
SystemC Cycle Models
Version 11.2

User Guide

Copyright © 2017–2021 Arm Limited or its affiliates. All rights reserved.
101124_1102_01_en

SystemC Cycle Models
User Guide
Copyright © 2017–2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0300-00 01 September 2017 Non-Confidential Release 3.0.0

0301-00 23 February 2018 Non-Confidential Release 3.1.0

1000-00 29 August 2018 Non-Confidential Release 10.0

1000-01 30 September 2018 Non-Confidential Release 10.0.1

1100-00 31 May 2019 Non-Confidential Release 11.0

1102-00 15 March 2020 Non-Confidential Release 11.2

1102-01 01 May 2021 Non-Confidential Documentation update

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/
trademarks.

 SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential - REL

https://www.arm.com/company/policies/trademarks
https://www.arm.com/company/policies/trademarks

Copyright © 2017–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact
terms@arm.com.

 SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential - REL

https://developer.arm.com
mailto:terms@arm.com

Contents
SystemC Cycle Models User Guide

Preface
About this book 7

Chapter 1 Cycle Model functionality and operating requirements
1.1 Prerequisites to using SystemC Cycle Models .. 1-10
1.2 Supported platforms, compilers, and simulators .. 1-11
1.3 Package contents .. 1-12

Chapter 2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool 2-15
2.2 Adding custom options to the Makefile .. 2-21

Chapter 3 Using SystemC Cycle Models
3.1 Connecting model ports 3-23
3.2 Resetting the SystemC Cycle Model 3-24
3.3 Setting model parameters 3-25
3.4 Dumping waveforms .. 3-26
3.5 Configuring PMU events .. 3-27
3.6 Configuring Tarmac trace 3-28
3.7 Working with the SCX framework .. 3-29

Chapter 4 Debugging SystemC Cycle Models with Arm® Development Studio
4.1 Restrictions and limitations .. 4-31
4.2 Prerequisites to debugging .. 4-32

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential - REL

4.3 Models that support Arm® Development Studio connectivity 4-33
4.4 Supported debug features 4-34
4.5 Enabling Development Studio for use with SystemC Cycle Models 4-35
4.6 CADI RemoteConnection parameters 4-41
4.7 Multicore debugging 4-42
4.8 Changing the timeout setting 4-43

Chapter 5 SystemC Export API function reference
5.1 scx::scx_initialize 5-45
5.2 scx::scx_load_application .. 5-46
5.3 scx::scx_set_parameter 5-47
5.4 scx::scx_get_parameter 5-48
5.5 scx::scx_get_parameter_list .. 5-49
5.6 scx::scx_cpulimit .. 5-50
5.7 scx::scx_timelimit 5-51
5.8 scx::scx_parse_and_configure .. 5-52
5.9 scx::scx_print_statistics 5-56

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential - REL

Preface

This preface introduces the SystemC Cycle Models User Guide.

It contains the following:
• About this book on page 7.

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential - REL

 About this book
This guide describes how to integrate Arm® SystemC Cycle Models into a SystemC design and
simulation environment.

 Using this book

This book is organized into the following chapters:

Chapter 1 Cycle Model functionality and operating requirements
This section introduces Arm SystemC Cycle Models.

Chapter 2 Integrating models into your environment
This section describes using the Cycle Models Configuration Tool to extract required build
options from Arm models, and how to specify custom build options.

Chapter 3 Using SystemC Cycle Models
This section describes how to work with Arm SystemC Cycle Models, including connecting ports,
working with the API, and incorporating models in your design.

Chapter 4 Debugging SystemC Cycle Models with Arm® Development Studio
This section describes how to connect the Arm Development Studio debugger with Arm Cycle
Models in SystemC CPAKs.

Chapter 5 SystemC Export API function reference
This section describes the functions of the SystemC eXport (SCX) API that are supported by
SystemC Cycle Models. Each description of a class or function includes the C++ declaration and
the use constraints.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

 Preface
 About this book

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential - REL

https://developer.arm.com/support/arm-glossary

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title SystemC Cycle Models User Guide.
• The number 101124_1102_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Documentation.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential - REL

mailto:errata@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Cycle Model functionality and operating
requirements

This section introduces Arm SystemC Cycle Models.

Arm SystemC Cycle Models are compiled directly from RTL code. The SystemC model wrapper is
provided in source form, which enables you to compile for any SystemC 2.3.1-compliant simulator. You
can use SystemC Cycle Models within an Arm Cycle Model Performance Analysis Kit (CPAK) or
integrate them directly into any IEEE 1666-compliant SystemC environment.

It contains the following sections:
• 1.1 Prerequisites to using SystemC Cycle Models on page 1-10.
• 1.2 Supported platforms, compilers, and simulators on page 1-11.
• 1.3 Package contents on page 1-12.

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

1-9

Non-Confidential - REL

1.1 Prerequisites to using SystemC Cycle Models
Review the prerequisites in this section for using Arm SystemC Cycle Models.

Details about the following prerequisites can be found in the Cycle Model SystemC Runtime Installation
Guide (101146):
• Supported Cycle Model SystemC Runtime must be installed in your environment.
• Supported GCC version must be installed in your environment.
• Supported Cycle Model Studio Runtime is required for simulation and recompilation. This is

installed as part of the SystemC Runtime.
• Configured SystemC environment.

Arm recommends familiarity with the Fast Models SystemC Export feature with Multiple Instantiation
(MI) support. SystemC Cycle Models support a subset of the SystemC eXport (SCX) API functions
(these are provided by Fast Models Exported Virtual Subsystems (EVSs)). See the Fast Models User
Guide (100965) for more information.

Prerequisites for Cycle Model reference platform environments

All models in a Cycle Model reference platform must be the same release (for example, all v10.x or all
v11.x). Mixing different versions within a reference platform is not supported, and results in incorrect
Cycle Model behavior, incorrect Tarmac results, or other issues.

Reference platforms may have additional prerequisites. See the Cycle Model Reference Platform Getting
Started Guide (101497).

Related information
Arm IP Exchange
Fast Models User Guide
Cycle Model SystemC Runtime Installation Guide

1 Cycle Model functionality and operating requirements
1.1 Prerequisites to using SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

1-10

Non-Confidential - REL

https://developer.arm.com/docs/101146/latest
https://developer.arm.com/docs/101146/latest
https://developer.arm.com/docs/100965/latest
https://developer.arm.com/docs/100965/latest
https://developer.arm.com/docs/101497/latest
https://developer.arm.com/docs/101497/latest
https://ipx.arm.com/
https://developer.arm.com/docs/100965/latest
https://developer.arm.com/docs/101146/latest

1.2 Supported platforms, compilers, and simulators
This section describes the requirements for running SystemC Cycle Models.

This section contains the following subsections:
• 1.2.1 Supported platforms on page 1-11.
• 1.2.2 Supported compilers on page 1-11.
• 1.2.3 Supported simulators on page 1-11.

1.2.1 Supported platforms

Arm SystemC Cycle Models are supported to run on Red Hat Enterprise Linux versions 6.6 (64-bit) and
7 (64-bit).

1.2.2 Supported compilers

The SystemC Cycle Models have been tested on Linux with GCC 4.8.3 and GCC 6.4.0.

The SystemC Cycle Models include C++11 code, therefore the GCC you are using must support this.

1.2.3 Supported simulators

Arm SystemC Cycle Models can be compiled for any SystemC 2.3.1-compliant simulator.

1 Cycle Model functionality and operating requirements
1.2 Supported platforms, compilers, and simulators

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential - REL

1.3 Package contents
Each SystemC Cycle Model contains the files described in this section.

In a CPAK, these files are located in the root directory CPAK/MODELS/component/gccversion/SystemC.

