SystemC Cycle Models

Version 11.5

Reference Platform Getting Started Guide

arm

Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved.
101497_1105_00_en

SystemC Cycle Models

SystemC Cycle Models
Reference Platform Getting Started Guide

Copyright © 2019-2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

1100-00 31 May 2019 Non-Confidential First release

1103-00 13 November 2020 Non-Confidential Release 11.3

1103-01 01 May 2021 Non-Confidential Documentation update
1105-00 25 June 2021 Non-Confidential Release 11.5

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at

any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the

Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at https.//www.arm.com/company/policies/

trademarks.
Copyright © 2019-2021 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2
reserved.
Non-Confidential - REL

https://www.arm.com/company/policies/trademarks
https://www.arm.com/company/policies/trademarks

SystemC Cycle Models

(LES-PRE-20349)
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.
Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact

terms@arm.com.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 3
reserved.
Non-Confidential - REL

https://developer.arm.com
mailto:terms@arm.com

Contents

SystemC Cycle Models Reference Platform Getting
Started Guide

Preface
ADOUL TRIS DOOK ...t e 7
Chapter 1 Introduction to Cycle Model reference platforms
1.1 Introduction to Cycle Model reference platformsccccoocoooe oiieiiiiieeieee 1-10
1.2 System requirements and PrereqQUISItESoocueeeciieece e 1-11
1.3 Reference platform directory SIruCturecccouveiiiiicces s 1-12
1.4 Data collection in Cycle Model reference platformsccooccveeeveveecieeneeeesnnen.. 1-13
Chapter 2 Building and running the default reference platform
2.1 Download a reference platform from IP EXChanQecccccooiiiiiicieniaaaienae 2-15
2.2 Decompress the reference platform package fileccccociviiviiieiciecisien, 2-16
2.3 Build the reference platformcccceeeeeeeeeieeeeeee et 2-17
2.4 Run the reference PIatfOrmoooeeeeeee ettt a e e e e e e e e e e e e enans 2-18
2.5 INEXE SEEDS ettt ettt ettt naaaaan 2-20
Chapter 3 Introduction to the makefiles
3.1 Makefiles included in the reference platformcccccoceevvis covieeesiiieee s 3-22
3.2 Make options for the reference platform makefile and Systems/makefile 3-23
Chapter 4 Modifying reference platforms
4.1 Making build and link options available to the Makefileccc. ooviiiineeennii. 4-25
101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4
reserved.

Non-Confidential - REL

4.2 Internal changes to a model in the default reference platformcccccceens 4-27
4.3 Changing the core used in the reference platformcccccceeesvevveeneeesienenn. 4-28
4.4 Changes to the composition of the reference platformcccccoevvveeviiveeeanennn, 4-29
4.5 Creating custom systems that include Arm® modelscccccces ciiieiiiiiieeeen, 4-31
4.6 Loading applications for SIMUIALIONccccccviiiiiiiiiiiis i 4-32
4.7 Modifying the Cycle Model reference platform test benchccccc coovevvcvennnee. 4-33
Chapter 5 Troubleshooting
5.1 carbon_sc_multiwrite_signal.h build €rrorc.ccooevviiiies e 5-38
5.2 Unrecognized command liN€ OPLONcoomiieiiiiieiie e 5-39
5.3 LICENSING ©ITOIS ...ttt ettt 5-40
5.4 Bytes requested error when specifying applicationcccc vovveeeeeesiieennannn. 5-41
5.5 Multiple target PAtEINS ©ITONccoo i e 5-42
101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5
reserved.

Non-Confidential - REL

Preface

This guide describes downloading, installing, and running Cycle Model reference systems.
This preface introduces the SystemC Cycle Models Reference Platform Getting Started Guide.

It contains the following:
e About this book on page 7.

This guide describes downloading, installing, and running Cycle Model reference systems.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential - REL

Preface
About this book

About this book

This guide describes downloading, installing, and running SystemC-based Cycle Model reference
platforms.

Using this book

Glossary

This book is organized into the following chapters:

Chapter 1 Introduction to Cycle Model reference platforms
This chapter introduces Arm Cycle Model reference platforms.

Chapter 2 Building and running the default reference platform
This chapter describes downloading, compiling, and simulating the Cycle Model SystemC default
reference platform.

Chapter 3 Introduction to the makefiles
This chapter summarizes the makefiles that are included in Cycle Model reference platforms and
describes the available targets.

Chapter 4 Modifying reference platforms
This chapter describes modifications you can make to SystemC Cycle Model reference platforms,
and how to rebuild the reference platform.

Chapter 5 Troubleshooting
This chapter provides solutions for problems that may occur when working with Cycle Model
reference platforms.

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace

Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace 1italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 7

reserved.
Non-Confidential - REL

https://developer.arm.com/support/arm-glossary

Feedback

Preface

About this book
<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC p15, @, <Rd>, <CRn>, <CRm>, <Opcode_2>
SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

* The product name.

* The product revision or version.

* An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

Feedback on content
If you have comments on content then send an e-mail to errata@arm.com. Give:

* The title SystemC Cycle Models Reference Platform Getting Started Guide.
e The number 101497 1105 00 en.

+ Ifapplicable, the page number(s) to which your comments refer.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

Other information

* Arm® Developer.

* Arm® Documentation.
» Technical Support.

o Arm® Glossary.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 8

reserved.
Non-Confidential - REL

mailto:errata@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Introduction to Cycle Model reference platforms

This chapter introduces Arm Cycle Model reference platforms.

It contains the following sections:

» 1.1 Introduction to Cycle Model reference platforms on page 1-10.

» 1.2 System requirements and prerequisites on page 1-11.

* 1.3 Reference platform directory structure on page 1-12.

* 1.4 Data collection in Cycle Model reference platforms on page 1-13.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights
reserved.
Non-Confidential - REL

1-9

1 Introduction to Cycle Model reference platforms
1.1 Introduction to Cycle Model reference platforms

1.1 Introduction to Cycle Model reference platforms
Cycle Model reference platforms are prepackaged systems ready to simulate with a default application.

The applications and components that ship with reference platforms may differ, but all reference
platforms have the same general directory structure, environment configuration, and processes for
creating and executing the test bench.

After the reference platform is simulating with the default application, you can:

» Make changes to it by modifying the reference platform test bench and corresponding build system to
include, instantiate, and connect new or updated models.

» Copy and migrate a SystemC Cycle Model that is part of a reference platform, and build it into your
own custom platform.

* Modify an Arm reference platform by adding your own SystemC model classes to the reference
platform.

For use cases and instructions, see Chapter 4 Modifying reference platforms on page 4-24.

