
MDK Flash Download

AN334, Autumn 2020, V 1.0

keil-feedback@arm.com

AN334 –MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 1

Abstract
An integral part of debugging is the download of the application into the target’s Flash memory. This application
explains how Flash algorithms are used in MDK to erase, download, and verify the application in the Flash
memory.

Contents
Abstract ... 1

Introduction .. 2

Terminology .. 2

Flash Download Steps .. 2

Connect Debugger ... 3

Load AXF File(s) .. 3

Loading Flash Algorithm ... 3

Erase .. 4

Erase Sectors Only .. 4

Erase Full Chip .. 5

Erasing Sectors by addresses... 5

Program ... 6

Program Flash ... 6

Verify ... 7

Verify address range ... 7

Shutdown Flash Download ... 8

Reset & Run Application ... 8

Using Alternative Flash Programming Algorithms... 8

https://arm-software.github.io/CMSIS_5/Pack/html/flashAlgorithm.html

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 2

Introduction
Flash algorithms are position-independent software to erase, download, and verify applications in Flash devices
of an MCU. After download into the target’s RAM, they are executed by a CPU in the target system.

Download and execution are controlled by the debugger which takes over control of the CPU and manipulates
the PC, SP, LR, and general-purpose registers to select the appropriate algorithm function and to pass
arguments to it. LR is normally programmed with the address of a BKPT instruction to ensure that the CPU stops
after finishing a function. Results can be read back via R0 as per the Arm Procedure Call Standard (APCS).

While it would be a viable approach to directly program Flash memory with debugger accesses, the current Flash
algorithms come with the following benefits:

• Better scalability by following a fixed scheme to program devices of various brands and technologies.

• Higher programming speed: particularly low-cost debug probes have bandwidth and clock limitations on
the debug channel. Executing the algorithms in the target system reduces the number of necessary
debugger accesses.

• Complex Flash controllers can be handled much easier in plain C-code than by sending a series of
debugger commands.

• Using C-code allows better error handling and decision making during the Flash download operations.
Debuggers often lack the capabilities of complex error handling/decision making.

Terminology
The following terms are used in this document:

• Flash Page: Smallest Flash memory range being programmed with a single flash controller operation.

• Flash Sector: Smallest Flash memory range that can be erased with a single flash controller operation.
Normally, a sector consists of multiple pages.

• Flash Device: A Flash device with its own properties and Flash algorithm. A Flash device normally
consists of multiple sectors. Sectors can have a varying size.

• Fill Value: The fill value normally corresponds to the bit pattern that resides in blank Flash memory.
Hence it can also be referred to as the "blank value". An erase operation should make sure that memory
is set to this value after it is erased (if readable at all in erased state).

Flash Download Steps
The following high-level overview shows the steps that are gone through in µVision to download code into the
target’s Flash memory, using the target’s RAM as temporary storage:

Each of these Flash download steps is completed before entering the next. That means for example that all
relevant sectors are erased first before programming the first Flash page. Flash algorithms required in multiple
steps are downloaded again for each following step.

• Connect Debugger: Establish debugger connection.

• Load AXF files: Load and cache code from AXF files in debug driver (on the host PC side). If required,
multiple AXF files can be loaded and merged before Flash download.

• Erase: Erase full chip or sectors that are going to be newly programmed.

• Program: Program pages covered by the loaded AXF files and the Flash Download Setup dialog.

• Verify: Verify that the programmed areas hold the expected code.

• Shutdown Flash Download: Finalize the Flash download and disable core debug.

• Reset & Run Application: Execute a HW reset, i.e. a reset via the device's external reset pin. The type of
this final reset is not configurable.

https://developer.arm.com/documentation/ihi0042/j/
https://www.keil.com/support/man/docs/uv4/uv4_fl_usingflashmenu.htm

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 3

Connect Debugger
Please refer to Algorithm Functions of the CMSIS documentation for an example sequence of events on a
debugger connection.

Load AXF File(s)
µVision loads and caches code in the active debug driver from AXF and HEX (Intel 386 format) files that are
selected for Flash download:

• The build output of the current build target is always automatically loaded.

