
AMBA® DTI
Protocol Specification
Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved.
ARM IHI 0088E.b (ID061721)

AMBA DTI
Protocol Specification

Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this specification:

Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of this notice and the Arm AMBA
Specification Licence set about below.

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to Arm's customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2016-2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-21451 version 2.2

Change history

Date Issue Confidentiality Change

18 November 2016 0000-00 Non-Confidential Edition 0 (First release)

09 May 2017 0000-01 Non-Confidential Edition 1

11 September 2017 0000-02 Non-Confidential Edition 2

13 July 2018 0000-03 Non-Confidential Edition 3

27 August 2020 E Non-Confidential Addition of v2 protocols

16 June 2021 E.b Non-Confidential Technical corrections
ii Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

AMBA SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT ("LICENCE") IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED ("ARM") FOR THE USE OF ARM'S
INTELLECTUAL PROPERTY (INCLUDING, WITHOUT LIMITATION, ANY COPYRIGHT) IN THE RELEVANT AMBA
SPECIFICATION ACCOMPANYING THIS LICENCE. ARM LICENSES THE RELEVANT AMBA SPECIFICATION TO
YOU ON CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY CLICKING "I AGREE" OR
OTHERWISE USING OR COPYING THE RELEVANT AMBA SPECIFICATION YOU INDICATE THAT YOU AGREE TO
BE BOUND BY ALL THE TERMS OF THIS LICENCE.

"LICENSEE" means You and your Subsidiaries.

"Subsidiary" means, if You are a single entity, any company the majority of whose voting shares is now or hereafter owned or
controlled, directly or indirectly, by You. A company shall be a Subsidiary only for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, Arm hereby grants to LICENSEE a perpetual, non-exclusive,
non-transferable, royalty free, worldwide licence to:

(i) use and copy the relevant AMBA Specification for the purpose of developing and having developed products
that comply with the relevant AMBA Specification;

(ii) manufacture and have manufactured products which either: (a) have been created by or for LICENSEE under
the licence granted in Clause 1(i); or (b) incorporate a product(s) which has been created by a third party(s)
under a licence granted by Arm in Clause 1(i) of such third party's AMBA Specification Licence; and

(iii) offer to sell, sell, supply or otherwise distribute products which have either been (a) created by or for
LICENSEE under the licence granted in Clause 1(i); or (b) manufactured by or for LICENSEE under the
licence granted in Clause 1(ii).

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

(i) where a product created under Clause 1(i) is an integrated circuit which includes a CPU then either: (a) such
CPU shall only be manufactured under licence from Arm; or (b) such CPU is neither substantially compliant
with nor marketed as being compliant with the Arm instruction sets licensed by Arm from time to time;

(ii) the licences granted in Clause 1(iii) shall not extend to any portion or function of a product that is not itself
compliant with part of the relevant AMBA Specification; and

(iii) no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any Arm
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause
1 be construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any Arm
technology except the relevant AMBA Specification.

4. THE RELEVANT AMBA SPECIFICATION IS PROVIDED "AS IS" WITH NO REPRESENTATION OR
WARRANTIES EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY
OF SATISFACTORY QUALITY, MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE, OR THAT ANY USE OR IMPLEMENTATION OF SUCH ARM TECHNOLOGY WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL
PROPERTY RIGHTS.

5. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, TO THE
FULLEST EXTENT PETMITTED BY LAW, THE MAXIMUM LIABILITY OF ARM IN AGGREGATE FOR ALL
CLAIMS MADE AGAINST ARM, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE
SUBJECT MATTER OF THIS AGREEMENT (INCLUDING WITHOUT LIMITATION (I) LICENSEE'S USE OF THE
ARM TECHNOLOGY; AND (II) THE IMPLEMENTATION OF THE ARM TECHNOLOGY IN ANY PRODUCT
CREATED BY LICENSEE UNDER THIS AGREEMENT) SHALL NOT EXCEED THE FEES PAID (IF ANY) BY
LICENSEE TO ARM UNDER THIS AGREEMENT. THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT
WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

6. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the Arm
tradename, or AMBA trademark in connection with the relevant AMBA Specification or any products based thereon.
Nothing in Clause 1 shall be construed as authority for LICENSEE to make any representations on behalf of Arm in respect
of the relevant AMBA Specification.

7. This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights if
LICENSEE is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to You. You may terminate this Licence at any time. Upon expiry or termination
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. iii
ID061721 Non-Confidential

of this Licence by You or by Arm LICENSEE shall stop using the relevant AMBA Specification and destroy all copies of
the relevant AMBA Specification in your possession together with all documentation and related materials. Upon expiry
or termination of this Licence, the provisions of clauses 6 and 7 shall survive.

8. The validity, construction and performance of this Agreement shall be governed by English Law.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com
iv Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Contents
AMBA DTI Protocol Specification

Preface
About this specification ... x

Intended audience .. x
Using this specification ... x
Conventions .. x
Typographic conventions .. x
Signals ... xi
Numbers .. xi

Additional reading .. xii
Arm publications .. xii
Other publications .. xii

Feedback .. xiii
Feedback on this specification .. xiii

Chapter 1 Introduction
1.1 About DTI protocols ... 1-16

1.1.1 Protocol interaction .. 1-16
1.1.2 Field references ... 1-17

1.2 DTI Protocol Specification Terminology ... 1-18

Chapter 2 DTI Protocol Overview
2.1 DTI protocol messages .. 2-22

2.1.1 Message groups .. 2-22
2.1.2 Message listing .. 2-22
2.1.3 Flow control .. 2-25
2.1.4 Reserved fields .. 2-25
2.1.5 IMPLEMENTATION DEFINED fields ... 2-25

2.2 Managing DTI connections .. 2-26
2.2.1 Channel states ... 2-26
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. v
ID061721 Non-Confidential

2.2.2 Handshaking .. 2-26
2.2.3 Initialization and disconnection .. 2-29
2.2.4 Connecting multiple TBUs or PCIe RPs to a TCU 2-29

Chapter 3 DTI-TBU Messages
3.1 Connection and disconnection message group ... 3-32

3.1.1 DTI_TBU_CONDIS_REQ .. 3-32
3.1.2 DTI_TBU_CONDIS_ACK ... 3-34

3.2 Translation request message group ... 3-36
3.2.1 DTI_TBU_TRANS_REQ .. 3-36
3.2.2 DTI_TBU_TRANS_RESP .. 3-39
3.2.3 DTI_TBU_TRANS_FAULT .. 3-51
3.2.4 Additional rules on permitted translation responses 3-53
3.2.5 Calculating transaction attributes ... 3-54
3.2.6 Speculative transactions and translations .. 3-61

3.3 Invalidation and synchronization message group .. 3-63
3.3.1 DTI_TBU_INV_REQ .. 3-63
3.3.2 DTI_TBU_INV_ACK ... 3-65
3.3.3 DTI_TBU_SYNC_REQ .. 3-66
3.3.4 DTI_TBU_SYNC_ACK ... 3-67
3.3.5 The DTI-TBU invalidation sequence .. 3-67
3.3.6 DTI-TBU invalidation operations .. 3-70

3.4 Register access message group .. 3-75
3.4.1 DTI_TBU_REG_WRITE ... 3-75
3.4.2 DTI_TBU_REG_WACK ... 3-76
3.4.3 DTI_TBU_REG_READ .. 3-77
3.4.4 DTI_TBU_REG_RDATA .. 3-77
3.4.5 Deadlock avoidance in register accesses .. 3-78

Chapter 4 DTI-TBU Caching Model
4.1 Caching model ... 4-80
4.2 Lookup process .. 4-81
4.3 Global entry cache ... 4-83
4.4 Configuration cache ... 4-84
4.5 TLB ... 4-85

Chapter 5 DTI-ATS Messages
5.1 Connection and disconnection message group ... 5-88

5.1.1 DTI_ATS_CONDIS_REQ .. 5-88
5.1.2 DTI_ATS_CONDIS_ACK ... 5-90

5.2 Translation request message group ... 5-92
5.2.1 DTI_ATS_TRANS_REQ .. 5-92
5.2.2 DTI_ATS_TRANS_RESP .. 5-94
5.2.3 DTI_ATS_TRANS_FAULT ... 5-98
5.2.4 The ATS translation sequence ... 5-100

5.3 Invalidation and synchronization message group .. 5-102
5.3.1 DTI_ATS_INV_REQ .. 5-102
5.3.2 DTI_ATS_INV_ACK ... 5-103
5.3.3 DTI_ATS_SYNC_REQ .. 5-104
5.3.4 DTI_ATS_SYNC_ACK ... 5-105
5.3.5 The DTI-ATS invalidation sequence .. 5-105
5.3.6 DTI-ATS invalidation operations .. 5-107

5.4 Page request message group .. 5-109
5.4.1 DTI_ATS_PAGE_REQ .. 5-109
5.4.2 DTI_ATS_PAGE_ACK ... 5-111
5.4.3 DTI_ATS_PAGE_RESP .. 5-111
5.4.4 DTI_ATS_PAGE_RESPACK ... 5-113
5.4.5 Generating the page response .. 5-113
vi Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 6 Transport Layer
6.1 Introduction .. 6-116
6.2 AXI4-Stream transport protocol .. 6-117

6.2.1 AXI4-Stream signals .. 6-117
6.2.2 Interleaving .. 6-118
6.2.3 Usage of the TID and TDEST signals .. 6-118

Appendix A Pseudocode
A.1 Memory attributes ... A-120

A.1.1 Memory attribute types ... A-120
A.1.2 Memory attribute decoding ... A-121
A.1.3 Memory attribute processing ... A-122

Appendix B Revisions
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. vii
ID061721 Non-Confidential

viii Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Preface

This preface introduces the AMBA Distributed Translation Interface Protocol Specification.

It contains the following sections:

• About this specification on page x

• Additional reading on page xii

• Feedback on page xiii
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ix
ID061721 Non-Confidential

 Preface
 About this specification
About this specification

Intended audience

This specification is intended for the following audiences:

• Root Complex designers implementing ATS functionality

• Designers of components implementing TBU functionality

Using this specification

This book is organized into the following chapters:

Chapter 1 Introduction

This chapter introduces the DTI protocol.

Chapter 2 DTI Protocol Overview

This chapter provides an overview of the DTI protocol.

Chapter 3 DTI-TBU Messages

This chapter describes the message groups of the DTI-TBU protocol.

Chapter 4 DTI-TBU Caching Model

This chapter describes the caching model for the DTI-TBU protocol.

Chapter 5 DTI-ATS Messages

This chapter describes the message groups of the DTI-ATS protocol.

Chapter 6 Transport Layer

This chapter describes the transport layer of the DTI protocol.

Appendix A Pseudocode

This appendix provides example implementations of the requirements specified in this document.

Appendix B Revisions

Read this for a description of the revisions of this specification.

Conventions

The following sections describe conventions that this specification can use:

• Typographic conventions

• Signals on page xi

• Numbers on page xi

Typographic conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, and indicates internal
cross-references and citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings.
x Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

 Preface
 About this specification
Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:

• HIGH for active-HIGH signals

• LOW for active-LOW signals

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Lowercase x At the second letter of a signal name denotes a collective term for both Read and Write. For
example, AxCACHE refers to both the ARCACHE and AWCACHE signals.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
Both are written in a monospace font.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. xi
ID061721 Non-Confidential

 Preface
 Additional reading
Additional reading

See Arm Developer, https://developer.arm.com/documentation for access to Arm documentation.

Arm publications
• Arm AMBA Distributed Translation Interface (DTI) Protocol Specification Edition 3 (100225_0000_03)

• Arm® System Memory Management Unit Architecture Specification

SMMU architecture versions 3.0, 3.1 and 3.2 (IHI 0070C)

• AMBA® 4 AXI4-Stream Protocol (IHI 0051A)

Other publications
• PCI Express Base Specification, Revision 5, PCI-SIG

• Compute Express Link Specification, Compute Express LinkTM Consortium, Inc., Revision 1
xii Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

 Preface
 Feedback
Feedback

Arm welcomes feedback on its documentation.

Feedback on this specification

If you have comments on the content of this specification, send email to errata@arm.com. Give:

• The title, AMBA DTI Protocol Specification

• The number, ARM IHI 0088E.b

• The page number(s) that your comments apply

• A concise explanation of your comments

Arm also welcomes general suggestions for additions and improvements.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. xiii
ID061721 Non-Confidential

 Preface
 Feedback
xiv Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 1
Introduction

This chapter introduces the DTI protocol.

It contains the following sections:

• About DTI protocols on page 1-16

• DTI Protocol Specification Terminology on page 1-18
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 1-15
ID061721 Non-Confidential

1 Introduction
1.1 About DTI protocols
1.1 About DTI protocols

This section introduces the AMBA Distributed Translation Interface (DTI) protocols and describes the components
of a DTI-compliant implementation.

The DTI protocol is used by implementations of the Arm® System MMUv3 (SMMUv3) Architecture Specification.
An SMMUv3 implementation that is built using the DTI interface consists of the following components:

• A Translation Control Unit (TCU) that performs translation table walks and implements the SMMUv3
programmers' model.

• At least one Translation Buffer Unit (TBU). The TBU intercepts transactions in need of translation and
translates the addresses of those transactions. The TBU requests translations from the TCU and caches those
translations for use by other transactions. The TCU communicates with the TBU to invalidate cached
translations when necessary.

• A PCI Express (PCIe) Root Port with Address Translation Services (ATS) support. For more information, see
the PCI Express Base Specification. When PCIe ATS functionality is required, this component communicates
directly with the TCU to retrieve ATS translations, and then uses a TBU to:

— Translate transactions that have not already been translated using ATS.

— Perform stage 2 translation for transactions that have been subject to stage 1 translation using ATS.

— Ensure that only trusted PCIe endpoints can issue transactions with ATS translations, by performing
security checks on ATS translated traffic.

• A DTI interconnect that manages the communication between TBUs and the TCU, and between PCIe Root
Ports implementing ATS and the TCU.

This specification specifies two protocols, which have different purposes:

• DTI-TBU protocol defines communication between a TBU and a TCU.

• DTI-ATS protocol defines communication between a PCIe Root Port and a TCU.

These two protocols are collectively termed the DTI protocol. Version 2 of the two protocols (DTIv2) adds to, or
changes some functionality of, Version 1 (DTIv1). When there are differences between versions, the following
conventions are used:

DTI-TBUv1 Describes DTI-TBU version 1

DTI-TBUv2 Describes DTI-TBU version 2

DTI-ATSv1 Describes DTI-ATS version 1

DTI-ATSv2 Describes DTI-ATS version 2

1.1.1 Protocol interaction

The DTI protocol is a point-to-point protocol. Each channel consists of a link between a TBU or PCIe Root Port
implementing ATS, and a TCU.

Components using the SMMU must provide the correct StreamID and SubstreamID. For ATS translated
transactions, a PCIe Root Port must provide additional information.

Figure 1-1 on page 1-17 shows an example SMMU system that implements DTI.
1-16 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

1 Introduction
1.1 About DTI protocols
Figure 1-1 An example SMMU system

Figure 1-1 includes the necessary components of a DTI-compliant implementation. However, DTI connections can
cover large distances across an SoC. Most implementations do not include a standalone SMMU component. DTI
allows an implementation to distribute the functions of the SMMU across the SoC, with TBUs located close to the
devices that require translation.

It is possible for a device to implement its own TBU functionality. This allows the following behavior:

• A device can incorporate advanced or specialized prefetching or translation caching requirements that cannot
be met by a general-purpose TBU design.

• A device that can require a fully coherent connection to the memory interconnect and require very low
latency translation. For fully coherent operations, all caches in the device must be tagged with physical
addresses. This requires that translation is performed before the first level of caching. In such systems, the
translation must be fast and is normally tightly integrated into the design of the device.

1.1.2 Field references

The behavior or values returned by the component sometimes depends on previous messages. Since some message
pairs have the same field names, it is necessary to specify which message has the field (FIELD) being referenced.
Fields from the corresponding message (MSG) are referenced as "MSG.FIELD". Fields from the message are
referenced as FIELD, without the qualifier.

Memory interconnect

Other device

Memory and other devices

TBU TBU

TCU

PCIe Root Port with ATS

Untranslated transactions Untranslated transactions and
ATS translated transactions

DTI

DTI-TBU DTI-TBU

Table walks

Translated
transactions

Translated
transactions

Transactions

DTI interconnect

DTI-ATS

SMMU

Invalidates Configuration
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 1-17
ID061721 Non-Confidential

1 Introduction
1.2 DTI Protocol Specification Terminology
1.2 DTI Protocol Specification Terminology

This document uses the following terms and abbreviations.

ASID

Address Space ID, distinguishing TLB entries for separate address spaces. For example, address
spaces of different PE processes are distinguished by ASID.

ATS

PCI Express term, Address Translation Services, which are provided for remote endpoint TLBs.

Downstream

A direction of information flow where the information is flowing away from the TBU or the Root
Complex.

DTI-ATSv1

Describes characteristics of DTI-ATS version 1 that are different from subsequent versions.

DTI-ATSv2

Describes characteristics of DTI-ATS version 2 that are different from previous versions.

DTI-TBUv1

Describes characteristics of DTI-TBU version 1 that are different than subsequent versions.

DTI-TBUv2

Describes characteristics of DTI-TBU version 2 that are different than previous versions.

E2H

EL2 Host mode. The Virtualization Host Extensions, introduced in the Arm Architecture Reference
Manual, Armv8, for Armv8-A architecture profile issue B, extend the EL2 translation regime
providing ASID-tagged translations.

Endpoint

A PCI Express function, which is used in the context of a device that is a client of the SMMU.

HTTU

Hardware Translation Table Update. The act of updating the Access flag or Dirty state of a page in
a given TTD that is automatically done in hardware on an access or write to the corresponding page.

IMPLEMENTATION DEFINED

Means that the behavior is not architecturally defined, but must be defined and documented by
individual implementations.

IPA

Intermediate Physical Address.

PA

Physical Address.

PASID

PCI Express term: Process Address Space ID, an endpoint-local ID. There might be many distinct
uses of a specific PASID value in a system.

PCI

Peripheral Component Interconnect specification.

PCIe

PCI Express.
1-18 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

1 Introduction
1.2 DTI Protocol Specification Terminology
PCIe Root Complex

A PCIe System Element that includes at least one Host Bridge, Root Port, or Root Complex
Integrated Endpoint.

PCIe RP

A port on a PCIe Root Complex.

PRI

ATS Page Request Interface mechanism.

SMMU

System MMU. Unless otherwise specified, this term is used to mean SMMUv3.

StreamWorld

SMMUv3 translations have a StreamWorld property that denotes the translation regime and is
directly equivalent to an Exception level on a PE.

StreamID

A StreamID uniquely identifies a stream of transactions that can originate from different devices,
but are associated with the same context.

SubstreamID

A SubstreamID might optionally be provided to an SMMU implementing stage 1 translation.

The SubstreamID differentiates streams of traffic originating from the same logical block in order
to associate different application address translations to each.

Upstream

A direction of information flow where the information is flowing towards the TBU or Root
Complex.

VA

Virtual address.

VMID

Virtual Machine ID, distinguishing TLB entries for addresses from separate virtual machines.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 1-19
ID061721 Non-Confidential

1 Introduction
1.2 DTI Protocol Specification Terminology
1-20 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 2
DTI Protocol Overview

This chapter is an overview of the DTI protocol.

It contains the following sections:

• DTI protocol messages on page 2-22

• Managing DTI connections on page 2-26
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 2-21
ID061721 Non-Confidential

2 DTI Protocol Overview
2.1 DTI protocol messages
2.1 DTI protocol messages

This section contains the following subsections:

• Message groups

• Message listing

• Flow control on page 2-25

• Reserved fields on page 2-25

• IMPLEMENTATION DEFINED fields on page 2-25

2.1.1 Message groups

DTI protocol messages are grouped according to function. Table 2-1 shows the DTI message groups.

2.1.2 Message listing

DTI messages are fixed length and have a whole number of bytes in size. The transport medium must preserve the
correct number of bytes for each message.

The four least significant bits of every message are used to encode the message-type.

Some message types include a protocol field. In that case, the message is identified by the combination of its
message-type and protocol field values.

The message-type encodings are defined independently for upstream and downstream messages.

Table 2-1 Message groups of the DTI Protocol

Message group Direction of first message DTI-TBU protocol function DTI-ATS protocol function

Connection and
disconnection

Downstream Establishes or terminates the
connection

Establishes or terminates the
connection

Translation
request

Downstream Retrieves a non-ATS translation

Performs permission checks and
Stage 2 translations, if
necessary, on translations that
have been translated by ATS

Retrieves an ATS translation.

Invalidation and
synchronization

Upstream Invalidates cached translations Invalidates cached ATS
translations

Page request Downstream - Requests that pages are
available using the ATS Page
Request Interface (PRI)
mechanism.

Register access Upstream Provides access to local
IMPLEMENTATION DEFINED
registers

-

2-22 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

2 DTI Protocol Overview
2.1 DTI protocol messages
DTI-TBU protocol downstream messages

The following table shows the downstream messages of the DTI-TBU protocol.

DTI-TBU protocol upstream messages

The following table shows the upstream messages of the DTI-TBU protocol.

Table 2-2 DTI-TBU protocol downstream messages

Message group Message
MST_MSG_TYPE
field encoding

Message length in
bits

Connection and
disconnection.

DTI_TBU_CONDIS_REQ 0x0 32

Translation request. DTI_TBU_TRANS_REQ 0x2 160

Invalidation and
synchronization.

DTI_TBU_INV_ACK 0x4 8

DTI_TBU_SYNC_ACK 0x5 8

Register access. DTI_TBU_REG_WACK 0x6 8

DTI_TBU_REG_RDATA 0x7 64

IMPLEMENTATION
DEFINED.

- 0xE -

- 0xF -

Table 2-3 DTI-TBU protocol upstream messages

Message group Message
SLV_MSG_TYPE
field encoding

Message length in
bits

Connection and
disconnection.

DTI_TBU_CONDIS_ACK 0x0 32

Translation request. DTI_TBU_TRANS_FAULT 0x1 32

DTI_TBU_TRANS_RESP 0x2 160

Invalidation and
synchronization.

DTI_TBU_INV_REQ 0x4 128

DTI_TBU_SYNC_REQ 0x5 8

Register access. DTI_TBU_REG_WRITE 0x6 64

DTI_TBU_REG_READ 0x7 32

IMPLEMENTATION
DEFINED.

- 0xE -

- 0xF -
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 2-23
ID061721 Non-Confidential

2 DTI Protocol Overview
2.1 DTI protocol messages
DTI-ATS protocol downstream messages

The following table shows the downstream messages of the DTI-ATS protocol.

DTI-ATS protocol upstream message

The following table shows the upstream messages of the DTI-ATS protocol.

IMPLEMENTATION DEFINED messages

Messages with bits [3:0] equal to 0xE or 0xF can be used for IMPLEMENTATION DEFINED purposes.

IMPLEMENTATION DEFINED messages must only be exchanged between components that are designed to expect
them when in permitted channel states. See Channel states on page 2-26. The mechanism for discovering this, if
required, is IMPLEMENTATION DEFINED.

