

Arm Flexible Access program

Creating a system for Machine Learning
at the Edge

Non-Confidential Version 01
Copyright © 2020 Arm Limited (or its affiliates).
All rights reserved.

102076_0100_00

Arm Flexible Access program Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 41

Arm Flexible Access program

Creating a system for machine learning at the edge

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 1st June 2020 Non-confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information for the purposes of determining whether implementations
infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade
secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to
create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through
or signed written agreement covering this document with Arm, then the click through or signed
written agreement prevails over and supersedes the conflicting provisions of these terms. This
document may be translated into other languages for convenience, and you agree that if there is any

Arm Flexible Access program Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 41

conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of
Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please follow
Arm's trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject
to license restrictions in accordance with the terms of the agreement entered into by Arm and the
party that Arm delivered this document to.

Product Status

The information in this document is Final, that is relating to developed pieces IP.

Web Address

33Thttp://www.arm.com 33T

http://www.arm.com/company/policies/trademarks
http://www.arm.com/

Arm Flexible Access program Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 41

Contents

1 Overview ... 7

2 The possibilities of a dual Cortex-A53 SoC with a Mali GPU... 8

2.1 Machine learning at the edge ... 8

2.2 Software support ... 8

2.3 Case study ... 9

2.4 Smart devices ... 10

3 System diagram .. 11

4 Configuring and connecting the Cortex-A53 processors .. 13

4.1 Configuration ... 13

4.2 Connections .. 13

5 Configuring and connecting the Mali-G52 ... 15

5.1 Configuration ... 15

5.2 Connections .. 15

6 Using a CCI-500 in the SoC ... 16

6.1 Configuration ... 16

6.2 Connections .. 16

7 Using a NIC-400 in the SoC ... 17

7.1 Configuration ... 17

7.2 Connections .. 18

8 Configuring and connecting the GIC-500 ... 19

8.1 Architectural overview ... 19

8.2 Configuration ... 19

8.3 Connections .. 20

9 Configuring and connecting the MMU-500 ... 21

9.1 Functionality ... 21

9.2 Configuration ... 22

9.3 Connections .. 22

Arm Flexible Access program Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 41

10 Configuring and connecting the TZC-400 ... 23

10.1 Overview of the TZC-400... 23

10.2 Configuration .. 23

10.3 Connections ... 24

11 Configuring and connecting the ADB-400... 25

12 Using the SoC-400 to create a debug subsystem ... 26

12.1 Serial Wire JTAG Debug Port ... 27

12.2 Debug Access Port Bus Interconnect .. 28

12.3 APB Access Port ... 28

12.4 AXI Access Port .. 28

12.5 APB Interconnect .. 28

12.6 Cross Trigger Matrix ... 29

12.7 Cross Trigger Interconnect .. 29

12.8 Trace funnel .. 29

12.9 Trace replicator .. 30

12.10 Embedded Trace Buffer .. 30

12.11 Trace Port Interface Unit ... 31

13 Smaller IP ... 32

13.1 BP140 AXI Internal Memory Interface ... 32

13.2 PL011 UART Universal Asynchronous Receiver/ Transmitter ... 32

13.3 PL061 General Purpose Input/Output.. 32

13.4 Dual timer .. 33

13.5 Watchdog timers ... 33

14 Clock and power management in an SoC ... 34

14.1 Low-Power Interfaces .. 34

14.2 PCK-600 components .. 35

14.2.1 Low-Power Distributor Q-Channel .. 35

14.2.2 Low-Power Distributor P-Channel ... 35

14.2.3 Low-Power Combiner Q-Channel ... 35

14.2.4 P-Channel to Q-Channel Converter ... 36

14.2.5 Power Policy Unit .. 36

14.2.6 Clock Controller ... 36

14.3 Usage example .. 36

Arm Flexible Access program Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 41

15 Related information ... 38

16 Next steps .. 41

Arm Flexible Access program Creating a system for machine
learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 41

1 Overview
This guide is for a system designer, possibly with access to the Arm Flexible Access program.
This guide will help you to develop a System on Chip (SoC) that can perform machine learning at
the edge. The SoC that is presented in this guide can handle machine learning tasks related to
image recognition. Image recognition is a reasonably complex machine learning task, which
usually requires more performance than, for example, keyword recognition.

The guide is also relevant to system designers who want to create an SoC for a high-end smart
device, for example a smartphone.

Specifically, the guide explains:

• Why specific pieces of IP were chosen for this SoC

• How to configure the pieces of IP to use them in this SoC

• How to connect the pieces of IP together

The aim is to provide a broad view of how the pieces of IP work together. Use the SoC
presented in this guide as an example. It is expected that you customize the SoC to suit your
exact requirements. This involves further understanding and configuration of each piece of IP,
the possible removal of some IP, or the addition of extra IP.

This guide uses IP from the Arm Flexible Access program. The Arm Flexible Access program
provides low-cost access to a wide range of Arm IP, so that you can experiment and design with
a complete IP portfolio. If you have a license for the Arm Flexible Access program, or hold
licenses for the individual pieces of IP, use this guide as a starting point. You can then begin to
take practical steps with the IP and tweak the design to suit your individual requirements.

If you do not have any licenses, this guide still provides you with a unique overview. You can
then go deeper into the specifics of any individual piece of IP included in the SoC.

https://www.arm.com/products/flexible-access/product

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 41

2 The possibilities of a dual Cortex-
A53 SoC with a Mali GPU
This SoC design highlights the performance that is available in an SoC designed from IP within
the Arm Flexible Access program. Before being included in the Arm Flexible Access program,
the Cortex-A53 already had a reputation as a widely used, high-end processor with 64-bit
capabilities. In addition to being high performing, the Cortex-A53 has low-power usage.

There are two Cortex-A53 processors in this SoC, which substantially increases the
performance that is available. The combination of high-performance with low-power usage
gives a range of scenarios under which you could use this SoC. Specifically, IoT and mobile
devices could benefit from using a system based around this design. The next two sections
explore a machine learning use case and a smart device use case.

2.1 Machine Learning at the edge
Machine Learning (ML) performs computational tasks by recognizing patterns and making
inferences. An inference is a process of applying models, that are built using sample data, to
accomplish a defined task. For example, the task could be image recognition in a frame that is
received from a camera. Building the models involves a process that is called training. ML
algorithms can continue to learn after the models have been built. Therefore, the algorithms
can improve over time and adapt to changes.

ML is moving out of the cloud and into the devices that gather the data. This trend is called ML
moving to the edge. The reasons for this trend include efficiency, speed, privacy, and security.
The emergence of connected devices in new areas, like advanced autonomous cars, is also
accelerating the process.

