
Arm® PMC-100
Revision: r0p0

Technical Reference Manual

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
101528_0000_01_en

Arm® PMC-100
Technical Reference Manual
Copyright © 2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

0000-01 21 April 2021 Non-Confidential First early access release for r0p0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

 Arm® PMC-100

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 2
Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this document.

If you find offensive terms in this document, please contact terms@arm.com.

 Arm® PMC-100

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3
Non-Confidential

https://developer.arm.com
mailto:terms@arm.com

Contents
Arm® PMC-100 Technical Reference Manual

Preface
About this book 8
Feedback .. 10

Chapter 1 Introduction
1.1 PMC-100 overview 1-12
1.2 PMC-100 advantages .. 1-15

Chapter 2 MBIST usage models
2.1 On-line MBIST on-line memory 2-17
2.2 On-line MBIST off-line memory 2-18

Chapter 3 PMC-100 functional description
3.1 PMC-100 functionality 3-20
3.2 RTL parameters 3-21
3.3 Two-port SRAM support 3-23
3.4 Loop operations 3-24
3.5 APB slave interface 3-26
3.6 Reset behavior 3-27
3.7 Clock gating 3-28
3.8 Denial of Service 3-29

Chapter 4 PMC-100 programmers model
4.1 PMC-100 register memory map 4-32

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4
Non-Confidential

4.2 PMC-100 register access overview 4-33
4.3 PMC-100 register summary 4-35
4.4 PMC-100 programming 4-37
4.5 Main control register, PMC100_CTRL 4-40
4.6 MBISTOLCFG output register, PMC100_CFGR 4-52
4.7 Memory control register, PMC100_MCR 4-53
4.8 Array register, PMC100_AR 4-56
4.9 Byte enable register, PMC100_BER 4-59
4.10 Program counter register, PMC100_PCR 4-60
4.11 Read pipeline register, PMC100_RPR 4-61
4.12 Low address register, PMC100_LOWADDR 4-63
4.13 High address register, PMC100_HIGHADDR 4-64
4.14 Column address register, PMC100_CADDR 4-65
4.15 Row address register, PMC100_RADDR .. 4-67
4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-PMC100_Y7 4-70
4.17 Auxiliary input register, PMC100_AIR 4-71
4.18 Auxiliary input register, PMC100_AOR .. 4-72
4.19 MBISTOLERR input register, PMC100_MER .. 4-73
4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7 4-74
4.21 XOR mask registers, PMC100_XM0-PMC100_XM7 4-76
4.22 Program registers, PMC100_P0-PMC100_P31 .. 4-77
4.23 Loop start program register, PMC100_LSPR .. 4-83
4.24 Loop counter register, PMC100_LCR .. 4-84
4.25 Loop suspend counter register, PMC100_LSCR 4-86
4.26 Test continue counter register, PMC100_TCCR .. 4-88
4.27 CoreSight™ register summary .. 4-89
4.28 Integration Mode Control register, PMC100_ITCTRL .. 4-91
4.29 Claim Tag Set register, PMC100_CLAIMSET 4-92
4.30 Claim Tag Clear register, PMC100_CLAIMCLR .. 4-93
4.31 Device Affinity register 0, PMC100_DEVAFF0 .. 4-94
4.32 Device Affinity register 1, PMC100_DEVAFF1 .. 4-95
4.33 Authentication Status register, PMC100_AUTHSTATUS 4-96
4.34 Device Architecture register, PMC100_DEVARCH 4-97
4.35 Device Configuration Register 1, PMC100_DEVID1 4-98
4.36 Device Configuration Register, PMC100_DEVID .. 4-99
4.37 Device Type Register, PMC100_DEVTYPE .. 4-100
4.38 PMC100_PIDR0-7, Peripheral Identification Registers 4-101
4.39 PMC100_CIDR0-3, Component Identification Registers 4-103

Appendix A Short-burst software-transparent algorithm
A.1 Short-burst software-transparent overview .. Appx-A-105
A.2 SRAM faults Appx-A-106
A.3 Single ported SRAM test algorithm .. Appx-A-107
A.4 Two ported SRAM test algorithm Appx-A-109

Appendix B Production test March Algorithm
B.1 Production test March algorithm overview Appx-B-112
B.2 March C- algorithm Appx-B-113

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 5
Non-Confidential

Appendix C On-line MBIST Memory Protection Logic Test Algorithms
C.1 Address Protection Logic Latent Fault Detection algorithm Appx-C-117
C.2 Address Protection Logic Single-point Detection algorithm Appx-C-120
C.3 Data Protection Logic Latent Fault Detection algorithm Appx-C-123
C.4 Data Protection Logic Single-point Fault Detection algorithm Appx-C-126

Appendix D Miscellaneous Algorithms
D.1 Memory scrubbing algorithm Appx-D-130
D.2 ECC/parity code field initialization algorithm Appx-D-132
D.3 Memory dumping algorithm Appx-D-133

Appendix E Signal descriptions
E.1 Clock and reset signals .. Appx-E-135
E.2 APB slave interface signals Appx-E-136
E.3 MBIST master interface signals Appx-E-138
E.4 Execution control and status signals Appx-E-139
E.5 Miscellaneous signals .. Appx-E-140

Appendix F PMC-100 software library
F.1 PMC-100 software library overview Appx-F-142
F.2 PMC-100 software library configuration and usage Appx-F-143
F.3 PMC-100 software library data structures .. Appx-F-147
F.4 PMC-100 software library function parameters .. Appx-F-154
F.5 PMC-100 software library functions Appx-F-155

Appendix G Revisions
G.1 Revisions Appx-G-174

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 6
Non-Confidential

Preface

This preface introduces the Arm® PMC-100 Technical Reference Manual.

It contains the following:
• About this book on page 8.
• Feedback on page 10.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 7
Non-Confidential

 About this book
This manual is for the PMC-100. This document describes the behavior of the PMC-100, including the
programmer's model and signals.

 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for example, p2.

 Intended audience

This manual is written to help system designers, system integrators, verification engineers, and software
programmers who are implementing a System on Chip (SoC) device based on the PMC-100 processor.

 Using this book

This book is organized into the following chapters:

Chapter 1 Introduction
This chapter provides an overview of the PMC-100 and its features.

Chapter 2 MBIST usage models
IP cores that support on-line Memory Built-In Self-Test (MBIST) also support on-line MBIST on-
line memory and on-line MBIST off-line memory in-field test usage models.

Chapter 3 PMC-100 functional description
This chapter describes the PMC-100 functionality.

Chapter 4 PMC-100 programmers model
This chapter describes the PMC-100 registers and provides more information on programming the
processor.

Appendix A Short-burst software-transparent algorithm
This chapter describes the short-burst software-transparent algorithm.

Appendix B Production test March Algorithm
Ths chapter describes the March Memory Buile-In Self-Test (MBIST) algorithm. It also provides
information on how to program PMC-100 to perform an example March MBIST algorithm called
March C-, and this information can be used as the basis to implement other production test
MBIST algorithms.

Appendix C On-line MBIST Memory Protection Logic Test Algorithms
The on-line Memory Built-In Self Test (MBIST) test algorithms described in this section show
how Error Correcting Code (ECC) generation, checking, correction logic, parity generation, and
checking logic can be tested.

Appendix D Miscellaneous Algorithms
This section describes miscellaneous algorithms.

Appendix E Signal descriptions
This appendix describes the PMC-100 signals.

Appendix F PMC-100 software library
This section describes the PMC-100 software library.

Appendix G Revisions
This appendix describes the technical changes between released issues of this book.

 Preface
 About this book

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 8
Non-Confidential

Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

 ADD Rd, SP, #<imm>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Additional reading

This book contains information that is specific to this product. See the following documents for other
relevant information.

Arm publications
• AMBA® APB Protocol Version 2.0 Specification (IHI 0033).
• Arm® CoreSight™ Architecture Specification v3.0 (IHI 0029).

Other publications

None

 Preface
 About this book

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 9
Non-Confidential

https://developer.arm.com/support/arm-glossary
https://developer.arm.com/support/arm-glossary

 Feedback

 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

 Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm PMC-100 Technical Reference Manual.
• The number 101528_0000_01_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Preface
 Feedback

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 10
Non-Confidential

mailto:errata@arm.com

Chapter 1
Introduction

This chapter provides an overview of the PMC-100 and its features.

It contains the following sections:
• 1.1 PMC-100 overview on page 1-12.
• 1.2 PMC-100 advantages on page 1-15.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 1-11
Non-Confidential

1.1 PMC-100 overview
PMC-100 allows transparent, in-field testing of SRAMs and memory protection logic within a core
concurrently with functional operation, without corrupting memory or logic state.

PMC-100 is typically used in functional safety applications and can be used to carry out testing on a
periodic basis, at power on/off, or when a parity or Error Correcting Code (ECC) error is detected. It is
programmable and highly parameterized, and therefore, it can be used with any IP core that supports on-
line Memory Built-In Self Test (MBIST) and contains embedded memory. PMC-100 can also be used to
dump embedded memory content to a debugger using a software read triggered execution mode, making
it useful for silicon bring-up and investigating software faults such as cache coherency bugs.

It allows memory and memory protection logic to be tested at-speed. Therefore, MBIST transactions are
performed back-to-back using the IP core clock, and as a result, delay faults can be detected by toggling
signals at full functional speed.

It is also used in top-level testbenches and FPGAs to validate the on-line MBIST features of cores.
Software running on a processor or software running on another processor within an SoC might use
PMC-100 to test itself. An example is a safety agent, which monitors and errors and controls testing.
Software Test Libraries (STLs), use PMC-100 to perform in-field memory testing of parity or ECC logic
and other logic within the memory data path.

Example software is also available to show how PMC-100 can be used to perform various types of
testing. PMC-100 is also used in top-level testbenches and FPGAs to the validate the on-line MBIST
features of IP cores.

Interfaces
PMC-100 has the following standard interfaces:
• On-line MBIST master interface.
• AMBA 4 APB slave interface.

The MBIST interface is fully parameterized, providing compatibility with all IP that supports on-line
MBIST. The APB programming interface has privilege and security indication signals to ensure that
PMC-100 can only be accessed by software running the highest Security state.

Programming requirements

PMC-100 uses a programmable microcode-based architecture to allow a high degree of flexibility to
accommodate different use models and memory test algorithms. PMC-100 has several software-
accessible read/write registers containing configuration, control, memory data, memory address, and
microcode information.

PMC-100 is software driven. Therefore, it will not function without being programmed. It contains data,
address, program, configuration, control and ID registers that software can program. This is different to
production MBIST controllers, that do not require programming. Therefore, prior to testing a memory
array, PMC-100 must be programmed with attribute information for the memory array to be tested. For
more information on the PMC-100 programmers model, see Chapter 4 PMC-100 programmers model
on page 4-30.

Microcode execution can be initiated by software reading a data register. Wait states are inserted on the
APB interface until execution is completed and read data is returned, allowing more efficient software
operation.

Using PMC-100 for testing:

Example software is available for PMC-100 to show how it can be used to test memory protection logic,
SRAMs using March algorithm (destructive algorithm) and on-line MBIST Short burst algorithms (non-
destructive algorithm). March algorithms can be fully implemented in microcode. Therefore,
programming is not required after execution of each March element.

1 Introduction
1.1 PMC-100 overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 1-12
Non-Confidential

Faulty address and faulty data bitmap information can be read by software. XOR and XOR mask register
allow injection of errors in address and data values. XOR mask register left and right shifting function.

PMC-100 is used in ECC/parity logic testing, allowing program loops to be constructed to test every
address or data bit. Looping operations, loop start register, loop suspend register and loop counter
register allow efficient program loops to be constructed. Fixed data patterns can also be used. It is
possible to select repeating patterns of 0b10101010, 0b01010101, 0b10100101, 0b01011010,
0b11111111 or 0b00000000. This can be used to improve the performance of the short burst algorithm.
The core can be interrupted when a test has completed or if a memory fault is detected. Individual test
bursts can be triggered by hardware or software.

PMC-100 allows the processor to perform arbitrary read and write accesses to SRAM data and ECC
fields. Multiple SRAM test bursts can be executed back-to-back using a power of 2 software configured
loop counter. This improves the test efficiency for cores that have a larger penalty for on-line MBIST
entry. Two port SRAM testing is supported using separate read and write address signals on the MBIST
interface. The test continue counter allows the gap between test bursts to be programmed when using the
on-line memory use model. See 2.1 On-line MBIST on-line memory on page 2-17

Example integration

Cores that support on-line MBIST have two internal MBIST slave interfaces that are provided by the
MBIST Interface Unit (MIU).

• One internal interface for a production MBIST controller.
• One internal interface for PMC-100.

Both the production MBIST and the PMC-100 have the same MBIST data path to and from the
embedded SRAMs. The following figure shows the MBIST controller integrated into a simplified
representation of a processor core with L1 caches.

The following figure shows:
• An example of a direct MIU connection to the L1 caches and the Load Store Unit (LSU), which

provides an internal APB interface to allow self-testing software to program PMC-100.
• The internal APB can also be accessed from the debug APB or AHB interface, allowing an external

processor to program PMC-100 to test the core.
• It is also possible for PMC-100 to inject an error into a memory array and read it back through the

ECC checking logic. This causes an ECC error to be generated and if enabled by PMC-100, it is
propagated out of the core through its error bus to a Fault Monitoring Unit (FMU). This allows
testing of the connections between the core and FMU.

Normally ECC errors detected during MBIST accesses are only visible to PMC-100.

1 Introduction
1.1 PMC-100 overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 1-13
Non-Confidential

LSU

I-cache BIU

PFU

STB

DPU

MIU
PMC-100

Production
MBIST

Controller

Debug AHB/APB

IJTAG

CPU

AXI

D-cache

Key:

PFU = Prefetch Unit
DPU = Data Processing Unit
LSU = Load Store Unit
STB = Store Buffer
BIU = Bus Interface Unit

MIU = MBIST Interface Unit

RAM RAM

APB = Advanced Peripheral Bus

IJTAG = Internal JTAG

AHB = Advanced High-performance Bus
AXI = Advanced Extensible Interface

Error bus to FMU

FMU = Fault Monitoring UnitAPB
PMC-APB

Figure 1-1 Example PMC-100 integration

1 Introduction
1.1 PMC-100 overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 1-14
Non-Confidential

1.2 PMC-100 advantages
The main advantages of PMC-100 include fault detection and memory testing.

The following table summarizes the benefits of PMC-100.

Table 1-1 PMC-100 benefits

Benefit Details

Fault detection Detecting faults in SRAMs and single-point and latent faults in memory parity or Error Correcting Code
(ECC) logic.

Testing Testing can be carried out transparently to software running on the processor core, without corrupting the
memory or logic state.

Error reporting output signals can be tested from an IP core to a SoC-level Fault Monitoring Unit
(FMU).

ECC error analysis Testing an SRAM entry when an ECC error is detected to determine if the error is a soft error or a hard
error.
• For soft errors, there is no need to use memory error cache registers in the core to replace the entry.
• For hard errors, the fault is repaired using the memory error cache register to disable entry or SRAM

repair features.

Memory error injection This is for error monitoring software and system hardware verification.

Memory scrubbing This is to correct soft ECC errors in the SRAM. This prevents error accumulation, therefore, ensuring
that correctable single-bit errors do not degenerate into multi-bit errors that cannot be corrected.

Memory dumping and
monitoring by an external
debugger

This is useful for:
• Software and hardware debug.
• Silicon bring-up.
• Diagnosing SRAM power issues.
• Core lockup issues.

A debugger can access all memories, even those that are not directly accessibly by software. These
include caches, Translation Lookup Buffers (TLBs), Branch Target Buffers (BTBs), Long-Term Data
Buffers (LTDBs), and other data buffers.

Cache preloading using an
external debugger

This is useful for software and hardware debug.

Initialization of ECC and
parity fields in memory.

-

1 Introduction
1.2 PMC-100 advantages

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 1-15
Non-Confidential

Chapter 2
MBIST usage models

IP cores that support on-line Memory Built-In Self-Test (MBIST) also support on-line MBIST on-line
memory and on-line MBIST off-line memory in-field test usage models.

It contains the following sections:
• 2.1 On-line MBIST on-line memory on page 2-17.
• 2.2 On-line MBIST off-line memory on page 2-18.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 2-16
Non-Confidential

2.1 On-line MBIST on-line memory
In this usage model, periodic autonomous or software-initiated short-burst testing can be performed.

For more information on the algorithm that is used, see Appendix A Short-burst software-transparent
algorithm on page Appx-A-104.

In this case, a series of short transaction sequences or bursts, which are applied separately, test memory.
Typically, each burst tests two locations. Each burst lasts fewer than 20 cycles and targets different
locations, allowing all locations in a memory to be tested. During each burst, the Memory Built-In Self
Test (MBIST) controller saves and restores the memory locations under test. After each burst, the MBIST
controller automatically increments or decrements the memory address location. This allows all entries
within an SRAM to be tested without software intervention.

2.1.1 Test memory with on-line MBIST on-line memory use case

The Memory Built-In Self Test (MBIST) controller performs a series of short bursts is applied separately
to test memory.

Only one memory type, for example the L1 instruction cache, is locked for processor access during a
burst. Therefore, the processor is free to access other memories. If the processor tries to access a locked
memory, it stalls until the burst is complete. If the processor tries to access a memory under test, this
usage model only has a small impact on performance because bursts are short and occur infrequently.
The MBIST controller and on-line MBIST lock in an IP core perform the following steps automatically.

Procedure
1. The MBIST controller requests access to the target memory.
2. When the IP core is ready for memory testing, it acknowledges the request and automatically locks

the memory for normal accesses. This guarantees full speed MBIST access and no changes to target
memory by software during testing.

3. The MBIST controller performs a short burst of transactions.
4. The MBIST controller releases the request.
5. The lock on targeted memory is automatically removed.

2 MBIST usage models
2.1 On-line MBIST on-line memory

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 2-17
Non-Confidential

2.2 On-line MBIST off-line memory
In this usage model, standard production Memory Built-In Self Test (MBIST) March algorithms are
allowed, which requires access to all entries within the memory under test.

For more information on the algorithm that is used, see Appendix B Production test March Algorithm
on page Appx-B-111.

Memory contents are destroyed during testing, and software might need to save and restore memory
contents. The processor cannot access a memory under test because it has been disabled. Therefore, an
alternate memory is accessed instead. For example, if an L1 cache is being tested, then software accesses
the L2 cache instead. The memory must be taken off-line for a relatively extended period to allow the
test algorithm to be carried out. Software must not rely on data that is normally stored in the memory
under test.

2.2.1 Test memory with on-line MBIST off-line memory use case

The memory under test is taken off-line, preventing software from accessing it.

In this context, the memory referred to is logical memory. For example, an L1 data cache. The data cache
might contain several SRAMs for storing tag and data values, and they are all inaccessible to software
during testing. This allows access to all SRAM entries in the memory during test. There might be a
degradation in performance because the software disables the memory under test. The following steps are
carried out for each test:

Procedure
1. Software disables the memory under test so that it can be used for testing.
2. If the memory contents are required to be preserved, then software saves the memory contents under

test in a memory that is not being tested.
3. Software instructs the MBIST controller to test the memory.
4. The MBIST controller tests the memory using Production Test March algorithm.
5. After the test is complete, software checks the MBIST controller for errors.
6. Depending on application requirements and type of memory being tested, software must either

restore the contents of the memory or if a cache is being tested, then the cache must be invalidated.
7. Software enables the memory for functional use.

2 MBIST usage models
2.2 On-line MBIST off-line memory

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 2-18
Non-Confidential

Chapter 3
PMC-100 functional description

This chapter describes the PMC-100 functionality.

It contains the following sections:
• 3.1 PMC-100 functionality on page 3-20.
• 3.2 RTL parameters on page 3-21.
• 3.3 Two-port SRAM support on page 3-23.
• 3.4 Loop operations on page 3-24.
• 3.5 APB slave interface on page 3-26.
• 3.6 Reset behavior on page 3-27.
• 3.7 Clock gating on page 3-28.
• 3.8 Denial of Service on page 3-29.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-19
Non-Confidential

3.1 PMC-100 functionality
PMC-100 contains an APB slave interface, register store, and execution unit.

PMC-100 occupies 4 KB in the processor memory map. The APB slave interface provides read and write
access to the register store. The register store contains configuration, address data, program, and
CoreSight ID registers. The execution unit uses the information stored in the registers to generate
transactions on the Memory Built-In Self Test (MBIST) interface and check the read data that is returned
from the selected memory array.

As shown in the following diagram, the processor can access the registers to configure and initialize
PMC-100, but it cannot access the execution unit. Therefore, the processor is decoupled from the MBIST
interface and has to set up memory transactions in the program registers in the register store and wait for
the execution unit to carry them out. PMC-100 can be configured to interrupt the processor or set a flag
when it has carried out the transactions configured by the processor or when an error is detected.

APB slave
interface

Register store
and execution

MBIST master
interfaceAPB interface MBIST

interface

PMC-100

Figure 3-1 PMC-100 functionality

3 PMC-100 functional description
3.1 PMC-100 functionality

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-20
Non-Confidential

3.2 RTL parameters
RTL parameters that configure the PMC-100 are fixed for the IP core but the PROGSIZE parameter is
normally a top-level parameter on the IP core and can be modified at implementation time. Software can
read the parameters using the DEVID registers.

For more information on DEVID registers, see 4.36 Device Configuration Register, PMC100_DEVID
on page 4-99 and 4.35 Device Configuration Register 1, PMC100_DEVID1 on page 4-98 registers.

The following table describes the RTL parameters.

Table 3-1 RTL parameters

Parameter Description

RAR Reset all registers (RAR). Specifies whether all synchronous state or only required state is reset.
• 0 - Only reset state required by the design
• 1 - Reset all synchronous state

 Note

When the RAR parameters are set to 1, all flops in the design will include an explicit reset.

FLOPPARITY Specifies whether the PMC-100 is configured with parity generation and checks on all flip-flops:
• 0 - No parity on flip-flops
• 1 - Include parity on flip-flops

 Note

If FLOPPARITY is set to 1, then RAR must also be set to 1.

MAWIDTH[5:0] Memory Built-In Self Test (MBIST) address width. For more information, see:
• MBISTOLADDR signal in E.3 MBIST master interface signals on page Appx-E-138
• PMC100_RADDR register in 4.15 Row address register, PMC100_RADDR on page 4-67
• PMC100_HIGHADDR in 4.13 High address register, PMC100_HIGHADDR on page 4-64

MDWIDTH[8:0] MBIST data width. For more information, see:
• MBISTOLINDATA and MBISTOLOUTDATA signals in E.3 MBIST master interface signals

on page Appx-E-138
• PMC100_X/PMC100_Y registers in 4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-

PMC100_Y7 on page 4-70
• PMC100_DM register in 4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7

on page 4-74
• PMC100_XM register in 4.21 XOR mask registers, PMC100_XM0-PMC100_XM7 on page 4-76

MDWIDTH[8:0] must be greater than or equal to MAWIDTH[5:0].

MARWIDTH[3:0] MBIST array width. For more information, see:
• MBISTOLARRAY signal in E.3 MBIST master interface signals on page Appx-E-138. The

MBISTOLARRAY signal is divided into two parts, the lower part containing the memory controller and sub-
array fields and the upper part containing the protection logic unit field. PMC-100 has a fixed protection logic
unit field width of two, which occupies the two MBISTOLARRAY MSBs. Therefore, the MARWIDTH[3:0]
value must include these two bits whether they are used by an IP core.

• PMC100_AR register in 4.8 Array register, PMC100_AR on page 4-56.

MERWIDTH[5:0] PMC100_MER register and MBISTOLERR signal width. 4.19 MBISTOLERR input register, PMC100_MER
on page 4-73 and E.3 MBIST master interface signals on page Appx-E-138.

3 PMC-100 functional description
3.2 RTL parameters

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-21
Non-Confidential

Table 3-1 RTL parameters (continued)

Parameter Description

MBWIDTH[5:0] MBIST byte enable width. For more information, see:
• MBISTOLBE signal. E.3 MBIST master interface signals on page Appx-E-138
• PMC100_BER.BE field in 4.9 Byte enable register, PMC100_BER on page 4-59

MCWIDTH[4:0] MBIST configuration width. For more information, see:
• MBISTOLCFG signal in E.3 MBIST master interface signals on page Appx-E-138
• PMC100_CFGR register in 4.6 MBISTOLCFG output register, PMC100_CFGR on page 4-52

PROGSIZE[5:0] Program size. For more information, see:
• Program registers in 4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77
• PMC100_PCR register in 4.10 Program counter register, PMC100_PCR on page 4-60

PDWIDTH[2:0] Pipeline depth field width, including memory protection logic pipeline depth, PMC100_MCR.PD and
PMC100_MCR.PDP. For more information, see 4.7 Memory control register, PMC100_MCR on page 4-53

RCOWIDTH[2:0] RAM cycles of operation field width, PMC100_MCR.RCOR and PMC_MCR.RCOW. For more information, see
4.7 Memory control register, PMC100_MCR on page 4-53

AIWIDTH[5:0] PMC100_AIR register and AUXIN signal width. For more information, see 4.17 Auxiliary input register,
PMC100_AIR on page 4-71 and E.5 Miscellaneous signals on page Appx-E-140

AOWIDTH[5:0] PMC100_AOR register and AUXOUT signal width. For more information, see 4.18 Auxiliary input register,
PMC100_AOR on page 4-72 and E.5 Miscellaneous signals on page Appx-E-140.

3 PMC-100 functional description
3.2 RTL parameters

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-22
Non-Confidential

3.3 Two-port SRAM support
PMC-100 supports two-port SRAMs, that is, SRAMs that have one read port and one write port,
allowing a read and a write to be performed simultaneously, at different addresses. Therefore, these
SRAMs have separate read and write address input signals. PMC-100 has signals for the write address
(MBISTOLWADDR) and the read address (MBISTOLADDR).

For more information on these signals, see E.3 MBIST master interface signals on page Appx-E-138.

When PMC100_CTRL.BAMEN is 0, MBISTOLWADDR and MBISTOLADDR have different values.
When MBISTOLADDR is the current address, then MBISTOLWADDR is the next address and so on.
When PMC100_CTRL.BAMEN is 1, MBISTOLWADDR and MBISTOLADDR will have the same
value.

For more information on PMC100_CTRL, see 4.5 Main control register, PMC100_CTRL on page 4-40.

The instruction AO field controls whether the current or next address is output on the MBISTOLADDR
and so the address output on the MBISTOLWADDR signal is the inverse of the AO field, even when
there is a single write transaction. This is a consequence of using MBISTOLADDR for the write address
for single port SRAMs.

The instruction TRANS field has two bits, allowing simultaneous read and write MBIST transactions to
be indicated in the microcode. For more information, see 4.22 Program registers, PMC100_P0-
PMC100_P31 on page 4-77.

When there are simultaneous MBIST read and write transactions, the read and write MBIST data are the
inverse of each other and this is controlled by the instruction DPOL field. For more information, see
4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77. . In this case, DPOL indicates the
polarity of the read data signal and the write data signal is controlled by the inverse DPOL value. When
there is a single MBIST read or write transaction the data is controlled by the unmodified DPOL value.
See A.4.1 Microcode on page Appx-A-109 for an example of how PMC-100 can be programmed to test
two port SRAMs.

3 PMC-100 functional description
3.3 Two-port SRAM support

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-23
Non-Confidential

3.4 Loop operations
For an efficient implementation of the March SRAM and memory protection test algorithms, four loop
operation types are encoded in the microcode instruction OP field.

The following registers are used with the loop operations:

• The loop counter register, PMC100_LCR, can be used with LOOP-Last and LOOP-LCR operations
to implement C-style loops. For more information, see 4.24 Loop counter register, PMC100_LCR
on page 4-84.

• The loop suspend counter register, PMC100_LSCR, can be used with all loop operations to allow
several iterations of a loop to be executed before suspending execution. For more information, see
4.25 Loop suspend counter register, PMC100_LSCR on page 4-86.

• The loop start program register, PMC100_LSPR, is used with all loop operations and it holds the
program location of the start of the loop. For more information, see 4.23 Loop start program register,
PMC100_LSPR on page 4-83

• The program counter register, PMC100_PCR, is used to hold the location of the microcode
instruction being executed. For more information, see 4.10 Program counter register, PMC100_PCR
on page 4-60.

For more information on the instruction OP field, see 4.22 Program registers, PMC100_P0-
PMC100_P31 on page 4-77

For more information on the March SRAM and memory protection test algorithms, see:
• B.2 March C- algorithm on page Appx-B-113
• Appendix C On-line MBIST Memory Protection Logic Test Algorithms on page Appx-C-114

3.4.1 Loop end behavior

All loop operations function in a similar way, except for their loop end behavior.

The following table describes the loop end behavior.

Table 3-2 Loop end behavior

Loop operation Loop end behavior

LOOP-Last When the loop end execution stops, indicates the last instruction in a microcode program and must always be
present.

LOOP-LAL When the loop ends, the address registers, PMC100_RADDR.RA and PMC100_CADDR.CA, are loaded with the
PMC100_LOWADDR register value, the PMC100_LSPR register is loaded with the location of the next
instruction and PMC100_CTRL.ADDRID is set to 0b1 (increment).

LOOP-LAH When the loop ends, the address registers PMC100_RADR.RA and PMC100_CADDR.CA, are loaded with the
PMC100_HIGHADDR register value, the PMC100_LSPR register is loaded with the location of the next
instruction and PMC100_CTRL.ADDRID is set to 0b0 (decrement).

LOOP-LCR When the loop ends, PMC100_LCR.LC is loaded with PMC100_LCR.LCI and the PMC100_LSPR register is
loaded with the location of the next instruction.

3.4.2 Loop operation execution

Loop operations consist of LOOP-LAL, LOOP_LAH, LOOP-LCR, and LOOP_Last operations.

The loop operations execute as follows:

Procedure
1. For LOOP-LAL and LOOP-LAH operations, the memory address is compared to determine if the

end condition is TRUE.

3 PMC-100 functional description
3.4 Loop operations

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-24
Non-Confidential

a. If PMC100_CTRL.ADDRID is 0b1 (increment) and if the current address stored in
PMC100_RADDR.RA and PMC100_CADDR.CA registers fields is equal to the
PMC100_HIGHADDR register value, the loop ends.

b. If PMC100_CTRL.ADDRID is 0b0 (decrement) and if the current address stored in
PMC100_RADDR.RA and PMC100_CADDR.CA registers fields is equal to the
PMC100_LOWADDR register value, the loop ends.

2. For LOOP-Last operations, when PMC100_CTRL.BAMEN is 0, the memory address is compared to
determine if the end condition is TRUE:
a. If PMC100_CTRL.ADDRID is set to 0b1 (increment), the loop ends if the current address stored

in the PMC100_RADDR.RA and PMC100_CADDR.CA registers fields is equal to the
PMC100_HIGHADDR register value.

b. If PMC100_CTRL.ADDRID is set to 0b0 (decrement), the loop ends if the current address stored
in the PMC100_RADDR.RA and PMC100_CADDR.CA registers fields is equal to the
PMC100_LOWADDR register value.

3. For LOOP-LCR operations, if PMC100_LCR.LC is equal to 0, the loop ends. Otherwise,
PMC100_LCR.LC is decremented by 1.

4. For LOOP-Last operations, when PMC100_LCR.LLEN is 1 and if PMC100_LCR.LC is equal to 0,
the loop ends. Otherwise, PMC100_LCR.LC is decremented by 1.

5. For LOOP-Last operations, when PMC100_CTRL.BAMEN is 1 and PMC100_P.UA is 1 and if
PMC100_CADDR.CA is equal to PMC100 _ CADDR.BNK_END, 1 ' b0, the loop ends. Otherwise,
PMC100_CADDR.CA is decremented by 1.

6. For all LOOP operations, the registers are updated as follows:
a. If the loop is not ending, the PMC100_PCR.PC field is loaded with the PMC100_LSPR.LS field

value and execution continues at the start of the loop. Also, if the PMC100_P.UA field is 1 and
PMC100_CTRL.BAMEN is 0, then the current address stored in the PMC100_RADDR.RA and
PMC100_CADDR.CA fields are incremented or decremented as specified by the
PMC100_CTRL.ADDRID bit.

b. If the loop is ending and the loop operation is not LOOP-Last, then the PMC100_PCR.PC field is
incremented by 1, the registers are updated according to the description in Table 3-2 Loop end
behavior on page 3-24 and execution continues to the next loop.