Table 2-4 DTI-ATS protocol downstream message

Message group Message
MST_MSG_TYPE
field encoding

Message
length in bits

Connection and
disconnection.

DTI_ATS_CONDIS_REQ 0x0 32

Translation request. DTI_ATS_TRANS_REQ 0x2 160

Invalidation and
synchronization.

DTI_ATS_INV_ACK 0xC 8

DTI_ATS_SYNC_ACK 0xD 8

Page request. DTI_ATS_PAGE_REQ 0x8 128

DTI_ATS_PAGE_RESPACKa

a. DTI-ATSv2 only.

0x9 8

IMPLEMENTATION
DEFINED.

- 0xE -

- 0xF -

Table 2-5 DTI-ATS protocol upstream messages

Message group Message
SLV_MSG_TYPE
field encoding

Message length in
bits

Connection and
disconnection.

DTI_ATS_CONDIS_ACK 0x0 32

Translation request. DTI_ATS_TRANS_FAULT 0x1 32

DTI_ATS_TRANS_RESP 0x2 160

Invalidation and
synchronization.

DTI_ATS_INV_REQ 0xC 128

DTI_ATS_SYNC_REQ 0xD 8

Page request. DTI_ATS_PAGE_ACK 0x8 8

DTI_ATS_PAGE_RESP 0x9 96

IMPLEMENTATION
DEFINED

- 0xE -

- 0xF -
2-24 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

2 DTI Protocol Overview
2.1 DTI protocol messages
2.1.3 Flow control

The DTI protocol uses tokens to provide flow control. The tokens are used to manage the number of messages of
different types that can be outstanding at a point in time.

The DTI protocol uses the following types of tokens:

Translation tokens

Used in translation requests to limit the number of outstanding translation requests.

Invalidation tokens

Used in invalidation and synchronization messages to limit the number of outstanding invalidation
requests.

Request messages consume tokens and response messages return them. If a response message is received over
multiple cycles, then the token is only returned when the complete message has been received.

IDs are used to track some outstanding messages. A new request message cannot reuse an ID until a response
message with that ID is received. If a response message is received over multiple cycles, then the ID can only be
reused when the complete message has been received.

2.1.4 Reserved fields

Reserved fields in messages are described as either Should Be Zero (SBZ) or Should be One (SBO).

The recipient of a message with Reserved fields must ignore these fields. This specification recommends that the
sender drive a Reserved field to 0 if it is described as SBZ, and 1 if it is described as SBO.

2.1.5 IMPLEMENTATION DEFINED fields

Some message fields are defined as being IMPLEMENTATION DEFINED. These fields can be used by implementations
for any defined purpose.

These fields are treated as Reserved by components that do not require them.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 2-25
ID061721 Non-Confidential

2 DTI Protocol Overview
2.2 Managing DTI connections
2.2 Managing DTI connections

This section contains the following subsections:

• Channel states

• Handshaking

• Initialization and disconnection on page 2-29

• Connecting multiple TBUs or PCIe RPs to a TCU on page 2-29

2.2.1 Channel states

The four possible states of a DTI channel are:

DISCONNECTED

The TBU or PCIe RP might be powered down. A TCU must always be able to accept a Connect
Request whenever a TBU or PCIe RP is powered up and able to send one. The method that is used
to meet this requirement is outside the scope of this Specification.

REQ_CONNECT

The TBU or PCIe RP has issued a Connect Request. The TCU must provide a handshaking response
to either establish or reject the connection.

CONNECTED

The channel is connected.

REQ_DISCONNECT

The TBU or PCIe RP has issued a Disconnect Request. The TCU issues a Disconnect Accept in
response.

2.2.2 Handshaking

On power up, the channel is initially in the DISCONNECTED state. Figure 2-1 on page 2-27 shows how the
channel state changes in response to connect and disconnect messages.
2-26 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

2 DTI Protocol Overview
2.2 Managing DTI connections
Figure 2-1 Handshake accept

Alternatively, a Connect Request might be denied, as shown in Figure 2-2 on page 2-28.

DISCONNECTED

REQ_CONNECT

CONNECTED

REQ_DISCONNECT

Connect Accept

Disconnect Request

Disconnect Accept

DISCONNECTED

DISCONNECTED

REQ_CONNECT

CONNECTED

REQ_DISCONNECT

DISCONNECTED

Connect Request

TBU or PCIe RP TCU
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 2-27
ID061721 Non-Confidential

2 DTI Protocol Overview
2.2 Managing DTI connections
Figure 2-2 Handshake deny

A Connect Deny indicates a system failure, for example, due to a badly configured system. Subsequent attempts to
connect are also likely to be denied until there is a system configuration change.

The following table describes the connection or disconnection messages that are permitted in each channel state.

Channel behavior in the REQ_DISCONNECT state

When the channel is in the REQ_DISCONNECT state:

• Any outstanding invalidation or synchronization responses are not returned. All invalidation requests are
considered to be completed when the TBU or PCIe RP enters DISCONNECTED state and invalidates its
caches.

• Outstanding register access responses, DTI_TBU_REG_RDATA or DTI_TBU_REG_WACK, are not
returned.

• Outstanding DTI_ATS_PAGE_RESPACK messages are not returned.

• The TBU or PCIe RP must continue to accept protocol appropriate requests from the TCU. No response is
given to the requests and they can be ignored.

DISCONNECTED

REQ_CONNECT

Connect Deny

DISCONNECTED

DISCONNECTED

REQ_CONNECT

DISCONNECTED

Connect Request

TBU or PCIe RP TCU

Table 2-6 Connection or disconnection messages permitted in each channel state

Channel state
Downstream permitted
messages

Upstream permitted messages

DISCONNECTED Connect Request only None

REQ_CONNECT None Connect Accept or Connect Deny

CONNECTED Any, subject to the protocol rules Any, subject to the protocol rules

REQ_DISCONNECT None Any, subject to the protocol rules
2-28 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

2 DTI Protocol Overview
2.2 Managing DTI connections
2.2.3 Initialization and disconnection

When the TBU enters the DISCONNECTED state, all state information is lost, including cache and register
contents. The TBU must invalidate its caches before entering CONNECTED state. The TCU must reinitialize any
necessary register contents after the connection handshake.

The DTI channel must not be disconnected while ATS is enabled in any PCIe Endpoint. DTI-ATS has no register
messages.

2.2.4 Connecting multiple TBUs or PCIe RPs to a TCU

A DTI channel is a point-to-point link between a single TBU or PCIe RP and a single TCU. If a TCU is connected
to multiple physical TBUs or PCIe RPs using a single interface, then each has its own DTI channel.

Therefore:

• If a TCU is required to send a message to multiple TBUs or PCIe RPs, then it must issue multiple messages.

• Each channel has its own flow control tokens.

• Outstanding message IDs, for example DTI_TBU_TRANS_REQ.TRANSLATION_ID, are specific to a
channel. Multiple channels can have messages outstanding with the same ID at the same time.

• A DTI channel has a single connection state. It cannot be connected as both DTI-TBU and DTI-ATS at the
same time.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 2-29
ID061721 Non-Confidential

2 DTI Protocol Overview
2.2 Managing DTI connections
2-30 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 3
DTI-TBU Messages

This chapter describes the message groups of the DTI-TBU protocol.

It contains the following sections:

• Connection and disconnection message group on page 3-32

• Translation request message group on page 3-36

• Invalidation and synchronization message group on page 3-63

• Register access message group on page 3-75
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-31
ID061721 Non-Confidential

3 DTI-TBU Messages
3.1 Connection and disconnection message group
3.1 Connection and disconnection message group

The DTI-TBU protocol is designed to enable a single TCU to connect to multiple TBUs implementing different
versions of the DTI-TBU. However, SMMUv3.2 requires support for some features that are not supported by
DTI-TBUv1, and the SMMU architecture does not permit some TBUs to support features that other TBUs do not.
Therefore, all TBUs connected to a TCU that implements SMMUv3.2 must support DTI-TBUv2.

This section contains the following subsections:

• DTI_TBU_CONDIS_REQ

• DTI_TBU_CONDIS_ACK on page 3-34

3.1.1 DTI_TBU_CONDIS_REQ

The DTI_TBU_CONDIS_REQ message is used to initiate a connection or disconnection handshake.

Description

Connection state change request

Source

TBU

Usage constraints

The TBU can only send a disconnect request when:

• The channel is in the CONNECTED state.

• There are no outstanding translation requests.

• The conditions for completing any future invalidation and synchronization are met. In
practice, the result is that all downstream transactions must be complete.

The TBU can only send a connect request when the channel is in the DISCONNECTED state.

Flow control result

None

Field descriptions

The DTI_TBU_CONDIS_REQ bit assignments are:

TOK_TRANS_REQ[7:4], bits [31:28]

TOK_TRANS_REQ[7:0] is bits [19:12].

The size of this field is dependent on the version of the DTI protocol being used.

DTI-TBUv1

TOK_TRANS_REQ[7:0] is bits [19:12].

Bits [31:28] are Reserved, SBZ.

DTI-TBUv2

TOK_TRANS_REQ[7:0] is bits [19:12].

TOK_TRANS_REQ[11:8] is bits [31:28].

The meaning of this field depends on the value of the STATE field.

STATE = 0

This field indicates the number of translation tokens returned.

7 6 5 4 3 2 1 0 LSB

IMP DEF

Reserved

MST_MSG_TYPE

24
16
8
0

TOK_INV_GNT
TOK_TRANS_REQ[3:0] VERSION
Reserved PROTOCOL STATE

SUP_REG
TOK_TRANS_REQ[7:4]

TOK_TRANS_REQ[11:8]
3-32 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.1 Connection and disconnection message group
The number of translation tokens returned is equal to the value of this field
plus one.

This field must be the value of TOK_TRANS_GNT that was received in the
DTI_TBU_CONDIS_ACK message that acknowledged the connection of
the channel.

STATE = 1

This field indicates the number of translation tokens requested.

The number of translation tokens requested is equal to the value of this field
plus one.

Bits [27:25]

Reserved, SBZ.

SUP_REG, bits [24]

This field indicates when register accesses are supported.

0 Register accesses are not supported.

1 Register accesses are supported.

When STATE is 1 and the value of this bit is 0, the TCU must not issue DTI_TBU
register access messages on this channel.

When STATE is 0, this field is ignored.

TOK_INV_GNT, bits [23:20]

This field indicates the number of invalidation tokens granted.

The number of invalidation tokens granted is equal to the value of this field plus one.

This field is ignored when the STATE field has a value of 0.

TOK_TRANS_REQ[7:0], bits [19:12]

See TOK_TRANS_REQ[7:4], bits [31:28],

VERSION, bits [11:8]

This field identifies the requested protocol version.

0b0000 DTI-TBUv1

0b0001 DTI-TBUv2

All other encodings are Reserved.

A TBU can request any protocol version it supports. A DTI-TBU TCU must process
requests for all protocol versions, including those not yet defined. The
DTI_TBU_CONDIS_ACK message indicates the protocol version to use.

IMPLEMENTATION DEFINED, bit [7]

IMPLEMENTATION DEFINED.

Bit [6]

Reserved, SBZ.

PROTOCOL, bit [5]

This bit identifies the protocol that is used by this TBU.

0 DTI-TBU

This bit must be 0.

STATE, bit [4]

This bit identifies the new channel state requested.

0 Disconnect request

1 Connect request

A Disconnect request can only be issued when the channel is in the CONNECTED state.

A Connect request can only be issued when the channel is in the DISCONNECTED
state.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-33
ID061721 Non-Confidential

3 DTI-TBU Messages
3.1 Connection and disconnection message group
MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-23.

0b0000 DTI_TBU_CONDIS_REQ

3.1.2 DTI_TBU_CONDIS_ACK

The DTI_TBU_CONDIS_ACK message is used to accept or deny a request as part of the connection or
disconnection handshake process.

Description

A connection state change acknowledgment

Source

TCU

Usage constraints

The TBU must have previously issued an unacknowledged DTI_TBU_CONDIS_REQ message.

Flow control result

None.

Field descriptions

The DTI_TBU_CONDIS_ACK bit assignments are:

TOK_TRANS_GNT[11:8], bits [31:28]

TOK_TRANS_GNT[7:0] is bits [19:12].

The size of this field is dependent on the version of the DTI protocol being used.

DTI-TBUv1

TOK_TRANS_REQ[7:0] is bits [19:12].

Bits [31:28] are Reserved, SBZ.

DTI-TBUv2

TOK_TRANS_REQ[7:0] is bits [19:12].

TOK_TRANS_REQ[11:8] is bits [31:28].

This field indicates the number of pre-allocated tokens for translation requests that have
been granted.

The number of translation tokens granted is equal to the value of this field plus one.

The value of this field must not be greater than the value of the TOK_TRANS_REQ
field in the DTI_TBU_CONDIS_REQ message.

When the value of STATE is 0, this field is ignored.

Bits [27:25]

Reserved, SBZ.

IMP DEF Reserved

24
16
8
0

7 6 5 4 3 2 1 0 LSB
TOK_TRANS_GNT[11:8]

TOK_TRANS_GNT[3:0] VERSION
SLV_MSG_TYPESTATE

TOK_TRANS_GNT[7:4]OAS[2:0] Reserved
OAS[3]Reserved
3-34 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.1 Connection and disconnection message group
OAS, bits [24:21]

This indicates the output address size, which is the maximum address size permitted for
translated addresses.

0b0000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are Reserved.

Bit [20]

Reserved, SBZ.

TOK_TRANS_GNT[7:0], bits [19:12]

See TOK_TRANS_GNT[7:4], bits [31:28]

VERSION, bits [11:8]

The protocol version that is granted by the TCU.

0b0000 DTI-TBUv1

0b0001 DTI-TBUv2

The value of this field must not be greater than the value of the VERSION field in the
DTI_TBU_CONDIS_REQ Connect Request message.

IMPLEMENTATION DEFINED, bit [7]

IMPLEMENTATION DEFINED.

Bits [6:5]

Reserved, SBZ.

STATE, bit [4]

Identifies the new state. The possible values of this bit are:

0 DISCONNECTED

1 CONNECTED

When the value of STATE in the unacknowledged DTI_TBU_CONDIS_REQ message
is 0, the value of this bit must be 0.

When the value of STATE in the unacknowledged DTI_TBU_CONDIS_ REQ message
is 1, this field can be 0 or 1.

For example, it can be 0 if there are no translation tokens available. This normally
indicates a serious system configuration failure.

SLV_MSG_TYPE, bits [3:0]

Identifies the message type. The value of this field is taken from the list of encodings
for upstream messages, see DTI-TBU protocol upstream messages on page 2-23.

0b0000 DTI_TBU_CONDIS_ACK
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-35
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
3.2 Translation request message group

The DTI-TBU translation request messages enable the TBU to find the translation for a given transaction, or
prefetch a translation. The TCU responds with either a successful translation or a fault.

This section contains the following subsections:

• DTI_TBU_TRANS_REQ

• DTI_TBU_TRANS_RESP on page 3-39

• DTI_TBU_TRANS_FAULT on page 3-51

• Faulting expressions of the translation request message on page 3-54

• Calculating transaction attributes on page 3-54

• Speculative transactions and translations on page 3-61

3.2.1 DTI_TBU_TRANS_REQ

The DTI_TBU_TRANS_REQ message is used to initiate a translation request.

Description

A translation request

Source

TBU

Usage constraints

The TBU must have at least one translation token.

Flow control result

The TBU consumes a translation token.

Field descriptions

The DTI_TBU_TRANS_REQ bit assignments are:

IA, bits [159:96]

This field holds the input address, IA[63:0], to be used in the translation.

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0QOS MST_MSG_TYPE

TRANSLATION_ID[7: 0]
PERM[1] SSV PnUFLOW[0] SEC_SID PERM[0] InD PROTOCOL

Reserved

NS

SID

IMP DEFSSID[3:0]

SSID[19:4]

IA

TRANSLATION_ID[11:8] Reserved

FLOW[1]
3-36 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
SSID, bits [95:76]

This field indicates the SubstreamID value that is used for the translation.

When the value of SSV is 0, this field is Reserved, SBZ.

IMPLEMENTATION DEFINED, bit [75:72]

IMPLEMENTATION DEFINED.

FLOW[1], bit [71]

FLOW[0] is bit [22].

This field indicates the translation flow required.

0b00 Stall

If enabled, the SMMU stall fault flow can be used for this request.

A translation request can only be stalled by the TCU if FLOW=Stall.

Selecting FLOW=Stall does not cause a stall to occur. A stall only occurs if
software enables stall faulting for the translation context.

0b01 ATST

The transaction has been translated by ATS.

When this field has a value of 1, it indicates that this transaction was the
result of a previous ATS translation request made using DTI-ATS.

DTI-TBUv2

• PnU field must be 0

• InD field must be 0

0b10 NoStall

DTI-TBUv1

Reserved.

DTI-TBUv2

If a translation fault occurs, then even if the SMMU has enabled
stall faulting for this translation context, a fault response is
returned without dependence on software activity.

0b11 PRI

DTI-TBUv1

Reserved.

DTI-TBUv2

If a translation fault occurs, a fault response is returned
indicating that a PRI request might resolve the fault.
Architecturally, the request is treated as an ATS request and
translation faults do not result in an event record. This option is
for use by PCIe enumerated endpoints.

PRI requests must be sent using a DTI-ATS connection. There
is no mechanism to issue a PRI request from a DTI-TBU
connection.

Note
If FLOW=PRI and PERM=SPEC, then translation faults are reported as
NonAbort. For more information, see FAULT_TYPE field in
DTI_TBU_TRANS_FAULT on page 3-51.

Bits [70:64]

Reserved, SBZ.

SID, bits [63:32]

This field indicates the StreamID value that is used for the translation.

TRANSLATION_ID[11:8], bits [31:28]

TRANSLATION_ID[7:0] is bits [15:8].
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-37
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
This field gives the identification number of this translation.

The value of this field must not be in use by any translation request that has not yet
received a DTI_TBU_TRANS_RESP or DTI_TBU_TRANS_FAULT response.

DTI-TBUv1

Any 8-bit translation ID in TRANSLATION_ID[7:0], bits [15:8], can be
used if the maximum number of outstanding translation requests is not
exceeded.

TRANSLATION_ID[11:8] is Reserved, SBZ.

DTI-TBUv2

Any 12-bit translation ID can be used, if the maximum number of
outstanding translation requests is not exceeded.

Bits [27:25]

Reserved, SBZ.

NS, bit [24]

This bit indicates the security level of the transaction.

0 Secure

1 Non-secure

Must be 1 if SEC_SID = 0.

PERM[1], bit [23]

PERM[1] and PERM[0] indicate permissions a translation request requires to avoid
causing a permission fault.

The encoding of PERM[1:0] is:

0b00 W: Write permission required.

0b01 R: Read permission required.

0b11 SPEC: Neither permission required. The translation request is speculative
and cannot cause a permission fault.

0b10 RW: Read and write permission required.

Note
Between Edition 1 and Edition 2, the SPECULATIVE and RnW fields have been
combined to create the PERM field. The only behavioral change is that the combined
field supports a new RW encoding.

FLOW[0], bit [22]

See FLOW[1], bit [71].

SSV, bit [21]

This bit indicates whether a valid SSID field is associated with this translation.

0 The SSID field is not valid.

1 The SSID field is valid.

When the value of FLOW is ATST, this bit must be 0.

SEC_SID, bit [20]

This bit indicates whether the StreamID is Secure.

0 Non-secure StreamID

1 Secure StreamID

When the value of FLOW is ATST, this bit must be 0.

PERM[0], bit [19]

See PERM[1], bit [23].
3-38 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
InD, bit [18]

This bit indicates whether the transaction is an instruction access or data access.

0 Data access

1 Instruction access

When the value of PERM[1:0] is W, RW or SPEC, this bit must be 0.

DTI-TBUv2

 When FLOW is ATST, this bit must be 0.

PnU, bit [17]

This bit indicates whether this transaction represents privileged or unprivileged access.

0 Unprivileged

1 Privileged

When the value of PERM[1:0] is SPEC, this bit must be 0.

DTI-TBUv2

 When FLOW is ATST, this bit must be 0.

PROTOCOL, bit [16]

This bit indicates the protocol that is used for this message.

0 DTI-TBU

This bit must be 0.

TRANSLATION_ID[7:0], bits [15:8]

See TRANSLATION_ID[15:8], bits [31:28].

QOS, bits [7:4]

This field indicates the Quality of Service priority level.

Translation requests with a high QOS value are likely to be responded to before the
requests with a lower QOS value.

This field is a hint.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-23.

0b0010 DTI_TBU_TRANS_REQ

3.2.2 DTI_TBU_TRANS_RESP

The DTI_TBU_TRANS_RESP message is used to respond to a successful translation request.

The TCU can only return this message when permission is granted for the transaction that is described in the
translation request. If permission is not granted, a DTI_TBU_TRANS_FAULT response must be issued. For more
information, see Faulting expressions of the translation request message on page 3-54.

Description

A DTI translation response

Source

TCU

Usage constraints

The TBU must have previously issued a translation request that has not yet generated either a
translation response or a fault message.

Flow control result

The TCU returns a translation token to the TBU.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-39
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Field descriptions

The DTI_TBU_TRANS_RESP bit assignments are:

IMPLEMENTATION DEFINED, bits [159:156]

IMPLEMENTATION DEFINED.

CTXTATTR/PARTID[3:0], bits [155:152]

DTI-TBUv1

IMPLEMENTATION DEFINED attributes for the translation context.

DTI-TBUv2

MPAM PARTID[3:0]

PARTID[7:4], bits [151:148]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

 MPAM PARTID[7:4].

OA, bits [147:108]

This field holds the output address, OA[51:12], of the translated address.

DTI-TBUv1

This address must be the first byte in a region of size that is given by the
TRANS_RNG field. For example, if the value of TRANS_RNG is 2, then
OA[15:12] must be zero.

When the value of BYPASS is 1, this field is Reserved, SBZ.

DTI-TBUv2

Bits within the range given by TRANS_RNG must match
DTI_TBU_TRANS_REQ.IA.

For example, if the value of TRANS_RNG is 2, then OA[15:12] must match
DTI_TBU_TRANS_REQ.IA[15:12].

When the value of BYPASS is 1, this field must equal the value of IA in the
translation request.

The address in this field must be within the range indicated by the OAS field of the
DTI_TBU_CONDIS_ACK message received during the connection sequence.

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32

24
16
8
0

IMP DEF

S1HWATTR or Reserved
INVAL_RNG TRANS_RNG

OA[51:48]

S2HWATTR or HWATTR

TRANSLATION_ID[3:0]

OA[15:12] SH

OA[47:16]

ASID or ATTR_OVR

VMID

ATTR

SLV_MSG_TYPE
TRANSLATION_ID[7:4]

ALLOCCFG

CONT[2:0]
PRIVCFG STRW or BP_TYPE

INSTCFG
DCP

ALLOW_URALLOW_UXALLOW_PX or
ALLOW_NSXNS

DRE
COMB

GLOBAL

DO_NOT_CACHE

ALLOW_UWALLOW_PW ALLOW_PRTBI

ASET or NSOVR

BYPASS CONT[3]

MPAMNS

CTXTATTR or PARTID[3:0]
PARTID[7:4]

PARTID[8] PMG

TRANSLATION_ID[11:8] COMB_SHCOMB_ALLOC
3-40 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
PARTID[8], bit [107]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

MPAM PARTID[8]

PMG, bit [106]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

MPAM PMG

SH, bits [105:104]

This field indicates the shareability of the translation.

