
Analyze Memory Access Issues

AN 327, Spring 2020, V 1.0

keil-feedback@arm.com

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 1

Abstract
Debugging memory problems is not an easy task. Using sophisticated debug technologies that are part of Arm
Keil MDK can help to get to a working result quicker. Such features as Logic Analyzer, SWO Trace, and the Call
Stack + Locals window help to analyze complex problems that occur while running large software stacks.

This application note shows an example that uses WiFi to communicate with a server. During wireless
communication, an error occurs that cannot be explained easily. We show how the error can be debugged using
built-in functionality in Arm Keil MDK.

Contents
Abstract ..1

Prerequisites ...1

Introduction ..2

Analysis ...2

Step 1: Check SPI Communication between the LPC54018 and the WiFi module ...3

Step 2: Examine SPI variables (dynamic) ..4

Step 3: Use SWO Trace ...6

Step 4: Patching the memcpy() function ..7

Solution ...8

Conclusion ..8

Prerequisites
The application runs on NXP’s LPC54018 IoT Module (OM40007). We are using ULINKplus for debugging, but any
member of the ULINK family is up to the task. The debug adapter is connected to the on-module 10-pin Arm
Cortex-M debug port (J7).

Used software packs are:

- ARM::CMSIS.5.6.0
- ARM::CMSIS-Driver_Validation.1.4.0
- Keil::ARM_Compiler.1.6.2
- MDK-Packs::QCA400x_Host_Driver_SDK.1.1.0
- MDK-Packs::QCA400x_WiFi_Driver.1.1.0
- NXP::LPC54018-IoT-Module_BSP.12.0.0
- NXP::LPC54018_DFP.12.0.0

It is assumed that you have basic knowledge of the C language and that you are familiar with Arm Keil MDK.

Note: the WiFi driver of the module already contains the correct source code, so if you want to see the failure,
you need to change it back to the initial fault (see Abstract.txt in the µVision project).

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
https://www2.keil.com/mdk5/ulink/ulinkplus/
https://www2.keil.com/mdk5/ulink/ulinkplus/

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 2

Introduction
Our example application runs a CMSIS-Driver WiFi test and communicates with a socket server using an external
WiFi module that is attached via SPI to the underlying microcontroller device. Shortly after the application
connects to the wireless access point, the communication stops. Simple run-stop debugging does not help in this
case so that more sophisticated MDK debug techniques are required to find the root cause of the issue.

Analysis
The application used here is available for download in a ZIP file on www.keil.com/appnotes/docs/apnt_327.asp.
Unzip it, open the project in µVision, check the content of the Abstract.txt file, build, and start running on the
target hardware.

Running the application, debug output is shown in the Debug (printf) Viewer window. The WiFi test starts to
run, but then freezes after the WIFI_SocketCreate test:

We stop the program and after some debugging find out that the execution is locked in the thread
Atheros_Wifi_Task which implements the communication between the microcontroller and the WiFi module.
We use the RTX RTOS window to determine how threads are switching. Further debugging allows us to narrow
down the issue to the SPI communication.

http://www.keil.com/appnotes/docs/apnt_327.asp

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 3

Step 1: Check SPI Communication between the LPC54018 and the WiFi module
The module’s SPI driver is based on Qualcomm’s SDK and is implemented in the file cust_spi_hcd.c. The SPI
transfer is done in the Custom_Bus_InOutToken function at line 201. While the application is still running, set
a breakpoint here. Program execution stops shortly afterwards at this location. Step Over (F10) the SPI transfer
function. It returns an error, which is unexpected.

Run (F5) the application again. When it hits the breakpoint the next time, Step (F11) until you reach line 650 in
the file fsl_spi.c. Open the Call Stack + Locals window and check “Atheros_Wifi_Task” →
SPI_MasterTransferNonBlocking → handle, which holds the internal state of the SPI driver.

Notice that the value of the toReceiveCount variable (which indicates the remaining data bytes to receive) is
0xFFFFFFFC, although the expected value is 0 (all data received):

Reviewing the code in fsl_spi.c and focusing on the lines where the toReceiveCount variable is used or
modified, there is no explanation how the value of the toReceiveCount variable could have changed to
0xFFFFFFFC.