7. For all LOOP operations, execution either continues or suspends according to the
PMC100_CTRL.TCSEN, PMC100_CTRL.TCCEN, PMC100_LSCR.LCSEN, and
PMC100_CTRL.BAMEN bit values. Normally these bits are programmed to 0 when executing
march algorithms and so execution continues until the loop end condition is true.

8. For LOOP-Last operations only, execution either continues or suspends according to the
PMC100_CTRL.TCSEN, PMC100_CTRL.TCCEN, and PMC100_CTRL.EXECO, and
PMC100_CTRL.BAMEN values. These bits are usually programmed to 0 when executing March
algorithms. Therefore, execution continues until the loop end condition is TRUE. For more
information on the state machine, see 4.5.1 PMC-100 state machine on page 4-46.

9. For LOOP-Last operations only, execution either continues or stops. For more information on the
state machine, see 4.5.1 PMC-100 state machine on page 4-46.

3 PMC-100 functional description
3.4 Loop operations

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-25
Non-Confidential

3.5 APB slave interface
The APB slave interface is used to program PMC-100, allowing it to be used by a processor core in wich
it is instantiated for self-test or by an external processor to perform a test of the core.

The interface complies with the AMBA® APB Protocol Version 2.0 Specification is clocked by the CLK
input and implements a clock enable input which allows it to be used with an interconnect that is clocked
by a slower semi-synchronous clock. PMC-100 performs APB transfers with no wait states, except when
software read triggered execution is used, see CTRL.SRTEEN.

Clock enable signal

The PCLKEN clock enable input signal allows the APB interface to operate with an N:1 semi-
synchronous bus clocking scheme. If the bus is opening at thePMC-100 CLK clock frequency, then 1:1
clocking is used and so PCLKEN must be tied HIGH. The APB interface logic is driven by PMC-100
clock signal, CLK. PMC-100 can be connected to an APB bus which is clocked with the same clock or
integer division, for example, 3:1 clocking. The clock enable signal, PCLKEN, must be used to indicate
the relationship between the clock and the bus clock. If the bus is clocked by PCLK, then PCLKEN
must be asserted in the cycle before every PCLK rising edge. It is important that the relationship
between PCLK and PCLKEN is maintained.

The following figure shows a timing example in which the CLK:PCLK frequency ratio is 3:1. If the APB
interface is to be connected to a bus which is clocked asynchronously to the PMC-100 clock, a
synchronizing bridge component must be used to connect the bus to PMC-100.

t0 t1 t2 t3 t4 t5 t6 t7

PCLKEN is asserted in the
cycle before the rising
edge of PCLK

Figure 3-2 PCLKEN with CLK:PCLK ratio 3:1

3 PMC-100 functional description
3.5 APB slave interface

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-26
Non-Confidential

3.6 Reset behavior
PMC-100 is reset by asserting nSYSRESET for at least two clock cycles. PMC-100 does not contain a
reset synchronizer and must be connected to the synchronized IP core warm reset signal.

Primary control state of PMC-100 is initialized during reset but most of the programmers model registers
are not initialized and must be initialized by software, see 4.4 PMC-100 programming on page 4-37.

3 PMC-100 functional description
3.6 Reset behavior

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-27
Non-Confidential

3.7 Clock gating
PMC-100 contains an architectural clock gate that generates an internal clock from the input clock
signal, CLKIN. The clock is automatically enabled when there are transactions on the APB slave
interface or when the CTRL.PEEN bit is 1.

3 PMC-100 functional description
3.7 Clock gating

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-28
Non-Confidential

3.8 Denial of Service
PMC-100 is a simple IP component, therefore, there are no concerns about denial of service. There are
however potential concerns relating to the IP core that is tested by PMC-100. For example, if PMC-100
is programmed incorrectly, it could enter an infinite loop which would permanently lock a memory,
preventing progress of the core.

3 PMC-100 functional description
3.8 Denial of Service

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 3-29
Non-Confidential

Chapter 4
PMC-100 programmers model

This chapter describes the PMC-100 registers and provides more information on programming the
processor.

It contains the following sections:
• 4.1 PMC-100 register memory map on page 4-32.
• 4.2 PMC-100 register access overview on page 4-33.
• 4.3 PMC-100 register summary on page 4-35.
• 4.4 PMC-100 programming on page 4-37.
• 4.5 Main control register, PMC100_CTRL on page 4-40.
• 4.6 MBISTOLCFG output register, PMC100_CFGR on page 4-52.
• 4.7 Memory control register, PMC100_MCR on page 4-53.
• 4.8 Array register, PMC100_AR on page 4-56.
• 4.9 Byte enable register, PMC100_BER on page 4-59.
• 4.10 Program counter register, PMC100_PCR on page 4-60.
• 4.11 Read pipeline register, PMC100_RPR on page 4-61.
• 4.12 Low address register, PMC100_LOWADDR on page 4-63.
• 4.13 High address register, PMC100_HIGHADDR on page 4-64.
• 4.14 Column address register, PMC100_CADDR on page 4-65.
• 4.15 Row address register, PMC100_RADDR on page 4-67.
• 4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-PMC100_Y7 on page 4-70.
• 4.17 Auxiliary input register, PMC100_AIR on page 4-71.
• 4.18 Auxiliary input register, PMC100_AOR on page 4-72.
• 4.19 MBISTOLERR input register, PMC100_MER on page 4-73.
• 4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7 on page 4-74.
• 4.21 XOR mask registers, PMC100_XM0-PMC100_XM7 on page 4-76.
• 4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-30
Non-Confidential

• 4.23 Loop start program register, PMC100_LSPR on page 4-83.
• 4.24 Loop counter register, PMC100_LCR on page 4-84.
• 4.25 Loop suspend counter register, PMC100_LSCR on page 4-86.
• 4.26 Test continue counter register, PMC100_TCCR on page 4-88.
• 4.27 CoreSight™ register summary on page 4-89.
• 4.28 Integration Mode Control register, PMC100_ITCTRL on page 4-91.
• 4.29 Claim Tag Set register, PMC100_CLAIMSET on page 4-92.
• 4.30 Claim Tag Clear register, PMC100_CLAIMCLR on page 4-93.
• 4.31 Device Affinity register 0, PMC100_DEVAFF0 on page 4-94.
• 4.32 Device Affinity register 1, PMC100_DEVAFF1 on page 4-95.
• 4.33 Authentication Status register, PMC100_AUTHSTATUS on page 4-96.
• 4.34 Device Architecture register, PMC100_DEVARCH on page 4-97.
• 4.35 Device Configuration Register 1, PMC100_DEVID1 on page 4-98.
• 4.36 Device Configuration Register, PMC100_DEVID on page 4-99.
• 4.37 Device Type Register, PMC100_DEVTYPE on page 4-100.
• 4.38 PMC100_PIDR0-7, Peripheral Identification Registers on page 4-101.
• 4.39 PMC100_CIDR0-3, Component Identification Registers on page 4-103.

4 PMC-100 programmers model

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-31
Non-Confidential

4.1 PMC-100 register memory map
The PMC-100 register memory map contains CoreSight and control registers. The CoreSight registers
are read-only (except for the PMC100_LAR register), and the control registers are read/write.

The following figure shows the PMC-100 register memory map.

0xFFC
CoreSight
registers

0x000

0xF00

Control
registers

0x37C

0xEFC

Reserved
UKN/SBZP

0x380

Figure 4-1 PMC-100 register memory map

4 PMC-100 programmers model
4.1 PMC-100 register memory map

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-32
Non-Confidential

4.2 PMC-100 register access overview
The PMC-100 software-programmable registers are accessed through the APB slave interface, and
occupy a 4KB region. PMC-100 also contains CoreSight registers.

The following information applies to all PMC-100 registers.

• Do not attempt to access reserved or unused address locations. Attempting to access these locations
can result in UNPREDICTABLE behavior.

• Unless stated:
— Do not modify UNDEFINED register bits.
— Ignore UNDEFINED register bits on reads.
— All register bits are reset to 0 by the reset signal.
— All implemented and non-reserved bits and fields can be written to any value by software.

• The access types used in this chapter are:

RW
Read/write

RO
Read-only

WO
Write-only

UNK
UNKNOWN for reads

SBZP
Should be zero or preserve for writes

RAZ
Read as zero

RAO
Read as one

WI
Writes ignored

Reserved register bits are implemented as RAZ/WI and software must use them as UNK/SBZP. This
approach minimizes the effect on software if new register bits are added in future revisions of PMC-100.

The following rules apply when accessing the registers:
• If implemented by an IP core, only privileged and Secure accesses are supported. If an IP core does

not support Secure accesses, then all accesses are indicated as Secure on the APB interface. To hide
potentially sensitive data from User mode code, the effect of non-privileged or Non-secure accesses
are as follows:
— Read accesses to the CoreSight registers returns the register value as normal and a non-error

response on the PSLVERR signal.
— Read accesses to control registers and the reserved region returns 0 data and an error response on

the PSLVERR signal.
— Write accesses to the CoreSight registers are ignored and returns a non-error response on the

PSLVERR signal.
— Write accesses to control registers and the reserved region is ignored and returns an error response

on the PSLVERR signal.

4 PMC-100 programmers model
4.2 PMC-100 register access overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-33
Non-Confidential

 Note

A processor implementation might generate a BusFault exception or treat the register accesses as
RAZ/WI if registers are accessed in Unprivileged or Non-secure state. For more information on how
Unprivileged and Non-secure accesses to PMC-100 are handled, see your processor documentation.

• Only word write accesses are supported. Therefore, non-word write accesses return an error response
on the PSLVERR signal.

• Except for writes to the PMC100_CTRL register, when PMC100_CTRL.PEEN is 1, behavior is
UNPREDICTABLE if control registers are written to. Therefore, the control registers must not be written to
when PMC100_CTRL.PEEN is 1, except to:
— Clear the PMC100_CTRL.PEEN bit, which stops execution.
— Clear the PMC100_CTRL.PES bit, which resumes execution.
— Write a value to the PMC100_AOR to disable external TC pulse generation.

• When execution is enabled, it is not expected to be useful to read any control registers. The exception
is the PMC100_CTRL register which can read to poll PMC-100 to check if a test has successfully
completed or failed.

4 PMC-100 programmers model
4.2 PMC-100 register access overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-34
Non-Confidential

4.3 PMC-100 register summary
The PMC-100 software-programmable registers are accessed through the APB slave interface, and
occupy a 4KB region. PMC-100 also contains CoreSight registers.

The following table lists all the PMC-100 registers with their offset in the 4KB region.

Table 4-1 PMC-100 register summary

Offset Register name Access type Description

0x000 PMC100_CTRL RW 4.5 Main control register, PMC100_CTRL on page 4-40

0x004 PMC100_MCR RW 4.7 Memory control register, PMC100_MCR on page 4-53

0x008 PMC100_BER RW 4.9 Byte enable register, PMC100_BER on page 4-59

0x00C PMC100_PCR RW 4.10 Program counter register, PMC100_PCR on page 4-60

0x010 PMC100_RPR RO 4.11 Read pipeline register, PMC100_RPR on page 4-61

0x014 PMC100_HIGHADDR RW 4.13 High address register, PMC100_HIGHADDR on page 4-64

0x018 PMC100_CADDR RW 4.14 Column address register, PMC100_CADDR on page 4-65

0x01C PMC100_RADDR RW 4.15 Row address register, PMC100_RADDR on page 4-67

0x020 PMC100_AIR RW 4.17 Auxiliary input register, PMC100_AIR on page 4-71

0x024 PMC100_AOR RW 4.18 Auxiliary input register, PMC100_AOR on page 4-72

0x028 PMC100_MER RW 4.19 MBISTOLERR input register, PMC100_MER on page 4-73

0x02C PMC100_LSPR RW 4.23 Loop start program register, PMC100_LSPR on page 4-83

0x030 PMC100_LCR RW 4.24 Loop counter register, PMC100_LCR on page 4-84

0x034 PMC100_AR RW 4.8 Array register, PMC100_AR on page 4-56

0x038 PMC100_CFGR RW 4.6 MBISTOLCFG output register, PMC100_CFGR on page 4-52

0x03C PMC100_TCCR RW 4.26 Test continue counter register, PMC100_TCCR on page 4-88

0x040 PMC100_LOWADDR RW 4.12 Low address register, PMC100_LOWADDR on page 4-63

0x044 PMC100_LCSR RW 4.25 Loop suspend counter register, PMC100_LSCR on page 4-86

0x048-0x07C - UNK/SBZP Reserved

0x080-0x09C PMC100_X0-PMC100_X7 RW 4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-
PMC100_Y7 on page 4-70

0x0A0-0x0FC - UNK/SBZP Reserved

0x100-0x11C PMC100_Y0-PMC100_Y7 RW 4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-
PMC100_Y7 on page 4-70

0x120-0x17C - UNK/SBZP Reserved

0x180-0x19C PMC100_DM0-PMC100_DM7 RW 4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-
PMC100_DM7 on page 4-74

0x1A0-0x1FC - UNK/SBZP Reserved

0x200-0x21C PMC100_XM0-PMC100_XM7 RW 4.21 XOR mask registers, PMC100_XM0-PMC100_XM7
on page 4-76

0x220-0x27C - UNK/SBZP Reserved

4 PMC-100 programmers model
4.3 PMC-100 register summary

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-35
Non-Confidential

Table 4-1 PMC-100 register summary (continued)

Offset Register name Access type Description

0x280-0x2FC - UNK/SBZP Reserved

0x300-0x37C PMC100_P0-PMC100_P31 RW 4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77

0x380-0xEFC - UNK/SBZP Reserved

0xF00-0xFFC CoreSight registers - 4.27 CoreSight™ register summary on page 4-89

4 PMC-100 programmers model
4.3 PMC-100 register summary

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-36
Non-Confidential

4.4 PMC-100 programming
Before testing can start, software must program PMC-100 appropriately.

This includes:
• The attributes for the array under test, for example its array encoding.
• SRAM mux factor.
• Data mask.
• Pipeline depth.
• Cycles per operation.
• The microcode program needed to perform the test algorithm.

PMC-100 can be programmed to interrupt the processor when the test is complete or if a fault is
detected. Alternatively, software can poll PMC-100 to see when the test is complete or if a fault is
detected.

When PMC-100 programming is complete, microcode execution is initiated by setting the
PMC100_CTRL.PEEN bit to 0b1. For more information on PMC100_CTRL, see 4.5 Main control
register, PMC100_CTRL on page 4-40.

All registers must be programmed even if they are not used by a test. Unused registers must be set to
zero, including program registers. Also, register bits that are not implemented because of
configuration parameter values must also be programmed. Once PMC-100 programming is complete,
microcode execution is initiated by setting the PMC100_CTRL.PEEN bit to 0b1.

This section contains the following subsection:
• 4.4.1 Standard register initialization and programming on page 4-37.

4.4.1 Standard register initialization and programming

The following table shows the example register programming, where N is the number of elements in the
array under test.

4 PMC-100 programmers model
4.4 PMC-100 programming

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-37
Non-Confidential

Table 4-2 Standard register initialization and programming

Register Programming

PMC100_CTRL 0x00000210. See the table below.

BAMEN - 0b0, bank address mode disabled

DMDIS – 0b0, data masking enabled

TCCEN – 0b0, test continue counter disabled

SRTEEN – 0b0, software read triggered execution disabled

TFPCHKUE – 0b0, uncorrectable error check cleared

NOTRANS – 0b0, no transaction cleared

PCHKR – 0b00, protection error check result cleared

PREN – 0b0, MBISTOLPREN disabled

FP – 0b00, fixed data pattern set to all 1s

ADDRID – 0b0, address decrement

ADDRCD – 0b1, x-fast

TFSEN – 0b0, test fail interrupt disabled

TF – 0b0, test fail cleared

TESEN – 0b0, test end interrupt disabled

TE – 0b0, test end cleared

STOPF – 0b1, stop on failure

EXECO – 0b0, execute once disabled

TCSEN – 0b0, TC input ignored

PES – 0b0 – program not suspended

PEEN – 0b0, execution disabled

PMC100_MCR Attributes for array under test

PMC100_BER 0xFFFFFFFF

PMC100_PCR 0x00000000

PMC100_HIGHADDR N-1

PMC100_CADDR 0x00000000

PMC100_RADDR 0x00000000

PMC100_AIR 0x00000000

PMC100_AOR As required by the system

PMC100_MER 0x00000000

PMC100_LCR Loop counter value required by test

PMC100_AR MBIST array value for the array under test

PMC100_CFGR 0x00000000

PMC100_TCCR Test continue counter initialization value required by test

PMC100_LOWADDR 0x00000000

4 PMC-100 programmers model
4.4 PMC-100 programming

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-38
Non-Confidential

Table 4-2 Standard register initialization and programming (continued)

Register Programming

PMC100_LSCR Loop suspend value required by test

PMC100_X0-PMC100_X7 All zero

PMC100_Y0-PMC100_Y7 All zero

PMC100_DM0-PMC100_DM7 Data mask for array under test

PMC100_XM0-PMC100_XM7 XOR mask for array under test

PMC100_P0-PMC100_P31 Microcode to execute test algorithm, unused registers set to zero

4 PMC-100 programmers model
4.4 PMC-100 programming

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-39
Non-Confidential

4.5 Main control register, PMC100_CTRL
PMC100_CTRL contains the main test control and status bits.

Usage constraints
Software can modify all bit fields except TEN, MBISTACK, and STATE. Additionally,
automatic hardware mechanisms can update some bit fields.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_CTRL bit assignments.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

BAMEN
DMDIS

BAM

TCCEN
SRTEEN
TFPCHKUE
NOTRANS
PCHKR
PREN

FP

MACK
STATE
TEN
ADDRID
ADDRCD

TF
TESEN

TFSEN

TE
STOPF
EXECO
TCSEN
PES
PEEN

Reserved

Figure 4-2 PMC100_CTRL bit assignments

The following table describes the PMC100_CTRL bit assignments.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-40
Non-Confidential

Table 4-3 PMC100_CTRL bit assignments

Field Name Type Reset
value

Description

[31:30] Reserved - - Reserved, RES0

[29] BAMEN RW 0x0 Bank address mode enable. This bit enables use of the column address register,
PMC100_CADDR.CA, as the output address MSBs and or LSBs, which allows
PMC100_CADDR.CA to be used to select each bank in turn. For more information, see
4.15.1 Address output value, PMC100_CTRL.BAMEN=0 on page 4-68 and
4.15.2 Address output value, PMC100_CTRL.BAMEN=1 on page 4-68. This mode is
only intended to be used with memory protection logic test algorithms.

0b0 Bank address mode disabled

0b1 Bank address mode enabled

 Note

This bit also affects the operation of the LOOP-Last OP, PMC100_P.UA and
PMC100_LSCR

[28] DMDIS RW 0x0 Data masking disable. This bit disables data masking of read data using the PMC100_DM
register and the fault bitmap functionality. For more information, see 4.20 Data mask,
fault bitmap, and data registers, PMC100_DM0-PMC100_DM7 on page 4-74.

0b0 Data masking enabled

0b1 Data masking disabled

[27:26] Reserved - - Reserved, RES0

[25:24] BAM RW 0x0 Bank address mode. When BAMEN is b1 , BAM determines the format of the address
output on the MBISTOLADDR signal. See section 4.15.1 Address output value,
PMC100_CTRL.BAMEN=0 on page 4-68 for further details.
• b00 Mode 0 - CADDR.CA address MSB
• b01 Mode 1 - CADDR.CA address LSB
• b10 Mode 2 - CADDR.CA address MSB and LSB
• b11 Reserved

[23] TCCEN RW 0x0 Test continue counter enable.

This enables the internal test continue counter to generate the test continue pulse, see the
PMC100_TCCR register. For more information, see 4.26 Test continue counter register,
PMC100_TCCR on page 4-88. The test continue counter can cause a Resume event.
TCCEN can be used to enable suspend events. For more information, see 4.5.1 PMC-100
state machine on page 4-46

0b0 Test continue counter disabled

0b1 Test continue counter enabled

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-41
Non-Confidential

Table 4-3 PMC100_CTRL bit assignments (continued)

Field Name Type Reset
value

Description

[22] SRTEEN RW 0x0 Software read triggered execution enable. When enabled, this bit causes execution to be
triggered when software reads the PMC100_X0 data register. Wait states are inserted on
the APB interface until execution is complete and the data register is updated. the new
value in the data register is then returned on the bus.

0b0 Software read triggered execution disabled.

0b1 Software read triggered execution enabled.

 Note

• A debugger can use this bit to effectively dump memory content. For more
information, see D.3 Memory dumping algorithm on page Appx-D-133.

• The software read triggers execution in a similar way to the test continue counter or
TC input signal.

[21] TFPCHKUE RW 0x0 Test fail protection error check result with uncorrectable error. The TFPCHKUE bit is
intended to be used with memory scrubbing algorithms. When the PCHKCE operation is
executed it causes an uncorrectable error to be treated as a test failure, which sets the TF
bit. An uncorrectable error is indicated by MBISTOLOUTDATA[1] for reads where
MBISTOLPSEL is 0b01. The TFPCHKUE bit encoding is:

0 Uncorrectable error result not treated as test fail when PCHKCE is executed.

1 Uncorrectable error result treated as test fail when PCHKCE is executed

 Note

If the memory contains uninitialized entries then TFPCHKUE must not be set to 0b1
when executing memory scrubbing algorithm.

[20] NOTRANS RW 0 No MBIST transaction. This bit is used when performing memory scrubbing. It allows
conditional execution to be implemented by forcing the MBISTOLREADEN and
MBISOLWRITEN signals LOW, turning the MBIST transactions into NOPs.
NOTRANS is automatically set to 0b1 when an instruction is executed with a PCHKCE
operation and MBISTOLOUTDATA[1:0] is not 0b01. NOTRANS is automatically
cleared to 0b0 when an instruction is executed with a LOOP-Last operation or CLRNT
operation. The NOTRANS bit encoding is:

0b0 MBIST transaction performed normally

1 MBIST transaction converted to NOPs

[19:18] PCHKR RW 0x0 Protection error check result. This is a sticky protection error check result value. This is
the MBISTOLOUTDATA[1:0] read data value for reads where MBISTOLPSEL is
0b01. The previous PCHKR value is OR-gated with the new value.

[17] PREN RW 0x0 MBISTOLPREN signal control. This enables the IP core error reporting output bus for
MBIST read transactions when MBISTOLPSEL is 0b01, which selects the parity or
ECC logic error check result. The PREN bit encoding is:

0b0 MBISTOLPREN LOW

0b1 MBISTOLPREN HIGH for protection check result reads. Otherwise, LOW

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-42
Non-Confidential

Table 4-3 PMC100_CTRL bit assignments (continued)

Field Name Type Reset
value

Description

[16:15] FP RW 0x0 Pattern. This field controls the fixed data pattern used in MBIST write data and expected
read data. A fixed pattern is only used when the instruction DREG field is 0b10. The
pattern may be inverted using the instruction DPOL field. The 8-bit data patterns shown
below are repeated across the full width of the MBIST data, right justified. The data
patterns selected by the FP field encoding are as follows:

0b00 0b11111111

0b01 0b10101010

0b10 0b10100101

0b11 Reserved

[14] MACK RO UNKNOWN Value of the MBISTOLACK input signal. For more information, see E.3 MBIST master
interface signals on page Appx-E-138

[13:12] STATE RO 0x0 This is the status of PMC-100 state machine. The state encodings are:

0b00 Initial

0b01 Run

0b10 Suspended

0b11 Reserved

[11] TEN RO TEN input
signal
value

Test enable. When the TEN bit is 0, PMC-100 is disabled and cannot be programmed.

[10] ADDRID RW 0x0 Address increment/decrement control. This bit effects the next PMC100_RADDR.RA
and PMC100_CADDR.CA address register values as follows:

0b0 Address registers are decremented

0b1 Address registers are incremented

The address registers are updated with the next value when an instruction is executed
with a UA bit value of 1. For more information, see 4.22 Program registers,
PMC100_P0-PMC100_P31 on page 4-77.

[9] ADDRCD RW 0x0 Address change direction. This bit controls the direction that address changes are made
with respect to a memory array. It effects the next PMC100_RADDR.RA and
PMC100_CADDR.CA address register field values as follows:

0b0 y-fast. PMC100_CADDR.RA is changed first. All PMC100_CADDR.CA values
are accessed before the PMC100_RADDR.RA value is changed

0b1 x-fast. PMC100_RADDR.RA is changed first. All PMC100_RADDR values are
accessed before the PMC100_CADDR.CA value is changed

The address registers are updated with the next value when an instruction is executed
with a UA bit value of 1. For more information, see 4.22 Program registers,
PMC100_P0-PMC100_P31 on page 4-77.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-43
Non-Confidential

Table 4-3 PMC100_CTRL bit assignments (continued)

Field Name Type Reset
value

Description

[8] TFSEN RW 0x0 Test failed signal enable. Controls the behavior of the TF signal. For more information,
see E.4 Execution control and status signals on page Appx-E-139. The values can be:

0b0 TF signal is held LOW

0b1 TF signal is equal to the value of the TF bit

[7] TF RW 0x0 Test failed status bit. The values can be:

0b0 Test has not failed

0b1 Test has failed

TF is automatically set to 1 if a data comparison in the test program fails. TF can only be
cleared to 0 by software.

[6] TESEN RW 0x0 Test ended signal enable. Controls the behavior of the TE signal. For more information,
see E.4 Execution control and status signals on page Appx-E-139. The values can be:

0b0 TE signal is held LOW

0b1 TE signal is equal to the value of the TE bit

[5] TE RW 0x0 Test ended status bit. The values can be:

0b0 Test has not ended

0b1 Test has ended

TE is automatically set to 1 when the execution stop event occurs. For more information,
see Resume event on page 4-48. TE can only be cleared to 0 by software

[4 STOPF RW 0x0 Stop on failure. This bit causes execution to stop when a failure is detected and can take
any of the following values:

0b0 Stop on failure mode is disabled

0b1 Stop on failure mode is enabled

When STOPF is 0b1 and a data check in the test program fails, the PEEN bit is
automatically cleared to 0b0 and the TF bit is set to 0b1, halting execution at the current
instruction. The TE bit is not changed in this case.

As data checks occur concurrently with program execution, the value of the PC depends
on the instructions that follow the failing read and the value of the PMC100_MCR.PD
value. For more information, see 4.6 MBISTOLCFG output register, PMC100_CFGR
on page 4-52.

The PMC100_RPR register can be used to determine which read transaction failed. For
more information, see 4.11 Read pipeline register, PMC100_RPR on page 4-61

[3] EXECO RW 0x0 Execute once. This bit has the following functions:

0b0 Execute once mode is disabled

0b1 Execute once mode is enabled

If EXECO is 0b1 and an instruction is executed with a LOOP-Last OP field value, the
PEEN bit is automatically cleared to 0 and the TE bit is set to 1. Therefore, this causes
instructions to be executed only once.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-44
Non-Confidential

Table 4-3 PMC100_CTRL bit assignments (continued)

Field Name Type Reset
value

Description

[2] TCSEN RW 0x0 Test continue signal enable. The TC input signal can cause a Resume event. TCSEN can
be used to enable Suspend events. This bit has the following functions:

0b0 TC signal is ignored

0b1 Enable TC input signal

For more information, see Resume event on page 4-48 and Suspend event on page 4-48

.

For more information, see E.4 Execution control and status signals on page Appx-E-139

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-45
Non-Confidential

Table 4-3 PMC100_CTRL bit assignments (continued)

Field Name Type Reset
value

Description

[1] PES RW 0x0 Program execution suspended. This bit indicates when execution is suspended and its
encoding is as follows:

0b0 Program execution can take place.

0b1 Program execution suspended.

PES is automatically set to 0b1 when an event occurs. For more information, see Start_s
event on page 4-47.

PES is automatically cleared to 0b0 when a Resume event occurs. For more information,
see Resume event on page 4-48.

It is also possible for software to cause a Resume event to occur when execution is
suspended by clearing PES to 0b0.

 Note

If PEEN is 0b1 software must not set PES to 0b1 because this might cause microcode
execution to suspend prematurely and corrupt the target array.

[0] PEEN RW 0x0 Program execution enable. This is the main execution enable bit and its function is as
follows:

0 Program execution is disabled.

1 Program execution is enabled.

Program execution takes place if PEEN is 0b1 and PES is 0b0.

PEEN is automatically to 0b0 at the end of a test. For more information, see Resume
event on page 4-48.

When PEEN is 0b0, the MBISTOLREQOL signal is driven LOW. When software sets
the PEEN bit to 0b1, the internal state is cleared, including PMC100_RPR. For more
information, see 4.11 Read pipeline register, PMC100_RPR on page 4-61

 Note

• The PEEN bit must be 0b0 before software changes any register values, except the
PMC100_CTRL register when clearing the PEEN bit to 0b0 or the PES bit to 0b0.

• Under normal circumstances, when programming is complete and PEEN is 0,
software starts execution by causing a Start_r event by setting PEEN to 0b1 and PES
to 0b0.

• It is also possible for software to start PMC-100 in the suspended state when PEEN is
0 by causing a start_s event by setting PEEN to 0b1 and PES to 0b1.

• If PEEN is b1 then software must not set it to 0b0, except when debugging a
microcode program. This can cause MBISTOLREQ to be de-asserted before
MBISTOLACK is asserted, which would violate the MBIST interface protocol.

4.5.1 PMC-100 state machine

PMC-100 has a state machine that controls its exdcution state and the current state can be read from the
CTRL.STATE field. There are several events that cause the state machine to transition between states.

The following table describes the three execution states.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-46
Non-Confidential

Table 4-4 PMC-100 execution states

State Description

Initial Program is not executing and MBISTOLREQOL is LOW.

Run In Memory Built-In Self-Test (MBIST) entry or exit sequence or program is executing.

Suspended Program execution is suspended and MBISTOLREQOL is LOW.

The following diagram shows the state transitions for the state machine.

Suspended Run

Initial

Resume event

Suspend event

Abort event

Start_s event

Start_r event

Stop/Abort
event

Figure 4-3 PMC100_CTRL bit assignments

Start_r event

When a Start_r event takes place, the following occurs:

• Internal state that software cannot write to is initialized
• The Memory Built-In Self Test (MBIST) interface entry sequence is performed
• The Run state is entered
• Program execution starts

The Start_r event is used in the Initial state and is caused when PMC100_CTRL.PEEN is 0 and software
writes 1 to PMC100_CTRL.PEEN and 0 to PMC100_CTRL.PES.

 Note

• If this event occurs after a test has completed successfully and software has not re-initialized the
PMC100_PCR, PMC100_CADDR, or PMC100_RADDR registers, then a stop condition might still
be active, and the state machine briefly enters the Run state and then returns to the Initial state.
MBISTOLREQOL is not asserted.

• This event can be used in other states to force the state machine into the Run state if a deadlock
occurs. Arm does not recommend that this behavior is used in normal operation.

Start_s event

When a Start_s event occurs, internal state that is not software writable is initialized and the Suspended
state is entered.

This event is used in the Initial state and is caused when PMC100_CTRL.PEEN is 0 and software writes
1 to PMC100_CTRL.PEEN and PMC100_CTRL.PES.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-47
Non-Confidential

Suspend event

When this event occurs, the Memory Built-In Self-Test (MBIST) interface exit sequence is carried out.
This event can only occur when the state machine is in the Run state and is caused when any of the
following conditions are satisfied:

Table 4-5 Conditions for Suspend event

Condition PMC100_CTRL PMC100_LSCR Instruction execution
requirements

Additional notes

Condition 1 • The PEEN bit is 1
• The EXECO bit is 0
• The BAMEN bit is 0
• The TCSEN, TCEEN, or

SRTEEN bits are 1

The LSCEN bit is 0 An instruction is executed
with the LOOP-Last
operation

When this condition occurs,
PMC100_CTRL.PES is
automatically set to 1

Condition 2 • The PEEN bit is 1
• The TCSEN or TCEEN bits

are 1

• The LSCEN bit is 1
• The LSC bit is 0

An instruction is executed
with either LOOP-LAL,
LOOP-LAH, or LOOP-
LCR operations

When this condition occurs,
PMC100_CTRL.PES is
automatically set to 1

Condition 3 • The PEEN bit is 1
• The BAMEN bit is 0
• The TCSEN or TCEEN bits

are 1

• The LSCEN bit is 1
• The LSC bit is 0

An instruction is executed
with LOOP-Last
operation

When this condition occurs,
PMC100_CTRL.PES is
automatically set to 1

 Note

If a stop and a suspend event occurs at the same time, the stop event takes priority.