0b00 Non-shareable

0b01 Reserved

0b10 Outer-shareable

0b11 Inner-shareable

Note
This value represents the Shareability attribute that is stored in the translation tables. In
some cases, the resulting Shareability of the translation might be different from the
value that is shown here. For more information, see Consistency check on combination
of translation attributes on page 3-61.

When the value of BYPASS is 1, this field is Reserved, SBZ.

ATTR, bits [103:96]

This field indicates the translation attributes.

Bits [103:100] are encoded as:

0b0000 Device memory. See encoding of bits [99:96] for the device memory type.

0b00RW When RW is not 00, this field is Normal Memory, Outer Write-through
transient.

0b0100 Normal Memory, Outer Non-Cacheable.

0b01RW When RW is not 00 this field is Normal Memory, Outer Write-back
transient.

0b10RW Normal Memory, Outer Write-through non-transient.

0b11RW Normal Memory, Outer Write-back non-transient.

Where R is the Outer Read Allocate Policy and W is the Outer Write Allocate Policy.

The meaning of bits [99:96] depends on the value of bits [103:100]:

Table 3-1 ATTR encoding bits [103:100]

Bits [99:96] When [103:100] is 0b0000 When [103:100] is not 0b0000

0b0000 Device-nGnRnE memory Reserved

0b00RW, RW is not 0b00 Reserved Normal Memory, Inner Write-through transient

0b0100 Device-nGnRE memory Normal memory, Inner Non-cacheable

0b01RW, RW is not 0b00 Reserved Normal Memory, Inner Write-back transient

0b1000 Device-nGRE memory Normal Memory, Inner Write-through
non-transient (RW=00)
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-41
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Where R is the Inner Read Allocate Policy and W is the Inner Write Allocate Policy.

The R and W bits have the following encoding:

0 Do not allocate

1 Allocate

When the value of BYPASS is 1, this field is Reserved, SBZ.

S2HWATTR/HWATTR, bits [95:92]

This field gives IMPLEMENTATION DEFINED hardware attributes from the translation
tables. These are otherwise known as Page-Based Hardware Attributes (PBHA).

Bits that are not enabled for use by hardware must be 0.

If a TCU does not support this feature, it can return 0 for this field.

DTI-TBUv1

This field S2HWATTR gives the IMPLEMENTATION DEFINED stage 2
hardware attributes.

The value of this field must be 0 if either of the following conditions are
true:

• The value of BYPASS is 1.

• The value of BYPASS is 0 and at least one of the following is true:

— The value of SEC_SID is 1.

— The value of STRW is either EL2 or EL3.

DTI-TBUv2

HWATTR gives the IMPLEMENTATION DEFINED combined stage 1 and
stage 2 hardware attributes.

S1HWATTR, bits [91:88]

DTI_DTI-TBUv1

This field gives the IMPLEMENTATION DEFINED stage 1 hardware
attributes.

These attributes are provided in the stage 1 translation tables for
IMPLEMENTATION DEFINED purposes.

Bits that are not enabled for use by hardware use must be 0.

If a TCU does not support this feature, it can return 0 for this field.

The value of this field must be 0 if either of the following conditions are
true:

• The value of BYPASS is 1.

• The value of BYPASS is 0 and value of STRW is EL1-S2.

DTI-TBUv2

Reserved, SBZ.

0b10RW, RW is not 0b00 Reserved Normal Memory, Inner Write-through
non-transient

0b1100 Device-GRE memory Normal Memory, Inner Write-back
non-transient (RW=00)

0b11RW, RW is not 0b00 Reserved Normal Memory, Inner Write-back
non-transient

Table 3-1 ATTR encoding bits [103:100] (continued)

Bits [99:96] When [103:100] is 0b0000 When [103:100] is not 0b0000
3-42 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
INVAL_RNG, bits [87:84]

This field indicates the range of addresses for invalidation.

0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

0b1000 4TB

All other values are Reserved.

The value of this field might be different from the value of the TRANS_RNG field in
either of the following cases:

• When two stage translation is used, and the range of the stage 1 translation is
larger than the range of the stage 2 translation range. In this case, this field
represents the stage 1 translation range and TRANS_RNG represents the stage 2
translation range.

• When the CONT bit is set in a translation table entry. The CONT bit increases
the address range of the translation but is not required to affect the address range
that is used by invalidations.

If an invalidation request is received, this translation must be invalidated when both of
the following conditions exist:

• The properties of this transaction match the invalidation request properties.

• The address to be invalidated falls inside the range that is specified by this field.

When the value of the BYPASS field is 1, this field is Reserved, SBZ.

DTI-TBUv1

The range given by this field must not be greater than the size indicated by
the OAS field of the DTI_TBU_CONDIS_ACK message.

For example, if the OAS is 4GB, this field must indicate a range of 1GB or
less.

This field must not indicate a size of 4TB unless the OAS field of the
DTI_TBU_CONDIS_ACK message received during the connection
sequence indicates a size of 52 bits.

DTI_DTI-TBUv2

This field is not restricted by the size indicated by the OAS field of the
DTI_TBU_CONDIS_ACK message received during the connection
sequence.

TRANS_RNG, bits [83:80]

The meaning of this field depends on the value of the BYPASS field.

BYPASS==0

This field indicates the aligned range of addresses that this translation is
valid for:

0b0000 4 KB

0b0001 16 KB

0b0010 64 KB

0b0011 2 MB

0b0100 32 MB

0b0101 512 MB

0b0110 1GB

0b0111 16 GB

0b1000 4 TB

All other values are Reserved.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-43
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Previous editions of this specification listed an encoding for 128 TB. This
encoding option was removed, since is not supported in the Arm
architecture.

DTI-TBUv1

This field must not be greater than the size indicated by the OAS
field of the DTI_TBU_CONDIS_ACK message received
during the connection sequence.

For example, if the value of the OAS field is 4GB, this field
must indicate a range of 1GB or less.

This field must not indicate a size of 4TB, unless the OAS field
of the DTI_TBU_CONDIS_ACK message received during the
connection sequence indicates a size of 52 bits.

DTI-TBUv2

This field is not restricted by the size indicated by the OAS field
of the DTI_TBU_CONDIS_ACK message received during the
connection sequence.

BYPASS==1

This field indicates the maximum output address size of the system:

0b0000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are Reserved.

This information is also given in the OAS field of the
DTI_TBU_CONDIS_ACK message and uses the same encodings. When
BYPASS=1, this field must match DTI_TBU_CONDIS_ACK.OAS.

If the TBU encounters a transaction with an IA outside of the range
indicated in this field, then it cannot be translated with this translation. In
this case, a new translation request must be made, so that software can be
notified about the fault, if necessary.

The maximum output address size is a static property of the system. If this
is not the first DTI_TBU_TRANS_RESP message when BYPASS is 1 since
the link was connected, TRANS_RNG must have the same value as the
previous DTI_TBU_TRANS_RESP message where BYPASS is 1.

This field must show a range large enough to contain the IA of the
transaction. For example, if
DTI_TBU_TRANS_REQ.IA=0x0000_0001_0000_0000 or greater, this
field cannot show a range of 32 bits (4GB).

COMB_ALLOC, bit [75]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

This field indicates how the translation allocation hints should be handled:

0 The allocation hints in the ATTR field override the transaction
attributes.

1 The allocation hints in the ATTR field are combined with the
transaction attributes.

When BYPASS is 0 and STRW is EL1_S2, COMB_ALLOC must be 1

When BYPASS is 1, COMB_ALLOC is Reserved, SBZ.

For more information, see Calculating transaction attributes on page 3-54.
3-44 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
COMB_SH, bit [74]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

This field indicates how the translation Shareability should be handled:

0 The Shareability in the SH field overrides the transaction
attributes.

1 The Shareability in the SH field is combined with the
transaction attributes.

When BYPASS is 0 and STRW is EL1, EL2 or EL3, COMB_SH must be 0.

When BYPASS is 0 and STRW is EL1_S2, COMB_SH must be 1.

When BYPASS is 1, COMB_SH is Reserved, SBZ.

For more information, see Calculating transaction attributes on page 3-54.

MPAMNS, bit [73]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

MPAM MPAMNS value.

If DTI_TBU_TRANS_REQ.SEC_SID=0, MPAMNS must be 1.

GLOBAL, bit [72]

This bit indicates that this result is valid for any ASID.

0 Non-global

1 Global

This bit might be 1 for either of the following reasons:

• The stage 1 translation table global attribute is set.

• Stage 1 translation is disabled or not supported.

When the value of STRW is EL3, this bit must be 1.

When the value of BYPASS is 1, this bit is Reserved, SBZ.

TBI, bit [71]

This bit indicates whether this translation applies to future transactions where the top
byte of the input address is different.

0 Subsequent transactions can only use this translation if IA[63:56] matches.

1 Subsequent transactions can use this translation regardless of the value of
IA[63:56].

When the value of BYPASS is 1, this bit is Reserved, SBZ.

NS, bit [70]

This bit indicates the security status to be used for downstream transactions.

0 Secure

1 Non-secure

When the value of FLOW is ATST in the translation request, this bit must be 1.

When the value of SEC_SID in the translation request is 0, this bit must be 1.

DTI-TBUv1

When the value of BYPASS is 1 and the value of NSOVR is 0, this bit is
Reserved, SBO. In this case, the downstream security status matches the
upstream security status.

DTI-TBUv2

NS always contains the NS bit of the translated transaction.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-45
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
When DTI_TBU_TRANS_REQ.SEC_SID = 1 and BYPASS = 1:

• When NSCFG = Use incoming, NS must equal
DTI_TBU_TRANS_REQ.NS.

• When NSCFG = Secure, NS must be 0.

• When NSCFG = Non-secure, NS must be 1.

ALLOW_PX, bit [69] when BYPASS=0

This bit indicates permissions for privileged instruction reads.

0 Not permitted

1 Permitted

ALLOW_NSX, bit [69] when BYPASS=1

This bit indicates permissions for Non-secure instruction reads.

0 Not permitted

1 Permitted

Data accesses and Secure instruction reads are always permitted when the value of
BYPASS is 1.

This bit is related to the Secure Instruction Fetch (SIF) setting in the SMMU.

When the value of SEC_SID in the translation request message is 0, this field is
Reserved, SBZ.

ALLOW_PW, bit [68]

This bit indicates permissions for privileged data write accesses.

0 Not permitted

1 Permitted

When BYPASS is 1, this field is Reserved, SBZ.

ALLOW_PR, bit [67]

This bit indicates permissions for privileged data read accesses.

0 Not permitted

1 Permitted

When BYPASS is 1, this field is Reserved, SBZ.

ALLOW_UX, bit [66]

This bit indicates permissions for unprivileged instruction reads.

0 Not permitted

1 Permitted

When the value of STRW is EL3, this bit must be equal to the value of ALLOW_PX.

When BYPASS is 1, this field is Reserved, SBZ.

ALLOW_UW, bit [65]

This bit indicates permissions for unprivileged data write accesses.

0 Not permitted

1 Permitted

When the value of STRW is EL3, this bit must be equal to the value of ALLOW_PW.

When BYPASS is 1, this field is Reserved, SBZ.

ALLOW_UR, bit [64]

This bit indicates permissions for unprivileged data read accesses.

0 Not permitted

1 Permitted

When the value of STRW is EL3, this bit must be equal to the value of ALLOW_PR.

When BYPASS is 1, this field is Reserved, SBZ.

ASID/ATTR_OVR, bits [63:48]

This field is ASID when the value of BYPASS is 0, and the value of STRW is not
EL1-S2.
3-46 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
Note
When the ASID field is valid, stage 1 translation is enabled, which overrides the
incoming attributes. Therefore, the ATTR_OVR field is unnecessary when the ASID
field is valid.

This field is ATTR_OVR when either of the following conditions are met:

• The value of BYPASS is 1.

• The value of BYPASS is 0, and the value of STRW is EL1-S2.

ASID

This field holds the ASID to be used for stage 1 translation.

When the value of STRW is EL3, this field must be 0.

ATTR_OVR

This field is used to override the incoming attributes.

When the value of FLOW is ATST in the DTI_TBU_TRANS_REQ
message, this field must be 0x0020. The effect of this encoding is to cause
the incoming attributes to be used, as stage 1 translation has already been
performed.

This field might be combined with the ATTR and SH field to give different
values for the attributes of this translation. For more information about this
and the subfields of this field, see Calculating transaction attributes on
page 3-54.

When the value of MTCFG is 0, the MemAttr component of this field is
ignored.

VMID, bits [47:32]

This field indicates the VMID value that is used for the translation.

DTI-TBUv1

This field must be 0 when BYPASS is 0 the value of SEC_SID in the
translation request is 1.

When BYPASS is 0 and the value of STRW is either EL2 or EL3, this field must be 0.

When BYPASS is 1, this field is Reserved, SBZ.

ALLOCCFG, bits [31:28]

This field indicates the override for the allocation hints of incoming transactions.

For the encoding and the effects of this field Calculating transaction attributes on
page 3-54.

COMB_MT, bit [27]

DTI-TBUv1

Reserved, SBZ.

DTI-TBUv2

This field indicates how the translation memory type and Cacheability
should be handled:

0 The memory type and Cacheability in the ATTR field override
the transaction attributes.

1 The memory type and Cacheability in the ATTR field are
combined with the transaction attributes.

When BYPASS is 1, COMB_MT is Reserved, SBZ.

When BYPASS is 0 and STRW is EL1, EL2 or EL3, COMB_MT must be 0.

For more information, see Calculating transaction attributes on page 3-54.

ASET, bit [26] when BYPASS = 0

This bit indicates the shareability of the ASID set.

0 Shared set

1 Non-shared set
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-47
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Note
This field is still valid when the ASID value is not valid.

NSOVR, bit [26] when BYPASS = 1

This bit indicates the Non-secure bit override.

0 Use the upstream NS value.

1 Override using the value of the NS bit in this message.

When the value of SEC_SID is 0, this value of this field must be 1.

DTI-TBUv2

The NSOVR bit can be ignored by DTI-TBUv2 devices, since its value can
be derived from other fields. The following rules are added for DTI-TBUv2
when DTI_TBU_TRANS_REQ.SEC_SID = 1 and BYPASS = 1:

• When NSCFG = Use incoming, NSOVR must be 0.

• When NSCFG = Secure or Non-secure, NSOVR must be 1.

INSTCFG, bits [25:24]

This field is used to override the incoming InD values for the transaction.

0b00 Use incoming

0b01 Reserved

0b10 Data

0b11 Instruction

This field only applies to incoming reads. The overridden value is used for the
permission check and downstream transaction.

PRIVCFG, bits [23:22]

This field is used to override the incoming PnU values for the transaction.

0b00 Use incoming

0b01 Reserved

0b10 Unprivileged

0b11 Privileged

The overridden value is used for the permission check and downstream transaction.

DCP, bit [21]

This bit indicates whether directed cache prefetch hints are permitted.

0 Not permitted

1 Permitted

A directed cache prefetch hint is an operation that changes the cache allocation in a part
of the cache hierarchy that is not on the direct path to memory. For example, the
AMBA 5 WriteUniquePtlStash, WriteUniqueFullStash, StashOnceShared, and
StashOnceUnique transactions all perform a directed cache prefetch hint operation.

A directed cache prefetch without write data is permitted if the value of this bit is 1, and
any of read, write, or execute permissions are given by the appropriate fields in this
message at the appropriate privilege level. A directed cache prefetch with write data is
permitted if the value of this bit is 1, and write permission is given by the appropriate
fields in this message at the appropriate privilege level.

If directed cache prefetch hints are not permitted, directed cache prefetch hints are
stripped from the transaction being translated. A directed cache prefetch with write data
is converted into an ordinary write, and a directed cache prefetch without write data is
terminated with a response indicating successful completion of the transaction. There is
no communication with the TCU to indicate that this conversion has occurred.

When the value of BYPASS is 1, this field is Reserved, SBZ, and directed cache
prefetches are permitted.
3-48 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
DRE, bit [20]

This bit indicates whether destructive reads are permitted.

0 Not permitted

1 Permitted

A destructive read is permitted if the value of this bit is 1, and read and write permission
is given by the appropriate fields in this message at the appropriate privilege level.

Note
As there is no concept of an instruction write, destructive instruction reads are never
permitted.

If a destructive read is not permitted, and reads are permitted, then the read must be
converted into a non-destructive read. For example, a MakeInvalid transaction must be
converted into a CleanInvalid transaction and a ReadOnceMakeInvalid transaction must
be converted into a ReadOnceCleanInvalid transaction. There is no communication
with the TCU to indicate that this conversion has occurred.

When the value of BYPASS is 1, this field is Reserved, SBZ, and destructive reads are
permitted.

STRW, bits [19:18] when BYPASS=0

These bits indicate the SMMU StreamWorld, which is the Exception level that is used
by the translation context.

0b00 EL1

0b01 EL1-S2

0b10 EL2

0b11 EL3

The permitted encodings of this field depend on the values of the SEC_SID and FLOW
fields in the translation request:

• When the value of SEC_SID is 0, this field is not permitted to be EL3

• When the value of SEC_SID is 1:

DTI-TBUv1

This field must be EL1 or EL3.

DTI-TBUv2

This field is permitted to be any value.

• When the value of FLOW is ATST, this field must be EL1-S2.

• When the value of SSV is 1, this field must not be EL1-S2.

BP_TYPE, bits [19:18] when BYPASS=1

These bits indicate the scope of this translation.

0b00 Reserved

0b01 GlobalBypass

0b10 StreamBypassNoSSV

0b11 Reserved

Table 3-2 shows the fields of the translation request that must match for this translation
to apply to future transactions.

If SSV = 1 in the translation request. this field must not be StreamBypassNoSSV.

Table 3-2 Matching field values for future transactions

BP_TYPE SEC_SID
FLOW ==
ATST

SID SSV SSID

GlobalBypass Yes Yes No No No

StreamBypassNoSSV Yes Yes Yes Yes (always 0) -
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-49
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
The GlobalBypass encoding might be used when either:

• A translation is requested when the value of SMMUEN in the SMMU is LOW
for the corresponding security level.

• A translation is requested with FLOW set to ATST and with the ATSCHK bit of
the SMMU set to clear.

BYPASS, bit [17]

This field indicates whether translation is bypassed.

0 Normal translation

1 Translation bypassed

When the value of this field is 1, the VA and the PA of the translation are the same.

This bit must be 0 if the value of IA in the translation request is greater than the range
shown in the OAS field of the DTI_TBU_CONDIS_ACK message that was received
during the connection sequence.

When DTI_TBU_TRANS_REQ.SEC_SID is 1 and BYPASS is 0:

CONT, bits [16:13]

This field indicates the number of contiguous StreamIDs that the result of this
transaction applies to.

This field is encoded to give the span of the contiguous block as 2CONT StreamIDs. The
block must start at a StreamID for which the bits SID[CONT-1:0] are 0.

When this field is non-zero, SID[CONT-1:0] in the translation request can be ignored
when determining whether this translation matches future transactions.

If the value of the BYPASS bit is 1 and the BP_TYPE is GlobalBypass, this field is
Reserved, SBZ.

DO_NOT_CACHE, bit [12]

This bit indicates to the TBU when not to cache a translation.

0 The translation has not been invalidated before this message was sent.

1 The translation might have been invalidated before this message was sent.
Any transactions using this translation must be completed before the next
invalidation synchronization operation is completed.

Note
A TBU can use this field to simplify invalidation, by not caching any translations that
have a value of 1 for this field.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-23.

0b0010 DTI_TBU_TRANS_RESP

Determination of IPA space

In DTI-TBUv2, the TBU uses DTI_TBU_TRANS_REQ.NS and NSCFG to determine whether the translation is for
a secure IPA or Non-secure IPA.
3-50 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
Table 3-3 shows the information required for future TLB lookups and invalidation operations and forms part of the
TLB tag information.

In DTI-TBUv2, TLB entries match based on the value of NS after being overridden by
TRANS_RESP.ATTR_OVR.NSCFG, if appropriate. For example, a TLB entry created from a translation with
TRANS_RESP.BYPASS = 1 can match subsequent transactions with any value of NS, provided that
TRANS_RESP.ATTR_OVR.NSCFG is applied to the incoming transaction NS value to determine the translated
NS value.

3.2.3 DTI_TBU_TRANS_FAULT

The DTI_TBU_TRANS_FAULT message is used to provide a fault response to a translation request.

Description

A translation fault response.

Source

TCU

Usage constraints

The TBU must have previously issued a translation request that has not yet generated either a
translation response or a fault message.

This message must be used in the case of a translation request that has failed a permission check.

Flow control result

The TCU returns a translation token to the TBU.

Field descriptions

The DTI_TBU_TRANS_FAULT bit assignments are:

TRANSLATION_ID[11:8], bits [31:28]

TRANSLATION_ID[7:0] is bits [11:4].

This field gives the identification number for the translation.

This field must have a value corresponding to an outstanding translation request.

DTI-TBUv1

Bits [31:28] Reserved, SBZ.

Bits [27:20]

Reserved, SBZ.

Table 3-3 Determination of IPA space in DTI-TBUv2

DTI_TBU_TRANS_REQ.NS NSCFG IPA space

0 Use Incoming Secure

1 Use Incoming Non-secure

- Secure Secure

- Non-secure Non-secure

7 6 5 4 3 2 1 0 LSB

CONT[2:0]
SLV_MSG_TYPE

24
16
8
0

CONT[3]
TRANSLATION_ID[7,4]

TRANSLATION_ID[3:0]
DO_NOT_CACHE

FAULT_TYPEReserved
ReservedTRANSLATION_ID[11:8]
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-51
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
FAULT_TYPE, bits [19:17]

This bit indicates to the TBU how to handle the fault.

0b000 NonAbort. The translation has failed and the transaction must be
terminated, depending on the value of
DTI_TBU_TRANS_REQ.PERM[1:0]:

R Return read data of 0.

RW Return read data of 0 and ignore write data.

W Ignore write data.

SPEC Notify the TBU that the speculative read was unsuccessful, for
example by returning an abort.

0b001 Abort. The translation has failed and the transaction must be terminated
with an abort.

FAULT_TYPE must not be Abort when
DTI_TBU_TRANS_REQ.PERM[1:0]=SPEC.

0b010 StreamDisabled.

The translation has failed and the transaction must be terminated with an
abort.

The TBU can abort subsequent transactions, if all the following are true:

• The value of DTI_TBU_TRANS_REQ.SEC_SID is the same for
both transactions.

• The value of DTI_TBU_TRANS_REQ.SID is the same for both
transactions, when masked with
DTI_TBU_TRANS_FAULT.CONT.

• Either

— DTI_TBU_TRANS_REQ.FLOW is ATST for both
transactions.

— DTI_TBU_TRANS_REQ.FLOW is not ATST for either
transaction.

• DO_NOT_CACHE is not 1.

0b011 GlobalDisabled

The translation has failed and the transaction must be terminated with an
abort.