For models downloaded from Arm IP Exchange (https://ipx.arm.com/), these files and directories are
located in the root directory gccversion/SystemC.

 Note

Package content and filenames may differ slightly from model to model.

.data/
Contains the XML data file for the model. The XML data file is readable by the Cycle Model
Configuration Tool (cm_config), and provides required build and link data when you run make.

icm/
Contains header files for Cycle Model APIs.

lib/
Contains libcomponent.icm.so, the RTL-based core of the Cycle Model. When you compile
the system executable, this must be included.

univentUtil/ (Models that support Tarmac only)
Contains files required for Tarmac tracing.

CM_busdefs.tar
Cycle Model IPXACT bus definition bundle.

CM_IPXACT_component.xml
Cycle Model IPXACT description.

cm_sysc_utils.h
SystemC utilities header file.

componentResetModule.h
Reset module used to drive the SystemC pin-level wrapper for the Reset sequence of the IP.

component.xmlAnswers
Shows the configuration of the Cycle Model as built on Arm IP Exchange.

libcomponent.h
Base function header exposed by the core Cycle Model. This is required to access functions in
the core Cycle Model.

libcomponent.systemc.cpp and libcomponent.systemc.h
Pin-level SystemC wrapping header for the core Cycle Model. Compile this to generate a signal-
level, linked SystemC model.

component_icm.h
Header file for libcomponent.icm.so, located in lib/.

Makefile
Compiles the Cycle Model into the shared libraries included with the installation.

component_params.cfg
Cycle Model-specific parameter definitions.

component_pmu.h
Cycle Model hardware profiling implementation to generate profiling events.

component.tlm.cpp and component.tlm.h
TLM wrappers. Present only in TLM-based models.

1 Cycle Model functionality and operating requirements
1.3 Package contents

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential - REL

https://ipx.arm.com/

TCM-related files

Models that support TCMs may have additional header files related to TCM loading and waveform
dumping, if supported.

1 Cycle Model functionality and operating requirements
1.3 Package contents

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential - REL

Chapter 2
Integrating models into your environment

This section describes using the Cycle Models Configuration Tool to extract required build options from
Arm models, and how to specify custom build options.

It contains the following sections:
• 2.1 Extracting build options using the Cycle Models Configuration Tool on page 2-15.
• 2.2 Adding custom options to the Makefile on page 2-21.

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-14

Non-Confidential - REL

2.1 Extracting build options using the Cycle Models Configuration Tool
To integrate an Arm model into your build flow, use the Cycle Models Configuration Tool to extract its
build options.

The Cycle Models Configuration Tool is a command-line utility included with the SystemC Cycle Model
Runtime. It provides a standard interface to the Cycle Model SystemC Runtime and Model packages.

The Cycle Models Configuration Tool simplifies integration of models into your systems, build flow, or
custom Makefile by extracting the required build and link options for all Arm Cycle Model components
in the model or reference platform.

The Cycle Models Configuration Tool also flags incompatibilities between individual model
requirements within a system. For example, if you add a new model to an existing system, the Cycle
Models Configuration Tool determines the version of the SystemC Cycle Model Runtime that satisfies
the version requirements of all of the models.

You can run the Cycle Models Configuration Tool at the command line or as part of the build flow.

Restrictions and limitations
The following restrictions and limitations apply to the Cycle Models Configuration Tool:
• For use on 64-bit Linux platforms only.
• Tested on GCC 4.8.3 and GCC 6.4.0.
• The Cycle Models Configuration Tool uses the directory it is run from as the default searchpath; use

the --searchpath option to specify a different location to search.
• Backward compatibility is limited to Version 11.0 (and later) models. These models contain the data

files required by the Cycle Models Configuration Tool.
• Models built on IP Exchange contain the data files required by the Cycle Models Configuration Tool.

If you are working in a reference platform environment with models that were not built on IP
Exchange, you must explicitly make the build options available to the Makefile. Your reference
platform will not build successfully without the required build options for all components. See the
Cycle Model Reference Platform Getting Started Guide for more information.

This section contains the following subsections:
• 2.1.1 Cycle Models Configuration Tool command syntax on page 2-15.
• 2.1.2 Cycle Models Configuration Tool examples on page 2-19.

2.1.1 Cycle Models Configuration Tool command syntax

Extracts compiler, link, and source data and dependencies for specified components.

Syntax
cm_config [-h] [--verbosity [{debug,error,info,warning}]] [--version]
[--list] [--list-req] [--use-tool USE-TOOL]
[--searchpath SEARCHPATH [SEARCHPATH ...]]
[--model MODEL [MODEL ...]] [--ignore IGNORE [IGNORE ...]]
[--compile [{defines,flags,includes}]] [--sources]
[--link [{dirs,dirs_rt,flags,libs}]]
[--model-type [{pin,tlm}]] [--use-env USE-ENV [USE-ENV ...]]
[--use-arm]

2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-15

Non-Confidential - REL

https://developer.arm.com/docs/101497/latest

Arguments

--compile [{defines, flags, includes}]
Optional.
Outputs compile options for the specified component or components. By default, defines, flags,
and includes are output. Optionally, you can specify one or more of the following options to
ouput only the related data:
• defines
• flags
• includes

This example outputs define, flag, and link data:

$ cm_config --use-tool gcc:6.4.0 --searchpath ./ --model cms --compile

This example outputs define and flag data only:

$ cm_config --use-tool gcc:6.4.0 --searchpath ./ --model cms --compile defines --
compile flags

-h, --help
Optional.
Shows command help and exits.

Example:

$ cm_config --help

--ignore [{cms, cm_sysc, SystemC, model}]
Optional.
Directs the Cycle Models Configuration Tool to ignore the specified data when returning
compiler, build, or link information. Use a space delimiter when specifying one or more of the
following options:
• cms ignores data related to the Cycle Model Studio Runtime
• cm_sysc ignores data related to the SystemC Cycle Model Runtime
• SystemC ignores data related to the SystemC environment
• component ignores model- or component-related data. Use the --list argument for the exact

component name.

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --ignore cms cm_sysc SystemC --
model model

--link [{dirs, dirs_rt, flags, libs}]
Optional.
Outputs linker data for the specified component or components. Used without an option, returns
directories, libraries, and flags. Optionally, specify one or more of the following options:
• dirs
• dirs_rt (returns the unformatted directories for dynamically loaded libraries)
• flags
• libs

This example returns directory, library, and flag data:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --model model --link

This example returns flag and library data only:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --model model --link flags --
link libs

2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-16

Non-Confidential - REL

--list
Optional.
Lists all available components. Optionally, use in combination with the --searchpath option to
restrict to a particular directory.

Example:

$ cm_config --list

--list-req
Optional.
Lists all available components and the tools and components each one requires. Optionally, use
in combination with the--searchpath option to restrict to a particular directory.

Example:

$ cm_config --list-req

--model MODEL [MODEL …]
Required unless the --list or --list-req option is used.
Specifies one or more components to retrieve information for. Optionally, specify a version with
a comparison operator; for example: "COMP_A>3.2.4" or "COMP_A > 3.2.4". Component
names match the C++ class name defined at model build time. Versions must be only numbers
and decimals. If greater or less than signs are used, the model name and version must be
enclosed by quotations.

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MyModelsAndRuntimeInstallPath --model
MyCPUModel MyInterconnectModel --
link

--model-type [{pin, tlm}]
Optional.
Models may be pin-based or TLM-based. By default, the Cycle Models Configuration Tool
returns all data regardless of the model type. The --model-type argument returns only data
related to the specified model type:
• pin returns pin-related data plus data common to both model types.
• tlm returns TLM-related data plus data common to both model types.

