
AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 1

Stack sealing on Armv8-M devices with CMSIS

MDK Tutorial

AN335, Winter 2021, v1.0 keil-feedback@arm.com

Abstract
This application note explains how to implement stack sealing for a CMSIS-based project. It also includes an
example project for an Arm Cortex-M33 using a Fixed Virtual Platform (FVP) model.

The stack sealing technique is introduced in Armv8-M Secure Stack Sealing advisory notice that explains how to
properly manage the secure stacks on Armv8-M architecture devices, such as Cortex-M23, Cortex-M33, Cortex-
M35P and Cortex-M55. This ensures that non-secure software cannot potentially manipulate the stack and
influence the secure control flow.

Contents
Abstract ..1

Prerequisites ...1

Introduction ..2

Modifications in CMSIS-Core Files ..2

Arm Compiler 6.x support ...2

GCC Compiler support ...3

Modifications in the Startup File ..3

Implementation in C language ..3

Implementation in Assembler ...4

Modifications in Scatter File ...6

Arm Compiler 6.x support ...6

GCC Compiler support ...6

Example applications ..7

Arm Compiler 6.x support ...7

GCC Compiler support ...9

Summary ...9

References and Useful Links ...9

Prerequisites
To reproduce the example described in this application note the following tools are required:

Components from Arm:

• Arm Keil MDK: IDE and debugger used for project development and debug.
MDK-Professional edition is required to run the reference example on Arm Fixed Virtual Platform
(FVP). You can obtain a 30-day evaluation license of MDK-Professional as described at
keil.com/support/man/docs/license/license_eval.htm. MDK v5.33 was used to verify the
examples.

• Arm CMSIS: version 5.7.0 without provisions for stack sealing is used in the example.

https://www.keil.com/appnotes/docs/apnt_335.asp
https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing
https://www2.keil.com/mdk5/
https://www.keil.com/support/man/docs/license/license_eval.htm
https://developer.arm.com/tools-and-software/embedded/cmsis

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 2

• Arm Fixed Virtual Model for Cortex-M33 (FVP_MPS2_Cortex-M33_MDK.exe): included with Keil
MDK-Professional edition. Version 11.12 is used to create the example.

Example project

A ZIP file is available for download at keil.com/appnotes/docs/apnt_335.asp. It contains projects
implementing stack sealing as well as modified CMSIS-Core files.

Introduction

The Armv8-M Secure Stack Sealing advisory notice analyzes a vulnerability of secure software executed on
Armv8-M processors to attacks from the non-secure state when the secure stacks are not properly managed. It
also describes a mechanism called stack sealing that mitigates this vulnerability.

CMSIS-Core (M) v5.0.0 through v5.4.0 (delivered as part of CMSIS v5.0.0 through v5.7.0) provide support for
devices based on Armv8-M architecture, and include templates for startup code and system files that are
commonly used by device vendors to implement CMSIS compliant device support. However, in these versions of
CMSIS-Core(M) there is no support for the stack sealing mechanism and additional considerations and
modifications are required from users to add that functionality to a project.

The idea behind the stack sealing is to add a so called “seal” on top of the secure stacks. This seal consists of two
words with the special value 0xFEF5EDA5 which are placed just above the real stack space.

This application notes uses a Keil MDK project and explains the modifications required to implement the stack
sealing mechanism for the main secure stack. Process stack is typically managed by the application or an RTOS
and is out of scope of this application note that targets a generic CMSIS-Core application (bare-metal).

The descriptions provided in the application note and related examples are based on an Arm Fixed Virtual
Platform (FVP) model for Cortex-M33 delivered with MDK, but similar steps can be followed to add stack sealing
on real target hardware.

Modifications in CMSIS-Core Files

CMSIS-Core for Cortex-M already implements functions for managing stack pointers and supports handling of
secure and non-secure states on Armv8-M. So, it is logical to extend CMSIS-Core with a function that
implements the stack sealing operation and thus can be universally used in device startup C code.

Note: if startup file is implemented in Assembler then the changes described below are not relevant. Proceed
directly to section Modifications in the Startup File.