Included in the package
Reference platforms include:
* Model libraries for the models included in the reference platform.
* SystemC top-level system.
» Sample applications.
» Setup scripts.
* Cycle Model SystemC Runtime, which also includes:
— The Cycle Model Studio runtime.
— SystemC Version 2.3.1 (64-bit Linux).
— Google Protocol Buffer.
— The Cycle Model Configuration tool, a command-line utility that simplifies integration of Arm
SystemC Cycle Models into custom systems. For usage, see the SystemC Cycle Model User Guide
for the CPU in your reference platform.

Related information

o SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https.//developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

o Arm® SystemC Cycle Model Runtime Installation Guide (101146).

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 1-10
reserved.
Non-Confidential - REL

https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs
https://developer.arm.com/docs/101146/latest

1 Introduction to Cycle Model reference platforms
1.2 System requirements and prerequisites

1.2 System requirements and prerequisites

This section describes space, operating system, and software requirements for running Arm SystemC
reference platforms.

Disk space
The Cycle Model SystemC Runtime requires 200MB of disk space.

For Cycle Model reference platform reference platforms, more space is required. The amount of space
needed varies depending on the complexity of the reference platform.

Supported operating systems
The supported Linux operating systems are:
* Red Hat Enterprise Linux 7.0 (64-bit)

Cycle Model reference platforms are not supported on Windows.

Supported GCC versions

For rebuilding Cycle Model reference platforms, GCC version 4.8.3 and GCC version 6.4.0 are
supported.

Prerequisites for reference platform environments

All models in a Cycle Model reference platform reference platform must be the same release (for
example, all v10.x or all v11.x). Mixing different versions within a reference platform is not supported,
and results in incorrect Cycle Model behavior, incorrect Tarmac trace results, or other issues.

Licensing

You must have a valid, installed license for each runtime and Cycle Model. Visit the Arm licensing
portal: https://developer.arm.com/support/licensing/generate and use your serial numbers to generate the
licenses. Contact Arm Technical Support (support-esl@arm.com) if you need more information.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 1-1
reserved.
Non-Confidential - REL

https://developer.arm.com/support/licensing/generate

1 Introduction to Cycle Model reference platforms
1.3 Reference platform directory structure

1.3 Reference platform directory structure

This section describes the directory structure that all Cycle Model reference platforms share.

Using a Cortex-R52 reference platform as an example, the following figure describes the general
reference platform directory structure and summarizes its contents. Certain reference platforms may have
additional directories.

Applications 1
ARM | 2

license_terms
W MODELS | 3
BP140
BP140_TrickBox
CortexR32_1CPU
NIC400_APB4
Scripts 4

Systerns | O

Figure 1-1 Reference platform directory structure

The Applications directory contains the source code, build files, and executable images for the
sample applications that come with your reference platform.

The ARM directory contains the Cycle Models SystemC Runtime, Cycle Model Studio runtime, and
third-party files for SystemC and Google Protocol Buffer.

The MODELS directory contains model libraries and SystemC wrapper source code for all the models
used to build the platform.

The Scripts directory contains setup scripts (setup.sh and setup.csh) used to configure
environment variables. This directory may also contain scripts that the reference platform uses for
application loading or compilation.

The Systems directory contains top-level design files used to connect models. It also includes the
system_test.cpp file (where the sc_main function is located), and the makefile used to build the
reference platform.

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 1-12
reserved.
Non-Confidential - REL

1 Introduction to Cycle Model reference platforms
1.4 Data collection in Cycle Model reference platforms

1.4 Data collection in Cycle Model reference platforms

Arm periodically collects anonymous information about the usage of our products to understand and
analyze what components or features you are using, with the goal of improving our products and your
experience with them. Product usage analytics contain information such as system information, settings,
and usage of specific features of the product. They do not include any personal information.

Host information includes:

Operating system name, version, and locale.
Number of CPUs.

Amount of physical memory.

Screen resolution.

Processor and GPU type.

Note

To disable analytics collection for all tools running in the environment, set the environment variable
ARM_DISABLE_ANALYTICS to any value, including O or an empty string. This setting is not saved in
persistent storage. It must be reset at subsequent invocations of the tool.

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 1-13
reserved.
Non-Confidential - REL

Chapter 2
Building and running the default reference platform

This chapter describes downloading, compiling, and simulating the Cycle Model SystemC default
reference platform.

It contains the following sections:

» 2.1 Download a reference platform from IP Exchange on page 2-15.
* 2.2 Decompress the reference platform package file on page 2-16.

o 2.3 Build the reference platform on page 2-17.

o 2.4 Run the reference platform on page 2-18.

* 2.5 Next steps on page 2-20.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2-14
reserved.
Non-Confidential - REL

2 Building and running the default reference platform
2.1 Download a reference platform from IP Exchange

21 Download a reference platform from IP Exchange

Download a Cycle Model reference platform from IP Exchange.

Before you begin

* You must have a valid account on Attps.//ipx.arm.com. Create one if necessary.

Download
To download a Cycle Model reference platform from Arm IP Exchange:

1. Visit https://ipx.arm.com/systems and download a SystemC Cycle Model reference platform.
Reference platforms are packaged in a . tgz file.

Next steps

Proceed to 2.2 Decompress the reference platform package file on page 2-16.

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2-15
reserved.
Non-Confidential - REL

https://ipx.arm.com
https://ipx.arm.com/systems

2 Building and running the default reference platform
2.2 Decompress the reference platform package file

2.2 Decompress the reference platform package file

After download, decompress the reference platform package file and review the README . txt file.

Before you begin

* Download a reference platform from Arm IP Exchange (https://ipx.arm.com/systems).

* Review the system and licensing requirements in /.2 System requirements and prerequisites
on page 1-11.

Decompress the reference platform and review the Readme
1. Untar the reference platform .tgz file. For example:

$ tar xzvf R52-MP2-MC2-SysC-V10.0.0-CMS10.0.0-MK2018.09.17-SOCD9.6.0.tgz

The reference platform directory structure is created. See /.3 Reference platform directory structure
on page 1-12 for an overview of the structure of the reference platform.
2. Open and review the README . txt file located at the top of the reference platform directory structure:
$ cd R52-MP2-MC2-SysC-V10.0.0-CMS10.0.0-MK2018.09.17-S0CD9.6.0
$ 1s
Applications ARM license_terms Makefile MODELS Readme_Debug_Memory notes.txt

README.txt Scripts Systems
$ less README.txt

The README . txt file:

» Lists environment variables that are required to be set for this reference platform.

» Lists other requirements and dependencies specific to your reference platform.

» For pin-based reference platforms, states the application that the reference platform runs by
default. See the Applications directory to determine all of the applications your reference
platform includes. See 2.4 Run the reference platform on page 2-18 for instructions on running
applications.

* Describes scripts included with your reference platform.

Next steps
Proceed to 2.3 Build the reference platform on page 2-17.

Related information

* 2.1 Download a reference platform from IP Exchange on page 2-15
* 1.3 Reference platform directory structure on page 1-12

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2-16
reserved.
Non-Confidential - REL

https://ipx.arm.com/systems

2 Building and running the default reference platform
2.3 Build the reference platform

23 Build the reference platform
Build the reference platform executable.

Before you begin

* Decompress the reference platform package file and review the README as described in
2.2 Decompress the reference platform package file on page 2-16.

Source the setup script and set required environment variables
Note

Setup scripts for C Shell and Bash are supported. Ensure you are in the correct environment.

1. In the reference platform Scripts directory, source the setup.sh or setup.csh script. You can do
this by including the source command in a makefile, or from the command line:
$ cd Scripts/
$ 1s
create_dat_file.sh setup.csh setup.sh vars.csh vars.sh
$ source setup.sh

Arm Cycle Model SystemC setup completed.
Setup complete.
$

2. Ifyou are using a version of the Cycle Model Studio runtime other than the one included in the
reference platform, set CARBON_HOME. If you are using the version of the Cycle Model Studio
runtime included in the reference platform, skip this step.

Build the reference platform executable

1. cd to the reference platform Systems directory.
2. Build the reference platform executable (system_test) by entering make:
$ cd Systems
$ make
-std=c++11 -I/home/reference_systems/v11/R52-MP2-MC2-SysC-Vmainline-CMSmk.snapshot-
MKmainline-SOCDmainline/ARM/CycleModels/Runtime/cm_sysc/mainline -I/home/sandbox/

reference_systems/v11/R52-MP2-MC2-SysC-Vmainline-CMSmk.snapshot-MKmainline-
SOCDmainline/ARM/CycleModels/Runtime/cm_sysc/mainline/include

Next steps

Proceed to 2.4 Run the reference platform on page 2-18.

Related information
* Chapter 5 Troubleshooting on page 5-37

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2-17
reserved.
Non-Confidential - REL

2 Building and running the default reference platform
2.4 Run the reference platform

24 Run the reference platform

Simulate with an application included with the reference platform.

Before you begin

* Build the reference platform executable as described in 2.3 Build the reference platform
on page 2-17.

* Ensure that the environment variable ARMLMD_LICENSE_FILE is set to your license server; for
example, export ARMLMD_LICENSE_FILE=port@host.

Set runtime environment variables and run the simulation
1. Source the setup script to set environment variables that are required at runtime:

$ source ../Scripts/setup.sh

Arm Cycle Model SystemC setup completed.
Setup complete.

$

2. From the Systems directory, simulate the reference platform application using the system_test test
bench:

$./system_test -a ../Applications/hello_world/armcc/elf/test.elf

* TLM-based reference platforms require you to specify the application to run using the -a or --
application argument.

* For pin-based reference platforms, do not use -a or --application. Run ./system_test to run the
default application. The reference platform README . txt file lists the default application for pin-level
reference platforms; see the Applications directory for additional applications provided with your
reference platform.

See 4.6 Loading applications for simulation on page 4-32 for more information about application
loading.

Result

The test bench starts the simulation, and loads and runs the application specified by system_test.cpp.
Following is sample output from a TLM-based Cortex-R52 reference platform:

$./system_test -a ../Applications/hello_world/armcc/elf/test.elf

Starting Simulation

[kite_tarmac] skipping configuration file: kite_tarmac.cfg

[kite_tarmac] (KITE.g_dcls_cpu_container.g near_cpu_group[@].u_cpu.u_noram.u_follower)
detected capture module (enabled)

[M] Constructing kite follower

[kite_tarmac] (KITE.g_dcls_cpu_container.g near_cpu_group[@].u_cpu.u_noram.u_follower)
created filter 'DECODE' (kite_tarmac_decode)

[kite_tarmac] (KITE.g_dcls_cpu_container.g_near_cpu_group[@].u_cpu.u_noram.u_follower)
sending captured stream to 'DECODE’

[kite_tarmac] (KITE.g_dcls_cpu_container.g_near_cpu_group[1].u_cpu.u_noram.u_follower)
detected capture module (enabled)

[M] Constructing kite follower

[kite_tarmac] (KITE.g_dcls_cpu_container.g_near_cpu_group[1].u_cpu.u_noram.u_follower)
created filter 'DECODE' (kite_tarmac_decode)

[kite_tarmac] (KITE.g_dcls_cpu_container.g near_cpu_group[1].u_cpu.u_noram.u_follower)
sending captured stream to 'DECODE'’

[kite_tarmac] (KITE.g_dcls_cpu_container.g_near_cpu_group[@].u_cpu.u_noram.u_follower)
detected capture module (enabled)

[M] Constructing kite follower

[kite_tarmac] (KITE.g_dcls_cpu_container.g_near_cpu_group[@].u_cpu.u_noram.u_follower)
created filter 'DECODE' (kite_tarmac_decode)

[kite_tarmac] (KITE.g_dcls_cpu_container.g_near_cpu_group[@].u_cpu.u_noram.u_follower)
sending captured stream to 'DECODE’

[kite_tarmac] (KITE.g_dcls_cpu_container.g near_cpu_group[1].u_cpu.u_noram.u_follower)
detected capture module (enabled)

[M] Constructing kite follower

[kite_tarmac] (KITE.g_dcls_cpu_container.g near_cpu_group[1].u_cpu.u_noram.u_follower)
created filter 'DECODE' (kite_tarmac_decode)

[kite_tarmac] (KITE.g_dcls_cpu_container.g near_cpu_group[1].u_cpu.u_noram.u_follower)
sending captured stream to 'DECODE’

Starting Sim

UARTO: Hello World!<@a>

UART1: Hello World!<@a>

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2-18
reserved.
Non-Confidential - REL

UART2:
UART3:
UARTO:
UART1:
UART2:
UART3:
UARTO:
UART1:
UART2:
UART3:
UARTO:
UART1:
UART2:
UART3:
UARTO:
UART1:

Hello World!<@a>
Hello World!<®@a>
My name is Kite<@a>
My name is Kite<@a>
My name is Kite<@a>
My name is Kite<@a>

I wish you a great day<@a>
I wish you a great day<@a>
I wish you a great day<@a>
I wish you a great day<@a>
** TEST PASSED OK **<@a>
** TEST PASSED OK **<@a>
** TEST PASSED OK **<@a>
** TEST PASSED OK **<@a>

<04>
<04>

2 Building and running the default reference platform
2.4 Run the reference platform

The simulation results show that the Hello World application ran successfully the four Cortex-R52 cores

(output is sent through the UART model attached to each CPU). Simulation results also include
performance monitoring data for each CPU (not shown in the example).

Next steps

When your reference platform simulates properly, see 2.5 Next steps on page 2-20.

Related information

Chapter 5 Troubleshooting on page 5-37

4.6 Loading applications for simulation on page 4-32

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights

reserved.
Non-Confidential - REL

2 Building and running the default reference platform
2.5 Next steps

2.5 Next steps

When your default reference platform is simulating properly, learn about and change its operation.

Review the processor model guide

The SystemC Cycle Model User Guide for the processor model in your reference platform describes the
functionality of the model compared to the hardware.

The model guide includes instructions for viewing model parameters, enabling waveform dumping,
resetting the model, and connecting to a debugger.

View the list of processor model parameters

The set of available parameters varies, depending on the type and functionality of the processor model.

To list model parameters:

¢ Enter ./system_test --list-params.

* View the model_params.cfg file located in the directory reference_platform/MODELS/CPU/
gccversion/SystemC.

Modify the reference platform

You can change the reference platform to include different or additional models, make changes to the
default application, or run the reference platform with a different application. See Chapter 4 Modifying
reference platforms on page 4-24.

Related information

o SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https.//developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

o Arm® Development Studio Getting Started Guide (101469).

o Arm® Development Studio User Guide (101470).

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 2-20
reserved.
Non-Confidential - REL

https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs
https://developer.arm.com/docs/101469/latest
https://developer.arm.com/docs/101470/latest

Chapter 3
Introduction to the makefiles

This chapter summarizes the makefiles that are included in Cycle Model reference platforms and
describes the available targets.

It contains the following sections:
* 3.1 Makefiles included in the reference platform on page 3-22.
e 3.2 Make options for the reference platform makefile and Systems/makefile on page 3-23.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 3-21
reserved.
Non-Confidential - REL

3 Introduction to the makefiles
3.1 Makefiles included in the reference platform

3.1 Makefiles included in the reference platform

This section explains what you need to know about makefiles included in the Cycle Model reference
platform.

The reference platform directory includes the following makefiles:

ISystems makefile

The Makefile you will use most frequently when working with reference platforms is the Systems/
Makefile. This is the command script for your build infrastructure. When you make a change to the
reference platform, such as adding a model to your design or changing one model for another, rebuild the
reference platform using this Makefile.

See 3.2 Make options for the reference platform makefile and Systems/makefile on page 3-23 for
reference platform build, run, and simulation options.

reference platform makefile

You can use the Makefile at the top level of the reference platform to execute the Systems/Makefile.
This top-level Makefile sets certain environment variables.

IMODELS makefiles
Each model in a reference platform system includes its own makefiles, located in MODELS/CPU_name/
gcc_version/SystemC/makefile.

Note

Do not modify the makefiles in the MODELS directories. If you are adding or replacing a model in the
reference platform, see Chapter 4 Modifying reference platforms on page 4-24.

/Applications makefile

The Applications/Makefile defines the application that is launched by default when you run the
reference platform simulation. Modify this Makefile if you want to simulate using a different
application. Do not modify the initialization code contained in the Applications/Makefile.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 3-22
reserved.
Non-Confidential - REL

3 Introduction to the makefiles
3.2 Make options for the reference platform makefile and Systems/makefile

3.2 Make options for the reference platform makefile and Systems/makefile

This section describes the available build, run, and simulation targets; targets that are available only in
the top-level Cycle Model reference platform Makefile are noted.

Use the Systems/Makefile to rebuild the reference system after making modifications. This makefile
includes the following available targets:

make

make

make

make

make

make

make

all
Builds the system.
app-setup [APP=path]

Sets up the application that the system uses during simulation. path is the path to the compiled
application (.elf) file. This option is available only in the top-level reference platform
makefile, not the Systems/makefile. See 4.6 Loading applications for simulation

on page 4-32 for information about application loading.

clean
Removes all the binaries and object files.

help
Prints all available targets. This option is available only in the top-level reference platform
makefile, not the Systems/makefile.

req
Prints out all the components and dependencies for the reference platform.

run [APP=path] [RUNLOG=file_name]
Runs the simulation. path is the path to the compiled application (.elf) file and file_name is
the name of the file for log output. If APP is not specified, it runs the default application or the
one that was last set up using app-setup.

Note

Run this command only with TLM-based reference platforms, not with pin-based reference
platforms. This command uses the -a flag as a means of passing in the application, and pin-
based reference platforms do not accept the -a flag. See 4.6 Loading applications for simulation
on page 4-32 for more information.

system
Uses the reference platform test bench (system_test.cpp) and the library files to generate the
system_test binary.

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 3-23
reserved.
Non-Confidential - REL

Chapter 4
Modifying reference platforms

This chapter describes modifications you can make to SystemC Cycle Model reference platforms, and
how to rebuild the reference platform.

It contains the following sections:

* 4.1 Making build and link options available to the Makefile on page 4-25.

* 4.2 Internal changes to a model in the default reference platform on page 4-27.
* 4.3 Changing the core used in the reference platform on page 4-28.

* 4.4 Changes to the composition of the reference platform on page 4-29.

* 4.5 Creating custom systems that include Arm® models on page 4-31.

* 4.6 Loading applications for simulation on page 4-32.

* 4.7 Modifying the Cycle Model reference platform test bench on page 4-33.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-24
reserved.
Non-Confidential - REL

4 Modifying reference platforms
4.1 Making build and link options available to the Makefile

4.1 Making build and link options available to the Makefile

When making changes to a Cycle Model reference platform, ensure that the build options for all models
that are part of the reference platform are available to the Makefile. Your reference platform will not
build successfully without the required build options for all components.

The required build and link options may be available to the Cycle Model Configuration Tool
(cm_config) through the model’s associated XML file, or you may need to explicitly specify them.

The availability of build and link options depends on the type of model being added to the reference

platform:

* Model built with Cycle Model Studio - No associated, cm_config-readable XML file. Provide the
build options explicitly to the Makefile as described in 4.1.1 Specifying build options for Cycle
Models without an XML data file on page 4-25.

+ Custom model that you create — No associated, cm_config-readable XML file. Provide the build
options explicitly to the Makefile as described in 4.1.1 Specifying build options for Cycle Models
without an XML data file on page 4-25.

* Model built on Attps.//ipx.arm.com — These models are built with the required, cm_config-readable
XML file. cm_config automatically pulls the required build and link information from these files
when you run make.

Related information

* 3.2 Make options for the reference platform makefile and Systems/makefile on page 3-23

* The SystemC Cycle Model guide for the CPU model in your reference platform. This guide contains
additional information about the Cycle Models Configuration Tool, and about further customizing
your build (such as specifying your own version of SystemC). Model Guides are found at Attps.://
developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

This section contains the following subsection:
» 4.1.1 Specifying build options for Cycle Models without an XML data file on page 4-25.

411 Specifying build options for Cycle Models without an XML data file

If you add a model to your Cycle Model reference platform, but the model does not have an associated
XML data file that is readable by the Cycle Model Configuration Tool (cm_config) tool, you can specify
the build and link options for the new model using the Makefile.

The Makefile includes four variables that hold the build options for models you want to integrate into
your reference platform:

* CXXFLAGS - Compiler flags, include paths, and compiler defines for the system. These are used when
building the object files and linking them into the executable.

* LDFLAGS - Linker flags, libraries, and library paths for the system. These are passed through to the
linker when linking object files into an executable.

* RPATHS - Runtime paths to associate with the executable. Prefix the paths with the string -Wl, -
rpath. Alternatively, you can place the paths in your LD_LIBRARY_PATH environment variable.

* SRCS - Source files to be built into object files and linked into the system executable.

You can specify the build options held by these variables in the following ways:
* On the command line when calling make.

* By adding build options the variables in the Makefile.

* By modifying the Makefile directly using valid make syntax.

See the following examples.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-25
reserved.
Non-Confidential - REL

https://ipx.arm.com
https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs
https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs

4 Modifying reference platforms
4.1 Making build and link options available to the Makefile

Example: Specifying build options on the command line when calling make

The following example shows how to add a new source and header file for a custom SystemC
component by specifying them on the command line:

make run CXXFLAGS=-Ipath/to/my_header_dir/ SRCS=path/to/my_source.cpp

Example: Adding build options to the variables

The following examples shows how to add new source and header files for a custom SystemC
component by overriding the variables:

override CXXFLAGS+=$(shell $(CM_CONFIG_CMD) --compile)
override CXXFLAGS+=-Ipath/to/my_header_dir/

override SRCS+=$(shell $(CM_CONFIG_CMD) --sources --model-type $(CONNECTION))
override SRCS+=path/to/my_source.cpp

Example: Modifying the Makefile directly

The following example shows how to add new source and header files for a custom SystemC component
by adding them to the targets:

System_test: $(0BJS) path/to/my_source.o
$(CXX) $(CXXFLAGS) -Ipath/to/my_header_dir/ $~ \
$(RPATHS) $(LDFLAGS) -o $@

%.0: %.cpp
$(CXX) $(CXXFLAGS) -Ipath/to/my_header_dir/ -o $@ -c $*

Related information
* 3.2 Make options for the reference platform makefile and Systems/makefile on page 3-23

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-26
reserved.
Non-Confidential - REL

4 Modifying reference platforms
4.2 Internal changes to a model in the default reference platform

4.2 Internal changes to a model in the default reference platform

This use case describes making a change to a model that exists in the default Cycle Model reference
platform.

Reference platform

ore UART

Bus Memory

Figure 4-1 Change to existing model

You can make changes in the source files for models included in the default reference platform. For
example, you might drive an additional input by commenting out a port binding in the reference platform
MODELS/model /gcc_version/SystemC/modelResetImp.h file. In this case, ensure that you also drive
the value of the port.

1. Make your modifications in MODELS/model /gcc_version/SystemC/modelResetImp.h.

2. Rebuild the reference platform using the Systems/makefile.

See the SystemC Cycle Model User Guide for your IP for information about binding or tying ports.

Related information

o SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https.://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-27
reserved.
Non-Confidential - REL

https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs

4 Modifying reference platforms
4.3 Changing the core used in the reference platform

4.3 Changing the core used in the reference platform

This use case describes replacing the core in a Cycle Model reference platform.

“ | Reference platform

Core

re UART

Core Bus Memory

Figure 4-2 Changing the core

You can replace the core included in the reference platform by default with:

a core of the same IP type, but with a different build configuration.
a core of a different IP type.

Note
If the new core is built on Arm IP Exchange (Attps://ipx.arm.com), the Cycle Model Configuration
Tool (cm_config) finds its associated XML data file when you run make. If the new core was not

built on Arm IP Exchange, see 4.1 Making build and link options available to the Makefile
on page 4-25.

To integrate the new core into your reference platform:

1.
2.
3.

N

5.

Build the new or revised core.

Replace the existing core in the reference platform MODELS directory.

If the new core is of a different IP type than the original core, update the system_test.cpp test
bench to reference the header files, ports, and bindings of the new core.

. In the Systems/makefile, update the COMP_NAMES variable and the model directory to reflect the new

model. To get the exact component name, run the Cycle Models Configuration tool with the --1ist
argument and look at the Component Type: model: section. For example, in the following output,
CortexR52 is the string to use in the COMP_NAMES variable:

$ cm_config --list

Component Type: model:

CortexR52 mainline /home/reference_platforms/R52-MP2-MC2-SysC/
MODELS/CortexR52_2CPU/gcc640/SystemC/.data/CortexR52.xml

CortexR52 mainline /home/reference_platforms/R52-MP2-MC2-SysC/
MODELS/CortexR52_2CPU/gcc483/SystemC/.data/CortexR52.xml

cm_sysc_models mainline /home/reference_platforms/R52-MP2-MC2-SysC/ARM/
CycleModels/Runtime/cm_sysc/mainline/etc/.data/cm_sysc_models.xml

Component Type: runtime:

For more information about the Cycle Models Configuration Tool, see the SystemC Cycle Model
User Guide for the CPU model included in your reference platform.
Rebuild the reference platform using the Systems/makefile.

Related information

3.2 Make options for the reference platform makefile and Systems/makefile on page 3-23
SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https.://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-28
reserved.
Non-Confidential - REL

https://ipx.arm.com
https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs

4 Modifying reference platforms
4.4 Changes to the composition of the reference platform

4.4 Changes to the composition of the reference platform

This use case describes making changes to the models that make up a Cycle Model reference platform.

Prerequisites

When you run make after adding a new component to the reference platform, the Cycle Model
Configuration Tool (cm_config) extracts the required build and link options for all reference platform
components that were built on Arm IP Exchange. These models have an associated XML data file that is
readable by cm_config .

However, if you are adding components to the reference platform that were not built on Arm IP
Exchange (such as those built using Cycle Model Studio or custom models), you must provide build and
link data to the Makefile. See 4./ Making build and link options available to the Makefile on page 4-25.

Reference platform

Core UART

Memory

Bus Memory

Figure 4-3 Adding a flash memory model to an existing reference platform

This section describes adding models to, or removing models from the reference platform platform; for

example, adding a flash memory to the existing system.

1. If you are adding a model to the reference platform, add its directory to the reference_platform/
MODELS directory. Ensure that the new component has an associated . XML file.

2. If you have removed a model from the reference platform, remove its corresponding directory from
reference_platform/MODELS.

3. Update Systems/system_test.cpp. This file defines the models included in the reference platform
and their port bindings.

4. If the name of the model directory has changed, further modifications to the Systems/Makefile are
required. Update the COMP_NAMES variable to include models and directories you are adding, and
exclude models and directories you are replacing. To get the exact component name, run the Cycle
Models Configuration tool with the --1ist argument and look at the Component Type: model:
section. For example, in the following output, CortexR52 is the string to use in the COMP_NAMES
variable:

$ cm_config --list

Component Type: model:

CortexR52 mainline /home/reference_platform/R52-MP2-MC2-SysC/
MODELS/CortexR52_2CPU/gcc640/SystemC/.data/CortexR52.xml

CortexR52 mainline /home/reference_platform/R52-MP2-MC2-SysC/
MODELS/CortexR52_2CPU/gcc483/SystemC/.data/CortexR52.xml

cm_sysc_models mainline /home/reference_platform/R52-MP2-MC2-SysC/ARM/
CycleModels/Runtime/cm_sysc/mainline/etc/.data/cm_sysc_models.xml

5. Rebuild the reference platform using the Systems/makefile.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-29
reserved.
Non-Confidential - REL

4 Modifying reference platforms
4.4 Changes to the composition of the reference platform

Related information

* 3.2 Make options for the reference platform makefile and Systems/makefile on page 3-23

o SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https.//developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-30
reserved.
Non-Confidential - REL

https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs

4 Modifying reference platforms
4.5 Creating custom systems that include Arm® models

4.5 Creating custom systems that include Arm® models

This use case describes adding an Arm model to a custom system.

Custom platform

Arm UART
core

Bus Memory

Figure 4-4 Adding an Arm core to a custom system

You can build your own, custom SystemC platform that includes a Cycle Model downloaded from Arm
IP Exchange. Use the Cycle Models Configuration Tool (cm_config), included in the SystemC Cycle
Models Runtime, to extract its build options. See the SystemC Cycle Model User Guide for your IP for
more information about the Cycle Models Configuration tool.

Contact Arm Support for more information.

Related information

» SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https.://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-31
reserved.
Non-Confidential - REL

https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs

4 Modifying reference platforms
4.6 Loading applications for simulation

4.6 Loading applications for simulation

This section describes what you need to know about loading applications for Cycle Model reference
platform simulations.

Applications included with your reference platform are found in the reference platform Applications
directory. Pin-level reference platforms and TLM-based reference platforms handle application loading
differently.

Pin-level reference platform application loading

reference platforms implemented through pin-level connections use the memory-loading capabilities of
the memory component included in the reference platform. The application to be loaded is determined by
the contents of the . hex files in the reference platform Systems directory. These hex files are created
using the create_dat_file.sh script located in the Scripts directory. The application is loaded into
the reference platform upon initialization of the memory.

Alternate applications must be in .elf file format. To change the application used by the reference
platform:

1. Run the create_dat_file.sh script on the new .elf file to create the required hex files.
2. Run system_test.
See the README . txt file for more information about the application run by default.

Note

Do not use the -a or --application command line arguments to specify applications for reference
platforms with pin-level models. These arguments have no effect on pin-level reference platforms, and
result in multiple warnings.

TLM-based reference platform application loading

The information in this section applies to TLM-based reference platforms that support debugging. These
reference platforms use the standard SystemC framework to determine which application to load. This
means that you must specify which application to load.

Specify the application on the command line using the -a or --application argument. For example:

$./system_test -a test.elf -S

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-32
reserved.
Non-Confidential - REL

4 Modifying reference platforms
4.7 Modifying the Cycle Model reference platform test bench

4.7 Modifying the Cycle Model reference platform test bench

Each reference platform has its own test bench called system_test.cpp, which is located in the Systems
directory.

system_test.cpp:

» Instantiates the models

» Defines the connections between models

* Initializes model parameters

* Provides simulation controls (start, stop, run, specific number of cycles, etc.)

To make changes to the reference platform system, alter the reference platform test bench. After altering
the test bench, recompile the system. Models are recompiled automatically as part of the system-level
recompile.

This section contains the following subsections:

o 4.7.1 Modifying the test bench for pin-level models on page 4-33.
o 4.7.2 Modifying the test bench for TLM models on page 4-35.

4.71 Modifying the test bench for pin-level models

This section describes the areas of the Cycle Model reference platform test bench you might want to
change.

Note

See 4.6 Loading applications for simulation on page 4-32 for information about how pin-level reference
platforms handle application loading.

Required includes

The test bench contains the SystemC wrapper files for any models in the system, the corresponding reset
module file for each model (for pin-level models only), and includes required by the Fast Models
runtime. Ensure you add these files for any new models added to your system. Here is an example of the
includes section of a reference platform test bench:

// Include the systemc wrapper files for the models

#include "libCortexR8.systemc.h" // CortexR8 CPU
#include "1ibNIC400.systemc.h" // NIC400 Interconnect
#include "1ibBP140.systemc.h" // BP140© Memory
#include "1ibBP14@_TrickBox.systemc.h" // BP140_TrickBox UART

// Include the reset modules for the above models (pin-level models only)
#include "CortexR8ResetModule.h"

#include "NIC400ResetModule.h"

#include "BP140ResetModule.h"

#include "BP140_TrickBoxResetModule.h"

#include "../perf_common.h"

#include <iostream>

#include <time.h>

// These includes are need by the SCX FastModel Runtime
#include <scx/scx.h>

#include <scx/scx_signal_sizer.h>

#include <scx_simcontroller.cpp>

#include <scx_scheduler_mapping.cpp>

#include <scx_report_handler.cpp>

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-33
reserved.
Non-Confidential - REL

4 Modifying reference platforms
4.7 Modifying the Cycle Model reference platform test bench

Initialization of the simulation environment and model instantiation

The sc_main() section of the test bench must first initialize the SCX simulation environment. It must
state clocking specifications, then instantiate all IP and reset models (for pin-level models only) for any
models included in the system. For example:

int sc_main(int argc, char *argv[])

{
// Debug initialization
scx::scx_initialize("R8-SysC-Debug");

// If you want to see messages about 'port not bound' change SC_DO_NOTHING to SC_DISPLAY.
// If you want it to abort on a 'port not bound' error comment out the line below.
sc_report_handler::set_actions(SC_ID_COMPLETE_BINDING_,SC_ERROR,SC_DO_NOTHING);

// Clock Object
sc_clock clk("clk", 1, SC_NS, 0.5);

// Instantiate IP
CortexR8 core("cortexR8");
NIC400 nic400("NIC400");
BP140 bp140("BP140");
BP14@_TrickBox bpl40 trickbox("BP140_TrickBox");
ARM: :Models: :Cycle: :ModelCortexR8: :CortexR8ResetModule core reset(core_reset");
ARM: :Models: :Cycle: :ModeINIC400: :NIC400ResetModule nic400_reset("nic400_reset");
ARM: :Models: :Cycle: :ModelBP140: :BP140ResetModule bp140 reset("bpl40_reset");
ARM: :Models: :Cycle: :ModelBP140_TrickBox: :BP140_TrickBoxResetModule
bp140_trickbox_reset("bpl140_trickbox_reset");

Signal bindings

The test bench specifies all signal bindings, including those for reset modules.

* Declare bindings using an sc_signal call in the test bench file. The signal must be the same type and
width as the two ports being connected. If the ports are the same type but different widths, use
scx_signal_sizer instead of sc_signal. For example:

scx::scx_signal_sizer<sc_uint<13>, sc_uint<16> >ARIDsignall;

core.ARIDM@.bind(ARIDsignal);
nic400.arid_s_axi_64.bind(ARIDsignal);

+ Signals must be bound to both ports. For example:

sc_signal(bool) signall;
Instl.portl.bind(signall);
sc_signal(bool) signal2;
Inst2.portl.bind(signal2);

Clock bindings
All models must be bound to the system clock; for example:

// Bind all the models to the system (cpu) clock
core.CLKIN.bind(cpu_clk);
mem.ACLK.bind(cpu_clk);
bus.mainclk.bind(cpu_clk);
uart.ACLK.bind(cpu_clk);
core_reset.clk.bind(cpu_clk);
bus_reset.clk.bind(cpu_clk);
bp140_reset.clk.bind(cpu_clk);
bp140_trickbox_reset.clk.bind(cpu_clk);

Functions to generate performance data

The following example shows the use of SCX API functions to specify PMU and Tarmac output. See the
SystemC Cycle Model User Guide for the CPU in your reference platform for more information:

scx: :scx_set_parameter("cortexR8_core.PMU_ENABLED",true);
scx::scx_set_parameter("cortexR8_core.TARMAC_ENABLED",true);

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-34
reserved.
Non-Confidential - REL

4 Modifying reference platforms
4.7 Modifying the Cycle Model reference platform test bench

Parsing of command line arguments

The test bench calls the SCX scx_parse_and_configure() function to parse any command line
arguments used by the SCX runtime:

scx::scx_parse_and_configure(argc, argv);

Simulation call
To simulate the system, the test bench calls sc_start():
sc_start();

Specify all includes, initializations, bindings, functions, and command line options before sc_start().

Related information

» SystemC Cycle Model User Guide for the CPU in your reference platform. You can find Cycle Model
guides at https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs.

4.7.2 Modifying the test bench for TLM models

The sc_main() function in the test bench has the same basic flow for both pin-level and TLM models.
One difference is that the TLM models are connected using TLM sockets rather than pins. This section
describes the TLM-specific instructions.

Note
See the file 1ibcomponent.tlm.h in your installation directory for socket names.

Note

See 4.6 Loading applications for simulation on page 4-32 for information about how TLM-based Cycle
Model reference platforms handle application loading.

Required includes

The SystemC pin-level models are wrapped with TLM functionality. The test bench includes the
SystemC wrapper files for any models included in the system, and includes required by the Fast Models
runtime. Ensure you add these files for any new models added to your system. Here is an example of the
includes section of a reference platform test bench:

// Include the systemc wrapper files for the models

#include "models/SimpleMem.h"

#include "models/SimpleFlash.h"

#include "models/SimpleFlashImp.h"

#include "models/RAMBlock.h"

#include "models/SimpleBus.h"

#include "models/BasicUART.h"

#include "models/ElfLoader.h"

#include "1ibCORTEXR8.tlm.h" // CPU
#include <tlm_utils/simple_initiator_socket.h>

#include <iostream>

// These includes are need by the SCX FastModel Runtime
#include <scx/scx.h>

#include <scx_simcontroller.cpp>

#include <scx_scheduler_mapping.cpp>

#include <scx_report_handler.cpp>

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-35
reserved.
Non-Confidential - REL

https://developer.arm.com/tools-and-software/simulation-models/cycle-models/docs

4 Modifying reference platforms
4.7 Modifying the Cycle Model reference platform test bench

Initialization of the simulation environment and model instantiation

The sc_main() section of the test bench must first initialize the SCX simulation environment. It states
clocking specifications, then instantiates any models included in the system. Ensure you instantiate any
new models added to your system. For example:

int sc_main(int argc, char *argv[])

// Debug initialization
scx::scx_initialize("R8-SysC");

// If you want to see messages about 'port not bound' change SC_DO_NOTHING to SC_DISPLAY.
// If you want it to abort on a 'port not bound' error comment out the line below.
sc_report_handler::set_actions(SC_ID_COMPLETE_BINDING_,SC_ERROR,SC_DO_NOTHING);

// Clock Object
sc_clock cpu_clk("clk", 1, SC_NS, 0.5);

ARM: :Models: :Cycle: :ModelCortexR8: :CortexR8Imp core("CortexR8");

// Main Memory

ARM: :Models: :RAMBlock ram_block;

ARM: :Models: :SimpleMemConfig simple_mem_params;
simple_mem_params.delay = 1;
simple_mem_params.ram_block = &ram_block;
simple_mem_params.busWidthBits = 64;

ARM: :Models: :SimpleMem simple_mem("RAM", simple_mem_params);
ARM: :Models: :BasicUART uart("UART", std::cout, "UART: ");

// BUS & its Mappings
ARM: :Models: :SimpleBus bus("Interconnect", 1, 1, 64);
bus.addMap (@, ©, OXFFFFFFFF); // Main Memory

Port bindings

The test bench specifies all TLM port bindings. Signal bindings required for the system are also specified
in this area. Specify any additional TLM port bindings and signal bindings in this area:

// Core Main Memory Port Bindings
core.iSkt_AXI3 Master_PORTO->bind(bus.tSkt);
core.directIskt AXI3 Master_ PORTO.bind(simple_mem.directTskt);

// Core Low Latency Peripheral Port Bindings
core.iSkt_AXI3_ Master_ PERI->bind(uart.tSkt);
core.directIskt_AXI3_Master_ PERI.bind(uart.directTskt);

// Bus iSkt[@] connected to Main Memory
bus.iSkt[@]->bind(simple_mem.tSkt);

// Clock
core.clk(cpu_clk);
simple_mem.clock.bind(cpu_clk);
uart.clock.bind(cpu_clk);
bus.clock.bind(cpu_clk);

For information about signal bindings, clock bindings, performance data generation, command line
arguments, and simulation calls, use the instructions in 4.7.1 Modifying the test bench for pin-level
models on page 4-33.

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 4-36
reserved.
Non-Confidential - REL

Chapter 5
Troubleshooting

This chapter provides solutions for problems that may occur when working with Cycle Model reference
platforms.

It contains the following sections:

* 5.1 carbon_sc_multiwrite_signal.h build error on page 5-38.

* 5.2 Unrecognized command line option on page 5-39.

* 5.3 Licensing errors on page 5-40.

* 5.4 Bytes requested error when specifying application on page 5-41.
* 5.5 Multiple target patterns error on page 5-42.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5-37
reserved.
Non-Confidential - REL

5 Troubleshooting
5.1 carbon_sc_multiwrite_signal.h build error

51 carbon_sc_multiwrite_signal.h build error

Incorrectly set CARBON_HOME environment variable results in fatal error.

Cause

When using a version of the Cycle Model Studio runtime other than the one included in the Cycle Model
reference platform, the environment variable CARBON_HOME defines the runtime location. When unset
(this is the default for the reference platform), the Cycle Model Studio runtime included in the reference
platform is used.

If CARBON_HOME is set, it must be set to a Cycle Model Studio runtime installation, or to a full version of
Cycle Model Studio, that is Version 11 or later. Otherwise, an error similar to the following may occur
when building the reference platform:

. ./MODELS/CortexR52_2CPU/gcc483/SystemC/1libCortexR52.systemc.h:19:48: fatal error: carbon/

carbon_sc_multiwrite_signal.h: No such file or directory
#include "carbon/carbon_sc_multiwrite_signal.h"

compilation terminated.
make: *** [system_test.o] Error 1

Solution
Either:
* source the setup script of a Version 11.0 (or later) Cycle Model Studio runtime or Cycle Model
Studio.
» Unset CARBON_HOME to use the version of the Cycle Model Studio runtime included in the reference
platform.
101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5-38

reserved.
Non-Confidential - REL

5 Troubleshooting
5.2 Unrecognized command line option

5.2 Unrecognized command line option

Running an unsupported GCC version results in the build error unrecognized command line option
"-std=c++11".

Cause
Using an unsupported GCC version may result in a build error similar to the following:

cclplus: error: unrecognized command line option "-std=c++11"
make: *** [system_test.o] Error 1

Solution

Check your GCC version against the supported versions listed in /.2 System requirements and
prerequisites on page 1-11. In the following example, GCC 4.4.7 is unsupported and GCC 4.8.3 (a
supported version) is sourced:

$ gcc --version

gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-11)

Copyright (C) 2010 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

$ source /o/Linux64/etc/setup.sh

$ gcc --version

gcc (GCC) 4.8.3

Copyright (C) 2013 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5-39
reserved.
Non-Confidential - REL

5 Troubleshooting
5.3 Licensing errors

5.3 Licensing errors

A valid Arm Cycle Model runtime license is required to run reference platform simulations.
Cause

If a valid license is not available, an error similar to the following may occur when running the test bench
simulation:

Checkout of CM_ARM_Runtime : No feature match. - checkout failed (nowait): Cannot find
license file.

The license files (or license server system network addresses) attempted are

listed below. Use LM_LICENSE_FILE to use a different license file,

or contact your software provider for a license file.

Feature: CM_ARM_Runtime

Filename: /license

License path: /license:

Solution

Ensure that the environment variable ARMLMD_LICENSE_FILE is set to your license server; for
example, export ARMLMD_LICENSE_FILE=port@host.
Contact Arm Techical Support (support-esl@arm.com).

101497_1105_00_en

Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5-40
reserved.
Non-Confidential - REL

5 Troubleshooting
5.4 Bytes requested error when specifying application

54 Bytes requested error when specifying application
Number of bytes requested error message occurs when starting a simulation and specifying an
application.
Cause

When launching a simulation with a specified application, use the -a or --application flag only with
TLM-based Cycle Model reference platforms. Using these flags with pin-level reference platforms
results in an error similar to the following:

$ Number of bytes requested for write (1) does not match numbers of bytes reportedly

written(0)
Solution
Specify the application according to the instructions in 4.6 Loading applications for simulation
on page 4-32.
101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5-41

reserved.
Non-Confidential - REL

5 Troubleshooting
5.5 Multiple target patterns error

5.5 Multiple target patterns error

When adding a new model to a system, make fails with the error Makefile:108: *** multiple target
patterns. Stop.

Cause

The build and link options used in the makefile's target are incorrect due to an unhandled cm_config
error, or due to improper syntax in build and link options you added.

Solution

When you add a new model to an existing Cycle Model reference platform, ensure that the build and link
options for all reference platform components are available to the Makefile. If the required build and link
options are not found when you run make, this error is output.

Models built on Arm IP Exchange (h#tps://ipx.arm.com) have an associated XML data file, which is
readable by the Cycle Model Configuration Tool (cm_config) that ships with the Cycle Model Runtime.
The XML data file provides the required build and link options to the Makefile using cm_config.

However, custom models, and models created by Cycle Model Studio, do not have the associated XML
data file. In these cases, you must provide the build options to the Makefile. This error may occur if
these options have incorrect make syntax. See 4./ Making build and link options available to the
Makefile on page 4-25.

101497_1105_00_en Copyright © 2019-2021 Arm Limited or its affiliates. All rights 5-42
reserved.
Non-Confidential - REL

https://ipx.arm.com

	SystemC Cycle Models Reference Platform Getting Started Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Introduction to Cycle Model reference platforms
	1.1 : Introduction to Cycle Model reference platforms
	1.2 : System requirements and prerequisites
	1.3 : Reference platform directory structure
	1.4 : Data collection in Cycle Model reference platforms

	2 : Building and running the default reference platform
	2.1 : Download a reference platform from IP Exchange
	2.2 : Decompress the reference platform package file
	2.3 : Build the reference platform
	2.4 : Run the reference platform
	2.5 : Next steps

	3 : Introduction to the makefiles
	3.1 : Makefiles included in the reference platform
	3.2 : Make options for the reference platform makefile and Systems/makefile

	4 : Modifying reference platforms
	4.1 : Making build and link options available to the Makefile
	4.1.1 : Specifying build options for Cycle Models without an XML data file

	4.2 : Internal changes to a model in the default reference platform
	4.3 : Changing the core used in the reference platform
	4.4 : Changes to the composition of the reference platform
	4.5 : Creating custom systems that include Arm® models
	4.6 : Loading applications for simulation
	4.7 : Modifying the Cycle Model reference platform test bench
	4.7.1 : Modifying the test bench for pin-level models
	4.7.2 : Modifying the test bench for TLM models

	5 : Troubleshooting
	5.1 : carbon_sc_multiwrite_signal.h build error
	5.2 : Unrecognized command line option
	5.3 : Licensing errors
	5.4 : Bytes requested error when specifying application
	5.5 : Multiple target patterns error