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 4

Step 2: Examine SPI variables (dynamic)
The variable toReceiveCount is held in a structure of the type cmsis_spi_handle_t (see line 259 in
fsl_spi.c). The Call Stack + Locals window shows that the SPI8 peripheral is used (in fsl_spi_cmsis.c) and
therefore the SPI8_Handle structure is declared to be of the type cmsis_spi_handle_t. The offset of the
toReceiveCount variable is 16.

typedef union _cmsis_spi_handle

{

 spi_master_handle_t masterHandle;

 spi_slave_handle_t slaveHandle;

} cmsis_spi_handle_t;

 /*! @brief SPI transfer handle structure */

struct _spi_master_handle

{

 uint8_t *volatile txData; /*!< Transfer buffer */

 uint8_t *volatile rxData; /*!< Receive buffer */

 volatile uint32_t txRemainingBytes; /*!< TX Data [in bytes] */

 volatile uint32_t rxRemainingBytes; /*!< RX Data [in bytes] */

 volatile uint32_t toReceiveCount; /*!< RX Data remaining in bytes */

 uint32_t totalByteCount; /*!< A number of transfer bytes */

 volatile uint32_t state; /*!< SPI internal state */

 spi_master_callback_t callback; /*!< SPI callback */

 void *userData; /*!< Callback parameter */

 uint8_t dataWidth; /*!< Width of the data [1 to 16] */

 uint8_t sselNum; /*!< Slave select number */

 uint32_t configFlags; /*!< Additional option to control transfer */

 spi_txfifo_watermark_t txWatermark; /*!< txFIFO watermark */

 spi_rxfifo_watermark_t rxWatermark; /*!< rxFIFO watermark */

};

The memory location of the SPI8_Handle structure can be found in the memory map (just double-click the
project’s target “Debug” in the Project window to open the map file):

SPI8_Handle 0x2000eb68 Data 48 fsl_spi_cmsis.o(.bss)

The symbol toReceiveCount
cannot be accessed directly,
therefore we use the
SPI8_Handler address and the
offset of toReceiveCount to
determine the toReceiveCount
variable location in memory:
0x2000eb68 + 16. To observe how
the toReceiveCount variable
changes over time we use the Logic

Analyzer feature in Vision.

The Logic Analyzer uses trace data
and for that the SWO trace needs to
be configured as shown on the
figure.

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 5

To add a memory location to the Logic Analyzer it needs to be typecast. In our case it is done as *((unsigned
int*)(0x2000eb68+16)).

Running the application, notice that as soon as WiFi module stops communicating with the server, the
toReceiveCount variable stops changing. The following picture shows the unexpected change of the
toReceiveCount variable from value 0 to value 0xFFFFFFFF:

In Step 1, we reviewed the source code and saw that the change from value 0 to value 0xFFFFFFFF is not
possible. Subsequently, the value of the toReceiveCount variable is then decreased by 1 to value 0xFFFFFFFC.

The next picture shows the last change of toReceiveCount variable before it is changed from value 0 to value
0xFFFFFFFF:

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 6

The value of the toReceiveCount variable drops from 4 to 0. It is expected that value decreases by 1 as in the
previous samples. This indicates that the toReceiveCount variable might be unintentionally overwritten with
the value 0 by another part of the application. Before the next step, exit the debug session (CTRL+F5).

In many cases, using an access breakpoint can help to identify the location in code where memory gets
unexpectedly overwritten. However, in our example this approach is not practically applicable. We need to find
the code that changes toReceiveCount from 4 to 0. But both values are frequently assigned to the variable
during normal operation as well. Hence, setting a read or write access breakpoints will frequently stop the
execution. In communication test scenario such ours this can lead to timeouts on the server side and different
program behavior.

Step 3: Use SWO Trace
The LPC54018 device offers serial-
wire output trace (SWO) that
enables useful debugging features in
µVision. The picture shows the setup
dialog for the SWO trace.

The PC Sampling on Data R/W
Sample option allows us to get PC
samples for each read/write
instruction. In our case, for each
read/write access to the
toReceiveCount variable already
present in the Logic Analyzer. The PC
Sampling Prescaler must be set to
the lowest possible value, which
does not yet cause a Trace Data
Overflow (this depends on many factors, you might need to try this out before it works reliably).

Run the application again and stop when the WiFi module stops communicating. Open the Trace Data window
(View – Trace – Trace Data) and observe the trace capture:

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 7

We can see the same behavior as previously observed in the Logic Analyzer: toReceiveCount value is changed
from 4 to 0 and then to 0xFFFFFFFF. The Trigger Address value is decoded and shows that this is done in
“__rt_memcpy” function.

Reviewing the source code, there was no sign of the memcpy() function being intentionally used to modify the
SPI8_Handle structure. This is a strong indication that the function memcpy() overwrites the
toReceiveCount variable.

Step 4: Patching the memcpy() function
The memcpy() function is called from many places in the application. We need to find out from where
memcpy() is called when the overwrite happens. Unfortunately, the memcpy() function is built into the
standard C library, therefore debugging code cannot be added to it.

Luckily, there is a mechanism available that lets you patch existing symbol definitions. Use $Super$$ and
$Sub$$ to do this as explained in the Linker User Guide.

The following source code shows how $Super$$ and $Sub$$ are used to insert additional code to memcpy()
after the call to the legacy function memcpy().

#include <string.h>

#include <stdint.h>

#include "cmsis_compiler.h"

#define toReceiveCount_adr (0x2000EB78)

#define toReceiveCount_ptr ((uint32_t *)toReceiveCount_adr)

extern void * $Super$$__aeabi_memcpy(void * dst, void * src, size_t sz);

/* this function is called instead of the original __aeabi_memcpy() */

void * $Sub$$__aeabi_memcpy(void * dst, void * src, size_t sz)

{

 void * ret;

 // call the original __aeabi_memcpy

 ret = $Super$$__aeabi_memcpy(dst, src, sz);

 if ((*toReceiveCount_ptr == 0U) &&

 ((toReceiveCount_adr >= (uint32_t)dst) &&

 ((toReceiveCount_adr < ((uint32_t)dst + sz))))) {

 __NOP();

 }

 return ret;

}

In this code, we first call the original memcpy function and then we check if the memcpy destination memory
overlaps with the toReceiveCount variable.

Run the application and place a breakpoint on __NOP() inside the if statement, to catch the faulty call to
memcpy. When the application stops at the breakpoint, the Call Stack looks like this:

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065967698.htm

AN327 – Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_327.asp 8

The Call Stack + Locals window shows that memcpy() is called from the function WiFi_SocketBind. Right-click
on the function and select Show Callee Code. This takes you to the following code fragment shows the
problematic call to memcpy():

 socket_arr[socket].local_port = port;

 memcpy((void *)socket_arr[i].local_ip, (void *)ip, ip_len);

The element index of the array socket_arr is out of bounds. The local variable i is incorrectly used for the
element index. From the Call Stack + Locals window is evident that i has a value of 4.

socket_arr is an array of four structures socket_t. Therefore, the destination parameter of memcpy()
points to memory outside the array socket_arr.

The memory map shows that the structure SPI8_Handle is positioned directly after the array socket_arr.
Thus, memcpy() actually overwrites the toReceiveCount variable:

 socket_arr 0x2000eaa8 Data 192 wifi_qca400x.o(.bss)

 .bss 0x2000eb68 Section 48 fsl_spi_cmsis.o(.bss)

 SPI8_Handle 0x2000eb68 Data 48 fsl_spi_cmsis.o(.bss)

Solution
The variable socket should be used instead of i. The following code shows the correct implementation:

 socket_arr[socket].local_port = port;

 memcpy((void *)socket_arr[socket].local_ip, (void *)ip, ip_len);

Conclusion
Memory overwrites can be tricky to catch and hard to spot. µVision’s advanced debug features (SWO trace,
different viewer windows, and Logic Analyzer) helped to find the root cause of this non-trivial problem.

	Abstract
	Prerequisites

	Introduction
	Analysis
	Step 1: Check SPI Communication between the LPC54018 and the WiFi module
	Step 2: Examine SPI variables (dynamic)
	Step 3: Use SWO Trace
	Step 4: Patching the memcpy() function

	Solution
	Conclusion