Following the CMSIS naming convention we introduce a new function:

__TZ_set_STACKSEAL_S (uint32_t* stackTop)

that adds the recommended values on top of the memory provided by stackTop pointer. This function
becomes available from CMSIS version 5.8.0.

CMSIS version 5.7.0 and earlier do not contain this function. When running an application on this CMSIS versions
it is recommended to make some additional modifications in the startup file and so avoid modifications in the
CMSIS Core files. This is explained in section C Startup file for use with CMSIS 5.7.0 or below and Assembler
Startup file for use with CMSIS 5.7.0 or below.

Subsections below explain modifications in the CMSIS-Core files for CMSIS 5.8.0 for Arm Compiler 6.x and GCC
Compiler. The .zip archive supplied with the application note contains the modified CMSIS-Core files for the
reference.

Arm Compiler 6.x support

For use with Arm Compiler 6.x, __TZ_set_STACKSEAL_S function could be added in cmsis_armclang.h file as
follows:

https://www.keil.com/appnotes/docs/apnt_335.asp
https://developer.arm.com/tools-and-software/simulation-models/fixed-virtual-platforms
https://www.keil.com/appnotes/docs/apnt_335.asp
https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing
https://arm-software.github.io/CMSIS_5/Core/html/index.html

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 3

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

#ifndef __STACK_SEAL

#define __STACK_SEAL Image$$STACKSEAL$$ZI$$Base

#endif

__STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {

 *(stackTop) = 0xFEF5EDA5;

 *(stackTop + 1) = 0xFEF5EDA5;

}

#endif

GCC Compiler support

For use with GCC Compiler, similar code can be added to cmsis_gcc.h file, with the __StackSeal value to be
defined in a scatter file.

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

#ifndef __STACK_SEAL

#define __STACK_SEAL __StackSeal

#endif

__STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {

 *(stackTop) = 0xFEF5EDA5;

 *(stackTop + 1) = 0xFEF5EDA5;

}

#endif

Modifications in the Startup File
We recommend performing the stack sealing operation for the main secure stack in the Reset_Handler function
of the secure software before the SystemInit() function is called. This ensures that the stack sealing is already
performed before any non-secure software is executed.

Additionally, even if not used by an application, the values for the process stack pointer and limit register need
to be assigned.

The startup file can be implemented in C or assembler languages. Sections below explain modifications for both
cases. The application note examples demonstrate both implementation variants as explained in section
Example applications.

Implementation in C language

The C language implementation of the Reset_Handler with stack sealing is done in the file startup_ARMCM33.c
as described below. Code lines added for stack sealing are highlighted as New! in the comments.

Note that if CMSIS v5.7.0 or earlier is used then both the define __STACK_SEAL and the function
__TZ_set_STACKSEAL_S are not present in the CMSIS-Core files and the code-snippet below should be different.

The examples provided with the application note enable by default the code for use with CMSIS 5.7.0 as
explained in section C Startup file for use with CMSIS 5.7.0 or below.

For CMSIS versions 5.8.0 or above where the necessary provisions are present, only the following reference to
the __STACK_SEAL is required in the secure startup file, and is same for Arm Compiler 6 or GCC Compiler:

/* Use #if defined block below with CMSIS v5.8.0 or higher, otherwise comment it. */

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) // New!

extern uint32_t __STACK_SEAL; // New! Defined in CMSIS-Core

#endif // New!

Later in the file, the Reset_Handler function is updated as follows:

__NO_RETURN void Reset_Handler(void)

{

 __set_PSP((uint32_t)(&__INITIAL_SP)); // New! Process Stack Pointer shall be set

https://www.keil.com/appnotes/docs/apnt_335.asp

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 4

 __set_MSPLIM((uint32_t)(&__STACK_LIMIT));

 __set_PSPLIM((uint32_t)(&__STACK_LIMIT)); // New! Process Stack Pointer Limit shall be set

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) // New!

 __TZ_set_STACKSEAL_S((uint32_t *)(&__STACK_SEAL)); // New! Perform Stack Sealing

#endif // New!

