Analyze Memory Access Issues q r m KEl |_

AN 327, Spring 2020, V 1.0

keil-feedback@arm.com

Abstract

Debugging memory problems is not an easy task. Using sophisticated debug technologies that are part of Arm
Keil MDK can help to get to a working result quicker. Such features as Logic Analyzer, SWO Trace, and the Call
Stack + Locals window help to analyze complex problems that occur while running large software stacks.

This application note shows an example that uses WiFi to communicate with a server. During wireless
communication, an error occurs that cannot be explained easily. We show how the error can be debugged using
built-in functionality in Arm Keil MDK.

Contents
LY o131 - 1o T T T TP U USSP PPTOPRROPRRRPOON 1
PrEIEOUISITES ..eevitiieeiee ettt ettt e e e e e sttt e e e e s ettt e e e e e e e s e ababaeeeeeeessssbabaaaeeessssasssebaaaeeeesnsasnstbaaaeeessnnasnsrranes 1
INEFOTUCTION ...ttt ettt e bt e st e s bt e e bt e e s abe e e bt e e sabeesabeeesabeesabe e e sbeesabeeenabeesabaesaseeesabaesnseean 2
N QT | Y 13 SRR PRR 2
Step 1: Check SPI Communication between the LPC54018 and the WiFi module.........c.cceecveeeeiiieeeecciieee e, 3
Step 2: Examine SPI variables (AYNAmIC) ...eeo ittt e et e e e st e e e e eaba e e e e raaa e e e eatreeeeannaeeens 4
STEP 31 USE SWO THACE e s s ann 6
Step 4: Patching the Memcpy() FUNCLIONocvii ettt e et e e e be e e s abe e sreeebaeesbaeesareeans 7
Yo][V 4o o PO OO TP PP PSTUSOPPRPR 8
(6] 3ol (V11T HA U OO O OO OOP PSPPSR PPRPR 8
Prerequisites

The application runs on NXP’s LPC54018 loT Module (OM40007). We are using ULINKplus for debugging, but any
member of the ULINK family is up to the task. The debug adapter is connected to the on-module 10-pin Arm
Cortex-M debug port (J7).

Used software packs are:

- ARM::CMSIS.5.6.0

- ARM::CMSIS-Driver_Validation.1.4.0

- Keil::ARM_Compiler.1.6.2

- MDK-Packs::QCA400x_Host_Driver_SDK.1.1.0
- MDK-Packs::QCA400x_WiFi_Driver.1.1.0

- NXP::LPC54018-loT-Module_BSP.12.0.0

- NXP::LPC54018_DFP.12.0.0

It is assumed that you have basic knowledge of the C language and that you are familiar with Arm Keil MDK.

Note: the WiFi driver of the module already contains the correct source code, so if you want to see the failure,
you need to change it back to the initial fault (see Abstract.txt in the pVision project).

AN327 — Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

1 www.keil.com/appnotes/docs/apnt_327.asp

https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/general-purpose-mcus/lpc54018-iot-module-for-the-lpc540xx-family-of-mcus:OM40007
https://www2.keil.com/mdk5/ulink/ulinkplus/
https://www2.keil.com/mdk5/ulink/ulinkplus/

Introduction

Our example application runs a CMSIS-Driver WiFi test and communicates with a socket server using an external
WiFi module that is attached via SPI to the underlying microcontroller device. Shortly after the application
connects to the wireless access point, the communication stops. Simple run-stop debugging does not help in this
case so that more sophisticated MDK debug techniques are required to find the root cause of the issue.

Run-time environment Embedded board
CMSIS-RTOS2 SDK Drivers/
Keil RTX5 Board Support ENTEE R
CMSIS-Driver CMSIS-Driver
CMSIS-CORE SPI WiFi
LPC54018 QCA400x
Legend

Arm NXP Third party

Analysis

The application used here is available for download in a ZIP file on www.keil.com/appnotes/docs/apnt 327.asp.
Unzip it, open the project in pVision, check the content of the Abstract.txt file, build, and start running on the
target hardware.

