Using Event Recorder for debugging a network q rm KE ”_

performance issue

MDK Tutorial
AN320, Summer 2019,V 1.0 feedback@keil.com
Abstract The latest version of this document is here: www.keil.com/appnotes/docs/apnt 320.asp

In complex embedded applications, it is often very difficult to find a reason for reduced performance or
incorrect program operation.

This application note shows how Event Recorder and Keil MDK can be used for analyzing the program execution
and locating the root cause for poor performance in a real network example.

Prerequisites

Event Recorder can be used on any Arm Cortex-M based device and with any MDK Edition or debug adapter.
The concepts described in the application notes are universal.

The particular example used for analysis is based on MDK-Middleware that is available with MDK-Plus and MDK-
Professional editions.

Note: there is an evaluation version available for MDK-Professional.

Following software packs are used:

- ARM.CMSIS.5.0.1.pack (or higher) for CMSIS and CMSIS-RTOS
- Keil.ARM_Compiler.1.6.1.pack (or higher) for Event Recorder
- Keil. MDK-Middleware.7.8.0.pack (or higher) for MDK Network library

Contents
Using Event Recorder for debugging a network performance iSSUE.......c.uiiiieciiiieieciiee ettt et e e irae e 1
LY o131 T OO T ST OO PO STOPTUPROPRROPRRRPRO 1
[T =0 LU LT TP PP SPPPPPPPPPN 1
1) oo 18 Lot o] o HA PSP PP URUSPOT 2
o] o1 (=Yoo B LTy ol o] A oY o WU SPRRRURRE 2
R 74 e 31 2
F N a1V 74T o= d o Tl T USRS 2
Debugging the NEtWOIK [IDrarycoi i et e e e e e e et ee e e e eabee e e esabeeeessnbeeeeenasees 3
Debugging the RTX5 thread SWILCRES ...ccccc et e et e e e e e e e s b e e ee e e e e e e e s ansrranes 5
Debugging the EtNEINEL AIiVEreeieiieee et e e e e e et e e e e e e e e st e ae e e e e e e eessnstreeeeeaeeesnnnsrranees 7
Adding cuStOmM EVENTS 10 the IV .ccccc e e e e e e e e e e e e e e e b e ae e e e e e e e e e nsraeees 7
ANalyzing the COMPIELE FIOW......uiii e e e e e e bte e e e e bte e e s eataee e sbteeeesntaeaesans 8
U] 4] 0 o= Y2 OO PR OPPRTOPRRTON 10
USETUITINKS <.ttt h e s a ettt e bt e be e bt e sae e s ae e sabeeabe e be e bt e sbeesaeeeabeenbeenbeesbeesbeesasanas 10

AN320 - Using Event Recorder for debugging a network performance issue
Copyright © 2019 Arm Ltd. All rights reserved

1 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/appnotes/docs/apnt_291.asp
http://www2.keil.com/mdk5/editions/plus
http://www2.keil.com/mdk5/editions/pro
http://www2.keil.com/mdk5/editions/pro
http://www.keil.com/support/man/docs/license/license_eval.htm
http://www2.keil.com/mdk5/editions/pro

Introduction

Event Recorder is a software component that provides an API for event annotation in application code. Events
get triggered when the application is running, providing developers with valuable insights such as timing
information and event-specific arguments.

Event Recorder is available as part of Keil Arm Compiler Extensions pack and can be used with any Arm Cortex-M
based device and any debug adapter.

Keil MDK natively supports Event Recorder and allows users to visually observe the recorded events in real-time.
A logging functionality for later analysis is also available.

MDK-Middleware and CMSIS-RTOS components are already annotated for Event Recorder support and allow
developers to analyze the internal execution flow. This is important, as the MDK-Middleware is delivered as a
library that does not disclose its contents.

This application is based on a real-life performance issue observed in a network example for an STM32H7
evaluation board. As the debugging concepts and the usage of Event Recorder are universal, the hardware-
specific details are abstracted.