The TBU can abort subsequent transactions, if all the following are true:

• The value of DTI_TBU_TRANS_REQ.SEC_SID is the same for
both transactions,

• DTI_TBU_TRANS_REQ.FLOW is not ATST for either transaction.

• DO_NOT_CACHE is not 1.

FAULT_TYPE must not be GlobalDisabled when
DTI_TBU_TRANS_REQ.FLOW=ATST.

0b100 TranslationPRI

DTI-TBUv1

Not legal, bit [19] SBZ.

DTI-TBUv2

This response is only permitted when
DTI_TBU_TRANS_REQ.FLOW=PRI. A translation-related
fault has occurred, which might be resolved by a PRI request.

0b101 TranslationStall

DTI-TBUv1

Not legal, bit [19] SBZ.
3-52 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
DTI-TBUv2

The purpose of this response is to simplify deadlock handling
when a DTI_TBU_SYNC_REQ message is received.

This response is only permitted when
DTI_TBU_TRANS_REQ.FLOW=Stall. A translation fault has
occurred, which has resulted in the transaction being stalled.

This does not complete the translation. The translation token is
not returned, and the translation request is still outstanding.

A TranslationStall response must not occur more than once for
the same translation request.

CONT, bits [16:13]

This field indicates the number of contiguous StreamIDs that the result of this
transaction applies to.

This field is encoded to give the span of the contiguous block as 2CONT StreamIDs.
When this field is non-zero, SID[CONT-1:0] in the translation request can be ignored
when determining whether this translation matches future transactions.

When the value of FAULT_TYPE is not StreamDisabled, this field is Reserved, SBZ.

DO_NOT_CACHE, bit [12]

This bit indicates to the TBU when not to cache a fault response.

0 Can be cached

1 Must not be cached

When the value of FAULT_TYPE is not StreamDisabled or not GlobalDisabled, the
value of this field must be 1.

TRANSLATION_ID[7:0], bits [11:4]

See TRANSLATION_ID[11:8], bits [31:28],

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-23.

0b0001 DTI_TBU_TRANS_FAULT.

3.2.4 Additional rules on permitted translation responses

Rules when IA out of range

The following rules limit the legal translation responses when the IA is out of range:

• If the TCU receives a translation request with DTI_TBU_TRANS_REQ.IA[63:56] != 0x00 and
DTI_TBU_TRANS_REQ.IA[63:56] != 0xFF, it must complete the translation with either:

— A DTI_TBU_TRANS_FAULT message

— A DTI_TBU_TRANS_RESP message with BYPASS = 0 and TBI = 1.

• If the TCU receives a translation request with DTI_TBU_TRANS_IA[55:52] != 0x0 and
DTI_TBU_TRANS_IA[55:52] != 0xF, the TCU must complete the translation with a
DTI_TBU_TRANS_FAULT message.

A DTI_TBU_TRANS_FAULT message with TYPE = TranslationStall does not complete the transaction and
therefore is not affected by the rules above.

For example, if the TCU receives a translation request with DTI_TBU_TRANS_REQ.IA[55:52] != 0x0:

• The TCU is permitted to return a DTI_TBU_TRANS_FAULT message with TYPE = TranslationStall,
followed by a DTI_TBU_TRANS_FAULT message with TYPE = Abort.

• The TCU is not permitted to return a DTI_TBU_TRANS_FAULT message with TYPE = TranslationStall,
followed by a DTI_TBU_TRANS_RESP message.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-53
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
These rules were not specified by previous versions of the DTI specification, but do not change the behavior of
DTI-TBUv1 systems because the SMMUv3 architecture requires this behavior.

Faulting expressions of the translation request message

The TCU can only return a DTI_TBU_TRANS_RESP message when permission is granted for the transaction that
is described in the translation request.

The context for computing whether or not the permissions are legal is as follows:

bit effective_InD = ((RESP.INSTCFG == “Use incoming”) && REQ.InD) || (RESP.INSTCFG == “Instruction”);
bit effective_PnU = ((RESP.PRIVCFG == “Use incoming”) && REQ.PnU) || (RESP.PRIVCFG == “Privileged”);
bit effective_NS = DTI_TBU_CONDIS_ACK.VERSION == 1 ? RESP.NS : (RESP.NSOVR ? RESP.NS : REQ.NS);
req_R = ((REQ.PERM[1:0] == “R”) && !effective_InD) || (REQ.PERM[1:0] == “RW”)
req_W = ((REQ.PERM[1:0] == “W”) || (REQ.PERM[1:0] == “RW”))
req_X = (REQ.PERM[1:0] == “R”) && effective_InD

Within this context, it is a protocol error for either of the following expressions to be true:

!RESP.BYPASS && (
(!RESP.ALLOW_UR && req_R && !effective_PnU) ||
(!RESP.ALLOW_UW && req_W && !effective_PnU) ||
(!RESP.ALLOW_UX && req_X && !effective_PnU) ||
(!RESP.ALLOW_PR && req_R && effective_PnU) ||
(!RESP.ALLOW_PW && req_W && effective_PnU) ||
(!RESP.ALLOW_PX && req_X && effective_PnU))

RESP.BYPASS && REQ.SEC_SID && !RESP.ALLOW_NSX && req_X && effective_NS

3.2.5 Calculating transaction attributes

This section describes how the translated attributes of a transaction are calculated.

The set of possible transaction attributes is the same as those described in the Arm Architecture Reference Manual,
Armv8, for Armv8-A architecture profile. The transaction attributes are composed of:

• Memory type

• Shareability

• Allocation hints

Fields used to calculate the attributes

To calculate the translated transaction attributes, the attributes of the untranslated transaction are used with the
following fields of the translation response:

• BYPASS

• STRW

• ATTR

• SH

• ATTR_OVR

• ALLOCCFG

Note

The ATTR_OVR field is not always present, because it uses the same bits as the ASID field.
3-54 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
The ATTR_OVR field is composed of subfields that are shown in Table 3-4.

Steps used to calculate the attributes

The TBU computes a translated transaction’s attributes using the following process:

1. If the untranslated transaction does not have allocation hints, then they are treated as read-allocate,
write-allocate, non-transient.

2. If ATTR_OVR is valid and MTCFG is set, then the memory type is replaced by the values in the
ATTR_OVR.MemAttr field. For more information, see The MemAttr and MTCFG fields on page 3-56.

3. The allocation hints are modified based on the value of ALLOCCFG. For more information, see The
ALLOCCFG field on page 3-58.

4. The shareability domain is modified based on the value of SHCFG. For more information, see The SHCFG
field on page 3-58.

5. The attributes are combined with the attributes in the ATTR and SH fields. For more information, see
Combining the translation response attributes on page 3-59.

6. A consistency check is applied to eliminate illegal attribute combinations. For more information, see
Consistency check on combination of translation attributes on page 3-61.

Table 3-4 ATTR_OVR subfields

Field bits Field name

[3:0] MemAttr

[4] MTCFG

[6:5] SHCFG

[8:7] DTI-TBUv1: Reserved, SBZ

DTI-TBUv2: NSCFG

[15:9] Reserved, SBZ
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-55
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
The precise algorithm is:

MemoryAttributes MemoryAttributesOverride(MemoryAttributes attr_in, DTI_TBU_TRANS_RESP resp, bit
is_cmo_trans)

 MemoryAttributes attr_out;

 attr_out = attr_in;

 // The is_cmo_trans bit is set if the transaction is a Cache Maintenance
 // Operation (CMO) as defined in SMMUv3. This does not include
 // transactions which combine a CMO with a read or write transaction.
 if (is_cmo_trans) then
 attr_out = ApplyCMOAttributes(attr_out);
 attr_out = ConsistencyCheck(attr_out);

 if (resp.BYPASS == '1' || resp.STRW == EL1_S2) then
 if (resp.ATTR_OVR.MTCFG == '1') then
 attr_out = ModifyMemoryType(attr_out, resp.ATTR_OVR.MemAttr);
 ModifyAllocHints(attr_out, resp.ALLOCCFG);
 ModifyShareability(attr_out, resp.ATTR_OVR.SHCFG);
 attr_out = ConsistencyCheck(attr_out);
 else
 ModifyAllocHints(attr_out, resp.ALLOCCFG);

 attr_out = CombineAttributes(attr_out, resp);
 attr_out = ConsistencyCheck(attr_out);

 if (is_cmo_trans) then
 attr_out = ApplyCMOAttributes(attr_out);

 return attr_out;

MemoryAttributes ApplyCMOAttributes(MemoryAttributes current_attr)

 current_attr.type = MemType_Normal;
 current_attr.inner.attrs = MemAttr_WB;
 current_attr.inner.ReadAllocate = ‘1’;
 current_attr.inner.WriteAllocate = ‘1’;
 current_attr.inner.Transient = ‘0’;
 current_attr.outer.attrs = MemAttr_WB;
 current_attr.outer.ReadAllocate = ‘1’;
 current_attr.outer.WriteAllocate = ‘1’;
 current_attr.outer.Transient = ‘0’;

 return current_attr;

The MemAttr and MTCFG fields

If the value of MTCFG is 1, then the MemAttr field provides the memory type override for incoming transactions.
Table 3-5 shows the encoding of this field.

Table 3-5 Encoding of the MemAttr field

Field encoding Memory type Inner cacheability Outer cacheability

0b0000 Device-nGnRnE - -

0b0001 Device-nGnRE - -

0b0010 Device-nGRE - -

0b0011 Device-GRE - -
3-56 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
0b0100 Reserved Reserved Reserved

0b0101 Normal Non-cacheable Non-cacheable

0b0110 Normal Write-Through Cacheable Non-cacheable

0b0111 Normal Write-Back Cacheable Non-cacheable

0b1000 Reserved Reserved Reserved

0b1001 Normal Non-cacheable Write-Through Cacheable

0b1010 Normal Write-Through Cacheable Write-Through Cacheable

0b1011 Normal Write-Back Cacheable Write-Through Cacheable

0b1100 Reserved Reserved Reserved

0b1101 Normal Non-cacheable Write-Back Cacheable

0b1110 Normal Write-Through Cacheable Write-Back Cacheable

0b1111 Normal Write-Back Cacheable Write-Back Cacheable

Table 3-5 Encoding of the MemAttr field (continued)

Field encoding Memory type Inner cacheability Outer cacheability
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-57
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
The MemAttr field is used to modify transaction memory type as follows:

MemoryAttributes ModifyMemoryType(MemoryAttributes current_attr, bits(4) mem_attr)
MemoryAttributes memattr_attributes = DecodeMemAttr(mem_attr);

// Override type
current_attr.type = memattr_attributes.type;

// Override cacheability
current_attr.inner.attrs = memattr_attributes.inner.attrs;
current_attr.outer.attrs = memattr_attributes.outer.attrs;

// And leave allocation hints untouched
return current_attr;

The ALLOCCFG field

The ALLOCCFG field overrides the allocation hints according to the following algorithm:

MemoryAttributes ModifyAllocHints(MemoryAttributes current_attr, bits(4) alloccfg)

// Don’t override allocation hints
if alloccfg<3> == ‘0’ then

return current_attr;

// ALLOCCFG is packed as:
bit T = alloccfg<0>; // Transient
bit WA = alloccfg<1>; // Write allocate
bit RA = alloccfg<2>; // Read allocate

current_attr.inner.Transient = T;
current_attr.inner.ReadAllocate = RA;
current_attr.inner.WriteAllocate = WA;
current_attr.outer.Transient = T;
current_attr.outer.ReadAllocate = RA;
current_attr.outer.WriteAllocate = WA;

return current_attr;

The SHCFG field

The SHCFG field overrides the shareability of the translation.

0b00 Non-shareable

0b01 Use incoming shareability attribute

0b10 Outer shareable

0b11 Inner shareable

See ModifyShareability() in Memory attributes on page A-120 for an example implementation.

The NSCFG field

NSCFG indicates when the NS bit of the incoming transaction is overridden before translation. The encodings of
NSCFG are:

0b00 Use incoming

0b01 Reserved

0b10 Secure

0b11 Non-secure

When DTI_TBU_TRANS_REQ.SEC_SID is 0, NSCFG must be "Use incoming".
3-58 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
Combining the translation response attributes

The memory attributes of an incoming transaction and a translation response are combined according to the
following algorithms:

DTI-TBUv1

MemoryAttributes CombineAttributes(MemoryAttributes attr_txn,DTI_TBU_TRANS_RESP resp)

MemoryAttributes attr_resp = DecodeAttr(resp.ATTR);

if ((resp.BYPASS == ‘0’) && (resp.STRW IN {EL1, EL2, EL3})) then
// The ATTR and SH fields replace the incoming memory type and
// Shareability. The memory type and Shareability of the untranslated
// transaction are ignored.
attr_txn.type = attr_resp.type;
attr_txn.inner.attrs = attr_resp.inner.attrs;
attr_txn.outer.attrs = attr_resp.outer.attrs;
attr_txn.SH = resp.SH;

// The allocation hints computed for the transaction so far are combined
// with the allocation hints from the ATTR field.
attr_txn = CombineAllocHints(attr_txn, attr_resp);

elsif ((resp.BYPASS == ‘0’) && (resp.STRW == EL1_S2)) then
// The memory type and shareability attributes computed for the
// transaction so far are combined with ATTR and SH fields.
attr_txn = CombineMemoryType(attr_txn, attr_resp);
attr_txn.SH = CombineShareability(attr_txn.SH, resp.SH);

// The allocation hints computed for the transaction so far are combined
// with the allocation hints from the ATTR field.
attr_txn = CombineAllocHints(attr_txn, attr_resp);

elsif (resp.BYPASS == ‘1’) then
// The memory type, Shareability and allocation hints computed so far
// are used directly.
attr_txn = attr_txn;

return attr_txn;
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-59
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
DTI-TBUv2

MemoryAttributes CombineAttributes(MemoryAttributes attr_txn, DTI_TBU_TRANS_RESP resp)
MemoryAttributes attr_resp = DecodeAttr(resp.ATTR);

if (resp.BYPASS == ‘0’) then
if (resp.COMB_MT == ‘0’) then

attr_txn = ReplaceMemoryType(attr_txn, attr_resp);
elsif (resp.COMB_MT == ‘1’) then

attr_txn = CombineMemoryType(attr_txn, attr_resp);

if (resp.COMB_ALLOC == ‘0’) then
attr_txn = ReplaceAllocHints(attr_txn, attr_resp);

elsif (resp.COMB_ALLOC == ‘1’) then
attr_txn = CombineAllocHints(attr_txn, attr_resp);

if (resp.COMB_SH == ‘0’) then
attr_txn.SH = resp.SH;

elsif (resp.COMT_SH == ‘1’) then
attr_txn.SH = CombineShareability(attr_txn.SH, resp.SH);

return attr_txn;

When memory type, shareability and allocation hints are combined, the result is the strongest of each, as shown in
Table 3-6.

See Memory attributes on page A-120 for the pseudocode implementation of this table.

Table 3-6 Combining the translation response attributes

Weakest Strongest

Normal
Write-Back

Normal
Write-Through

Normal
Non-cacheable

Device-GRE Device-nGRE Device-nGnRE Device-nGnRnE

Non-shareable Inner-shareable Outer-shareable

Read-allocate Read no-allocate

Write-allocate Write no-allocate

Non-transient Transient
3-60 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.2 Translation request message group
Consistency check on combination of translation attributes

Between each step, the following additional conversions are performed to ensure that the attributes are consistent:

MemoryAttributes ConsistencyCheck(MemoryAttributes current_attr)

 if (current_attr.type != MemType_Normal ||
 (current_attr.inner.attrs == MemAttr_NC &&
 current_attr.outer.attrs == MemAttr_NC)) then
 current_attr.SH = OuterShareable;

 if (current_attr.type != MemType_Normal ||
 (current_attr.type == MemType_Normal &&
 current_attr.inner.attrs == MemAttr_NC)) then
 current_attr.inner.ReadAllocate = ‘1’;
 current_attr.inner.WriteAllocate = ‘1’;
 current_attr.inner.Transient = ‘0’;

 if (current_attr.type != MemType_Normal ||
 (current_attr.type == MemType_Normal &&
 current_attr.outer.attrs == MemAttr_NC)) then
 current_attr.outer.ReadAllocate = ‘1’;
 current_attr.outer.WriteAllocate = ‘1’;
 current_attr.outer.Transient = ‘0’;

 if (current.attr.inner.ReadAllocate == ‘0’ && current.attr.inner.WriteAllocate == ‘0’) then
 current.attr.inner.Transient == ‘0’;

 if (current.attr.outer.ReadAllocate == ‘0’ && current.attr.outer.WriteAllocate == ‘0’) then
 current.attr.outer.Transient == ‘0’;

 return current_attr;

In addition to these architectural attribute consistency rules, an implementation might include interconnect-specific
consistency rules.

3.2.6 Speculative transactions and translations

A translation that is marked as speculative can be used for the following:

• Translating a speculative transaction.

• Prefetching a translation for a non-speculative transaction.

As a speculative translation request never results in a fault that is visible to software, it is permitted to be used for
the prefetching of translations. A successful speculative translation request that is marked as cacheable can be used
for future non-speculative transactions.

Note

A translation is permitted to be cached when the value of the DO_NOT_CACHE bit in the translation response
message is 0.

When a speculative translation is not successful or it is non-cacheable, no translation is cached, and future
non-speculative transactions will generate a new non-speculative translation request.

A speculative read transaction is permitted to use the cached translations of previous non-speculative translation
requests, but is not permitted to cause a non-speculative translation request. When a speculative read transaction
cannot be translated with cached translations that pass their permission check, then the TBU must either terminate
the transaction with an abort, or request a new speculative translation.

Speculative write transactions are not supported.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-61
ID061721 Non-Confidential

3 DTI-TBU Messages
3.2 Translation request message group
Note

A speculative translation request does not have a specific transaction that is associated with it. As such, the PnU and
InD fields in DTI_TBU_TRANS_REQ of the speculative translation request are not used and no permission check
is performed as part of the translation. If a speculative translation is requested as a result of a speculative read
transaction, the TBU must ensure that the transaction that caused it passes the permission check.

A speculative read transaction is never terminated as read 0, write ignored, even though the
DTI_TBU_TRANS_FAULT.FAULT_TYPE field is always NonAbort for a speculative translation. A faulting
speculative read transaction is always terminated with an abort.
3-62 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
3.3 Invalidation and synchronization message group

Invalidation operations are used by the TCU to indicate to the TBU that certain information must no longer be
cached.

For more information about the caching model used by the DTI-TBU Protocol, see Chapter 4 DTI-TBU Caching
Model.

This section contains the following subsections:

• Range Invalidate operations on page 3-72

• DTI_TBU_INV_REQ

• DTI_TBU_INV_ACK on page 3-65

• DTI_TBU_SYNC_REQ on page 3-66

• DTI_TBU_SYNC_ACK on page 3-67

• The DTI-TBU invalidation sequence on page 3-67

• DTI-TBU invalidation operations on page 3-70

3.3.1 DTI_TBU_INV_REQ

The DTI_TBU_INV_REQ message is used to request the invalidation of data that is stored in a cache.

Description

An invalidation request

Source

TCU

Usage constraints

The TCU must have at least one invalidation token.

Flow control result

The TCU consumes an invalidation token.

Field descriptions

The DTI_TBU_INV_REQ bit assignments are:

VA/IPA, bits [127:76]

This field indicates the VA or IPA to be invalidated.

7 6 5 4 3 2 1 0 LSB

120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

VA or IPA[63:16]

ASID or SID[31:16]

VMID or SID[15:0]

VA or IPA[15:12] Reserved
RANGEReserved INC_ASET1

SLV_MSG_TYPE
OPERATION[7:4]

OPERATION[3:0]
TTL or SSID[1:0]TG or SSID[3:2]

SSID[19:14]
NUM[4:0] or SSID[8:4]SCALE[2:0] or SSID[11:9]

SCALE[4:3] or SSID[13:12]
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-63
ID061721 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.

Bits [75:70]

Reserved, SBZ.

INC_ASET1, bit [69]

This bit indicates whether the ASET value of a translation affects its invalidation.

0 Translations with an ASET value of 0 are invalidated, only the shared set is
invalidated.

1 The value of ASET has no effect, the shared and non-shared sets are
invalidated.

Note
It is intended that this bit is 0 if the invalidation originates from a shared invalidate of
the appropriate type. Some TLB invalidation operations always set this bit. This bit is
always set for TLB invalidations originating from an explicit invalidate command to the
SMMU.

This field is valid for all TLB invalidate operations. For all other invalidate operations,
this field is ignored and is Reserved, SBZ.

This field must be 1 for the following TLB invalidate operations:

• TLBI_S_EL1_ALL

• TLBI_S_EL1_VAA

• TLBI_NS_EL1_ALL

• TLBI_NS_EL1_S1_VMID

• TLBI_NS_EL1_S12_VMID

• TLBI_NS_EL1_VAA

• TLBI_NS_EL1_S2_IPA

• TLBI_NS_EL2_ALL

• TLBI_NS_EL2_VAA

• TLBI_S_EL3_ALL

• TLBI_S_EL1_S1_VMID

• TLBI_S_EL1_S12_VMID

• TLBI_S_EL1_S2_S_IPA

• TLBI_S_EL1_S2_NS_IPA

• TLBI_S_EL2_ALL

• TLBI_S_EL2_VAA

RANGE, bits [68:64]

This field indicates the range of SIDs or VMIDs for invalidation.

The range to be invalidated is 2RANGE 4KB pages.

When the value of the OPERATION field identifies this message as a CFGI_SID
invalidate operation, the bottom RANGE bits of the SID field are ignored in both this
message and the translations being considered for invalidation.

When the value of the OPERATION field identifies this message as a translation
invalidate operation and the VMID field is valid for the operation:

• The bottom RANGE bits of the VMID field are ignored in both this message and
the translations being considered for invalidation.

• The value of this field must not be greater than four.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.
3-64 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
ASID, bits [63:48], when OPERATION is a TLB invalidate operation.

This field indicates the ASID value to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.

VMID, bits [47:32], when OPERATION is a TLB invalidate operation.

This field indicates the VMID value to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.

When DTI_TBU_TRANS_REQ.SEC_SID is 1 and BYPASS is 0:

DTI-TBUv1

VMID must be 0

DTI-TBUv2

VMID can be non-zero

SID, bits [63:32], when OPERATION is a configuration invalidate operation.

This field indicates the StreamID to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.

SSID, bits [31:12], when OPERATION is a configuration invalidate operation.

This field indicates the SubstreamID to invalidate.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is Reserved, SBZ.

SCALE, bits [25:21], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. For more information, see DTI-TBU
invalidation operations on page 3-70.

NUM, bits [20:16], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. For more information, see DTI-TBU
invalidation operations on page 3-70.

TG, bits 15:14], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. For more information, see DTI-TBU
invalidation operations on page 3-70.

TTL, bits [13:12], when OPERATION is a TLB invalidate operation.

This field relates to Range invalidate operations. For more information, see DTI-TBU
invalidation operations on page 3-70.

OPERATION, bits [11:4]

This field identifies the type of invalidation operation being performed.

When a TBU receives a message with an unrecognized OPERATION field value, this
specification recommends that the TBU acknowledges the invalidation without
performing any operation. For the encoding of this field and information on the effects
of the invalidate operations, see DTI-TBU invalidation operations on page 3-70.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-23.