Resume event

When this event occurs, the Memory Built-In Self-Test (MBIST) interface entry sequence is carried out.
This event can only when the state machine is in the Suspended state and is caused by the following
conditions:

Table 4-6 Conditions for Resume event

Condition PMC100_CTRL PMC100_TCCR Additional notes

Condition 1 • The PEEN bit is 1
• The PES bit is 0
• The TCSEN bit is 1
• TC signal is high

- When this condition occurs,
PMC100_CTRL.PES is automatically
set to 0

Condition 2 • The PEEN bit is 1
• The PES bit is 0
• The TCEEN bit is 1

The TCC bit is 0 When this condition occurs,
PMC100_CTRL.PES is automatically
set to 0 and PMC100_TCCR.TCC is
reloaded with PMC100_TCCR.TCCI

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-48
Non-Confidential

Table 4-6 Conditions for Resume event (continued)

Condition PMC100_CTRL PMC100_TCCR Additional notes

Condition 3 • The PEEN bit is 1, and software sets
PMC100_CTRL.PEEN to 1

• The PES bit is 1, and software sets the PES bit to 0
• Software sets TCSEN or TCCEN bit to 1

- -

Condition 4 • The PEEN bit is 1
• The PES bit is 1
• The STREEN bit is 1

- Software reads PMC100_X0. when
this occurs, PMC100_CTRL.PES is
automatically set to 0

Stop event

This event occurs when a test ends normally. It causes the Memory Built-In Self-Test (MBIST) interface
exit sequence to be carried out, PMC100_CTRL.PEEN is set to 0 and PMC100_CTRL.TE is set to 1.
This event can only occur in the Run state and is caused by any of the following conditions being
satisfied:

Table 4-7 Conditions for Stop event

Condition PMC100_CTRL PMC100_LCR Instruction execution requirements

Condition 1 • The PEEN bit is 1
• The ADDRID bit is 1
• The BAMEN bit is 0

- An instruction is executed with a LOOP-Last operation field value
and the current address is equal to the PMC100_HIGHADDR
register

Condition 2 • The PEEN bit is 1
• The ADDRID bit is 0
• The BAMEN bit is 0

- An instruction is executed with a LOOP-Last operation field value
and the current address is equal to the PMC100_LOWADDR register

Condition 3 The PEEN bit is 1 • The LLEN bit is 1
• The LC bit is 0

An instruction is executed with a LOOP-Last operation.

Condition 4 • The PEEN bit is 1
• The BAMEN bit is 1
• The STREEN bit is 1

- An instruction is executed with a LOOP-Last operation and
PMC100_CADDR.CA is {PMC100 _ CADDR.BNK_END . 1 ' b0}.

Condition 5 • The PEEN bit is 1
• The EXECO bit is 1

- An instruction is executed with a LOOP-Last operation.

 Note

After this event the PMC100_PCR register points to the LOOP-Last instruction and the
PMC100_CADDR and PMC100_RADDR registers are not updated, even if the instruction’s UA bit is 1.
If a stop and a suspend event occurs at the same time, the stop event takes priority.

Abort event

This event can occur in either the Run or Suspended states and is used to prematurely abort a test and
return to the Initial state. It sets PMC100_CTRL.TE to 1 and if it is caused by a read data check failure
then PMC100_CTRL.TF is also set to 1. This event is caused when any of the following conditions are
satisfied:

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-49
Non-Confidential

Table 4-8 Conditions for Abort event

Condition PMC100_CTRL Additional notes

Condition 1 • The PEEN bit is 1
• The STOPF bit is 1

A read data check fails

Condition 2 • The PEEN bit is 1
• Software writes 0 to the PEEN but and PES bit

-

 Note

Execution is stopped immediately when this event occurs and the PMC100_PCR, PMC100_CADDR,
PMC100_RADDR, PMC100_RPR, PMC100_LCR, PMC100_LSCR, and PMC100_LSPR registers are
not updated. This allows software to determine the failing RAM address and read check microcode
instruction that detected a failure. Arm does not recommended that the software cause the abort event to
occur when the PMC100_CTRL.MBISTACK is 0 and PMC100_CTRL.STATE is 0b01 because it could
violate the MBIST interface protocol if it occurs during MBIST entry.

Program execution modes

The program execution mode is configured by the following PMC100_CTRL bits:

• PEEN
• PES
• EXECO
• TCSEN
• TCCEN
• SRTEEN

The following table summarizes these modes.

Table 4-9 Program execution modes

PEEN PES EXECP TCSEN TCCEN SRTEEN Description

0 X X X X X Program is not executed

1 0 0 1 X X Program is executes until a Suspend, Stop, or Abort event occurs. Used to
suspend execution for certain loop conditions. When suspended, a Resume
event is generated when the TC input is HIGH or when software writes 0 to
the PES bit.

1 0 0 X 1 X Program is executed until a Suspend, Stop, or Abort event occurs. Used to
suspend execution for certain looping conditions. When suspended, a
Resume event is generated when PMC100_TCCR.TCC is equal to 0 or
when software writes 0 to the PES bit.

1 0 0 X X 1 Program is executed until a Suspend, Stop, or Abort event occurs. Used to
suspend execution for certain looping conditions. When suspended, a
Resume event is generated when software reads the PMC100_X0 data
register or writes 0 to the PES bit.

1 0 1 X X X Program is executed until a Stop or Abort event occurs. Used to execute
instructions once.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-50
Non-Confidential

Table 4-9 Program execution modes (continued)

PEEN PES EXECP TCSEN TCCEN SRTEEN Description

1 0 0 0 0 0 Program is executed until a Stop or Abort event occurs. Used to loop
through all required memory locations or data bits or SRAM banks without
suspending.

1 1 X X X X Program execution is suspended waiting for a Resume or Abort event to
occur.

4 PMC-100 programmers model
4.5 Main control register, PMC100_CTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-51
Non-Confidential

4.6 MBISTOLCFG output register, PMC100_CFGR
PMC100_CFGR sets the value of MBISTOLCFG.

Usage constraints
This register can only be modified by software. This register must be initialized by software
before the PMC100_CTRL.PEEN bit is set to 1. For more information, see 4.5 Main control
register, PMC100_CTRL on page 4-40

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_CFGR bit assignments.

31 16 15 0

Reserved CFG

Figure 4-4 PMC100_CFGR bit assignments

The following table describes the PMC100_CFGR bit assignments.

Table 4-10 PMC100_CFGR bit assignments

Field Name Type Reset
value

Description

[31:16] Reserved UNK/
SBZP

- Reserved, RES0

[15:0] CFG RW UNKNOWN This is the MBISTOLCFG signal value. For more information, see E.3 MBIST master
interface signals on page Appx-E-138.

 Note

• This value is normally used in production testing to enable MBIST All mode. In
some IP cores this is also used to set LATENCY/SETUP controls for the array under
test. During on-line MBIST testing, it might be possible to set the LATENCY/
SETUP bits to 1, but the AllMode bits must be set to 0.

• Usused field bits are reserved and must be treated as UNK/SBZP.
• CFG field width is set by the MCWIDTH parameter. For more information, see

3.2 RTL parameters on page 3-21.

4 PMC-100 programmers model
4.6 MBISTOLCFG output register, PMC100_CFGR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-52
Non-Confidential

4.7 Memory control register, PMC100_MCR
PMC100_MCR configures the attributes for the memory array under test.

Usage constraints
All fields can be modified by software. This register must be initialized by software before the
PMC100_CTRL.PEEN bit is set to. For more information, see 4.5 Main control register,
PMC100_CTRL on page 4-40

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_MCR bit assignments.

31 27 26 22 21 20 18 17 14 13 10 9 5 4 0

Reserved RCW

Reserved

CCW RCOW RCOR PDP PD

Figure 4-5 PMC100_MCR bit assignments

The following table describes the PMC100_MCR bit assignments.

Table 4-11 PMC100_MCR bit assignments

Field Name Type Reset value Description

[31:27] Reserved UNK/SBZP - Reserved, RES0

[26:22] RCW RW UNKNOWN Row counter width. This must be set to the width of the row
section of the RAM under test address bus, which is 2. A value of
0b00000 corresponds to 2 row address bits.

 Note

1. If PMC100_CTRL.BAMEN is 0, the maximum value that
this field can be programmed to is MAWIDTH-CCW-2.

2. If PMC100_CTRL.BAMEN is 1, and PMC100_CTRL.BAM
is 0 the maximum value that this field can be programmed to
is MAWIDTH-CCW-1.

3. If PMC100_CTRL.BAMEN is 1, and PMC100_CTRL.BAM
is 1 the maximum value that this field can be programmed to
is MAWIDTH-CCW-1.

4. If PMC100_CTRL.BAMEN is 1 and PMC100_CTRL.BAM
is 2 the maximum value that this field can be programmed to
is MAWIDTH-(2*CCW).

[21] Reserved UNK/SBZP - Reserved, RES0

4 PMC-100 programmers model
4.7 Memory control register, PMC100_MCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-53
Non-Confidential

Table 4-11 PMC100_MCR bit assignments (continued)

Field Name Type Reset value Description

[20:18] CCW RW UNKNOWN Column counter width. When running SRAM tests, this field
must be set to the width of the column section of the address bus
of the RAM under test. The options are:

0b000 0 bits, 1 RAM column

0b001 1 bit, 2 RAM columns

0b010 2 bits, 4 RAM columns

0b011 3 bits, 8 RAM columns

0b100 4 bits, 16 RAM columns

0b101 5 bits, 32 RAM columns

0b110 Reserved

0b111 Reserved

 Note

1. Memory protection logic testing uses
PMC100_CTRL.BAMEN set to 1.

2. If PMC100_CTRL.BAMEN is 0 the maximum value that this
field may be programmed to is MAWIDTH-2.

3. If PMC100_CTRL.BAMEN is 1 and PMC100_CTRL.BAM
is 0 the maximum value that this field can be programmed to
is MAWIDTH-1.

4. If PMC100_CTRL.BAMEN is 1 and PMC100_CTRL.BAM
is 1 the maximum value that this field can be programmed to
is MAWIDTH-1.

5. If PMC100_CTRL.BAMEN is 1 and PMC100_CTRL.BAM
is 2 the maximum value that this field can be programmed to
is MAWIDTH/2.

6. If PMC100_CTRL.BAMEN is 1, CCW must be >= 1 because
PMC100_CADDR.CA [0] is used as a loop counter and
PMC100_CADDR.CA [CCW-1:1] is used as the bank select
value in the output address when CCW>1.

[17:14] RCOW RW UNKNOWN RAM cycles per operation for writes. This must be set to the
number of cycles that the RAM under test requires for each
access, which is 1. A value of 0b000 corresponds to one cycle
per access.

 Note

• Unused field bits are reserved and must be treated as UNK/
SBZP

• RCOW and RCOR widths are set by the RCOWIDTH
parameter. For more information, see 3.2 RTL parameters
on page 3-21.

4 PMC-100 programmers model
4.7 Memory control register, PMC100_MCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-54
Non-Confidential

Table 4-11 PMC100_MCR bit assignments (continued)

Field Name Type Reset value Description

[13:10] RCOR RW UNKNOWN RAM cycles per operation for reads. This must be set to the
number of cycles that the RAM under test requires for each
access, which is 1. A value of 0b000 corresponds to one cycle
per access.

 Note

• When using the SRAM test algorithms that issue MBIST read
and write operations in the same cycle, RCOR and RCOW
must be set to the same value.

• Unused field bits are reserved and must be treated as UNK/
SBZP

• RCOW and RCOR widths are set by the RCOWIDTH
parameter. For more information, see 3.2 RTL parameters
on page 3-21.

[9:5] PDP RW UNKNOWN Pipeline depth for protection logic. This is the number of pipeline
stages in the MBIST path from MBISTOLADDR to
MBISTOLOUTDATA for the protection logic associated with
the memory under test, for transactions where MBISTOLPSEL
is not 0b00. For example, if there are five pipeline stages for
corrected data reads then this field must be set to 5.

 Note

• PDP must be greater than or equal to PD.
• Unused field bits are reserved and must be treated as UNK/

SBZP
• PD and PDP wdths are set by the PDWIDTH parameter. For

more information, see 3.2 RTL parameters on page 3-21.

[4:0] PD RW UNKNOWN Pipeline depth. This is the number of pipeline stages in the
MBIST path from MBISTOLADDR to MBISTOLOUTDATA
for the memory under test, for transactions where
MBISTOLPSEL is 0b00. For example, if there are three
pipeline stages, then this field must be set to 3.

 Note

• Unused field bits are reserved and must be treated as UNK/
SBZP

• PD and PDP wdths are set by the PDWIDTH parameter. For
more information, see 3.2 RTL parameters on page 3-21.

4 PMC-100 programmers model
4.7 Memory control register, PMC100_MCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-55
Non-Confidential

4.8 Array register, PMC100_AR
PMC_AR controls the value of the MBISTOLARRAY output signal.

The MBISTOLARRAY signal is driven by the PMC100_AR register depending on the
PMC100_P.PSEL value of the current instruction, see 4.22 Program registers, PMC100_P0-
PMC100_P31 on page 4-77 and if the access is a read or a write, see Table 4-13 PSEL and
MBISTOLARRAY values on page 4-57.

The MBISTOLARRAY value is divided into two sections, the lower section contains the memory
controller and sub-array encoding and the upper section contains the protection logic unit encoding. The
lower section is always driven by the PMC100_AR.ARR field and the upper section is driven by the
PMC100_AR.ARD and PMC100_AR.ARC fields, depending on whether the MBIST transaction is read
or write and the microcode instruction PSEL field value. The PMC100_AR.ARD and
PMC100_AR.ARC fields are two bits wide and these drive MBISTOLARRAY[MARWIDTH-1:
MARWIDTH-2] depending on the microcode value for the current instruction.

The protection logic section of the MBISTOLARRAY value might be one or two bits wide:
• If it is one bit wide, then the lower bit of the PMC100_AR.ARD and PMC100_AR.ARC fields must

be programmed to the MSB of the MBISTOLARRAY and the upper bit of the PMC100_AR.ARD
and PMC100_AR.ARC fields must be programmed to select the required protection logic unit within
the target array.

• If it is two bits wide, then both bits of the PMC100_AR.ARD and PMC100_AR.ARC fields must be
programmed to select the required protection logic unit within the target array. In this case,
PMC100_AR.ARD is normally set to 0b00.

Usage constraints
All fields can only be modified by software. This register must be initialized by software before
the PMC100_CTRL.PEEN bit is set to 1. For more information, see 4.5 Main control register,
PMC100_CTRL on page 4-40

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_AR bit assignments.

31 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved ARR

ARD
ARG
ARE
ARS
ARC

Figure 4-6 PMC100_AR bit assignments

The following table describes the PMC100_AR bit assignments.

4 PMC-100 programmers model
4.8 Array register, PMC100_AR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-56
Non-Confidential

Table 4-12 PMC100_AR bit assignments

Field Name Type Reset
value

Description

[31:18] Reserved UNK/
SBZP

- Reserved, RES0

[17:16] ARC RW UNKNOWN Protection logic array field for ECC correction data accesses.
MBISTOLARRAY[MARWIDTH-1:MARWIDTH-2] signal value, for reads when
PMC100_P.PSEL is 11. For more information, see E.3 MBIST master interface signals
on page Appx-E-138.

[15:14] ARS RW UNKNOWN Protection logic array field for Error Correcting Code (ECC) syndrome or parity accesses.
MBISTOLARRAY[MARWIDTH-1: MARWIDTH-2] signal value, for reads when
PMC100_P.PSEL is 0b10. For more information, see E.3 MBIST master interface signals
on page Appx-E-138.

[13:12] ARE RW UNKNOWN Protection logic array field for ECC or parity error check accesses.
MBISTOLARRAY[MARWIDTH-1: MARWIDTH-2] signal value, for reads when
PMC100_P.PSEL is 0b01. For more information, see E.3 MBIST master interface signals
on page Appx-E-138.

[11:10] ARG RW UNKNOWN Protection logic array field for ECC or parity generation logic accesses.
MBISTOLARRAY[MARWIDTH-1: MARWIDTH-2] signal value, for writes when
PMC100_P.PSEL is 0b01. For more information, see E.3 MBIST master interface signals
on page Appx-E-138.

[9:8] ARD RW UNKNOWN Protection logic array field for direct SRAM accesses.
MBISTOLARRAY[MARWIDTH-1: MARWIDTH-2] signal value, for reads and writes
when PMC100_P.PSEL is 0b00. For more information, see E.3 MBIST master interface
signals on page Appx-E-138.

 Note

If the MBISTOLARRAY protection logic unit encoding section is two bits wide, then this
field is usually set to 0b00.

[7:0] ARR RW UNKNOWN MBISTOLARRAY[MARWIDTH-3:0] signal value. This contains the array memory
encoding and sub-array encoding fields of the array value.

 Note

• Unused field bits are reserved and must be treated as UNK/SBZP
• ARR width is set by the MARWIDTH parameter-2. For more information, see 3.2 RTL

parameters on page 3-21

The following table shows the PSEL and MBISTOLARRAY values.

Table 4-13 PSEL and MBISTOLARRAY values

PSEL Access type MBISTOLARRAY Description

Bits Value

0b00 Read and write [MARWIDTH-1:MAR
WIDTH-2]

ARD Direct SRAM access,
protection logic
bypassed.

[MARWIDTH-3:0] ARR

4 PMC-100 programmers model
4.8 Array register, PMC100_AR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-57
Non-Confidential

Table 4-13 PSEL and MBISTOLARRAY values (continued)

PSEL Access type MBISTOLARRAY Description

Bits Value

0b01 Write [MARWIDTH-1:MAR
WIDTH-2]

ARG ECC or parity generation
logic path

[MARWIDTH-3:0] ARR

0b01 Read [MARWIDTH-1:MAR
WIDTH-2]

ARE ECC or parity error
check result.

[MARWIDTH-3:0] ARR

0b10 Read [MARWIDTH-1:MAR
WIDTH-2]

ARS ECC syndrome or parity
value

[MARWIDTH-3:0] ARR

0b11 Read [MARWIDTH-1:MAR
WIDTH-2]

ARC ECC correction data
value

[MARWIDTH-3:0] ARR

0b10, 0b11 Write [MARWIDTH-1:MAR
WIDTH-2]

ARD Reserved

[MARWIDTH-3:0] ARR

4 PMC-100 programmers model
4.8 Array register, PMC100_AR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-58
Non-Confidential

4.9 Byte enable register, PMC100_BER
PMC100_BER sets the value of the MBISTOLBE signal.

Usage constraints
All fields can only be modified by software. This register must be initialized by software before
the PMC100_CTRL.PEEN bit is set to 1. For more information, see 4.5 Main control register,
PMC100_CTRL on page 4-40

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_BER bit assignments.

31 0

BE

Figure 4-7 PMC100_BER bit assignments

The following table describes the PMC100_BER bit assignments.

Table 4-14 PMC100_BER bit assignments

Field Name Type Reset value Description

[31:0] BE RW UNKNOWN MBISTOLBE signal value. For more information, see E.3 MBIST master interface signals
on page Appx-E-138

 Note

• Unused bit fields are reserved and must be treated as UNK/SBZP.
• BE width is set byt the MBWIDTH parameter. For more information, see 3.2 RTL parameters

on page 3-21

4 PMC-100 programmers model
4.9 Byte enable register, PMC100_BER

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-59
Non-Confidential

4.10 Program counter register, PMC100_PCR
PMC100_PCR contains the program counter field.

Usage constraints
All fields can only be modified by software. This register must be initialized by software before
the PMC100_CTRL.PEEN bit is set to 1. For more information, see 4.5 Main control register,
PMC100_CTRL on page 4-40

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_PCR bit assignments.

31 5 4 0

Reserved PC

Figure 4-8 PMC100_PCR bit assignments

The following table describes the PMC100_PCR bit assignments.

Table 4-15 PMC100_PCR bit assignments

Field Name Type Reset
value

Description

[31:5] Reserved UNK/
SBZP

- Reserved, RES0

[4:0] PC RW UNKNOWN Program counter. This field points to the program register that is executed. PC is
automatically incremented when each instruction is executed. It is automatically loaded
with the LPSR value when a loop operation is executed and its end condition is not true.
For more information, see 3.4 Loop operations on page 3-24

 Note

• Unused field bits are reserved and must be treated as UNK/SBZP
• PC width is set by the log2PROGSIZE. For more information, see 3.2 RTL

parameters on page 3-21

4 PMC-100 programmers model
4.10 Program counter register, PMC100_PCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-60
Non-Confidential

4.11 Read pipeline register, PMC100_RPR
If a memory fault or a protection logic fault is detected and the PMC100_CTRL.STOPF bit is 1, then
PMC100_RPR allows software to determine which read instruction the fault relates to and therefore the
memory address containing the fault.

Usage constraints
All fields can be modified by software.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_RPR bit assignments.

31 0

R

Figure 4-9 PMC100_RPR bit assignments

The following table describes the PMC100_RPR bit assignments.

4 PMC-100 programmers model
4.11 Read pipeline register, PMC100_RPR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-61
Non-Confidential

Table 4-16 PMC100_RPR bit assignments

Field Name Type Reset
value

Description

[31:0] R RO UNKNOWN This is the current value of the read pipeline register in the execution unit.

When a read is executed R[0] is set to 1 and R is shifted left every clock cycle.

When a data comparison fails the corresponding read has reached R[PMC100_MCR.PD] or
R[PMC100_MCR.PDP].

Only R[PMC100_MCR.PD:0] or R[PMC100_MCR.PDP:0] bits are valid, depending on the
read operations in the pipeline, and the unused MSBs are set to 0.

To determine which read instruction failed:

1. Count the number of bits set in the R field.
2. Count back this number of read instructions, from the instruction pointed to by the

PMC100_PCR.PC.
Using the example microcode in A.3.1 Microcode on page Appx-A-107, if the test stopped and
PMC100_PCR.PC = 8 (row 9) and R had 2 bits set, then the failing read was instruction 4 (row
5). The failing address can be determined from the PMC100_CADDR.CA,
PMC100_RADDR.RA, PMC100_CTRL.ADDRID, PMC100_CTRL.ADDRCD and Px.UA
values of the instructions executed since the failing read. See 4.15.1 Address output value,
PMC100_CTRL.BAMEN=0 on page 4-68 and 4.15.2 Address output value,
PMC100_CTRL.BAMEN=1 on page 4-68 for more information on how
MBISTOLOUTADDR is calculated.

 Note

• Unused field bits are reserved and must be treated as UNK/WI
• R width is 2PDWIDTH. For more information, see 3.2 RTL parameters on page 3-21

4 PMC-100 programmers model
4.11 Read pipeline register, PMC100_RPR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-62
Non-Confidential

4.12 Low address register, PMC100_LOWADDR
PMC100_LOWADDR contains the low or minimum address for the memory array under test.

Usage constraints

This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1. All
fields can be modified by software.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_LOWADDR bit assignments.

31 0

LA

Figure 4-10 PMC100_LOWADDR bit assignments

The following table describes the PMC100_LOWADDR bit assignments.

Table 4-17 PMC100_LOWADDR bit assignments

Field Name Type Reset
value

Description

[31:0] LA RW UNKNOWN Low address.

It is used by LOOP operations to check if the end of the loop has been reached. When the
current address update mode is increment, the current address is compared against
PMC100_LOWADDR.

For more information, see 4.15.1 Address output value, PMC100_CTRL.BAMEN=0
on page 4-68 and 4.15.2 Address output value, PMC100_CTRL.BAMEN=1 on page 4-68.

 Note

• Unused field bits are reserved and must be treated as UNK/WISBZP
• The width of LA is set by the MAWIDTH parameter, see 3.2 RTL parameters on page 3-21.

The MSBs are unused depending on this parameter.

4 PMC-100 programmers model
4.12 Low address register, PMC100_LOWADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-63
Non-Confidential

4.13 High address register, PMC100_HIGHADDR
PMC100_HIGHADDR contains the high or maximum address for the memory array under test.

Usage constraints
This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1. All
fields can be modified by software.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_HIGHADDR bit assignments.

31 0

HA

Figure 4-11 PMC100_HIGHADDR bit assignments

The following table describes the PMC100_HIGHADDR bit assignments.

Table 4-18 PMC100_HIGHADDR bit assignments

Field Name Type Reset
value

Description

[31:0] HA RW UNKNOWN High address.

It is used by LOOP operations to check if the end of the loop has been reached. When the
current address update mode is increment, the current address is compared against
PMC100_HIGHADDR.

For more information, see 4.15.1 Address output value, PMC100_CTRL.BAMEN=0
on page 4-68 and 4.15.2 Address output value, PMC100_CTRL.BAMEN=1 on page 4-68.

 Note

• Unused field bits are reserved and must be treated as UNK/WISBZP
• The width of HA is set by the MAWIDTH parameter, see 3.2 RTL parameters on page 3-21.

The MSBs are unused depending on this parameter.

4 PMC-100 programmers model
4.13 High address register, PMC100_HIGHADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-64
Non-Confidential

4.14 Column address register, PMC100_CADDR
PMC100_CADDR contains column address register field.

Usage constraints
This register can only be modified by software and is automatically updated. This register must
be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see 4.5 Main control
register, PMC100_CTRL on page 4-40

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_CADDR bit assignments.

31 5 4 0

BNK_END CA

15

Reserved

1619

Reserved

20

Figure 4-12 PMC100_CADDR bit assignments

The following table describes the PMC100_CADDR bit assignments.

Table 4-19 PMC100_CADDR bit assignments

Field Name Type Reset
value

Description

[31:20] Reserved - - Reserved, RES0

[19:16] BNK_END RW UNKNOWN Bank end. This field contains the value that is compared against the CA value to
determine when a LOOP-Last loop ends when PMC100_CTRL.BAMEN is 1, See
section 3.4 Loop operations on page 3-24 for more information.

 Note

The loop ends when CA={BNK_END, 1'b0}

[15:5] - UNK/
SBZP

UNKNOWN Reserved, RES0

[4:0] CA RW UNKNOWN Column address. This field contains the current value of the column bits of the
memory address value. It is updated when an instruction is executed with the UA bit
set to 1, see 4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77,
depending on the values of the PMC100_CTRL register ADDRID and ADDRCD bits,
see 4.5 Main control register, PMC100_CTRL on page 4-40. If PMC100_MCR.CCW
is 0 then PMC100_CADDR.CA is not used in the array address and is not
automatically updated. If PMC100_MCR.CCW is > 0 then only
CA[PMC100_MCR.CCW-1:0] bits are used and the remaining MSBs are cleared to 0
when an instruction is executed with the UA bit set to 1. For more information on
calculating the output address, see For more information, see 4.15.1 Address output
value, PMC100_CTRL.BAMEN=0 on page 4-68 and 4.15.2 Address output value,
PMC100_CTRL.BAMEN=1 on page 4-68.

4 PMC-100 programmers model
4.14 Column address register, PMC100_CADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-65
Non-Confidential

 Note

1. When software writes to this register only bits CA[PMC100_MCR.CCW-1:0] are updated and the
remaining MSBs are cleared to 0. If PMC100_MCR.CCW is 0 then all CA bits will be automatically
cleared to 0 when software writes to this register.

2. When PMC100_CTRL.BAMEN is 1 and PMC100_MCR.CCW>1, CA[PMC100_MCR.CCW-1:1] is
used as the MSBs or LSBs of the MBIST address, depending on the PMC100_CTRL.BAM value.

3. When an instruction is executed with a LOOP-Last OP and PMC100_CTRL.BAMEN is 1 and
PMC100_P.UA is 1, CA is decremented by 1 if it is not equal to {BNK_END, 1'b0}.

4. When an instruction is executed with a PUP OP and PMC100_CTRL.BAMEN is 1 and
PMC100_P.UA is 1, the CA value is not changed. Therefore, in this case PMC100_P.UA is ignored.

4 PMC-100 programmers model
4.14 Column address register, PMC100_CADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-66
Non-Confidential

4.15 Row address register, PMC100_RADDR
PMC100_RADDR contains row address register field.

Usage constraints
This register can be modified by software and is automatically updated. This register must be
initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see 4.5 Main control
register, PMC100_CTRL on page 4-40. Arm recommends that the PMC100_MCR.RCW field is
set correctly for the memory under test before writing to this register.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_RADDR bit assignments.

31 0

RA

Figure 4-13 PMC100_RADDR bit assignments

The following table describes the PMC100_RADDR bit assignments.

Table 4-20 PMC100_RADDR bit assignments

Field Name Type Reset
value

Description

[31:0] RA RW UNKNOWN Row address. This field contains the current value of the row bits of the memory address value.
It is updated when an instruction is executed with the UA bit set to 1, see 4.22 Program
registers, PMC100_P0-PMC100_P31 on page 4-77. depending on the values of the
PMC100_CTRL register ADDRID and ADDRCD bits 4.5 Main control register,
PMC100_CTRL on page 4-40. Only the RA[PMC100_MCR.RCW+1:0] bits are used and the
remaining MSBs are cleared to 0 when an instruction is executed with the UA bit set to 1. For
more information, see 4.15.1 Address output value, PMC100_CTRL.BAMEN=0 on page 4-68
and 4.15.2 Address output value, PMC100_CTRL.BAMEN=1 on page 4-68.

 Note

• When software writes to this register only bits RA[PMC100_MCR.RCW+1:0] are updated
and the remaining MSBs are cleared to 0.

• When a PUP OP is executed and PMC100_P.UA is 1, then RA is set to ~RA, see section
Program registers, PMC100_P0-PMC100_P31, See section 4.22 Program registers,
PMC100_P0-PMC100_P31 on page 4-77. This takes priority over the normal
incrementing or decrementing behavior of RA when PMC100_P.UA is 1.

• When an instruction is executed with a LOOP-Last OP and PMC100_CTRL.BAMEN is 1
and PMC100_P.UA is 1, RA is not changed.

• Unused field bits are reserved and must be treated as UNK/SBZP.
• The width of field RA is set by the MAWIDTH parameter, see 3.2 RTL parameters

on page 3-21

4 PMC-100 programmers model
4.15 Row address register, PMC100_RADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-67
Non-Confidential

4.15.1 Address output value, PMC100_CTRL.BAMEN=0

If PMC100_CTRL.BAMEN is 0 the MBISTOLADDR output value is either the current or the next
address depending on the value AO bit in the current instruction. The PMC100_RADDR.RA and
PMC100_CADDR.CA register fields are combined to form the address. The next value of these registers
is determined by the PMC100_CTRL.ADDRID and CTL.ADDRCD bits.

For more information, see:
• 4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77
• 4.5 Main control register, PMC100_CTRL on page 4-40

The following formula, using Verilog syntax, shows how the PMC100_RADDR.RA and
PMC100_CADDR.CA register fields are used to generate the address. The current address uses the
current values of the PMC100_RADDR.RA and PMC100_CADDR.CA register fields and the next
address uses the next values of these registers:

if (PMC100_MCR.CCW > 0)
address = {{MAWIDTH-aw{1’b0}}, PMC100_RADDR.RA[PMC100_MCR.RCW+1:0],
PMC100_CADDR.CA[PMC100_MCR.CCW-1:0]}
else
address = {{MAWIDTH-aw{1’b0}}, PMC100_RADDR.RA[PMC100_MCR.RCW+1:0]}

Where aw = PMC100_MCR.RCW+PMC100_MCR.CCW+2.

To calculate the current address, software must concatenate the PMC100_RADDR.RA and
PMC100_CADDR.CA register fields together in the same way as shown.

