
AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 1

The latest version of this document is here: www.keil.com/appnotes/docs/apnt_320.asp

asdfasdfasdfwwww.keil.com/appnotes/docs/apnt_291.asp

Using Event Recorder for debugging a network
performance issue

MDK Tutorial

AN320, Summer 2019, V 1.0 feedback@keil.com

Abstract
In complex embedded applications, it is often very difficult to find a reason for reduced performance or
incorrect program operation.

This application note shows how Event Recorder and Keil MDK can be used for analyzing the program execution
and locating the root cause for poor performance in a real network example.

Prerequisites
Event Recorder can be used on any Arm Cortex-M based device and with any MDK Edition or debug adapter.
The concepts described in the application notes are universal.

The particular example used for analysis is based on MDK-Middleware that is available with MDK-Plus and MDK-
Professional editions.

Note: there is an evaluation version available for MDK-Professional.

Following software packs are used:

- ARM.CMSIS.5.0.1.pack (or higher) for CMSIS and CMSIS-RTOS
- Keil.ARM_Compiler.1.6.1.pack (or higher) for Event Recorder
- Keil.MDK-Middleware.7.8.0.pack (or higher) for MDK Network library

Contents
Using Event Recorder for debugging a network performance issue ..1

Abstract ..1

Prerequisites ...1

Introduction ..2

Problem Description ...2

Symptoms ...2

Analyzing the issue ...2

Debugging the network library ...3

Debugging the RTX5 thread switches ...5

Debugging the Ethernet driver ...7

Adding custom events to the driver ..7

Analyzing the complete flow ...8

Summary .. 10

Useful links .. 10

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/appnotes/docs/apnt_291.asp
http://www2.keil.com/mdk5/editions/plus
http://www2.keil.com/mdk5/editions/pro
http://www2.keil.com/mdk5/editions/pro
http://www.keil.com/support/man/docs/license/license_eval.htm
http://www2.keil.com/mdk5/editions/pro

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 2

Introduction
Event Recorder is a software component that provides an API for event annotation in application code. Events
get triggered when the application is running, providing developers with valuable insights such as timing
information and event-specific arguments.

Event Recorder is available as part of Keil Arm Compiler Extensions pack and can be used with any Arm Cortex-M
based device and any debug adapter.

Keil MDK natively supports Event Recorder and allows users to visually observe the recorded events in real-time.
A logging functionality for later analysis is also available.

MDK-Middleware and CMSIS-RTOS components are already annotated for Event Recorder support and allow
developers to analyze the internal execution flow. This is important, as the MDK-Middleware is delivered as a
library that does not disclose its contents.

This application is based on a real-life performance issue observed in a network example for an STM32H7
evaluation board. As the debugging concepts and the usage of Event Recorder are universal, the hardware-
specific details are abstracted.

Problem Description

Symptoms
When testing examples of the MDK-Middleware, low network performance was observed. Loading a web page
was slow and refreshing the page was significantly faster. Everything else operated correctly.

When pinging the IP address of the evaluation board, unexpected delays of 25 ms are observed:

Figure 1 Slow response on ping command to the evaluation board

Analyzing the issue

Following software components are used in the system:

• Network library MDK-Middleware

• Operating system CMSIS-RTOS RTX5

• CMSIS-Driver Ethernet for the target board

To locate the reason for the problem, the processing of the ping command was analyzed individually in each
component using Event Recorder.

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www2.keil.com/mdk5/debug/eventrecorder
http://www.keil.com/dd2/Pack/#/Keil.ARM_Compiler
https://www.keil.com/mdk
http://www2.keil.com/mdk5/middleware
https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html
http://www2.keil.com/mdk5/middleware
http://www.keil.com/pack/doc/mw/Network/html/index.html
https://arm-software.github.io/CMSIS_5/RTOS2/html/index.html
http://www.keil.com/pack/doc/compiler/EventRecorder/html/

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 3

Debugging the network library

MDK-Middleware contains a network CORE library with debug support that is annotated with multiple events
for Event Recorder and provides visibility to the operation of the network stack. It is added to the project using

Vision RTE as shown on Figure 2:

Figure 2 Selecting network library with debug support in Vision Manage Run-Time Environment window

In the Net_Debug.c file, full debug is enabled for ETH Interface and ICMP Control as shown on Figure 3.