This SoC can support Machine Learning at the edge. This means that the analysis is done in the
same place that the data is collected. This approach represents a marked alternative to sending
the data to the cloud for analysis. Eliminating the delay involved in bouncing information to the
cloud and back helps give the real-time responses that an end user requires. The solution also
works when the cloud is unreachable.

2.2 Software support
Arm provides software platforms to complement a system that has the hardware capabilities to
run a Neural Net (NN). The following table gives a brief description of two Neural Net software
platforms Arm provides.

Table 2-1 Arm neural net software platforms

Software Description

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 41

Arm NN An inference engine that bridges the gap between existing
NN frameworks and underlying Arm IP, including the
Cortex-A53 and Mali-G52. Arm NN works with models
trained by existing neural net frameworks like:

• Caffe

• TensorFlow Lite

• ONNX and PyTorch

The most recent version of Android is supported through
the NNAPI. This API enables performance acceleration
through Mali GPUs, Ethos-N NPUs, and Cortex-A CPUs.

Importantly, Arm NN abstracts the details of the
underlying Arm processor IP. This abstraction allows NN
frameworks to use the latest hardware features without
the need to port between platforms and generations.
Execution of ML algorithms is optimized and can run on a
multiprocessor.

The Arm NN SDK is supplied as open-source software and
enables ML workloads on Android and Linux edge devices.

Arm Compute Library A convenient repository of low-level kernels that
developers can use to accelerate their algorithms and
applications. The functions have been implemented for:

• The Arm Cortex-A family of CPUs

• The Arm Mali family of GPUs

2.3 Case study
To be effective, inferences must be completed within time constraints. These constraints mean
that the performance of a system determines what kind of inference can be completed on time.
For example, keyword detection is less expensive than voice and image recognition.
Autonomous driving is even more expensive than voice and image recognition.

In terms of machine learning, the inclusion of a six-core Mali-G52 in the SoC gives an
advantage. The system is potentially capable of image recognition. Imagine a camera on a door
that provides access when it recognizes the face of a person. For a workable solution, the
response must be instant as soon as a human is perceived. The system must be able to make
five inferences a second. This figure is the inference rate, which is also referred to as the frame
rate. In other words, the inference must complete in 200ms. For face unlocking using SSD-
Mobile Net v1, we estimate that each inference would take about 20ms. This figure is very
usable, because the system can complete 50 inferences a second or run other workloads
sequentially.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 41

2.4 Smart devices
A high performance yet energy efficient SoC is ideal for powering a sophisticated smart device.
Ultimately, a smart device must run an operating system, and this SoC can support this
requirement.

The inclusion of a 6-core Mali-G52 processor allows the SoC to bring premium visual
experiences to the end user.

You could use this SoC design for any system that requires high-end graphics capabilities,
including high-end IoT devices. For example, you could use this SoC for:

• A smartphone

• A fridge with a touch-screen interface

• A printer with a touch-screen interface

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 41

3 System diagram
This section contains a diagram showing how the different pieces of IP in the dual Cortex-A53
SoC connect to each other. The diagram also shows external connections to system masters
and RAM.

The following pieces of IP are used in the preceding figure:

• Cortex-A53 processor

• Mali-G52 graphics processor

• CoreLink CCI-500 Cache Coherent Interconnect

• CoreLink NIC-400 Cache Coherent Interconnect

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 41

• CoreLink GIC-500 Generic Interrupt Controller

• CoreLink MMU-500 System Memory Management Unit

• CoreLink TZC-400 TrustZone Address Space Controller

• CoreLink ADB-400 AMBA Domain Bridge

• CoreSight SoC-400 Debug and Trace

• BP140 AXI Internal Memory Interface

• PL011 UART Universal Asynchronous Receiver/Transmitter

• PL061 General Purpose Input/Output

• Corstone-201 Foundation IP, which contains all the other Arm IP mentioned in this section

The Arm Flexible Access program supplies all the IP in the preceding list.

The Configuration sections of this guide explore how the pieces of IP in this SoC are configured.
The Connections sections of the guide explore how these IP are connected to each other.

The sections in this guide that relate to connections assume that Q-Channel or P-Channel
Low-Power Interfaces (LPIs) are available for each piece of IP. Clock and Power Management
in an SoC explores LPIs in more detail.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 41

4 Configuring and connecting the
Cortex-A53 processors
This system is based around two Cortex-A53 clusters, which provide high performance coupled
with low-power usage.

4.1 Configuration
In this SoC, the following configuration options were chosen for the Cortex-A53 clusters:

• Both clusters have the maximum of four cores. You can choose between one and four
cores for each Cortex-A53 cluster.

• Each cluster has an AXI Coherency Extensions (ACE) interface that connects to a CCI-
500. You can choose to have either a Coherent Hub Interface (CHI) or an ACE interface
for each Cortex-A53 cluster.

• Each cluster is configured to integrate with either an external GICv3 or an external
GICv4 distributor, in this case the GIC-500. You must enable the external Generic
Interrupt Controller (GIC) interface for this option. The option to integrate with an
external GICv2 distributor component is possible. If you use this option, the internal
GIC must be disabled.

• Each cluster supports a Floating Point Unit (FPU) and Neon. We recommend including
this functionality for a system on which you intend to run Linux.

• Each core has a L1 cache of 32KB. You can configure the L1 caches for a core to be
between 8KB and 64KB.

• The Cortex-A53 clusters share an L2 cache of 1024KB. You can configure the L2 cache
for a cluster to be between 128KB and 2048KB.

• All L1 and L2 caches have Error Correcting Code (ECC) included. This feature provides
fault protection capability for the caches.

4.2 Connections
Each Cortex-A53 cluster includes the interfaces that are shown in the following table:

Table 4-1 Cortex-A53 cluster interfaces

Interfaces Description

ACE master Each cluster has an ACE master interface that connects to the CCI-
500. This interface allows the cores within the cluster to access
memory, peripherals, and other components.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 41

Stream
protocol

Each cluster has a stream protocol interface that can connect to an
external interrupt controller. In this case, the external interrupt
controller is a GIC-500.

Debug APB3
slave

Each cluster has an APB3 debug slave interface. This interface
enables a debug control subsystem, in this case a CoreSight SoC-
400 subsystem, to access system resources. For example, the
subsystem can use this interface to set watchpoints and
breakpoints.

ATB master Each core has an AMBA Trace Bus (ATB) master interface. These
interfaces transmit trace data from the Embedded Trace Macrocell
(ETM) of each core. ETMs capture the execution of a program
running on a core and this information is known as trace data. In this
SoC, the trace data is sent to a CoreSight SoC-400 subsystem.
Components in the subsystem store trace data on-chip and off-chip.
External analyzers can decompress the data as required.

ACP Each cluster has an Accelerator Coherency Port (ACP). This
interface provides access for non-cached masters, such as a DMA
controller. This interface only supports a subset of AXI transaction
types and is not used in this SoC.

MBIST Each cluster has a Memory Built-in Self-test (MBIST). This interface
supports performing a manufacturing test of the memories that are
embedded in the Cortex-A53 process.

DFT Each cluster has a Design For Test (DFT) interface. This interface
enables an industry standard Automatic Pattern Generation (ATPG)
tool to test logic outside of the embedded memories.

Cross-trigger Each cluster has a cross-trigger interface. This interface allows you
to connect, through a Cross Trigger Matrix, to the cross-trigger
channel interfaces of other clusters, and Cross Trigger Interface
components in the system. A Cross Trigger Matrix provides:

• The connectivity that supports cross-cluster halting.

• The connectivity to communicate a trace collection trigger
signal for a trace subsystem.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 41

5 Configuring and connecting the
Mali-G52
Our example SoC benefits from the inclusion of a Mali-G52 graphics processor. This GPU is
based on the Bifrost architecture and is designed to bring premium visual experiences to
mainstream mobile devices. In addition, the Mali-G52 has a significant Machine Learning
capability.

5.1 Configuration
In this SoC, the Mali-G52 has been configured to have six cores. This number of cores provides
high performance when using the Mali-G52 for Machine Learning tasks.

You can choose to have one, two, three, four, or six cores in a Mali-G52. The choice of core
affects the size options that are available for the L2 cache. For example, a two-core Mali-G52
GPU has the option of either a 128KB cache or a 256KB cache. Three, four, and six-core Mali-
G52 clusters have the option of having two 256K L2 caches. For our SoC, we chose two 256K
L2 caches for the Cortex-G52 cluster.

5.2 Connections
Each Mali-G52 includes the interfaces that are shown in the following table:

Table 5-1 Mali-G52 interfaces

Interface Description

ACE master A Mali-G52 with L2 caches has two ACE master interfaces. In this SoC,
these two interfaces connect to the CCI-500. These interfaces allow
the GPU to access internal and external memory in the system.

AXI4 slave A Mali-G52 has an AXI slave interface. In this SoC, this interface
connects to the NIC-400. The interface provides access to the control
and status registers for the GPU driver running on the CPU. The driver
uses the GPU control registers to configure the graphics system to
start and control multiple concurrent jobs running on the GPU.

Interrupt A Mali-G52 can send interrupt requests. These requests are usually
made to signal that a graphics job is complete, but also whenever a
graphics job fails. In this SoC, the interrupt line connects to the GIC-
500, which distributes them to the Cortex-A53 cores, so they can act
on them.

Q-Channel A Mali-G52 cluster has a Q-Channel port. This port allows a clock
controller to query the GPU about whether the clock domain
containing the GPU can be shut down.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 41

6 Using a CCI-500 in the SoC
The SoC requires an interconnect from the CoreLink Cache Coherent Interconnect (CCI)
family. These interconnects provide ACE interfaces that the Cortex-A53 and Mali-G52 must
connect to. Because the CCI-400 only provides two ACE slave masters, a CCI-500 is required.

The CoreLink CCI-500 provides:

• Between one and four ACE slave interfaces

• Between zero and six ACE-Lite slave interfaces

• Between one and four AXI4 master memory interfaces

• Between one and two AXI4 master system interfaces

6.1 Configuration
In this SoC, the CoreLink CCI-500 is configured to have:

• Four ACE slave interfaces

• Two ACE-Lite slave interfaces

• Four AXI4 master memory interfaces

• Two AXI4 master system interfaces

If you need more than two AXI4 master system interfaces, and striping is not enabled, you can
use memory interfaces as system interfaces.

6.2 Connections
The following table shows the IP that CCI-500 interfaces connect to in this SoC:

Table 6-1 CCI-500 interfaces used in this SoC

Interface Number Connection

ACE master 4 Connect to the Cortex-A53 clusters, through ADB-400s,
and the Mail-G52

ACE-Lite
slave

4 Connect to the MMU-500 and GIC-500. The GIC-500
AXI master interface can use an ACE-Lite interface.

Memory
AXI4 master

4 Connect to two BP140 memory controllers and two
third-party RAM controllers, through a TCZ-400

System AXI4
master

1 Connect to the NIC-400

https://en.wikipedia.org/wiki/Data_striping

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 41

7 Using a NIC-400 in the SoC
The CCI-500 does not provide all the interfaces that this SoC requires. The SoC needs more
AXI interfaces and APB interfaces, which the CCI-500 does not support.

The solution requires a second interface that supports APB interfaces and a larger number of
AXI slave and master interfaces. The CoreLink network interconnect family offers the NIC-400
and NIC-450 to help with this.

The CoreLink NIC-400 is:

• Highly configurable

• Offers Network on Chip (NoC)-like properties

• Provides fully configurable, hierarchical, low latency, and low-power connectivity for AXI,
AHB-Lite, and APB interfaces

• Consists of up to 128 masters and 64 slaves of AMBA protocols. AXI and AHB-Lite
protocols are supported for the master and slave interfaces. The master interfaces also
support APB protocols.

7.1 Configuration
To configure an NIC-400, you must use Socrates. Socrates is available as part of the Arm
Flexible Access program. The following list broadly covers the steps that you need to follow to
configure an NIC-400:

1. Define the high-level specification, which covers the overall look and behavior of the NIC-
400. The high-level specification includes clock domains, slave interfaces, and master
interfaces. To define the interfaces, select the protocol and choose appropriate values for
data width, ID width, and other parameters.

2. Create the memory map. This map enables a transaction to be sent to the correct interface.
For each address, the NIC-400 can determine which port to use.

3. Set the paths. These paths determine which interfaces can talk to each other. The paths
allow Socrates to optimize the NIC-400. Setting paths also increases the security of the
NIC-400 by facilitating physical path removal between non-communicating interfaces.

4. Generate the microarchitecture. During this process, Socrates checks the configuration is
valid and creates internal connections for the NIC-400. The internal blocks are connected
using switches. The switches match the paths between the interface that you previously
defined in step 3.

5. Edit the microarchitecture to obtain more performance. When generating
microarchitecture, Socrates optimizes the result for area. This step gives you a chance to
look at performance. In addition, you can also add buffering, add register slices, and resolve
deadlocks.

6. Perform a full validation to check any changes that you made. Designs are run against the
Design Rule Check (DRC). The DRC checks whether an NIC-400 design is valid.

https://en.wikipedia.org/wiki/Network_on_a_chip

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 41

7. Change the high-level specification as required and feed the result back into the
microarchitecture. At this stage, changes like this are still possible and can also be validated.
The design is now finalized and ready for the next step.