4.15.2 Address output value, PMC100_CTRL.BAMEN=1

This mode is used in memory protection logic testing. If PMC100_CTRL.BAMEN is 1 the
PMC100_CADDR.CA value is used as the address MSBs or LSBs depending on the
PMC100_CTRL.BAM[1:0] value. PMC100_CADDR.CA[0] and
PMC100_CADDR.CA[PMC100_MCR.CCW-1:1] are used as the inner and outer loop counting
mechanism in the protection logic test algorithms respectively.
PMC100_CADDR.CA[PMC100_MCR.CCW-1:1] is also used to allow each memory bank in an array to
be selected in turn.

For more information, see:
• Appendix C On-line MBIST Memory Protection Logic Test Algorithms on page Appx-C-114
• 4.22 Program registers, PMC100_P0-PMC100_P31 on page 4-77
• 4.5 Main control register, PMC100_CTRL on page 4-40

 Note

When PMC100_CTRL.BAMEN is 1:
1. PMC100_MCR.CCW must be set to the width of the memory array bank select field in the

address+1. Hence, SW must program the PMC100_MCR.CCW field a value of 1 or greater.
2. PMC100_CADDR.CA must be set to (Number of banks*2)-1. Hence, SW must program the

PMC100_CADDR.CA field to an odd number that is 1 or greater.

When PMC100_CTRL.BAM[1:0] is b00 the address output value is:

if (PMC100_MCR.CCW > 1)
 address = {{MAWIDTH-aw{1’b0}}, PMC100_CADDR.CA[PMC100_MCR.CCW-1:1],
PMC100_RADDR.RA[PMC100_MCR.RCW+1:0]}
else
 address = {{MAWIDTH-aw{1’b0}}, PMC100_RADDR.RA[PMC100_MCR.RCW+1:0]}

Where aw = PMC100_MCR.RCW+PMC100_MCR.CCW+1

When PMC100_CTRL.BAM[1:0] is b01 the address output value is:

if (PMC100_MCR.CCW > 1)
 address = {{MAWIDTH-aw{1’b0}}, PMC100_RADDR.RA[PMC100_MCR.RCW+1:0],
PMC100_CADDR.CA[PMC100_MCR.CCW-1:1]}

4 PMC-100 programmers model
4.15 Row address register, PMC100_RADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-68
Non-Confidential

else
 address = {{MAWIDTH-aw{1’b0}}, PMC100_RADDR.RA[PMC100_MCR.RCW+1:0]}

Where aw = PMC100_MCR.RCW+PMC100_MCR.CCW+1

When PMC100_CTRL.BAM[1:0] is b10 the address output value is:

if (PMC100_MCR.CCW > 1)
 address = {{MAWIDTH-aw{1’b0}}, PMC100_CADDR.CA[PMC100_MCR.CCW-1:1],
PMC100_RADDR.RA[PMC100_MCR.RCW+1:0], PMC100_CADDR.CA[PMC100_MCR.CCW-1:1]}
else
 address = {{MAWIDTH-aw{1’b0}}, PMC100_RADDR.RA[PMC100_MCR.RCW+1:0]}

Where aw = PMC100_MCR.RCW+(2*PMC100_MCR.CCW)

4 PMC-100 programmers model
4.15 Row address register, PMC100_RADDR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-69
Non-Confidential

4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-PMC100_Y7
These are two independent data registers, PMC100_X and PMC100_Y, and their descriptions are the
same. The PMC100_X and PMC100_Y register widths are configured to the data width of the MBIST
interface. From a software perspective they are split into several 32-bit wide registers, PMC100_X0-
PMC100_X7 and PMC100_Y0-PMC100_Y7 as shown in the following table.

Usage constraints
These registers can be modified by software and are automatically updated. These registers must
be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see 4.5 Main control
register, PMC100_CTRL on page 4-40. The total width of the PMC100_X and PMC100_Y
registers is set by the MDWIDTH parameter, see 3.2 RTL parameters on page 3-21. Unused register
bits are reserved and must be treated as UNK/SBZP. The number of 32-bit locations occupied by
each register is int(MDWIDTH/32)+1.

Configuration
These registers are always implemented.

Attributes
These are 32-bit registers.

The following figure shows the PMC100_X and PMC100_Y register bit assignments.

31 0

PMC100_X and PMC100_Y

Figure 4-14 PMC100_X and PMC100_Y register bit assignments

The following table describes the PMC100_X and PMC100_Y register bit assignments.

Table 4-21 PMC100_X and PMC100_Y register bit assignments

Field Name Type Reset value Description

[31:0] X0, Y0 RW UNKNOWN Bits [31:0]

[31:0] X1, Y1 RW UNKNOWN Bits [63:32]

[31:0] X2, Y2 RW UNKNOWN Bits [95:64]

[31:0] X3, Y3 RW UNKNOWN Bits [127:96]

[31:0] X4, Y4 RW UNKNOWN Bits [159:128]

[31:0] X5, Y5 RW UNKNOWN Bits [191:160]

[31:0] X6, Y6 RW UNKNOWN Bits [223:192]

[31:0] X7, Y7 RW UNKNOWN Bits [255:224]

4 PMC-100 programmers model
4.16 Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-PMC100_Y7

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-70
Non-Confidential

4.17 Auxiliary input register, PMC100_AIR
This register stores the value of the AUXIN signal when MBISTOLACK is asserted. The AUXIN
signal is general purpose and could be used, for example, to record the value of the on-line MBIST error
signal provided by some processors.

Usage constraints

The bits are sticky and so if a bit is set in a clock cycle it will remain set until cleared by
software.

This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see
4.5 Main control register, PMC100_CTRL on page 4-40.

The function of the PMC100_AIR register will depend on PMC-100 integration with the IP
core. Therefore, its function will be described in the IP core documentation. If it is not
mentioned, then it can be assumed that the AUXIN signal is not used in the integration. In this
case, Arm recommends that software initialize the PMC100_AIR register to 0.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_AIR bit assignments.

31 0

AI

Figure 4-15 PMC100_AIR bit assignments

The following table describes the PMC100_AIR bit assignments.

Table 4-22 PMC100_AIR bit assignments

Field Name Type Reset value Description

[31:0] AI1,2 RW UNKNOWN Sticky AUXIN signal value. Function is IP core specific, consult IP core documentation for
details.

 Note

• Unused field bits are reserved and must be treated as UNK/SBZP.
• PMC100_AIR width is set by the AIWIDTH parameter, see 3.2 RTL parameters

on page 3-21

4 PMC-100 programmers model
4.17 Auxiliary input register, PMC100_AIR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-71
Non-Confidential

4.18 Auxiliary input register, PMC100_AOR
This register controls the value of the AUXOUT signal.

The AUXOUT signal is general purpose and could be used, for example, to control external logic
associated with on-line MBIST testing, such as enabling TC signal pulse generation or the frequency of
these pulses.

Usage constraints
This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see
4.5 Main control register, PMC100_CTRL on page 4-40.

The function of the PMC100_AOR register will depend on PMC-100 integration with the IP
core. Therefore, its function will be described in the IP core documentation. If it is not
mentioned, then it can be assumed that the AUXOUT signal is not used in the integration. In
this case, Arm recommends that SW initialize the PMC100_AOR register to 0.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_AOR bit assignments.

31 0

AO

Figure 4-16 PMC100_AOR bit assignments

The following table describes the PMC100_AOR bit assignments.

Table 4-23 PMC100_AOR bit assignments

Field Name Type Reset value Description

[31:0] AO1,2 RW UNKNOWN AUXOUT signal value. Function is IP core specific, consult IP core documentation for details.
 Note

• Unused field bits are reserved and must be treated as UNK/SBZP.
• AO width is set by the AOWIDTH parameter, see 3.2 RTL parameters on page 3-21

4 PMC-100 programmers model
4.18 Auxiliary input register, PMC100_AOR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-72
Non-Confidential

4.19 MBISTOLERR input register, PMC100_MER
This register stores the value of the MBISTOLERR signal when MBISTOLACK is asserted.

Usage constraints

The bits are sticky and so if a bit is set in a clock cycle it will remain set until cleared by
software.

This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see
4.5 Main control register, PMC100_CTRL on page 4-40.

Configuration
This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_MER bit assignments.

31 034

IMPDEF

2 1

MPOWE
PROTE

FAE
ARRE

Figure 4-17 PMC100_MER bit assignments

The following table describes the PMC100_MER bit assignments.

Table 4-24 PMC100_MER bit assignments

Field Name Type Reset value Description

[31:4] IMPDEF RW UNKNOWN Implementation defined error register bits. Width of this field is set by the MERWIDTH
parameter -4, see 3.2 RTL parameters on page 3-21. See your IP core documentation for
descriptions of these bits.

 Note

Unused field bits are reserved and must be treated as UNK/SBZP.

[3] MPOWE RW UNKNOWN Indicates that the memory selected by MBISTOLARRAY is powered down and so cannot
be tested.

[2] PROTE RW UNKNOWN Indicates that the protection logic selected by the combination of MBISTOLPSEL and
MBISTOLARRAY is not implemented in the configuration of the IP core.

[1] FAE RW UNKNOWN Indicates that a functional access attempted to a memory currently selected for testing by
MBISTOLARRAY.

[0] ARRE RW UNKNOWN Indicates that the memory selected by MBISTOLARRAY is not implemented in the
configuration of the IP core.

4 PMC-100 programmers model
4.19 MBISTOLERR input register, PMC100_MER

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-73
Non-Confidential

4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7
This register holds a value that is used to mask SRAM data values and store the fault bitmap when a test
fails. It can also be used as a general-purpose data register in read and write operations in a similar way
to the PMC100_X and PMC100_Y registers.

This is for use in address protection logic test algorithms, see C.1 Address Protection Logic Latent Fault
Detection algorithm on page Appx-C-117

When PMC100_CTRL.DMDIS is 0b0, the PMC100_DM register has the following behavior:
• It only masks the source data and memory read data values before they are compared against each

other during compare operations. It does not mask read data that is stored in a register. When a
PMC100_DM bit is 0 the corresponding data bit is masked to 0 and when a PMC100_DM bit is 1 the
corresponding data bit is not masked.

• When a read check fails and the PMC100_CTRL.STOPF bit is 1, the PMC100_DM register is loaded
with a 1 in each bit position that was not correct.

PMC100_DM register masking and fault bitmap behavior do not apply to MBIST reads performed by
PCHKCEF, PCHKUEF and PCHKCE OPs.

When PMC100_CTRL.DMDIS is 0b1, the PMC100_DM register the masking and fault bitmap features
are disabled.

The PMC100_DM register width is configured to the data width of the MBIST interface. From a
software perspective the PMC100_DM register is split into several 32-bit wide registers,
PMC100_DM0-PMC100_DM7.

Usage constraints
These registers can be modified by software and are automatically updated. These registers must
be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see 4.5 Main control
register, PMC100_CTRL on page 4-40

The total width of this register is set by the MDWIDTH parameter, see 3.2 RTL parameters
on page 3-21.

Unused register bits are reserved and must be treated as UNK/SBZP.

The number of 32-bit locations occupied by this register is int(MDWIDTH/32)+1.

Configuration
These registers are always implemented.

Attributes
These are 32-bit registers.

The following figure shows the PMC100_DM0-PMC100_DM7 register bit assignments.

31 0

PMC100_DM0-7

Figure 4-18 PMC100_DM0-PMC100_DM7 register bit assignments

The following table describes the PMC100_DM0-PMC100_DM7 register bit assignments.

4 PMC-100 programmers model
4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-74
Non-Confidential

Table 4-25 PMC100_DM0-PMC100_DM7 register bit assignments

Field Name Type Reset value Description

[31:0] DM0 RW UNKNOWN Bits [31:0]

[31:0] DM1 RW UNKNOWN Bits [63:32]

[31:0] DM2 RW UNKNOWN Bits [95:64]

[31:0] DM3 RW UNKNOWN Bits [127:96]

[31:0] DM4 RW UNKNOWN Bits [159:128]

[31:0] DM5 RW UNKNOWN Bits [191:160]

[31:0] DM6 RW UNKNOWN Bits [223:192]

[31:0] DM7 RW UNKNOWN Bits [255:224]

4 PMC-100 programmers model
4.20 Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-75
Non-Confidential

4.21 XOR mask registers, PMC100_XM0-PMC100_XM7
This register holds a value that is used to XOR mask data and address values.

This register is used with the XORD, XORA and SXM operations, see 4.22 Program registers,
PMC100_P0-PMC100_P31 on page 4-77. It is used in protection logic test algorithms.

The PMC100_XM register width is configured to the data width of the MBIST interface. From a
software perspective the PMC100_XM register is split into eight 32-bit wide registers, PMC100_XM0-
PMC100_XM7, as shown in the following table.

Usage constraints
These registers can be modified by software and are automatically updated by the SXM
operation. These registers must be initialized by software before the PMC100_CTRL.PEEN bit
is set to 1, see 4.5 Main control register, PMC100_CTRL on page 4-40

The total width of this register is set by the MDWIDTH parameter, see 3.2 RTL parameters
on page 3-21

Unused register bits are reserved and must be treated as UNK/SBZP.

The number of 32-bit locations occupied by this register is int(MDWIDTH/32)+1.

Configuration
These registers are always implemented.

Attributes
These are 32-bit registers.

The following figure shows the PMC100_XM0-PMC100_XM7 register bit assignments.

31 0

PMC100_XM0-7

Figure 4-19 PMC100_XM0-PMC100_XM7 register bit assignments

The following table describes the PMC100_XM0-PMC100_XM7 register bit assignments.

Table 4-26 PMC100_XM0-PMC100_XM7 register bit assignments

Field Name Type Reset value Description

[31:0] XM0 RW UNKNOWN Bits [31:0]

[31:0] XM1 RW UNKNOWN Bits [63:32]

[31:0] XM2 RW UNKNOWN Bits [95:64]

[31:0] XM3 RW UNKNOWN Bits [127:96]

[31:0] XM4 RW UNKNOWN Bits [159:128]

[31:0] XM5 RW UNKNOWN Bits [191:160]

[31:0] XM6 RW UNKNOWN Bits [223:192]

[31:0] XM7 RW UNKNOWN Bits [255:224]

4 PMC-100 programmers model
4.21 XOR mask registers, PMC100_XM0-PMC100_XM7

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-76
Non-Confidential

4.22 Program registers, PMC100_P0-PMC100_P31
The PMC-100 includes up to 32 program registers which hold microcode instructions.

These instructions constitute the algorithm that is executed to generate the required MBIST transactions
that test the memory array or memory protection logic that the PMC100_AR register selects. For more
information, see 4.8 Array register, PMC100_AR on page 4-56

Usage constraints
These registers must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1,
see 4.5 Main control register, PMC100_CTRL on page 4-40

Unused register bits are reserved and must be treated as UNK/SBZP.

Configuration
The number of registers implemented is set by the PROGSIZE parameter. For more information,
see 3.2 RTL parameters on page 3-21

Attributes
These registers are 32-bits.

The following figure shows the PMC100_P0-PMC100_P31 register bit assignments.

31 13 12 11 10 9 8 7 6 5 4 3 0

Reserved

PSEL
AO
UA

DPOL
DREG
TRANS

OP

Figure 4-20 PMC100_P0-PMC100_P31 register bit assignments

The following table describes the PMC100_P0-PMC100_P31 register bit assignments.

Table 4-27 PMC100_P0-PMC100_P31 register bit assignments

Field Name Type Reset
value

Description

[31:13] Reserved UNK/
SBZP

- Reserved, RES0

[12:11] PSEL RW UNKNOWN This is the output value of the MBISTOLPSEL signal. For more information, see
E.3 MBIST master interface signals on page Appx-E-138. This signal allows access to the
memory protection logic values in the IP core. For more information on PSEL encoding,
see 4.22.1 PSEL encoding values on page 4-80.

4 PMC-100 programmers model
4.22 Program registers, PMC100_P0-PMC100_P31

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-77
Non-Confidential

Table 4-27 PMC100_P0-PMC100_P31 register bit assignments (continued)

Field Name Type Reset
value

Description

[10] AO RW UNKNOWN Address output. This bit determines which address value is output on the MBISTOLADDR
signal. The encoding is as follows:

0 Current address

1 Next address

The address is determined by the PMC100_RADDR.RA and PMC100_CADDR.CA
registers. For more information see, 4.14 Column address register, PMC100_CADDR
on page 4-65 and 4.15 Row address register, PMC100_RADDR on page 4-67.

 Note

When the PMC100_P operation is XORA, AO determines the value of A that is used in the
XOR operation with the PMC100_XM register.

[9] UA RW UNKNOWN Update address. this bit causes the PMC100_CADDR.CA and PMC100_RADDR.RA
address registers to be updated with the next value according to the values of
PMC100_CTRL register ADDRID and ADDRCD bits. For more information, see 4.5 Main
control register, PMC100_CTRL on page 4-40. The encoding is as follows:

0b0 Hold address. Do not update the address registers.

0b1 Update address. Load the address registers with the next address value.

 Note

• If PMC100_CTRL.BAMEN is 1, and LOOP-Last operation is executed the behavior is
changed to decrement PMC100_CADDR.CA when UA is 1. In this case,
PMC100_RADDR.RA does not change and PMC100_CADDR.CA is not decremented
if it is 0.

• If PMC100_CTRL.BAMEN is 1, then PMC100_CADDR.CA is only updated when UA
is 1 and a LOOP-Last operation is executed.

• If UA is 1 and a PUP operation is executed, then PMC100_RADDR.RA is set to
~PMC100_RADDR.RA This takes priority over the normal PMC100_RADDR.RA
increment or decrement behavior when UA is1.

4 PMC-100 programmers model
4.22 Program registers, PMC100_P0-PMC100_P31

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-78
Non-Confidential

Table 4-27 PMC100_P0-PMC100_P31 register bit assignments (continued)

Field Name Type Reset
value

Description

[8] DPOL RW UNKNOWN Data polarity. This bit controls whether the data value is inverted or not. For read
transactions it is used to determine if the non-inverted or inverted value of the specified
DREG is checked against the data returned. For write transactions, it is used to determine if
the non-inverted or inverted value of the specified DREG is written to the memory array.
The encoding of this bit is as follows:

0b0 Use non-inverted DREG data value.

0b1 Use inverted DREG data value

 Note

• When the TRANS field is 0b11, DPOL controls the read data and the write data is
controlled by the inverse DPOL value respectively.

• For the other TRANS values the read and write data is controlled by the unmodified
DPOL value.

• DPOL is ignored for read instructions that save data in the PMC100_X, PMC100_Y or
PMC100_DM register.

• DPOL is also used by the PCHKCEF and PCHKUEF operations, see OP field
description.

• The DPOL value is ignored and the PMC100_CTRL.ADDRID value is used instead
when PMC100_CTRL.BAMEN is 1 and PMC100_P.OP is either b0000 (CHKR/
NONE) or 0b1110 (XORD) and PMC100_P.DREG is 0b11 (FP).

• The PCHKCEF and PCHKUCEF operations use DPOL to select different
MBISOLOUTDATA bits to be checked.

[7:6] DREG RW UNKNOWN Data register used by the instruction. This selects either the PMC100_X data register,
PMC100_Y data register, PMC100_DM, or the fixed patter value, FP. The encoding is as
follows:

0b00 PMC100_X

0b01 PMC100_Y

0b10 PMC100_DM

0b11 FP

 Note

• For more information on data register, see 4.16 Data registers, PMC100_X0-
PMC100_X7 and PMC100_Y0-PMC100_Y7 on page 4-70.

• For more information on the PMC100_DM register, see 4.20 Data mask, fault bitmap,
and data registers, PMC100_DM0-PMC100_DM7 on page 4-74

• For more information on the PMC100_CTRL.FP field, see 4.5 Main control register,
PMC100_CTRL on page 4-40

• The PMC100_DM register is used as a data register in address protection logic test
algorithms that do not require data masking. In this case the data masking function must
be disabled by setting PMC100_CTRL.DMDIS to 0b1.

• It is not expected to be useful to set DREG to PMC100_DM when
PMC100_CTRL.DMDIS to 0b0.

4 PMC-100 programmers model
4.22 Program registers, PMC100_P0-PMC100_P31

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-79
Non-Confidential

Table 4-27 PMC100_P0-PMC100_P31 register bit assignments (continued)

Field Name Type Reset
value

Description

[5:4] TRANS RW UNKNOWN MBIST transaction generated. The encoding of this field is as follows:

00 None. No transaction generated

01 Read

10 Write

11 Read and write

 Note

• Encoding 0b11 is only supported for two port SRAMs (1R1W). In this case the DPOL
field controls the read data and the write data in controlled by the inverse DPOL value.

• Encoding 0b11 must only be used with DREG set to 0b11 (FP). The behavior is
UNPREDICTABLE for other DREG values.

• Encoding 0b11 must only be used with PSEL set to 0b00.
• Encoding 0b11 must only be used when PMC100_CTRL.BAMEN is 0.

[3:0] OP RW UNKNOWN Operation field. This field specifies the operation that is performed by an instruction in
addition to the MBIST transaction. For more information on encoding and function of each
code, see 4.22.2 OP encoding values on page 4-80.

4.22.1 PSEL encoding values

The PSEL encoding values can be:

Table 4-28 PSEL encoding values

0b00, and access type is a read or write Direct SRAM access, protection logic bypassed

0b01, and access type is a write ECC/parity generation logic path selected.

Software must program the PMC100_BER register to all 1s when writing through the ECC/
parity logic.

0b01, and access type is a read ECC/parity error check result selected.

0b10, and access type is a read ECC syndrome/parity value selected.

0b11, and access type is a read ECC correction data value selected.

Reserved for memories with protection logic that does not correct ECC errors (for example,
instruction cache) or uses parity. MBISTOLOUTDATAx is RAZ and the error is indicated
on MBISTOLERR[2] in this case.

0b10 or 0b11, and access type is a write Reserved. Writes ignored, IP core indicates an error on MBISTOLERR[2].

 Note

When TRANS is 0b11, PSEL must be 0b00.

4.22.2 OP encoding values

The OP encoding values are:

4 PMC-100 programmers model
4.22 Program registers, PMC100_P0-PMC100_P31

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-80
Non-Confidential

Table 4-29 OP encoding values

0b0000 CHKR/NONE. Check read data/No operation. For MBIST read transactions the data returned is checked that it is equal to
the contents of the data register selected by DREG. If they are not equal then the PMC100_CTRL.TF bit is set to 1, see
4.5 Main control register, PMC100_CTRL on page 4-40. For MBIST write transactions no additional operation is performed.

0b0001 PUP. Pattern update. This operation is used in memory protection logic test algorithms.

0b0010 SAVERD. Save read data to data register specified by the DREG field. The read data returned is not checked. This operation
must only be used with reads.

0b0011 WAITRU. Wait register updated. This operation is split into two parts that are performed in seperate clock cycles. The first
part waits if there is a read that matches the DREG field or a read that will update the PMC100_CTRL.NOTRANS bit in the
read pipeline. The second part issues the MBIST transaction specified in the TRANS field. For read transactions this
operation also acts like SAVERD.

0b0100 LOOP-Last. This loop operation stops execution when the end condition is true and must be present in the last instruction in
a microcode program, see 3.4 Loop operations on page 3-24. Reads are also checked in the same way as the CHKR
operation. Also causes the PMC100_CTRL.NOTRANS bit to be cleared to 0.

0b0101 LOOP-LAL. This loop operation loads the array address with PMC100_LOWADDR when the loop end condition is true,
see 4.12 Low address register, PMC100_LOWADDR on page 4-63. Reads are also checked in the same way as the CHKR
operation.

 Note

UA does not need to be 1 to enable the address load on end condition.

0b0110 LOOP-LAH. This loop operation loads the array address with the PMC100_HIGHADDR register value when the loop end
condition is true, see 4.13 High address register, PMC100_HIGHADDR on page 4-64. Reads are also checked in the same
way as the CHKR operation.

 Note

UA does not need to be 1 to enable the address load on end condition.

0b0111 LOOP-LCR. This loop operation either decrements PMC100_LCR.LC when PMC100_LCR.LC is not equal to 0 or loads
PMC100_LCR.LC with the PMC100_LCR.LCI when PMC100_LCR.LC is equal to 0, see 4.24 Loop counter register,
PMC100_LCR on page 4-84. Reads are also checked in the same way as the CHKR operation.

0b1000 PCHKCEF. Protection error check correctable error bit fail. When DPOL is 1, this OP checks that the
0bMBISTOLOUTDATA[2] value is 1 and if it is not then test fail is indicated, causing the PMC100_CTRL.TF bit to be set to
1. When DPOL is 0, this OP checks that the 0bMBISTOLOUTDATA[4] value is 1 and if it is not then test fail is indicated,
causing the PMC100_CTRL.TF bit to be set to 1. This OP must only be used with reads.

0b1001 PCHKUEF – Protection error check uncorrectable error bit fail. When DPOL is 1 this OP checks that the
0bMBISTOLOUTDATA[3] value is 1 and if it is not then test fail is indicated, causing the PMC100_CTRL.TF bit to be set to
1. When DPOL is 0 this OP checks that the 0bMBISTOLOUTDATA[5] value is 1 and if it is not then test fail is indicated,
causing the PMC100_CTRL.TF bit to be set to 1. This OP must only be used with reads.

0b1010 PCHKCE. Protection error check correctable error. This OP checks MBISTOLOUTDATA[1:0] read value and if it is not
equal to 0b01, sets the PMC100_CTRL.NOTRANS bit to 1, causing subsequent MBIST transactions to be converted to
NOPs. If PMC100_CTRL.TFPCHKUE is 1 and MBISTOLOUTDATA[1] is 1 then test fail is indicated, causing the
PMC100_CTRL.TF bit to be set to 1. This OP must only be used with reads.

0b1011 CLRNT. Clear NOTRANS. This OP clears the PMC100_CTRL.NOTRANS bit to 0.

4 PMC-100 programmers model
4.22 Program registers, PMC100_P0-PMC100_P31

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-81
Non-Confidential

0b1100 SXM. Shift PMC100_XM register. If PMC100_LCR.LC != 0, then shift the PMC100_XM register:
• When PM100_CTRL.ADDRID is 0, SXM shifts the PMC100_XM register left.
• When PMC100_CTRL.ADDRID is 1, SXM shifts the PMC100_XM register right.

 Note

• The TRANS field must be set to 0b00 with this OP.
• When PMC100_LCR.LC==0, no operation is performed.

0b1101 Reserved

0b1110 XORD, XOR read or write data. DREG XOR PMC100_XM. For MBIST read transactions the MBISOLOUTDATA input
data value is checked that it is equal to DREG XOR PMC100_XM. If it is not equal then the PMC100_CTRL.TF bit is set to
1, see 4.5 Main control register, PMC100_CTRL on page 4-40. For MBIST write transactions the DREG XOR
PMC100_XM operation generates the MBISOLINDATA output data value.

0b1111 XORA, XOR address. Address output is address XOR PMC100_XM. May be used with reads and writes. For reads also
acts like the SAVERD OP.

 Note

1. When PMC100_CTRL.PEEN is set to 1 by software, there must be at least one instruction with a
LOOP Last operation field value.

2. Operation WAITRU notes:
a. WAITRU waits for all previous reads in the pipeline that update DREG to complete. It is not

useful to have more than one read in the pipeline that updates the same data register. Therefore, it
is programming error if this is the case.

b. If there are no reads in the pipeline that update DREG, then program execution does not wait but
no operation is performed on the MBIST interface for one cycle, then the read or write is
performed as indicated by the OP WAITRU instruction.

c. WAITRU is not needed for writes that source data from a data register that was updated by an
instruction that used OP SAVERD when the pipeline depth is less than the number of instructions
between the read and the write multiplied by the cycles per operation of the MBIST transactions.
Indeed, the OP WAITRU should be avoided in this case because it adds a redundant cycle to the
program execution.

d. WAITRU might be used with all four DREG encodings.
3. If an SXM operation is used after an XORD read operation, then a WAITRU operation with DREG

set to the same value as the XORD operation must be used before SXM. This prevents the
PMC100_XM register being updated before the read data is checked.

4. OP PUP updates the pattern used for testing and is used in memory protection logic test algorithms,
see Appendix C On-line MBIST Memory Protection Logic Test Algorithms on page Appx-C-114. The
behavior is as follows:
• PMC100_LSPR.LS is set to 0 PMC100_CTRL.ADDRID is set to ~PMC100_CTRL.ADDRID
• If (PMC100_P.UA==b1) PMC100_RADDR.RA is set to ~PMC100_RADDR.RA

5. For PCHKCEF and PCHKUEF operations, if DREG[0] is 1, address out is A XOR PMC100_XM

4 PMC-100 programmers model
4.22 Program registers, PMC100_P0-PMC100_P31

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-82
Non-Confidential

4.23 Loop start program register, PMC100_LSPR
This register contains the loop start field.

Usage constraints
This register cannot be modified by software, but is automatically updated.

Configuration
The number of registers implemented is set by the PROGSIZE parameter. For more information,
see 3.2 RTL parameters on page 3-21

Attributes
This is a 32-bit register.

The following figure shows the PMC100_LSPR register bit assignments.

31 5 4 0

Reserved LS

Figure 4-21 PMC100_LSPR register bit assignments

The following table describes the PMC100_LSPR register bit assignments.

Table 4-30 PMC100_LSPR register bit assignments

Field Name Type Reset
value

Description

[31:5] Reserved UNK/
SBZP

- Reserved, RES0

[4:0] LS RO UNKNOWN Loop start. This field points to the program register at the start of the current loop. LS is
automatically:
• Loaded with 0 when a start_r or start_s event occurs. For more information, see

Start_r event on page 4-47 and Start_s event on page 4-47
• Updated to point to the next microcode instruction when LOOP-LAL, LOOP-LAH,

or LOOP-LCR loop ends. For more information, see 3.4 Loop operations
on page 3-24.

 Note

• Unused field bits are reserved and must be treated as UNK/SBZP.
• LS width is set by the log2(PROGSIZE).

4 PMC-100 programmers model
4.23 Loop start program register, PMC100_LSPR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-83
Non-Confidential

4.24 Loop counter register, PMC100_LCR
This register contains the loop counter fields.

The PMC100_LCR allows simple C style for loops to be implemented and is mainly intended to be used
in memory protection logic test algorithms.

Usage constraints
This register is modifiable by software and is automatically updated.

This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see
4.5 Main control register, PMC100_CTRL on page 4-40.

The PMC100_LCR works in conjunction with the LOOP-Last and LOOP-LCR OPs, for further
information on LOOP operations, see 3.4 Loop operations on page 3-24.

Configuration
To use the PMC100_LCR SW must set PMC100_CTRL.EXECO to 0 and PMC100_LCR.LCI
to the number loop iterations required minus 1 and optionally LCEN.LLEN to 1.
PMC100_LCR.LC is loaded with the PMC100_LCR.LCI at the start of execution. :
• When a LOOP-Last and LCEN.LLEN is 1 or LOOP-LCR OP is executed and the loop

counter is 0, execution either continues to the next instruction or execution stops, depending
on the LOOP OP.

• When a LOOP-Last and LCEN.LLEN is 1 or LOOP-LCR OP is executed and the loop
counter is decremented by 1 and execution continues at the start of the loop. If execution is
suspended, then it continues at the start of the loop.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_LCR register bit assignments.

31 30 24 23 16 15 8 7 0

LLEN

Reserved LCI Reserved LC

Figure 4-22 PMC100_LCR register bit assignments

The following table describes the PMC100_LCR register bit assignments.

Table 4-31 PMC100_LCR register bit assignments

Field Name Type Reset value Description

[31] LLEN RW UNKNOWN LOOP-Last enabled. This bit enables the loop counter behavior with the LOOP-Last
OP.

0b0 Loop counter with LOOP-Last disabled

0b1 Loop counter with LOOP-Last enabled

[30:24] Reserved UNK/
SBZP

- Reserved, RES0

[23:16] LCI RW UNKNOWN Loop counter initialization value.