Figure 3 Enabling full debug for ETH_Interface and ICMP Control

http://www.keil.com/appnotes/docs/apnt_320.asp

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 4

The program needs rebuilding. When the debug operation is started, the network stack events get captured and

are listed in the Vision Event Recorder window. When ping command is issued to the board from the PC
following events were observed as shown on Figure 4:

Figure 4 Network events captured in Event Recorder window when receiving ping command

Table 1 provides description for the captured events:

Event Description

66 Ethernet interface receives a frame.

67 Network library prints the details of the ethernet header of this frame.

68 ICMP process receives this frame.

69 ICMP recognizes an Echo Request while processing the frame.

70 ICMP generates an Echo Reply.

71 Ethernet interface sends a response.

72 Network library prints the details of the ethernet header of the response.

73 Ethernet interface passes the constructed ethernet frame to the network driver.

Table 1 Description of recorded network events

The total time difference can be calculated from the Event Recorder time stamps

• Event 66 time is 10.51490891 seconds.

• Event 73 time is 10.51494131 seconds.

The time difference between the two is 32.40 microseconds. Hence, it can be concluded that the Network
library reacts to the input frame in just 32 microseconds and is not responsible for the delay of 25 milliseconds.

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr_view.htm

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 5

Debugging the RTX5 thread switches

In Keil RTX5, thread switches can potentially introduce delays. To analyze this, the source variant of Keil RTX5 is
used as shown on Figure 5:

Figure 5 Selecting Keil RTX5 source code variant

In the RTX_Config.h configuration file, the Global Initialization, Thread and Thread Flags events are enabled
under Event Recorder Configuration section as shown in Figure 6. The Network library uses Thread Flags to
synchronize network threads.

Figure 6 Event Recorder configuration for RTX RTOS

http://www.keil.com/appnotes/docs/apnt_320.asp

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 6

To track the thread switches, we must first find the thread identifiers. The RTX RTOS Component Viewer
provides this information:

Figure 7 RTX RTOS Watch window

The following threads are relevant for the analysis:

• netEth0_Thread with identifier 0x200011D8: This thread handles the Ethernet interface. The thread
waits to receive interrupt. When the thread wakes up, it calls the GetRxFrameSize function. If the
function returns a positive number, the thread calls the ReadFrame to read the frame and release it
from the driver.

• netCore_Thread with identifier 0x20001194: This thread implements the Network Core function. The
thread waits for the frame to be received, then wakes up and processes the frame.

Figure 8 shows the RTX and Network events captured when ping command is issued to the board from the PC:

Figure 8 Thread and Network events for handling ping command

http://www.keil.com/appnotes/docs/apnt_320.asp

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 7

The column Time (sec) provides the time stamps of events. The echo frame is received in the event
record 1635 when execution of netEth0_Thread with identifier 0x200011D8 is started. The processing of the
frame is completed in the event record 1652.

The ThreadFlagsWaitTimeout event 1635 is something that attracts attention in this case. The netEth0_Thread is
waiting for a thread flag to be set from the Ethernet receive interrupt (as visible in event record 1632) but
receiving a timeout is not expected here.

Debugging the Ethernet driver

Adding custom events to the driver

Custom events can be added to record the time execution for following functions of interest:

• Ethernet receive interrupt.

• GetRxFrameSize function and its return value.

Using the EventRecord2 function, a custom event with id=1 is added in the ETH_IRQHandler interrupt handler:

/* Ethernet IRQ Handler */

void ETH_IRQHandler (void) {

 ..