Problem Description

Symptoms
When testing examples of the MDK-Middleware, low network performance was observed. Loading a web page
was slow and refreshing the page was significantly faster. Everything else operated correctly.

When pinging the IP address of the evaluation board, unexpected delays of 25 ms are observed:

:\>ping 192.

Figure 1 Slow response on ping command to the evaluation board

Analyzing the issue
Following software components are used in the system:

o Network library MDK-Middleware
e Operating system CMSIS-RTOS RTX5
e CMSIS-Driver Ethernet for the target board

To locate the reason for the problem, the processing of the ping command was analyzed individually in each
component using Event Recorder.

AN320 — Using Event Recorder for debugging a network performance issue
Copyright © 2019 Arm Ltd. All rights reserved

2 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www2.keil.com/mdk5/debug/eventrecorder
http://www.keil.com/dd2/Pack/#/Keil.ARM_Compiler
https://www.keil.com/mdk
http://www2.keil.com/mdk5/middleware
https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html
http://www2.keil.com/mdk5/middleware
http://www.keil.com/pack/doc/mw/Network/html/index.html
https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html
http://www.keil.com/pack/doc/compiler/EventRecorder/html/

Debugging the network library

MDK-Middleware contains a network CORE library with debug support that is annotated with multiple events
for Event Recorder and provides visibility to the operation of the network stack. It is added to the project using

pVision RTE as shown on Figure 2:

Wersion Description

Display Interface including configuration for emWIN
71010 | [PvdAPvE Metworking using Ethernet or Serial protocols
71010 | IPvd/IPvE MNetworking Core for Cortex-M (Debug)

Software Component Sel. Variant
’ Graphics Display
=4 Network MDK-Fro v
‘I P4/PvsDebug v
Legacy API [
= 0 Interface
% ETH s
@ PPP [Custom Modem |+
@ sup [Custom Modem |~
’ Service
’ Socket
& TFM
€ UsB MDK-Fro -
al

710,10 | Metwork Legacy AP| support
Connection Mechanizm

710,10 | Metwork Ethernet Interface

7010 | Metwork PPP over Serial Interface

710,10 | Metwark SLIP Interface

Metwork Services

Metwork Sockets

2136 | USE Communication with various device classes

I ~]

Figure 2 Selecting network library with debug support in uVision Manage Run-Time Environment window

In the Net_Debug.c file, full debug is enabled for ETH Interface and ICMP Control as shown on Figure 3.

|] Net_Debug.c

Epand Al | Collapse Al
Opticn
Print Time Stamps

[=1-System Debug
Memory Management
ETH Interface
WiFi Interface
PPP Interface
SLIP Interface
Loopback Interface
[=-1Pvd Core Debug
IP4 Core
ICMP Centrol
IGMP Management

Help ™ Show Grd

Value

2

2

Errors only
Full debug |~
Errors only
Off

Off

Errors only
2

Errors only
Full debug

Errors only

Figure 3 Enabling full debug for ETH_Interface and ICMP Control

AN320 — Using Event Recorder for debugging a network performance issue

Copyright © 2019 Arm Ltd. All rights reserved

3 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp

The program needs rebuilding. When the debug operation is started, the network stack events get captured and
are listed in the uVision Event Recorder window. When ping command is issued to the board from the PC
following events were observed as shown on Figure 4:

Event Recorder H
Enable [+ " F Mark: | All Operations |~ Stopped
Event Time (sec) Compeonent Event Property Value
10.51491091 Met_ETH ShowFrameHeader dst=1E-30-6C-A2-45-5E, src=D4-6D-6D-C6-AT7-EB, proto=1P4
68 10.51491735 Met_ICMP ReceiveFrame type=ECHO_REQUEST, code=0, cksurmn=0x4C84
69 10.51492041 Met_ICMP EchoRequestReceived len=32
T0 10.51492769 Met_[CMP SendEchoReply type=ECHO_REPLY, code=0, cksum=0x0000
i 10.514493310 Met_ETH SendFrame len=60, ver=IPv4
72 10.51493767 Met_ETH ShowFrameHeader dst=D4-6D-60-C6-AT-EB, sre=1E-30-6C-A2-45-5E, proto=IP4
73 10.51494131 Met_ETH Outputl owl evel len=74
74 11.52190850 Met_ ETH ReceiveFrame len=74
75 11.52191090 Met_ETH ShowFrameHeader dst="1E-30-6C-A2-45-5E, sre=D4-60-6D-C6-AT-EB, proto=I1P4 J
76 11.52191795 Met_|CMP ReceiveFrame type=ECHO_REQUEST, code=0, cksum=0x4C83
7 11.52192040 Met_ICMP EchoRequestReceived len=32 _I
E Event Recorder | Metwork

Figure 4 Network events captured in Event Recorder window when receiving ping command

Table 1 provides description for the captured events:

Event Description

66 Ethernet interface receives a frame.

67 Network library prints the details of the ethernet header of this frame.

68 ICMP process receives this frame.

69 ICMP recognizes an Echo Request while processing the frame.

70 ICMP generates an Echo Reply.

71 Ethernet interface sends a response.

72 Network library prints the details of the ethernet header of the response.

73 Ethernet interface passes the constructed ethernet frame to the network driver.

Table 1 Description of recorded network events

The total time difference can be calculated from the Event Recorder time stamps

e Event 66 timeis 10.51490891 seconds.
e FEvent 73 timeis 10.51494131 seconds.

The time difference between the two is 32.40 microseconds. Hence, it can be concluded that the Network
library reacts to the input frame in just 32 microseconds and is not responsible for the delay of 25 milliseconds.

AN320 — Using Event Recorder for debugging a network performance issue
Copyright © 2019 Arm Ltd. All rights reserved

4 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr_view.htm

Debugging the RTX5 thread switches

In Keil RTX5, thread switches can potentially introduce delays. To analyze this, the source variant of Keil RTX5 is

used as shown on Figure 5:

& CycleneCormmon

<

i Manage Run-Time Environment >
Software Component Sel. Variant Version Description
¥ Board Support Generic Interfaces for Evaluation and Development Boards o
= ’ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE [v 53.0 CMSIS-CORE for Cortex-M, SCO00, SC300, ARMvE-M, ARMVE.1-M
¥ DSP [Library 1.7.0 CMSIS-DSP Library for Cortex-M, SCO0D, and SC300
¥ NN Lib I 1.2.0 CMSIS-NN Meural Network Library
& RTOS (API) 1.0.0 CMSIS-RTOS AP for Cortex-M, SCODD, and SC300
=R 4 213 CMSIS-RTOS AP for Cortex-M, SC000, and SC300
W Keil RTXS [v Source 5.5.1 CMSIS-RTOS2 RTXS for Cortex-M. SC000, €300 and ArmvE-M (Source)
& CMSIS Driver Unified Device Drivers compliant to CMSI5-Driver Specifications
‘ CMBSIS Driver Validation API 1.00 Run AP test for enabled drivers
4 CMSIS RTOS Validation CMSIS-RTOS Validation Suite
‘ Compiler ARM Compiler 160 Compiler Extensions for ARM Compiler 5 and ARM Compiler 6
CycloneCommon | 1.8.2 Commaon Files

e

| Validation Qutput

Description

Figure 5 Selecting Keil RTX5 source code variant

In the RTX_Config.h configuration file, the Global Initialization, Thread and Thread Flags events are enabled
under Event Recorder Configuration section as shown in Figure 6. The Network library uses Thread Flags to

synchronize network threads.

_] RTX_Config.h

Expand Al |

Collapse Al

Cption

= Global Initialization
Start recording

Kernel
= Thread

Generic Wait
[=]-Thread Flags

[=]-Event Recorder Configuration

Global Event Filter Setup
[=1-RTOS Event Filter Setup
Memaory Management

Error events
APl function call events
Operation events

Detailed cperaticn events

Error events
APl function call events
Operation events

Detailed cperation events

Help

[Show Grid

Walue

v
v

AR Y

AR

Figure 6 Event Recorder configuration for RTX RTOS

AN320 - Using Event Recorder for debugging a network performance issue

Copyright © 2019 Arm Ltd. All rights reserved

www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp

To track the thread switches, we must first find the thread identifiers. The RTX RTOS Component Viewer

provides this information:

RTX RTOS x|
Property Value
@ ‘% System A
= “% Threads
‘1 id: 0x2000110C "osRtxidleThread" | osThreadReady, osPriorityldle, Stack Used: 25%
% id: 0x20001150 "osRtxTimerThread" | osThreadBlocked, osPriorityHigh, Stack Used: 40%
‘1 id: 0x20001194 "netCore_Thread" | osThreadBlocked, osPriorityNormal, Stack Used: 7%
% “I$ id: 0x200011D8 “netEth0_Thread" osThreadRunning, osPriorityAboveNormal, Stack Used: 6%
& Y% id: 0x20000010 "app_main" osThreadBlocked, osPriorityNormal, Stack Used: 7%
% ‘1% id: 0x20000060 "BlinkLed" osThreadBlocked, osPriorityNormal, Stack Used: 18%
‘% id: 0x200002B8 "Display” osThreadReady, osPriorityNormal, Stack Used: 32%
1 1% Message Queues ~

Figure 7 RTX RTOS Watch window

The following threads are relevant for the analysis:

e netEth0_Thread with identifier 0x200011D8: This thread handles the Ethernet interface. The thread
waits to receive interrupt. When the thread wakes up, it calls the GetRxFrameSize function. If the
function returns a positive number, the thread calls the ReadFrame to read the frame and release it

from the driver.

e netCore_Thread with identifier 0x20001194: This thread implements the Network Core function. The
thread waits for the frame to be received, then wakes up and processes the frame.

Figure 8 shows the RTX and Network events captured when ping command is issued to the board from the PC:

Event Recorder x|
Enable [v ii Lﬂ W Mark: w Al Operations |« Stopped
Event Time (sec) Component Event Property Value

1631 23.91852261 RTX Thread | ThreadSwitched [Running] - thread_id=0x200011D8 ﬂ

1632 |23.91853080
1633 |23.91853320
1634 | 23.91853935

RTX ThFlags | ThreadFlagsWait

RTX Thread | ThreadSwitched
1636 2394299099
1637 | 23.94300477
1638 | 23.94300938
1639 | 2394301295
1640 | 23.94301797

RTX Thread |ThreadSwitched
RTX ThFlags |ThreadFlagsSet

RTX ThFlags |ThreadFlagsSetDone
RTX ThFlags |ThreadFlagsWait

1641 | 23.94302235 RTX ThFlags |ThreadFlagsWaitPending | flags=0x00000001, options=000000000, timeout=23 -
1642 | 2394302669 RTX Thread | ThreadSwitched [Running] - thread_id=0x20001194

1643 | 2394302048 RTX ThFlags |ThreadFlagsClear flags=0x00000001

1644 2394303215 RTX ThFlags | ThreadFlagsClearDone thread_flags= 000000000

1645 | 23.94303762 Met_ETH BeceiveFrame len=74

1646 | 2394303970 Met_ETH ShowFrameHeader dst=1E-30-6C-A2-45-5E, src=84-3A-4B-32-78-F8, proto=|P4