4 PMC-100 programmers model
4.24 Loop counter register, PMC100_LCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-84
Non-Confidential

Table 4-31 PMC100_LCR register bit assignments (continued)

Field Name Type Reset value Description

[15:8] Reserved UNK/
SBZP

- Reserved, RES0

[7:0] LC RO UNKNOWN Loop counter value. The behavior is as follows:
• If a start_r or start_s event occurs, then LC is loaded with LCI. For more

information, see Start_r event on page 4-47 and Start_s event on page 4-47.
• When an instruction with a LOOP-LCR OP is executed and LC is not equal to 0,

then LC is decremented by 1 and execution continues at the start of the loop.
• When an instruction with a LOOP-Last OP is executed and LLEN is b1 and LC is

not equal to 0, then LC is decremented by 1 and execution continues at the start of
the loop.

• When an instruction with a LOOP-Last OP is executed and LLEN is b1 and LC is
equal to 0, then execution stops.

• When an instruction with a LOOP-LCR OP is executed and LC is equal to 0, then
LC is loaded with LCI and execution continues at the next instruction.

4 PMC-100 programmers model
4.24 Loop counter register, PMC100_LCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-85
Non-Confidential

4.25 Loop suspend counter register, PMC100_LSCR
This register contains the loop suspend counter fields.

The PMC100_LSCR allows simple C style for loops to be implemented and is mainly intended to be
used in memory protection logic test algorithms.

Usage constraints
This register is modifiable by software and is automatically updated.

This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1, see
4.5 Main control register, PMC100_CTRL on page 4-40.

If the PMC100_LSCR is not required by a test, then sofware must set PMC100_LSCR.LSCI to
0x0 and PMC100_LSCR.LSCEN to 0b0.

The PMC100_LSCR works in conjunction with all LOOP operations. For more information on
LOOP operations, see 3.4 Loop operations on page 3-24.

Configuration

The loop suspend counter is typically used with on-line MBIST short burst SRAM and
protection logic test algorithms. This is useful for IP cores that have a larger performance
penalty due to on-line MBIST entry and so the loop suspend counter allows multiple passes
through a loop to be executed back to back in the same MBIST session. Hence, execution will
only be suspended when the loop suspend counter reaches 0.

To use the PMC100_LSCR SW must set PMC100_LSCR.LSCEN to 1,
PMC100_CTRL.EXECO to 0, either PMC100_CTRL.TCSEN or PMC100_CTRL.TCCEN to 1
and PMC100_LSCR.LSCI to the number of times the loop is required to be executed before it is
suspended minus 1. PMC100_LSCR.LSC is loaded with the PMC100_LSCR.LSCI value at the
start of execution.

When a LOOP OP is executed, execution is suspended if the loop suspend counter is 0, else the
loop suspend counter is decremented by 1 and execution will continue at the start of the loop.
Execution will stop when the Stop event occurs, typically this is when a LOOP-Last OP is
executed and either the memory address is equal to PMC100_HIGHADDR,
PMC100_LOWADDR, or when PMC100_LCR.LC reaches 0 depending on PMC100_CTRLand
PMC100_LCR register programing.

When PMC100_CTRL.BAMEN is 1, the normal operation of the loop suspend counter with
LOOP-Last operations is disabled.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_LSCR register bit assignments.

31 24 23 16 15 8 7 0

LSCIReserved LSC

LSCEN

30

Reserved

Figure 4-23 PMC100_LSCR register bit assignments

The following table describes the PMC100_LSCR register bit assignments.

4 PMC-100 programmers model
4.25 Loop suspend counter register, PMC100_LSCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-86
Non-Confidential

Table 4-32 PMC100_LSCR register bit assignments

Field Name Type Reset value Description

[31] LSCEN RW UNKNOWN Loop suspend counter enable.

0b0 Loop suspend counter disabled

0b1 Loop suspend counter enabled

[30:24] Reserved UNK/
SBZP

- Reserved, RES0

[23:16] LSCI RW UNKNOWN Loop suspend counter initialization value.

[15:8] Reserved UNK/
SBZP

- Reserved, RES0

[7:0] LSC RO UNKNOWN Loop suspend counter value. The behavior is as follows:
• When a start_r or a start_s or a resume event occurs then LSC is loaded with

LSCI.
• When an instruction with a LOOP OP is executed and LSCEN is 0b1 and LSC is

not equal to 0, then LSC is decremented by 1 and execution continues at the start
of the loop.

• When an instruction with a LOOP OP is executed and LSCEN is 0b1 and LSC is
equal to 0, then execution suspended.

• When PMC100_CTRL.BAMEN is 1 and a LOOP-Last OP is executed, LSC is
neither decremented nor is a suspend event generated due to LSC being equal to 0.

4 PMC-100 programmers model
4.25 Loop suspend counter register, PMC100_LSCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-87
Non-Confidential

4.26 Test continue counter register, PMC100_TCCR
This register contains the test continue counter fields.

Usage constraints
This register is modifiable by software and is automatically updated.

This register must be initialized by software before the PMC100_CTRL.PEEN bit is set to 1.

The PMC100_TCCR is used to generate an internal test continue pulse to cause a resume event
in the same way as the external TC input pin.

Configuration

If the PMC100_TCCR is not required by a test then SW must set PMC100_TCCR.TCCI to 0x0
and PMC100_CTRL.TCCEN to 0b0.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_TCCR register bit assignments.

31 16 0

TCCI

15

TCC

Figure 4-24 PMC100_TCCR register bit assignments

The following table describes the PMC100_TCCR register bit assignments.

Table 4-33 PMC100_TCCR register bit assignments

Field Name Type Reset value Description

[31:16] TCCI RW UNKNOWN Test continue counter initialization value.

[15:0] TCC RO UNKNOWN Test continue counter value. When CTRL.TCCENTCC is loaded with TCCI whena start_r or
start_s event occurs.

When PMC100_CTRL.TCCEN is 0b1 and PMC100_CTRL.PEEN is 0b1, TCC is
decremented every clock cycle and when it reaches 0 the internal test continue pulse is
generated and TCC is reloaded with TCCI. If PMC100_CTRL.PES is 0b1 then a resume
event will be generated.

4 PMC-100 programmers model
4.26 Test continue counter register, PMC100_TCCR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-88
Non-Confidential

4.27 CoreSight™ register summary
The following table shows the PMC-100 CoreSight registers.

Table 4-34 PMC-100 CoreSight registers

Offset Name Type Reset value Description

0xF00 PMC100_ITCTRL RO 0x00000000 4.28 Integration Mode Control register,
PMC100_ITCTRL on page 4-91

0xF04-0xF9C - UNK/
SBZP

UNKNOWN Reserved

0xFA0 PMC100_CLAIMSET RW 0x0000000F 4.29 Claim Tag Set register,
PMC100_CLAIMSET on page 4-92

0xFA4 PMC100_CLAIMCLR RW 0x00000000 4.30 Claim Tag Clear register,
PMC100_CLAIMCLR on page 4-93

0xFA8 PMC100_DEVAFF0 RO CFGDEVAFF[31:0] 4.31 Device Affinity register 0,
PMC100_DEVAFF0 on page 4-94

0xFAC PMC100_DEVAFF1 RO CFGDEVAFF[63:32] 4.32 Device Affinity register 1,
PMC100_DEVAFF1 on page 4-95

0xFB0 PMC100_LAR WO UNKNOWN Software Lock Access Register. This
register is not implemented.

0xFB4 PMC100_LSR RO 0x00000000 Software Lock Status Register. This
register is not implemented.

0xFB8 PMC100_AUTHSTATUS RO 0x00000000 4.33 Authentication Status register,
PMC100_AUTHSTATUS on page 4-96

0xFBC PMC100_DEVARCH RO 0x47710A55 4.34 Device Architecture register,
PMC100_DEVARCH on page 4-97

0xFC0 PMC100_DEVID2 RO 0x00000000 Device Configuration Register 2. This
register is RES0.

0xFC4 PMC100_DEVID1 RO UNKNOWN

 Note

The reset value depends on your
configuration.

4.35 Device Configuration Register 1,
PMC100_DEVID1 on page 4-98

0xFC8 PMC100_DEVID RO UNKNOWN

 Note

The reset value depends on your
configuration.

4.36 Device Configuration Register,
PMC100_DEVID on page 4-99

0xFCC PMC100_DEVTYPE RO 0x00000055 Device Type Identifier Register

4 PMC-100 programmers model
4.27 CoreSight™ register summary

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-89
Non-Confidential

Table 4-34 PMC-100 CoreSight registers (continued)

Offset Name Type Reset value Description

0xFD0 PMC100_PIDR4 RO 0x00000004 Peripheral identification registers

0xFD4 PMC100_PIDR5 RO 0x00000000

0xFD8 PMC100_PIDR6 RO 0x00000000

0xFDC PMC100_PIDR7 RO 0x00000000

0xFE0 PMC100_PIDR0 RO 0x000000BA

0xFE4 PMC100_PIDR1 RO 0x000000B9

0xFE8 PMC100_PIDR2 RO 0x0000000B

0xFEC PMC100_PIDR3 RO 0x000000r0

0xFF0 PMC100_CIDR0 RO 0x0000000D Component identification registers

0xFF4 PMC100_CIDR1 RO 0x00000090

0xFF8 PMC100_CIDR2 RO 0x00000005

0xFFC PMC100_CIDR3 RO 0x000000B1

4 PMC-100 programmers model
4.27 CoreSight™ register summary

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-90
Non-Confidential

4.28 Integration Mode Control register, PMC100_ITCTRL
The PMC100_ITCTRL register indicates that the PMC-100 only enter functional mode.

Usage constraints
This register is RO.

Configuration

This register is not required.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_ITCTRL register bit assignments.

31 0

Reserved

1

IME

Figure 4-25 PMC100_ITCTRL register bit assignments

The following table describes the PMC100_ITCTRL register bit assignments.

Table 4-35 PMC100_ITCTRL register bit assignments

Field Name Type Description

[31:1] Reserved - Reserved, RES0.

[0] IME RO Integration mode enable. The value of this field is:

0 PMC-100 must enter functional mode and is not in integration mode.

4 PMC-100 programmers model
4.28 Integration Mode Control register, PMC100_ITCTRL

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-91
Non-Confidential

4.29 Claim Tag Set register, PMC100_CLAIMSET
The PMC100_CLAIMSET register provides various bits that can be separately set to indicate whether
functionality is in use by the debug agent.

Usage constraints
This register is RW.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_CLAIMSET register bit assignments.

31 0

Reserved

34

SET

Figure 4-26 PMC100_CLAIMSET register bit assignments

The following table describes the PMC100_CLAIMSET register bit assignments.

Table 4-36 PMC100_CLAIMSET register bit assignments

Field Name Type Description

[31:4] Reserved - Reserved, RES0.

[3:0] SET RW Sets Claim Tag bits. The read value is 0b1111. The write behavior is:

On reads, for each bit:

0 Claim tag bit is not implemented.

1 Claim tag bit is implemented.

On writes, for each bit:

0 Has no effect.

1 Sets the relevant bit of the claim tag.

4 PMC-100 programmers model
4.29 Claim Tag Set register, PMC100_CLAIMSET

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-92
Non-Confidential

4.30 Claim Tag Clear register, PMC100_CLAIMCLR
The PMC100_CLAIMCLR register provides various bits that can be separately cleared to indicate
whether functionality is in use by the debug agent.

Usage constraints
This register is RW.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_CLAIMCLR register bit assignments.

31 0

RAZ/SBZP

34

CLR

78

RAZ/WI

Figure 4-27 PMC100_CLAIMCLR register bit assignments

The following table describes the PMC100_CLAIMCLR register bit assignments.

Table 4-37 PMC100_CLAIMCLR register bit assignments

Field Name Type Description

[31:8] RAZ/SBZP - RAZ/SBZP

[7:4] RAZ/WI - RAZ/WI

[3:0] CLR RW Clear Claim Tag bits.

On reads, for each bit:

0 Claim tag bit is not set.

1 Claim tag bit is set.

On writes, for each bit:

0 Has no effect.

1 Clears the relevant bit of the claim tag.

4 PMC-100 programmers model
4.30 Claim Tag Clear register, PMC100_CLAIMCLR

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-93
Non-Confidential

4.31 Device Affinity register 0, PMC100_DEVAFF0
The PMC100_DEVAFF0 register enables a debugger to determine whether two components have an
affinity with each other

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_DEVAFF0 register bit assignments.

31 0

DEVAFF

Figure 4-28 PMC100_DEVAFF0 register bit assignments

The following table describes the PMC100_DEVAFF0 register bit assignments.

Table 4-38 PMC100_DEVAFF0 register bit assignments

Field Name Type Description

[31:0] DEVAFF RO Indicates the value read This field holds the value read from the CFGDEVAFF[31:0] configutation signal.

4 PMC-100 programmers model
4.31 Device Affinity register 0, PMC100_DEVAFF0

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-94
Non-Confidential

4.32 Device Affinity register 1, PMC100_DEVAFF1
The PMC100_DEVAFF1 register enables a debugger to determine whether two components have an
affinity with each other

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_DEVAFF1 register bit assignments.

31 0

DEVAFF

Figure 4-29 PMC100_DEVAFF1 register bit assignments

The following table describes the PMC100_DEVAFF1 register bit assignments.

Table 4-39 PMC100_DEVAFF1 register bit assignments

Field Name Type Description

[31:0] DEVAFF RO Indicates the value read This field holds the value read from the CFGDEVAFF[63:32] configutation signal.

4 PMC-100 programmers model
4.32 Device Affinity register 1, PMC100_DEVAFF1

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-95
Non-Confidential

4.33 Authentication Status register, PMC100_AUTHSTATUS
The PMC100_AUTHSTATUS register determines what debug levels are supported. This register is
0x00000000 indicating that authentication is not implemented.

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_AUTHSTATUS register bit assignments.

31 8 7 6 5 4 3 2 1 0

Reserved

SNID
SID

NSNID
NSID

Figure 4-30 PMC100_AUTHSTATUS register bit assignments

The following table describes the PMC100_AUTHSTATUS register bit assignments.

Table 4-40 PMC100_AUTHSTATUS register bit assignments

Field Name Type Description

[31:8] Reserved - Reserved, RES0.

[7:6] SNID RO Secure non-invasive debug, This field is 0b00, indicating that this debug level is not supported.

[5:4] SID RO Secure invasive debug. This field is 0b00, indicating that this debug level is not supported.

[3:2] NSNID RO Non-secure non-invasive debug. This field is 0b00, indicating that this debug level is not supported.

[1:0] NSID RO Non-secure invasive debug. This field is 0b00, indicating that this debug level is not supported.

4 PMC-100 programmers model
4.33 Authentication Status register, PMC100_AUTHSTATUS

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-96
Non-Confidential

4.34 Device Architecture register, PMC100_DEVARCH
The PMC100_DEVARCH register identifies and architecture of a CoreSight component.

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_DEVARCH register bit assignments.

31 8 7 6 5 4 3 2 1 0

Reserved

SNID
SID

NSNID
NSID

Figure 4-31 PMC100_DEVARCH register bit assignments

The following table describes the PMC100_DEVARCH register bit assignments.

Table 4-41 PMC100_DEVARCH register bit assignments

Field Name Type Description

[31:21] ARCHITECT RO This field defines the architect of the component, which in this case, is Arm. The value of this field is
0x23B

[20] PRESENT RO This field indicates the presence of this register. This field is 0b1, indicating that this is register is
present.

[19:16] REVISION RO This field indicates the architecture revision. The value of this field is 0b0001

[15:0] ARCHID RO This field indicates the architecture ID, and holds the value 0x0A55, indicating the PMC component.

4 PMC-100 programmers model
4.34 Device Architecture register, PMC100_DEVARCH

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-97
Non-Confidential

4.35 Device Configuration Register 1, PMC100_DEVID1
The PMC100_DEVID1 register indicates the capabilities of the component.

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_DEVID1 register bit assignments.

31 26 25 20 13 019 14 1129 28

Reserved

AIWIDTHC

10 5 4

PROGSIZEC

AOWIDTHC PDWIDTHC

MCWIDTHC

RCOWIDTHC

Figure 4-32 PMC100_DEVID1 register bit assignments

The following table describes the PMC100_DEVID1 register bit assignments.

Table 4-42 PMC100_DEVID1 register bit assignments

Field Name Type Description

[31:29] Reserved - Reserved, RES0.

[28:26] RCOWIDTHC RO PMC100_MCR.RCOW and PMC100_MCR.RCOR field widths.

[25:20] AOWIDTHC RO PMC100_AOR register and AUXOUT signal width configuration.

[19:14] AIWIDTHC RO PMC100_AIR register and AUXIN signal width configuration.

[13:11] PDWIDTHC RO Pipeline depth field width configuration.

[10:5] PROGSIZEC RO Microcode program size configuration.

[4:0] MCWIDTHC RO MBIST interface configuration signal width configuration

4 PMC-100 programmers model
4.35 Device Configuration Register 1, PMC100_DEVID1

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-98
Non-Confidential

4.36 Device Configuration Register, PMC100_DEVID
The PMC100_DEVID1 register indicates the capabilities of the component.

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_DEVID register bit assignments.

31 20 19 16 6 0

MARWIDTHC MAWIDTHC

15

Reserved

14 526 25

MBWIDTHC
MERWIDTHC

MDWIDTHC

Figure 4-33 PMC100_DEVID register bit assignments

The following table describes the PMC100_DEVID register bit assignments.

Table 4-43 PMC100_DEVID register bit assignments

Field Name Type Description

[31:26] MBWIDTHC RO MBIST interface byte enable width configuration.

[25:20] MERWIDTHC RO PMC100_MER register and MBIST interface error signal width configuration.

[19:16] MARWIDTHC RO MBIST interface array width configuration.

[15] Reserved RO Reserved, RES0.

[14:6] MDWIDTHC RO MBIST interface data width configuration.

[5:0] MAWIDTHC RO MBIST interface address width configuration.

4 PMC-100 programmers model
4.36 Device Configuration Register, PMC100_DEVID

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-99
Non-Confidential

4.37 Device Type Register, PMC100_DEVTYPE
The PMC100_DEVITYPE provides information about the PMC-100 component.

Usage constraints
This register is RO.

Configuration

This register is always implemented.

Attributes
This is a 32-bit register.

The following figure shows the PMC100_DEVTYPE register bit assignments.

31 8 7 0

SUB MAJOR

4 3

Reserved

Figure 4-34 PMC100_DEVTYPE register bit assignments

The following table describes the PMC100_DEVTYPE register bit assignments.

Table 4-44 PMC100_DEVTYPE register bit assignments

Field Name Type Description

[31:8] - RO Reserved, RES0.

[7:4] SUB RO The subtype of the component. The value of this field is 0x5, indicating memory, tightly coupled device such
as Built-In Self Test (BIST).

[3:0] MAJOR RO The main type of the component. The value of this field is 0x5, indicating debug logic.

4 PMC-100 programmers model
4.37 Device Type Register, PMC100_DEVTYPE

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-100
Non-Confidential

4.38 PMC100_PIDR0-7, Peripheral Identification Registers
The PMC100_PIDR0-7 provides the standard Peripheral IDs that are required to identify the PMC-100
component.

Usage constraints
Only bits[7:0] of each register are used. This means that PMC100_PIDR0-7 define a single 64-
bit Peripheral ID, as the following figure shows.

Configurations
Available in all configurations.

Attributes
These registers are individually 32-bits wide.

The following figure shows the mapping between PMC100_PIDR0-7 and the single 64-bit Peripheral ID
value.

0

Conceptual 64-bit Peripheral ID

Actual Peripheral ID register fields
PMC100_PIDR0

7 07 07 07 07 07 07 07

PMC100_PIDR1PMC100_PIDR2PMC100_PIDR3PMC100_PIDR4PMC100_PIDR5PMC100_PIDR6PMC100_PIDR7

63 16 15 8 0724 2332 3140 3948 4756 55

Figure 4-35 Mapping between PMC100_PIDR0-7 and the Peripheral ID value

The following figure shows the Peripheral ID bit assignments in the single conceptual Peripheral ID
register.

0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 1 0 0 0 00 0 0 0 0 0 1‡ 0 1 1 1 11 0 1 0 0 1 1 00 1 1 1 0 1

Conceptual 64-bit Peripheral ID

63 16 15 8

07

24 2332 3140 3948 4756 55

Reserved,
RAZ

PMC100_PIDR0PMC100_PIDR1PMC100_PIDR2PMC100_PIDR3PMC100_PIDR4PMC100_PIDR5PMC100_PIDR6PMC100_PIDR7

Part numberJEP 106
ID code

4KB
count

RevAnd

JEP 106
Continuation Code

Customer
modified

Revision

07

07070707070707

‡ See text for the value of the Revision field

Figure 4-36 Peripheral ID fields

The following table shows the values of the fields when reading this set of registers.

The registers are listed in order of register name, from most significant (PMC100_PIDR7) to least
significant (PMC100_PIDR0). This does not match the order of the register offsets.

Table 4-45 PMC100_PIDR0-7 bit assignments

Register Bits Name Description

PMC100_PIDR7 [31:0] - Reserved, RES0.

PMC100_PIDR6 [31:0] - Reserved, RES0.

PMC100_PIDR5 [31:0] - Reserved, RES0.

4 PMC-100 programmers model
4.38 PMC100_PIDR0-7, Peripheral Identification Registers

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-101
Non-Confidential

Table 4-45 PMC100_PIDR0-7 bit assignments (continued)

Register Bits Name Description

PMC100_PIDR4 [31:8] - Reserved, RES0.

[7:4] SIZE This field indicates the memory size that is used by the component. The value of this field is
0x0, indicating a 4KB block.

[3:0] DES_2 JEP 106 continuation code. The value of this field is 4, indicating Arm JEP106 continuation
code.

PMC100_PIDR3 [31:8] - Reserved, RES0.

[7:4] REVAND Part minor revision. This is the ECOREVNUM input signal value sampled at reset.

[3:0] JEDEC Customer Modified.

0x0 indicates from Arm.

PMC100_PIDR2 [31:8] - Reserved, RES0.

[7:4] REVISION Revision Number of 0x0 r0p0 Peripheral.

[3] JEDEC This field is 0x1, indicating that the JEDEC assigned value is used.

[2:0] DES_1 JEP 106 identity code [6:4]. This field is 0x3, indicating Arm ID.

PMC100_PIDR1 [31:8] - RES0.

[7:4] DES_0 JEP 106 identity code [3:0]. This field is 0xB, indicating Arm ID.

[3:0] PART_1 Part Number[11:8]. This field is 0x9, indicating PMC-100.

PMC100_PIDR0 [31:8] - RES0.

[7:0] PART_0 Part Number [7:0]. This field is 0xBA, indicating PMC-100.

4 PMC-100 programmers model
4.38 PMC100_PIDR0-7, Peripheral Identification Registers

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-102
Non-Confidential

4.39 PMC100_CIDR0-3, Component Identification Registers
The PMC100_CIDR0-3 provides the standard Component IDs that are required to identify the PMC-100
component.

Usage constraints
Only bits[7:0] of each register are used. This means that PMC100_CIDR0-3 define a single 32-
bit Component ID, as the following figure shows.

Configurations
Available in all configurations.

Attributes
These registers are each 32-bits wide.

The following figure shows the mapping betweenPMC100_CIDR0-3 and the single 64-bit Component
ID value.

PMC100_CIDR3

Conceptual 32-bit component ID

Actual ComponentID register fields

7 0

PMC100_CIDR2 PMC100_CIDR1 PMC100_CIDR0

Component ID

7 0 7 0 7 0

31 2423 1615 8 7 0

Figure 4-37 Mapping between PMC100_CIDR0-3 and the Component ID value

The following table shows the Component ID bit assignments in the single conceptual Component ID
register.

The registers are listed in order of register name, from most significant (PMC100_CIDR3) to least
significant (PMC100_CIDR0). This does not match the order of the register offsets.

Table 4-46 PMC100_CIDR0-3 bit assignments

Register Bits Name Description

PMC100_CIDR3 [31:8] - Reserved, RES0.

[7:0] PRMBL_3 Preamble, segment 3. The value of this field is 0xB1.

PMC100_CIDR2 [31:8] - Reserved, RES0.

[7:0] PRMBL_2 Preamble, segment 2. The value of this field is 0x05.

PMC100_CIDR1 [31:8] - Reserved, RES0.

[7:4] CLASS The component class value, which is, 0x9 to indicate that it is a CoreSight component.

[3:0] PRMBL_1 Preamble, segment 1. The value of this field is 0x0.

PMC100_CIDR0 [31:8] - Reserved, RES0.

[7:0] PRMBL_0 Preamble, segment 0. The value of this field is 0x0D.

4 PMC-100 programmers model
4.39 PMC100_CIDR0-3, Component Identification Registers

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. 4-103
Non-Confidential

Appendix A
Short-burst software-transparent algorithm

This chapter describes the short-burst software-transparent algorithm.

It contains the following sections:
• A.1 Short-burst software-transparent overview on page Appx-A-105.
• A.2 SRAM faults on page Appx-A-106.
• A.3 Single ported SRAM test algorithm on page Appx-A-107.
• A.4 Two ported SRAM test algorithm on page Appx-A-109.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-104
Non-Confidential

A.1 Short-burst software-transparent overview
The short burst SRAM test algorithms are non-destructive and can be run so that they are transparent to
software running on the processor.

The algorithms consist of a loop that tests two SRAM entries at time. The algorithms then increment the
address by two at the end of the loop, ready to test the next two entries. The algorithms stop if a fault is
detected or the maximum address of the SRAM is reached.

PMC-100 can be programmed to suspend execution at the end of a loop or after executing a specific
number of loops. PMC-100 can be programmed to trigger execution again when it's internal TCCR
counter expires or using the external TC input pin. It can also be programmed not to suspend and in this
case will continue execution until the maximum address is reached.

A Short-burst software-transparent algorithm
A.1 Short-burst software-transparent overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-105
Non-Confidential

A.2 SRAM faults
The short-burst software transparent Memory Built-In Self Test (MBIST) algorithm covers delay and
stuck-at faults because of transistor ageing and electromigration in the following SRAM circuits:

• Individual bit cells
• Word lines
• Timing circuits
• Sense amps
• Data multiplexors

 Note

These algorithms do not cover all address decoder faults . The production MBIST March C - SRAM
algorithm has better coverage of address decoder faults , see Appendix B Production test March
Algorithm on page Appx-B-111.

A Short-burst software-transparent algorithm
A.2 SRAM faults

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-106
Non-Confidential

A.3 Single ported SRAM test algorithm
This algorithm tests two entries in each burst, which are in adjacent rows in the SRAM array. Therefore,
it is carried out N/2 times for each SRAM, where N is the number of entries in the SRAM under test. The
algorithm is intended to test two locations in adjacent rows in the SRAM array. The algorithm toggles the
wordlines, bitlines, address signals, data signals, and control signals at the maximum functional
frequency. The algorithm can be used with incrementing or decrementing addresses.

When using incrementing address, each burst uses two entries n and n+m, where n is a variable containing
the address of the first entry and n+m is the address of the second entry. Where m is the mux factor for the
SRAM under test and is a constant power of 2 that is programmed into the PMC100_MCR.CCW field.
After each burst, n is set to n+2m and at the start of a test it is initialized to 0 or m. When m is used to
initialize n, the two entries are in different SRAM columns when the top of an SRAM row is reached.
This improves test coverage because the test switches between different rows and columns at full
functional frequency.

When using a decrementing address, each burst uses two entries n and n-m. After each burst n is set to
n-2m and at the start of a test it is initialized to N-1 or N-1-m.

The algorithm uses a Fixed Pattern (FP), and its inverse, ~FP. For example, a checkerboard pattern such
as, 0b10101010 and 0b01010101 respectively, see the PMC100_CTRL.FP field. The algorithm shown in
the table below uses an incrementing address but it might be rewritten using a decrementing address.

Table A-1 Example short burst software transparent on-line MBIST algorithm

Operation Notes

Read entry n and store in PMC100_X register. Save entry n.

Read entry n+m and store in PMC100_Y register. Save entry n+m and activates next wordline.

Write FP to entry n+m. -

Write ~FP to entry n. Switches wordlines and all write data bitlines.

Read entry n and check that it is equal to ~FP. Verifies that no bit is stuck in entry n.

Read entry n+m and check that it is equal to FP. Verifies that no bit is stuck in entry n+m, switches wordlines and all read
data bitlines.

Write ~FP to entry n+m. -

Write FP to entry n. Switches wordlines and all write data bitlines.

Read entry n and check that it is equal to FP. Verifies that no bit is stuck in entry n.

Read entry n+m and check that it is equal to ~FP. Verifies that no bit is stuck in entry n+m, and switches wordlines and all
read data bitlines.

Write PMC100_X to entry n. This restores entry n.

Write PMC100_Y to entry n+m. Restores entry n+m.

Read entry n and check that it is equal to PMC100_X. This checks that PMC100_X was restored correctly.

Read entry n+m and checks that it is equal to PMC100_Y. Checks that PMC100_Y was restored correctly.

A.3.1 Microcode

The microcode assumes that PMC-100 is configured in the x-fast address update mode, which updates
the row address (word line) before the column address.

A Short-burst software-transparent algorithm
A.3 Single ported SRAM test algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-107
Non-Confidential

The following table shows the PMC-100 microcode that implements the test algorithm that is described
in A.3 Single ported SRAM test algorithm on page Appx-A-107. In the following table, the instruction
field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

Table A-2 Microcode for short-burst sofware transparent on-line MBIST algorithm

Register Instruction Address out Address
update

Data
polarity

Data Trans Operation

PMC100_P0 00 0 0 0 00 01 0010 Address Hold - PMC100_X Read Save read data

PMC100_P1 00 1 0 0 01 01 0010 Next address Hold - PMC100_Y Read Save read data

PMC100_P2 00 1 0 0 11 10 0000 Next address Hold No inverse FP Write Write

PMC100_P3 00 0 0 1 11 10 0000 Address Hold Inverse FP Write Write

PMC100_P4 00 0 0 1 11 01 0000 Address Hold Inverse FP Read Check read data

PMC100_P5 00 0 0 0 11 01 0000 Next address Hold No inverse FP Read Check read data

PMC100_P6 00 0 0 1 11 10 0000 Next address Hold Inverse FP Write Write

PMC100_P7 00 0 0 0 11 10 0000 Address Hold No inverse FP Write Write

PMC100_P8 00 0 0 0 11 01 0000 Address Hold No inverse FP Read Check read data

PMC100_P9 00 1 0 1 11 01 0000 Next address Hold Inverse FP Read Check read data

PMC100_P10 00 0 0 0 00 10 0011 Address Hold No inverse PMC100_X Write Wait for register
update and write

PMC100_P11 00 1 0 0 01 10 0000 Next address Hold No inverse PMC100_Y Write Write

PMC100_P12 00 0 1 0 00 10 0000 Address Update No inverse PMC100_X Read Check read data

PMC100_P13 00 0 1 0 01 01 0100 Address Update No inverse PMC100_Y Read Check read data,
LOOP-Last

A Short-burst software-transparent algorithm
A.3 Single ported SRAM test algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-108
Non-Confidential

A.4 Two ported SRAM test algorithm
In the two port SRAM test algorithm, one port is write-only and the other is read-only. PMC-100 has an
additional write address signal, MBISTOLWADDR, to support two ported SRAMs.

The algorithm has been adapted to comply with the PMC-100 two port SRAM test rules, as follows:
• Read and write addresses must be different, one must be n and the other must be n+m.
• Read and write data values must be different, one must be the inverse of the other.

Table A-3 Short burst software transparent on-line MBIST test algorithm for two port SRAMs

Write port Read port

No operation (NOP) Read location n and store in PMC100_X register

No operation (NOP) Read location n+m and store in PMC100_Y register

Write FP to location n No operation (NOP)

Write ~FP to location n+m Read location n and check that it is equal to FP

Write FP to location n* Read location n+m and check that it is equal to ~FP

Write ~FP to location n No operation (NOP)

Write FP to location n+m Read location n and check that it is equal to ~FP

Write ~FP to location n* Read location n+m and check that it is equal to FP

Write PMC100_X to location n No operation (NOP)

Write PMC100_Y to location n+m No operation (NOP)

No operation (NOP) Read location n and check that it is equal to PMC100_X

No operation (NOP) Read location n+m and check that it is equal to PMC100_Y

 Note

* indicates redundant operations used to keep the interface active instead of using a NOP instruction.