 SystemInit(); /* CMSIS System Initialization */

 __PROGRAM_START(); /* Enter PreMain (C Library entry point) */

}

C Startup file for use with CMSIS 5.7.0 or below

CMSIS 5.7.0 and earlier versions do not contain definitions for __STACK_SEAL and function
__TZ_set_STACKSEAL_S used by the C startup file described above. To avoid modifications of the CMSIS Pack
files, it is possible to implement them fully in the C startup file.

For that the code snippet defining the __STACK_SEAL in the startup C file (startup_ARMCM33.c in our example)
shall be commented, and the following code shall be added instead.

For Arm Compiler 6.x:

/* Use #if defined block below with CMSIS v5.7.0 or lower (CMSIS-Core 5.4.0 or lower),

 otherwise comment it. */

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

 #define __STACK_SEAL Image$$STACKSEAL$$ZI$$Base

 extern uint32_t __STACK_SEAL;

 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {

 *(stackTop) = 0xFEF5EDA5;

 *(stackTop + 1) = 0xFEF5EDA5;

 }

#endif

-Wno-dollar-in-identifier-extension need to be added to the compiler options string to avoid warnings related to
the use of $ sign.

Implementation of the Reset_Handler function is the same as explained above in the section Implementation in
C language.

For GNU Compiler the code snippet from above looks very similar with only __STACK_SEAL being defined
differently:

/* Use #if defined block below with CMSIS v5.7.0 or lower (CMSIS-Core 5.4.0 or lower),

 otherwise comment it. */

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

 #define __STACK_SEAL __StackSeal

 extern uint32_t __STACK_SEAL;

 __STATIC_FORCEINLINE void __TZ_set_STACKSEAL_S (uint32_t* stackTop) {

 *(stackTop) = 0xFEF5EDA5;

 *(stackTop + 1) = 0xFEF5EDA5;

 }

#endif

The __StackSeal value need to be defined in the scatter file as explained in corresponding section Modifications
in Scatter File.

Implementation in Assembler

It is strongly recommended to use C startup files with CMSIS projects because templates for assembler startup
files are deprecated and not maintained. But for legacy projects it is also possible to implement stack sealing
mechanism in an assembler startup file.

Below is the description of the assembler implementation for Arm Compiler in armclang GNU syntax with pre-
processing as also shown in the reference examples
(CM33_AC6.S_NS\App_s\RTE\Device\ARMCM33_DSP_FP_TZ\startup_ARMCM33.S).

https://www.keil.com/appnotes/docs/apnt_335.asp

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 5

Note that template files and reference Armv8-M devices implemented in CMSIS v5.7.0 use an armasm syntax
and need to be modified as explained in section Assembler Startup file for use with CMSIS 5.7.0 or below.

First __STACK_SEAL address is defined, as well as __INITIAL_SP and __STACK_LIMIT:

 #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit

 #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base

 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

 #define __STACK_SEAL Image$$STACKSEAL$$ZI$$Base

 #endif

Then, the Reset_Handler is implemented with values assigned to the stack pointers and limits and stack sealing
performed:

Reset_Handler:

 ldr r0, =__INITIAL_SP

 msr psp, r0

 ldr r0, =__STACK_LIMIT

 msr msplim, r0

 msr psplim, r0

 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

 ldr r0, =__STACK_SEAL

 ldr r1, =0xFEF5EDA5

 strd r1,r1,[r0,#0]

 #endif

 bl SystemInit

 bl __main

 .fnend

 .size Reset_Handler, . - Reset_Handler

An implementation for the GNU Compiler is very similar. It defines __INITIAL_SP, __STACK_LIMIT, and
__STACK_SEAL equal to the corresponding parameters that need to be defined in the scatter file.

 #define __INITIAL_SP __StackTop

 #define __STACK_LIMIT __StackLimit

 #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

 #define __STACK_SEAL __StackSeal

 #endif

The Reset_Handler implementation can be kept the same as for the Arm Compiler, but up to the __main call,
that should be replaced with the necessary initializations, because such pre-main function does not exist in GNU
compiler. For details, please refer to the examples provided with the application notes.

Assembler Startup file for use with CMSIS 5.7.0 or below

Assembler startup files for the reference Armv8-M devices implemented in CMSIS v5.7.0 and lower use armasm
syntax. However, because the stack sealing relies on definitions in the scatter file, it is convenient to update the
whole startup file to armclang format with GNU syntax as used in the previous section.