0b0100 DTI_TBU_INV_REQ

3.3.2 DTI_TBU_INV_ACK

The DTI_TBU_INV_ACK message is used to acknowledge an invalidation request.

Description

An invalidation acknowledgment
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-65
ID061721 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Source

TBU

Usage constraints

The TCU must have previously issued an invalidation request that has not yet been acknowledged.

Flow control result

The TBU returns an invalidation token to the TCU.

Field descriptions

The DTI_TBU_INV_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24.

0b0100 DTI_TBU_INV_ACK.

3.3.3 DTI_TBU_SYNC_REQ

The DTI_TBU_SYNC_REQ message is used to request synchronization of the TBU and TCU.

Description

A synchronization request

Source

TCU

Usage constraints

There must be no currently unacknowledged synchronization requests.

Note

It is legal to receive the message even when there are no prior invalidation requests to synchronize.

Flow control result

None

Field descriptions

The DTI_TBU_SYNC_REQ bit assignments are:

Bits [7:4]

Reserved, SBZ.

7 6 5 4 3 2 1 0 LSB
0MST_MSG_TYPEReserved
3-66 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-23.

0b0101 DTI_TBU_SYNC_REQ

3.3.4 DTI_TBU_SYNC_ACK

The DTI_TBU_SYNC_ACK message is used to acknowledge a synchronization request.

Description

A synchronization acknowledge

Source

TBU

Usage constraints

There must currently be an unacknowledged synchronization request.

Flow control result

None

Field descriptions

The DTI_TBU_SYNC_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-23.

0b0101 DTI_TBU_SYNC_ACK

3.3.5 The DTI-TBU invalidation sequence

The invalidation sequence describes how individual invalidate messages interact with translation messages.

For all translations that are affected by the invalidation, the order in which they arrive at the TBU determines how
they are handled. Figure 3-1 on page 3-68 shows the invalidation phases in which an affected
DTI_TBU_TRANS_RESP can arrive.

7 6 5 4 3 2 1 0 LSB
0MST_MSG_TYPEReserved
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-67
ID061721 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Figure 3-1 Phases of the invalidation sequence

The invalidation phases of the invalidation sequence are delimited by the following events:

1. A DTI_TBU_INV_REQ message

2. The following DTI_TBU_SYNC_REQ

3. The following DTI_TBU_SYNC_ACK

Note
Each DTI_TBU_INV_REQ message is followed by a DTI_TBU_INV_ACK message. The
DTI_TBU_INV_ACK message is only used for flow control, it does not affect the invalidation sequence or
indicate completion of the invalidate operation.

When a DTI_TBU_SYNC_REQ message is received, the TBU must ensure both:

• Translations within the scope of previous invalidations have been invalidated.

• Transactions that use them have completed downstream.

When both are ensured, the TBU can return a DTI_TBU_SYNC_ACK message. The actions that must be taken
depend upon in what phase of the invalidation sequence, the affected DTI_TBU_TRANS_RESP messages arrived.
The following table describes the phases and required actions.

Table 3-7 Phases and actions of an invalidation sequence

Sequence phase Actions

Before the corresponding
DTI_TBU_INV_REQ.

The TBU must identify which translations must be invalidated and
which transactions must be completed before returning the
DTI_TBU_SYNC_ACK message. These translations might or might
not be marked as DO_NOT_CACHE.

After the corresponding
DTI_TBU_INV_REQ but before
the DTI_TBU_SYNC_REQ.

If the translation is based upon invalidated data, then it will be marked
as DO_NOT_CACHE. The TBU must invalidate translations marked as
DO_NOT_CACHE and complete transactions using those translations
before returning a DTI_TBU_SYNC_ACK.

After the DTI_TBU_SYNC_REQ. These translations are out of scope of the current invalidation
synchronization operation and play no part in the timing of the
DTI_TBU_SYNC_ACK. The TCU delays issuing the
DTI_TBU_SYNC_REQ if necessary to ensure this.
3-68 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Overlapping invalidations

New DTI_TBU_INV_REQ messages can be sent after the DTI_TBU_SYNC_REQ has been sent, even if this is
before the expected DTI_TBU_SYNC_ACK response is received. In all cases, an invalidation is only included in
a synchronization if it is sent before the DTI_TBU_SYNC_REQ message.

A DTI_TBU_SYNC_REQ message can be sent after a DTI_TBU_INV_REQ is sent but before a
DTI_TBU_INV_ACK is received. In this case, the invalidation is within scope of the synchronization operation.
The DTI_TBU_INV_ACK message is solely for the purposes of returning invalidation tokens and does not affect
synchronization operations.

Deadlock avoidance in the invalidation sequence

In order to avoid deadlocks, the following rules must be followed:

• The rules for DTI-TBUv1 and DTI-TBUv2 are different for the following case:

DTI-TBUv1

A TBU must not wait for an outstanding translation to complete before returning a
DTI_TBU_SYNC_ACK message. Any outstanding translations must be discarded on receipt of
a DTI_TBU_SYNC_REQ.

DTI-TBUv2

A TBU must not wait for an outstanding translation that has returned a fault with FAULT_TYPE
TranslationStall to complete before returning a DTI_TBU_SYNC_ACK message. A TBU can
wait for completion of an outstanding transaction that has not returned a fault with
FAULT_TYPE TranslationStall. If the transaction returns a TranslationStall after the
DTI_TBU_SYNC_REQ is received, it must be able to return a DTI_TBU_SYNC_ACK without
waiting for the completion of that translation.

Example 3-1 shows a case where failure to obey this rule will create a deadlock.

• The DTI_TBU_INV_REQ and DTI_TBU_INV_ACK messages must not wait for an outstanding
DTI_TBU_SYNC_ACK message to be returned. Invalidation operations must be able to proceed without
waiting for downstream transactions to complete, this is because those transactions might not be able to
complete until the invalidation has been accepted.

Example 3-1 Deadlock caused by incorrect invalidation behavior in the TBU

Consider the following sequence:

1. Transaction A is received and a translation request is issued.

2. Transaction B is received, which must be ordered behind transaction A according to the bus protocol, and a
translation request is issued.

3. The translation request for transaction A results in a stalling fault in the TCU, which cannot progress further
until system software instructs the TCU to either retry or abort the translation. No response can be returned
to the TBU until this occurs.

4. A translation response is received for transaction B, which is marked as DO_NOT_CACHE.

5. A DTI_TBU_SYNC_REQ is received.

In this case, the DTI_TBU_SYNC_ACK cannot be returned until the transaction B completes. This cannot occur
until transaction A is issued, which cannot occur until the translation is received for transaction A, which would
break the above requirement. Instead, the TBU should discard the translation for transaction B so that the
DTI_TBU_SYNC_ACK can be returned, and re-request the translation for transaction B.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-69
ID061721 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
3.3.6 DTI-TBU invalidation operations

This section describes the DTI-TBU cache invalidation operations.

Types of invalidation operation

Table 3-8 specifies the OPERATION field encodings for DTI-TBUv1. It describes how the type of invalidation
being performed affects the scope of the DTI_TBU_INV_REQ message for DTI-TBUv1. Other encodings of the
OPERATION field are Reserved.

Table 3-8 DTI-TBUv1 list of invalidation operations

Code Invalidation operation
StreamWorld

affected
SEC_SID
affected

Valid fields

0x80 TLBI_S_EL1_ALL EL1 Secure INC_ASET1

0x81 TLBI_S_EL1_VAA EL1 Secure VA, INC_ASET1

0x88 TLBI_S_EL1_ASID EL1 Secure ASID, INC_ASET1

0x89 TLBI_S_EL1_VA EL1 Secure ASID, VA, INC_ASET1

0xA0 TLBI_NS_EL1_ALL EL1, EL1-S2 Non-secure INC_ASET1

0xB2 TLBI_NS_EL1_S1_VMID EL1 Non-secure VMID, RANGE, INC_ASET1

0xB0 TLBI_NS_EL1_S12_VMID EL1, EL1-S2 Non-secure VMID, RANGE, INC_ASET1

0xB1 TLBI_NS_EL1_VAA EL1 Non-secure VMID, VA, RANGE, INC_ASET1

0xB8 TLBI_NS_EL1_ASID EL1 Non-secure VMID, ASID, RANGE, INC_ASET1

0xB9 TLBI_NS_EL1_VA EL1 Non-secure VMID, ASID, VA, RANGE, INC_ASET1

0xB5 TLBI_NS_EL1_S2_IPA EL1-S2 Non-secure VMID, IPA, RANGE, INC_ASET1

0xE0 TLBI_NS_EL2_ALL EL2 Non-secure INC_ASET1

0xE1 TLBI_NS_EL2_VAA EL2 Non-secure VA, INC_ASET1

0xE8 TLBI_NS_EL2_ASID EL2 Non-secure ASID, INC_ASET1

0xE9 TLBI_NS_EL2_VA EL2 Non-secure ASID, VA, INC_ASET1

0x40 TLBI_S_EL3_ALL EL3 Secure INC_ASET1

0x41 TLBI_S_EL3_VA EL3 Secure VA, INC_ASET1

0x00 CFGI_S_ALL - Secure -

0x10 CFGI_S_SID - Secure SID, RANGE

0x18 CFGI_S_SID_SSID - Secure SID, SSID

0x20 CFGI_NS_ALL - Non-secure -

0x30 CFGI_NS_SID - Non-secure SID, RANGE

0x38 CFGI_NS_SID_SSID - Non-secure SID, SSID

0x06 INV_ALL All All -
3-70 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Table 3-9 specifies the OPERATION field encodings for DTI-TBUv2. It describes how the type of invalidation
being performed affects the scope of the DTI_TBU_INV_REQ message for DTI-TBUv2. Other encodings of the
OPERATION field are Reserved.

Table 3-9 DTI-TBUv2 list of invalidation operations

Code Invalidation operation
StreamWorld

affected
SEC_SID
affected

Valid fields

0x80 TLBI_S_EL1_ALL EL1, EL1-S2 Secure INC_ASET1

0x81 TLBI_S_EL1_VAA EL1 Secure VMID, VA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0x82 TLBI_S_EL1_S1_VMID EL1 Secure VMID, RANGE, INC_ASET1

0x85 TLBI_S_EL1_S2_NS_IPA EL1-S2 Secure VMID, IPA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0x88 TLBI_S_EL1_ASID EL1 Secure VMID, ASID, RANGE, INC_ASET1

0x89 TLBI_S_EL1_VA EL1 Secure VMID, ASID, VA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0x90 TLBI_S_EL1_S12_VMID EL1, EL1-S2 Secure VMID, RANGE, INC_ASET

0x95 TLBI_S_EL1_S2_S_IPA EL1-S2 Secure VMID, IPA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0xA0 TLBI_NS_EL1_ALL EL1, EL1-S2 Non-secure INC_ASET1

0xB2 TLBI_NS_EL1_S1_VMID EL1 Non-secure VMID, RANGE, INC_ASET1

0xB0 TLBI_NS_EL1_S12_VMID EL1, EL1-S2 Non-secure VMID, RANGE, INC_ASET1

0xB1 TLBI_NS_EL1_VAA EL1 Non-secure VMID, VA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0xB8 TLBI_NS_EL1_ASID EL1 Non-secure VMID, ASID, RANGE, INC_ASET1

0xB9 TLBI_NS_EL1_VA EL1 Non-secure VMID, ASID, VA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0xB5 TLBI_NS_EL1_S2_IPA EL1-S2 Non-secure VMID, IPA, RANGE, INC_ASET1,
SCALE, NUM, TG, TTL

0xC0 TLBI_S_EL2_ALL EL2 Secure INC_ASET1

0xC9 TLBI_S_EL2_VA EL2 Secure ASID, VA, INC_ASET1, SCALE, NUM,
TG, TTL

0xC1 TLBI_S_EL2_VAA EL2 Secure VA, INC_ASET1, SCALE, NUM, TG, TTL

0xC8 TLBI_S_EL2_ASID EL2 Secure ASID, INC_ASET1

0xE0 TLBI_NS_EL2_ALL EL2 Non-secure INC_ASET1

0xE1 TLBI_NS_EL2_VAA EL2 Non-secure VA, INC_ASET1, SCALE, NUM, TG, TTL

0xE8 TLBI_NS_EL2_ASID EL2 Non-secure ASID, INC_ASET1

0xE9 TLBI_NS_EL2_VA EL2 Non-secure ASID, VA, INC_ASET1, SCALE, NUM,
TG, TTL

0x40 TLBI_S_EL3_ALL EL3 Secure INC_ASET1
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-71
ID061721 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
If the value of the GLOBAL bit in the translation response is 1, the ASID field in that translation is ignored during
invalidate operations. Invalidate operations that include an ASID are treated as follows:

• Invalidate operations, including a VA and ASID, invalidate the translation regardless of the ASID being
invalidated.

• Invalidate operations including an ASID, but without a VA, do not invalidate the translation.

The following invalidation operations will invalidate GlobalBypass and GlobalDisable translations of the
appropriate security level:

• CFGI_NS_ALL

• CFGI_S_ALL

• INV_ALL

Note

Invalidation operations can be issued without a corresponding SMMUv3 invalidate command. A TCU issues
CFGI_NS_ALL and CFGI_S_ALL invalidation and sync operations to invalidate GlobalBypass and GlobalDisable
translations as part of the process for changing certain SMMUv3 control registers.

The INV_ALL operation invalidates all caches, including Secure and Non-secure TLB and configuration caches as
well as GlobalBypass and GlobalDisable translations.

Range Invalidate operations

DTI-TBUv2 supports Range Invalidation operations. These operations do not involve any RANGE fields specified
in messages.

The range of addresses in scope of the invalidation operation is given by:

Range = ((NUM+1)*2SCALE)*Translation_Granule_Size

0x41 TLBI_S_EL3_VA EL3 Secure VA, INC_ASET1, SCALE, NUM, TG, TTL

0x00 CFGI_S_ALL - Secure -

0x10 CFGI_S_SID - Secure SID, RANGE

0x18 CFGI_S_SID_SSID - Secure SID, SSID

0x20 CFGI_NS_ALL - Non-secure -

0x30 CFGI_NS_SID - Non-secure SID, RANGE

0x38 CFGI_NS_SID_SSID - Non-secure SID, SSID

0x06 INV_ALL All All -

Table 3-9 DTI-TBUv2 list of invalidation operations (continued)

Code Invalidation operation
StreamWorld

affected
SEC_SID
affected

Valid fields
3-72 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
Table 3-10 shows the Translation_Granule_Size mapping:

The set of addresses A to be invalidated is given by:

Address <= A < Address + Range

An invalidation affects a translation if any address to be invalidated is within the range of the translation, as defined
by INVAL_RNG in the translation response.

When TG == 0b00:

• The range is a single address

• The SCALE and NUM fields, are Reserved, SBZ

An invalidation might be limited to translations with specific values of INVAL_RNG in the translation response.
Table 3-11 indicates encodings of INVAL_RNG that are within scope of an invalidation, dependent upon the TG
and TTL fields:

All other combinations of TG and TTL are Reserved:

• The combination TG == 0b00, TTL != 0b00 is legal in SMMUv3.2 invalidation commands but not legal in
DTI, and must be mapped to TG == 0b00, TTL == 0b00 in DTI.

• The combination TG == 0b10, TTL == 0b01 is legal in SMMUv3.2 invalidation commands and Armv8.4
range invalidate operations but not legal in DTI, and must be mapped to TG == 0b10, TTL == 0b00 in DTI.

Table 3-10 Translation_Granule_Size mapping

TG Translation_Granule_Size

0b01 4 KB

0b10 16 KB

0b11 64 KB

Table 3-11 DTI-TBUv2 encodings of INVAL_RNG

TG TTL
INVAL_RNG
affected

0b00 0b00 All

0b01 0b00 4 KB, 2 MB, 1 GB

0b01 0b01 1 GB

0b01 0b10 2 MB

0b01 0b11 4 KB

0b10 0b00 16 KB, 32 MB

0b10 0b10 32 MB

0b10 0b11 16 KB

0b11 0b00 64 KB, 512 MB, 4 TB

0b11 0b01 4 TB

0b11 0b10 512 MB

0b11 0b11 64 KB
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-73
ID061721 Non-Confidential

3 DTI-TBU Messages
3.3 Invalidation and synchronization message group
A TCU must return INVAL_RNG values that ensure correct invalidation by a TBU implementing the above rules.
That means that INVAL_RNG must correctly identify the translation granule and level of the translation at the first
encountered stage of translation and its value must not depend on the Contiguous bit in the leaf translation table
entry.

The SCALE, NUM, TG and TTL fields are valid for all invalidation operations where the VA/IPA field is valid.

When the fields of the invalidation operation match any of the following, no invalidation is required to occur:

• TG == 0b01 && TTL == 0b01 && Address[29:12] != 0

• TG == 0b01 && TTL == 0b10 && Address[20:12] != 0

• TG == 0b10 && TTL == 0b10 && Address[24:14] != 0

• TG == 0b10 && Address[13:12] != 0

• TG == 0b11 && TTL == 0b01 && Address[41:16] != 0

• TG == 0b11 && TTL == 0b10 && Address[28:16] != 0

• TG == 0b11 && Address[15:12] != 0

The following combination of field values is illegal: TG != 0b00 && TTL == 0b00 && NUM == 0 && SCALE ==
0. A single address without TTL or range information should instead be encoded with TG == 0b00.

Configuration invalidate operations

Configuration invalidate operations invalidate configuration cache information. They do not need to invalidate TLB
information unless the TLB and configuration information is held in a combined cache.

Table 3-12 shows the SMMUv3 commands that map that to DTI configuration invalidate operations.

For any translation that has 0 as the value of DTI_TBU_TRANS_REQ.SSV, the value of
DTI_TBU_TRANS_REQ.SSID is treated as being 0 for the purpose of the CFGI_S_SID_SSID and
CFG_NS_SID_SSID operations.

Table 3-12 Mappings of SMMUv3 commands onto DTI invalidate operations

SMMUv3 command DTI invalidate operation

CMD_CFGI_ALL CFGI_S_ALL, CFGI_NS_ALL

CMD_CFGI_STE CFGI_S_SID, CFGI_NS_SID

CMD_CFGI_STE_RANGE CFGI_S_SID, CFGI_NS_SID

CMD_CFGI_CD_ALL CFGI_S_SID, CFGI_NS_SID

CMD_CFGI_CD CFGI_S_SID_SSID, CFGI_NS_SID_SSID
3-74 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.4 Register access message group
3.4 Register access message group

The TBU provides IMPLEMENTATION DEFINED registers, which can be accessed using these messages. These
registers provide information and control for the features of the TBU.

The DTI protocol supports 32-bit register accesses only. If 64-bit registers are implemented, they must be updated
using multiple 32-bit accesses.

A TBU can implement up to 128KB of register space in both Secure and Non-secure states. The upper 64KB page
is intended to be used to hold Page 1 of an SMMUv3 Performance Monitor Counter Group register file. The lower
64KB page is intended for all other registers.

This section contains the following subsections:

• DTI_TBU_REG_WRITE

• DTI_TBU_REG_WACK on page 3-76

• DTI_TBU_REG_READ on page 3-77

• DTI_TBU_REG_RDATA on page 3-77

• Deadlock avoidance in register accesses on page 3-78

3.4.1 DTI_TBU_REG_WRITE

The DTI_TBU_REG_WRITE message is used to request a write to a register.

Description

A register write request

Source

TCU

Usage constraints

• The TCU must have no outstanding register reads or writes.

• DTI_TBU_CONDIS_ACK.SUP_REG was 1 during the connect sequence.

Flow control result

None

Field descriptions

The DTI_TBU_REG_WRITE bit assignments are:

DATA, bits [63:32]

This field holds the data to be written.

Bits [31:24]

Reserved, SBZ.

7 6 5 4 3 2 1 0 LSB

DATA

56
48
40
32
24
16
8
0

Reserved

ADDR[11:4]
SLV_MSG_TYPEADDR[3:2] Reserved

ReservedNS ADDR[16:12]
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-75
ID061721 Non-Confidential

3 DTI-TBU Messages
3.4 Register access message group
NS, bit [23]

This bit indicates the Security level of the register access.

0 Secure

1 Non-secure

Bits [22:21]

Reserved, SBZ.

ADDR, bits [20:6]

This field indicates the address of the register to be written to. Writes to unimplemented
registers must be ignored.

Bits [5:4]

Reserved, SBZ.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-23.

0b0110 DTI_TBU_REG_WRITE

3.4.2 DTI_TBU_REG_WACK

The DTI_TBU_REG_WACK message is used to acknowledge a register write request. Receipt of this message
indicates a write has taken effect.

Description

A register write acknowledgment

Source

TBU

Usage constraints

The TCU must have previously issued a register write request that has not yet been acknowledged.

Flow control result

None

Field descriptions

The DTI_TBU_REG_WACK bit assignments are:

Bits [7:4]

Reserved, SBZ.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-23.

0b0110 DTI_TBU_REG_WACK

7 6 5 4 3 2 1 0 LSB
0MST_MSG_TYPEReserved
3-76 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

3 DTI-TBU Messages
3.4 Register access message group
3.4.3 DTI_TBU_REG_READ

The DTI_TBU_REG_READ message is used to request a read from a register.

Description

A register read request

Source

TCU

Usage constraints

• The TCU must have no outstanding reads or writes.

• DTI_TBU_CONDIS_ACK.SUP_REG was 1 during the connect sequence.

Flow control result

None

Field descriptions

The DTI_TBU_REG_READ bit assignments are:

Bits [31:24]

Reserved, SBZ.

NS, bit [23]

This bit indicates the Security level of the register access.

0 Secure

1 Non-secure

Bits [22:21]

Reserved, SBZ.

ADDR, bits [20:6]

This field indicates the address of the register to be written to. Reads from
unimplemented registers must return 0 and have no other effect.

Bits [5:4]

Reserved, SBZ.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-TBU protocol upstream messages on
page 2-23.

0b0111 DTI_TBU_REG_READ

3.4.4 DTI_TBU_REG_RDATA

The DTI_TBU_REG_RDATA message is used to return the data from a register read request.

Description

A register read response

7 6 5 4 3 2 1 0 LSB

NS ADDR[16:12]
24
16
8
0ADDR[3:2] Reserved

Reserved
ADDR[11:4]

SLV_MSG_TYPE

Reserved
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 3-77
ID061721 Non-Confidential

3 DTI-TBU Messages
3.4 Register access message group
Source

TBU

Usage constraints

The TCU must have previously issued a register read request that has not yet received a response.

Flow control result

None

Field descriptions

The DTI_TBU_REG_RACK bit assignments are:

DATA, bits [63:32]

This field holds the read data.

Bits [31:4]

Reserved, SBZ.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-TBU protocol downstream messages on
page 2-23.

0b0111 DTI_TBU_REG_RDATA

3.4.5 Deadlock avoidance in register accesses

A TBU must be able to respond to register access messages without requiring the completion of downstream
transactions, or the progress of other DTI transactions.

MST_MSG_TYPE

56
48
40
32
24
16
8
0Reserved

Reserved

DATA

7 6 5 4 3 2 1 0 LSB
3-78 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 4
DTI-TBU Caching Model

This chapter describes the caching model for the DTI-TBU protocol.