A.4.1 Microcode

The microcode shown in the following table assumes that PMC-100 is configured in the x-fast address
update mode, which updates the row address (word line) before the column address.

The following table shows the PMC-100 microcode that implements the test algorithm that is described
in A.4.1 Microcode on page Appx-A-109.

In the following table, the instruction field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

A Short-burst software-transparent algorithm
A.4 Two ported SRAM test algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-109
Non-Confidential

Table A-4 Microcode for short-burst sofware transparent on-line MBIST algorithm

Register Instruction Address out Address
update

Data polarity Data Trans Operation

Write Read Write Read Write Read

PMC100_P0 00 0 0 0 00 01 0010 - Address Hold - - PMC100_X - Read Save read
data

PMC100_P1 00 1 0 0 01 01 0010 - Next
address

Hold - - PMC100_Y - Read Save read
data

PMC100_P2 00 1 0 0 11 10 0000 Address - Hold No
inverse

- FP Write - Write

PMC100_P3 00 0 0 1 11 10 0000 Next
address

Address Hold Inverse No
invese

FP Write - Write and
check read
data

PMC100_P4 00 1 0 1 11 11 0000 Address Next
address

Hold No
inverse

Inverse FP Write Read Write and
check read
data

PMC100_P5 00 1 0 1 11 10 0000 Address - Hold Inverse - FP Write - Write

PMC100_P6 00 0 0 1 11 11 0000 Next
address

Address Hold No
inverse

Inverse FP Write Read Write and
check read
data

PMC100_P7 00 1 0 0 11 11 0000 Address Next
address

Hold Inverse No
inverse

FP Write Read Write and
check read
data

PMC100_P8 00 1 0 0 00 10 0011 Address - Hold No
inverse

- PMC100_X Write - Wait for
register
update and
write

PMC100_P9 00 0 0 0 01 10 0000 Next
address

- Hold No
inverse

- PMC100_Y Write - Write

PMC100_P10 00 0 0 0 00 01 0000 - Address Hold Inverse No
inverse

PMC100_X - Read Check read
data

PMC100_P11 00 1 1 0 01 01 0100 - Next
address

Update - No
inverse

PMC100_Y - Read Check read
data,
LOOP-Last

A Short-burst software-transparent algorithm
A.4 Two ported SRAM test algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-A-110
Non-Confidential

Appendix B
Production test March Algorithm

Ths chapter describes the March Memory Buile-In Self-Test (MBIST) algorithm. It also provides
information on how to program PMC-100 to perform an example March MBIST algorithm called March
C-, and this information can be used as the basis to implement other production test MBIST algorithms.

It contains the following sections:
• B.1 Production test March algorithm overview on page Appx-B-112.
• B.2 March C- algorithm on page Appx-B-113.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-B-111
Non-Confidential

B.1 Production test March algorithm overview
March Memory Built-In Self Test (MBIST) algorithms are normally used in production test, but they can
also be used for in-field SRAM testing at Cold reset or periodically during operation and PMC-100 can
execute these test algorithms.

March algorithms destroy the memory contents. Therefore, they can only be run using the on-line
MBIST, off-line memory, and production MBIST use models.

A March MBIST algorithm tests an SRAM by filling all its entries test patterns and it carries out several
passes through an SRAM checking the patterns and writing new patterns. The SRAM read and write
operations performed on each pass is called a March element and each element is repeated for each entry
in an SRAM. The direction the address is incremented or decrement for each entry is indicated in the
March notation.

B.1.1 March notation

March algorithms are described using the notation shown in the following table.

Table B-1 March notation

Notation Description

() March element. Contains read and write write operations to be carried out on each SRAM entry

r0 Read SRAM and check that the value is equal to pattern 0

r1 Read SRAM and check that the value is equal to pattern 1

w0 Write pattern 0 to SRAM

w1 Write pattern 1 to SRAM

⇑
Increment address after the operations in a March element are carried out

⇑ Decrement address after the operations in a March element are carried out

Pattern 0 and 1 can be any value, but they must be the inverse of each other.

The operations in a March element are performed on the current SRAM address, then the address is
incremented or decremented as specified and the operations are repeated for the new address. This is
repeated for all entries in an SRAM. Then the next March element is executed for all SRAM entries.
When all elements have been executed the test ends.

B Production test March Algorithm
B.1 Production test March algorithm overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-B-112
Non-Confidential

B.2 March C- algorithm
The March C- Memory Built-In Self Test (MBIST) algorithm covers the majority of SRAM faults,
including address decoder faults and it only requires 10 accesses per SRAM entry. The algorithm is as
follows:

B.2.1 Microcode

The following table shows the micrcode programming for the March C-algorithm.

 Note

• The example microcode uses a fixed data value FP, but it is also possible to use an arbitarty data
value programmed into the PMC100X or PMC100_Y registers.

• In the Operation column in the following table, LAL is the load address with LOWADDR and LAH
is the load address with PMC100_HIGHADDR.

• In the Instruction column in the following table, the instruction fields are:
— PSEL
— AO
— UA
— DPOL
— DREG
— TRANS
— OP

Table B-2 Microcode for March C- algorithm

Register Instruction Address out Address
update

Data polarity Data Trans Operation

PMC100_P0 00 0 1 0 11 10 0101 Address Update No inverse FP Write Write, LOOP-LAL

PMC100_P1 00 0 0 0 11 01 0000 Address Hold No inverse FP Read Check read data

PMC100_P2 00 0 1 1 11 10 0101 Address Update Inverse FP Write Write, LOOP-LAL

PMC100_P3 00 0 0 1 11 01 0000 Address Hold Inverse FP Read Check read data

PMC100_P4 00 0 1 0 11 10 0110 Address Update No inverse FP Write Write, LOOP-LAL

PMC100_P5 00 0 0 0 11 01 0000 Address Hold No inverse FP Read Check read data

PMC100_P6 00 0 1 1 11 10 0110 Address Update Inverse FP Write Write, LOOP-LAL

PMC100_P7 00 0 0 1 11 01 0000 Address Hold Inverse FP Read Check read data

PMC100_P8 00 0 1 0 11 10 0110 Address Update No inverse FP Write Write, LOOP-LAL

PMC100_P9 00 0 1 0 11 01 0100 Address Update No inverse FP Read Check read data, LOOP
Last

B Production test March Algorithm
B.2 March C- algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-B-113
Non-Confidential

Appendix C
On-line MBIST Memory Protection Logic Test
Algorithms

The on-line Memory Built-In Self Test (MBIST) test algorithms described in this section show how Error
Correcting Code (ECC) generation, checking, correction logic, parity generation, and checking logic can
be tested.

The following algorithms in combination thoroughly test memory ECC and parity logic. These
algorithms test for single-point and latent faults in the data and address parts of the ECC logic and data
parts of parity logic.

 Note

The algorithms described in this section require that PMC100_BER is programmed to all 1s. The
algorithms test the logic to detect stuck-at faults. They can also detect delay faults in the logic because
back-to-back reads are performed using two RAM entries.

The algorithms generate: test patterns, TP and use a fixed base pattern, BP, its inverse, ~BP, a mask value
XM and an XOR function.

• Test patterns, TPs, which drive the address or data signals
• TPs use a fixed base pattern, BP
• Inverse of BP, ~BP
• Mask value, XM
• XOR function

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-114
Non-Confidential

Algorithm Overview

Each algorithm is carried out twice, once using BP and once using ~BP, and the order is not important.
TP is generated as either of the following:

• TP=BP XOR XM
• TP=~BP XOR XM

BP can have any value and the algorithms might be run multiple times with different BP values to
increase fault coverage. The algorithms are normally carried out with one XM bit set to 1 and the others
set to 0 but they can also be carried out with multiple bits set to one to test ECC schemes that can detect
two or more faults, or when an MBIST controller accesses data containing multiple protection code
fields.

The algorithms contain a loop that tests each address or data bit in turn by using a different XM value for
each loop iteration. The order that the address or data bits are tested in is not important and neither is
how XM is generated during each iteration of the loop. XM generation methods can include, shift
registers, counters, and LFSRs.

The example algorithms shown in this section use a shift register that is shifted by one position left in
each loop iteration. The algorithms generate test patterns that guarantee that each TP bit is tested with 0
and 1 by inverting the base pattern one bit at a time. Therefore, the value of at least two bits changes
between each loop iteration. There are four test methods:

• Latent fault detection in address protection logic
• Single point fault detection in address protection logic
• Latent fault detection in data protection logic
• Single point fault detection in data protection logic

The test methods have the following common features:

• Test methods can save and restore memory data modified during testing. This ensures that memory
contents are preserved, including any errors present in the entries. Therefore, memory is not
corrupted by generating valid protection codes for faulty data. If an error is present in the data, it is
dealt with in the normal way during functional reads.

• Test methods can initialize the ECC or parity code field in memory entries before they are used.
Therefore, no assumption is made that the protection code field is valid. Cache tag RAMs are
normally initialized but cache data RAMs are not. Therefore, data RAMs may contain a mixture of
initialized and uninitialized entries and the algorithms automatically handle both cases. This also
ensures that any soft errors in the data do not affect the testing.

• Test methods can be suspended after each loop iteration to minimize the time that a memory is
locked, reducing interrupt latency.

• Test methods use the error detection and correction logic to check for faults in the protection code
generation logic and vice versa.

The example algorithms contain the following variables:
• Three data variables X, Y, and Z. These can contain the data and protection code fields.
• An address variable, A.
• A mask variable, XM.
• A data pattern variable P which is either BP or ~BP.
• A fixed data pattern FP. This can be any value.

Testing relies on the memory to be fault free. Therefore, a single event upset that occurs during testing
might cause a test to fail. Therefore, if a test fails it must be run again to ensure that a single event upset
did not cause the failure.

Microcode loops

The pseudo code for the algorithms shows how the protection logic is tested. These algorithms contain
two loops, an inner loop to test each address or data bit and an outer loop to repeat the algorithm with the
true and inverted base pattern. The microcode is an implementation of the pseudo code for execution by

C On-line MBIST Memory Protection Logic Test Algorithms

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-115
Non-Confidential

PMC-100. Typically, an MBIST memory array is made up of multiple memory banks. Each bank has its
own protection logic and a bank is selected using the MSBs of the address.

The pseudo code only shows how the protection logic is tested for one bank. Hence, to test the protection
logic for all banks within an array, the microcode for a test algorithm must be repeated for each memory
bank within an array. PMC-100 has a mode called bank address mode that allows efficient
implementation of bank selection loops, see 4.15 Row address register, PMC100_RADDR on page 4-67.
This mode modifies the behavior of the LOOP-Last operation and the column address register,
PMC100_CADDR.CA. The PMC100_CADDR.CA register acts as a loop counter and provides the
address MSBs or LSBs, depending on the PMC100_CTRL.BAM value, to select the current bank. See
section 4.15.2 Address output value, PMC100_CTRL.BAMEN=1 on page 4-68 for further details of how
the address is generated when PMC100_CTRL.BAMEN is 1.

The outer pseudo code loop and bank selection loop are combined into one loop using the LOOP-Last
operation and by initializing the PMC100_CADDR.CA value to twice the number of banks – 1. The
pattern update operation, PUP, is used to control BP inversion for each iteration of the loop.

It contains the following sections:
• C.1 Address Protection Logic Latent Fault Detection algorithm on page Appx-C-117.
• C.2 Address Protection Logic Single-point Detection algorithm on page Appx-C-120.
• C.3 Data Protection Logic Latent Fault Detection algorithm on page Appx-C-123.
• C.4 Data Protection Logic Single-point Fault Detection algorithm on page Appx-C-126.

C On-line MBIST Memory Protection Logic Test Algorithms

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-116
Non-Confidential

C.1 Address Protection Logic Latent Fault Detection algorithm
This algorithm detects faults in the ECC and parity code generation and address error detection logic that
prevent it from detecting faults in memory address decoder circuits. It generates addresses that are based
on BP and injects one or more errors into each address bit by inverting them in turn by copying one entry
to another. Therefore, it uses two memory entries, A XOR XM and A, which are the source and
destination addresses of the copy operation respectively. The data field value is not important and is the
value already present in entry A XOR XM. The XM variable is initialized to 1 for single address bit error
injection.

The pseudocode for this algorithm operates as follows:

foreach A(BP, ~BP) {
 for(i=0; i<protected address width; i++) {
 1. Read RAM entry (A XOR XM) direct and store in X (save entry)
 2. Write FP to RAM entry (A XOR XM) through ECC or parity generation logic
(initialize entry)
 3. Read RAM entry A direct and store in Y (save entry)
 4. Read RAM entry (A XOR XM) direct and store in Z
 5. Write Z to RAM entry A direct (injects address error)
 6. Read RAM entry A through ECC or parity checking logic and checking logic and
check that a non-correctable ECC or party error is reported
 7. Write X to RAM entry (A XOR XM) direct (restore entry)
 8. Write Y to RAM entry A direct (restore entry)
 9. Read RAM entry (A XOR XM) direct and check that it is equal to X
 10. Read RAM entry A direct and check that it is equal to Y
 11. XM<<1 (generate next XM value)
 }
 }

C.1.1 Microcode

The microcode contains an outer loop that repeats the algorithm core twice the number of banks in the
target array.

In addition to the standard register initialization and programming by software, the algorithm-specific
programming for the array under test is shown in the following table.

 Note

• Register DM is used as variable Z in the pseudocode
• To inject a double-bit error in the address XM can be set to 0x3 and LCR.LCI set to the number of

address bits to be test minus 2

Table C-1 Address protection logic latent fault detection algorithm specific programming

Register/field Programming

CTRL.DMDIS 0b1

CTRL.BAMEN 0b1

CTRL.ADDRID 0b0

CTRL.FP Select required data value

CTRL.EXECO 0b0

MCR.CCW Width of the bank select field in the address plus 1

MCR.RCW Width of the physical SRAM address minus 2

LCR.LLEN 0b0

LCR.LCI Number of address bits to be tested minus 1

AR.ARR Memory controller and sub-array array encoding

C On-line MBIST Memory Protection Logic Test Algorithms
C.1 Address Protection Logic Latent Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-117
Non-Confidential

Table C-1 Address protection logic latent fault detection algorithm specific programming (continued)

Register/field Programming

AR.ARD Direct SRAM access array MSBs, normally 0b00

AR.ARG ECC or parity generation logic array MSBs for writes

AR.ARE ECC or parity error check logic array MSBs for reads

XM0-XM7 0x1

RADDR.RA 0x0 (BP)

CADDR.CA Start bank number, set to (start bank number << 1) + 1, to test all banks in array, set to ((number of
banks-1)>>1) + 1

 Note

PMC100 _ CADDR.CA must be greater than (PMC100 _ CADDR.BNK_END << 1)

CADDR.BNK_END End bank number, when testing all banks in an array this must be set to 0

The following table shows the microcode for address protection logic latent fault detection algorithm.

Table C-2 Microcode for address protection logic latent fault detection algorithm

Register Instruction Address
output

Address
update

Data
polarity

Data Transaction Operation

P0 00 0 0 0 00 1 1 A XOR XM Hold - X Read XORA. Save read data
in X

P1 01 0 0 0 11 10 1111 A XOR XM Hold No inverse FP Write XORA. Write FP
through ECC/parity
generation logic

P2 00 0 0 0 10 01 1111 A XOR XM Hold - DM Read XORA. Save read data
in DM

P3 00 0 0 0 01 01 0010 Address Hold - Y Read Save read data in Y

P4 00 0 0 0 10 10 0011 Address Hold No inverse DM Write Wait for register update
and then write

P5 01 0 0 1 00 01 1001 Address Hold Data[3] - Read Check uncorrectable
error reported for entry
A (PCHKUEF)

P6 01 0 0 0 00 01 1000 Address Hold Data[4] - Read Check correctable error
not reported for entry A
(PCHKCEF)

P7 00 0 0 0 00 10 1111 A XOR XM Hold No inverse X Write XORA. Restore X

P8 00 0 0 0 01 10 0000 Address Hold No inverse Y Write Restore Y

P9 00 0 0 0 01 10 1111 A XOR XM Hold No inverse X Read XORA. Check read
data

P10 00 0 0 0 00 00 1100 - Hold - - None SXM, shift left even
loops, shift right odd
loops

C On-line MBIST Memory Protection Logic Test Algorithms
C.1 Address Protection Logic Latent Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-118
Non-Confidential

Table C-2 Microcode for address protection logic latent fault detection algorithm (continued)

Register Instruction Address
output

Address
update

Data
polarity

Data Transaction Operation

P11 00 0 0 0 01 01 0111 Address Hold No inverse Y Read Check read data,
LOOP-LCR, LCR.LC-1

P12 00 0 1 0 00 00 0001 - Update
RADDR.RA

- - None PUP.~RADDR

P13 00 0 1 0 00 00 0100 - Updated
CADDR.CA

- - None LOOP-Last, CADDR-1

C On-line MBIST Memory Protection Logic Test Algorithms
C.1 Address Protection Logic Latent Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-119
Non-Confidential

C.2 Address Protection Logic Single-point Detection algorithm
This algorithm detects faults in the code generation and address error detection logic that cause an error
to be reported when the memory does not contain a fault in its address decoder circuits. It generates
addresses that are based on BP by inverting each address bit in turn. The error detection logic is used to
check for faults in the generation logic and vice versa. The data field value is not important and is a fixed
pattern, FP. The XM variable is initialized to 1.

The pseudocode for this algorithm operates as follows:

foreach A(BP, ~BP) {
 for(i=0; i<protected address width; i++) {
 1. Read RAM entry (A XOR XM) direct and store in X (save entry)
 2. Write FP to RAM entry (A XOR AM) through ECC/parity generation logic (initialize
entry)
 3. Read RAM entry (A XOR AM) through ECC/parity checking logic and check that no
error is reported
 4. Write X to RAM entry (A XOR AM) direct (restore entry)
 5. Read RAM entry (A XOR AM) direct and check that it is equal to X
 6. XM<<1 (generate next XM value)
 }
 }

C.2.1 Microcode

The microcode contains an outer loop that repeats the algorithm core twice the number of banks in the
target array.

In addition to the standard register initialization and programming by software, see 4.4 PMC-100
programming on page 4-37, the algorithm-specific programming for the array under test is shown in the
following table.

In the following table, the instruction field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

Table C-3 Address protection logic single fault detection algorithm specific programming

Register/field Programming

CTRL.DMDIS 0b1

CTRL.BAMEN 0b1

CTRL.ADDRID 0b0

CTRL.FP Select required data value

CTRL.EXECO 0b0

MCR.CCW Width of the bank select field in the address plus 1

MCR.RCW Width of the physical SRAM address minus 2

LCR.LLEN 0b0

LCR.LCI Number of address bits to be tested minus 1

AR.ARR Memory controller and sub-array array encoding

AR.ARD Direct SRAM access array MSBs, normally 0b00

C On-line MBIST Memory Protection Logic Test Algorithms
C.2 Address Protection Logic Single-point Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-120
Non-Confidential

Table C-3 Address protection logic single fault detection algorithm specific programming (continued)

Register/field Programming

AR.ARG ECC or parity generation logic array MSBs for writes

AR.ARE ECC or parity error check logic array MSBs for reads

XM0-XM7 0x1

RADDR.RA 0x0 (BP)

CADDR.CA Start bank number, set to (start bank number << 1) + 1, to test all banks in array, set to ((number of
banks-1)>>1) + 1

 Note

PMC100 _ CADDR.CA must be greater than (PMC100 _ CADDR.BNK_END << 1)

CADDR.BNK_END End bank number, when testing all banks in an array this must be set to 0

The following table shows the microcode for address protection logic latent fault detection algorithm.

Table C-4 Microcode for address protection logic latent fault detection algorithm

Register Instruction Address
output

Address update Data
polarity

Data Transaction Operation

PMC100_P0 00 0 0 0 00 01 1111 A XOR
XM

Hold - X Read XORA. Save
read data in
PMC100_X

PMC100_P1 01 0 0 0 11 10 1111 A XOR
XM

Hold No
inverse

FP Write XORA. Write FP
through ECC/
parity generation
logic

PMC100_P2 01 0 0 0 11 01 1000 A XOR
XM

Hold Data[4] - Read XORA. Save
read data in
PMC100_DM

PMC100_P3 01 0 0 0 11 01 1001 A XOR
XM

Hold Data[5] - Read Save read data in
PMC100_Y

PMC100_P4 00 0 0 0 00 10 1111 A XOR
XM

Hold No
inverse

X Write Wait for register
update and then
write

PMC100_P5 00 0 0 0 00 01 1111 A XOR
XM

Hold No
inverse

X Read Check
uncorrectable
error reported for
entry A
(PCHKUEF)

PMC100_P6 00 0 0 0 00 00 1100 - Hold - - None Check
correctable error
not reported for
entry A
(PCHKCEF)

PMC100_P7 00 0 0 0 00 00 0111 - Hold - - None XORA. Restore
PMC100_X

C On-line MBIST Memory Protection Logic Test Algorithms
C.2 Address Protection Logic Single-point Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-121
Non-Confidential

Table C-4 Microcode for address protection logic latent fault detection algorithm (continued)

Register Instruction Address
output

Address update Data
polarity

Data Transaction Operation

PMC100_P8 00 0 1 0 00 00 0001 - Update
PMC100_RADDR.RA

- - None Restore
PMC100_Y

PMC100_P9 00 0 1 0 00 00 0100 - Update
PMC100_CADDR.CA

- - None XORA. Check
read data

C On-line MBIST Memory Protection Logic Test Algorithms
C.2 Address Protection Logic Single-point Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-122
Non-Confidential

C.3 Data Protection Logic Latent Fault Detection algorithm
This algorithm uses a data pattern, P, based on BP and injects errors into the data and the code fields. The
algorithm detects faults in the code generation, error detection and correction logic that prevent it from
detecting faults in code and data bits stored in memory. The address A variable can be initialized to any
value, for example 0 and the XM variable is initialized to 1 for single bit error injection.

The pseudocode for this algorithm operates as follows:

foreach P (BP, ~BP) {
 for (i=0; i<data + code width; i++) {
 1. Read RAM entry A direct and store in X (save entry)
 2. Write P to RAM entry A via ECC generation logic (initialize entry)
 3. Read RAM entry A direct and store in Y
 4. Write (Y XOR XM) to entry A (inject error)
 5. Read RAM entry A via error detection logic and check that a correctable error is
indicated
 6. Read RAM entry A via the error correction logic and check that it is equal to Y
 7. Write X to RAM entry A (restore entry)
 8. Read RAM entry A and check that it is equal to X
 9. XM << 1 (generate next XM value)
 }
 }

C.3.1 Microcode

The microcode contains an outer loop that repeats the algorithm core twice the number of banks in the
target array.

In addition to the standard register initialization and programming by software, the algorithm-specific
programming for the array under test is shown in the following table.

In the following table, the instruction field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

 Note

To inject a double-bit error in the address XM can be set to 0x3 in each data chunk and LCR.LCI set to
the number of data bits to be tested in a chunk (including ECC/parity bits)-2.

Table C-5 Data protection logic latent fault detection algorithm specific programming

Register/field Programming

CTRL.DMDIS 0b0

CTRL.BAMEN 0b1

CTRL.ADDRID 0b0

CTRL.FP 0b00 (BP) - All 1s

CTRL.EXECO 0b0

MCR.CCW Width of the bank select field in the address plus 1

MCR.RCW Width of the physical SRAM address minus 2

LCR.LLEN 0b0

C On-line MBIST Memory Protection Logic Test Algorithms
C.3 Data Protection Logic Latent Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-123
Non-Confidential

Table C-5 Data protection logic latent fault detection algorithm specific programming (continued)

Register/field Programming

LCR.LCI Number of data bits to be tested in a chunk (including ECC/parity bits) minus 1

AR.ARR Memory controller and sub-array array encoding

AR.ARD Direct SRAM access array MSBs, normally 0b00

AR.ARG ECC or parity generation logic array MSBs for writes

AR.ARE ECC or parity error check logic array MSBs for reads

AR.ARC ECC correction data logic array MSBs for reads

XM0-XM7 0x1 in each data chunk (if multiple banks are read together)

RADDR.RA 0x0

CADDR.CA Start bank number, set to (start bank number << 1) + 1, to test all banks in array, set to ((number of
banks-1)>>1) + 1

 Note

PMC100 _ CADDR.CA must be greater than (PMC100 _ CADDR.BNK_END << 1)

CADDR.BNK_END End bank number, when testing all banks in an array this must be set to 0

The following table shows the microcode for data protection logic latent fault detection algorithm.

Table C-6 Microcode for data protection logic latent fault detection algorithm

Register Instruction Address
output

Address
update

Data polarity Data Transaction Operation

PMC100_P0 00 0 0 0 00 01 0010 Address Hold - X Read Save read data in X

PMC100_P1 01 0 0 0 11 10 0000 Address Hold CTRL.ADDRID FP Write XORD, Write FP
through ECC/parity
generation logic

PMC100_P2 00 0 0 0 01 01 0010 Address Hold - Y Read Save read data in Y

PMC100_P3 01 0 0 0 10 00 0011 - Hold - Y None Wait for register
update

PMC100_P4 00 0 0 0 01 10 1110 Address Hold No inverse Y Write Y XOR XM (XORD)

PMC100_P5 00 0 0 0 00 10 0011 Address Hold Data[5] - Read Check uncorrectable
error not reported for
entry A (PCHKUEF)

PMC100_P6 01 0 0 1 00 01 1000 Address Hold Data[2] - Read Check correctable
error reported for
entry A (PCHKCEF)

PMC100_P7 00 0 0 0 00 01 0000 Address Hold No inverse Y Read Check corrected data
value

PMC100_P8 00 0 0 0 00 10 0000 Address Hold No inverse X Write Restore X

PMC100_P9 00 0 0 0 00 00 1100 - Hold - - None SXM, shift left even
loops, shift right odd
loops

C On-line MBIST Memory Protection Logic Test Algorithms
C.3 Data Protection Logic Latent Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-124
Non-Confidential

Table C-6 Microcode for data protection logic latent fault detection algorithm (continued)

Register Instruction Address
output

Address
update

Data polarity Data Transaction Operation

PMC100_P10 00 0 0 0 00 01 0111 Address Hold No inverse X Read Check read data,
LOOP-LCR,
LCR.LC-1

PMC100_P11 00 0 0 0 00 00 0001 - - - - None PUP. Invert
CTRL.ADDRID

PMC100_P12 00 0 1 0 00 00 0100 - Update
CADDR

- - None LOOP-Last,
CADDR-1

C On-line MBIST Memory Protection Logic Test Algorithms
C.3 Data Protection Logic Latent Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-125
Non-Confidential

C.4 Data Protection Logic Single-point Fault Detection algorithm
This algorithm uses a data pattern, P, based on BP and it inverts all bits of P in turn. The algorithm
detects faults in the code generation, error detection and correction logic that cause an error to be
reported when the code and data bits stored in memory do not contain an error. Variable A can be
initialized to any value, for example 0 and the XM variable is initialized to 1.

The pseudocode for this algorithm operates as follows:

foreach P (BP, ~BP) {
 for (i=0; i<data field width; i++) {
 1. Read RAM entry A direct and store in X (save entry)
 2. Write (P XOR XM) to RAM entry A through ECC generation logic (initialize entry)
 3. Read RAM entry A via the error detection logic and check that no error is reported
 4. Read RAM entry A via the correction logic and check that it is equal to (P XOR XM)
 5. Write X to RAM entry A direct (restore entry)
 6. Read RAM entry X direct and check that it is equal to X
 7. XM << 1 (generate next XM value)
 }
 }

This section contains the following subsection:
• C.4.1 Microcode on page Appx-C-126.

C.4.1 Microcode

The microcode contains an outer loop that repeats the algorithm core twice the number of banks in the
target array.

In addition to the standard register initialization and programming by software, the algorithm-specific
programming for the array under test is shown in the following table.

In the following table, the instruction field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

 Note

To inject a double-bit error in the address XM can be set to 0x3 in each data chunk and LCR.LCI set to
the number of data bits to be tested in a chunk (including ECC/parity bits)-2.

Table C-7 Data protection logic latent fault detection algorithm specific programming

Register/field Programming

CTRL.DMDIS 0b0

CTRL.BAMEN 0b1

CTRL.ADDRID 0b0

CTRL.FP 0b00 (BP) - All 1s

CTRL.EXECO 0b0

MCR.CCW Width of the bank select field in the address plus 1

MCR.RCW Width of the physical SRAM address minus 2

LCR.LLEN 0b0

C On-line MBIST Memory Protection Logic Test Algorithms
C.4 Data Protection Logic Single-point Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-126
Non-Confidential

Table C-7 Data protection logic latent fault detection algorithm specific programming (continued)

Register/field Programming

LCR.LCI Number of data bits to be tested in a chunk (including ECC/parity bits) minus 1

AR.ARR Memory controller and sub-array array encoding

AR.ARD Direct SRAM access array MSBs, normally 0b00

AR.ARG ECC or parity generation logic array MSBs for writes

AR.ARE ECC or parity error check logic array MSBs for reads

AR.ARC ECC correction data logic array MSBs for reads

XM0-XM7 0x1 in each data chunk (if multiple banks are read together)

RADDR.RA 0x0

CADDR.CA Start bank number, set to (start bank number << 1) + 1, to test all banks in array, set to ((number of
banks-1)>>1) + 1

 Note

PMC100 _ CADDR.CA must be greater than (PMC100 _ CADDR.BNK_END << 1)

CADDR.BNK_END End bank number, when testing all banks in an array this must be set to 0

The following table shows the microcode for data protection logic latent fault detection algorithm.

Table C-8 Microcode for data protection logic latent fault detection algorithm

Register Instruction Address
output

Address
update

Data polarity Data Transaction Operation

PMC100_P0 00 0 0 0 00 01 0010 Address Hold - X Read Save read data in X

PMC100_P1 01 0 0 0 11 10 1110 Address Hold CTRL.ADDRID FP Write Write FP XOR XM
through ECC
generation logic
(XORD)

PMC100_P2 01 0 0 0 00 01 1001 Address Hold Data[5] - Read Check uncorrectable
error not reported for
entry A (PCHKUEF)

PMC100_P3 01 0 0 0 00 01 1000 Address Hold Data[4] - Read Check correctable
error not reported for
entry A (PCHKCEF)

PMC100_P4 11 0 0 0 11 01 1110 Address Hold CTRL.ADDRID FP Read Check corrected data
value is FP XOR XM
(XORD)

PMC100_P5 00 0 0 0 00 10 0011 Address Hold No inverse X Write Wait for register
update and restore X

PMC100_P6 01 0 0 0 00 00 1100 - Hold - - None SXM, shift left even
loops, shift right odd
loops

C On-line MBIST Memory Protection Logic Test Algorithms
C.4 Data Protection Logic Single-point Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-127
Non-Confidential

Table C-8 Microcode for data protection logic latent fault detection algorithm (continued)

Register Instruction Address
output

Address
update

Data polarity Data Transaction Operation

PMC100_P7 00 0 0 0 00 01 0111 Address Hold No inverse X Read Check read data,
LOOP-LCR,
LCR.LC-1

PMC100_P8 00 0 0 0 00 00 0001 - - - - None PUP. Invert
CTRL.ADDRID

PMC100_P9 00 0 1 0 00 00 0100 - Update
CADDR

- - None LOOP-Last,
CADDR-1

C On-line MBIST Memory Protection Logic Test Algorithms
C.4 Data Protection Logic Single-point Fault Detection algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-C-128
Non-Confidential

Appendix D
Miscellaneous Algorithms

This section describes miscellaneous algorithms.

It contains the following sections:
• D.1 Memory scrubbing algorithm on page Appx-D-130.
• D.2 ECC/parity code field initialization algorithm on page Appx-D-132.
• D.3 Memory dumping algorithm on page Appx-D-133.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-D-129
Non-Confidential

D.1 Memory scrubbing algorithm
This algorithm corrects single bit ECC errors in the SRAM and it assumes that the ECC code fields
stored in SRAM are valid.

If necessary, it is possible to initialize the ECC code fields using a modified version of this algorithm, see
section 7.8. As correction is rare, to save power, the algorithm does not update entries that do not have an
error.

If an uncorrectable error is detected, then execution is halted, and test fail is indicated, which can be
configured to interrupt the processor.

The software transparent memory scrubbing algorithm is as follows:

foreach (SRAM entry) {
 1. Read SRAM entry A via the ECC checking logic and record the error check signal
value.
 2. If ECC error check indicates a single bit error then read SRAM entry A via ECC
correction logic and record the corrected data value. Else end.
 3. Write the corrected data value to SRAM entry A via the ECC generation logic. This
corrects an error in the ECC or data field in the entry.
 4. Read SRAM entry A via the ECC checking logic and record the error check signal
value. Check that no error is indicated.
 }

D.1.1 Microcode

In addition to the standard register initialization and programming by software the algorithm-specific
programming for the array under test is shown in the following table.

In the following table, the instruction field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

Table D-1 Memory scrubbing algorithm specific programming

Register/field Programming

CTRL.DMDIS 0b0

CTRL.BAMEN 0b0

CTRL.ADDRID 0b0

CTRL.FP 0b00 (BP) - All 1s

CTRL.EXECO 0b0

MCR.CCW Width of the bank select field in the address plus 1

MCR.RCW Width of the physical SRAM address minus 2

LCR.LLEN 0b0

LCR.LCI Number of data bits to be tested in each data chunk (including ECC/parity bits) minus 1

AR.ARR Memory controller and sub-array array encoding

AR.ARD Direct SRAM access array MSBs, normally 0b00

AR.ARG ECC or parity generation logic array MSBs for writes

D Miscellaneous Algorithms
D.1 Memory scrubbing algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-D-130
Non-Confidential

Table D-1 Memory scrubbing algorithm specific programming (continued)

Register/field Programming

AR.ARE ECC or parity error check logic array MSBs for reads

DM0-DM7 Valid data bit mask for each data chunk (excluding ECC/parity)

RADDR.RA 0x0

CADDR.CA Start bank number, set to (start bank number << 1) + 1, to test all banks in array, set to ((number of
banks-1)>>1) + 1

 Note

PMC100 _ CADDR.CA must be greater than (PMC100 _ CADDR.BNK_END << 1)

CADDR.BNK_END End bank number, when testing all banks in an array this must be set to 0

The following table shows the microcode for memory scrubbing algorithm.

Table D-2 Microcode for memory scrubbing algorithm

Register Instruction Address
output

Address
update

Data
polarity

Data Transaction Operation

PMC100_P0 01 0 0 0 00 01 1010 Address Hold No inverse X Read Read protection error check
result and set
CTRL.NOTRANS if a
single bit error is not
indicated (PCHKCE)

PMC100_P1 11 0 0 0 00 01 0011 Address Hold No inverse X Read Read corrected data value
but wait for
CTRL.NOTRANS to be
updated first.

PMC100_P2 01 0 0 0 00 10 0011 Address Hold No inverse X Write Write corrected data value
through ECC generation.

PMC100_P3 01 0 0 0 01 01 1000 Address Hold Data[4] Y Read Read protection error check
result, fail if not corrected
(PCHKCEF).

PMC100_P4 00 0 1 0 00 00 0100 - Update - - No operation LOOP-Last

D Miscellaneous Algorithms
D.1 Memory scrubbing algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-D-131
Non-Confidential

D.2 ECC/parity code field initialization algorithm
Before running the memory scrubbing algorithm, it is necessary to initialize the ECC/parity code fields
stored in SRAM first. This normally this is not required for cache tag RAMs as they are initialized by
cache invalidation but may be necessary for cache data RAMs. The algorithm will work with a mixture
of initialized and uninitialized SRAM entries. Hence, valid data already stored in SRAM entries it will
not be corrupted. Each entry is checked after it is initialized and if a correctable or un-correctable error is
indicated then execution is halted, and test fail is indicated.

The algorithm is as follows:

foreach (SRAM entry) {
 1. Read SRAM entry A via ECC correction logic and record the corrected data value.
 2. Write the corrected data value to SRAM entry A via the ECC generation logic. This
generates a correct ECC code field for an uninitialized entry or writes the same ECC code
field back and data for an initialized entry.
 3. Read SRAM entry A via the ECC checking logic and record the error check signal
value. Check that no error is indicated.
 }

D.2.1 Microcode

The following table shows the microcode for memory initialization algorithm.

In the following table, the instruction field are:
• PSEL
• AO
• UA
• DPOL
• DREG
• TRANS
• OP

Table D-3 Microcode for memory initialization algorithm

Register Instruction Address
output

Address
update

Data
polarity

Data Transaction Operation

PMC100_P1 11 0 0 0 00 01 0011 Address Hold No inverse X Read Read corrected data
value

PMC100_P2 01 0 0 0 00 01 0011 Address Hold No inverse X Write Write corrected data
value through ECC
generation

PMC100_P3 01 0 0 0 01 10 1000 Address Hold Data[4] Y Read Read protection error
check result, fail if an
error is indicated
(PCHKCEF)

PMC100_P4 00 0 1 0 01 01 0100 - Update - - No operation LOOP-Last

D Miscellaneous Algorithms
D.2 ECC/parity code field initialization algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-D-132
Non-Confidential

D.3 Memory dumping algorithm
This algorithm is used to dump memory to a debugger, typically if the IP core is in a deadlock state. It is
assumed that the IP core is placed in production MBIST mode by the debugger using the
CTRL.MRESET and CTRL.MREQ bits before executing this algorithm. Also, this algorithm uses
software read triggered execution mode, which is enabled by setting CTRL.SRTEEN to 1. After
PMC-100 is setup as described in this section, the debugger repeatedly reads the X data register to
retrieve the value stored in each memory entry.

 Note

After programming PMC-100, the debugger places itin the suspended state by writing CTRL.PEEN 1
and CTRL.PES 1.

The following table shows the memory dumping algorithm specific programming.

Table D-4 Memory dumping algorithm specific programming

Register/field Programming

PMC100_CTRL.SRTEEN 0b1

PMC100_CTRL.DMDIS 0b0

PMC100_CTRL.BAMEN 0b0

PMC100_CTRL.ADDRID 0b1

PMC100_CTRL.EXECO 0b0

PMC100_MCR.CCW 0x0

PMC100_MCR.RCW Width of the target array address minus 2

PMC100_LCR.LLEN 0b0

PMC100_AR.ARR Memory controller and sub-array array encoding

PMC100_RADDR Start address

PMC100_CADDR 0x0

PMC100_HIGHADDR End address

The following table shows the microcode for memory dumping algorithm.

Table D-5 Microcode for memory dumping algorithm

Register Instruction Address
output

Address
update

Data
polarity

Data Transaction Operation

PMC100_P0 00 0 0 0 00 01 0010 Address Hold No inverse PMC100_X Read SAVERD

PMC100_P1 00 0 1 0 00 00 0100 - Update - - None LOOP-Last

D Miscellaneous Algorithms
D.3 Memory dumping algorithm

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-D-133
Non-Confidential

Appendix E
Signal descriptions

This appendix describes the PMC-100 signals.

It contains the following sections:
• E.1 Clock and reset signals on page Appx-E-135.
• E.2 APB slave interface signals on page Appx-E-136.
• E.3 MBIST master interface signals on page Appx-E-138.
• E.4 Execution control and status signals on page Appx-E-139.
• E.5 Miscellaneous signals on page Appx-E-140.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-134
Non-Confidential

E.1 Clock and reset signals
The following table shows the PMC-100 clock and reset signals

Table E-1 Clock and reset signals

Signal Direction Description

CLKIN Input APB interface and processor clock. All signals in and out of PMC-100 are processed on the positive/rising
edge of this clock.

nSYSRESET Input Active low reset signal.

DFTCGEN Input Override all internal architectural clock gates.

0 Normal operation

1 Architectural clock gates forced open

E Signal descriptions
E.1 Clock and reset signals

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-135
Non-Confidential

E.2 APB slave interface signals
The following table shows the PMC-100 APB slave interface signals.

Table E-2 APB slave interface signals

Signal Direction Description

PCLKEN Input Clock enable. Allows the APB interface to
be driven from an interconnect that is
clocked at a lower synchronous frequency
to PMC-100.

 Note

This signal must be tied HIGH if 1:1
clocking is used.

PADDR[11:2] Input Address. This is the APB address bus.
 Note

PMC-100 only supports 32-bit transfers.

PPROT[2:0] Input Protection type. This signal indicates the
normal, privileged, or secure protection
level of the transaction and whether the
transaction is a data access or an instruction
access.

 Note

• If an IP core does not support secure
accesses or security is not present in a
configuration of an IP core, then
PPROT[1] must be tied LOW.
Otherwise PPROT[1] must be driven
by the IP core.

• PPROT[2] is not used by PMC-100

PSEL Input Select. This signal indicates that the slave
device is selected and that a data transfer is
required.

PENABLE Input Enable. This signal indicates the second
and subsequent cycles of an APB transfer.

PWRITE Input Direction. This signal indicates an APB
write access when HIGH and an APB read
access when LOW.

PWDATA[31:0] Input Write data. This bus is valid during write
cycles when PWRITE is HIGH.

E Signal descriptions
E.2 APB slave interface signals

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-136
Non-Confidential

Table E-2 APB slave interface signals (continued)

Signal Direction Description

PSTRB[3:0] Input Write strobes. This signal indicates which
byte lanes to update during a write transfer.
There is one write strobe for each eight bits
of the write data bus. Therefore,
PSTRB[n] corresponds to PWDATA[(8n
+ 7):(8n)]. Write strobes must not be
asserted during a read transfer.

 Note

PSTRB is ignored by PMC-100 when
writing to software registers but an error
response is signaled on the PSLVERR
signal for non-word write accesses.

PRDATA[31:0] Output Read Data. The selected slave drives this
bus during read cycles when PWRITE is
LOW.

PREADY Output Ready. The slave uses this signal to insert
wait states to extend an APB transfer.

PSLVERR Output Error response. This signal is used by a
slave to indicate a transfer failure.

E Signal descriptions
E.2 APB slave interface signals

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-137
Non-Confidential

E.3 MBIST master interface signals
The following table shows the PMC-100 MBIST master interface signals

Table E-3 MBIST master interface signals

Signal Direction Description

MBISTOLREQOL Output Request from MBIST controller to enter on-line MBIST mode.

MBISTOLACK Input MBIST mode acknowledgment Acknowledge from the processor indicating
that it has entered MBIST mode and is ready to accept MBIST transactions.

MBISTOLADDR[MAWIDTH-1:0] Output MBIST transaction address.

MBISTOLINDATA[MDWIDTH-1:0] Output MBIST transaction write data.

MBISTOLOUTDATA[MDWIDTH-1:0] Input MBIST transaction read data.

MBISTOLWRITEEN Output MBIST transaction write enable.
 Note

A No Operation (NOP) occurs if both read and write enables are de-asserted.

MBISTOLREADEN Output MBIST transaction read enable.

MBISTOLERR[MERWIDTH-1:0] Input MBISTOLERR input. The value of this signal is stored in the
PMC100_MER register, see 4.19 MBISTOLERR input register,
PMC100_MER on page 4-73

MBISTOLPSEL[1:0] Output Used with MBISTOLARRAY and MBISTOLADDR to select ECC/parity
logic associated with the target array for testing using on-line MBIST. This
signal is controlled by the instruction PSEL field, see 4.22 Program registers,
PMC100_P0-PMC100_P31 on page 4-77

MBISTOLPREN Output Protection error reporting enable. This signal is used during an MBIST read
transaction to enable an IP core’s protection error output bus to report an error
detected during the transaction, see 4.5 Main control register,
PMC100_CTRL on page 4-40

MBISTOLWADDR[MAWIDTH-1:0] Output Write address. This used when testing two-port memories. In this case,
MBISTOLADDR is used as the memory read address, allowing read and
write transactions to be performed in parallel, see 3.3 Two-port SRAM
support on page 3-23.

MBISTOLARRAY[MARWIDTH-1:0] Output MBIST memory array and protection logic selector.

MBISTOLBE[MBWIDTH-1:0] Output MBIST transaction byte enables.

MBISTOLCFG[MCWIDTH-1:0] Output MBISTOLCFG controls might include example attributes such as AllMode
or LATENCY/SETUP controls for the array under test.

 Note

During on-line MBIST testing the LATENCY/SETUP bits may be set HIGH
but the AllMode bits must be set LOW.

E Signal descriptions
E.3 MBIST master interface signals

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-138
Non-Confidential

E.4 Execution control and status signals
The following table shows the PMC-100 execution and control status signals.

Table E-4 Execution control and status signals

Signal Direction Description

TEN Input Test enable. This is the master hardware enable for PMC-100.

TC Input Test continue pulse signals. Test continue pulse. This is a single cycle pulse and when enabled by the
PMC100_CTRL.TCSEN bit, causes a suspended test to continue execution.

TE Output Test ended. When PMC100_CTRL.TESEN bit is 1 this signal indicates that the test program has completed.

TF Output Test failed. When PMC100_CTRL.TFSEN bit is 1 this signal indicates that a memory fault has been detected.

TA Output Test active. This signal indicates that PMC-100 is in the run or suspended state. This signal can be connected to
the clock and power control logic within the processor to prevent it powering down during a test, but the internal
clocks may be gated between test bursts.

E Signal descriptions
E.4 Execution control and status signals

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-139
Non-Confidential

E.5 Miscellaneous signals
The following table shows the PMC-100 miscellaneous signals

Table E-5 Execution control and status signals

Signal Direction Description

CFGDEVAFF[63:0] Input PMC-100 affinity value. This value can be read from the PMC100_DEVAFF0 and
PMC100_DEVAFF1 registers.

ECOREVNUM[3:0] Input ECO revision number. This is the value of the RevAnd field in the Peripheral ID3 register.

AUXIN[AIWIDTH-1:0] Input Auxiliary input. The value of this signal is stored in the PMC100_AIR register.

AUXOUT[AOWIDTH-1:0] Output Auxiliary output. The value of this signal is set by the PMC100_AOR register.

FPERR Output Flop parity error. Parity error from the flip-flop protection logic. When an error is detected,
this signal will be assured for one or more clock cycles. When the FLOPPARITY
parameter is 0, FPERR is driven low.

E Signal descriptions
E.5 Miscellaneous signals

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-E-140
Non-Confidential

Appendix F
PMC-100 software library

This section describes the PMC-100 software library.

It contains the following sections:
• F.1 PMC-100 software library overview on page Appx-F-142.
• F.2 PMC-100 software library configuration and usage on page Appx-F-143.
• F.3 PMC-100 software library data structures on page Appx-F-147.
• F.4 PMC-100 software library function parameters on page Appx-F-154.
• F.5 PMC-100 software library functions on page Appx-F-155.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-141
Non-Confidential

F.1 PMC-100 software library overview
The PMC-100 software library provides a suite of functions that program a PMC-100 programmable
MBIST controller to perform SRAM and ECC logic test algorithms on an attached IP core.

The library includes the following functions:
• Perform memory error injection
• Test an IP core error reposting bus
• Perform PMC-100 self-testing
• Dump memory to a debugger
• Scrub memory
• Initialize memory
• Initialize PMC-100 registers
• Check the PMC-100 ID
• Provide the PMC-100 software library version
• Check the results of a test

Tests can be run on-line during functional operation. All tests, except for PMC100_MarchCm and
PMC100_Memory_Init, do not corrupt the contents of the target memory. The tests are intended to be
run periodically as part of an STL or during poweron or poweroff.

F PMC-100 software library
F.1 PMC-100 software library overview

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-142
Non-Confidential

F.2 PMC-100 software library configuration and usage
This section describes how the library is configured for a particular IP core and how it can be used as
part of the execution testbench for the core. All core execution testbenches should contain three
PMC-100 test called pmc100_all.c, pmc100_ecc.c, and pmc100_checktest.c, that demonstrate the
usage of the library in the context of the IP core. For more information, see the Integration and
Implmentation Manual or Configuration and Integration Manual for the IP core that you will be using
PMC-100 with.

The execution testbench supports both logic simulation and fault simulation using the example
pmc100_ecc.c and pmc100_checktest.c tests. The pmc100_all.c test is only intended for use with
logic simulation.

The PMC-100 software library is configured for an IP core memory configuration by a C header file that
is rendered by the <core>_pmc100_render_memory_info.pl and generates scripts that are delivered
with an IP core.

The PMC-100 software library supports two use models:

1. Self-use – This use model is for tests run on a processor to test itself; for example, with STLs and
execution TB tests.

2. External-use – This use model is for tests run on an external processor; for example, with a safety
agent that performs testing of other IP cores in a system.

Two PMC-100 software library configuration C header files are rendered, one for each use model:
1. core_pmc100_mem_description.h – This file is for the self-use model and uses IP core agnostic

generic file and object names. All IP cores will render a header file that the same file and object
names.

2. <core>_pmc100_mem_description<unique>.h – This file is for the external-use model and uses IP
core specific file and object names. This allows multiple PMC-100 MBIST controllers to be
controlled from one application. As such, multiple different types of IP cores with different memory
configurations can be supported from one application at the same time.

See Context structure on page Appx-F-149 for an example of how to use the PMC-100 software library
configuration C header file in your application.

F.2.1 Release directory structure and file overview

The file structure that is delivered as follows:

<core>/logical/
|_<core>
| |_pmc_files
| |_<core>_pmc100_render_memory_info.pl
| |_core_pmc100_mem_description.h (rendered)
| |_<core>_pmc100_mem_description<unique>.h (rendered)
|_testbench/execution_tb
| |_tests
| |_pmc100_ecc.c
| |_pmc100_all.c
| |_pmc100_checktest.c
| |_<core>_pmc100_wrapper.h

 Note

Execution testbench files which are required for fault simulation are not shown.

F PMC-100 software library
F.2 PMC-100 software library configuration and usage

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-143
Non-Confidential

The following table describes the IP core software library configuration and execution testbench file
descriptions.

Table F-1 Software library file overview

File name Description

<core>_pmc100_render_memory_info.pl This generates the <core>_pmc100_mem_description.h file.

This script is used by your IP core's render script. Therefore, it is not intended
for you to use directly.

core_pmc100_mem_description.h This is a C header file that configures the PMC-100 software library. It
contains information that describes the memory configuration of the IP core.
This is for the self-use model and uses generic file and object names. It is
intended for use by an STL.

This file is rendered by the <core>_pmc100_render_memory_info.pl
script.

<core>_pmc100_mem_description<unique>.h This is a C header file that configures the PMC-100 software library. It
contains information that describes the memory configuration of the IP core.
This is for the external-use model and is intended for use by a safety island
processor that controls multiple PMC-100 MBIST controllers.

This file is rendered by the <core>_pmc100_render_memory_info.pl
script.

pmc100_all.c This is an execution TB test that demonstrates the use of all the library
functions on all memories in an IP core.

 Note

This test is not intended to be used in fault simulation.

pmc100_ecc.c This is an execution TB test that tests all the ECC logic in an IP core.
 Note

This test is intended to be used in fault simulation.

pmc100_checktest.c This is an execution TB test that just checks the ID code of the PMC-100 and
therefore runs quickly.

<core>_pmc100_wrapper.h This is an execution testbench header file that contains wrapper functions for
the PMC-100 software library functions that include setup for the SBIST
controller, which is needed for fault simulation.

 Warning

Do not modify the <core>_pmc100_render_memory_info.pl, core_pmc100_mem_description.h, and
<core>_pmc100_mem_description<unique>.h files.

The following diagram shows how <core>_pmc100_mem_description.h is generated by an IP core
main render script. It also shows an example of the structure of an execution testbench test that uses the
PMC-100 software library.

F PMC-100 software library
F.2 PMC-100 software library configuration and usage

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-144
Non-Confidential

Main IP core render script uses
<core>_pmc100_render_memory_info.pl

<core>.yaml

Configured
RTL

UPF IPXact MBIF core_pmc100_mem_decription.h

PMC-100 SW Lib pmc100_tb.c

pmc100.h

<core>_pmc100_
wrapper.h

Figure F-1 IP core memory description file render flow and include file relationships

F.2.2 PMC-100 software library source code file structure

The source code file structure that the software library uses is as follows:

|_shared
| |_pmc100
| |_logical
| |_shared
| |_software
| |_api
| | |_pmc100_api1.c
| | |_pmc100_api2.c
| | |_pmc100_api1.h
| | |_pmc100_api2.h
| | |_pmc100_functions_common.c
| | |_pmc100_functions_common.h
| | |_pmc100_functions1.c
| | |_pmc100_functions1.h
| | |_pmc100_functions2.c
| | |_pmc100_functions2.h
| | |_pmc100.h
| |_driver
| | |_pmc100_drv.c
| | |_pmc100_drv.h
| |_test
| | |_main_threadx.c

The following table describes the software library source code files.

Table F-2 Software library source code file overview

File name Description

pmc100_api1.[ch] Contains declaration and implementation of API group 1

pmc100_api2.[ch] Contains declaration and implementation of API group 2

F PMC-100 software library
F.2 PMC-100 software library configuration and usage

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-145
Non-Confidential

Table F-2 Software library source code file overview (continued)

File name Description

pmc100_functions1.[ch] Contains declaration and implementation of helper function for API group 1

pmc100_functions2.[ch] Contains declaration and implementation of helper function for API group 2

pmc100_functions_common.[ch] Contains declaration and implementation of common helper function for API group 1 and 2

pmc100.h Contains the definition of library data structures

pmc100_drv.[ch] Example platform independent reference interrupt driven driver and example of PMC-100
library API usage

main_threadx.c Reference example of using PMC-100 driver in ThreadX OS

Normally, the pmc100 directory should be placed in the same directory that your core. The library is
broken down into two groups of functions in pmc100_api1 and pmc100_api2, respectively. You can use
pmc100_api1 on its own but pmc100_api2 must be used together with pmc100_api1.

In working with these files, consider the following recommendations:
1. You must not modify the files in the api directory.
2. The files in the driver and test directories are examples and therefore, you may modify and copy them

as required.
3. The API is defined by pmc100.h, pmc100_api1.h, and pmc100_api2.h. Your software must only

reference these files from the library. The other functions and data types in the library are considered
private and therefore, must not be used directly.

4. The files in the driver and test directories are provided as examples and can be used as required.

F PMC-100 software library
F.2 PMC-100 software library configuration and usage

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-146
Non-Confidential

F.3 PMC-100 software library data structures
This section describes the PMC-100 software library memory, parameter, and context structures.

F.3.1 pmc100.h data structures

Below are the data structures defined in the software/api/pmc100.h header file.

IP core memory information structure

This structure holds a memory information for each type of memory within a configuration of the IP
core; for example, instruction tag, data tag, instruction cache, and data cache.

These memories are the same as the memories specified in the production MBIST documentation
provided with your IP core. This data structure contains additional information about the ECC logic
associated with each memory.

All fields are read-only except ccw and cfgr, which you can modify from your application software. This
may be useful when using the SRAM tests PMC100_ShortBurst_1port, PMC100_ShortBurst_2port,
and PMC100_MarchCm.

/* Definition of the memory structure */
typedef struct {
 const uint32_t options; // Memory specific options
 const uint32_t mcr; // Pipeline depth and cycles per operation
 const uint32_t haddr; // High address
 const uint32_t laddr; // Low address
 const uint32_t addrw; // Address width
 uint32_t ccw; // RAM column address width. User modifiable.
 const uint32_t banks_number; // Number of RAM banks memory consists of
 const uint32_t bank_width; // Width of bank value -1
 const uint32_t valid_bits; // RAM data field width (not including ECC bits)
 const uint32_t addr_protected_bits; // Number of address bits protected by ECC scheme
 const uint32_t dm_ecc[8]; // Data mask with ECC fields
 const uint32_t dm_noecc[8]; // Data mask without ECC fields
 const uint32_t xm[8]; // XOR mask
 const uint32_t ecc_num_units; // The number of ECC units, ecc_ar elements
 const uint32_t ecc_ar[4]; // AR register value for each ECC unit
 uint32_t cfgr; // CFGR register value, MBISTOLCFG output. User
modifiable.
} Pmc100MemInfo_type;

Where memory specific options are each represented by a single bit, allowing multiple options to be set
together, as follows:
• Error correction present – bit[0]
• Cache corkscrew mode required – bit[1]
• Reserved bits[31:2]

Parameter structure

This structure holds various parameters that are used by the PMC-100 software library. All the fields in
this structure are read-only, except PMC100_BASE, which you may modify in your application software if
you are accessing the PMC-100 via an interface that is external to your processor. Therefore, the system
determines the base address of each PMC-100 your software accesses.

/**/
/* PMC100 parameters structure */
/* */
/* This structure should be populated with CPU specific parameters generated */
/* during rendering process. This data structure should be the part of PMC */
/* API library context, thus the parameters would be visible to the APIs. */
/**/
 typedef struct {
 uint32_t PMC100_BASE; /* PMC100 base address. User modifiable */
 const uint32_t REVAND;
 const uint32_t REVISION;
 const uint32_t DEVID_MBWIDTH; /* MBIST byte enable width */
 const uint32_t DEVID_MERWIDTH; /* MBIST register and signal width */
 const uint32_t DEVID_MARWIDTH; /* MBIST array width */
 const uint32_t DEVID_MDWIDTH; /* MBIST data width */
 const uint32_t DEVID_MAWIDTH; /* MBIST address width */

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-147
Non-Confidential

 const uint32_t DEVID_RCOWIDTH; /* RAM cycles of operation field width */
 const uint32_t DEVID_AOWIDTH; /* AOR register and AUXOUT signal width */
 const uint32_t DEVID_AIWIDTH; /* AIR register and AUXIN signal width */
 const uint32_t DEVID_PDWIDTH; /* Pipeline depth field width */
 const uint32_t DEVID_PROGSIZE; /* Program size */
 const uint32_t DEVID_MCWIDTH; /* MBIST configuration width */
 const uint32_t DEVID;
 const uint32_t DEVID1;
 const uint32_t DEVID2;
 const uint32_t NUM_OF_DATA_WORDS;
 const uint32_t BANK_SEL_WIDTH;
 const uint32_t NUM_OF_MEMORIES;
 const uint32_t CTRL_RW_MASK;
 const uint32_t CFGR_RW_MASK;
 const uint32_t MCR_RW_MASK;
 const uint32_t AR_RW_MASK;
 const uint32_t BER_RW_MASK;
 const uint32_t PCR_RW_MASK;
 const uint32_t HIGHADDR_RW_MASK;
 const uint32_t LOWADDR_RW_MASK;
 const uint32_t CADDR_RW_MASK;
 const uint32_t RADDR_RW_MASK;
 const uint32_t AIR_RW_MASK;
 const uint32_t AOR_RW_MASK;
 const uint32_t MER_RW_MASK;
 const uint32_t LCR_RW_MASK;
 const uint32_t LSCR_RW_MASK;
 const uint32_t TCCR_RW_MASK;
} Pmc100Params_type;

Register address offset structure

This structure holds the address offsets of the PMC-100 registers. This is required if you write your own
functions to program PMC-100 directly. It is defined in the software/api/pmc100.h header file. This
file also defines macros for setting the PMC100_CTRL bits and provides the PMC-100 CoreSight ID
register values.

/**/
/* PMC100 register address offset structure */
/**/
typedef struct
{
 PMC100__IO uint32_t CTRL; /* Offset 0x000 (RW) Control
Register */
 PMC100__IO uint32_t MCR; /* Offset 0x004 (RW) Memory Control
Register */
 PMC100__IO uint32_t BER; /* Offset 0x008 (RW) Byte Enable
Register */
 PMC100__IO uint32_t PCR; /* Offset 0x00C (RW) Program Control
Register */
 PMC100__I uint32_t RPR; /* Offset 0x010 (RO) Read Pipeline
Register */
 PMC100__IO uint32_t HIGHADDR; /* Offset 0x014 (RW) High Address
Register */
 PMC100__IO uint32_t CADDR; /* Offset 0x018 (RW) Column Address
Register */
 PMC100__IO uint32_t RADDR; /* Offset 0x01C (RW) Row Address
Register */
 PMC100__IO uint32_t AIR; /* Offset 0x020 (RW) Auxiliary Input
Register */
 PMC100__IO uint32_t AOR; /* Offset 0x024 (RW) Auxiliary Output
Register */
 PMC100__IO uint32_t MER; /* Offset 0x028 (RW) MBISTOLERR Input
Register */
 PMC100__IO uint32_t LSPR; /* Offset 0x02C (RW) Loop Start
Register */
 PMC100__IO uint32_t LCR; /* Offset 0x030 (RW) Loop Counter
Register */
 PMC100__IO uint32_t AR; /* Offset 0x034 (RW) Array
Register */
 PMC100__IO uint32_t CFGR; /* Offset 0x038 (RW) MBISTOLCFG Output
Register */
 PMC100__IO uint32_t TCCR; /* Offset 0x03C (RW) Test Continue Counter
Register */
 PMC100__IO uint32_t LOWADDR; /* Offset 0x040 (RW) Low Address
Register */
 PMC100__IO uint32_t LSCR; /* Offset 0x044 (RW) Loop Suspend Counter
Register */
 PMC100__I uint32_t RESERVED0[14]; /* Offset
0x048-07C */
 PMC100__IO uint32_t X[8]; /* Offset 0x080-09C (RW) Data Register

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-148
Non-Confidential

Xx */
 PMC100__I uint32_t RESERVED1[24]; /* Offset
0x0A0-0FC */
 PMC100__IO uint32_t Y[8]; /* Offset 0x100-11C (RW) Data Register
Yx */
 PMC100__I uint32_t RESERVED2[24]; /* Offset
0x120-17C */
 PMC100__IO uint32_t DM[8]; /* Offset 0x180-19C (RW) Data Mask Register
DMx */
 PMC100__I uint32_t RESERVED3[24]; /* Offset
0x1A0-1FC */
 PMC100__IO uint32_t XM[8]; /* Offset 0x200-21C (RW) XOR mask Register
XMx */
 PMC100__I uint32_t RESERVED4[24]; /* Offset
0x220-27C */
 PMC100__I uint32_t RESERVED5[32]; /* Offset
0x280-2FC */
 PMC100__IO uint32_t P[32]; /* Offset 0x300-37C (RW) Program Register
Px */
 PMC100__I uint32_t RESERVED6[736]; /* Offset 0x380-
EFC */
 PMC100__I uint32_t ITCTRL; /* Offset 0xF00 (RO) Integration Mode Control
Register*/
 PMC100__I uint32_t RESERVED7[39]; /* Offset 0xF04-
F9C */
 PMC100__IO uint32_t CLAIMSET; /* Offset 0xFA0 (RW) Claim tag set
Register */
 PMC100 __IO uint32_t CLAIMCLR; /* Offset 0xFA4 (RW) Claim Tag Clear
Register */
 PMC100__I uint32_t DEVAFF0; /* Offset 0xFA8 (RO) Device Affinity 0
Register */
 PMC100__I uint32_t DEVAFF1; /* Offset 0xFAC (RO) Device Affinity 1
Register */
 PMC100__O uint32_t LAR; /* Offset 0xFB0 (WO) Lock Access
Register */
 PMC100__I uint32_t LSR; /* Offset 0xFB4 (RO) Lock Status
Register */
 PMC100__I uint32_t AUTHSTATUS; /* Offset 0xFB8 (RO) Authentication Status
Register */
 PMC100__I uint32_t DEVARCH; /* Offset 0xFBC (RO) Device Architecture
Register */
 PMC100__I uint32_t DEVID2; /* Offset 0xFC0 (RO) Device ID
Register */
 PMC100__I uint32_t DEVID1; /* Offset 0xFC4 (RO) Device ID
Register */
 PMC100__I uint32_t DEVID; /* Offset 0xFC8 (RO) Device ID
Register */
 PMC100__I uint32_t DEVTYPE; /* Offset 0xFCC (RO) Device Type
Register */
 PMC100__I uint32_t PIDR4; /* Offset 0xFD0 (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR5; /* Offset 0xFD4 (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR6; /* Offset 0xFD8 (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR7; /* Offset 0xFDC (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR0; /* Offset 0xFE0 (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR1; /* Offset 0xFE4 (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR2; /* Offset 0xFE8 (RO) Peripheral ID
Register */
 PMC100__I uint32_t PIDR3; /* Offset 0xFEC (RO) Peripheral ID
Register */
 PMC100__I uint32_t CIDR0; /* Offset 0xFF0 (RO) Component ID
Register */
 PMC100__I uint32_t CIDR1; /* Offset 0xFF4 (RO) Component ID
Register */
 PMC100__I uint32_t CIDR2; /* Offset 0xFF8 (RO) Component ID
Register */
 PMC100__I uint32_t CIDR3; /* Offset 0xFFC (RO) Component ID
Register */
} Pmc100_type;

Context structure

This structure defines the context of the library. The pointer to this library context is the first parameer of
most the API functions.