• If an INI script is added to the "Utilities" tab of the "Options for Target" dialog, and if this INI script
contains LOAD commands, then additional AXF or HEX (Intel 386 format) files can be specified for Flash
download.

• Code regions from multiple files must not overlap to avoid unpredictable side effects.

• You can program code regions from multiple files that do not overlap but share the same Flash
sector/page. However, these must be programmed with a single Flash download. µVision does not have
a read-modify-write functionality for Flash sectors.

• Pages that are not fully filled with code are padded with the "Fill Value" that is specified in the Flash
algorithm. Otherwise it is possible that specific Flash memories will not function correctly.

Loading Flash Algorithm
Before executing Flash algorithm functions, they are downloaded to the target system's RAM. This is
complemented by other supporting functions, code snippets, and information. Information and functions
downloaded into target RAM have the following format.

Notes:

• µVision checks if the first instruction of each algorithm function has the least significant bit set in order
to detect any non-Thumb code for Cortex-M targets.

• More information on Keil Flash algorithms can be found under Algorithm Functions.

https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html
https://www.keil.com/support/man/docs/uv4/uv4_fl_predownload.htm
https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 4

Erase
The erase operation can be configured to erase the full chip, erase only sectors that are to be programmed, and
to entirely skip the erase step.
Additionally, the FlashEraseDone debug sequence can be provided by a Device Family Pack to execute device
specific functionality at the end of the erase step. Currently, it is executed for all three possible paths.

Erase Sectors Only

When erasing sectors only, the debug driver identifies which Flash sectors need to be erased. This is based on
the address ranges to program as per the AXF file contents.

Note: It can be necessary to load multiple Flash algorithms for one Flash download procedure. This happens
sequentially in µVision, i.e. one Flash algorithm is downloaded and executed to the target RAM at a time.

https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#usage_of_sequences
https://arm-software.github.io/CMSIS_5/Pack/html/index.html#SWPackVariants

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 5

Erase Full Chip

Erasing the full chip can happen via one of the following two methods:

• If the Flash algorithm provides a dedicated EraseChip() function, then this gets called. See the flow chart
below.

• If the Flash algorithm does not provide an EraseChip() function, then the debugger erases the entire chip
by erasing all sectors of each Flash device with the use of the EraseSector() function.

Erasing Sectors by addresses

The following flow chart shows how sectors are erased. Input parameter is an address range (start address and
number of bytes). The chart assumes that the correct Flash algorithm for the requested address range has been
found, downloaded into target RAM, and initialized by executing the Init() function of the algorithm.
Uninit() is called after completion as outlined in Erase Sectors Only and Erase Full Chip.

https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html#EraseChip
https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html#EraseSector
https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html#Init
https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html#UnInit

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 6

Program

This step programs the AXF contents into the target Flash. Address ranges in the AXF not covered by the Flash
Download Setup dialog in µVision are assumed to be ranges in RAM. They are skipped during Flash download.

The FlashProgramDone debug sequence can be provided by a Device Family Pack to execute device specific
functionality at the end of the programming step. Currently, it is executed regardless of executing any Flash
programming.

Program Flash

The following diagram shows the various steps and decisions a typical debug driver in µVision takes.
Like the erase step, Flash memory is programmed sequentially. That implicitly means that it is programmed
Flash device by Flash device.

The actual programming ("Program range in current Flash device") happens page by page:

• Page buffer gets prepared
o If start address of target range is not aligned with page start, then the beginning of the page is

padded with the Flash algorithm's Fill Value.
o If the end of target range is not aligned with the end of a page, then the remainder of the page

is padded with the Flash algorithm's Fill Value.
o In the rare event of other kinds of gaps these are of course padded with the Fill Value, too.

• Page buffer is downloaded behind the algorithm functions and helpers in the target RAM that is
reserved for Flash algorithms by the user setup.

• The ProgramPage() algorithm function is called with the corresponding parameters.

Notes:

• µVision currently supports a maximum page buffer size of 64 KBytes.

• µVision does not read-modify-write existing Flash sectors.

• µVision does not check if a configured range needs update, i.e. it does not check if the contents to write
patches the current Flash contents.

• µVision does not care about pages within a sector that have no code to program. The already existing
content remains. If the content is blank or if it holds previously downloaded code depends on whether it
is part of a sector that was erased during the erase step.

https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#usage_of_sequences
https://arm-software.github.io/CMSIS_5/Pack/html/flashAlgorithm.html#FlashDev
https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html#ProgramPage

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 7

Verify
The verify step shall ensure that the Flash memory has been correctly programmed.

Verify address range

The actual verification of the contents downloaded to a Flash device depends on the provided by the Flash
algorithm:

• If a Verify() function is implemented, the debug driver downloads the expected contents to the
algorithm's RAM buffer and executes the function on the target CPU.

• If no Verify() function is implemented then the debug IDE
o executes the CalculateCRC() function (internal to µVision) over the specified range on the target

system.
o executes the same algorithm on the expected Flash contents in the debug driver.
o compares the results.

• If there is no Verify() function and the CRC comparison fails, a last attempt is done by reading the Flash
contents via debug accesses and comparing it against the expected contents.

Notes:

• The CalculateCRC() function executed in target is not part of the actual Flash algorithm. It is a standard
implementation within µVision and downloaded with each new Flash algorithm.

• "Read Flash memory and compare" does not really terminate the operation on the first mismatch.
Standard AGDI implementations detect and print up to 100 byte mismatches before aborting the verify.

https://arm-software.github.io/CMSIS_5/Pack/html/algorithmFunc.html#Verify

AN334 – MDK Flash Download Copyright © 2020 Arm Ltd. All rights reserved

 www.keil.com/appnotes/docs/apnt_334.asp 8

Shutdown Flash Download

The following things happen during shutdown of a successful Flash download:

• If a BKPT instruction was written to RAM while downloading the last Flash algorithm it gets replaced by a
dead loop. Deactivating core debug will set the CPU running. If a CPU executes a BKPT instruction
without halt debug or a debug monitor enabled, then it will cause a HardFault which can further
escalate to a CPU lockup. After a normal order of events, the PC will be at this point halted at a BKPT
instruction. This is the result of the last successful execution of a Flash algorithm function.

• Core debug is stopped. The functionality basically corresponds to the default implementation of the
CMSIS debug sequence DebugCoreStop.

Reset & Run Application
Set the option "Reset & Run" to execute a final reset and hence run the application after finishing the Flash
download. The executed reset is always a HW Reset (device's external reset pin) regardless of the selected reset
type in the debugger settings.

Notes:

• Some target systems have configurable reset controllers that determine the functionality of this reset.
Also, there are specific SoC and board implementations which have the reset line to the debugger
disabled/disconnected. In such cases you need to make sure that the ResetHardware debug sequence is
overwritten in the Device Family Pack to generate a comparable reset.

• On some boards, a HW Reset is not sufficient to reset all required components like for example Flash
caches. In that case, overwrite the ResetHardware debug sequence in the Device Family Pack. If this is
not possible, then you have to manually power-cycle (pull the power cable and plug it back in) the
board/device.

Using Alternative Flash Programming Algorithms
Some devices cannot be programmed with a standard Flash algorithm executed from the target CPU. System
security features might be impacting accessibility/usability of system components like RAM or Flash controllers.

In this case, use CMSIS debug sequences to replace the execution of RAM based Flash algorithms. See Default
debug access sequences for more details. Involved sequences are FlashInit, FlashUninit, FlashEraseSector,
FlashEraseChip, and FlashProgramPage.
The difference to above flow charts is that the execution of RAM based functions is replaced by the according
sequence. Also, this approach always needs to read target Flash memory with debugger accesses to compare it
against the expected contents.

https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#debugCoreStop
https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#resetHardware
https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#resetHardware
https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#default_sequences
https://arm-software.github.io/CMSIS_5/Pack/html/debug_description.html#default_sequences

	Abstract
	Introduction
	Terminology
	Flash Download Steps
	Connect Debugger
	Load AXF File(s)
	Loading Flash Algorithm
	Erase
	Erase Sectors Only
	Erase Full Chip
	Erasing Sectors by addresses

	Program
	Program Flash

	Verify
	Verify address range

	Shutdown Flash Download
	Reset & Run Application

	Using Alternative Flash Programming Algorithms