It contains the following sections:

• Caching model on page 4-80

• Lookup process on page 4-81

• Global entry cache on page 4-83

• Configuration cache on page 4-84

• TLB on page 4-85
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 4-79
ID061721 Non-Confidential

4 DTI-TBU Caching Model
4.1 Caching model
4.1 Caching model

The TBU implements a cache model where translation response information is cached depending upon its intended
function. Architecturally, a TBU must implement the following caches, which are looked up in the following order:

• A global entry cache, for when translation is globally disabled.

• A configuration cache.

• A TLB.

Any implementation is permitted that is compatible with this cache model.

An implementation might implement a single cache that combines the lookup of two or more of these caches. Such
an implementation is permitted if the invalidation operations still function in the order that is described here.

Each cache contains fields for the following:

Tag This is compared against future transactions or invalidations.

Scope This controls how much of the tag must match.

Data This is used to translate a transaction.
4-80 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

4 DTI-TBU Caching Model
4.2 Lookup process
4.2 Lookup process

A lookup into the caches progresses as shown in Figure 4-1.

Figure 4-1 Lookup process

Start

Matching GlobalBypass
or GlobalDisabled?

Look up in configuration
cache using configuration tag

Configuration cache hit?

StreamBypassNoSSV/
StreamDisabled result?

Look up in TLB
using TLB tag

TLB hit?

Check translation permissions
against new translation

Permission check
passed?

Use TLB translation Request new translation
Use StreamBypassNoSSV/

StreamDisabled
Use GlobalBypass/

GlobalDisabled

Yes

Yes

No

No

Yes

Yes

No

No

No

Yes

Global entries
cache

Configuration
cache

TLB
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 4-81
ID061721 Non-Confidential

4 DTI-TBU Caching Model
4.2 Lookup process
When there is a TLB hit on a cache lookup, the TBU must ensure that the stored translation matches the permission
requirements of the new transaction. If the permission check fails, then the cached translation is not a match for the
transaction. In this case, the TBU must request a new translation. The TCU might return a successful translation, or
might return a translation fault for the transaction.

It is possible for multiple translations to match a transaction. In this case, a TBU can use any matching translation
that has not been invalidated. The TBU is not required to use the most recent matching translation.
4-82 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

4 DTI-TBU Caching Model
4.3 Global entry cache
4.3 Global entry cache

The global entry cache can contain up to three entries:

• A GlobalBypass or GlobalDisabled entry for Secure transactions.

• A GlobalBypass or GlobalDisabled entry for Non-secure transactions that were not ATS translated.

• A GlobalBypass or GlobalDisabled entry for Non-secure transactions that were ATS translated.

The message fields that comprise the entry tag field combine to index these three entry types. The tag, scope, and
data fields of a GlobalBypass cache entry are as follows:

Tag fields

• DTI_TBU_TRANS_REQ.SEC_SID

• DTI_TBU_TRANS_REQ.ATS

Scope fields

• DTI_TBU_TRANS_RESP.TRANS_RNG

Data fields

• DTI_TBU_TRANS_RESP.NSOVR

• DTI_TBU_TRANS_RESP.ALLOCCFG

• DTI_TBU_TRANS_RESP.NS

• DTI_TBU_TRANS_RESP.PRIVCFG

• DTI_TBU_TRANS_RESP.INSTCFG

• DTI_TBU_TRANS_RESP.ATTR_OVR

• DTI_TBU_TRANS_RESP.CTXTATTR

• DTI_TBU_TRANS_RESP.PARTID

• DTI_TBU_TRANS_RESP.PMG

• DTI_TBU_TRANS_RESP.MPAMNS

The tag, scope, and data fields of a GlobalDisable cache entry are as follows:

Tag fields

• DTI_TBU_TRANS_REQ.SEC_SID

• DTI_TBU_TRANS_REQ.ATS

Scope fields

None

Data fields

None

If a GlobalDisabled entry tag matches a transaction, then the transaction is always aborted.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 4-83
ID061721 Non-Confidential

4 DTI-TBU Caching Model
4.4 Configuration cache
4.4 Configuration cache

The configuration cache performs the following functions:

• Maps the incoming translation context fields to the TLB tags used by the translation tables.

• Stores translation information affecting all transactions that are translated using a given context.

• Contains StreamDisabled entries for when translation is disabled for some streams.

The following tables show which DTI-TBU message fields are used to fill the Tag, Scope, and Data fields of entries
in the configuration cache.

Tag fields

• DTI_TBU_TRANS_REQ.SEC_SID

• DTI_TBU_TRANS_REQ.ATST

• DTI_TBU_TRANS_REQ.SID

• DTI_TBU_TRANS_REQ.SSV

• DTI_TBU_TRANS_REQ.SSID

Scope fields

• DTI_TBU_TRANS_RESP.CONT

• DTI_TBU_TRANS_RESP.ALLOW_NSX

Data fields

• DTI_TBU_TRANS_RESP.BYPASS

• DTI_TBU_TRANS_RESP.STRW/BP_TYPE

• DTI_TBU_TRANS_RESP.DRE

• DTI_TBU_TRANS_RESP.DCP

• DTI_TBU_TRANS_RESP.NS

• DTI_TBU_TRANS_RESP.PRIVCFG

• DTI_TBU_TRANS_RESP.INSTCFG

• DTI_TBU_TRANS_RESP.ALLOCCFG

• DTI_TBU_TRANS_RESP.ASET/NSOVR

• DTI_TBU_TRANS_RESP.VMID

• DTI_TBU_TRANS_RESP.ASID/ATTR_OVR

• DTI_TBU_TRANS_RESP.CTXTATTR

• DTI_TBU_TRANS_RESP.PARTID

• DTI_TBU_TRANS_RESP.PMG

• DTI_TBU_TRANS_RESP.MPAMNS

The DTI_TBU_TRANS_RESP.BYPASS field indicates when the entry is a StreamBypassNoSSV entry.

The tag, scope, and data fields of a StreamDisabled cache entry are as follows:

Tag fields

• DTI_TBU_TRANS_REQ.SEC_SID

• DTI_TBU_TRANS_REQ.ATS

• DTI_TBU_TRANS_REQ.SID

• DTI_TBU_TRANS_REQ.SSV

• DTI_TBU_TRANS_REQ.SSID

Scope fields

• DTI_TBU_TRANS_FAULT.CONT

Data fields

None
4-84 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

4 DTI-TBU Caching Model
4.5 TLB
4.5 TLB

The TLB uses information from the configuration cache to look up a saved translation for an instruction.

Translation failures reported using a DTI_TBU_TRANS_FAULT message are never stored in a TLB.

The following tables show which DTI-TBU message fields are used to fill the Tag, Scope, and Data fields of entries
in the TLB.

Tag fields

• DTI_TBU_TRANS_REQ.ATST

• DTI_TBU_TRANS_REQ.SEC_SID

• DTI_TBU_TRANS_REQ.IA

• DTI_TBU_TRANS_RESP.STRW

• DTI_TBU_TRANS_RESP.ASET

• DTI_TBU_TRANS_RESP.VMID

• DTI_TBU_TRANS_RESP.ASID

Scope fields

• DTI_TBU_TRANS_RESP.TBI

• DTI_TBU_TRANS_RESP.GLOBAL

• DTI_TBU_TRANS_RESP.TRANS_RNG

• DTI_TBU_TRANS_RESP.INVAL_RNG

• DTI_TBU_TRANS_RESP.ALLOW_UR

• DTI_TBU_TRANS_RESP.ALLOW_UW

• DTI_TBU_TRANS_RESP.ALLOW_UX

• DTI_TBU_TRANS_RESP.ALLOW_PR

• DTI_TBU_TRANS_RESP.ALLOW_PW

• DTI_TBU_TRANS_RESP.ALLOW_PX

Data fields

• DTI_TBU_TRANS_RESP.NS

• DTI_TBU_TRANS_RESP.OA

• DTI_TBU_TRANS_RESP.ATTR

• DTI_TBU_TRANS_RESP.SH

• DTI_TBU_TRANS_RESP.S1HWATTR

• DTI_TBU_TRANS_RESP.S2HWATTR

• DTI_TBU_TRANS_RESP.HWATTR

• DTI_TBU_TRANS_RESP.COMB
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 4-85
ID061721 Non-Confidential

4 DTI-TBU Caching Model
4.5 TLB
4-86 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 5
DTI-ATS Messages

This chapter describes the message groups of the DTI-ATS protocol.

It contains the following sections:

• Connection and disconnection message group on page 5-88

• Translation request message group on page 5-92

• Invalidation and synchronization message group on page 5-102

• Page request message group on page 5-109
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-87
ID061721 Non-Confidential

5 DTI-ATS Messages
5.1 Connection and disconnection message group
5.1 Connection and disconnection message group

The DTI-ATS protocol is designed to enable a TCU to simultaneously support DTI-ATSv1 and DTI-ATSv2
connections from different PCIe RPs.

This section contains the following subsections:

• DTI_ATS_CONDIS_REQ

• DTI_ATS_CONDIS_ACK on page 5-90

5.1.1 DTI_ATS_CONDIS_REQ

The DTI_ATS_CONDIS_REQ message is used to initiate a connection or disconnection handshake.

Description

Connection state change request

Source

PCIe RP

Usage constraints

The PCIe RP can only send a disconnect request when:

• The channel is in the CONNECTED state.

• There are no outstanding translation requests.

• There are no outstanding page requests.

• The conditions for completing any future invalidation and sync are already met. In practice,
the result is that all downstream transactions must be complete and all ATCs must be disabled
and invalidated.

The PCIe RPs can only send a connect request when:

• The channel is in the DISCONNECTED state.

Flow control result

None

Field descriptions

The DTI_ATS_CONDIS_REQ bit assignments are:

Bits [31:25]

Reserved, SBZ.

NO_TRANS, bit 24

When this bit is 1:

• The number of translation tokens requested is zero.

• The number of invalidation tokens granted is zero.

• None of the following messages are permitted to be sent:

— DTI_ATS_TRANS_*

— DTI_ATS_INV_*

— DTI_ATS_SYNC_*

When STATE is 1, the value of this field must match the value of NO_TRANS in the
previous connect request with STATE == 0.

7 6 5 4 3 2 1 0 LSB

IMP DEF
TOK_TRANS_REQ[3:0]

Reserved 24
16
8
0

TOK_INV_GNT TOK_TRANS_REQ[7:4]
VERSION

MST_MSG_TYPEReserved PROTOCOL STATE

NO_TRANS
5-88 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.1 Connection and disconnection message group
TOK_INV_GNT, bits [23:20]

The meaning of this field depends on the value of the NO_TRANS field.

When NO_TRANS == 0:

This field indicates the number of invalidation tokens granted.

The number of invalidation tokens granted is equal to the value of this field
plus one.

This field is ignored when the STATE field has a value of 0.

When NO_TRANS == 1:

Reserved, SBZ.

TOK_TRANS_REQ, bits [19:12]

The meaning of this field depends on the values of the STATE and NO_TRANS fields.

When NO_TRANS == 0 and STATE == 0:

This field indicates the number of translation tokens returned.

The number of translation tokens returned is equal to the value of this field
plus one.

This field must be the value of the TOK_TRANS_GNT field that was
received in the DTI_ATS_CONDIS_ACK message that acknowledged the
connection of the channel.

TOK_TRANS is equal to the encoded value of this field plus one.

When NO_TRANS == 0 and STATE == 1:

This field indicates the number of translation tokens that are requested.

The number of translation tokens requested is equal to the value of this field
plus one.

When NO_TRANS == 1:

Reserved, SBZ.

VERSION, bits [11:8]

This field indicates the requested protocol version.

0b0000 DTI-ATSv1

0b0001 DTI-ATSv2

All other encodings are reserved.

A PCIe RP can request any protocol version it supports. A TCU must accept requests
for later protocol versions, including those not yet defined. The
DTI_ATS_CONDIS_ACK message indicates the protocol version to use.

Bits [7:6]

Reserved, SBZ.

PROTOCOL, bit [5]

This bit indicates the protocol that is used by this PCIe RP.

1 DTI-ATS. This bit must be 1

STATE, bit [4]

This bit indicates the new channel state requested.

0 Disconnect request

1 Connect request

A Disconnect request can only be issued when the channel is in the CONNECTED state.

A Connect request can only be issued when the channel is in the DISCONNECTED
state.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24.

0b0000 DTI_ATS_CONDIS_REQ
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-89
ID061721 Non-Confidential

5 DTI-ATS Messages
5.1 Connection and disconnection message group
5.1.2 DTI_ATS_CONDIS_ACK

The DTI_ATS_CONDIS_ACK message is used to accept or deny a request as part of the connect or disconnect
handshake process.

Description

A connection state change acknowledgment

Source

TCU

Usage constraints

The PCIe RP must have previously issued an unacknowledged DTI_ATS_CONDIS_REQ message.

Flow control result

None

Field descriptions

The DTI_ATS_CONDIS_ACK bit assignments are:

Bits [31:21]

Reserved, SBZ.

OAS, bits [24:21]

DTI-ATSv1

Indicates the output address size, which is the maximum address size
permitted for translated addresses.

0b0000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are Reserved.

DTI-ATSv2

Reserved.

SUP_PRI, Bit [20]

Indicates that the PCIe ATS PRI messages are supported.

If the value of this bit is 0, then DTI_ATS_PAGE_REQ messages must not be issued.

When the value of STATE is 0, this bit is ignored.

DTI-ATSv2

If this bit is 0, then DTI_ATS_PAGE_RESP messages must not be issued.

TOK_TRANS_GNT, bits [19:12]

The meaning of this field depends on the value of
DTI_ATS_CONDIS_REQ.NO_TRANS:

When DTI_ATS_CONDIS_REQ.NO_TRANS == 0

Indicates the number of pre-allocated tokens for translation requests that
have been granted.

7 6 5 4 3 2 1 0 LSB

Reserved
TOK_TRANS_GNT[3:0]

24
16
8
0

TOK_TRANS_GNT[7:4]
VERSION

SLV_MSG_TYPESTATE

SUP_PRI
Reserved

OAS[2:0]/Reserved
OAS[3]/Reserved
5-90 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.1 Connection and disconnection message group
The number of translation tokens granted is equal to the encoded value of
this field plus one.

The value of this field must not be greater than the value of the
TOK_TRANS_REQ field in the DTI_ATS_CONDIS_REQ message that
initiated the connection.

When the value of STATE is 0, this field is ignored.

When DTI_ATS_CONDIS_REQ.NO_TRANS == 1

Reserved, SBZ.

VERSION, bits [11:8]

This bit indicates the protocol version that the TCU has granted.

0b0000 DTI-ATSv1

0b0001 DTI-ATSv2

All other encodings are reserved.

The value of this field must not be greater than the value of the VERSION field in the
DTI_ATS_CONDIS_REQ message.

Bits [7:5]

Reserved, SBZ.

STATE, bit [4]

This bit indicates the new DTI connection state. The possible values of this bit are:

0 DISCONNECTED

1 CONNECTED

When the value of STATE in the unacknowledged DTI_ATS_CONDIS_REQ message
is 0, the value of this bit must be 0.

When the value of STATE in the unacknowledged DTI_ATS_CONDIS_ REQ message
is 1, this field can be 0 or 1. For example, it can be 0 if there are no translation tokens
available. This normally indicates a serious system configuration failure.

SLV_MSG_TYPE, bits [3:0]

Identifies the message type. The value of this field is taken from the list of encodings
for upstream messages, see DTI-ATS protocol upstream message on page 2-24.

0b0000 DTI_ATS_CONDIS_ACK
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-91
ID061721 Non-Confidential

5 DTI-ATS Messages
5.2 Translation request message group
5.2 Translation request message group

This section contains the following subsections:

• DTI_ATS_TRANS_REQ

• DTI_ATS_TRANS_RESP on page 5-94

• DTI_ATS_TRANS_FAULT on page 5-98

• The ATS translation sequence on page 5-100

5.2.1 DTI_ATS_TRANS_REQ

The DTI_ATS_TRANS_REQ message is used to initiate a translation request.

Description

A translation request

Source

PCIe RP

Usage constraints

The PCIe RP must have at least one translation token.

Flow control result

The PCIe RP sends a translation token to the TCU.

Field descriptions

The DTI_ATS_TRANS_REQ bit assignments are:

IA, bits [159:108]

This field holds the input address, IA[63:12], to be used in the translation.

Bits [107:96]

Reserved, SBZ.

SSID, bits [95:76]

This field indicates the SubstreamID value that is used for the translation.

When the value of SSV is 0, this field is Reserved, SBZ.

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

IA[63:16]

ReservedIA[15:12]
Reserved

SSID[19:4]

ReservedSSID[3:0]
Reserved

SID

Reserved
Reserved SSV Reserved nW InD PnU Protocol

TRANSLATION_ID
MST_MSG_TYPEQOS
5-92 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.2 Translation request message group
Bits [75:64]

Reserved, SBZ.

SID, bits [63:32]

This field indicates the StreamID value that is used for the translation.

Bits [31:22]

Reserved, SBZ.

SSV, bit [21]

This bit indicates whether a valid SubstreamID is associated with this translation.

0 SSID not valid

1 SSID valid

Bit [20]

Reserved, SBZ.

nW, bit [19]

This bit indicates whether write access is requested.

0 Read and write access

1 Read-only access

When HTTU is enabled, a value of 0 in this field marks the translation table entry as
Dirty.

InD, bit [18]

This bit indicates whether execute (instruction) access is requested.

0 The translation will only be used for data accesses.

1 The translation might be used for instruction and data accesses.

When the value of SSV is 0, this bit must be 0.

PnU, bit [17]

This bit indicates whether this translation represents privileged or unprivileged access.

0 Unprivileged

1 Privileged

When the value of SSV is 0, this bit must be 0.

PROTOCOL, bit [16]

This bit indicates the protocol that is used for this message.

1 DTI-ATS

This bit must be 1

TRANSLATION_ID, bits [15:8]

This field gives the identification number for the translation.

The value of this field must not be in use by any translation request that has not yet
received a DTI_ATS_TRANS_RESP or DTI_ATS_TRANS_FAULT response.

Any 8-bit translation ID can be used, provided that the maximum number of outstanding
translation requests is not exceeded.

QOS, bits [7:4]

This field indicates the Quality of Service priority level. Translation requests with a high
QOS value are likely to be responded to before requests with a lower QOS value.
This field is a hint.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24

0b0010 DTI_ATS_TRANS_REQ.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-93
ID061721 Non-Confidential

5 DTI-ATS Messages
5.2 Translation request message group
5.2.2 DTI_ATS_TRANS_RESP

The DTI_ATS_TRANS_RESP message is used to respond to a translation request.

Description

A DTI translation response

Source

TCU

Usage constraints

The PCIe RP must have previously issued a translation request that has not yet generated either a
response or a fault message.

Flow control result

The TCU returns a translation token to the PCIe RP.

Field descriptions

The DTI_ATS_TRANS_RESP bit assignments are:

OA, bits [159:108]

This field holds the output address, OA[63:12], of the translated address.

DTI-ATSv1

The address in this field must be within the larger of the following address
sizes:

• The size indicated by the OAS field of the
DTI_ATS_CONDIS_ACK message received during the connection
sequence.

• 40 bits.

This address must be to the first byte in a region of the size that is given by
TRANS_RNG. For example, if the value of TRANS_RNG is 2, then
OA[15:12] must be zero.

When BYPASS is 1, this field must be zero.

7 6 5 4 3 2 1 0 LSB
152
144
136
128
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

OA[63:16]

ReservedOA[15:12]

Reserved TRANS_RNG

ALLOW_X ALLOW_W ALLOW_RReserved

Reserved

Reserved ReservedBYPASS

SLV_MSG_TYPETRANSLATION_ID[3:0]
TRANSLATION_ID[7:4]Reserved UNTRANSLATED

Reserved

Reserved

CXL_IO

AMAReserved Reserved
5-94 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.2 Translation request message group
DTI-ATSv2

Bits within the range given by the TRANS_RNG field must match
DTI_ATS_TRANS_REQ.IA.

For example, if the value of TRANS_RNG is 2, then OA[15:12] must equal
DTI_ATS_TRANS_REQ.IA[15:12].

When the value of BYPASS is 1, this field must equal the value of IA in the
translation request

When the value of UNTRANSLATED is 1, this field is Reserved, SBZ.

Bits [107:95]

Reserved, SBZ.

AMA, bits [94:92]

DTI-ATSv1

Reserved, SBZ.

DTI-ATSv2

This field indicates the translation attributes in a form that is designed for
use by the PCIe ATS Memory Attributes field.

0b000 Normal-WB-RA-WA

0b001 Normal-WB-nRA-WA

0b010 Normal-WB-RA-nWA

0b011 Normal-WB-nRA-nWA

0b100 Device-nRnE

0b101 Device-nRE

0b110 Device-RE

0b111 Normal-NC

Bits [91:84]

Reserved, SBZ.

TRANS_RNG, bits [83:80]

The meaning of this field depends on the value of the
DTI_ATS_TRANS_RESP.BYPASS field:

BYPASS=0

This field indicates the aligned range of addresses translation is valid for.

0b0000 4KB

0b0001 16KB

0b0010 64KB

0b0011 2MB

0b0100 32MB

0b0101 512MB

0b0110 1GB

00111b 16GB

0b1000 4TB

0b1001 128TB

All other values are Reserved.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-95
ID061721 Non-Confidential

5 DTI-ATS Messages
5.2 Translation request message group
BYPASS=1

DTI-ATSv1

This field indicates the maximum output address size of the
system.

0b000 32 bits (4GB)

0b0001 36 bits (64GB)

0b0010 40 bits (1TB)

0b0011 42 bits (4TB)

0b0100 44 bits (16TB)

0b0101 48 bits (256TB)

0b0110 52 bits (4PB)

All other values are reserved.

This information is also given in the OAS field of the
DTI_ATS_CONDIS_ACK message, and uses the same
encodings. When BYPASS=1, this field must match
DTI_ATS_CONDIS_ACK.OAS.

This value is a static property of the system, every transaction
in which the value of the BYPASS field is 1 must return the
same value for this field.

DTI-ATSv2

Reserved, SBZ.

Bits [79:67]

Reserved, SBZ.

ALLOW_X, bit [66]

This bit indicates permissions for instruction reads.

0 Not permitted

1 Permitted

When the value of ALLOW_R is 0, this bit must be 0.

When the value of InD in the DTI_ATS_TRANS_REQ translation request message was
0, this bit must be 0.

ALLOW_W, bit [65]

This bit indicates permissions for data write accesses.

0 Not permitted

1 Permitted

ALLOW_R, bit [64]

This bit indicates permissions for data read accesses.

0 Not permitted

1 Permitted

If the value of ALLOW_W is 0, the value of this field must be 1.

Bits [63:18]

Reserved, SBZ.

BYPASS, bit [17]

This field indicates that translation for this StreamID is bypassed.

0 Normal translation

1 Translation bypassed

When the value of this field is 1, the VA and the PA of the translation are the same.

This bit must be 0 if the value of IA in the translation request is greater than the range
shown in the OAS field of the DTI_ATS_CONDIS_ACK message that was received
during the connection sequence.
5-96 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.2 Translation request message group
Bits [16:14]

Reserved, SBZ.