8. Generate the RTL. The top-level RTL contains the clock ports, and slave and master
interfaces. The NIC-400 is now ready for connection to other IP.

In this SoC, the NIC contains five AXI interfaces and eight APB interfaces.

7.2 Connections
The following table shows the IP that NIC-400 interfaces connect to:

Table 7-1 NIC-400 interfaces used in this SoC

Interface Connection

AXI4 master Connect to the:

• GIC-500

• Mali-G52

AXI4 slave Connect to the:

• GIC-500

• CCI-500

• SoC-400 subsystem

APB master Connect to the:

• SoC-400 subsystem

• TZC-400

• MMU-500

• Timers

• GPIO

• UART

• Watchdog timer

• PCK-600 Power Policy Unit

Any extra APB peripherals connect to APB master interfaces.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 41

8 Configuring and connecting the
GIC-500
Our example SoC requires an external Generic Interrupt Controller (GIC). Both the GIC-400
and GIC-500 are external. This SoC benefits from the inclusion of a GIC-500, which is based on
a later architecture than the GIC-400 and provides more advanced interrupt options.

8.1 Architectural overview
The GIC-500 is based on the GICv3 architecture. The GIC-500 receives interrupts from, for
example, a GPIO, UART, or a peripheral. Depending on how the GIC-500 is configured, the
interrupts are managed and distributed to up to 32 clusters in an SoC. Each cluster can have up
to eight cores. The GIC-500 interfaces with clusters rather than cores. Interrupts are, however,
directed to specific cores, and the GIC-500 receives notification when a core activates them.

The GIC-500 can support 960 Shared Peripheral Interrupts (SPIs). These SPIs reach the GIC-
500 from peripherals through physical inputs on standard interrupt lines.

The GIC-500 can receive up to 16 Software Generated Interrupts (SGIs). These SGIs are
received through the programmable slave interface of the GIC-500.

The GIC-500 also supports Locality-specific Peripheral Interrupts (LPIs), which are typically
used for peripherals that produce message-based interrupts. Compared with SPIs, you can
have a far larger number of LPIs than SPIs for the same area on the silicon die. This is because
LPIs are only cached and not stored in the GIC-500. LPIs are generated when peripherals write
to the Interrupt Translation Service (ITS) through the programmable slave interface. The ITS
also provides interrupt ID translation that allows the possibility of a virtual machine directly
owning a peripheral.

8.2 Configuration
You can configure the following on a GIC-500:

• The number of supported clusters

• The number of supported cores within a cluster

• The number of supported SPIs

• Whether LPIs are supported

• Whether legacy mode is supported

Therefore, you can limit the size of the GIC-500 in your SoC by excluding functionality that you
do not require. For example, if you know that you only need 32 SPIs, you can save space by
specifying this amount.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 41

8.3 Connections
The following table describes the interfaces available on the GIC-500:

Table 8-1 GIC-500 interfaces

Interface Description

Physical interrupt signals An interface that allows physical interrupts to be
received. The interrupts originate from peripherals and
other IP on the SoC.

Stream protocol master One of a pair of AXI-Stream interfaces. The GIC-500
uses these interfaces to send interrupts to a core and
receive notifications from a core. Packets are sent
through the master interface to a specific core within
the cluster.

Stream protocol slave One of a pair of AXI-Stream interfaces. The GIC-500
uses these interfaces to send interrupts to a core and
receive notifications from a core. The slave interface
receives notification when a core activates an interrupt.

AXI slave A slave AXI interface allowing software to program and
configure the GIC-500. Software can also generate SGIs
using this interface. Peripherals can use it to generate
LPIs.

Master A master AXI interface allowing the GIC-500 to access
the main memory on the SoC. This interface is available
if the ITS is present and LPIs are supported. In these
cases, the GIC-500 must access information in the form
of tables that are held in memory. Because you can have
thousands of LPIs, storing LPI-related information
requires the use of the main memory.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 41

9 Configuring and connecting the
MMU-500
This SoC allows external system masters to connect to it, which requires the inclusion of an
MMU-500. The MMU-500 adds a flexibility to the SoC, which can be used as required.

9.1 Functionality
The MMU-500 is a System MMU. For system masters, a System MMU performs a functionality
similar to the functionality that CPU MMUs perform for CPU cores. This functionality involves
the translation of virtual addresses into physical addresses. Both types of MMU use the same
translation tables, which are defined during memory virtualization. These translation tables are
stored in the main memory of the SoC.

The MMU-500 effectively enables one or more system coherent masters to operate in the
same virtual address space as the Cortex-A53 clusters. The system masters could be a:

• DMA

• Display processor

• GPU

• Custom accelerator

• PCIe interface

The MMU-500 can perform multiple address translations from different system masters at the
same time. Context switching is not required.

The MMU-500 is composed of two main blocks, the Translation Buffer Unit (TBU) and the
Translation Control Unit (TCU). One MMU-500 instance can have up to 32 TBUs but always
has a single TCU.

TBU master interfaces are paired with a slave interface. Each system master requires a TBU
master and slave pair. The TBU receives system master transactions, which are tagged with a
virtual address, on the allocated slave interface. After translating the addresses, the TBU
accesses the memory using the corresponding master interface.

In an SoC, the TBU is expected to be physically near the connected system master. This
requirement means that the TBU is in the same clock or power domain as the system master.
The TBU also includes a Translation Lookaside Buffer (TLB) to cache translation table
information. The purpose of the buffer is to speed up the translations by caching translation
table descriptors.

The TCU is a central control block that is responsible for reading translation tables from
memory through its main master interface. The translation information is sent to the TBU,

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 41

which puts them in the TLB. The TCU also includes extra caches and implements the MMU-500
programmers view, which is a set of configurable registers.

9.2 Configuration
The main configuration parameters for each TBU are:

• The TLB depth. Each TLB can have up to 128 entries. One entry is used for each translation
table descriptor.

• The write data buffer depth. For a memory write, this buffer holds the data to write.

• The number of transactions that can be handled in parallel. The maximum value is 16.

The main configuration parameters for the TCU are:

• The depth of the various caches

• The maximum number of translations (translation table walks) that can be handled in
parallel

9.3 Connections

Table 9-1 MMU-500 interfaces

Interface Description

TBU ACE-Lite slave The MMU-500 has up to 32 ACE-Lite slave interfaces.
Coherent masters connect to these interfaces and send
virtual address requests.

TBU ACE-Lite master The MMU-500 has up to 32 ACE-Lite master interfaces that
pair with the slave interfaces. The master interfaces connect
to the CCI-500 and can read and write to memory using the
translated virtual addresses.

Each coherent master uses one slave and one master
interface on the MMU-500. In this way, the MMU-500
intercepts traffic driven to it by each coherent master and
enables access to the correct physical address in memory.

TCU ACE-Lite master The MMU-500 has a single ACE-Lite master interface that
obtains translated addresses from the translation tables,
which are stored in the main memory.

TCU ACE-Lite
configuration

The MMU-500 has an AXI4 slave interface that enables
software to configure the MMU-500. The configuration
process involves setting registers.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 41

10 Configuring and connecting the
TZC-400
This SoC design anticipates that significant data, requiring extra access control, is in Non-
secure memory. By including the TZC-400, the option is available to protect this data. The
protection is slave side, which means that it comes after an interconnect master interface
rather than, for example, a system master interface.

10.1 Overview of the TZC-400
The TZC-400 enables you to partition and protect up to eight regions of memory by marking
them as read-only or write-only. To assist with this process when the IP is integrated into an
SoC, the TZC-400 also has a concept known as a filter unit. Each individual memory port
requires one filter unit. You can configure the TZC-400 to have one filter unit, or multiple filter
units, depending on the requirements of the system memory. The eight definable regions apply
to all filter units. Therefore, the filter view is the same when accessing any memory port
through a specific TZC-400 filter unit. In this SoC, there are two memory ports.

Access to the eight regions is also controllable. There are two ways to achieve this control:

• Restricting access to a region according to the Non-secure Access ID (NSAID) of a master

• Marking any region as inaccessible for a filter unit. In other words, you can prevent access
to a region through a specific port.

Because the Cortex-A53 MMUs and the MMU-500 give an SoC protection, the TZC-400
increases the level of protection that is available. While Cortex A-series processors support
TrustZone, the TZC-400 allows you to add extra security permissions within memory that is
marked as Non-secure by TrustZone.

A large video buffer is an example of where these permissions could be useful. It is not ideal to
place a large memory requirement, like a video buffer, inside memory that is marked as Secure
by TrustZone. A video codec can also be potentially buggy. TrustZone Secure memory is better
for smaller data like cryptographic keys. In this SoC, TrustZone Secure memory is in the SRAM
and ROM.

Although processor MMUs and the MMU-500 could protect a video buffer, this solution is
slower than using a TZC-400. Sometimes, a master does not use an MMU either. In this system,
the Mali-G52 does not access memory using an MMU. The TZC-400 ensures that memory
protection is in place for all accessing masters.

10.2 Configuration
You can configure the TZC-400 to support one, two, or four filter units. Each memory port
requires one unit. This SoC has two memory ports, so the TZC-400 is configured to have two
units.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 41

10.3 Connections
The following table describes the interfaces available on the TZC-400:

Table 11-1

Interface Description

ACE-Lite
master

An ACE-Lite master interface exists for each filter unit configured.
Masters in the system must access memory through these
interfaces.

ACE-Lite slave An ACE-Lite slave interface exists for each filter unit configured.
These slave interfaces connect to memory controllers.

APB4 slave
programming

An APB4 interface that enables software to program the registers of
the TZC-400. To ensure integrity, the addresses of these registers
must be in an area of memory that is marked as Secure by
TrustZone.

Interrupt A physical interrupt line that allows the system to assert when an
access attempt fails its security check.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 41

11 Configuring and connecting the
ADB-400
The ADB-400 is an asynchronous bridge for two components or systems that are in either a
different power domain, different clock domains, or both. An ADB-400 consists of a slave
domain and a master domain. The slave domain has a slave interface and the master domain has
a master interface.

The system design anticipates that the Cortex-A53 clusters are in a separate power or clock
domain to the CCI-500. The design includes an ADB-400 between each Cortex-A53 cluster
and the CCI-500. In this SoC, the slave and master interfaces are specified to be ACE. You can
configure the ADB-400 slave and master interfaces to use AXI3, AXI4, ACE, and ACE-Lite
protocols.

A FIFO buffer is a key part of the logic structure that the ADB-400 uses to bridge between two
clock domains. The ADB-400 receives transactions that are clocked with the slave side domain
clock. The ADB-400 then releases them in a safe way for the master side domain clock. The
depth of the FIFO buffer is configurable.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 41

12 Using the SoC-400 to create a
debug subsystem
The SoC-400 differs from other pieces of IP shown in the example SoC because it is not a single
piece of IP. The SoC-400 instead consists of several components. You can use these
components to build an infrastructure to debug, monitor, and optimize an SoC design. These
components include buses, control and access components, and trace links. Most of these
components are configurable.

System designers use SoC-400 components to create a subsystem that is designed to meet the
requirements of a specific SoC. The complexity of the subsystem depends on the SoC which the
subsystem is part of. In this SoC, the subsystem collects trace output from the four cores of
both Cortex-A53 clusters.

In this guide, the terms SoC and SoC-400 refer to different things. SoC refers to the example
dual Cortex-A53 System on Chip, which is the subject of this guide. The SoC-400 is a piece of
Arm IP that contains multiple components. The example SoC in this guide contains an SoC-
400 subsystem, which is shown as a single entity in System diagram.

The following diagram shows an SoC-400 subsystem that is suitable for our example SoC:

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 41

Now let’s explore the components in the SoC-400 subsystem that we have described, including
their configuration options and interfaces:

12.1 Serial Wire JTAG Debug Port
A Serial Wire JTAG Debug Port (SWJ–DP) allows you to connect either a Serial Wire Debug
(SWD) or JTAG probe to the SoC-400 subsystem, and therefore the SoC itself. This component
is accessible from outside the SoC. In other words, the SWJ-DP forms the main entry point into
an SoC for debugging it.

In addition to the external connection, the SWJ-DP contains a single DAPBUS master port
interface. This interface connects to the Debug Access Port Bus interconnect (DAPBUSIC) in
an SoC-400 subsystem.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 41

12.2 Debug Access Port Bus Interconnect
A Debug Access Port Bus Interconnect (DAPBUSIC) allows the SWJ-DP to combine with
Access Ports (APs). This provides a route from outside the SoC to the components within.

The DAPBUSIC has the following interfaces:

Table 13-1 DAPBUSIC interfaces

Interface Description

DAPBUS slave Each DAPBUSIC has one slave DAPBUS interface. The SWJ-DP
connects to this interface.

DAPBUS master Each DAPBUSIC has up to 32 master DAPBUS interfaces. These
interfaces connect to individual APs providing AHB, APB, AXI,
and JTAG interfaces.

12.3 APB Access Port
The APB Access Port provides a single APB master interface, and allows conversion from a
DAPBUS interface to an APB interface.

Many SoC-400 components have APB programming interfaces. The APB Access Port and the
APBIC allow you to control SoC-400 components from outside the SoC-400 subsystem.

12.4 AXI Access Port
The AXI Access Port provides a single AXI master interface and facilitates conversion from a
DAPBUS interface to an AXI interface. AXI-AP is typically used to provide an access path to the
SoC memory. You can also see the connection in the System diagram. If the CPUs hang, the
AXI-AP can provide another path to the system memory.

12.5 APB Interconnect
The APB Interconnect (APBIC) facilitates multiple master connections to APB interfaces on
components within the SoC-400 subsystem. Connections from external CoreSight components
in the SoC are also facilitated.

The APBIC has the following interfaces:

Table 12-2 APBIC interfaces

Interface Description

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 41

APB slave The APBIC can have from one to four slave APB interfaces. Only one of
these interfaces can connect to an APB-AP component. Other slave
interfaces might have connections from IPs that are outside the SoC-
400 but are part of the SoC.

For example, in the previous diagram, the Cortex-A53 clusters can
control the SoC-400 components through the connection that the NIC-
400 has with the APBIC. The APBIC connects like a master to the APB
slave interfaces on the Cortex-A53 clusters. This design facilitates
communication between the SoC-400 subsystem and the rest of the
SoC.

APB master The APBIC can have from 1-64 master APB interfaces. These
interfaces connect to and control other SoC-400 components within
the subsystem. They can also connect to IP that is external to the
subsystem.

12.6 Cross Trigger Matrix
The Cross Trigger Matrix (CTM) combines the trigger requests that are generated from CTIs
and broadcasts them to all CTIs as channel triggers. The two Cortex-A53 clusters in our
example have an internal Cross Trigger Interconnect (CTI) and CTM. Triggering requests
arising internally in a Cortex-A53 cluster are sent to the Cross Trigger Matrix of the SoC-400
subsystem.

12.7 Cross Trigger Interconnect
The CTI provides an interface that enables events broadcasting in the system.

12.8 Trace funnel
A trace funnel can combine up to eight trace sources into one. To combine more than eight
trace sources, chain several trace funnels together. This strategy effectively increases the
number of trace inputs that are available.

To avoid combinatorial timing loops, a register slice that is a forward, reverse, or full
register slice must be instantiated between the cascaded funnels.

In this system, the trace output from all cores of both Cortex-A53 clusters are combined into
one trace funnel.

A trace funnel has the following interfaces:

Table 12-3 Trace funnel interfaces

Interface Description

ATB slave You can configure the funnel to have two to eight slave ATB
interfaces that receive trace data.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 41

ATB master A master ATB interface that outputs the combined trace data.

APB slave
programming

You can configure the funnel to have an APB programming interface.
If you do, an APB slave interface is added. You can use this interface
to enable and disable slave ATB interfaces at runtime.

12.9 Trace replicator
The trace replicator enables an incoming trace stream to be passed to two trace sinks. A trace
replicator has a slave ATB interface that receives the trace stream and two master ATB
interfaces that output the combined sources.

A trace replicator has the following interfaces:

Table 12-4 Trace replicator interfaces

Interface Description

ATB slave An ATB slave interface receives the combined trace output.

ATB master Two ATB master interfaces output the trace output.

APB slave
programming

The Trace replicator can be configured to have an APB programming
interface. If you do, an APB slave interface is added. You can use this
interface to:

• Filter the trace passed to each master ATB interface
according to the trace ID.

• Filter out higher bandwidth traces from trace sinks that only
support a lower bandwidth such as a TPIU. This filtering
allows a high-bandwidth trace sink, for example an ETB, to
be enabled at the same time as a lower bandwidth trace. The
filtering prevents the lower bandwidth trace sink from
slowing down the output of both trace sinks. If the filtering
is not used, all trace sinks slow down to match the slowest
trace sink.

12.10 Embedded Trace Buffer
The Embedded Trace Buffer (ETB) provides on-chip storage of trace data in RAM. When
designing the SoC-400 subsystem, you can configure the size of the RAM for ETB and then
implement the required RAM.

The ETB contains a formatter that combines the source data and IDs into a single data stream
before storing the data in RAM. The formatter operates in an identical manner to the formatter
in the TPIU.

The ETB has the following interfaces:

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 41

Table 12-5 ETB interfaces

Interfaces Description

ATB slave Receives the combined trace output to store.

APB slave Allows programing of the ETB through its registers. In addition, you
can read the captured trace through this interface.

Cross trigger Allows you to send and receive cross trigger events to and from a
CTI.

MBIST Enables the testing of the storage RAM.

12.11 Trace Port Interface Unit
The Trace Port Interface Unit (TPIU) formats the trace data that it receives and outputs the
formatted data through the pins of the trace port. The Trace Port Analyzer (TPA) can then
capture the data. In other words, the trace port in the TPIU provides a route for trace out of the
SoC that the TPIU is part of. The TPIU can output patterns over the trace port so that a TPA
can tune its capture logic to the trace port. This feature enables the maximization of the speed
at which trace can be captured.

The TPIU inserts source ID information into the trace stream. The formatter operates in an
identical manner to the formatter in the ETB.

The TPIU has the following interfaces:

Table 12-6 TPIU interfaces

Interfaces Description

Trace out Connects to the external trace port pins to facilitate trace exporting.

ATB slave Receives the combined trace output to export out of the SoC.

APB slave Allows programming of the TPIU through its registers.

Cross trigger Allows you to send and receive cross trigger events to and from a
CTI.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 41

13 Smaller IP
This section of the guide covers the smaller pieces of IP in the system. Except for the BP140
AXI Internal Memory Interface, the IP in this section connects to the NIC-400 interconnect
through an APB interface.

13.1 BP140 AXI Internal Memory Interface
This SoC includes SRAM and ROM. This memory is internal to the SoC and requires an
appropriate controller. We chose two BP140 AXI Internal Memory Interfaces.

The BP140 is an internal memory interface that has:

• An AXI slave interface.

• A single-port memory interface that is configurable for SRAM and ROM.

If you require TrustZone protection for Secure memory regions on the SRAM or ROM, place a
BP141 TrustZone AXI Memory Interface between the CCI-500 and the BP140. The BP141 is
also available in the Arm Flexible Access program.

13.2 PL011 UART Universal Asynchronous Receiver/
Transmitter
When configuring the PL011 UART Universal Asynchronous Receiver/ Transmitter, you must
choose the Baud rate, stop bits, parity bits, and data bits.

The PL011 has an APB slave interface that is used both for configuration and for reading and
writing data.

The clock signal must be free running for the UART to operate. The signal must never be gated.
If an APB bridge is used to connect to the UART, the clock to the bridge can only be gated if the
UART is disabled.

13.3 PL061 General Purpose Input/Output
The PL061 General Purpose Input/Output has eight I/O pins that you can configure:

• To be input or output

• To generate interrupts using edge or level detection on inputs

You can read and write from each of the pins using APB access.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 41

13.4 Dual timer
In this SoC, the dual timer is configured to consist of two programmable 32-bit down counters,
which generate interrupts when they reach 0. Providing a dual timer allows you to use one
timer as a Secure timer and one timer as a Non-secure timer. The timers can run in one of the
following modes: free-running, periodic, and one-shot.

The dual timer provides an APB slave interface.

The dual timer is a component from the Cortex-M0/M0+ System Design Kit (CMSDK). The
CMSDK is part of the Corstone-201 Foundation IP.

13.5 Watchdog timers
In this SoC, there are two watchdog timers. Each watchdog consists of a 32-bit down counter
that generates an interrupt, which is used for a reset event. The watchdog, when running, must
be periodically reset to prevent it generating the reset event. If a core is locked up, the
watchdog times out and results in the watchdog resetting the core. This mechanism provides a
way to recover from software crashes.

One watchdog is mapped to the Secure world and the other watchdog is mapped to the Non-
secure world. The Secure world watchdog timer can reset the system. However, the Non-
secure world watchdog timer must normally not be allowed to reset the system directly.
Instead, on a reset timeout, the Non-secure watchdog requests that the Secure world performs
a system reset on its behalf.

The watchdog provides an APB slave interface.

The watchdog timer is a component from the CMSDK. The CMSDK is part of the Corstone-
201 Foundation IP.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 41

14 Clock and power management
in an SoC
Depending on the complexity of a system, a system can have multiple clock and power domains.

A clock domain is defined as a group of IP components which run from a common clock. If all
components are in a state of quiescence, the clock can be removed from the components. This
process is also known as clock gating. Clock gating is one technique that you can use to reduce
dynamic power consumption.

A power domain is defined as a group of components which can power up or down together. If
all components in a power domain are in a state of quiescence, then they can be powered down
together to save power.

In an SoC, clock domain and power domain management involve building an infrastructure to
handle communication and decision making in these areas. The PCK-600 contains a set of
components that you can use to build this infrastructure.

Information about specific clock and power domains for this SoC is beyond the scope of this
guide. However, we anticipate that this SoC contains more than one clock domain and more
than one power domain. Components from the PCK-600 help to create the control
infrastructure for these domains. How these components can link together is explained in a
non-specific way in Low-Power Interfaces, PCK-600 components, and Usage example.

In Low-Power Interfaces, PCK-600 components, and Usage example, the term device is
synonymous with IP.

14.1 Low-Power Interfaces
Low-Power Interfaces (LPIs) facilitate communication between controller and devices.
Specifically, this communication enables a safe transition between different power states.
There are two types of LPI:

• Q-Channel LPI

• P-Channel LPI

A Q-Channel interface can be used to control transition between two main states, which are
run and stop. A P-Channel can be used to control transition between multiple states. For
example, a device could have the following power states:

• On mode. The device is fully operational.

• Retention mode: The device logic is turned off. However, the RAM blocks are in retention,
which preserves state.

• Off mode: The device is fully shut down, and the RAM retains no state.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 41

Q-Channels can be used to control quiescence of clock domains and power domains. P-
Channels are typically used for controlling power domains.

For clarity, LPIs are not shown in any of the previous figures or mentioned in the interface
tables. However, you can assume the IP is managed in suitable clock and power domains for
the SoC using LPIs and, potentially, PCK-600 components.

14.2 PCK-600 components

14.2.1 Low-Power Distributor Q-Channel

The Low-Power Distributor Q-Channel (LPD-Q) allows a Q-Channel controller to control up to
32 Q-Channel interfaces present on the components of a system.

Controllers, like CLK-CTRL, distribute signals to multiple components in a domain using the
LDP-Q. For example, a CLK-CTRL can broadcast a request to clock gate all devices in a clock
domain. It is important to remember that communication is two way. The CLK-CTRL also
receives information about the level of activity in the components so it can decide whether to
gate the domain.

When communicating with components, requests can be broadcast in parallel or passed
sequentially to each device Q-Channel. You can control how the broadcast is made through
configuration parameters.

14.2.2 Low-Power Distributor P-Channel

The Low-Power Distributor P-Channel (LPD-P) allows a P-Channel controller to control up to
eight P-Channel interfaces that are present on the components of a system.

Controllers, like the Power Policy Unit (PPU), distribute signals to multiple components in a
domain using the LDP-P. For example, a PPU can broadcast a request to transition between
power states to all components in a power domain. It is important to remember that
communication is two-way. The PPU also receives information about the level of activity in the
components so it can decide whether to broadcast a transition state request.

When communicating with components, requests can be broadcast in parallel or passed
sequentially to each device P-Channel. You can control how the broadcast is made through
configuration parameters.

14.2.3 Low-Power Combiner Q-Channel

The Low-Power Combiner Q-Channel (LPC-Q) allows two or more Q-Channel controllers to
control up to 32 Q-Channel interfaces that are present on the components of a system.

The LPC-Q works in a similar way to the LPD-Q, but allows more than one controller to
communicate with the devices.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 41

14.2.4 P-Channel to Q-Channel Converter

The P-Channel to Q-Channel Converter (P2Q) converts a single P-Channel into a single Q-
Channel.

14.2.5 Power Policy Unit

The Power Policy Unit (PPU) monitors activity information from connected components. Based
on this information and a software-programmed power domain policy, the PPU decides
whether to place the components of a domain in another power state.

The PPU, using a P-Channel, communicates with a Power Control State Machine (PCSM),
which executes power state changes under PPU direction. This process is done while the PPU
directly communicates with the components. This means that the PCSM is activated when the
devices have transitioned to the correct power state. The scheme is:

• Software programs a policy into the PPU.

• The PPU observes device activity on a device interface. The interface can be either a Q-
Channel or P-Channel.

• The PPU uses the device interface to transition device LPIs to the proper state as defined in
the policy.

• The PPU controls the PCSM to activate the physical power control hooks, for example to
power down the device.

The PCSM is a technology-dependent state machine that you are responsible for implementing.
The PCSM handles the sequencing of power switch chains and retention controls. If necessary,
you can implement RAM and registers dedicated to the PCSM.

If a CLK-CTRL is present on the system, the PPU also communicates with it. This connection
enables potential clock gating of the PPU itself.

The PPU allows software control of its operations and provides an APB interface for this. For
example, software can control the policy that the PPU is running. In System diagram, the PPU is
shown as a peripheral.

14.2.6 Clock Controller

The Clock Controller (CLK-CTRL) monitors activity information from components that are
connected through a Q-Channel interface. Based on this information, the PPU decides whether
to gate the components of a domain.

14.3 Usage example
The following figure shows an example of how you could use four of the PCK-600 components:

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 41

The components connect with the devices and each other to control a clock domain and a
power domain in an SoC. In this example, the clock domain has two components in it. The power
domain contains four components. Component C and Component D are also in a clock domain,
but this domain is not shown in the figure.