Running the application, debug output is shown in the Debug (printf) Viewer window. The WiFi test starts to
run, but then freezes after the WIFI SocketCreate test:

Debug [printf) Viewer L x |

RTXRTOS x|
Property Value
% System

CMSIS-Driver WiFi Test Report Mar 10 2020 14:04:24 E‘oﬁ Threads

ITEST 01: WIFT GetVersion qﬁ id: (x2000E2B4 "osRtxldleThread” osThreadReady, osPriorityldle, Stack Used: 12%

OV WIFI.c tEBQ]: [INFO] Driver API version 1.0, Driver version 1.2 0‘3 id: 0x2000E2F2 "osRixTimerThread” osThreadBlocked, osPriorityHigh, Stack Used: 40%
- PASSED qﬁ id: (x2000A0D2 “cmsis_cv” osThreadReady, osPriorityMormal, Stack Used: 8%

ITEST 02: WIFI_GetCapabilities PASSED =% id: 0x2000AAS0 "Atheros Wifi_Task”

TEST 03: WIFL_Initialize Uninitialize NOT EXECUTED @ State osThreadRunning

TEST 04: WIFI_PowerControl NOT EXECUTED # Priority osPriorityAbovelormal

ITEST 05: WIFI GetModuleInfo NOT EXECUTED @ Attributes osThreadDetached

TEST 06: WIFL SocketCreate PLSSED 5% Stack Useddmpon

@ Flags 0x00000000

| @ Vait Flags 000000001, esFlags\Waitall

% Debug (printf) Viewer | Watch 1 | Bl Memory 1 | Bl Memory 2 | @ Call Stack + Locals 04 id: 0x2000BE50 "Th_Bind" osThreadBlacked, osPriorityAboveNormal T, Stack Used: 16%
Qg Semaphores

We stop the program and after some debugging find out that the execution is locked in the thread

Atheros_Wifi_Task which implements the communication between the microcontroller and the WiFi module.

We use the RTX RTOS window to determine how threads are switching. Further debugging allows us to narrow

down the issue to the SPI communication.

AN327 — Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

2 www.keil.com/appnotes/docs/apnt_327.asp

http://www.keil.com/appnotes/docs/apnt_327.asp

Step 1: Check SPI Communication between the LPC54018 and the WiFi module

The module’s SPI driver is based on Qualcomm’s SDK and is implemented in the file cust _spi hcd.c. The SPI
transfer is done in the Custom Bus_ InOutToken function at line 201. While the application is still running, set
a breakpoint here. Program execution stops shortly afterwards at this location. Step Over (F10) the SPI transfer
function. It returns an error, which is unexpected.

Run (F5) the application again. When it hits the breakpoint the next time, Step (F11) until you reach line 650 in
the file fsl_spi.c. Open the Call Stack + Locals window and check “Atheros_Wifi_Task” >
SPI_MasterTransferNonBlocking = handle, which holds the internal state of the SPI driver.

Notice that the value of the toReceiveCount variable (which indicates the remaining data bytes to receive) is
OxFFFFFFFC, although the expected value is O (all data received):

Call Stack = Locals

Name

¥ Th_Bind : (x2000BB50

N e

= % SPI_MasterTransferMonBlocking
*¥¢ base
%% handle

¥ tData
¥ nData
¥ txRemainingBytes
¥ rRemainingBytes

toReceiveCount

‘% callback
‘1 userData

¥ dataWidth
¥ sselNum

¥ configFlags
¥ tWatermark
¥ Watermark

[¢ xfer

- % SPl_InterruptTransfer

Location/Value
(eDDDOD339

Cx0000CITE

0x40099000
DxZDDDEBE
0x2000B9E8 ™0

(x2000BAOC "PBO @
(00000000
(00000000

000007 5E0

(0x0000B55F KSDK_SPI_MasterlnterruptCall...
Cx0DD0BDAT

Ouell7

Ceel1

000100000

(o0 kSPI_TxFifol

(o0 kSPI_RxFifol

(xc2000BSAD

(xD0D0C258

@Eel:ug printf] Viewer

Mateh 1

i Memory 1 | [Memory 2 .;,ijaH Stack + Locals

Type
Task
Task

int f(struct <untagged...
param - struct <untag...

param - struct _spi_m...

uchar*
uchar*
uint
uint
uint
uint

uint

void f(struct <untagg...

void *

uchar

uchar

uint

enum (uchar)

enum (uchar)

param - struct _spi_tra...

int f{void * void * uint, ...

a3

Reviewing the code in fsl_spi.c and focusing on the lines where the toReceiveCount variable is used or
modified, there is no explanation how the value of the toReceiveCount variable could have changed to

OXFFFFFFFC.

AN327 — Analyze Memory Access Issues

Copyright © 2020 Arm Ltd. All rights reserved

www.keil.com/appnotes/docs/apnt_327.asp

Step 2: Examine SPI variables (dynamic)

The variable toReceiveCount is held in a structure of the type cmsis spi handle t (seeline 259 in
fsl_spi.c). The Call Stack + Locals window shows that the SPI8 peripheral is used (in fsl_spi_cmsis.c) and
therefore the SPI8 Handle structure is declared to be of the type cmsis spi handle t. The offset of the
toReceiveCount variable is 16.

typedef union _cmsis spi_ handle

{
spi_master handle_ t masterHandle;
spi_slave handle t slaveHandle;

} cmsis spi handle t;

/*! @brief SPI transfer handle structure */
struct _spi master handle

{
uint8 t *volatile txData; /*!'< Transfer buffer */
uint8 t *volatile rxData; /*!'< Receive buffer */
volatile uint32_t txRemainingBytes; /*!< TX Data [in bytes] */
volatile uint32_t rxRemainingBytes; /*!< RX Data [in bytes] */
volatile uint32_t toReceiveCount; /*!'< RX Data remaining in bytes */
uint32 t totalByteCount; /*!'< A number of transfer bytes */
volatile uint32_t state; /*!'< SPI internal state */
spi_master callback t callback; /*!'< SPI callback */
void *userData; /*'!'< Callback parameter */
uint8 t dataWidth; /*'< Width of the data [1 to 16] */
uint8 t sselNum; /*'< Slave select number */
uint32_t configFlags; /*!< Additional option to control transfer */
spi_txfifo watermark t txWatermark; /*!< txFIFO watermark */
spi_rxfifo watermark t rxWatermark; /*!< rxFIFO watermark */

}i

The memory location of the SPI8 Handle structure can be found in the memory map (just double-click the
project’s target “Debug” in the Project window to open the map file):

SPI8 Handle 0x2000eb68 Data 48 fsl spi_cmsis.o(.bss) ‘

The symbol toReceiveCount

Cannot be accessed directly' ULINKplus Cortex-M Target Driver Setup x
therefore we use the Debug Trace | Aash Dowrload |
SPI 87Handler address and the Core Clock: | 56.000000 MHz [v Trace Enable
offset of toReceiveCountto | _ = ————

.) Trace Clock: | 56.000000 MHz Iv Use Core Clock
determine the toReceiveCount - Tonestommg R
variable location in memory: Serial Wire Output - UART/NRZ J ¥ Enable Prescaler: |1 = [CPI: Cycles per Instruction
0x2000eb68 + 16. To observe how SWO Clock Prescaler:| 2 o€ Samping ||: EEEEEJ((;TD’[IDIE: D\rlerhead

. . : Sleep Cycles

the toRecelv.eCount variable .] M Autodstect Prescaler: [1024°16_» I LSU: Load Store Unit Cycles
Changes over time we use the LOg'C ALeEhE| AU e I Periodic Period: | <Disabled> [~ FOLD: Folded Instructions
Analyzer feature in “Vision_ I on Data R/W Sample [~ EXCTRC: Exception Tracing

i ITM Stimulus Ports
The Logic Analyzer uses trace data = 0 o2& . 5 - o o
and for that the SWO trace needs to Enable: [OFFFFFFFF Uuoivviviviv RVvVVIVIVY MV PRV
be ConﬂgUrEd as shown on the Privilege: |x00000008 Port 31.24 [» Port 23.16 [Port 15.8 [Pot 7.0 [
figure.

OK | Cancel | Help

AN327 — Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

4 www.keil.com/appnotes/docs/apnt_327.asp

[Signal Info [Ampltude [Timesta

Jump to

Update Screen| Transition

Zoom Min/Max
0.5ms [Stop |[Clear || [Prev|[Next] |

Grid

Max Time

11.13435s

Min Time

1.340406 ms

| [Trace]||[~ Show Cycles I~ Cursor

11.19102 s

7

Logic Analyzer
Setup... || Load...

To add a memory location to the Logic Analyzer it needs to be typecast. In our case it is done as *((unsigned

int*)(0x2000eb68+16)).
Running the application, notice that as soon as WiFi module stops communicating with the server, the

toReceiveCount variable stops changing. The following picture shows the unexpected change of the

toReceiveCount variable from value 0 to value OxFFFFFFFF:

11.18752 s

Save.. |

((31+83920002*0) (! paubisun)),

¥ Timesta

D0 — CoufFHFFF
11,1543 5195025
e dl=]
[Amplitude

[Signal Info

Jump to

Update Screen| Transition

[in Jou][AT] [Stop][Clear] [Prev [Net]|

Zoom Min/Max

20us

Grid

Max Time

11.1543s

Min Time

1.340406 ms

Save... |

Logic Analyzer
Setup... || Load... 2

possible. Subsequently, the value of the toReceiveCount variable is then decreased by 1 to value OXFFFFFFFC.
The next picture shows the last change of toReceiveCount variable before it is changed from value 0 to value

In Step 1, we reviewed the source code and saw that the change from value 0 to value OxFFFFFFFF is not
OXFFFFFFFF:

194335

11.1943s

11.19417 s

020
=0
11.15403 5

((91+89920002%Q).u! paubisunj),

Lef1f

www.keil.com/appnotes/docs/apnt_327.asp

Copyright © 2020 Arm Ltd. All rights reserved

AN327 — Analyze Memory Access Issues

The value of the toReceiveCount variable drops from 4 to 0. It is expected that value decreases by 1 as in the
previous samples. This indicates that the toReceiveCount variable might be unintentionally overwritten with
the value 0 by another part of the application. Before the next step, exit the debug session (CTRL+F5).

In many cases, using an access breakpoint can help to identify the location in code where memory gets
unexpectedly overwritten. However, in our example this approach is not practically applicable. We need to find
the code that changes toReceiveCount from 4 to 0. But both values are frequently assigned to the variable
during normal operation as well. Hence, setting a read or write access breakpoints will frequently stop the
execution. In communication test scenario such ours this can lead to timeouts on the server side and different
program behavior.

Step 3: Use SWO Trace

ULINKplus Cortex-M Target Driver Setup X

The LPC54018 device offers serial-
wire output trace (SWO) that

Debug Trace] Fash Download]

. . Core Clock: | 96.000000 MHz [V Trace Enable
enables useful debugging features in S
Visi Th ict h th t Trace Clock: | 96.000000 MHz ¥ Use Care Clock

u‘ Ision. € picture snows the setup Trace Port Timestamps Trace Events
dIaIOg for the SWO trace. Serial Wire Output - UART/NRZ J [¥ Enable Prescaler: |1« I~ CPI: Cycles per Instruction

. — [~ EXC: Excepti rhead
The PC Sampling on Data R/W SWO Clock Prescaler:| 2 FC Samping - SLEEP_‘;T::;E::; =
Sample option allows us to get PC R Prescaler: [648 | | | o} |4 Sore Unit Cycles
samples for each read/write SWO Clock: | 48.000000 MHz ™ Periodic Period: | <Disabled> [~ FOLD: Folded Instructions

¥ on Data R/W Sample [EXCTRC: Exception Tracing

instruction. In our case, for each
read/write access to the
toReceiveCount variable already
present in the Logic Analyzer. The PC
Sampling Prescaler must be set to
the lowest possible value, which
does not yet cause a Trace Data
Overflow (this depends on many factors, you might need to try this out before it works reliably).

ITM Stimulus Paorts
Port 24 23 Port 16 15 Port 8 7 Port 0

A
Encble: [WFFFFFFFF RuvwvvIvY MWV MRV RV
Privilege: |(x00000003 Port 31.24 ¥ Port 23.16 [Port 15.8 [Port 7.0 [T

Help

oK | Cancel |

Run the application again and stop when the WiFi module stops communicating. Open the Trace Data window
(View — Trace — Trace Data) and observe the trace capture:

Trace Data a B
Display: Al 3| H R = =R o i
Time Address / Port Instruction / Data Src Code / Trigger Addr Function
17,614 025 479 5 |W : 0x2000EBTE : Ox0000D3BE ﬂ

X
17.614 057 479 5| W : (x2000EB72 Orc 00000002 X1 ((000DSBE
17.614 089 479 5| W : (x2000EET2 Onc00000001 A1 (x0000D3BE
17.614 121 479 s| W : 0x2000EBT2 Oxc 00000000 X : (xD000D3BE
17.614 188 542 5| W : (2000EBT2 X1 OneDO0OOCF24
17.614 1971 896 5| W : (2000EB72 Onc 00000001 K1 (e0000D452
D 17.614 192 930 5| W : (x2000EET2 X1 00000452
DO 17.614 193 698 s| W : (x2000EBTS OocOOODD00- K1 (0000D452

17.614 202 917 s| W : (x2000EB7S X
17.614 237 469 s | W : (2000EB72 OnFFFFFFFF X1 ((000DSBE
17.614 269 469 5| W : (x2000EBT2 U=FFFFFFFE X1 (nD000D3EE
17.614 301 469 s| W : 0x2000EBT2 UxFFFFFFFD X : (xD000D3BE

A

17.614 333 469 5| W : 0x2000EBT72 OnFFFFFFFC : (0000D3BE
4 3

Data Memory Write

Access Size . 4 Bytes
Data Walue : (00000000
Address : (c20D0EETS

Trigger Address @ 0xD00017E6 (" _rt_memepy™)

AN327 — Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

6 www.keil.com/appnotes/docs/apnt_327.asp

We can see the same behavior as previously observed in the Logic Analyzer: toReceiveCount value is changed
from 4 to 0 and then to OxFFFFFFFF. The Trigger Address value is decoded and shows that this is done in
“__rt_memcpy” function.

Reviewing the source code, there was no sign of the memcpy () function being intentionally used to modify the
SPI8 Handle structure. This is a strong indication that the function memcpy () overwrites the
toReceiveCount variable.

Step 4: Patching the memcpy() function

The memcpy () function is called from many places in the application. We need to find out from where
memcpy () is called when the overwrite happens. Unfortunately, the memcpy () function is built into the
standard C library, therefore debugging code cannot be added to it.

Luckily, there is a mechanism available that lets you patch existing symbol definitions. Use $Super$s and
$Subss$ to do this as explained in the Linker User Guide.

The following source code shows how $Super$$ and $Sub$$ are used to insert additional code to memcpy ()
after the call to the legacy function memcpy ().

#include <string.h>
#include <stdint.h>
#include "cmsis_compiler.h"

#define toReceiveCount adr (0x2000EB78)
#define toReceiveCount ptr ((uint32_ t *)toReceiveCount adr)

extern void * $Super$$ aeabi memcpy(void * dst, void * src, size t sz);

/* this function is called instead of the original __ aeabi memcpy() */
void * $Sub$$__ aeabi memcpy(void * dst, void * src, size_ t sz)
{

void * ret;

// call the original __ aeabi_ memcpy
ret = $Super$$__aeabi memcpy (dst, src, sz);

if ((*toReceiveCount ptr == 0U) &&
((toReceiveCount_adr >= (uint32_t)dst) &&
((toReceiveCount_adr < ((uint32_t)dst + sz))))) {
__NOP() ;
}
return ret;

In this code, we first call the original memcpy function and then we check if the memcpy destination memory
overlaps with the toReceiveCount variable.

Run the application and place a breakpointon NOP () inside the 1f statement, to catch the faulty call to
memcpy. When the application stops at the breakpoint, the Call Stack looks like this:

AN327 — Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved

7 www.keil.com/appnotes/docs/apnt_327.asp

https://www.keil.com/support/man/docs/armlink/armlink_pge1362065967698.htm

Call Stack + Locals a B

Mame Location/Value Type
= | ESEEEON 00 -
=l % 55ub35_ aeabi_memcpy CheD0O0 202 void * fivoid * void * u...
e dst 0x2000EBTS param - void *
e crc CoeD00253E4 ip_unspec param - void *
e sz 000000004 param - uint
¥ oret O 2000EBTC auto - void *
=% WiFi_SocketBind (DO CEB2E int f{int,uchar *, uint, u...
Y cocket Show Caller Code param - int
= ip r Show Callee Code pec "" paramn - uchar *
*¥ ip_len | v | Hexadecimal Display param - uint
¢ port i param - ushort
L Oec00000004 auto - int
W oret CraQO000000 auto - int
¥ addr_len CheDOO0000E auto - int
¥ addr (2000C364 auto - unicn <untagg...
¥ cmsis_dv: (k20004008 OnDO0NFC51 Task il

'_:'3[5-':|:".I-;I printf] Viewer Match 1 Memory 1 Memary 2 -,;-'_'ICEII Stack + Locals

The Call Stack + Locals window shows that memcpy () is called from the function WiFi SocketBind. Right-click
on the function and select Show Callee Code. This takes you to the following code fragment shows the
problematic call to memcpy () :

socket arr[socket].local port = port;
memcpy ((void *)socket arr[i] .local ip, (void *)ip, ip 1len);

The element index of the array socket _arr is out of bounds. The local variable i is incorrectly used for the
element index. From the Call Stack + Locals window is evident that 1 has a value of 4.

socket arr isan array of four structures socket t. Therefore, the destination parameter of memcpy ()
points to memory outside the array socket arr.

The memory map shows that the structure SPI8 Handle is positioned directly after the array socket _arr.
Thus, memcpy () actually overwrites the toReceiveCount variable:

socket_arr 0x2000eaa8 Data 192 wifi gcad00x.o(.bss)

.bss 0x2000eb68 Section 48 fsl spi_cmsis.o(.bss)

SPI8 Handle 0x2000eb68 Data 48 fsl spi_cmsis.o(.bss)
Solution

The variable socket should be used instead of i. The following code shows the correct implementation:

socket arr[socket].local port = port;
memcpy ((void *)socket_ arr[socket].local ip, (void *)ip, ip len);

Conclusion

Memory overwrites can be tricky to catch and hard to spot. pVision’s advanced debug features (SWO trace,
different viewer windows, and Logic Analyzer) helped to find the root cause of this non-trivial problem.

AN327 — Analyze Memory Access Issues Copyright © 2020 Arm Ltd. All rights reserved
8 www.keil.com/appnotes/docs/apnt_327.asp

	Abstract
	Prerequisites

	Introduction
	Analysis
	Step 1: Check SPI Communication between the LPC54018 and the WiFi module
	Step 2: Examine SPI variables (dynamic)
	Step 3: Use SWO Trace
	Step 4: Patching the memcpy() function

	Solution
	Conclusion