CXL_IO, bit [13]

DTI-ATSv1

Reserved, SBZ.

DTI-ATSv2

Used by root ports implementing CXL:

0 The translation response can be used by CXL.cache or CXL.io
transactions.

1 The translation response cannot be used by CXL.cache
transactions, and must only be used by CXL.io translated
transactions.

When an ATS translation request is made with the Source_CXL bit set to 1,
the CXL.io bit in the ATS response is the value of this field.

UNTRANSLATED, bit [12]

Indicates whether ATS translations should be used for this page.

0 The U bit in the PCIe ATS Translation Completion Data message must be 0.

1 The U bit in the PCIe ATS Translation Completion Data message must be 1.

This bit might be set when the TCU is not able to provide an ATS translation for the
page.

For example, because of the memory attributes of the translated page.

When the value of this bit is 1, the PCIe Endpoint must access the page using
untranslated transactions.

The ALLOW_R, ALLOW_W, and ALLOW_X values are unaffected by the value of
this bit.

TRANSLATION_ID, bits [11:4]

This field gives the identification number for the translation.

This field must have a value corresponding to an outstanding translation request.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-24.

0b0010 DTI_ATS_TRANS_RESP

Mapping to PCIe Translation Completion Data Entry

When a DTI_ATS_TRANS_RESP message is received, the PCIe Translation Completion Data fields should be
driven as follows:

Table 5-1 PCIe Translation Completion Data field mapping

Field Value

Translated Address, S Depends on the OA, TRANS_RNG and BYPASS fields of
DTI_ATS_TRANS_RESP.

N 0b0

Global 0b0a

Exe DTI_ATS_TRANS_RESP.ALLOW_X

Priv DTI_ATS_TRANS_REQ.PnU
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-97
ID061721 Non-Confidential

5 DTI-ATS Messages
5.2 Translation request message group
5.2.3 DTI_ATS_TRANS_FAULT

The DTI_ATS_TRANS_FAULT message is used to provide a fault response to a translation request.

Description

A translation fault response

Source

TCU

Usage constraints

The PCIe RP must have previously issued a translation request that has not yet generated either a
response or a fault message.

Flow control result

The TCU returns a translation token to the PCIe RP.

Field descriptions

The DTI_ATS_TRANS_FAULT bit assignments are:

Bits [31:19]

Reserved, SBZ.

FAULT_TYPE, bits [18:17]

This bit is used to tell the PCIe RP how to handle the fault.

0b00 InvalidTranslation

0b01 CompleterAbort

0b10 UnsupportedRequest

0b11 Reserved

When the value of this field is InvalidTranslation, this field indicates that ATS requests
are permitted but that the translation resulted in a fault. The PCIe RP returns a
Translation Completion message with the status value as Success and with the Read and
Write bits clear.

When the value of this field is CompleterAbort, this field indicates that there was an
error during the translation process. The PCIe RP returns a Translation Completion
message with the status value as Completer Abort (CA).

U DTI_ATS_TRANS_RESP.UNTRANSLATED

R DTI_ATS_TRANS_RESP.ALLOW_R

W DTI_ATS_TRANS_RESP.ALLOW_W

CXL.io If Source_CXL set in translation request: DTI_ATS_TRANS_RESP.CXL_IO

Else: 0b0

a. Previous versions of this specification included a GLOBAL field in DTI_ATS_TRANS_RESP. This was in error,
since the SMMUv3 architecture requires the Global field in a Translation Completion to be 0.

Table 5-1 PCIe Translation Completion Data field mapping (continued)

Field Value

7 6 5 4 3 2 1 0 LSB
24
16
8
0

Reserved
Reserved

SLV_MSG_TYPE

Reserved FAULT_TYPE

TRANSLATION_ID[3:0]
TRANSLATION_ID[7:4]RESERVED
5-98 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.2 Translation request message group
When the value of this field is UnsupportedRequest, this field indicates that ATS is
disabled for this or all StreamIDs. The PCIe RP returns a Translation Completion
message with a status value as Unsupported Request (UR).

Bits [16:12]

Reserved, SBZ.

TRANSLATION_ID, bits [11:4]

This field gives the identification number for the translation.

This field must have a value corresponding to an outstanding translation request.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-24.

0b0001 DTI_ATS_TRANS_FAULT
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-99
ID061721 Non-Confidential

5 DTI-ATS Messages
5.2 Translation request message group
5.2.4 The ATS translation sequence

A PCIe root complex must convert ATS translation requests from the PCIe world into DTI-ATS translation requests
that the SMMU can respond to.

Figure 5-1 shows the steps required in a full ATS translation process that is supported by DTI.

Figure 5-1 Example complete ATS translation sequence in DTI

The steps in Figure 5-1 are:

1. A PCIe Endpoint sends an ATS translation request to the Root Complex.

2. The Root Complex converts this to a DTI-ATS translation request and passes it to the TCU.

3. The TCU sends a DTI-ATS translation response to the Root Complex.

4. The Root Complex forwards the translation response to the Endpoint.

5. The Endpoint sends a translated transaction using the ATS translation.

6. The Root Complex sends this to a TBU, marked as ATS-translated.

7. The TBU, if it does not already have a suitable translation, sends a DTI-TBU translation request to the TCU.

8. The TCU sends a DTI-TBU translation response to the TBU.

9. The TBU handles the transaction, by either:

a. Forwarding it downstream with the same address.

b. Forwarding it downstream with additional stage 2 translation.

c. Aborting the transaction if ATS is not supported for this stream.

TBUPCIe Root ComplexPCIe Endpoint TCU Memory

1

4

ATS
translation

ATS
translated

check

Downstream
transaction

2

5

6

7

8

9a / 9b
9c

3

5-100 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.2 Translation request message group
The SMMU can be configured to:

• Prohibit ATS translation for individual streams. In this case, the TBU translation check prevents untrusted
Endpoints from issuing physically addressed transactions into the system.

• Return stage 1 translation over ATS and perform stage 2 translation in the TBU. In this case, the TBU
translation fetched in steps 7 and 8 perform stage 2 translation.

• Perform all translation using ATS. In this case, the TBU translation step is performed once to ensure that ATS
is permitted for this stream, and can then be cached for all future transactions. This can be done per-stream
or globally for all streams depending on the SMMU configuration.

Requests for multiple translations

Only one translation can be requested with each DTI_ATS_TRANS_REQ message. If a PCIe Root Complex
receives an ATS translation request for multiple sequential pages, then it can either:

• Convert it into multiple individual DTI_ATS_TRANS_REQ messages and combine the responses.

• Convert it into a single DTI_ATS_TRANS_REQ message and respond with a single translation. This is legal
behavior in PCIe ATS, in effect the Root Complex has denied the request to prefetch additional translations.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-101
ID061721 Non-Confidential

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
5.3 Invalidation and synchronization message group

This section describes the ATS invalidation and synchronization message group.

ATS Invalidation operations are passed to the PCIe Endpoints to invalidate their ATC.

Invalidation SYNC operations ensure that the invalidation and transactions associated with them are complete.

This section contains the following subsections:

• DTI_ATS_INV_REQ

• DTI_ATS_INV_ACK on page 5-103

• DTI_ATS_SYNC_REQ on page 5-104

• DTI_ATS_SYNC_ACK on page 5-105

• The DTI-ATS invalidation sequence on page 5-105

• DTI-ATS invalidation operations on page 5-107

5.3.1 DTI_ATS_INV_REQ

The DTI_ATS_INV_REQ message is used to request the invalidation of data that is stored in a cache.

Description

An invalidation request

Source

TCU

Usage constraints

The TCU must have at least one invalidation token.

Flow control result

The TCU consumes an invalidation token.

Field descriptions

The DTI_ATS_INV_REQ bit assignments are:

VA, bits [127:76]

The Virtual Address or Intermediate Physical Address to be invalidated.

Bits [75:70]

Reserved, SBZ.

7 6 5 4 3 2 1 0 LSB
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

SSID[3:0] OPERATION[7:4]
OPERATION[3:0] SLV_MSG_TYPE

ReservedVA[15:12]

SID

SSID[19:4]

RANGEReserved

VA[63:16]
5-102 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
RANGE, bits [69:64]

This field identifies a range of Virtual Addresses for invalidation.

The range is calculated as 2RANGE addresses, in multiples of 4KB pages. The bottom
RANGE bits of the VA[63:12] field are ignored in this message, and the bottom
RANGE bits of the IA[63:12] field are ignored in the translations being considered for
invalidation. If RANGE is 52, all addresses are invalidated, and the VA field is ignored.

SID, bits [63:32]

This field indicates the StreamID to be invalidated.

The receiving PCIe RP must check to see if the value of this field is a StreamID that it
uses. In the case that the StreamID is not used by this PCIe RP, the PCIe RP must
acknowledge this message without performing an operation.

Note
The PCIe RP must be aware of the StreamID range which it occupies. When the
StreamID is outside of its range, the PCIe RP must generate a DTI_ATS_INV_ACK
message instead of trying to issue an invalidate request message to an endpoint.

SSID, bits [31:12]

This field indicates the SubstreamID to be invalidated.

The encoding of the OPERATION field might cause this field to be invalid. When this
field is invalid, it is reserved, SBZ.

OPERATION, bits [11:4]

This field identifies the type of invalidation operation being performed.

When a PCIe RP receives a message with an unrecognized OPERATION field value,
this specification recommends that the PCIe RP acknowledges the invalidation without
performing any operation.

The encoding of this field might cause other fields in this message to be invalid, for
more information see DTI-ATS invalidation operations on page 5-107.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-24.

0b1100 DTI_ATS_INV_REQ

5.3.2 DTI_ATS_INV_ACK

The DTI_ATS_INV_ACK message is used to acknowledge a cache invalidation request.

Description

A cache data invalidate acknowledgment

Source

PCIe RP

Usage constraints

The TCU must have previously issued an invalidation request that has not yet been acknowledged.

Flow control result

The PCIe RP returns an invalidation token to the TCU.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-103
ID061721 Non-Confidential

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
Field descriptions

The DTI_ATS_INV_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24.

0b1100 DTI_ATS_INV_ACK

5.3.3 DTI_ATS_SYNC_REQ

The DTI_ATS_SYNC_REQ message is used to request synchronization between the PCIe RP and TCU.

Description

A synchronization request

Source

TCU

Usage constraints

There must be no currently unacknowledged synchronization requests.

There must be no currently unacknowledged invalidation requests.

Note

It is legal to receive the message even when there are no prior invalidation requests to synchronize.

Flow control result

None.

Field descriptions

The DTI_ATS_SYNC_REQ bit assignments are:

Bits [7:4]

Reserved, SBZ.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-24.

0b1101 DTI_ATS_SYNC_REQ

7 6 5 4 3 2 1 0 LSB
0MST_MSG_TYPEReserved

7 6 5 4 3 2 1 0 LSB
0SLV_MSG_TYPEReserved
5-104 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
5.3.4 DTI_ATS_SYNC_ACK

The DTI_ATS_SYNC_ACK message is used to acknowledge a synchronization request.

Description

A synchronization acknowledge

Source

PCIe RP

Usage constraints

There must currently be an outstanding synchronization request.

Flow control result

None

Field descriptions

The DTI_ATS_SYNC_ACK bit assignments are:

Bits [7:5]

Reserved, SBZ.

ERROR, bit [4]

This bit indicates that a PCIe error has occurred.

0 Success

1 Error

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24.

0b1101 DTI_ATS_SYNC_ACK

5.3.5 The DTI-ATS invalidation sequence

ATS invalidation messages are used only to invalidate ATCs in a PCIe Endpoint. They are not used to invalidate
TBU caches.

SMMUv3 requires that a TCU that intends to invalidate entries in an ATC must first invalidate the equivalent TBU
entries. This results in an invalidation sequence shown in Figure 5-2 on page 5-106.

7 6 5 4 3 2 1 0 LSB
Reserved MST_MSG_TYPEERROR 0
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-105
ID061721 Non-Confidential

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
Figure 5-2 DTI-ATS invalidation sequence

The invalidation sequence in Figure 5-2 has the following steps:

1. The TCU issues a TLB invalidate operation to the TBU and waits for it to complete.

2. The TCU issues an invalidation synchronization operation to the TBU and waits for it to complete.

3. The TCU issues an ATS invalidation operation to the PCIe Root Complex and waits for it to complete.

4. The TCU issues an invalidation synchronization to the PCIe Root Complex and waits for it to complete.

The return of a DTI_ATS_SYNC_ACK message indicates that:

• Responses have been received from the appropriate Endpoints for DTI_ATS_INV_REQ messages that were
received before the corresponding DTI_ATS_SYNC_REQ was received.

• No further accesses to memory are made using those translations, that is, transactions using those translations
are complete.

Note

A DTI_ATS_SYNC_ACK message is likely to be dependent upon completion of outstanding translations in the
downstream TBU. This does not cause deadlocks because SMMUv3 stalling faults are not permitted for PCIe RPs.
This dependency is likely because DTI_ATS_SYNC_ACK is dependent on the Root Complex receiving
invalidation completion messages from Endpoints, and those completion messages are ordered behind posted writes
that might need translating.

Handling outstanding invalidations

PCIe requires that Endpoints support a minimum of 32 outstanding invalidation operations that must be accepted
whether downstream transactions are able to make forward progress or not.

DTI-TBU invalidation
sequence

DTI_TBU_INV_ACK

DTI_TBU_SYNC_REQ

DTI_TBU_SYNC_ACK

DTI_TBU_INV_REQ

PCIe Root ComplexTBUTCU

DTI_ATS_SYNC_REQ

DTI_ATS_SYNC_ACK

DTI_ATS_INV_ACK

DTI_ATS_INV_REQ
5-106 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
However, not all Endpoints can consume this number of invalidation operations without backpressure. And so, for
performance reasons, the number of invalidate operations that should be outstanding in an Endpoint at one time
might be less.

A PCIe RPs indicates in DTI_ATS_CONDIS_REQ.TOK_INV_GNT how many invalidation messages it can accept
without giving backpressure on the DTI interface. It should buffer these locally so that the DTI interface is not
stalled waiting for an Endpoint to progress an invalidation.

DTI-ATS invalidation tokens are only used for flow control of invalidation messages on the DTI channel. The Root
Complex does not need to receive an Invalidation Completion message from an Endpoint before it returns a
DTI_ATS_INV_ACK message on DTI-ATS. It can return a DTI_ATS_INV_ACK message as soon as it has
successfully sent an Invalidation Request message to the Endpoint and is able to buffer a new DTI_ATS_INV_REQ
message.

The Endpoint must return all Invalidation Completion messages before the Root Complex returns a
DTI_ATS_SYNC_ACK message. If a new DTI_ATS_INV_REQ message is received after a
DTI_ATS_SYNC_REQ, the Root Complex must do both of the following:

• Issue an Invalidation Request message to the Endpoint without waiting for the DTI_ATS_SYNC_ACK to be
returned.

• Not wait for a corresponding Invalidation Completion message from the Endpoint for this invalidation before
returning the currently outstanding DTI_ATS_SYNC_ACK message.

Ensuring downstream transaction completion

When an Endpoint returns an Invalidation Completion message, it guarantees that:

• All outstanding read requests that use the invalidated translations are complete.

• All posted write requests are pushed ahead of the Invalidation Completion message.

It does not guarantee that the posted write requests are complete, as memory writes in PCIe do not receive a
response.

To ensure correct ordering, the Root Complex must ensure that posted writes intended for the AMBA system, that
were received before the Invalidation Completion, have been issued downstream and are complete. A Root
Complex can only return a DTI_ATS_SYNC_REQ message when this requirement has been met. The Root
Complex is not required to ensure that reads are complete because this has already been ensured by the Endpoint.

5.3.6 DTI-ATS invalidation operations

This section gives information about the DTI-ATS cache invalidation operations.

Types of invalidation operation

The following table specifies the OPERATION field encodings and describes how the type of invalidation being
performed affects the scope of the DTI_ATS_INV_REQ message. Other encodings of the OPERATION field are
Reserved.

Table 5-2 List of invalidation operations

Field encoding Invalidation operations Substream Valid Valid fields

0x31 ATCI_NOPASID SSV = 0 SID, VA, RANGE

0x33 ATCI_PASID_GLOBAL Global SID, VA, RANGE

0x39 ATCI_PASID SSV = 1 SID, SSID, VA, RANGE
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-107
ID061721 Non-Confidential

5 DTI-ATS Messages
5.3 Invalidation and synchronization message group
Mapping DTI-ATS to SMMUv3 invalidate operations

DTI-ATS invalidation operations are generated as a result of commands in the SMMU command queue, the
following table shows how these are mapped to DTI-ATS invalidate operations.

For more information, see the Arm System MMUv3 (SMMUv3) Architecture Specification.

Table 5-3 Mapping DTI-ATS operation to SMMUv3 command

SMMUv3 Command SSValid field value Global field value DTI-ATS Operation

CMD_ATC_INV 0 - ATCI_NOPASID

CMD_ATC_INV 1 0 ATCI_PASID

CMD_ATC_INV 1 1 ATCI_PASID_GLOBAL
5-108 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.4 Page request message group
5.4 Page request message group

The messages of this section enable a PCIe RPs to directly request software makes pages available. The messages
of this group implement the PCIe ATS PRI.

The full details of the PCIe ATS PRI operations are not described here. For further information, see the PCIe
Address Translation Service specification.

This section contains the following subsections:

• DTI_ATS_PAGE_REQ

• DTI_ATS_PAGE_ACK on page 5-111

• DTI_ATS_PAGE_RESP on page 5-111

• DTI_ATS_PAGE_RESPACK on page 5-113

• Generating the page response on page 5-113

5.4.1 DTI_ATS_PAGE_REQ

The DTI_ATS_PAGE_REQ message is used to request that a page is made available.

Description

A speculative page request

Source

PCIe RP

Usage constraints

• There must be no current outstanding unacknowledged DTI_ATS_PAGE_REQ message.

• DTI_ATS_CONDIS_ACK.SUP_PRI was 1 during the connect sequence.

Flow control result

None

Field descriptions

The DTI_ATS_PAGE_REQ bit assignments are:

ADDR, bits [127:76]

This field holds the Page address[63:12] that is requested.

Bits [75:73]

Reserved, SBZ.

7 6 5 4 3 2 1 0 LSB
120
112
104
96
88
80
72
64
56
48
40
32
24
16
8
0

ADDR[63:16]

ADDR[15:12]

SSID[19:4]

SSID[3:0]

SID

PRG_INDEX[7:0]

SSV LAST WRITE READ
PRIV PROTOCOL MST_MSG_TYPE

PRG_INDEX[8]Reserved

INST Reserved
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-109
ID061721 Non-Confidential

5 DTI-ATS Messages
5.4 Page request message group
PRG_INDEX, bits [72:64]

This field identifies the Page Request group index.

SID, bits [63:32]

This field indicates the StreamID used for this transaction.

SSID, bits [31:12]

This field holds the SubstreamID used for this transaction.

If the value of SSV is 0, this field is reserved, SBZ.

SSV, bits [11]

This bit indicates whether a valid SubstreamID is associated with this transaction.

0 SSID not valid

1 SSID valid

LAST, bit [10]

This bit indicates whether this message is the last request in a page request group.

Note
The “Stop PASID” marker is indicated by SSV=1, LAST=1, READ=0, WRITE=0.

WRITE, bit [9]

This bit indicates whether write access is requested.

0 Write access is not requested

1 Write access is requested

A page request does not set the Dirty flag.

READ, bit [8]

This bit indicates whether read access is requested.

0 Read access is not requested

1 Read access is requested

INST, bit [7]

This bit indicates whether execute access is requested.

0 Execute access is not requested

1 Execute access is requested

If the value of READ is 0, the value of this bit must be 0.

PRIV, bit [6]

This bit indicates whether privileged access is requested.

0 Unprivileged

1 Privileged

Bit [5]

Reserved, SBZ.

PROTOCOL, bit [4]

This bit indicates the protocol that is used for this message.

1 DTI-ATS

This bit must be 1.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24.

0b1000 DTI_ATS_PAGE_REQ
5-110 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.4 Page request message group
5.4.2 DTI_ATS_PAGE_ACK

The DTI_ATS_PAGE_ACK message is used to acknowledge a page request.

Description

A page request acknowledgment

Source

TCU

Usage constraints

The PCIe RP must have previously issued a DTI_ATS_PAGE_REQ message that has not yet been
acknowledged.

Flow control result

None

Field descriptions

The DTI_ATS_PAGE_ACK bit assignments are:

Bits [7:4]

Reserved, SBZ.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-24.

0b1000 DTI_ATS_PAGE_ACK

5.4.3 DTI_ATS_PAGE_RESP

The DTI_ATS_PAGE_RESP message is used to respond to an ATS page request.

Description

An ATS page response

Source

TCU

Usage constraints

DTI-ATSv1: None

DTI-ATSv2: There must be no current unacknowledged DTI_ATS_PAGE_RESP message.

Flow control result

None

7 6 5 4 3 2 1 0 LSB
0SLV_MSG_TYPEReserved
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-111
ID061721 Non-Confidential

5 DTI-ATS Messages
5.4 Page request message group
Field descriptions

The DTI_ATS_PAGE_RESP bit assignments are:

Bits [95:78]

Reserved, SBZ.

RESP, bits [77:76]

This field indicates the response code to the page request.

0b00 ResponseFailure

0b01 InvalidRequest

0b10 Success

0b11 Reserved

When the value of this field is ResponseFailure, a permanent error is indicated.

When the value of this field is InvalidRequest, the page-in was unsuccessful for at least
one of the pages in the group.

When the value of this field is Success, the page-in was successful for all pages. This
does not guarantee the success of a subsequent translation request to this page.

Bits [75:73]

Reserved, SBZ.

PRG_INDEX, bits [72:64]

This field holds the page request group index.

SID, bits [63:32]

This field holds the StreamID used for this page request.

The receiving TBU or PCIe RP must check to see if the value of this field is a StreamID
that it uses. In the case that the StreamID is not used by this TBU or PCIe RP, the TBU
or PCIe RP must ignore this message.

Note
The PCIe RP must be aware of the StreamID range that it occupies. When the StreamID
is outside of its range, the PCIe RP must generate a DTI_ATS_PAGE_RESPACK
message instead of trying to issue a PRI response message to an endpoint.

SSID, bits [31:12]

This field holds the SubstreamID used for this page request.

If the value of SSV is 0, this field is 0.

SSV, bits [11]

This bit indicates whether a valid SubstreamID is associated with this transaction.

0 SSID not valid

1 SSID valid

7 6 5 4 3 2 1 0 LSBLSB
88
80
72
64
56
48
40
32
24
16
8
0

SSID[19:4]

Reserved
SSID[3:0]

SID

PRG_INDEX[7:0]

SSV
SLV_MSG_TYPE

PRG_INDEX[8]Reserved

Reserved

Reserved RESP

Reserved
5-112 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

5 DTI-ATS Messages
5.4 Page request message group
Bits [10:4]

Reserved, SBZ.

SLV_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for upstream messages, see DTI-ATS protocol upstream message on
page 2-24.