/* PMC context */
typedef struct

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-149
Non-Confidential

{
 /* The array of structures which contains
 * all the IP Core specific memory and memory
 * protection logic configuration information required
 * by the tests.
 */
 Pmc100MemInfo_type *mem_array;

 /* This structure holds the PMC-100 instance parameter values and other
 * related values used by PMC-100 library. All the fields in this
 * structure are read only.
 */
 Pmc100Params_type *params;

 /* PMC100_MER mask. Internal variable used by library.
 * Initialized by library functions.
 */
 uint32_t mer_error;
} Pmc100Context_type;

The Library assumes that the mem_array field contains the pointer to the first element of the memory
structure array that holds a memory information for each type of memory generated during the rendering
process. The Library assumes that the params field contains the pointer to thePMC-100 specific
parameters for the IP core that contains it.

Below is example code that shows how to create the PMC-100 Library context in your application.

#include "pmc100_api1.h"
#include "pmc100_api2.h"
#include "core_pmc100_mem_description.h"

int main(void)
{
 . . .
 . . .
 /* PMC-100 Library context */
 Pmc100Context_type pmc100_ctx;

 /* init pmc100 lib context
 * the context data instances are defined in auto-generated file
 * core_pmc100_mem_description.h
 */
 pmc100_ctx.mem_arrray = (Pmc100MemInfo_type*) &core_mem_pmc100[0];
 pmc100_ctx.params = (Pmc100Params_type*) &core_params_pmc100;
 . . .
 . . .

}

F.3.2 Example core_pmc100_mem_description.h file

Below is an example of the core_pmc100_mem_description.h file from the Arm Cortex-M55
processor.

 Note

1. The core_mem_pmc100 and core_params_pmc100 variables are declared as const, allowing them to
be accessed from read only memory. Some fields in these types are not defined as const but the
declarations override this. Pointers to these variables must be typecast when used, see section Context
structure on page Appx-F-149 for an example of how to do this. In the self-use model, it is not
normally necessary for an application to modify the contents of these variables but if this is required
then the <core>_pmc100_mem_description<unique>.h file should be used.

2. The core_ram_enum enumerated type contains a list of identifiers, one for each memory within an IP
core.

3. All memory identifiers will always be present in this enum regardless of if a memory is present in a
particular configuration of an IP core or not.

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-150
Non-Confidential

4. The identifiers for memories that are not present within a particular configuration of an IP core are
assigned a value of -1.

5. The order and constant values assigned to each memory identifier may vary depending on the
memory configuration of an IP core.

#include "pmc100.h"

// Enumeration that can be used to select the required memory from the Pmc100MemInfo_type
array.
enum core_ram_enum {ITAG=0, IDATA=1, DTAG=2, DDATA=3, ITCM=4, DTCM=5} ram_type;

/* Declaration of an array of memories structures. Each structure contains all the IP Core
specific memory and memory protection logic configuration information required by the tests.
*/
const Pmc100MemInfo_type core_mem_pmc100[6] = {
 /**********
 * ITAG *
 **********/
 {
 0x0, /* ITAG_OPTIONS */
 131, /* ITAG_MCR */
 1023, /* ITAG_HADDR */
 0, /* ITAG_LADDR */
 10, /* ITAG_ADDRW */
 0, /* ITAG_CCW */
 2, /* ITAG_BANKS */
 1, /* ITAG_BANKSW */
 25, /* ITAG_VALID_BITS */
 9, /* ITAG_ADDR_PROTECTION */
 /* dm_ecc array */
 {
 0x0ffffff8, /* ITAG_DM0_ECC */
 0, /* ITAG_DM1_ECC */
 0, /* ITAG_DM2_ECC */
 0,
 0,
 0,
 0,
 0
 },
 /* dm_noecc array */
 {
 0x003ffff8, /* ITAG_DM0_NOECC */
 0, /* ITAG_DM1_NOECC */
 0, /* ITAG_DM2_NOECC */
 0,
 0,
 0,
 0,
 0
 },
 /* xm array */
 {
 8, /* ITAG_XM0 */
 0, /* ITAG_XM1 */
 0, /* ITAG_XM2 */
 0,
 0,
 0,
 0,
 0
 },
 1, /* ITAG_ECC_NUM_UNITS */
 /* ecc_ar array */
 {
 4, /* ITAG_ECC_AR */
 0,
 0,
 0
 },
 0 /* ITAG_CFGR */
 },
 /**********
 * IDATA *
 **********/
 {
 0x2, /* IDATA_OPTIONS */
 131, /* IDATA_MCR */
 4095, /* IDATA_HADDR*/
 0, /* IDATA_LADDR */

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-151
Non-Confidential

 12, /* IDATA_ADDRW */
 0, /* IDATA_CCW */
 2, /* IDATA_BANKS */
 1, /* IDATA_BANKSW */
 38, /* IDATA_VALID_BITS */
 12, /* IDATA_ADDR_PROTECTION */
 /* dm_ecc array */
…
…
 }
};

/**/
/* PMC100 parameters structure */
/**/
const Pmc100Params_type core_params_pmc100 = {
 0xE0046000, /* YAMIN PMC100 base register address */
 0x0, /* REVAND */
 0x0, /* REVISION */
 10, /* DEVID_MBWIDTH */
 5, /* DEVID_MERWIDTH */
 5, /* DEVID_MARWIDTH */
…
…
 0x1f, /* MER_RW_MASK */
 0x80ff0000, /* LCR_RW_MASK */
 0x80ff0000, /* LSCR_RW_MASK */
 0xffff0000 /* TCCR_RW_MASK */
};

F.3.3 Example <core>_pmc100_mem_description<unique>.h file

This shows an example of the <core>_pmc100_mem_description<unique>.h file for the Yamin
processor, called yamin_pmc100_mem_description<UNIQUE>.h. The <UNIQUE> string is provided by the
UNIQUE value in the yamin.yaml file. This UNIQUE string is also used in the variable names in the header
file shown below. The header file and variable declarations have unique names, allowing them to be used
in applications that access the PMC-100 in multiple processors. This is known as the external-use model.

 Note

1. The <core><UNIQUE>_mem_pmc100 and <core><UNIQUE>_params_pmc100 variables have fields that
may be modified by an application and therefore must be placed in read/write memory.

2. The <core><UNIQUE>_ram_enum enumerated type contains a list of identifiers, one for each memory
within an IP core.

3. All memory identifiers will always be present in this enum regardless of if a memory is present in a
particular configuration of an IP core or not.

4. The identifiers for memories that are not present within a particular configuration of an IP core are
assigned a value of -1.

5. The order and constant values assigned to each memory identifier may vary depending on the
memory configuration of an IP core.

#include "pmc100.h"

// Enumeration that can be used to select the required memory from the Pmc100MemInfo_type
array.
enum yamin<UNIQUE>_ram_enum {ITAG=0, IDATA=1, DTAG=2, DDATA=3, ITCM=4, DTCM=5}} ram_type;

/* Declaration of an array of memories structures. Each structure contains all the IP Core
specific memory and memory protection logic configuration information required by the tests.
*/
Pmc100MemInfo_type yamin<UNIQUE>_mem_pmc100[6] = {
 /**********
 * ITAG *
 **********/
 {
 0x0, /* ITAG_OPTIONS */
 131, /* ITAG_MCR */
 1023, /* ITAG_HADDR */
 0, /* ITAG_LADDR */
 10, /* ITAG_ADDRW */
 0, /* ITAG_CCW */
 2, /* ITAG_BANKS */
 1, /* ITAG_BANKSW */

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-152
Non-Confidential

 25, /* ITAG_VALID_BITS */
 9, /* ITAG_ADDR_PROTECTION */
 /* dm_ecc array */
 {
 0x0ffffff8, /* ITAG_DM0_ECC */
 0, /* ITAG_DM1_ECC */
 0, /* ITAG_DM2_ECC */
 0,
 0,
 0,
 0,
 0
 },
 /* dm_noecc array */
 {
 0x003ffff8, /* ITAG_DM0_NOECC */
 0, /* ITAG_DM1_NOECC */
 0, /* ITAG_DM2_NOECC */
 0,
 0,
 0,
 0,
 0
 },
 /* xm array */
 {
 8, /* ITAG_XM0 */
 0, /* ITAG_XM1 */
 0, /* ITAG_XM2 */
 0,
 0,
 0,
 0,
 0
 },
 1, /* ITAG_ECC_NUM_UNITS */
 /* ecc_ar array */
 {
 4, /* ITAG_ECC_AR */
 0,
 0,
 0
 },
 0 /* ITAG_CFGR */
 },
 /**********
 * IDATA *
 **********/
 {
 0x2, /* IDATA_OPTIONS */
 131, /* IDATA_MCR */
 4095, /* IDATA_HADDR*/
 0, /* IDATA_LADDR */
 12, /* IDATA_ADDRW */
 0, /* IDATA_CCW */
 2, /* IDATA_BANKS */
 1, /* IDATA_BANKSW */
 38, /* IDATA_VALID_BITS */
 12, /* IDATA_ADDR_PROTECTION */
 /* dm_ecc array */
…
…
 }
};

/**/
/* PMC100 parameters structure */
/**/
Pmc100Params_type yamin<UNIQUE>_params_pmc100 = {
 0xE0046000, /* YAMIN PMC100 base register address */
 0x0, /* REVAND */
 0x0, /* REVISION */
 10, /* DEVID_MBWIDTH */
 5, /* DEVID_MERWIDTH */
 5, /* DEVID_MARWIDTH */
…
…
 0x1f, /* MER_RW_MASK */
 0x80ff0000, /* LCR_RW_MASK */
 0x80ff0000, /* LSCR_RW_MASK */
 0xffff0000 /* TCCR_RW_MASK */
};

F PMC-100 software library
F.3 PMC-100 software library data structures

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-153
Non-Confidential

F.4 PMC-100 software library function parameters
The followng table describes the PMC-100 software library suspend and dont_save_restore function
parameters.

Table F-3 Software library function parameters

Parameter Description

suspend_tccr,
suspend_tc

Most of the library functions have a suspend_tccr and suspend_tc parameter passed to them. These
parameters can each enable the suspend mode for a test. PMC-100 suspend mode, causes PMC-100 to
automatically suspend execution part way through a test and resume later. The resume event can either be
triggered by the PMC100_TCCR counter or by the external TC input signal. This feature allows a test to be
broken down in to a series of short busts that can each be as small as 20 clock cycles and the gap between
bursts is either controlled by the system or application SW:
• suspend_tccr enables suspend mode using the PMC100_TCCR.TCC counter. When

suspend_tccr is non-zero, its value is loaded into PMC100_TCCR.TCCI field, which initializes the
PMC100_TCCR.TCC counter.

• suspend_tc enables suspend mode using the TC input signal.
• Both suspend_tccr and suspend_tc must not be non-zero at the same time. If this occurs, then the

function will immediately return with the -1 value.
• If both suspend_tccr and suspend_tc are zero PMC-100 execution will not be suspended, and the

test will be executed until it completes or fails. In this case the function poles for the test to end or fail.
• If either suspend_tccr and suspend_tc is non-zero, PMC-100 execution will suspend after one or

more loops of the test algorithm, depending on the loops_before_suspension parameter value.
The functions will immediately return 0 if only one of the suspend parameters is non-zero, which must
be ignored. Interrupt handlers must be used in this case to process the test end and test fail interrupts
generated by PMC-100.

• When suspend_tccr is non-zero, PMC-100 execution will be suspended for the following number of
clock cycles:

 suspend_tccr - the number of cycles it takes to execute the algorithm before it
suspends

The processor may be stalled while PMC-100 is executing a test algorithm and so it is recommended that
the suspend_tccr value is chosen to be at least 100 times larger than the number of cycles it takes to
execute the algorithm before it suspends. A similar recommendation is made for the gap between TC pulses
when suspend_tc is non-zero.

dont_save_restore This parameter controls the memory save and restore behaviour of an algorithm. The
dont_save_restore parameter may be set to 0 or 1 and the meaning of each value is as follows:

0 In most cases, the dont_save_restore parameter must be set to 0. This causes the algorithm to save
and restore the memory contents during testing. The function does not corrupt the memory.

1 You can set the dont_save_restore parameter to 1. This prevents the algorithm from saving and
restoring the memory contents during testing. The function corrupts the memory. This saves up to six
operations in each loop of a test algorithm. Therefore, it runs significantly faster. This mode can be
used in cases where you do not need to preserve the memory contents. For example, when testing a
cache, if its contents have been flushed to main memory, then it will be invalidated after testing is
complete.

 Note

You must disable the memory in this case and if it is a cache then lookups must also be disabled. If this
is not possible in a particular IP core, then dont_save_restore set to 1 cannot be used with the
memory under test.

F PMC-100 software library
F.4 PMC-100 software library function parameters

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-154
Non-Confidential

F.5 PMC-100 software library functions
This section describes the PMC-100 software library functions.

F.5.1 PMC100_SW_Version

This function returns a 24-bit value for the PMC-100 library version.

Parameters

void

Return value

<24-bit version value>
major: bits[23:16], minor1: bits[15:8], minor2: bits[7:0]

Syntax
int PMC100_SW_Version(void)

F.5.2 PMC100_Check_Device_ID

This function checks that the PMC-100 CoreSight ID registers match the expected values. This is used to
check that the test is communicating with the expected PMC version.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Return values

1
Pass

0
Fail

Syntax
int PMC100_Check_Device_ID(Pmc100Context_type *ctx)

F.5.3 PMC100_PMC_Selftest

This function executes a basic PMC-100 self-test.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure that stores all the information for a particular memory type

uint32_t ecc_ar_idx

Index in mem->ecc_ar[] of ECC unit to test

uint32_t dont_save_restore

1 - Don’t save and restore SRAM contents during test

0 - Save and restore SRAM contents during test

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-155
Non-Confidential

Return values

1
Pass

0
Fail

Syntax
int PMC100_PMC_Selftest(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 utin32_t ecc_ar_idx,
 uint32_t dont_save_restore)

F.5.4 PMC100_Address_LatentFault

Programs PMC-100 to carryout the Address Latent Fault ECC logic test algorithm.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t double_error

0 For single bit error
1 For double bit error
2 For double bit error shifted by 1
3 For double bit error shifted by 2
4 For double bit error shifted by 3

uint32_t ecc_ar_idx

Index in mem->ecc_ar[] of ECC unit to test

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-156
Non-Confidential

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t bank_start
The bank start number
The value range is 0 to mem.banks_number-1.

uint32_t bank_end
The bank end number
The value must be less than or equal to bank_start.
The value range is 0 to mem.banks_number-1.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Address_LatentFault(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t double_error,
 uint32_t ecc_ar_idx,
 uint32_t dont_save_restore,
 uint32_t bank_start,
 uint32_t bank_end)

F.5.5 PMC100_Address_SinglePointFault

This function programs PMC-100 to carry out the Address Single Point Fault ECC logic test algorithm.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-157
Non-Confidential

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t double_error

0 For single bit error
1 For double bit error
2 For double bit error shifted by 1
3 For double bit error shifted by 2
4 For double bit error shifted by 3

uint32_t ecc_ar_idx

Index in mem->ecc_ar[] of ECC unit to test

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t bank_start
The bank start number
The value range is 0 to mem.banks_number-1.

uint32_t bank_end
The bank end number
The value must be less than or equal to bank_start.
The value range is 0 to mem.banks_number-1.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Address_SinglePointFault(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t double_error,
 uint32_t ecc_ar_idx,
 uint32_t dont_save_restore,
 uint32_t bank_start,
 uint32_t bank_end)

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-158
Non-Confidential

F.5.6 PMC100_Data_LatentFault

This fucntion programs PMC-100 to carry out the Data Latent Fault ECC logic test algorithm.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t double_error

0 For single bit error
1 For double bit error
2 For double bit error shifted by 1
3 For double bit error shifted by 2
4 For double bit error shifted by 3

uint32_t ecc_ar_idx

Index in mem->ecc_ar[] of ECC unit to test

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t bank_start
The bank start number
The value range is 0 to mem.banks_number-1.

uint32_t bank_end
The bank end number
The value must be less than or equal to bank_start.
The value range is 0 to mem.banks_number-1.

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-159
Non-Confidential

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Data_LatentFault(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t double_error,
 uint32_t ecc_ar_idx,
 uint32_t dont_save_restore,
 uint32_t bank_start,
 uint32_t bank_end)

F.5.7 PMC100_Data_SinglePointFault

This function programs PMC-100 to carry out the Data Single Point Fault ECC logic test algorithm.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t double_error

0 For single bit error
1 For double bit error
2 For double bit error shifted by 1

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-160
Non-Confidential

3 For double bit error shifted by 2
4 For double bit error shifted by 3

uint32_t ecc_ar_idx

Index in mem->ecc_ar[] of ECC unit to test

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t bank_start
The bank start number
The value range is 0 to mem.banks_number-1.

uint32_t bank_end
The bank end number
The value must be less than or equal to bank_start.
The value range is 0 to mem.banks_number-1.

Return values

1
Pass

0
Fail

-1
Invalid parameter

Syntax
int PMC100_Data_SinglePointFault(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t double_error,
 uint32_t ecc_ar_idx,
 uint32_t dont_save_restore,
 uint32_t bank_start,
 uint32_t bank_end)

F.5.8 PMC100_Set_Reg2zero

This function sets all the writable PMC-100 registers to zero.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Return values

1
Pass

0
Fail

Syntax
int PMC100_Set_Reg2zero(Pmc100Context_type *ctx)

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-161
Non-Confidential

F.5.9 PMC100_Error_Injection

This function programs PMC-100 to inject an error into a memory location.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t address

Address of location to inject an error

The range is mem.laddr to mem.haddr.

uint32_t err_mask[]

Mask that indicates which bits to inject an error

Return values

1
Pass

0
Fail

-1
Invalid parameter

Syntax
int PMC100_Error_Injection(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t address,
 uint32_t err_mask[])

F.5.10 PMC100_Write_Read_Allregs

This function reads and writes to all the PMC-100 registers. It is intended for use in the PMC-100 self-
test.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Return values

1
Pass

0
Fail

Syntax
int PMC100_Write_Read_Allregs(Pmc100Context_type *ctx)

F.5.11 PMC100_PMC_CheckTestResult

This function checks that the Test Fail Flag is not set. If an error occurs, this function prints information
about the error.

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-162
Non-Confidential

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Return values

1
Pass

0
Fail

Syntax
int PMC100_CheckTestResult(Pmc100Context_type *ctx)

F.5.12 PMC100_ShortBurst_1port

This function programs PMC-100 to carry out the Short Burst software transparent single-ported SRAM
test.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t addrcd

Address change direction

PMC100_CTRL.ADDRCD value

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-163
Non-Confidential

Affects the next PMC100_RADDR and PMC100_CADDR address register values as follows:

0

PMC100_CADDR is changed first.

All PMC100_CADDR values are accessed before the PMC100_RADDR is changed.

1

PMC100_RADDR is changed first.

All PMC100_RADDR values are accessed before the PMC100_CADDR is changed.

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_ShortBurst_1port(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t dont_save_restore,
 uint32_t addrcd,
 uint32_t addr_end,
 uint32_t addr_start)

F.5.13 PMC100_ShortBurst_2ports

This function programs PMC-100 to carry out the Short Burst software transparent two-ported SRAM
test.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-164
Non-Confidential

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t addrcd

Address change direction

PMC100_CTRL.ADDRCD value

Affects the next PMC100_RADDR and PMC100_CADDR address register values as follows:

0

PMC100_CADDR is changed first.

All PMC100_CADDR values are accessed before the PMC100_RADDR is changed.

1

PMC100_RADDR is changed first.

All PMC100_RADDR values are accessed before the PMC100_CADDR is changed.

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-165
Non-Confidential

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_ShortBurst_2ports(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t dont_save_restore,
 uint32_t addrcd,
 uint32_t addr_end,
 uint32_t addr_start)

F.5.14 PMC100_MarchCm

This function programs PMC-100 to carry out the March C- production MBIST SRAM test.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t dont_save_restore

1 Do not save and restore SRAM contents during test
0 Save and restore SRAM contents during test

uint32_t addrcd

Address change direction

PMC100_CTRL.ADDRCD value

Affects the next PMC100_RADDR and PMC100_CADDR address register values as follows:

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-166
Non-Confidential

0

PMC100_CADDR is changed first.

All PMC100_CADDR values are accessed before the PMC100_RADDR is changed.

1

PMC100_RADDR is changed first.

All PMC100_RADDR values are accessed before the PMC100_CADDR is changed.

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_MarchCm(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend_tccr,
 uint32_t suspend_tc,
 uint32_t loops_before_suspension,
 uint32_t dont_save_restore,
 uint32_t addrcd,
 uint32_t addr_end,
 uint32_t addr_start)

F.5.15 PMC100_Raw_Mem_Dump

This function programs PMC-100 to dump the contents of a memory. Read data from the full width of
the MBIST data bus, including ECC fields, is copied to memory buffer *p. For details of the MBIST read
data format for each memory, see the integration documentation for your IP core. The contents of the
buffer can then be read by a debugger. Alternatively, the contents of an embedded memory can be
dumped directly by a debugger without needing to copy to an intermediate memory. In this case, the
function will have to be copied and modified to add debugger access mechanisms to PMC-100 registers.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t *p
Pointer to the buffer to write the content of memory

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-167
Non-Confidential

uint32_t len

Length of buffer in words = (end_addr+1- start_addr) * NUM_OF_DATA_WORDS

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Raw_Mem_Dump(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t *p,
 uint32_t len,
 uint32_t addr_end,
 uint32_t addr_start)

F.5.16 PMC100_Memory_Init

Programs PMC-100 to initialize the contents of a memory 0. Writes are performed through the ECC
generation logic and the ECC fields are also initialized correctly.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-168
Non-Confidential

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Memory_Init(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend,
 uint32_t loops_before_suspension,
 uint32_t addr_end,
 uint32_t addr_start)

F.5.17 PMC100_Mem_Scrub

This function programs PMC-100 to carry out the memory scrubbing algorithm.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-169
Non-Confidential

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Mem_Scrub(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend,
 uint32_t loops_before_suspension,
 uint32_t addr_end,
 uint32_t addr_start)

F.5.18 PMC100_Mem_Fatal_Scrub

This function programs PMC-100 to carry out the memory scrubbing algorithm with un-correctable error
check. At the beginning of each loop, the algorithm checks if the current memory location contains an
uncorrectable error and if it does, the test fails.

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-170
Non-Confidential

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t suspend_tccr
Enables suspend mode using the TCCR register value and used as the TCCR.TCCI value

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t suspend_tc
Enables suspend mode using the TC input signal

 Note

Both suspend_tccr and suspend_tc must not be non-zero at the same time. If both parameters
are zero, suspend mode is disabled and the function uses poling to detect test end or test fail. If
either parameter is non-zero, then suspend mode is enabled and interrupt will indicate whether
the test ends or fails. The return value should be ignored in this case.

uint32_t loops_before_suspension

Number of loops to perform before suspending - 1

uint32_t addr_end

End address of SRAM region tested

The range is mem.laddr to mem.haddr.

uint32_t addr_start

Start address of SRAM region tested

The value must be less or equal to addr_end.

The range is mem.laddr to mem.haddr.

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_Mem_Fatal_Scrub(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t suspend,
 uint32_t loops_before_suspension,
 uint32_t addr_end,
 uint32_t addr_start)

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-171
Non-Confidential

F.5.19 PMC100_MemError_Reporting_Bus

This function programs PMC-100 to inject an error into a memory location and read it back through the
ECC checking logic. The MBISOLPREN signal is set during the read that enabled the error to be
reported on the IP core error reporting bus. The original value of the memory location is saved and
restored.

Parameters

Pmc100Context_type *ctx
Pointer to the library context

Pmc100MemInfo_type *mem
Pointer to the structure which stores all the information for a particular memory type

uint32_t double_error

0 For single bit error
1 For double bit error

uint32_t address

Address of location to inject an error

Return values

1
Pass

0
Fail

-1
Invalid parameter value

Syntax
int PMC100_MemError_Reporting_Bus(Pmc100Context_type *ctx,
 Pmc100MemInfo_type *mem,
 uint32_t double_error
 uint32_t address)

F PMC-100 software library
F.5 PMC-100 software library functions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-F-172
Non-Confidential

Appendix G
Revisions

This appendix describes the technical changes between released issues of this book.

It contains the following section:
• G.1 Revisions on page Appx-G-174.

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-G-173
Non-Confidential

G.1 Revisions
The following table shows the technical changes between released issues of this book.

Table G-1 Issue 0000-01

Change Location Affected

First release for r0p0 - -

G Revisions
G.1 Revisions

101528_0000_01_en Copyright © 2021 Arm Limited or its affiliates. All rights reserved. Appx-G-174
Non-Confidential

	Arm® PMC-100 Technical Reference Manual
	Table of Contents
	Preface
	About this book
	Product revision status
	Intended audience
	Using this book
	Glossary
	Typographic conventions

	Additional reading

	Feedback
	Feedback on this product
	Feedback on content

	1 : Introduction
	1.1 : PMC-100 overview
	1.2 : PMC-100 advantages

	2 : MBIST usage models
	2.1 : On-line MBIST on-line memory
	2.1.1 : Test memory with on-line MBIST on-line memory use case

	2.2 : On-line MBIST off-line memory
	2.2.1 : Test memory with on-line MBIST off-line memory use case

	3 : PMC-100 functional description
	3.1 : PMC-100 functionality
	3.2 : RTL parameters
	3.3 : Two-port SRAM support
	3.4 : Loop operations
	3.4.1 : Loop end behavior
	3.4.2 : Loop operation execution

	3.5 : APB slave interface
	3.6 : Reset behavior
	3.7 : Clock gating
	3.8 : Denial of Service

	4 : PMC-100 programmers model
	4.1 : PMC-100 register memory map
	4.2 : PMC-100 register access overview
	4.3 : PMC-100 register summary
	4.4 : PMC-100 programming
	4.4.1 : Standard register initialization and programming

	4.5 : Main control register, PMC100_CTRL
	4.5.1 : PMC-100 state machine
	Start_r event
	Start_s event
	Suspend event
	Resume event
	Stop event
	Abort event
	Program execution modes

	4.6 : MBISTOLCFG output register, PMC100_CFGR
	4.7 : Memory control register, PMC100_MCR
	4.8 : Array register, PMC100_AR
	4.9 : Byte enable register, PMC100_BER
	4.10 : Program counter register, PMC100_PCR
	4.11 : Read pipeline register, PMC100_RPR
	4.12 : Low address register, PMC100_LOWADDR
	4.13 : High address register, PMC100_HIGHADDR
	4.14 : Column address register, PMC100_CADDR
	4.15 : Row address register, PMC100_RADDR
	4.15.1 : Address output value, PMC100_CTRL.BAMEN=0
	4.15.2 : Address output value, PMC100_CTRL.BAMEN=1

	4.16 : Data registers, PMC100_X0-PMC100_X7 and PMC100_Y0-PMC100_Y7
	4.17 : Auxiliary input register, PMC100_AIR
	4.18 : Auxiliary input register, PMC100_AOR
	4.19 : MBISTOLERR input register, PMC100_MER
	4.20 : Data mask, fault bitmap, and data registers, PMC100_DM0-PMC100_DM7
	4.21 : XOR mask registers, PMC100_XM0-PMC100_XM7
	4.22 : Program registers, PMC100_P0-PMC100_P31
	4.22.1 : PSEL encoding values
	4.22.2 : OP encoding values

	4.23 : Loop start program register, PMC100_LSPR
	4.24 : Loop counter register, PMC100_LCR
	4.25 : Loop suspend counter register, PMC100_LSCR
	4.26 : Test continue counter register, PMC100_TCCR
	4.27 : CoreSight™ register summary
	4.28 : Integration Mode Control register, PMC100_ITCTRL
	4.29 : Claim Tag Set register, PMC100_CLAIMSET
	4.30 : Claim Tag Clear register, PMC100_CLAIMCLR
	4.31 : Device Affinity register 0, PMC100_DEVAFF0
	4.32 : Device Affinity register 1, PMC100_DEVAFF1
	4.33 : Authentication Status register, PMC100_AUTHSTATUS
	4.34 : Device Architecture register, PMC100_DEVARCH
	4.35 : Device Configuration Register 1, PMC100_DEVID1
	4.36 : Device Configuration Register, PMC100_DEVID
	4.37 : Device Type Register, PMC100_DEVTYPE
	4.38 : PMC100_PIDR0-7, Peripheral Identification Registers
	4.39 : PMC100_CIDR0-3, Component Identification Registers

	A : Short-burst software-transparent algorithm
	A.1 : Short-burst software-transparent overview
	A.2 : SRAM faults
	A.3 : Single ported SRAM test algorithm
	A.3.1 : Microcode

	A.4 : Two ported SRAM test algorithm
	A.4.1 : Microcode

	B : Production test March Algorithm
	B.1 : Production test March algorithm overview
	B.1.1 : March notation

	B.2 : March C- algorithm
	B.2.1 : Microcode

	C : On-line MBIST Memory Protection Logic Test Algorithms
	C.1 : Address Protection Logic Latent Fault Detection algorithm
	C.1.1 : Microcode

	C.2 : Address Protection Logic Single-point Detection algorithm
	C.2.1 : Microcode

	C.3 : Data Protection Logic Latent Fault Detection algorithm
	C.3.1 : Microcode

	C.4 : Data Protection Logic Single-point Fault Detection algorithm
	C.4.1 : Microcode

	D : Miscellaneous Algorithms
	D.1 : Memory scrubbing algorithm
	D.1.1 : Microcode

	D.2 : ECC/parity code field initialization algorithm
	D.2.1 : Microcode

	D.3 : Memory dumping algorithm

	E : Signal descriptions
	E.1 : Clock and reset signals
	E.2 : APB slave interface signals
	E.3 : MBIST master interface signals
	E.4 : Execution control and status signals
	E.5 : Miscellaneous signals

	F : PMC-100 software library
	F.1 : PMC-100 software library overview
	F.2 : PMC-100 software library configuration and usage
	F.2.1 : Release directory structure and file overview
	F.2.2 : PMC-100 software library source code file structure

	F.3 : PMC-100 software library data structures
	F.3.1 : pmc100.h data structures
	IP core memory information structure
	Parameter structure
	Register address offset structure
	Context structure

	F.3.2 : Example core_pmc100_mem_description.h file
	F.3.3 : Example <core>_pmc100_mem_description<unique>.h file

	F.4 : PMC-100 software library function parameters
	F.5 : PMC-100 software library functions
	F.5.1 : PMC100_SW_Version
	F.5.2 : PMC100_Check_Device_ID
	F.5.3 : PMC100_PMC_Selftest
	F.5.4 : PMC100_Address_LatentFault
	F.5.5 : PMC100_Address_SinglePointFault
	F.5.6 : PMC100_Data_LatentFault
	F.5.7 : PMC100_Data_SinglePointFault
	F.5.8 : PMC100_Set_Reg2zero
	F.5.9 : PMC100_Error_Injection
	F.5.10 : PMC100_Write_Read_Allregs
	F.5.11 : PMC100_PMC_CheckTestResult
	F.5.12 : PMC100_ShortBurst_1port
	F.5.13 : PMC100_ShortBurst_2ports
	F.5.14 : PMC100_MarchCm
	F.5.15 : PMC100_Raw_Mem_Dump
	F.5.16 : PMC100_Memory_Init
	F.5.17 : PMC100_Mem_Scrub
	F.5.18 : PMC100_Mem_Fatal_Scrub
	F.5.19 : PMC100_MemError_Reporting_Bus

	G : Revisions
	G.1 : Revisions