So, in a project based on CMSIS 5.7.0 or lower update the assembler startup file with the startup file provided in
the Example applications. For Arm Compiler this is
CM33_AC6.S_NS\App_s\RTE\Device\ARMCM33_DSP_FP_TZ\startup_ARMCM33.S. Additionally, when using
Arm Compiler, add following options to the Asm control -x assembler-with-cpp. In a Keil MDK project this can be
done via Options for Target dialog - Asm tab and then the options need to be added in the Misc. Controls field.

For GCC Compiler use file CM33_GCC.S_NS\App_s\RTE\Device\ARMCM33_DSP_FP_TZ\startup_ARMCM33.S. as
a reference.

https://www.keil.com/appnotes/docs/apnt_335.asp

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 6

Modifications in Scatter File
The stack sealing mechanism requires to use a scatter file (linker script) to reserve 8 bytes for the stack seal on
top of secure main stack. This section explains the required changes in the scatter file. Other memory
configuration options using the scatter file (common for Armv8-M devices such as memory split in secure and
non-secure areas) is out of scope for this document.

Arm Compiler 6.x support

The scatter file for Arm Linker can be found in the reference example in ARMCM33_ac6_s.sct file. This is done as
follows.

First, we just define the size of the stack seal as 8 bytes for secure code and 0 bytes for non-secure:

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

#define __STACKSEAL_SIZE 8

#else

#define __STACKSEAL_SIZE 0

#endif

Later, we shift the stack top value from the RAM end by the size of the stack seal:

#define __STACK_TOP (__RAM_BASE + __RAM_SIZE - __STACKSEAL_SIZE) /* starts at end of RAM -

stack seal */

Finally, for secure project we reserve the memory for the stack seal right after the stack memory:

…

 ARM_LIB_STACK __STACK_TOP EMPTY -__STACK_SIZE { ; Reserve empty region for stack

 }

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)

 /* stack seal immediately after stack */

 STACKSEAL +0 EMPTY __STACKSEAL_SIZE {

 }

#endif

GCC Compiler support

The GNU Linker script gcc_arm.ld requires the following additions for the secure project to support stack sealing
feature.

First, define the stack seal size:

 /* ARMv8-M stack sealing:

 to use ARMv8-M stack sealing uncomment set __STACKSEAL_SIZE to 8 otherwise keep 0

 */

__STACKSEAL_SIZE = 8;

Then, allocate memory for the stack with the size decremented by the stack seal size. Here the parameters
__StackLimit and __StackTop get defined and later are used in the startup file.

.stack (ORIGIN(RAM) + LENGTH(RAM) - __STACK_SIZE - __STACKSEAL_SIZE)(COPY) :

 {

 . = ALIGN(8);

 __StackLimit = .;

 . = . + __STACK_SIZE;

 . = ALIGN(8);

 __StackTop = .;

 } > RAM

 PROVIDE(__stack = __StackTop);

Finally allocate the memory for the stack seal itself.

 .stackseal (ORIGIN(RAM) + LENGTH(RAM) - __STACKSEAL_SIZE) (COPY) :

 {

 . = ALIGN(8);

 __StackSeal = .;

https://www.keil.com/appnotes/docs/apnt_335.asp

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 7

 . = . + 8;

 . = ALIGN(8);

 } > RAM

Example applications

This application note comes with a ZIP file (keil.com/appnotes/docs/apnt_335.asp) that contains simple Vision
examples implementing stack sealing mechanism as described in the previous chapters.

Separate project workspaces are provided for Arm Compiler support and for GNU Compiler. Both workspaces
contain secure and non-secure projects implementing corresponding parts of the application. And each project
has two target variants: FVP C-Start target uses startup file in C language, while FVP A-Start uses startup file in
Assembler.

By default, the FVP C-Start targets work with CMSIS 5.7.0 or lower. To use them with later CMSIS releases (that
already contain provisions for stack sealing) the C startup files need to be modified as explained in section
Modifications in the Startup File.