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --model model --model-type tlm
--link

--searchpath SEARCHPATH [SEARCHPATH ...]
Optional.
Specifies the directories to search for Models or Cycle Model SystemC Runtime components.
When not specified, the Cycle Models Configuration Tool searches the directory in which the
tool was run.

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --model model --link

--sources
Optional.
Outputs a list of source files.

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --model model --sources

2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-17

Non-Confidential - REL

--use-arm
Optional.
Extracts data only for Arm libraries and components. Recommended only when extracting data
for custom flows.

 Note

Use this option with care. Build failures may result if libraries other than Arm libraries are
required to build an executable.

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath ./ --model model --link libs --use-arm

--use-env <COMPONENT>:<ENV> [<COMPONENT>:<env> ...]
Optional.
Formats data for one or more specified <component>:<env> pairs. For these components, the
path data returned is relative to an environment variable that reflects the root of the component.
Recommended for advanced users only.
Some examples of component pair options are:
• cms:CARBON_HOME
• SystemC:SYSTEMC_HOME
• cm_sysc:CM_SYSC_HOME
• CortexM0Plus:MY_M0PLUS_HOME

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath ./ --model cms --sources --use-env
cms:CARBON_HOME

--use-tool GCC:VERSION
Required.
Specifies which compiler and link options to return. Options are:
• gcc:6.4.0
• gcc:4.8.3

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --model model --sources

--verbosity VERBOSITY
Optional.
Specifies the verbosity of Cycle Models Configuration Tool execution feedback. Options are:
• debug
• error (default)
• info
• warning

Example:

$ cm_config --use-tool gcc:6.4.0 --searchpath MODELS --verbosity debug --model model
--link

--version
Optional.
Returns the version of the Cycle Models Configuration Tool. Example:

$ cm_config --version

Related information

2.1.2 Cycle Models Configuration Tool examples on page 2-19

2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential - REL

2.1.2 Cycle Models Configuration Tool examples

The examples in this section assume that the path for the Cycle Models Configuration Tool is part of the
PATH environment variable (install path/ARM/CycleModels/Runtime/cm_sysc/version/bin/). Add
the tool path to the PATH environment variable by sourcing one of the runtime setup scripts in ARM/
CycleModels/etc.

Example use in a simple Makefile

Following is an example in which the compile and link steps are combined. There are two models:
MyCPUModel and MyInterconnectModel. Both are in the directory MyModelsAndRuntimeInstallPath.
The Cycle Models Configuration Tool is called once to create a list of source files, then a second time to
retrieve all of the compile and link options.

Tool name with baseline options. Options that may change are specified here,
such as compiler version, location of the Models, and the Model Names
CM_CONFIG:=cm_config --use-tool gcc:6.4.0 --searchpath MyModelsAndRuntimeInstallPath --
model MyCPUModel MyInterconnectModel
SRCS:=$(shell $(CM_CONFIG) --sources)

system: $(SRCS)
$(CXX) -o $@ $^ $(shell $(CM_CONFIG) --compile --link)

Example use in a complex Makefile

If your build flows separate includes, compiler flags, and linker options, use the arguments to the --
compile option to return this data as shown:

CM_CONFIG:=cm_config --use-tool gcc:6.4.0 --searchpath MyModelsAndRuntimeInstallPath --
model MyCPUModel MyInterconnectModel
CINCS := $(shell $(CM_CONFIG) --compile includes)
CFLAGS := $(shell $(CM_CONFIG) --compile flags)
LDOPTS := $(shell $(CM_CONFIG) --link)

SRCS := $(shell $(CM_CONFIG) --sources)
OBJS := $(patsubst %.cpp,%.o,$(SRCS))

system: system.o $(OBJS)
$(CXX) -o $@ $^ $(LDOPTS)

system.o: system.cpp
$(CXX) -c $(CFLAGS) $(CINCS) -o $@ $^

%.o: %.cpp
$(CXX) -c $(CFLAGS) $(CINCS) -o $@ $^

Example of retrieving source and link files for different model types

You may want to build a TLM or pin-level version of a SystemC Model.

The following example shows how to return the required file list and link options for a model Cycle
Model. The command directs cm_config to search only in the runtime and model directories.

$ cm_config --use-tool gcc:6.4.0 --model CORTEXR8 --sources --link --model-type tlm --ignore
cms cm_sysc

/arm/models/R8_Model/gcc640/SystemC/univent_tarmac.cpp /arm/models/R8_Model/gcc640/SystemC/
libCORTEXR8.systemc.cpp /arm/models/R8_Model/gcc640/SystemC/CORTEXR8ResetImp.cpp /arm/models/
R8_Model/gcc640/SystemC/libCORTEXR8.tlm.cpp -L/arm/models/R8_Model/gcc640/SystemC -L/arm/
models/R8_Model/gcc640/SystemC/lib /arm/models/R8_Model/gcc640/SystemC/univentUtil/lib/
plover_tarmac_dpi.so -lCORTEXR8.icm -licm_runtime -L/arm/models/R8-SysC-V11.0.0-CMS11.0.0-
MK2019.05.31-SOCD9.6.0/ARM/ThirdPartyIP/Accellera/SystemC/2.3.1/lib/Linux64_GCC-6.4 -
lsystemc -lpthread

The following example shows how to return the required file list and link options for only the pin-level
model:

$ cm_config --use-tool gcc:6.4.0 --model CORTEXR8 --sources --link --model-type pin --ignore
cms cm_sysc

/arm/models/R8_Model/gcc640/SystemC/univent_tarmac.cpp /arm/models/R8_Model/gcc640/SystemC/
libCORTEXR8.systemc.cpp -L/arm/models/R8_Model/gcc640/SystemC -L/arm/models/R8_Model/gcc640/

2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential - REL

SystemC/lib /arm/models/R8_Model/gcc640/SystemC/univentUtil/lib/plover_tarmac_dpi.so -
lCORTEXR8.icm -licm_runtime -L/arm/models/R8-SysC-V11.0.0-CMS11.0.0-MK2019.05.31-
SOCD9.6.0/ARM/ThirdPartyIP/Accellera/SystemC/2.3.1/lib/Linux64_GCC-6.4 -lsystemc -lpthread

Example of substituting environment variables for component roots

When extracting build data for integration in custom flows, you may need to substitute environment
variables for component roots. In the following example, CORTEXM7_HOME is used as the model root.
SYSTEMC_HOME is used for the SystemC root:

$ cm_config --use-tool gcc:6.4.0 --model CORTEXR8 --sources --link --model-type pin --ignore
cms cm_sysc --use-env CORTEXR8:CORTEXR8_HOME SystemC:SYSTEMC_HOME

${CORTEXR8_HOME}/gcc640/SystemC/univent_tarmac.cpp ${CORTEXR8_HOME}/gcc640/SystemC/
libCORTEXR8.systemc.cpp -L${CORTEXR8_HOME}/gcc640/SystemC -L${CORTEXR8_HOME}/gcc640/SystemC/
lib ${CORTEXR8_HOME}/gcc640/SystemC/univentUtil/lib/plover_tarmac_dpi.so -lCORTEXR8.icm -
licm_runtime -L${SYSTEMC_HOME}/lib/Linux64_GCC-6.4 -lsystemc -lpthread

Example of extracting Arm® data

The following example shows using the --use-arm option to retrieve data owned or developed by Arm.