1647 | 23.94304665 Met_ICMP ReceiveFrame type=ECHO_REQUEST, code=0, cksum=0xdA3D

1648 | 23.94304929 Met_ICMP EchoRequestReceived len=32

1640 | 2394305931 Met_|CMP SendEchoReply type=ECHO_REPLY, code=0, cksum=0x0000

1650 | 23.94306548 Met_ ETH SendFrame len=60, ver=1Pv4

1631 | 23.94307008 Met_ETH ShowFrameHeader dst=284-3A-4B-32-78-F8, src=1E-30-6C-A2-45-5E, proto=|P4

1652 | 23.94307378 Met_ETH Outputl owl evel len=74

1653 | 23.94310517 RTX Thread | ThreadYield j

flags=0x00000001, options=0x00000000, timeout=23

RTX ThFlags |ThreadFlagsWaitPending | flags=0x00000001, options=0x00000000, timeout=23

[Running] - thread_id=0x2000110C

[Running] - thread_id=0x20001102

thread_id=0x20001194, flags=0x00000001

RTX ThFlags | ThreadFlagsWaitCompleted flags=0x00000007, options=0x00000000, thread_flags= (00000001, thread _id=020001194
thread_id=0x20001194, thread_flags=0x00000000

flags=0x00000001, options=0xD0000000, timeout=25

Figure 8 Thread and Network events for handling ping command

AN320 — Using Event Recorder for debugging a network performance issue

Copyright © 2019 Arm Ltd. All rights reserved

www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp

The column Time (sec) provides the time stamps of events. The echo frame is received in the event
record 1635 when execution of netEthO_Thread with identifier 0x200011D8 is started. The processing of the
frame is completed in the event record 1652.

The ThreadFlagsWaitTimeout event 1635 is something that attracts attention in this case. The netEthO_Thread is
waiting for a thread flag to be set from the Ethernet receive interrupt (as visible in event record 1632) but
receiving a timeout is not expected here.

Debugging the Ethernet driver

Adding custom events to the driver

Custom events can be added to record the time execution for following functions of interest:

e Ethernet receive interrupt.
e GetRxFrameSize function and its return value.

Using the EventRecord2 function, a custom event with id=1 is added in the ETH_IRQHandler interrupt handler:

/* Ethernet IRQ Handler */
void ETH_IRQHandler (void) {

/* Callback event notification */
EventRecord2 (1, 0, 0);
Emac.cb_event (event);

}

An event with id=2 is added in the GetRxFrameSize driver function. This event logs also the return value of the
function:

static uint32_t GetRxFrameSize (void) {
uint32_t len;

EventRecord2 (2, len, 0);
return (len);

}

AN320 — Using Event Recorder for debugging a network performance issue
Copyright © 2019 Arm Ltd. All rights reserved

7 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp
https://www.keil.com/pack/doc/compiler/EventRecorder/html/group__EventRecorder__Data.html#gab91eb760432ad0a10652a2c922db9566

Analyzing the complete flow

With the custom events added the Event Recorder gives now the complete picture showing the internal

software operation when processing a ping request as shown on Figure 9:

Event Recorder % |
Enable [v @ H W Mark: w| All Operations |«| 3topped

Event Time (sec) Component Event Property Yalue
2041 | 4.80003349 id=0s0001 Dec0DO00000, 00000000 ﬂ
2042 | 480004065 RTX ThFlags | ThreadFlagsSet thread_id=0x200011D8, flags=0x00000001
2043 | 4.80004358 RTX ThFlags | ThreadFlagsSetDone thread_ic=0x200011D8, thread_flags=0x00000001
2044 | 4.80004816 RTX ThFlags | ThreadFlagsWaitCompleted flags=0x00000001, options=0x00000000, thread_flags=0x00000001, thread_id=0x200011D8
2045 | 4.20005306 RTX Thread | ThreadSwitched [Running] - thread_id=0x20001103
2046 | 4.80005820 id=0m0002 CreD00DD000, CxDO0D000D
2047 | 4.80006318 RTX ThFlags | ThreadFlagsWait flags=0x00000001, opticns=0w00000000, timeout=25
2048 | 4.80006758 RTX ThFlags | ThreadFlagsWaitPending | flags=0x00000001, options=0x00000000, timeout=25
2049 | 4.20007190 RTX Thread | ThreadSwitched [Running] - thread_id=0x2000110C
2050 | 4.80096957 RTX Thread | ThreadSwitched [Running] - thread_id=0x20001150
2051 | 4.80097301 RTX ThFlags | ThreadFlagsSet thread_id=0x20001194, flags=0x00000001
2052 | 4.80097783 RTX ThFlags | ThreadFlagsWaitCompleted flags=0x00000001, options=0x00000000, thread_flags=0x00000001, thread_id=0x20001194
2053 | 4.80098095 RTX ThFlags | ThreadFlagsSetDone thread_id=0x20001194, thread_flags=0x00000000
2054 | 4.80098724 RTX Thread | ThreadSwitched [Running] - thread_id=0x20001194
2055 | 4.80095062 RTX ThFlags | ThreadFlagsClear flags=0xD0DD000T
2056 | 4.80099329 RTX ThFlags |ThreadFlagsClearDone thread_flags= 000000000
2057 | 4.80107540 RTX Thread | ThreadYield
2058 | 4.80101879 RTX ThFlags | ThreadFlagsClear flags=0x0000000
2059 | 4.80102136 RTX ThFlags | ThreadFlagsClearDone thread_flags= 000000000
2060 | 4.80103755 RTX ThFlags | ThreadFlagsWait flags=0x00000001, options=0x00000000, timeout=-1
2061 | 4.80104193 RT¥ ThFlags | ThreadFlagsWaitPending | flags=0x00000001, options=0x00000000, timeout=-1
2062 | 420104635 RTX Thread | ThreadSwitched [Running] - thread_id=0x2000110C
2063 | 4.80696061 RTX Thread | ThreadSwitched [Running] - thread_id=_0x20000060
2064 | 480696852 RTX Thread | ThreadSwitched [Running] - thread_id=0x2000110C
2065 | 4.82495789 RTX ThFlags | ThreadFlagsWaitTimeout | thread_id=0x20001108
2066 | 482496209 RTX Thread | ThreadSwitched [Running] - thread_id=0x200011D8 =
2067 | 4.82496745 id=0n0002 OncDDO000LA, CheD0DDD0ODD
2068 | 4.82497730 id=0n0002 Cre00000000, Ceed0000000
2069 | 482497968 RTX ThFlags | ThreadFlagsSet thread_id="0x20001194, flags=0x00000001
2070 | 4.82498450 RTX ThFlags | ThreadFlagsWaitCompleted flags=0x00000001, options=0x00000000, thread_flags=0x00000001, thread_id=0x20001194
207 482458761 RTX ThFlags | ThreadFlagsSetDone thread_id="020001194, thread_flags= 000000000
2072 | 4.82503280 RTX ThFlags | ThreadFlagsWait flags=0x00000001, options=0x00000000, timeout=25
2073 482503722 RTX ThFlags |ThreadFlagsWaitPending | flags=0x00000001, options=0x00000000, timeout=25
2074 | 4.82504154 RTX Thread | ThreadSwitched [Running] - thread_id=0x20001194
2075 | 4.82504435 RTX ThFlags | ThreadFlagsClear flags=0xD0D0000T
2076 | 4.82504701 RTX ThFlags | ThreadFlagsClearDone thread_flags=Cx00000000
2077 | 4.82305237 Met_ETH ReceiveFrame len=74
2078 | 4.82505443 Met_ETH ShowFrameHeader dst=1E-30-6C-A2-45-5E, src=84-3A-4B-32-78-F8, proto=IP4
2079 | 4.82506123 Met_[CMP ReceiveFrame type=ECHO_REQUEST, code=0, cksum=0x4468
2080 482506386 Met_ICMP EchoRequestReceived len=32
2081 |4.82307370 Met_ICMP SendEchoReply type=ECHO_REPLY, code=0, cksum=0x0000
2082 482507928 Met_ETH SendFrame len=60, ver=|Pv4
2083 |4.82508385 Met_ETH ShowFrameHeader dst=84-3A-4B-32-78-F8, src=1E-30-6C-A2-43-5E, proto=IP4
2084 | 4.82508757 Met_ETH Outputl owlevel len=74
2085 |4.82511874 RTX Thread | ThreadYield ﬂ

Figure 9 Event Recorder capture with custom events

AN320 - Using Event Recorder for debugging a network performance issue

Copyright © 2019 Arm Ltd. All rights reserved

www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp

Table 2 describes key events:

2041 Ethernet receive interrupt occurs.

2042 Interrupt function sets event for netEthO_Thread (id=0x200011D8)

2045 RTOS switches to netEthO_Thread.

2046 netEthO_Thread calls GetRxFrameSize which returns 0 (no frame available).

2049 netEthO_Thread suspends, no frame is processed.

2065 netEthO_Thread times out after 25 milliseconds and resumes execution.

2067 netEthO_Thread calls GetRxFrameSize which returns 74 (frame valid).

2069 netEthO_Thread sets event for netCore_Thread (id=0x20001194).

2074 RTOS switches to netCore_Thread, which processes the frame and generates the echo reply.

Table 2 Description of observed network events

This log shows that the GetRxFrameSize driver function is not working properly. When the frame is received,
netEthO_Thread calls GetRxFrameSize, but the function returns 0 instead of the correct size of the received
frame. Then, the netEth0_Thread switches to sleep mode and wakes up after a safety timeout of 25
milliseconds. The function GetRxFrameSize is then called again, but this time, the function returns the correct
frame length.

Further review of the GetRxFrameSize function code showed a problem in processing received frames. After
correcting the problem, the driver is running correctly as shown on Figure 1010.

>ping 192.168.3.32
Pinging 192
Reply from
Reply from 1!
Reply from
Reply from 16

ceived = 4,
rip times in milli-seco
Maximum = 8ms, Average

Figure 10 Correct response on ping command

AN320 — Using Event Recorder for debugging a network performance issue
Copyright © 2019 Arm Ltd. All rights reserved

9 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp

Summary

This application note demonstrated Event Recorder’s powerful capabilities for locating a performance issue
observed in a complex network application with multiple components:

e Events present in the MDK-Middleware network library provided visibility into the internal operation of
the networking stack.

e Keil RTX5 events informed about thread switches and other kernel operations.

e User annotated events were used for custom events that provided additional details and helped to
measure execution times.

Useful links

e Keil Arm Compiler Extensions pack contains Event Recorder component

e Event Recorder documentation provides details on configuring and using Event Recorder and Event
Statistics in application.

e Event Recorder support in MDK explains how to use Event Recorder in pVision debugger

e Add Event Recorder visibility describes how to enable Event Recorder in CMSIS-RTOS2

e Troubleshooting a network application gives some recommendations on debugging network-related
issues.

AN320 — Using Event Recorder for debugging a network performance issue
Copyright © 2019 Arm Ltd. All rights reserved

10 www.keil.com/appnotes/docs/apnt _320.asp

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/dd2/Pack/#/Keil.ARM_Compiler
http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr.htm
https://arm-software.github.io/CMSIS_5/RTOS2/html/cre_rtx_proj.html#cre_rtx_proj_er
http://www.keil.com/pack/doc/mw/Network/html/network_troubleshoot.html

	Using Event Recorder for debugging a network performance issue
	Abstract
	Prerequisites
	Introduction
	Problem Description
	Symptoms

	Analyzing the issue
	Debugging the network library
	Debugging the RTX5 thread switches
	Debugging the Ethernet driver
	Adding custom events to the driver
	Analyzing the complete flow

	Summary
	Useful links