In Arm-designed systems, the hierarchy typically includes power domains that contain one or
more clock domains.

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 41

15 Related information
Here are some resources related to the different IP in this guide.

The following documents which do not have links are only available with an Arm Flexible
Access program license.

Cortex-A53 processor:

Cortex-A53 MPCore Processor Technical Reference Manual

Cortex-A53 MPCore Processor Configuration and Sign-off Guide

Cortex-A53 MPCore Processor Integration Manual

Mali-G52 graphics processor:

Mali-Gondul GPU Technical Reference Manual

Mali-Gondul GPU Technical Overview

Mali-Gondul GPU Configuration and Integration Manual

CCI-500:

CoreLink CCI-500 Cache Coherent Interconnect Technical Reference Manual

CoreLink CCI-500 Cache Coherent Interconnect Configuration and Sign-off Guide

CoreLink CCI-500 Cache Coherent Interconnect Integration Manual

NIC-400:

CoreLink NIC-400 Network Interconnect Technical Reference Manual

CoreLink NIC-400 Network Interconnect Integration Manual

CoreLink NIC-400 Network Interconnect Implementation Guide

GIC-500:

CoreLink GIC-500 Generic Interrupt Controller Technical Reference Manual

CoreLink GIC-500 Generic Interrupt Controller Implementation Guide

CoreLink GIC-500 Generic Interrupt Integration Manual

MMU-500:

CoreLink MMU-500 System Memory Management Unit Technical Reference Manual

https://developer.arm.com/docs/ddi0500/j
https://developer.arm.com/docs/100023/0100
https://developer.arm.com/docs/100459/0000
https://developer.arm.com/docs/ddi0516/e
https://developer.arm.com/docs/101150/0004

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 41

TZC-400:

CoreLink TZC-400 TrustZone Address Space Controller Technical Reference Manual

CoreLink TZC-400 TrustZone Address Space Controller Implementation Guide

CoreLink TZC-400 TrustZone Address Space Controller Integration Manual

ADB-400:

CoreLink ADB-400 AMBA Domain Bridge User Guide

SoC-400:

CoreSight SoC-400 Technical Reference Manual

CoreSight SoC-400 System Design Kit

CoreSight SoC-400 Implementation Guide

CoreSight SoC-400 Integration Manual

CoreSight SoC-400 User Guide

BP140:

PrimeCell Infrastructure AMBA 3 AXI Internal Memory Interface (BP140) Design Manual

PrimeCell Infrastructure AMBA 3 AXI Internal Memory Interface (BP140) Technical Overview

PrimeCell Infrastructure AMBA 3 AXI TrustZone Memory Adapter (BP141) Design Manual

PrimeCell Infrastructure AMBA 3 AXI TrustZone Memory Adapter (BP141) Technical
Overview

UART PL011:

UART PL011 Cycle Model User Guide

PrimeCell UART PL011 Technical Reference Manual

GPIO PL061:

Arm PrimeCell General Purpose Input/Output (PL061) Technical Reference Manual

PCK-400:

CoreSight PCK-400 Power Control Kit Technical Reference Manual

CoreSight PCK-400 Power Control Kit Configuration and Integration Manual

APB dual timers and watchdog timers:

https://developer.arm.com/docs/100325/0001
https://developer.arm.com/docs/ddi0480/g
https://developer.arm.com/docs/dui1064/a
https://developer.arm.com/docs/ddi0190/b
https://developer.arm.com/docs/101150/0004

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 41

Cortex-M System Design Kit Technical Reference Manual

Arm Flexible Access program: Creating a system for
machine learning at the edge

102076_0100_00
Version 01

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 41

16 Next steps
This guide provides essential knowledge that you must have to design and build a powerful SoC
suitable for machine learning at the edge. The IP that is covered in this guide is all available
through the Arm Flexible Access program. You can review the options for the Arm Flexible
Access program.

Because this guide only gives a high-level overview, you must further customize your own SoC
to meet your requirements. this means that you will need to review all the configuration options
for each piece of IP you use. However, customization might also involve removing certain pieces
of IP, or adding different IP. You can customize the interfaces on the NIC-400, so that you can
add extra IP to your SoC.

A useful next step might involve learning more about the configuration options available for
each piece of IP. You could also learn how to integrate and implement the IP. The documents in
Related information can help you do this.

https://www.arm.com/products/flexible-access/product

	1 Overview
	2 The possibilities of a dual Cortex-A53 SoC with a Mali GPU
	2.1 Machine Learning at the edge
	2.2 Software support
	2.3 Case study
	2.4 Smart devices

	3 System diagram
	4 Configuring and connecting the Cortex-A53 processors
	4.1 Configuration
	4.2 Connections

	5 Configuring and connecting the Mali-G52
	5.1 Configuration
	5.2 Connections

	6 Using a CCI-500 in the SoC
	6.1 Configuration
	6.2 Connections

	7 Using a NIC-400 in the SoC
	7.1 Configuration
	7.2 Connections

	8 Configuring and connecting the GIC-500
	8.1 Architectural overview
	8.2 Configuration
	8.3 Connections

	9 Configuring and connecting the MMU-500
	9.1 Functionality
	9.2 Configuration
	9.3 Connections

	10 Configuring and connecting the TZC-400
	10.1 Overview of the TZC-400
	10.2 Configuration
	10.3 Connections

	11 Configuring and connecting the ADB-400
	12 Using the SoC-400 to create a debug subsystem
	12.1 Serial Wire JTAG Debug Port
	12.2 Debug Access Port Bus Interconnect
	12.3 APB Access Port
	12.4 AXI Access Port
	12.5 APB Interconnect
	12.6 Cross Trigger Matrix
	12.7 Cross Trigger Interconnect
	12.8 Trace funnel
	12.9 Trace replicator
	12.10 Embedded Trace Buffer
	12.11 Trace Port Interface Unit

	13 Smaller IP
	13.1 BP140 AXI Internal Memory Interface
	13.2 PL011 UART Universal Asynchronous Receiver/ Transmitter
	13.3 PL061 General Purpose Input/Output
	13.4 Dual timer
	13.5 Watchdog timers

	14 Clock and power management in an SoC
	14.1 Low-Power Interfaces
	14.2 PCK-600 components
	14.2.1 Low-Power Distributor Q-Channel
	14.2.2 Low-Power Distributor P-Channel
	14.2.3 Low-Power Combiner Q-Channel
	14.2.4 P-Channel to Q-Channel Converter
	14.2.5 Power Policy Unit
	14.2.6 Clock Controller

	14.3 Usage example

	15 Related information
	16 Next steps