 /* Callback event notification */

 EventRecord2 (1, 0, 0);

 Emac.cb_event (event);

}

An event with id=2 is added in the GetRxFrameSize driver function. This event logs also the return value of the
function:

static uint32_t GetRxFrameSize (void) {

 uint32_t len;

 ..

 EventRecord2 (2, len, 0);

 return (len);

}

http://www.keil.com/appnotes/docs/apnt_320.asp
https://www.keil.com/pack/doc/compiler/EventRecorder/html/group__EventRecorder__Data.html#gab91eb760432ad0a10652a2c922db9566

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 8

Analyzing the complete flow

With the custom events added the Event Recorder gives now the complete picture showing the internal
software operation when processing a ping request as shown on Figure 9:

Figure 9 Event Recorder capture with custom events

http://www.keil.com/appnotes/docs/apnt_320.asp

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 9

Table 2 describes key events:

Event Description

2041 Ethernet receive interrupt occurs.

2042 Interrupt function sets event for netEth0_Thread (id=0x200011D8).

2045 RTOS switches to netEth0_Thread.

2046 netEth0_Thread calls GetRxFrameSize which returns 0 (no frame available).

2049 netEth0_Thread suspends, no frame is processed.

2065 netEth0_Thread times out after 25 milliseconds and resumes execution.

2067 netEth0_Thread calls GetRxFrameSize which returns 74 (frame valid).

2069 netEth0_Thread sets event for netCore_Thread (id=0x20001194).

2074 RTOS switches to netCore_Thread, which processes the frame and generates the echo reply.

Table 2 Description of observed network events

This log shows that the GetRxFrameSize driver function is not working properly. When the frame is received,
netEth0_Thread calls GetRxFrameSize, but the function returns 0 instead of the correct size of the received
frame. Then, the netEth0_Thread switches to sleep mode and wakes up after a safety timeout of 25
milliseconds. The function GetRxFrameSize is then called again, but this time, the function returns the correct
frame length.

Further review of the GetRxFrameSize function code showed a problem in processing received frames. After
correcting the problem, the driver is running correctly as shown on Figure 1010.

Figure 10 Correct response on ping command

http://www.keil.com/appnotes/docs/apnt_320.asp

AN320 – Using Event Recorder for debugging a network performance issue
 Copyright © 2019 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_320.asp 10

Summary

This application note demonstrated Event Recorder’s powerful capabilities for locating a performance issue
observed in a complex network application with multiple components:

• Events present in the MDK-Middleware network library provided visibility into the internal operation of
the networking stack.

• Keil RTX5 events informed about thread switches and other kernel operations.

• User annotated events were used for custom events that provided additional details and helped to
measure execution times.

Useful links

• Keil Arm Compiler Extensions pack contains Event Recorder component

• Event Recorder documentation provides details on configuring and using Event Recorder and Event
Statistics in application.

• Event Recorder support in MDK explains how to use Event Recorder in Vision debugger

• Add Event Recorder visibility describes how to enable Event Recorder in CMSIS-RTOS2

• Troubleshooting a network application gives some recommendations on debugging network-related
issues.

http://www.keil.com/appnotes/docs/apnt_320.asp
http://www.keil.com/dd2/Pack/#/Keil.ARM_Compiler
http://www.keil.com/pack/doc/compiler/EventRecorder/html/index.html
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr.htm
https://arm-software.github.io/CMSIS_5/RTOS2/html/cre_rtx_proj.html#cre_rtx_proj_er
http://www.keil.com/pack/doc/mw/Network/html/network_troubleshoot.html

	Using Event Recorder for debugging a network performance issue
	Abstract
	Prerequisites
	Introduction
	Problem Description
	Symptoms

	Analyzing the issue
	Debugging the network library
	Debugging the RTX5 thread switches
	Debugging the Ethernet driver
	Adding custom events to the driver
	Analyzing the complete flow

	Summary
	Useful links

