sApp.axf) and one image for the non-
secure project (nsApp\Objects\nsApp.axf).

If the sApp project is set as active, both secure and non-secure projects will be loaded during flash load and debug.
See Secure project configuration section for details.

Secure project configuration
The secure project sApp requires special configuration to ensure that it gets properly compiled and placed into
the secure memory of the device, as well as to enable secure project debug. In addition, device partitioning can
be done via the debug configuration file.

Secure mode operation

Secure operation is configured via Options for Target… ()  Target tab  Software ModelSecure Mode

Note that Cortex-M23 device is supported only by Arm compiler version 6.

Memory layout

Scatter file sApp.sct is used in Options for Target… ()  Linker tab Scatter File and describes where the
project code and data are placed in the device memory.

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 7

The code from interface.c file needs to be accessible from the non-secure project and hence is placed into the
non-secure callable area of the Flash memory marked by *(Veneer$$CMSE). The rest of the code is placed in the
secure area of the Flash. The secure area of the RAM is used for data.

Note: The sApp.sct file itself doesn’t partition device memory into secure and non-secure domains. This is done
via Debug Configuration file as described below. For correct program operation, the scatter file must use the
same memory partitioning as done in the Debug Configuration file.

Debug configuration file

Device-specific debug options as well as device partitioning into secure and non-secure domains is done via the
sApp\.DebugConfig\SAML11_s_ATSAML11E16A.dbgconf file. The use of such debug configuration file is given via
Options for Target…  Debug  Settings..  Pack tab

Note that “Enable” is checked to allow use of Debug Descriptions from the SAM L11 device family pack. To
enable flash programming corresponding option “Enable Flash Sequences” shall be checked as well.

The section Configuring SAM L11 device in MDK explains the concept in detail. In this example, the important
settings for the correct program operation are:

• Chip Erase is set to CE2 to allow full chip erase from the sApp project

• Chip Erase keys are set to all ‘1’ as they are shipped by default in silicon

• Debug Access Level is set to DAL2 providing secure debug

• Program User Configuration Row (UROW) is enabled:
o Write Enable bit is enabled to allow UROW changes
o Application Flash memory is configured to have 32 KB of secure area and 400 B of non-secure

callable area.
o RAM memory is configured to have 8 KB of secure area.

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 8

o Dataflash is configured to have 8 KB of secure area (not used in this project).
o All peripherals are kept as secure, but none of them are used in the project.

• Program Boot Configuration Row (BOCOR) is enabled
o Default values are kept without changes.

Loading both projects into Flash

By default, the secure project sApp is configured in a way that during the load operation (via Flash  Download

or with icon) the nsApp program is also loaded into Flash. This is done via the Load_ns.ini script file in the

Options for Target… ()  Utilities tab:

Debugging both projects

By default, the secure project sApp is configured so that during debugging () also the image of the nsApp is
loaded and thus can be debugged. This is done via the Debug_all.ini script file provided in the Options for

Target… ()  Debug tab:

Note that the option “Load Application at Startup” is disabled in this case.

As mentioned in section Configuring SAM L11 device in MDK, for device programming and debugging the
µVision relies on the Debug Descriptions as well as Flash Sequences provided with the SAM L11 device family
pack. Hence corresponding options in the Options for Target…  Debug  Settings..  Pack tab shall be kept
enabled.

Non-secure project configuration
The non-secure project nsApp also requires configuration to ensure that it gets properly compiled and placed
into the non-secure memory of the device. It is able to use interface shared by the secure project as defined in
interface.h.

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 9

Non-Secure mode operation

Operation in non-secure state is configured via the Options for Target… ()  Target tab  Software
ModelNon-Secure Mode

Note that Cortex-M23 device is supported only by Arm compiler version 6.

Memory layout

As the memory configuration of the non-secure project is simple, it can be configured via the memory layout

GUI provided in Options for Target… ()  Target. Alternatively, a custom scatter file can be used as well.

The non-secure callable area of the flash is defined here as well (IROM1). For correct operation, the memory
layout needs to correspond to the one actually configured on the device.

Interface to secure application

The communication with the secure application is done via the interface provided by the sApp. To access it, the
interface.h file is included in main_ns.c file where interface functions secure_func1 and secure_func2 are then
called.

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 10

The special object file sApp_CMSE_Lib.o that is present in the nsApp is generated by the secure project:

The object file name is always created according to the rule <projectname>_CMSE_Lib.o in the Objects
directory of the secure project. Right-click on the sApp_CMSE_Lib.o to see its options:

Debug configuration file

Device-specific debug options as well as device partitioning into secure and non-secure domains is done via the
nsApp\.DebugConfig\SAML11_ns_ATSAML11E16A.dbgconf file. The use of such debug configuration file is given
via Options for Target…  Debug  Settings..  Pack tab.

Note that “Enable” is checked to allow use of Debug Descriptions from the SAM L11 device family pack. To
enable flash programming corresponding option “Enable Flash Sequences” shall be checked as well.

The section Configuring SAM L11 device in MDK explains the concept in detail. In this example, the important
settings for the program operation are:

• Chip Erase is set to CE0 to allow erase of non-secure application only

AN315 – Programming Microchip SAML11 in Arm MDK Copyright © 2018 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_315.asp 11

• Chip Erase keys are set to all ‘1’ as they are on the chips shipped by default

• Debug Access Level is set to DAL2 allowing secure debug

• Program User Configuration Row (UROW) is unchecked so UROW doesn’t get changed

• Program Boot Configuration Row (BOCOR) is unchecked so BOCOR doesn’t get changed

Debugging the non-secure project

To debug non-secure application only, select the nsApp as an active project in the workspace or open the
nsApp\nsApp.uvprojx file separately in µVision.

In the Options for Target… ()  Debug tab the debug initialization file is used to instruct the debugger that
non-secure application shall be loaded.

Summary
This application note has described how to set up a secure and non-secure project for Microchip’s SAML11
device family. Dedicated Flash and debug support in MDK is available to successfully program these devices with
their enhanced security features.

Useful links

• Microchip SAM L10 Cortex-M23 Tutorial provides a hands-on tutorial on Microchip SAM L10 Cortex-M23
processor and Keil µVision IDE

• Using TrustZone on ARMv8-M explains the features that are available in CMSIS and MDK to utilize the
secure and non-secure domains in the ARMv8-M architecture.

• ARMv8-M Architecture Reference Manual gives a complete overview of the ARMv8-M architecture.

• Secure software guidelines for ARMv8-M based platforms lists the requirements when creating secure
software for an ARMv8-M based platform.

• ARMv8-M Security Extensions: Requirements on Development Tools explains concepts implemented in
compiler toolchains to support the ARMv8-M architecture.

http://www.keil.com/appnotes/docs/apnt_313.asp
http://www.keil.com/appnotes/docs/apnt_291.asp
https://developer.arm.com/products/architecture/m-profile/docs/ddi0553/latest/armv8-m-architecture-reference-manual
https://developer.arm.com/products/architecture/m-profile/docs/100720/latest/secure-software-guidelines
http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf

	Programming Microchip SAM L11 in Arm MDK
	Abstract
	Prerequisites
	Introduction
	Secure and non-secure domains with TrustZone for ARMv8-M
	SAM L11 system partitioning
	Configuring SAM L11 device in MDK

	Example: TrustZone for SAML11 No RTOS
	Multi-project workspace setup
	Secure project configuration
	Non-secure project configuration

	Summary
	Useful links