$ cm_config --use-tool gcc:6.4.0 --model CORTEXR8 --sources --link --model-type pin --ignore
cms cm_sysc --searchpath Runtime_v3.0 R8_Model --use-arm

 /arm/models/R8_Model/gcc640/SystemC/univent_tarmac.cpp /arm/models/R8_Model/
gcc640/SystemC/libCORTEXR8.systemc.cpp -L/arm/models/R8_Model/gcc640/SystemC -L/arm/models/
R8_Model/gcc640/SystemC/lib /arm/models/R8_Model/gcc640/SystemC/univentUtil/lib/
plover_tarmac_dpi.so -lCORTEXR8.icm -licm_runtime

2 Integrating models into your environment
2.1 Extracting build options using the Cycle Models Configuration Tool

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential - REL

2.2 Adding custom options to the Makefile
You may want to further customize your build, including using a different installation of SystemC than
the one Arm includes in the runtime. In this case, you can use the information in this section to add build
options into the Makefile without the need to edit it.

Arm Cycle Models support the flexibility to:
• Add arguments to the Cycle Models Configuration Tool command line. This is useful for adding

searchpaths, models, or ignores.
• Specify build variables to add any extra sources and build options you may need, such as compile

flags and defines, or link flags, directories, and libraries. The build variables also allow you to use
your own version of SystemC.

Build variables

The following build variables exist in the model Makefile. In a Cycle Model reference platform
environment, they are also present in the reference platform Systems/Makefile:

• CM_CONFIG_ARGS - Arguments added to the cm_config command line.
• CXXFLAGS - Compile flags, includes, and defines to be added into the build.
• LDFLAGS - Link flags, directories, and libraries to be added into the build.
• RPATHS - Runtime rpaths to be added into the build.
• SRCS - Sources to be added into the build.

The following build variable is present only in the model Makefile:
• SRCS_TLM - TLM sources to be added into the build.

Example 1: Specifying your own version of SystemC

The following example directs the Cycle Models Configuration Tool not to search for SystemC, and adds
in build data for a custom SystemC installation, assuming SYSTEMC_INC and SYSTEMC_LIB are set to the
includes and library directories:

$ make all CM_CONFIG_ARGS=’--ignore SystemC’ CXXFLAGS=’-I$SYSTEMC_INC’ LDFLAGS=’-L
$SYSTEMC_LIB -lsystemc’ RPATHS=’-Wl,-rpath,$SYSTEMC_LIB’

Example 2: Providing another runtime path

The following example provides a different runtime path than the default, allowing the Cycle Models
Configuration Tool to pick the latest compatible runtime components:

$ make all CM_CONFIG_ARGS=`--searchpath path_to_alternative_runtime`

Example 3: Adding different debug or optimization parameters

The following example shows specifying alternate debug outputs and optimization parameters:

$ make all CXXFLAGS=`-g`
$ make all CXXFLAGS=`-ggdb`
$ make all CXXFLAGS=`-O3`

2 Integrating models into your environment
2.2 Adding custom options to the Makefile

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential - REL

Chapter 3
Using SystemC Cycle Models

This section describes how to work with Arm SystemC Cycle Models, including connecting ports,
working with the API, and incorporating models in your design.

It contains the following sections:
• 3.1 Connecting model ports on page 3-23.
• 3.2 Resetting the SystemC Cycle Model on page 3-24.
• 3.3 Setting model parameters on page 3-25.
• 3.4 Dumping waveforms on page 3-26.
• 3.5 Configuring PMU events on page 3-27.
• 3.6 Configuring Tarmac trace on page 3-28.
• 3.7 Working with the SCX framework on page 3-29.

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-22

Non-Confidential - REL

3.1 Connecting model ports
All pins must be bound to a signal.

For a list of the pins on the model SystemC Cycle Model, refer to the model header file
Libmodel.Systemc.h, or the CM_IPXACT_model.xml file.

Certain pins are tied and cannot be modified; contact Arm Support for more information.

Refer to the SystemC documentation for information about native SystemC binding commands (sc_in,
sc_signal, etc.).

This section contains the following subsection:
• 3.1.1 Available pins on page 3-23.

3.1.1 Available pins

When making changes to the model pins, be aware that certain pins are tied high or low, and can not be
modified.

For a complete list of the pins on the model SystemC Cycle Model, refer to the model header file
Libmodel.Systemc.h, or the CM_IPXACT_model.xml file. Certain pins in the list are tied and cannot be
modified; contact Arm Support for more information.

3 Using SystemC Cycle Models
3.1 Connecting model ports

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-23

Non-Confidential - REL

3.2 Resetting the SystemC Cycle Model
A default reset sequence is provided in source form in the model directory gccversion/SystemC/.

If necessary, you can modify this file as needed to work with your system:
• For pin-level models, the file is modelResetModule.h
• For TLM models, the file is modelResetImp.cpp

After modifications, recompile the model. For pin-level models, ensure that the reset module is
connected to the model (this step is not necessary for TLM models).

Refer to the Technical Reference Manual for your IP for details about its reset sequence.

3 Using SystemC Cycle Models
3.2 Resetting the SystemC Cycle Model

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-24

Non-Confidential - REL

3.3 Setting model parameters
This section describes how to see the parameters supported by your SystemC Cycle Model, and how to
set them.

Initialization parameters

You can change initialization-time (Init) parameters either on the command line prior to simulation, or in
the test bench (system_test.cpp) prior to the start of simulation (sc_start). Ensure that you recompile
for the change to take effect.

Run-time parameters

For run-time parameters, change the parameter value on the command line using -C INST.PARAM=VALUE
or --parameter INST.PARAM=VALUE.

The following example restarts a Cortex-A53 simulation, specifying the hello_world application with
waveform dumping enabled:

$./system_test -a ../Applications/hello_world/armcc/elf/test.elf -C
CortexA53.WAVEFORMS_ENABLED=true

Available parameters
To list the parameters supported by the model:
• In a CPAK environment, enter ./system_test --list-params in the Systems directory.
• View the component_params.cfg file in the directory MODELS/component_xCPU/gccversion/

SystemC.

See the Technical Reference Manual for your IP for additional information about supported parameter
values.

For CADI-enabled models, see 4.6 CADI RemoteConnection parameters on page 4-41 for additional
parameters related to configuring CADI debug connections. These options do not appear in the
component_params.cfg file.

3 Using SystemC Cycle Models
3.3 Setting model parameters

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-25

Non-Confidential - REL

3.4 Dumping waveforms
This section describes how to configure waveform dumping.

To enable and disable waveform dumping using parameter values within the system executable code, set
the following parameters.

 Note

Setting WAVEFORM_TIMEUNIT and WAVEFORM_TYPE is optional; set them only if you want to change the
default settings. If you are changing them, call WAVEFORMS_ENABLED after setting WAVEFORM_TIMEUNIT
and WAVEFORM_TYPE.

By default, waveform files are sent to the reference platform Systems directory with the default filename
arm_cm_CPU.fsdb or arm_cm_CPU.vcd.

Table 3-1 Waveform parameters

Parameter Available settings Default setting

WAVEFORM_TIMEUNIT Units defined by sc_time_unit(): SC_FS, SC_PS, SC_NS, SC_US, SC_MS, SC_SEC SC_PS

WAVEFORM_TYPE FSDB, VCD VCD

WAVEFORMS_ENABLED true, false false

For example:

scx::scx_set_parameter("sc-module-name.WAVEFORM_TIMEUNIT",sc_core::SC_NS);
scx::scx_set_parameter("sc-module-name.WAVEFORMS_TYPE","FSDB");
scx::scx_set_parameter("sc-module-name.WAVEFORMS_ENABLED",true);

sc-module-name is the name given to the model when it is instantiated in the system executable.

Following is an example of setting waveform values on the command line:

./system_test -a ../Applications/hello_world/armcc/elf/test.elf -C model.WAVEFORM_TYPE=FSDB -
C model.WAVEFORMS_ENABLED=true

Related information
• Setting model parameters

3 Using SystemC Cycle Models
3.4 Dumping waveforms

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-26

Non-Confidential - REL

3.5 Configuring PMU events
SystemC Cycle Model Performance Monitoring Unit (PMU) events are stored in C++ variables.

By default, calculations of PMU events are disabled in the SystemC Cycle Model. You can enable PMU
events by setting a parameter value in the system executable code. Use the following parameters:

Table 3-2 PMU parameters

Parameter Available settings Default setting

PMU_ENABLED true, false false

For example:

scx::scx_set_parameter("sc-module-name.PMU_ENABLED",true);

sc-module-name is the name given to the model when it is instantiated in the system executable.

For information about C++ variable names for PMU events, refer to the file component_pmu.h located in
the reference platform directory MODELS/component/gccversion/SystemC.

3 Using SystemC Cycle Models
3.5 Configuring PMU events

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-27

Non-Confidential - REL

3.6 Configuring Tarmac trace
This section describes how to enable and disable Tarmac trace.

By default, Tarmac trace is disabled, and Tarmac buffers log file data. You can enable Tarmac tracing by
setting parameter values in the system executable code, and specify the number of instructions after
which to flush the log file.

 Note

If you are setting TARMAC_LOGFILE_NAME, call TARMAC_ENABLED after setting TARMAC_LOGFILE_NAME.

 Note

The Cortex-A53 Cycle Model does not support TARMAC_FLUSH.

Table 3-3 Tarmac trace parameters

Parameter Description Available
settings

Default
setting

TARMAC_LOGFILE_NAME Sets Tarmac log file name. This parameter should not be set in a
multi-cluster environment; use the alternate instructions below.

string ""

TARMAC_ENABLED Enables or disables Tarmac logging. true, false false

TARMAC_FLUSH Flushes the Tarmac log file data after the specified number of
instructions.

integer 0

Enabling Tarmac trace in multicore environments

In multicore environments, use the @CPUID@ designation to name the Tarmac files. For example, for a
model design with two cores and one cluster:

scx::scx_set_parameter("model.TARMAC_LOGFILE_NAME","tarmac.model.@CPUID@.log");
 scx::scx_set_parameter("model.TARMAC_LOGFILE_ENABLED",true);

This creates the files tarmac.model.0.log and tarmac.model.1.log.

Enabling Tarmac trace in multicluster environments

For multiple clusters, use the default Tarmac log file name (model.aff2.aff1.cpuid.log) rather than
setting a different name with the TARMAC_LOGFILE_NAME parameter. Set the affinity values using the
model parameters CLUSTERIDAFF1 and CLUSTERIDAFF2.

3 Using SystemC Cycle Models
3.6 Configuring Tarmac trace

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-28

Non-Confidential - REL

3.7 Working with the SCX framework
Arm SystemC Cycle Models implement the SystemC Export (SCX) API provided by Fast Models
Exported Virtual Subsystems (EVSs).

SCX API overview

You can configure the parameters and other settings for your SystemC model using either native
SystemC signals or using the SCX API. The SCX API is fully described in the Fast Models User Guide
(100965), section 7.6 (SystemC Export API).

Arm recommends not mixing parameter sets through the SCX framework and parameter sets through
native SystemC signal writes, as this can produce unexpected results. For example, the following case
describes what would happen in a case where both are used in succession in a system:

scx::scx_set_parameter("CortexR8.ACLKENST",1); //Statement 1
CortexR8.ACLKENST.write(0); //Statement 2

Due to intrinsic SystemC properties, the value ultimately assigned to ACLKENST depends on the
previous value of the pin:
• If ACLKENST had an initial value of 0, the write(0) is ignored because that was the previous value,

and ACLKENST is assigned a value of 1. Because of the SystemC property of write, if the previous
value was 0, setParameter takes precedence.

• If ACLKENST had a value of 1, then the write takes precedence and the value is set to 0.

See Chapter 5 SystemC Export API function reference on page 5-44 for details about the functions
supported by SystemC Cycle Models.

3 Using SystemC Cycle Models
3.7 Working with the SCX framework

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

3-29

Non-Confidential - REL

Chapter 4
Debugging SystemC Cycle Models with Arm®

Development Studio

This section describes how to connect the Arm Development Studio debugger with Arm Cycle Models in
SystemC CPAKs.

This section applies to CADI-enabled models only.

It contains the following sections:
• 4.1 Restrictions and limitations on page 4-31.
• 4.2 Prerequisites to debugging on page 4-32.
• 4.3 Models that support Arm® Development Studio connectivity on page 4-33.
• 4.4 Supported debug features on page 4-34.
• 4.5 Enabling Development Studio for use with SystemC Cycle Models on page 4-35.
• 4.6 CADI RemoteConnection parameters on page 4-41.
• 4.7 Multicore debugging on page 4-42.
• 4.8 Changing the timeout setting on page 4-43.

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-30

Non-Confidential - REL

4.1 Restrictions and limitations
This section describes the restrictions and limitations for debugging SystemC Cycle Models.

Be aware of the following limitations related to debugging SystemC Cycle Models with Arm
Development Studio:
• The Windows version of Arm Development Studio is not supported for SystemC Cycle Models. Only

the Linux 64-bit version is supported.
• Some multi-cluster systems may support cache coherency. Cycle Models in SystemC CPAKs do not

currently show a coherent debug view of memory shared across clusters.
• Reset of system and CPU are not supported through the debugger interface.
• sc_stop() function calls are not supported during simulation, because they could result in

termination of the debugger connection. A suggested workaround is to use an infinite loop at the end
of the software being simulated.

• For certain cores, breakpoints may be missed during debug if they exist within short loops. See
4.7 Multicore debugging on page 4-42 for workarounds.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.1 Restrictions and limitations

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-31

Non-Confidential - REL

4.2 Prerequisites to debugging
Arm Development Studio is required before you begin. The instructions in this chapter have been
verified using Arm Development Studio Version 2018.0.

Linux version of Development Studio
 Note

The Windows version of Arm Development Studio is not supported for SystemC Cycle Models. Only the
Linux 64-bit version is supported.

Download and install the Linux 64-bit version of Arm Development Studio from https://
developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads.

Specify Active Product

Licensed version of Arm Development Studio Gold Edition. Open the Arm License Manager to confirm.

Related information
• See the Arm® Development Studio Getting Started Guide (101469) for system requirements,

installation instructions, and licensing information.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.2 Prerequisites to debugging

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-32

Non-Confidential - REL

https://developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/downloads
https://developer.arm.com/docs/101469/latest

4.3 Models that support Arm® Development Studio connectivity
Arm Development Studio connects only to CPU models that have debugger support.

The following SystemC Cycle Models support connection to Arm Development Studio:
• Cortex-A53 (single core and multi-core). Debugger features on the Cortex-A53 model are BETA

quality. This includes register view, memory view, and breakpoint/single step support. Multicluster
coherent memory views are not supported.

• Cortex-M7 (single core). Debugger features on the Cortex-M7 model are BETAquality. This includes
register view, memory view, and breakpoint/single step support.

• Cortex-R5 (single core and multi-core). Debugger features on the Cortex-R5 model are BETA
quality. This includes register view, memory view, and breakpoint/single step support.

• Cortex-R8 (single core and multi-core).
• Cortex-R52 (single core and multi-core). Debugger features on the Cortex-R52 model are BETA

quality. This includes register view, memory view, and breakpoint/single step support. Debug
memory views are only in a downstream direction, and only for the AXI master space. Debug
memory views do not include internal TCM or Data Cache lookup.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.3 Models that support Arm® Development Studio connectivity

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-33

Non-Confidential - REL

4.4 Supported debug features
This section describes Arm Development Studio features that are supported on SystemC Cycle Models
and debugging features that have been added to SystemC Cycle Models.

 Note

CPUs are modeled as masters that issue debug access downstream to other components. Upstream debug
access into CPU models through slave ports is not supported.

Arm® Development Studio features
SystemC Cycle Models support the following Arm Development Studio functionality:
• Debugging of multi-core and multi-cluster configurations.You can specify whether you want to debug

software running on multiple CPUs, or debug software on one CPU at a time. See the section
4.7 Multicore debugging on page 4-42 for more information.

• Debugging of Symmetric Multi Processing (SMP) systems.

See the Arm® Development Studio User Guide (101470) for more information about debugging multi-
core, multi-cluster, and SMP targets.

Support for memory and register views

The SystemC Cycle Model exposes memory spaces and a subset of the registers. However, their
visibility varies depending on the debugger in use.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.4 Supported debug features

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-34

Non-Confidential - REL

4.5 Enabling Development Studio for use with SystemC Cycle Models
This section describes how to set up Arm Development Studio to debug Cycle Models.

 Note

The examples in this section apply to all Arm CPU models that support debugging. The process of
enabling Arm Development Studio is the same for all Arm CPU models.

This section contains the following subsections:
• 4.5.1 Connect Development Studio to the model on page 4-35.
• 4.5.2 Mapping memory spaces on page 4-39.

4.5.1 Connect Development Studio to the model

Start the simulation and select the SystemC model for debug.

Procedure
1. Start the SystemC simulation with the CADI server enabled:

./system_test -S

2. Launch Arm Development Studio.
3. Click New Debug Connection to launch the debug connection wizard:

Figure 4-1 Click New Debug Connection
4. In the New Debug Connection wizard, select Model Connection and click Next:

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.5 Enabling Development Studio for use with SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-35

Non-Confidential - REL

Figure 4-2 Select model connection ast the debug connection type
5. In the Debug Connection dialog box, enter a name in the Debug connection name field and click

Next:

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.5 Enabling Development Studio for use with SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-36

Non-Confidential - REL

Figure 4-3 Name the debug connection
6. In the Target Selection dialog box, click Add a new model:

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.5 Enabling Development Studio for use with SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-37

Non-Confidential - REL

Figure 4-4 Add a new model
7. In the Select Method for Connecting to Model: dialog box, select Browse for model running on

local host and click Next.
8. Click Browse.
9. In the Model Running on Local Host dialog box, click Browse. Development Studio searches for

SystemC simulation sessions running on the host, and displays them in the Model Browser dialog
box:

Figure 4-5 Model Browser
10. Select the model for debug and click Select.
11. Click Finish.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.5 Enabling Development Studio for use with SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-38

Non-Confidential - REL

Result

Arm Development Studio connects to the model and displays the cores available for debug:

Figure 4-6 Core available for debug

Related information
• Arm® Development Studio Getting Started Guide (101469)
• Arm® Development Studio User Guide (101470)

4.5.2 Mapping memory spaces

For cores that support Secure, Non-Secure, or Hypervisor spaces, map these spaces for the debugger as
described in this section.

 Note

Memory space mapping applies only to the CPU types described below.

This section applies to:

• ARMv8-A cores, such as the Cortex-A53 CPU
• Other cores that have Secure, Non-Secure, or Hypervisor spaces

ARMv7 Cortex-R and Cortex-M CPU models do not support Secure, Non-Secure, or Hypervisor spaces.
For this reason, there is no need to specify memory space mapping.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.5 Enabling Development Studio for use with SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-39

Non-Confidential - REL

https://developer.arm.com/docs/101469/latest
https://developer.arm.com/docs/101470/latest

To map memory spaces for the debugger:
1. Access the Model Devices and Cluster Configuration tab of the Arm Development Studio GUI.
2. Click Edit selected row. The Edit instance dialog box appears.
3. Set Cluster to 0 and manually set or verify the following parameter values:

Table 4-1 Memory space settings

Parameter Value

Secure memory space ID 0

Hypervisor memory space ID 1

Non-Secure memory space ID 2

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.5 Enabling Development Studio for use with SystemC Cycle Models

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-40

Non-Confidential - REL

4.6 CADI RemoteConnection parameters
This section describes the parameters for CADI connections.

Each parameter is prefixed with REMOTE_CONNECTION.CADIServer; for example:

REMOTE_CONNECTION.CADIServer.range

 Note

The default value restricts connections to be from the localhost only. To enable remote connections,
specify an IP address to listen to, or specify 0.0.0.0 to listen to all adapters.

Table 4-2 CADIIPCRemoteConnection parameters

Name Type Default value Allowed
values

Runtime Description

enable_remote_cadi bool false true, false false Allow connections from remote hosts.

listen_address string "127.0.0.1" "" false If enable_remote_cadi is set, this parameter is
the network address the server listens on.

port int 0x7b8b 0x1 - 0xffff false If enable_remote_cadi is set, this parameter is
the TCP port the server listens on.

range int 0x0 0x0 - 0x64 false If the requested port is not available, search for the
next available port in the range [port:port+range].
Only try the specified port.

See 5.8 scx::scx_parse_and_configure on page 5-52 for information about CADI command-line options
used with scx::scx_parse_and_configure().

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.6 CADI RemoteConnection parameters

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-41

Non-Confidential - REL

4.7 Multicore debugging
This section contains information about debugging in SystemC Cycle Model multi-core and multi-cluster
environments.

Multi-core, multi-cluster, and single-core debugging modes

For more information about debugging multi-core and multi-cluster targets, see the Arm® Development
Studio User Guide (101470).

In SystemC Cycle Model multi-core and multi-cluster environments, you can specify whether to debug
software running on multiple CPUs (this is the default), or whether to debug only on one CPU at a time.

To debug one CPU at a time, set the environment variable CM_SCX_DEBUG_ONE to 1 before running the
simulation. When debugging a single CPU, only the CPU that hits a breakpoint has an accurate debug
view. Impact on simulation performance in this mode is minimal, as only one CPU's pipeline is flushed.

To debug multiple CPUs, remove the environment variable CM_SCX_DEBUG_ONE.
 Note

When debugging multiple CPUs, be aware that the impact on simulation performance is higher than
when debugging one CPU at a time, because each of the core models performs additional debug logic to
read data from internal pipelines. All CPUs attempt to accurately reflect the debug view, monitoring all
CPU simulation stops, halts, single-steps, and breakpoints.

Timeouts and their effect on reliable debug views

This section describes how timeouts may interfere with reaching a debuggable point, and possible
workarounds for timeouts. A debuggable point is a point in the simulation where the model’s internal
state can be accurately represented using architectural registers. Cycle Models must be at a valid
debuggable point before they can provide a reliable debug view into registers and memory

If you issue a debugger halt, and one or more CPUs can not reach a debuggable point within the timeout
interval, the simulation halt request times out, resulting in a warning similar to the following on the
console from which the simulation was run:

Warning: stop at a debug point failed: Simulation suspended before these target(s)
could reach debug point:model_core.cpu1;model_core.cpu3;

In these cases, the debug view of the affected CPU may show inaccurate values, and register or memory
modifications are not allowed.

Scenarios that might cause a timeout include:

• Simulated software uses WFI (wait for interrupts) or WFE (wait for events), and after a single-step or
breakpoint hit on a different CPU, the interrupts or events do not occur within the timeout window.

• Breakpoints within loops are not reached (see 4.1 Restrictions and limitations on page 4-31). In these
cases, lengthening the loop by adding nops may allow the debugger to hit the breakpoint. For
example:

end:
nop
nop
nop
nop
B end

Workarounds to avoid timeouts and view the content of such cores include:
• Avoid using WFI/WFE in the simulated software
• Avoid tight loops such as:

self: branch self

• Change the timeout setting (see 4.8 Changing the timeout setting on page 4-43)

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.7 Multicore debugging

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-42

Non-Confidential - REL

https://developer.arm.com/docs/101470/latest
https://developer.arm.com/docs/101470/latest

4.8 Changing the timeout setting
The timeout interval is counted by the simulation host. By default, the timeout interval is set to three
seconds.

To change the timeout interval, set the environment variable CM_SCX_STOP_TIMEOUT_SEC before starting
the simulation. For example, to set the timeout interval to five seconds using Linux bash shell:

export CM_SCX_STOP_TIMEOUT_SEC=5

The minimum interval allowed for this environment variable is one second.

4 Debugging SystemC Cycle Models with Arm® Development Studio
4.8 Changing the timeout setting

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

4-43

Non-Confidential - REL

Chapter 5
SystemC Export API function reference

This section describes the functions of the SystemC eXport (SCX) API that are supported by SystemC
Cycle Models. Each description of a class or function includes the C++ declaration and the use
constraints.

It contains the following sections:
• 5.1 scx::scx_initialize on page 5-45.
• 5.2 scx::scx_load_application on page 5-46.
• 5.3 scx::scx_set_parameter on page 5-47.
• 5.4 scx::scx_get_parameter on page 5-48.
• 5.5 scx::scx_get_parameter_list on page 5-49.
• 5.6 scx::scx_cpulimit on page 5-50.
• 5.7 scx::scx_timelimit on page 5-51.
• 5.8 scx::scx_parse_and_configure on page 5-52.
• 5.9 scx::scx_print_statistics on page 5-56.

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-44

Non-Confidential - REL

5.1 scx::scx_initialize
This function initializes the simulation.

Initialize the simulation before constructing any exported subsystem.

void scx_initialize(const std::string &id,
 scx_simcontrol_if *ctrl = scx_get_default_simcontrol());

id
an identifier for this simulation.

ctrl
a pointer to the simulation controller implementation. It defaults to the one provided with Arm
models.

 Note

Arm recommends specifying a unique identifier across all simulations running on the same host.

5 SystemC Export API function reference
5.1 scx::scx_initialize

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-45

Non-Confidential - REL

5.2 scx::scx_load_application
This function loads an application in the memory of an instance.

void scx_load_application(const std::string &instance,
 const std::string &application);

instance
the name of the instance to load into. The parameter instance must start with an EVS instance
name, or with "*" to load the application into the instance on all EVSs in the platform. To load
the same application on all cores of an SMP processor, specify "*" for the core instead of its
index, in parameter instance.

application
the application to load.

 Note

The loading of the application happens at start_of_simulation() call-back, at the earliest.

5 SystemC Export API function reference
5.2 scx::scx_load_application

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-46

Non-Confidential - REL

5.3 scx::scx_set_parameter
This function sets the value of a parameter in components present in EVSs or in plug-ins.

• bool scx_set_parameter(const std::string &name, const std::string &value);

• template<class T>
bool scx_set_parameter(const std::string &name, T value);

name
the name of the parameter to change. The parameter name must start with an EVS instance name
for setting a parameter on this EVS, or with "*" for setting a parameter on all EVSs in the
platform, or with a plug-in prefix (defaults to "TRACE") for setting a plug-in parameter.

value
the value of the parameter.

This function returns true when the parameter exists, false otherwise.
 Note

• Changes made to parameters within System Canvas take precedence over changes made with
scx_set_parameter().

• You can set parameters during the construction phase, and before the elaboration phase. Calls to
scx_set_parameter() after the construction phase are ignored.

• You can change run-time parameters after the construction phase with the debug interface.
• Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their

parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

5 SystemC Export API function reference
5.3 scx::scx_set_parameter

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-47

Non-Confidential - REL

5.4 scx::scx_get_parameter
This function retrieves the value of a parameter from components present in EVSs or from plug-ins.

• bool scx_get_parameter(const std::string &name, std::string &value);

• template<class T>
bool scx_get_parameter(const std::string &name, T &value);

• bool scx_get_parameter(const std::string &name, int &value);

• bool scx_get_parameter(const std::string &name, unsigned int &value);

• bool scx_get_parameter(const std::string &name, long &value);

• bool scx_get_parameter(const std::string &name, unsigned long &value);

• bool scx_get_parameter(const std::string &name, long long &value);

• bool scx_get_parameter(const std::string &name, unsigned long long &value);

• std::string scx_get_parameter(const std::string &name);

name
the name of the parameter to retrieve. The parameter name must start with an EVS instance
name for retrieving an EVS parameter or with a plug-in prefix (defaults to "TRACE") for
retrieving a plug-in parameter.

value
a reference to the value of the parameter.

The bool forms of the function return true when the parameter exists, false otherwise. The
std::string form returns the value of the parameter when it exists, empty string ("") otherwise.

 Note

Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

5 SystemC Export API function reference
5.4 scx::scx_get_parameter

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-48

Non-Confidential - REL

5.5 scx::scx_get_parameter_list
This function retrieves a list of all parameters in all components present in all EVSs and from all plug-
ins.

std::map<std::string, std::string> scx_get_parameter_list();

The parameter names start with an EVS instance name for EVS parameters or with a plug-in prefix
(defaults to "TRACE") for plug-in parameters.

 Note

• Specify plug-ins before calling the platform parameter functions, so that the plug-ins load and their
parameters are available. Any plug-in that is specified after the first call to any platform parameter
function is ignored.

• If scx_set_parameter() is called after the simulation elaboration phase, the new value is not set in
the model, although it is returned by scx_get_parameter_list().

5 SystemC Export API function reference
5.5 scx::scx_get_parameter_list

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-49

Non-Confidential - REL

5.6 scx::scx_cpulimit
Sets the maximum number of CPU (User + System) seconds to run, excluding startup and shutdown.

void scx_cpulimit(double t);

t

the number of seconds to run. Defaults to unlimited.

5 SystemC Export API function reference
5.6 scx::scx_cpulimit

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-50

Non-Confidential - REL

5.7 scx::scx_timelimit
Sets the maximum number of seconds to run, excluding startup and shutdown.

void scx_timelimit(double t);

t

the number of seconds to run. Defaults to unlimited.

5 SystemC Export API function reference
5.7 scx::scx_timelimit

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-51

Non-Confidential - REL

5.8 scx::scx_parse_and_configure
This function parses command-line options and configures the simulation accordingly.

void scx_parse_and_configure(int argc,
 char *argv[],
 const char *trailer = NULL,
 bool sig_handler = true);

argc
the number of command-line options listed with argv[].

argv
command-line options.

trailer
a string that follows the option list when printing help message (--help option).

sig_handler
whether to enable signal handler function, true to enable (default), false to disable.

This function calls std::exit(EXIT_SUCCESS) to exit. It calls std::exit(EXIT_FAILURE) if there was
an error in the parameter specification, or an invalid option was specified, or if the application or plug-in
was not found.

Options

The application must pass the values of the options from function sc_main() as arguments to this
function. The following options are supported:

--application, -a [INST=]FILE
This option specifies the application to load. The application to load must be the first argument on the
command line.

 Note

Use this option only for Cycle Model reference platforms with TLM models. For reference platforms
with pin-level models, specifying --application has no effect and results in multiple warnings. The
application for reference platforms with pin-level models is determined by the contents of the hex files in
the reference platforms Systems directory. See the reference platforms README for more information.

[INST=]
Specifies the core instance on which to load the application. This field is optional for Symmetric
Multiprocessor (SMP) cores.

FILE
Specifies the test case or application to be loaded.

The following example loads test0.elf on core 0, and test1.elf on core 1:

$./system_test -a model_core0=test0.elf -a model_core1=test1.elf -S -p

The following example for SMP cases loads test.elf on all cores:

$./system_test -a test.elf -S -p

--cadi-log, -L

This option logs all CADI calls to an XML log file. The simulation generates one XML log file per CPU
and outputs them to the reference system Systems directory with the filename CADIlog-
model_core.cpucpu-process_ID.xml. A cluster-level XML log file is also generated and output to this
location with the filename CADIlog-model_core-process_ID.xml

For example:

$./system_test -L

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-52

Non-Confidential - REL

--cadi-server, -S FILE

This option instructs a CADI server to wait for a debugger to connect and receive commands (such as
run) before starting the simulation. If -S is not specified, the simulation starts immediately and
connection to a CADI client or debugger is not allowed.

FILE
Specifies the test case or application to be loaded.

For example:

$./system_test test.elf -S

--config-file, -f FILE

This option loads model parameters from the specified configuration file.

FILE
Name of the configuration file.

For example:

$./system_test --config-file model_config.cfg

--cpulimit

Maximum number of CPU (User + System) seconds to run, excluding startup and shutdown. Defaults to
unlimited.

--help, -h
This option prints descriptions of available command line options.

 Note

Arm Models support the full set of options that are printed when you enter --help or -h. Currently, Arm
SystemC Cycle Models support a subset of these options. The options supported by this release of
SystemC Cycle Models are described in this section.

For example:

$./system_test --help

--list-params, -l

This option prints a list of model parameters to standard output.

For example:

$./system_test -l
.
.
.
Starting Sim
Parameters:
instance.parameter=value #(type, mode) default = 'def value' : description :
[min..max]
#--
REMOTE_CONNECTION.CADIServer.enable_remote_cadi=0 # (bool , init-time) default =
'0' : Allow connections from remote hosts
REMOTE_CONNECTION.CADIServer.listen_address=127.0.0.1 # (string, init-time) default =
'127.0.0.1' : Network address the server should listen on if enable_remote_cadi is set
("127.0.0.1" by default)
REMOTE_CONNECTION.CADIServer.port=31627 # (int , init-time) default =
'0x7b8b' : TCP port the server should listen on if enable_remote_cadi is set (31627 by
default)
REMOTE_CONNECTION.CADIServer.range=0 # (int , init-time) default =
'0x0' : If requested port is not avaliable, search for next avaliable port in range:
[port:port+range] (0 by default, only try specified port)
cortexr8_core.ACLKENSC=1 # (int , run-time) default =
'0x1' : ACLKENSC enable parameter

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-53

Non-Confidential - REL

cortexr8_core.ACLKENST=1 # (int , run-time) default =
'0x1' : ACLKENST enable parameter
cortexr8_core.AFVALIDMD0=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD0
cortexr8_core.AFVALIDMD1=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD1
cortexr8_core.AFVALIDMD2=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD2
cortexr8_core.AFVALIDMD3=0 # (int , run-time) default =
'0x0' : Default value for AFVALIDMD3
.
.
.

--list-regs

This option prints a list of model registers that are supported for viewing with a debugger. See the
Technical Reference Manual for your IP for register descriptions.

For example:

$./system_test --list-regs

--quiet

Run quiet, suppress informational output.

--parameter, -C [INST.]PARAMETER=VALUE

This option sets the specified model parameter using the format : -C INST.PARAM=VALUE

[INST=]
Specifies the core instance. This field is optional for Symmetric Multiprocessor (SMP) cores.

PARAMETER
Specifies the parameter to set.

VALUE
Specifies the parameter value.

For example:

$./system_test -C cortexr8_core0.LOAD_DTCMS=true

--print-port-number, -p

This option causes the CADI server to print the TCP/IP port it is listening to.

For example:

$./system_test -S -p
.
.
.
Starting Sim
CADI server started listening to port 7001

Info: R8-MP4-SysC: CADI Debug Server started for ARM Models...

--stat

This option prints run statistics on simulation exit.

$./system_test -S --stat

After the simulation ends, statistics such as those shown in the following example are output:

--- R8-MP4-SysC statistics: ---
Simulated time : 0.000000s
User time : 0.028996s
System time : 0.002999s
Wall time : 4.278761s
cortexr8_core.cpu0 : 0.00 KIPS (0 Inst)
cortexr8_core.cpu1 : 0.00 KIPS (0 Inst)

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-54

Non-Confidential - REL

cortexr8_core.cpu2 : 0.00 KIPS (0 Inst)
cortexr8_core.cpu3 : 0.00 KIPS (0 Inst)

--timelimit, -T

Maximum number of seconds to run, excluding startup and shutdown. Defaults to unlimited.

5 SystemC Export API function reference
5.8 scx::scx_parse_and_configure

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-55

Non-Confidential - REL

5.9 scx::scx_print_statistics
This function specifies whether to enable printing of simulation statistics at the end of the simulation.

void scx_print_statistics(bool print = true);

print
true to enable printing of simulation statistics, false otherwise.

 Note

• You cannot enable printing of statistics once simulation starts.
• The statistics include LISA reset() behavior run time and application load time. A long simulation

run compensates for this.

5 SystemC Export API function reference
5.9 scx::scx_print_statistics

101124_1102_01_en Copyright © 2017–2021 Arm Limited or its affiliates. All rights
reserved.

5-56

Non-Confidential - REL

	SystemC Cycle Models User Guide
	Table of Contents
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Cycle Model functionality and operating requirements
	1.1 : Prerequisites to using SystemC Cycle Models
	1.2 : Supported platforms, compilers, and simulators
	1.2.1 : Supported platforms
	1.2.2 : Supported compilers
	1.2.3 : Supported simulators

	1.3 : Package contents

	2 : Integrating models into your environment
	2.1 : Extracting build options using the Cycle Models Configuration Tool
	2.1.1 : Cycle Models Configuration Tool command syntax
	2.1.2 : Cycle Models Configuration Tool examples

	2.2 : Adding custom options to the Makefile

	3 : Using SystemC Cycle Models
	3.1 : Connecting model ports
	3.1.1 : Available pins

	3.2 : Resetting the SystemC Cycle Model
	3.3 : Setting model parameters
	3.4 : Dumping waveforms
	3.5 : Configuring PMU events
	3.6 : Configuring Tarmac trace
	3.7 : Working with the SCX framework

	4 : Debugging SystemC Cycle Models with Arm® Development Studio
	4.1 : Restrictions and limitations
	4.2 : Prerequisites to debugging
	4.3 : Models that support Arm® Development Studio connectivity
	4.4 : Supported debug features
	4.5 : Enabling Development Studio for use with SystemC Cycle Models
	4.5.1 : Connect Development Studio to the model
	4.5.2 : Mapping memory spaces

	4.6 : CADI RemoteConnection parameters
	4.7 : Multicore debugging
	4.8 : Changing the timeout setting

	5 : SystemC Export API function reference
	5.1 : scx::scx_initialize
	5.2 : scx::scx_load_application
	5.3 : scx::scx_set_parameter
	5.4 : scx::scx_get_parameter
	5.5 : scx::scx_get_parameter_list
	5.6 : scx::scx_cpulimit
	5.7 : scx::scx_timelimit
	5.8 : scx::scx_parse_and_configure
	5.9 : scx::scx_print_statistics