The examples use a Cortex-M33 FVP that allows code execution without target hardware. For that an MDK-
Professional edition is required. You can obtain a 30-day evaluation license of MDK-Professional as explained at
keil.com/support/man/docs/license/license_eval.htm.

Make sure that the in the Options for Target.. dialog, Debug tab, Models ARMv8-M Debugger is selected as the
target debugger and after clicking Settings button, verify that the Command field contains the correct path to
the target FVP file. By default, MDK has it at <MDK path>ARM\FVP\MPS2_Cortex-M\FVP_MPS2_Cortex-
M33_MDK.exe.

In the project the secure RAM is is configured as:

__RAM_BASE 0x20000000

__RAM_SIZE 0x00020000

The secure main stack is placed at the end of that RAM area and the stack sealing bytes are located at address
0x2001FFF7.

Arm Compiler 6.x support

The directory CM33_AC6.S_NS contains an example implementing stack sealing for Arm Compiler 6.x. The steps
below explain how to run the program and observe the stack seal in the memory.

• Open the S_NS.uvmpw multi-project workspace in Vision. It contains two projects: secure (App_s) and
non-secure (App_ns). By default, the FVP C-Start target is selected in both projects.

• Batch-build both projects. The projects should build without errors and warnings.

• Start a debug session (CTRL+F5).

The program stops at the beginning of the Reset_Handler. Note that if a C startup file is used, this may
be optimized and debugger could stop at the beginning of __set_PSP function called first within the
Reset_Handler.

The Memory 1 window shows that the FVP memory is filled with default values 0xCFDFDFDFDFDFDFCF
and as expected the stack seal is not yet applied:

https://www.keil.com/appnotes/docs/apnt_335.asp
https://www.keil.com/appnotes/docs/apnt_335.asp
https://www.keil.com/support/man/docs/license/license_eval.htm

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 8

You can open the Registers view and see that among the secure stack registers only MSP has a value
assigned:

• Run the program (F5). Execution stops at a breakpoint in the beginning of SystemInit function and
the stack sealing is already applied. Corresponding values 0xFEF5EDA5 can be observed in the Memory 1
window as well:

All secure stack register values get values assigned to them as well.

• Continue program execution (F5). The program stops at a breakpoint in the main function of the
secure code. You can observe that the main secure stack is being used now with default values
overwritten up to the stack seal that stays untouched:

https://www.keil.com/appnotes/docs/apnt_335.asp

AN335 – Stack Sealing on Armv8-M devices Copyright © 2021 Arm Ltd. All rights reserved

 https://www.keil.com/appnotes/docs/apnt_335.asp 9

• Continue program execution further (F5). The program switches to execute the non-secure code.
Using the Memory 2 window you can observe the non-secure stack and see that there is no stack seal
present there.

GCC Compiler support

The directory CM33_GCC.S_NS contains a project demonstrating stack sealing implementation for a GCC
Compiler. To run the program follow the steps as described in the previous section for Arm Compiler, but use
the workspace S_NS.uvmpw in CM33_GCC.S_NS folder.

Summary
In this application note, we have explained how to implement a stack sealing mechanism in CMSIS-based Armv8-
M devices. Example applications for Arm Compiler 6.x and GCC Compiler are provided with the application note.

References and Useful Links
[1] Armv8-M Secure Stack Sealing advisory notice
[2] Application Note 291: Using TrustZone on ARMv8-M
[3] Secure software guidelines for Armv8-M

https://www.keil.com/appnotes/docs/apnt_335.asp
https://developer.arm.com/support/arm-security-updates/armv8-m-stack-sealing
https://www.keil.com/appnotes/docs/apnt_291.asp
https://developer.arm.com/documentation/100720/0300

	Abstract
	Prerequisites
	Introduction
	Modifications in CMSIS-Core Files
	Arm Compiler 6.x support
	GCC Compiler support

	Modifications in the Startup File
	Implementation in C language
	C Startup file for use with CMSIS 5.7.0 or below

	Implementation in Assembler
	Assembler Startup file for use with CMSIS 5.7.0 or below

	Modifications in Scatter File
	Arm Compiler 6.x support
	GCC Compiler support

	Example applications
	Arm Compiler 6.x support
	GCC Compiler support

	Summary
	References and Useful Links