0b1001 DTI_ATS_PAGE_RESP

5.4.4 DTI_ATS_PAGE_RESPACK

The DTI_ATS_PAGE_RESPACK message is used to acknowledge DTI_ATS_PAGE_RESP messages.

Description

Acknowledges DTI_ATS_PAGE_RESP messages

Source

PCIe RP

Usage constraints

There must be at least one current outstanding unacknowledged DTI_ATS_PAGE_RESP message.
Protocol version is DTI-ATSv2 or greater.

Flow control result

None

Field descriptions

The DTI_ATS_PAGE_RESPACK bit assignments are:

Bits [7:4]

Reserved, SBZ.

MST_MSG_TYPE, bits [3:0]

This field identifies the message type. The value of this field is taken from the list of
encodings for downstream messages, see DTI-ATS protocol downstream messages on
page 2-24.

0b1001 DTI_ATS_PAGE_RESPACK

5.4.5 Generating the page response

If the DTI_ATS_PAGE_REQ was a PCIe PRI message, it is intended that it should result in a
DTI_ATS_PAGE_RESP. However, the DTI_ATS_PAGE_RESP is generated by a software operation and cannot be
guaranteed by the DTI protocol.

It is a software-level protocol error if a DTI_ATS_PAGE_RESP message with a StreamID used by the TBU or PCIe
RP does not match an unanswered DTI_ATS_PAGE_REQ, when the value of LAST is 1, with the same
PRG_INDEX value that is not a "Stop PASID" marker.

DTI_ATS_PAGE_RESP messages can be broadcast to all DTI_ATS TBU or PCIe RPs. As such, a
DTI_ATS_PAGE_RESP message might be received with a StreamID that is not used by the TBU or PCIe RP and
that does not match any of the StreamIDs from its unanswered DTI_ATS_PAGE_REQ messages.

7 6 5 4 3 2 1 0 LSB
Reserved 0MST_MSG_TYPE
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 5-113
ID061721 Non-Confidential

5 DTI-ATS Messages
5.4 Page request message group
Note

If a DTI_ATS_PAGE_RESP message is received with its RESP field as ResponseFailure, this requirement is
suspended for the StreamID until the Page Request Interface can be re-enabled for that StreamID. For more
information, see PCI Express Address Translation Services Revision 1.1.
5-114 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Chapter 6
Transport Layer

This chapter describes the transport layer of the DTI protocol.

It contains the following sections:

• Introduction on page 6-116

• AXI4-Stream transport protocol on page 6-117
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 6-115
ID061721 Non-Confidential

6 Transport Layer
6.1 Introduction
6.1 Introduction

The DTI protocol can be conveyed over different transport layer mediums. This specification uses AXI4-Stream as
an example transport medium.

The transport layer is responsible for:

• Indicating the source or destination of the message.

• Managing the link-level flow control.

The transport layer is not permitted to:

• Reorder the messages in the DTI protocol.

• Interleave messages in the DTI protocol.
6-116 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

6 Transport Layer
6.2 AXI4-Stream transport protocol
6.2 AXI4-Stream transport protocol

This section defines the use of AXI4-Stream as a transport protocol.

This section contains the following subsections:

• AXI4-Stream signals

• Interleaving on page 6-118

• Usage of the TID and TDEST signals on page 6-118

6.2.1 AXI4-Stream signals

An AXI4-Stream link for DTI consists of two AXI4-Stream interfaces, one for each direction.

The following table shows the mapping of AXI4-Stream signals for the DTI protocol.

Table 6-1 Mapping of AXI4-Stream to the DTI protocol

Signal Usage Notes

TVALID Flow control -

TREADY Flow control -

TDATA Message data Multi-cycle messages are permitted if the data is larger than the
width of TDATA.

A new message must always start on TDATA[0].

TKEEP Indicates valid bytes Indicates which bytes contain valid data, with one bit for each byte
of TDATA.

Valid bytes must be packed towards the least significant byte. The
least significant byte must always be valid.

All bytes must be valid if TLAST is LOW.

TSTRB Not implemented Uses default value of all bits equal to the corresponding bit of
TKEEP.

TLAST Last cycle of message Each DTI message is transported as a number of AXI4-Stream
transfers. This signal is used to indicate the last transfer of a
message.

Even if this interface is wide enough to carry all messages in a single
cycle, this signal must be implemented.

TID Originator node ID or
not implemented

The meaning of this signal depends on the direction of the interface:

• For a downstream interface, this signal indicates the source of
the message.

• For an upstream interface, this signal is not implemented.
There is only one TCU in the network.

TDEST Destination node ID
or not implemented

The meaning of this signal depends on the direction of the interface:

• For a downstream interface, this signal is not implemented.
There is only one TCU in the network.

• For an upstream interface, this signal indicates the destination
of the message.

TUSER Not implemented The DTI protocol does not require this signal.
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. 6-117
ID061721 Non-Confidential

6 Transport Layer
6.2 AXI4-Stream transport protocol
The signal names of the AXI4-Stream interface are given a suffix to indicate the direction of the interface they are
using. The following table shows how the signals are suffixed.

For example, the downstream TDATA signal is TDATA_DTI_DN.

Components can add a further suffix to distinguish between multiple interfaces.

6.2.2 Interleaving

Message of the DTI protocol must not be interleaved when TID and TDEST are different. When an AXI4-Stream
transfer is received with TLAST LOW, subsequent AXI4-Stream transfers must continue the same message with
the same TID and TDEST until TLAST is HIGH. After TLAST is HIGH, a new message is permitted.

6.2.3 Usage of the TID and TDEST signals

In some cases, a TBU or PCIe RP might not be aware of what value to use for the TID signal. This specification
does not require the TID signal to be generated at the source. This specification recommends that:

• A TBU or PCIe RP interface does not implement the following:

— TID_DTI_DN

— TDEST_DTI_UP

• An interconnect that connects multiple DTI interfaces to a single TCU adds additional bits, as required, to
the TID signal. The interconnect accepts messages from the TCU and redirects them to the appropriate
component by IMPLEMENTATION DEFINED mapping of the TID signal.

This scheme can be extended to support hierarchical interconnects, with each layer of interconnect adding additional
ID bits to the TID signal if necessary.

Table 6-2 Suffixes appended to the AXI4-Stream signals

Direction Suffix

Downstream (TBU or PCIe RP to TCU) *_DTI_DN

Upstream (TCU to TBU or PCIe RP) *_DTI_UP
6-118 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Appendix A
Pseudocode

This appendix provides example implementations of the requirements specified in this document.

The pseudocode language is as described in the Arm Architecture Reference Manual, Armv8, for Armv8-A
architecture profile.

It contains the following section:

• Memory attributes on page A-120
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. A-119
ID061721 Non-Confidential

Appendix A Pseudocode
A.1 Memory attributes
A.1 Memory attributes

This section details the decoding and processing of memory attributes in DTI.

This section contains the following subsections:

• Memory attribute types

• Memory attribute decoding on page A-121

• Memory attribute processing on page A-122

A.1.1 Memory attribute types

These types are used to describe propagating, modifying, combining, and overriding memory attributes.

enumeration MemoryType {
MemType_Normal,
MemoryType_GRE,
MemoryType_nGRE,
MemoryType_nGnRE,
MemoryType_nGnRnE

};

type MemAttrHints is (
bits(2) attrs, // The possible encodings for each attributes field are as below
bit ReadAllocate,
bit WriteAllocate,
bit Transient

)
constant bits(2) MemAttr_NC = ‘00’; // Non-cacheable
constant bits(2) MemAttr_WT = ‘10’; // Write-through
constant bits(2) MemAttr_WB = ‘11’; // Write-back

type MemoryAttributes is (
MemoryType type,
MemAttrHints inner, // Inner hints and attributes
MemAttrHints outer, // Outer hints and attributes
SH_e SH

)

A-120 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Appendix A Pseudocode
A.1 Memory attributes
A.1.2 Memory attribute decoding

These functions unpack encoded memory attributes from messages into their conceptual component properties.

MemAttrHintsDecode()

// MemAttrHintsDecode()
// ====================
// Converts the attribute fields for Normal memory as used in stage 2
// descriptors to orthogonal attributes and hints.
MemAttrHints MemAttrHintsDecode(bits(2) attr)

MemAttrHints result;

case attr of
when ‘01’ // Non-cacheable (no allocate)

result.attrs = MemAttr_NC;
result.ReadAllocate = ‘0’;
result.WriteAllocate = ‘0’;

when ‘10’ // Write-through
result.attrs = MemAttr_WT;
result.ReadAllocate = ‘1’;
result.WriteAllocate = ‘1’;

when ‘11’ // Write-back
result.attrs = MemAttr_WB;
result.ReadAllocate = ‘1’;
result.WriteAllocate = ‘1’;
result.Transient = ‘0’;

return result;

DecodeMemAttr()

// DecodeMemAttr()
// ===============
// Converts the MemAttr short-from field from stage 2 descriptors
// into the unpacked MemoryAttributes type.

MemoryAttributes DecodeMemAttr(bits(4) memattr)

MemoryAttributes memattrs;
if memattr<3:2> == ‘00’ then // Device

case memattr<1:0> of
when ‘00’ memattrs.type = MemoryType_nGnRnE;
when ‘01’ memattrs.type = MemoryType_nGnRE;
when ‘10’ memattrs.type = MemoryType_nGRE;
when ‘11’ memattrs.type = MemoryType_GRE;

memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.SH = OuterShareable;

elsif memattr<1:0> != ‘00’ then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = MemAttrHintsDecode(memattr<3:2>);
memattrs.inner = MemAttrHintsDecode(memattr<1:0>);
if (memattrs.inner.attrs == MemAttr_NC

&& memattrs.outer.attrs == MemAttr_NC) then
memattrs.SH = OuterShareable;

else
// Unreachable
assert(FALSE);

return memattrs;
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. A-121
ID061721 Non-Confidential

Appendix A Pseudocode
A.1 Memory attributes
LongConvertAttrsHints()

// LongConvertAttrsHints()
// =======================
// Decodes the attribute fields for Normal memory as used in stage 1
// descriptors to orthogonal attributes and hints.
MemAttrHints LongConvertAttrsHints(bits(4) attrfield)

MemAttrHints result;

if attrfield<3:2> == ‘00’ then // Write-through transient
result.attrs = MemAttr_WT;
result.ReadAllocate = attrfield<1>;
result.WriteAllocate = attrfield<0>;
result.Transient = ‘1’;

elsif attrfield<3:0> == ‘0100’ then // Non-cacheable (no allocate)
result.attrs = MemAttr_NC;
result.ReadAllocate = ‘0’;
result.WriteAllocate = ‘0’;
result.Transient = ‘0’;

elsif attrfield<3:2> == ‘01’ then // Write-back transient
result.attrs = MemAttr_WB;
result.ReadAllocate = attrfield<1>;
result.WriteAllocate = attrfield<0>;
result.Transient = ‘1’;

else // Write-through/Write-back non-transient
result.attrs = attrfield<3:2>;
result.ReadAllocate = attrfield<1>;
result.WriteAllocate = attrfield<0>;
result.Transient = ‘0’;

return result;

DecodeAttr()

// DecodeAttr()
// ============
// Converts the long-from ATTR field from stage 1 descriptors
// into the unpacked MemoryAttributes type.
MemoryAttributes DecodeAttr(bits(8) attrfield)

MemoryAttributes memattrs;

assert !(attrfield<7:4> != ‘0000’ && attrfield<3:0> == ‘0000’);
assert !(attrfield<7:4> == ‘0000’ && attrfield<3:0> != ‘xx00’);

if attrfield<7:4> == ‘0000’ then // Device
case attrfield<3:0> of

when ‘0000’ memattrs.type = MemoryType_nGnRnE;
when ‘0100’ memattrs.type = MemoryType_nGnRE;
when ‘1000’ memattrs.type = MemoryType_nGRE;
when ‘1100’ memattrs.type = MemoryType_GRE;

memattrs.inner = MemAttrHints UNKNOWN;
memattrs.outer = MemAttrHints UNKNOWN;
memattrs.SH = OuterShareable;

elsif attrfield<3:0> != ‘0000’ then // Normal
memattrs.type = MemType_Normal;
memattrs.outer = LongConvertAttrsHints(attrfield<7:4>);
memattrs.inner = LongConvertAttrsHints(attrfield<3:0>);

return memattrs;

A.1.3 Memory attribute processing

This section details the procedures for combining memory type information.
A-122 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Appendix A Pseudocode
A.1 Memory attributes
DefaultMemAttrHints()

// DefaultMemAttrHints()
// =====================
// Populate MemoryAttribute sub-fields with default values that might be
// required later in combine/modify operations.
MemoryAttributes DefaultMemAttrHints(MemoryAttributes current_attr)

if (current_attr.type != MemType_Normal
|| current_attr.inner.attrs == MemAttr_NC) then

current_attr.inner.ReadAllocate = ‘1’;
current_attr.inner.WriteAllocate = ‘1’;
current_attr.inner.Transient = ‘0’;

if (current_attr.type != MemType_Normal
|| current_attr.outer.attrs == MemAttr_NC) then

current_attr.outer.ReadAllocate = ‘1’;
current_attr.outer.WriteAllocate = ‘1’;
current_attr.outer.Transient = ‘0’;

return current_attr;

CombineMemoryType()

// CombineMemoryType()
// ===================
// Return the stronger of two memory types.

MemoryAttributes CombineMemoryType(MemoryAttributes attr_a, MemoryAttributes attr_b)

if attr_a.type == MemoryType_nGnRnE || attr_b.type == MemoryType_nGnRnE then
attr_a.type = MemoryType_nGnRnE;

elsif attr_a.type == MemoryType_nGnRE || attr_b.type == MemoryType_nGnRE then
attr_a.type = MemoryType_nGnRE;

elsif attr_a.type == MemoryType_nGRE || attr_b.type == MemoryType_nGRE then
attr_a.type = MemoryType_nGRE;

elsif attr_a.type == MemoryType_GRE || attr_b.type == MemoryType_GRE then
attr_a.type = MemoryType_GRE;

else
attr_a.type = MemType_Normal;
attr_a.inner.attrs = (attr_a.inner.attrs AND attr_b.inner.attrs);
attr_a.outer.attrs = (attr_a.outer.attrs AND attr_b.outer.attrs);

return attr_a;

CombineShareability()

// CombineShareability()
// =====================
// Return the stronger of two shareability values.
SH_e CombineShareability(SH_e sh_a, SH_e sh_b)

if sh_a == OuterShareable || sh_b == OuterShareable then
return OuterShareable;

elsif sh_a == InnerShareable || sh_b == InnerShareable then
return InnerShareable;

elsif sh_a == NonShareable || sh_b == NonShareable then
return NonShareable;
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. A-123
ID061721 Non-Confidential

Appendix A Pseudocode
A.1 Memory attributes
CombineAllocHints()

// CombineAllocHints()
// ===================
// Return the stronger transient, read, and write allocation hints of
// two sets of memory attributes.

MemoryAttributes CombineAllocHints(MemoryAttributes attr_a, MemoryAttributes attr_b)

// Combine the allocation hints. The strongest (encoded as 0) should take
// precedence over the weakest (encoded as 1).
attr_a.inner.WriteAllocate = (attr_a.inner.WriteAllocate AND attr_b.inner.

WriteAllocate);
attr_a.inner.ReadAllocate = (attr_a.inner.ReadAllocate AND attr_b.inner.

ReadAllocate);
attr_a.outer.WriteAllocate = (attr_a.outer.WriteAllocate AND attr_b.outer.

WriteAllocate);
attr_a.outer.ReadAllocate = (attr_a.outer.ReadAllocate AND attr_b.outer.

ReadAllocate);

// Combine the transient hints. The strongest (encoded as 1) should take
// precedence over the weakest (encoded as 0).
attr_a.inner.Transient = (attr_a.inner.Transient OR attr_b.inner.

Transient);
attr_a.outer.Transient = (attr_a.outer.Transient OR attr_b.outer.

Transient);
return attr_a;

ModifyShareability()

// ModifyShareability()
// ====================
// Override shareability using the SHCFG field.

MemoryAttributes ModifyShareability(MemoryAttributes current_attr, SHCFG_e shcfg)
case shcfg of

when SHCFG_NonShareable
current_attr.SH = NonShareable;

when SHCFG_UseIncoming
current_attr.SH = current_attr.SH;

when SHCFG_OuterShareable
current_attr.SH = OuterShareable;

when SHCFG_InnerShareable
current_attr.SH = InnerShareable;

return current_attr;

ReplaceMemoryType()

// ReplaceMemoryType()
// ===================
// Replace the memory type and Cacheability in the first parameter
// with that from the second parameter.

MemoryAttributes ReplaceMemoryType(MemoryAttributes current_attr, MemoryAttributes new_attr)
current_attr.type = new_attr.type;
current_attr.inner.attrs = new_attr.inner.attrs;
current_attr.outer.attrs = new_attr.outer.attrs;

return current_attr;
A-124 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Appendix A Pseudocode
A.1 Memory attributes
ReplaceAllocHints()

// ReplaceAllocHints()
// ===================
// Replace the allocation hints in the first parameter
// with that from the second parameter.

MemoryAttributes ReplaceAllocHints(MemoryAttributes current_attr, MemoryAttributes new_attr)
current_attr.inner.ReadAllocate = new_attr.inner.ReadAllocate;
current_attr.inner.WriteAllocate = new_attr.inner.WriteAllocate;
current_attr.inner.Transient = new_attr.inner.Transient;
current_attr.outer.ReadAllocate = new_attr.outer.ReadAllocate;
current_attr.outer.WriteAllocate = new_attr.outer.WriteAllocate;
current_attr.outer.Transient = new_attr.outer.Transient;

return current_attr;
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. A-125
ID061721 Non-Confidential

Appendix A Pseudocode
A.1 Memory attributes
A-126 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

Appendix B
Revisions

This appendix describes the technical changes between released issues of this book.

Table B-1 Differences between Issue E.b and Issue E

Change Location

Addition of DTI_ATS_PAGE_RESPACK
message to the DTI-ATS protocol downstream
message table

DTI-ATS protocol downstream message on page 2-24

Correction to the FLOW[1] bit of the
DTI_TBU_TRANS_REQ message

DTI_TBU_TRANS_REQ on page 3-36

DTI_TBU_SYNC_REQ usage constraints

clarification

DTI_TBU_SYNC_REQ on page 3-66

Clarification of the SID bits of the
DTI_ATS_INV_REQ message

DTI_ATS_INV_REQ on page 5-102

DTI_ATS_SYNC_REQ usage constraints

clarification

DTI_ATS_SYNC_REQ on page 5-104

DTI_ATS_PAGE_RESP usage constraints

clarification

DTI_ATS_PAGE_RESP on page 5-111
ARM IHI 0088E.b Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. B-127
ID061721 Non-Confidential

Appendix B Revisions

Clarification of the SID bits of the
DTI_ATS_PAGE_RESP message

DTI_ATS_PAGE_RESP on page 5-111

DTI_ATS_PAGE_RESPACK usage constraints

clarification

DTI_ATS_PAGE_RESPACK on page 5-113

Correction to the MST_MSG_TYPE bits of the
DTI_ATS_PAGE_RESPACK message

DTI_ATS_PAGE_RESPACK on page 5-113

Table B-1 Differences between Issue E.b and Issue E (continued)

Change Location
B-128 Copyright © 2016-2021 Arm Limited or its affiliates. All rights reserved. ARM IHI 0088E.b
Non-Confidential ID061721

	AMBA DTI Protocol Specification
	Contents
	Preface
	About this specification
	Intended audience
	Using this specification
	Conventions
	Typographic conventions
	Signals
	Numbers

	Additional reading
	Arm publications
	Other publications

	Feedback
	Feedback on this specification

	1: Introduction�
	1.1 About DTI protocols
	1.1.1 Protocol interaction
	1.1.2 Field references

	1.2 DTI Protocol Specification Terminology

	2: DTI Protocol Overview�
	2.1 DTI protocol messages
	2.1.1 Message groups
	2.1.2 Message listing
	2.1.3 Flow control
	2.1.4 Reserved fields
	2.1.5 IMPLEMENTATION DEFINED fields

	2.2 Managing DTI connections
	2.2.1 Channel states
	2.2.2 Handshaking
	2.2.3 Initialization and disconnection
	2.2.4 Connecting multiple TBUs or PCIe RPs to a TCU

	3: DTI-TBU Messages�
	3.1 Connection and disconnection message group
	3.1.1 DTI_TBU_CONDIS_REQ
	3.1.2 DTI_TBU_CONDIS_ACK

	3.2 Translation request message group
	3.2.1 DTI_TBU_TRANS_REQ
	3.2.2 DTI_TBU_TRANS_RESP
	3.2.3 DTI_TBU_TRANS_FAULT
	3.2.4 Additional rules on permitted translation responses
	3.2.5 Calculating transaction attributes
	3.2.6 Speculative transactions and translations

	3.3 Invalidation and synchronization message group
	3.3.1 DTI_TBU_INV_REQ
	3.3.2 DTI_TBU_INV_ACK
	3.3.3 DTI_TBU_SYNC_REQ
	3.3.4 DTI_TBU_SYNC_ACK
	3.3.5 The DTI-TBU invalidation sequence
	3.3.6 DTI-TBU invalidation operations

	3.4 Register access message group
	3.4.1 DTI_TBU_REG_WRITE
	3.4.2 DTI_TBU_REG_WACK
	3.4.3 DTI_TBU_REG_READ
	3.4.4 DTI_TBU_REG_RDATA
	3.4.5 Deadlock avoidance in register accesses

	4: DTI-TBU Caching Model�
	4.1 Caching model
	4.2 Lookup process
	4.3 Global entry cache
	4.4 Configuration cache
	4.5 TLB

	5: DTI-ATS Messages�
	5.1 Connection and disconnection message group
	5.1.1 DTI_ATS_CONDIS_REQ
	5.1.2 DTI_ATS_CONDIS_ACK

	5.2 Translation request message group
	5.2.1 DTI_ATS_TRANS_REQ
	5.2.2 DTI_ATS_TRANS_RESP
	5.2.3 DTI_ATS_TRANS_FAULT
	5.2.4 The ATS translation sequence

	5.3 Invalidation and synchronization message group
	5.3.1 DTI_ATS_INV_REQ
	5.3.2 DTI_ATS_INV_ACK
	5.3.3 DTI_ATS_SYNC_REQ
	5.3.4 DTI_ATS_SYNC_ACK
	5.3.5 The DTI-ATS invalidation sequence
	5.3.6 DTI-ATS invalidation operations

	5.4 Page request message group
	5.4.1 DTI_ATS_PAGE_REQ
	5.4.2 DTI_ATS_PAGE_ACK
	5.4.3 DTI_ATS_PAGE_RESP
	5.4.4 DTI_ATS_PAGE_RESPACK
	5.4.5 Generating the page response

	6: Transport Layer�
	6.1 Introduction
	6.2 AXI4-Stream transport protocol
	6.2.1 AXI4-Stream signals
	6.2.2 Interleaving
	6.2.3 Usage of the TID and TDEST signals

	A: Pseudocode�
	A.1 Memory attributes
	A.1.1 Memory attribute types
	A.1.2 Memory attribute decoding
	A.1.3 Memory attribute processing

	B: Revisions�

