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1 Overview 
This guide is for a system designer, possibly with access to the Arm Flexible Access program. 
This guide will help you to develop a System on Chip (SoC) that can perform machine learning at 
the edge. The SoC that is presented in this guide can handle machine learning tasks related to 
image recognition. Image recognition is a reasonably complex machine learning task, which 
usually requires more performance than, for example, keyword recognition. 

The guide is also relevant to system designers who want to create an SoC for a high-end smart 
device, for example a smartphone.  

Specifically, the guide explains: 

• Why specific pieces of IP were chosen for this SoC 

• How to configure the pieces of IP to use them in this SoC 

• How to connect the pieces of IP together 

The aim is to provide a broad view of how the pieces of IP work together. Use the SoC 
presented in this guide as an example. It is expected that you customize the SoC to suit your 
exact requirements. This involves further understanding and configuration of each piece of IP, 
the possible removal of some IP, or the addition of extra IP.   

This guide uses IP from the Arm Flexible Access program. The Arm Flexible Access program 
provides low-cost access to a wide range of Arm IP, so that you can experiment and design with 
a complete IP portfolio. If you have a license for the Arm Flexible Access program, or hold 
licenses for the individual pieces of IP, use this guide as a starting point. You can then begin to 
take practical steps with the IP and tweak the design to suit your individual requirements. 

If you do not have any licenses, this guide still provides you with a unique overview. You can 
then go deeper into the specifics of any individual piece of IP included in the SoC. 

 

https://www.arm.com/products/flexible-access/product
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2 The possibilities of a dual Cortex-
A53 SoC with a Mali GPU 
This SoC design highlights the performance that is available in an SoC designed from IP within 
the Arm Flexible Access program. Before being included in the Arm Flexible Access program, 
the Cortex-A53 already had a reputation as a widely used, high-end processor with 64-bit 
capabilities. In addition to being high performing, the Cortex-A53 has low-power usage. 

There are two Cortex-A53 processors in this SoC, which substantially increases the 
performance that is available. The combination of high-performance with low-power usage 
gives a range of scenarios under which you could use this SoC. Specifically, IoT and mobile 
devices could benefit from using a system based around this design. The next two sections 
explore a machine learning use case and a smart device use case. 

2.1 Machine Learning at the edge 
Machine Learning (ML) performs computational tasks by recognizing patterns and making 
inferences. An inference is a process of applying models, that are built using sample data, to 
accomplish a defined task. For example, the task could be image recognition in a frame that is 
received from a camera. Building the models involves a process that is called training. ML 
algorithms can continue to learn after the models have been built. Therefore, the algorithms 
can improve over time and adapt to changes.       

ML is moving out of the cloud and into the devices that gather the data. This trend is called ML 
moving to the edge. The reasons for this trend include efficiency, speed, privacy, and security. 
The emergence of connected devices in new areas, like advanced autonomous cars, is also 
accelerating the process. 

This SoC can support Machine Learning at the edge. This means that the analysis is done in the 
same place that the data is collected. This approach represents a marked alternative to sending 
the data to the cloud for analysis. Eliminating the delay involved in bouncing information to the 
cloud and back helps give the real-time responses that an end user requires. The solution also 
works when the cloud is unreachable. 

2.2 Software support 
Arm provides software platforms to complement a system that has the hardware capabilities to 
run a Neural Net (NN).  The following table gives a brief description of two Neural Net software 
platforms Arm provides. 

Table 2-1 Arm neural net software platforms 

Software Description 
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Arm NN An inference engine that bridges the gap between existing 
NN frameworks and underlying Arm IP, including the 
Cortex-A53 and Mali-G52. Arm NN works with models 
trained by existing neural net frameworks like: 

• Caffe 

• TensorFlow Lite 

• ONNX and PyTorch 

The most recent version of Android is supported through 
the NNAPI. This API enables performance acceleration 
through Mali GPUs, Ethos-N NPUs, and Cortex-A CPUs. 

Importantly, Arm NN abstracts the details of the 
underlying Arm processor IP. This abstraction allows NN 
frameworks to use the latest hardware features without 
the need to port between platforms and generations. 
Execution of ML algorithms is optimized and can run on a 
multiprocessor. 

The Arm NN SDK is supplied as open-source software and 
enables ML workloads on Android and Linux edge devices. 

Arm Compute Library A convenient repository of low-level kernels that 
developers can use to accelerate their algorithms and 
applications. The functions have been implemented for: 

• The Arm Cortex-A family of CPUs 

• The Arm Mali family of GPUs 
 

2.3 Case study 
To be effective, inferences must be completed within time constraints. These constraints mean 
that the performance of a system determines what kind of inference can be completed on time. 
For example, keyword detection is less expensive than voice and image recognition. 
Autonomous driving is even more expensive than voice and image recognition.   

In terms of machine learning, the inclusion of a six-core Mali-G52 in the SoC gives an 
advantage. The system is potentially capable of image recognition. Imagine a camera on a door 
that provides access when it recognizes the face of a person. For a workable solution, the 
response must be instant as soon as a human is perceived. The system must be able to make 
five inferences a second. This figure is the inference rate, which is also referred to as the frame 
rate. In other words, the inference must complete in 200ms. For face unlocking using SSD-
Mobile Net v1, we estimate that each inference would take about 20ms. This figure is very 
usable, because the system can complete 50 inferences a second or run other workloads 
sequentially.  
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2.4 Smart devices 
A high performance yet energy efficient SoC is ideal for powering a sophisticated smart device. 
Ultimately, a smart device must run an operating system, and this SoC can support this 
requirement. 

The inclusion of a 6-core Mali-G52 processor allows the SoC to bring premium visual 
experiences to the end user. 

You could use this SoC design for any system that requires high-end graphics capabilities, 
including high-end IoT devices. For example, you could use this SoC for: 

• A smartphone 

•  A fridge with a touch-screen interface 

• A printer with a touch-screen interface 
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3 System diagram 
This section contains a diagram showing how the different pieces of IP in the dual Cortex-A53 
SoC connect to each other. The diagram also shows external connections to system masters 
and RAM.  

 

The following pieces of IP are used in the preceding figure: 

• Cortex-A53 processor 

• Mali-G52 graphics processor 

• CoreLink CCI-500 Cache Coherent Interconnect 

• CoreLink NIC-400 Cache Coherent Interconnect 
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• CoreLink GIC-500 Generic Interrupt Controller 

• CoreLink MMU-500 System Memory Management Unit   

• CoreLink TZC-400 TrustZone Address Space Controller 

• CoreLink ADB-400 AMBA Domain Bridge 

• CoreSight SoC-400 Debug and Trace 

• BP140 AXI Internal Memory Interface 

• PL011 UART Universal Asynchronous Receiver/Transmitter 

• PL061 General Purpose Input/Output  

• Corstone-201 Foundation IP, which contains all the other Arm IP mentioned in this section 

 

The Arm Flexible Access program supplies all the IP in the preceding list. 

The Configuration sections of this guide explore how the pieces of IP in this SoC are configured. 
The Connections sections of the guide explore how these IP are connected to each other. 

 

The sections in this guide that relate to connections assume that Q-Channel or P-Channel 
Low-Power Interfaces (LPIs) are available for each piece of IP. Clock and Power Management 
in an SoC explores LPIs in more detail. 

 



Arm Flexible Access program: Creating a system for 
machine learning at the edge 

102076_0100_00 
Version 01 

 

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved. 
Non-Confidential 

Page 13 of 41 

4 Configuring and connecting the 
Cortex-A53 processors 
This system is based around two Cortex-A53 clusters, which provide high performance coupled 
with low-power usage. 

4.1 Configuration 
In this SoC, the following configuration options were chosen for the Cortex-A53 clusters: 

• Both clusters have the maximum of four cores. You can choose between one and four 
cores for each Cortex-A53 cluster. 

• Each cluster has an AXI Coherency Extensions (ACE) interface that connects to a CCI-
500. You can choose to have either a Coherent Hub Interface (CHI) or an ACE interface 
for each Cortex-A53 cluster. 

• Each cluster is configured to integrate with either an external GICv3 or an external 
GICv4 distributor, in this case the GIC-500. You must enable the external Generic 
Interrupt Controller (GIC) interface for this option. The option to integrate with an 
external GICv2 distributor component is possible. If you use this option, the internal 
GIC must be disabled. 

• Each cluster supports a Floating Point Unit (FPU) and Neon. We recommend including 
this functionality for a system on which you intend to run Linux. 

• Each core has a L1 cache of 32KB. You can configure the L1 caches for a core to be 
between 8KB and 64KB. 

• The Cortex-A53 clusters share an L2 cache of 1024KB. You can configure the L2 cache 
for a cluster to be between 128KB and 2048KB. 

• All L1 and L2 caches have Error Correcting Code (ECC) included. This feature provides 
fault protection capability for the caches. 

4.2 Connections 
Each Cortex-A53 cluster includes the interfaces that are shown in the following table: 

Table 4-1 Cortex-A53 cluster interfaces 

Interfaces Description 

ACE master  Each cluster has an ACE master interface that connects to the CCI-
500. This interface allows the cores within the cluster to access 
memory, peripherals, and other components. 
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Stream 
protocol  

Each cluster has a stream protocol interface that can connect to an 
external interrupt controller. In this case, the external interrupt 
controller is a GIC-500. 

Debug APB3 
slave  

Each cluster has an APB3 debug slave interface. This interface 
enables a debug control subsystem, in this case a CoreSight SoC-
400 subsystem, to access system resources. For example, the 
subsystem can use this interface to set watchpoints and 
breakpoints. 

ATB master Each core has an AMBA Trace Bus (ATB) master interface. These 
interfaces transmit trace data from the Embedded Trace Macrocell 
(ETM) of each core. ETMs capture the execution of a program 
running on a core and this information is known as trace data. In this 
SoC, the trace data is sent to a CoreSight SoC-400 subsystem. 
Components in the subsystem store trace data on-chip and off-chip. 
External analyzers can decompress the data as required. 

ACP Each cluster has an Accelerator Coherency Port (ACP). This 
interface provides access for non-cached masters, such as a DMA 
controller. This interface only supports a subset of AXI transaction 
types and is not used in this SoC. 

MBIST Each cluster has a Memory Built-in Self-test (MBIST). This interface 
supports performing a manufacturing test of the memories that are 
embedded in the Cortex-A53 process. 

DFT Each cluster has a Design For Test (DFT) interface. This interface 
enables an industry standard Automatic Pattern Generation (ATPG) 
tool to test logic outside of the embedded memories. 

Cross-trigger Each cluster has a cross-trigger interface. This interface allows you 
to connect, through a Cross Trigger Matrix, to the cross-trigger 
channel interfaces of other clusters, and Cross Trigger Interface 
components in the system. A Cross Trigger Matrix provides: 

• The connectivity that supports cross-cluster halting. 

• The connectivity to communicate a trace collection trigger 
signal for a trace subsystem. 
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5 Configuring and connecting the 
Mali-G52 
Our example SoC benefits from the inclusion of a Mali-G52 graphics processor. This GPU is 
based on the Bifrost architecture and is designed to bring premium visual experiences to 
mainstream mobile devices. In addition, the Mali-G52 has a significant Machine Learning 
capability. 

5.1 Configuration 
In this SoC, the Mali-G52 has been configured to have six cores. This number of cores provides 
high performance when using the Mali-G52 for Machine Learning tasks.  

You can choose to have one, two, three, four, or six cores in a Mali-G52. The choice of core 
affects the size options that are available for the L2 cache. For example, a two-core Mali-G52 
GPU has the option of either a 128KB cache or a 256KB cache. Three, four, and six-core Mali-
G52 clusters have the option of having two 256K L2 caches. For our SoC, we chose two 256K 
L2 caches for the Cortex-G52 cluster.   

5.2 Connections 
Each Mali-G52 includes the interfaces that are shown in the following table: 

Table 5-1 Mali-G52 interfaces 

Interface Description 

ACE master A Mali-G52 with L2 caches has two ACE master interfaces. In this SoC, 
these two interfaces connect to the CCI-500. These interfaces allow 
the GPU to access internal and external memory in the system. 

AXI4 slave A Mali-G52 has an AXI slave interface. In this SoC, this interface 
connects to the NIC-400. The interface provides access to the control 
and status registers for the GPU driver running on the CPU. The driver 
uses the GPU control registers to configure the graphics system to 
start and control multiple concurrent jobs running on the GPU.  

Interrupt A Mali-G52 can send interrupt requests. These requests are usually 
made to signal that a graphics job is complete, but also whenever a 
graphics job fails. In this SoC, the interrupt line connects to the GIC-
500, which distributes them to the Cortex-A53 cores, so they can act 
on them.   

Q-Channel A Mali-G52 cluster has a Q-Channel port. This port allows a clock 
controller to query the GPU about whether the clock domain 
containing the GPU can be shut down. 
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6 Using a CCI-500 in the SoC  
The SoC requires an interconnect from the CoreLink Cache Coherent Interconnect  (CCI) 
family. These interconnects provide ACE interfaces that the Cortex-A53 and Mali-G52 must 
connect to. Because the CCI-400 only provides two ACE slave masters, a CCI-500 is required.    

The CoreLink CCI-500 provides: 

• Between one and four ACE slave interfaces 

• Between zero and six ACE-Lite slave interfaces 

• Between one and four AXI4 master memory interfaces 

• Between one and two AXI4 master system interfaces   

6.1 Configuration 
In this SoC, the CoreLink CCI-500 is configured to have: 

• Four ACE slave interfaces 

• Two ACE-Lite slave interfaces 

• Four AXI4 master memory interfaces 

• Two AXI4 master system interfaces 

 

If you need more than two AXI4 master system interfaces, and striping is not enabled, you can 
use memory interfaces as system interfaces. 

6.2 Connections 
The following table shows the IP that CCI-500 interfaces connect to in this SoC: 

Table 6-1 CCI-500 interfaces used in this SoC 

Interface Number Connection 

ACE master   4 Connect to the Cortex-A53 clusters, through ADB-400s, 
and the Mail-G52 

ACE-Lite 
slave 

4 Connect to the MMU-500 and GIC-500. The GIC-500 
AXI master interface can use an ACE-Lite interface.  

Memory 
AXI4 master  

4 Connect to two BP140 memory controllers and two 
third-party RAM controllers, through a TCZ-400 

System AXI4 
master  

1 Connect to the NIC-400 

https://en.wikipedia.org/wiki/Data_striping
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7 Using a NIC-400 in the SoC 
The CCI-500 does not provide all the interfaces that this SoC requires. The SoC needs more 
AXI interfaces and APB interfaces, which the CCI-500 does not support. 

The solution requires a second interface that supports APB interfaces and a larger number of 
AXI slave and master interfaces. The CoreLink network interconnect family offers the NIC-400 
and NIC-450 to help with this.     

The CoreLink NIC-400 is: 

• Highly configurable 

• Offers Network on Chip (NoC)-like properties 

• Provides fully configurable, hierarchical, low latency, and low-power connectivity for AXI, 
AHB-Lite, and APB interfaces 

• Consists of up to 128 masters and 64 slaves of AMBA protocols. AXI and AHB-Lite 
protocols are supported for the master and slave interfaces. The master interfaces also 
support APB protocols. 

7.1 Configuration 
To configure an NIC-400, you must use Socrates. Socrates is available as part of the Arm 
Flexible Access program. The following list broadly covers the steps that you need to follow to 
configure an NIC-400: 

1. Define the high-level specification, which covers the overall look and behavior of the NIC-
400. The high-level specification includes clock domains, slave interfaces, and master 
interfaces. To define the interfaces, select the protocol and choose appropriate values for 
data width, ID width, and other parameters. 

2. Create the memory map. This map enables a transaction to be sent to the correct interface. 
For each address, the NIC-400 can determine which port to use. 

3. Set the paths. These paths determine which interfaces can talk to each other. The paths 
allow Socrates to optimize the NIC-400. Setting paths also increases the security of the 
NIC-400 by facilitating physical path removal between non-communicating interfaces. 

4. Generate the microarchitecture. During this process, Socrates checks the configuration is 
valid and creates internal connections for the NIC-400. The internal blocks are connected 
using switches. The switches match the paths between the interface that you previously 
defined in step 3. 

5. Edit the microarchitecture to obtain more performance. When generating 
microarchitecture, Socrates optimizes the result for area. This step gives you a chance to 
look at performance. In addition, you can also add buffering, add register slices, and resolve 
deadlocks. 

6. Perform a full validation to check any changes that you made. Designs are run against the 
Design Rule Check (DRC). The DRC checks whether an NIC-400 design is valid. 

https://en.wikipedia.org/wiki/Network_on_a_chip
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7. Change the high-level specification as required and feed the result back into the 
microarchitecture. At this stage, changes like this are still possible and can also be validated. 
The design is now finalized and ready for the next step.   

8. Generate the RTL. The top-level RTL contains the clock ports, and slave and master 
interfaces. The NIC-400 is now ready for connection to other IP.   

In this SoC, the NIC contains five AXI interfaces and eight APB interfaces. 

7.2 Connections 
The following table shows the IP that NIC-400 interfaces connect to: 

Table 7-1 NIC-400 interfaces used in this SoC 

Interface Connection 

AXI4 master  Connect to the: 

• GIC-500 

• Mali-G52   

AXI4 slave Connect to the: 

• GIC-500 

• CCI-500 

• SoC-400 subsystem 

APB master  Connect to the: 

• SoC-400 subsystem 

• TZC-400 

• MMU-500 

• Timers 

• GPIO 

• UART 

• Watchdog timer 

• PCK-600 Power Policy Unit 

 

 

Any extra APB peripherals connect to APB master interfaces. 
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8 Configuring and connecting the 
GIC-500 
Our example SoC requires an external Generic Interrupt Controller (GIC). Both the GIC-400 
and GIC-500 are external. This SoC benefits from the inclusion of a GIC-500, which is based on 
a later architecture than the GIC-400 and provides more advanced interrupt options.   

8.1 Architectural overview 
The GIC-500 is based on the GICv3 architecture. The GIC-500 receives interrupts from, for 
example, a GPIO, UART, or a peripheral. Depending on how the GIC-500 is configured, the 
interrupts are managed and distributed to up to 32 clusters in an SoC. Each cluster can have up 
to eight cores. The GIC-500 interfaces with clusters rather than cores. Interrupts are, however, 
directed to specific cores, and the GIC-500 receives notification when a core activates them. 

The GIC-500 can support 960 Shared Peripheral Interrupts (SPIs). These SPIs reach the GIC-
500 from peripherals through physical inputs on standard interrupt lines. 

The GIC-500 can receive up to 16 Software Generated Interrupts (SGIs). These SGIs are 
received through the programmable slave interface of the GIC-500. 

The GIC-500 also supports Locality-specific Peripheral Interrupts (LPIs), which are typically 
used for peripherals that produce message-based interrupts. Compared with SPIs, you can 
have a far larger number of LPIs than SPIs for the same area on the silicon die. This is because 
LPIs are only cached and not stored in the GIC-500. LPIs are generated when peripherals write 
to the Interrupt Translation Service (ITS) through the programmable slave interface. The ITS 
also provides interrupt ID translation that allows the possibility of a virtual machine directly 
owning a peripheral.   

8.2 Configuration 
You can configure the following on a GIC-500: 

• The number of supported clusters 

• The number of supported cores within a cluster 

• The number of supported SPIs 

• Whether LPIs are supported 

• Whether legacy mode is supported 

Therefore, you can limit the size of the GIC-500 in your SoC by excluding functionality that you 
do not require. For example, if you know that you only need 32 SPIs, you can save space by 
specifying this amount. 
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8.3 Connections 
The following table describes the interfaces available on the GIC-500: 

Table 8-1 GIC-500 interfaces 

Interface Description 

Physical interrupt signals An interface that allows physical interrupts to be 
received. The interrupts originate from peripherals and 
other IP on the SoC. 

Stream protocol master One of a pair of AXI-Stream interfaces. The GIC-500 
uses these interfaces to send interrupts to a core and 
receive notifications from a core. Packets are sent 
through the master interface to a specific core within 
the cluster. 

Stream protocol slave One of a pair of AXI-Stream interfaces. The GIC-500 
uses these interfaces to send interrupts to a core and 
receive notifications from a core. The slave interface 
receives notification when a core activates an interrupt.  

AXI slave A slave AXI interface allowing software to program and 
configure the GIC-500. Software can also generate SGIs 
using this interface. Peripherals can use it to generate 
LPIs. 

Master   A master AXI interface allowing the GIC-500 to access 
the main memory on the SoC. This interface is available 
if the ITS is present and LPIs are supported. In these 
cases, the GIC-500 must access information in the form 
of tables that are held in memory. Because you can have 
thousands of LPIs, storing LPI-related information 
requires the use of the main memory.   
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9 Configuring and connecting the 
MMU-500 
This SoC allows external system masters to connect to it, which requires the inclusion of an 
MMU-500. The MMU-500 adds a flexibility to the SoC, which can be used as required. 

9.1 Functionality 
The MMU-500 is a System MMU. For system masters, a System MMU performs a functionality 
similar to the functionality that CPU MMUs perform for CPU cores. This functionality involves 
the translation of virtual addresses into physical addresses. Both types of MMU use the same 
translation tables, which are defined during memory virtualization. These translation tables are 
stored in the main memory of the SoC.  

The MMU-500 effectively enables one or more system coherent masters to operate in the 
same virtual address space as the Cortex-A53 clusters. The system masters could be a: 

• DMA 

• Display processor 

• GPU 

• Custom accelerator 

• PCIe interface  

The MMU-500 can perform multiple address translations from different system masters at the 
same time. Context switching is not required. 

The MMU-500 is composed of two main blocks, the Translation Buffer Unit (TBU) and the 
Translation Control Unit (TCU). One MMU-500 instance can have up to 32 TBUs but always 
has a single TCU.  

TBU master interfaces are paired with a slave interface. Each system master requires a TBU 
master and slave pair. The TBU receives system master transactions, which are tagged with a 
virtual address, on the allocated slave interface. After translating the addresses, the TBU 
accesses the memory using the corresponding master interface.  

In an SoC, the TBU is expected to be physically near the connected system master. This 
requirement means that the TBU is in the same clock or power domain as the system master. 
The TBU also includes a Translation Lookaside Buffer (TLB) to cache translation table 
information. The purpose of the buffer is to speed up the translations by caching translation 
table descriptors. 

The TCU is a central control block that is responsible for reading translation tables from 
memory through its main master interface. The translation information is sent to the TBU, 
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which puts them in the TLB. The TCU also includes extra caches and implements the MMU-500 
programmers view, which is a set of configurable registers. 

9.2 Configuration 
The main configuration parameters for each TBU are: 

• The TLB depth. Each TLB can have up to 128 entries. One entry is used for each translation 
table descriptor. 

• The write data buffer depth. For a memory write, this buffer holds the data to write. 

• The number of transactions that can be handled in parallel. The maximum value is 16. 

The main configuration parameters for the TCU are:  

• The depth of the various caches 

• The maximum number of translations (translation table walks) that can be handled in 
parallel 

9.3 Connections 

Table 9-1 MMU-500 interfaces 

Interface Description 

TBU ACE-Lite slave The MMU-500 has up to 32 ACE-Lite slave interfaces. 
Coherent masters connect to these interfaces and send 
virtual address requests. 

TBU ACE-Lite master The MMU-500 has up to 32 ACE-Lite master interfaces that 
pair with the slave interfaces. The master interfaces connect 
to the CCI-500 and can read and write to memory using the 
translated virtual addresses. 

Each coherent master uses one slave and one master 
interface on the MMU-500. In this way, the MMU-500 
intercepts traffic driven to it by each coherent master and 
enables access to the correct physical address in memory. 

TCU ACE-Lite master  The MMU-500 has a single ACE-Lite master interface that 
obtains translated addresses from the translation tables, 
which are stored in the main memory.  

TCU ACE-Lite 
configuration 

The MMU-500 has an AXI4 slave interface that enables 
software to configure the MMU-500. The configuration 
process involves setting registers. 
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10 Configuring and connecting the 
TZC-400 
This SoC design anticipates that significant data, requiring extra access control, is in Non-
secure memory. By including the TZC-400, the option is available to protect this data. The 
protection is slave side, which means that it comes after an interconnect master interface 
rather than, for example, a system master interface.    

10.1 Overview of the TZC-400 
The TZC-400 enables you to partition and protect up to eight regions of memory by marking 
them as read-only or write-only. To assist with this process when the IP is integrated into an 
SoC, the TZC-400 also has a concept known as a filter unit. Each individual memory port 
requires one filter unit. You can configure the TZC-400 to have one filter unit, or multiple filter 
units, depending on the requirements of the system memory. The eight definable regions apply 
to all filter units. Therefore, the filter view is the same when accessing any memory port 
through a specific TZC-400 filter unit. In this SoC, there are two memory ports. 

Access to the eight regions is also controllable. There are two ways to achieve this control: 

• Restricting access to a region according to the Non-secure Access ID (NSAID) of a master 

• Marking any region as inaccessible for a filter unit. In other words, you can prevent access 
to a region through a specific port.  

Because the Cortex-A53 MMUs and the MMU-500 give an SoC protection, the TZC-400 
increases the level of protection that is available. While Cortex A-series processors support 
TrustZone, the TZC-400 allows you to add extra security permissions within memory that is 
marked as Non-secure by TrustZone.  

A large video buffer is an example of where these permissions could be useful. It is not ideal to 
place a large memory requirement, like a video buffer, inside memory that is marked as Secure 
by TrustZone. A video codec can also be potentially buggy. TrustZone Secure memory is better 
for smaller data like cryptographic keys. In this SoC, TrustZone Secure memory is in the SRAM 
and ROM. 

Although processor MMUs and the MMU-500 could protect a video buffer, this solution is 
slower than using a TZC-400. Sometimes, a master does not use an MMU either. In this system, 
the Mali-G52 does not access memory using an MMU. The TZC-400 ensures that memory 
protection is in place for all accessing masters. 

10.2 Configuration 
You can configure the TZC-400 to support one, two, or four filter units. Each memory port 
requires one unit. This SoC has two memory ports, so the TZC-400 is configured to have two 
units. 
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10.3 Connections 
The following table describes the interfaces available on the TZC-400: 

Table 11-1  

Interface Description 

ACE-Lite 
master 

An ACE-Lite master interface exists for each filter unit configured. 
Masters in the system must access memory through these 
interfaces.  

ACE-Lite slave An ACE-Lite slave interface exists for each filter unit configured. 
These slave interfaces connect to memory controllers.  

APB4 slave 
programming 

An APB4 interface that enables software to program the registers of 
the TZC-400. To ensure integrity, the addresses of these registers 
must be in an area of memory that is marked as Secure by 
TrustZone.      

Interrupt A physical interrupt line that allows the system to assert when an 
access attempt fails its security check. 
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11 Configuring and connecting the 
ADB-400 
The ADB-400 is an asynchronous bridge for two components or systems that are in either a 
different power domain, different clock domains, or both. An ADB-400 consists of a slave 
domain and a master domain. The slave domain has a slave interface and the master domain has 
a master interface. 

The system design anticipates that the Cortex-A53 clusters are in a separate power or clock 
domain to the CCI-500. The design includes an ADB-400 between each Cortex-A53 cluster 
and the CCI-500. In this SoC, the slave and master interfaces are specified to be ACE. You can 
configure the ADB-400 slave and master interfaces to use AXI3, AXI4, ACE, and ACE-Lite 
protocols. 

A FIFO buffer is a key part of the logic structure that the ADB-400 uses to bridge between two 
clock domains. The ADB-400 receives transactions that are clocked with the slave side domain 
clock. The ADB-400 then releases them in a safe way for the master side domain clock. The 
depth of the FIFO buffer is configurable. 
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12 Using the SoC-400 to create a 
debug subsystem 
The SoC-400 differs from other pieces of IP shown in the example SoC because it is not a single 
piece of IP. The SoC-400 instead consists of several components. You can use these 
components to build an infrastructure to debug, monitor, and optimize an SoC design. These 
components include buses, control and access components, and trace links. Most of these 
components are configurable. 

System designers use SoC-400 components to create a subsystem that is designed to meet the 
requirements of a specific SoC. The complexity of the subsystem depends on the SoC which the 
subsystem is part of. In this SoC, the subsystem collects trace output from the four cores of 
both Cortex-A53 clusters.  

 

In this guide, the terms SoC and SoC-400 refer to different things. SoC refers to the example 
dual Cortex-A53 System on Chip, which is the subject of this guide. The SoC-400 is a piece of 
Arm IP that contains multiple components. The example SoC in this guide contains an SoC-
400 subsystem, which is shown as a single entity in System diagram. 
 

The following diagram shows an SoC-400 subsystem that is suitable for our example SoC: 
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Now let’s explore the components in the SoC-400 subsystem that we have described, including 
their configuration options and interfaces:   

12.1 Serial Wire JTAG Debug Port  
A Serial Wire JTAG Debug Port (SWJ–DP) allows you to connect either a Serial Wire Debug 
(SWD) or JTAG probe to the SoC-400 subsystem, and therefore the SoC itself. This component 
is accessible from outside the SoC. In other words, the SWJ-DP forms the main entry point into 
an SoC for debugging it.  

In addition to the external connection, the SWJ-DP contains a single DAPBUS master port 
interface. This interface connects to the Debug Access Port Bus interconnect (DAPBUSIC) in 
an SoC-400 subsystem. 
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12.2 Debug Access Port Bus Interconnect 
A Debug Access Port Bus Interconnect (DAPBUSIC) allows the SWJ-DP to combine with 
Access Ports (APs). This provides a route from outside the SoC to the components within. 

The DAPBUSIC has the following interfaces: 

Table 13-1 DAPBUSIC interfaces 

Interface Description 

DAPBUS slave Each DAPBUSIC has one slave DAPBUS interface. The SWJ-DP 
connects to this interface. 

DAPBUS master Each DAPBUSIC has up to 32 master DAPBUS interfaces. These 
interfaces connect to individual APs providing AHB, APB, AXI, 
and JTAG interfaces. 

12.3 APB Access Port 
The APB Access Port provides a single APB master interface, and allows conversion from a 
DAPBUS interface to an APB interface. 

Many SoC-400 components have APB programming interfaces. The APB Access Port and the 
APBIC allow you to control SoC-400 components from outside the SoC-400 subsystem. 

12.4 AXI Access Port 
The AXI Access Port provides a single AXI master interface and facilitates conversion from a 
DAPBUS interface to an AXI interface. AXI-AP is typically used to provide an access path to the 
SoC memory. You can also see the connection in the System diagram. If the CPUs hang, the 
AXI-AP can provide another path to the system memory. 

12.5 APB Interconnect 
The APB Interconnect (APBIC) facilitates multiple master connections to APB interfaces on 
components within the SoC-400 subsystem. Connections from external CoreSight components 
in the SoC are also facilitated. 

The APBIC has the following interfaces: 

Table 12-2 APBIC interfaces  

Interface Description 
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APB slave The APBIC can have from one to four slave APB interfaces. Only one of 
these interfaces can connect to an APB-AP component. Other slave 
interfaces might have connections from IPs that are outside the SoC-
400 but are part of the SoC. 

For example, in the previous diagram, the Cortex-A53 clusters can 
control the SoC-400 components through the connection that the NIC-
400 has with the APBIC.  The APBIC connects like a master to the APB 
slave interfaces on the Cortex-A53 clusters. This design facilitates 
communication between the SoC-400 subsystem and the rest of the 
SoC. 

APB master The APBIC can have from 1-64 master APB interfaces. These 
interfaces connect to and control other SoC-400 components within 
the subsystem. They can also connect to IP that is external to the 
subsystem. 

12.6 Cross Trigger Matrix 
The Cross Trigger Matrix (CTM) combines the trigger requests that are generated from CTIs 
and broadcasts them to all CTIs as channel triggers. The two Cortex-A53 clusters in our 
example have an internal Cross Trigger Interconnect (CTI) and CTM. Triggering requests 
arising internally in a Cortex-A53 cluster are sent to the Cross Trigger Matrix of the SoC-400 
subsystem. 

12.7 Cross Trigger Interconnect 
The CTI provides an interface that enables events broadcasting in the system.  

12.8 Trace funnel 
A trace funnel can combine up to eight trace sources into one. To combine more than eight 
trace sources, chain several trace funnels together. This strategy effectively increases the 
number of trace inputs that are available. 

 

To avoid combinatorial timing loops, a register slice that is a forward, reverse, or full 
register slice must be instantiated between the cascaded funnels.  

 

In this system, the trace output from all cores of both Cortex-A53 clusters are combined into 
one trace funnel. 

A trace funnel has the following interfaces: 

Table 12-3 Trace funnel interfaces 

Interface Description 

ATB slave You can configure the funnel to have two to eight slave ATB 
interfaces that receive trace data. 
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ATB master  A master ATB interface that outputs the combined trace data. 

APB slave 
programming  

You can configure the funnel to have an APB programming interface. 
If you do, an APB slave interface is added. You can use this interface 
to enable and disable slave ATB interfaces at runtime. 

12.9 Trace replicator 
The trace replicator enables an incoming trace stream to be passed to two trace sinks. A trace 
replicator has a slave ATB interface that receives the trace stream and two master ATB 
interfaces that output the combined sources. 

A trace replicator has the following interfaces: 

Table 12-4 Trace replicator interfaces 

Interface Description 

ATB slave An ATB slave interface receives the combined trace output. 

ATB master  Two ATB master interfaces output the trace output. 

APB slave 
programming 

The Trace replicator can be configured to have an APB programming 
interface. If you do, an APB slave interface is added. You can use this 
interface to: 

• Filter the trace passed to each master ATB interface 
according to the trace ID. 

• Filter out higher bandwidth traces from trace sinks that only 
support a lower bandwidth such as a TPIU. This filtering 
allows a high-bandwidth trace sink, for example an ETB, to 
be enabled at the same time as a lower bandwidth trace. The 
filtering prevents the lower bandwidth trace sink from 
slowing down the output of both trace sinks. If the filtering 
is not used, all trace sinks slow down to match the slowest 
trace sink.  

12.10 Embedded Trace Buffer 
The Embedded Trace Buffer (ETB) provides on-chip storage of trace data in RAM. When 
designing the SoC-400 subsystem, you can configure the size of the RAM for ETB and then 
implement the required RAM. 

The ETB contains a formatter that combines the source data and IDs into a single data stream 
before storing the data in RAM. The formatter operates in an identical manner to the formatter 
in the TPIU. 

The ETB has the following interfaces: 
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Table 12-5 ETB interfaces 

Interfaces Description 

ATB slave Receives the combined trace output to store. 

APB slave Allows programing of the ETB through its registers. In addition, you 
can read the captured trace through this interface. 

Cross trigger Allows you to send and receive cross trigger events to and from a 
CTI. 

MBIST Enables the testing of the storage RAM. 

12.11 Trace Port Interface Unit 
The Trace Port Interface Unit (TPIU) formats the trace data that it receives and outputs the 
formatted data through the pins of the trace port. The Trace Port Analyzer (TPA) can then 
capture the data. In other words, the trace port in the TPIU provides a route for trace out of the 
SoC that the TPIU is part of. The TPIU can output patterns over the trace port so that a TPA 
can tune its capture logic to the trace port. This feature enables the maximization of the speed 
at which trace can be captured. 

The TPIU inserts source ID information into the trace stream. The formatter operates in an 
identical manner to the formatter in the ETB. 

The TPIU has the following interfaces: 

Table 12-6 TPIU interfaces 

Interfaces Description 

Trace out Connects to the external trace port pins to facilitate trace exporting. 

ATB slave Receives the combined trace output to export out of the SoC. 

APB slave Allows programming of the TPIU through its registers. 

Cross trigger Allows you to send and receive cross trigger events to and from a 
CTI. 
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13 Smaller IP 
This section of the guide covers the smaller pieces of IP in the system. Except for the BP140 
AXI Internal Memory Interface, the IP in this section connects to the NIC-400 interconnect 
through an APB interface. 

13.1 BP140 AXI Internal Memory Interface 
This SoC includes SRAM and ROM. This memory is internal to the SoC and requires an 
appropriate controller. We chose two BP140 AXI Internal Memory Interfaces. 

The BP140 is an internal memory interface that has: 

• An AXI slave interface. 

• A single-port memory interface that is configurable for SRAM and ROM. 

 

If you require TrustZone protection for Secure memory regions on the SRAM or ROM, place a 
BP141 TrustZone AXI Memory Interface between the CCI-500 and the BP140. The BP141 is 
also available in the Arm Flexible Access program.  

 

13.2 PL011 UART Universal Asynchronous Receiver/ 
Transmitter 
When configuring the PL011 UART Universal Asynchronous Receiver/ Transmitter, you must 
choose the Baud rate, stop bits, parity bits, and data bits. 

The PL011 has an APB slave interface that is used both for configuration and for reading and 
writing data. 

The clock signal must be free running for the UART to operate. The signal must never be gated. 
If an APB bridge is used to connect to the UART, the clock to the bridge can only be gated if the 
UART is disabled. 

13.3 PL061 General Purpose Input/Output 
The PL061 General Purpose Input/Output has eight I/O pins that you can configure: 

• To be input or output 

• To generate interrupts using edge or level detection on inputs 

You can read and write from each of the pins using APB access. 
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13.4 Dual timer 
In this SoC, the dual timer is configured to consist of two programmable 32-bit down counters, 
which generate interrupts when they reach 0. Providing a dual timer allows you to use one 
timer as a Secure timer and one timer as a Non-secure timer. The timers can run in one of the 
following modes: free-running, periodic, and one-shot. 

The dual timer provides an APB slave interface. 

 

The dual timer is a component from the Cortex-M0/M0+ System Design Kit (CMSDK). The 
CMSDK is part of the Corstone-201 Foundation IP. 

 

13.5 Watchdog timers 
In this SoC, there are two watchdog timers. Each watchdog consists of a 32-bit down counter 
that generates an interrupt, which is used for a reset event. The watchdog, when running, must 
be periodically reset to prevent it generating the reset event. If a core is locked up, the 
watchdog times out and results in the watchdog resetting the core. This mechanism provides a 
way to recover from software crashes. 

One watchdog is mapped to the Secure world and the other watchdog is mapped to the Non-
secure world. The Secure world watchdog timer can reset the system. However, the Non-
secure world watchdog timer must normally not be allowed to reset the system directly. 
Instead, on a reset timeout, the Non-secure watchdog requests that the Secure world performs 
a system reset on its behalf. 

The watchdog provides an APB slave interface. 

 

The watchdog timer is a component from the CMSDK. The CMSDK is part of the Corstone-
201 Foundation IP. 
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14 Clock and power management 
in an SoC 
Depending on the complexity of a system, a system can have multiple clock and power domains. 

A clock domain is defined as a group of IP components which run from a common clock. If all 
components are in a state of quiescence, the clock can be removed from the components. This 
process is also known as clock gating. Clock gating is one technique that you can use to reduce 
dynamic power consumption.  

A power domain is defined as a group of components which can power up or down together. If 
all components in a power domain are in a state of quiescence, then they can be powered down 
together to save power. 

In an SoC, clock domain and power domain management involve building an infrastructure to 
handle communication and decision making in these areas. The PCK-600 contains a set of 
components that you can use to build this infrastructure. 

 

Information about specific clock and power domains for this SoC is beyond the scope of this 
guide. However, we anticipate that this SoC contains more than one clock domain and more 
than one power domain. Components from the PCK-600 help to create the control 
infrastructure for these domains. How these components can link together is explained in a 
non-specific way in Low-Power Interfaces, PCK-600 components, and Usage example. 
 

 

In Low-Power Interfaces, PCK-600 components, and Usage example, the term device is 
synonymous with IP.  

14.1 Low-Power Interfaces 
Low-Power Interfaces (LPIs) facilitate communication between controller and devices. 
Specifically, this communication enables a safe transition between different power states. 
There are two types of LPI: 

• Q-Channel LPI 

• P-Channel LPI 

A Q-Channel interface can be used to control transition between two main states, which are 
run and stop. A P-Channel can be used to control transition between multiple states. For 
example, a device could have the following power states: 

• On mode. The device is fully operational. 

• Retention mode: The device logic is turned off. However, the RAM blocks are in retention, 
which preserves state. 

• Off mode: The device is fully shut down, and the RAM retains no state. 
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Q-Channels can be used to control quiescence of clock domains and power domains. P-
Channels are typically used for controlling power domains. 

 

For clarity, LPIs are not shown in any of the previous figures or mentioned in the interface 
tables. However, you can assume the IP is managed in suitable clock and power domains for 
the SoC using LPIs and, potentially, PCK-600 components. 
 

14.2 PCK-600 components 

14.2.1 Low-Power Distributor Q-Channel 

The Low-Power Distributor Q-Channel (LPD-Q) allows a Q-Channel controller to control up to 
32 Q-Channel interfaces present on the components of a system.  

Controllers, like CLK-CTRL, distribute signals to multiple components in a domain using the 
LDP-Q. For example, a CLK-CTRL can broadcast a request to clock gate all devices in a clock 
domain. It is important to remember that communication is two way. The CLK-CTRL also 
receives information about the level of activity in the components so it can decide whether to 
gate the domain. 

When communicating with components, requests can be broadcast in parallel or passed 
sequentially to each device Q-Channel. You can control how the broadcast is made through 
configuration parameters. 

14.2.2 Low-Power Distributor P-Channel 

The Low-Power Distributor P-Channel (LPD-P) allows a P-Channel controller to control up to 
eight P-Channel interfaces that are present on the components of a system. 

Controllers, like the Power Policy Unit (PPU), distribute signals to multiple components in a 
domain using the LDP-P. For example, a PPU can broadcast a request to transition between 
power states to all components in a power domain. It is important to remember that 
communication is two-way. The PPU also receives information about the level of activity in the 
components so it can decide whether to broadcast a transition state request. 

When communicating with components, requests can be broadcast in parallel or passed 
sequentially to each device P-Channel. You can control how the broadcast is made through 
configuration parameters. 

14.2.3 Low-Power Combiner Q-Channel 

The Low-Power Combiner Q-Channel (LPC-Q) allows two or more Q-Channel controllers to 
control up to 32 Q-Channel interfaces that are present on the components of a system.  

The LPC-Q works in a similar way to the LPD-Q, but allows more than one controller to 
communicate with the devices. 
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14.2.4 P-Channel to Q-Channel Converter 

The P-Channel to Q-Channel Converter (P2Q) converts a single P-Channel into a single Q-
Channel. 

14.2.5 Power Policy Unit 

The Power Policy Unit (PPU) monitors activity information from connected components. Based 
on this information and a software-programmed power domain policy, the PPU decides 
whether to place the components of a domain in another power state. 

The PPU, using a P-Channel, communicates with a Power Control State Machine (PCSM), 
which executes power state changes under PPU direction. This process is done while the PPU 
directly communicates with the components. This means that the PCSM is activated when the 
devices have transitioned to the correct power state. The scheme is: 

• Software programs a policy into the PPU. 

• The PPU observes device activity on a device interface. The interface can be either a Q-
Channel or P-Channel. 

• The PPU uses the device interface to transition device LPIs to the proper state as defined in 
the policy. 

• The PPU controls the PCSM to activate the physical power control hooks, for example to 
power down the device. 

The PCSM is a technology-dependent state machine that you are responsible for implementing. 
The PCSM handles the sequencing of power switch chains and retention controls. If necessary, 
you can implement RAM and registers dedicated to the PCSM. 

If a CLK-CTRL is present on the system, the PPU also communicates with it. This connection 
enables potential clock gating of the PPU itself. 

The PPU allows software control of its operations and provides an APB interface for this. For 
example, software can control the policy that the PPU is running. In System diagram, the PPU is 
shown as a peripheral. 

14.2.6 Clock Controller 

The Clock Controller (CLK-CTRL) monitors activity information from components that are 
connected through a Q-Channel interface. Based on this information, the PPU decides whether 
to gate the components of a domain. 

14.3 Usage example 
The following figure shows an example of how you could use four of the PCK-600 components: 
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The components connect with the devices and each other to control a clock domain and a 
power domain in an SoC. In this example, the clock domain has two components in it. The power 
domain contains four components. Component C and Component D are also in a clock domain, 
but this domain is not shown in the figure. 

In Arm-designed systems, the hierarchy typically includes power domains that contain one or 
more clock domains. 
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15 Related information 
Here are some resources related to the different IP in this guide. 

 

The following documents which do not have links are only available with an Arm Flexible 
Access program license. 

Cortex-A53 processor: 

Cortex-A53 MPCore Processor Technical Reference Manual 

Cortex-A53 MPCore Processor Configuration and Sign-off Guide 

Cortex-A53 MPCore Processor Integration Manual 

Mali-G52 graphics processor: 

Mali-Gondul GPU Technical Reference Manual 

Mali-Gondul GPU Technical Overview 

Mali-Gondul GPU Configuration and Integration Manual 

CCI-500: 

CoreLink CCI-500 Cache Coherent Interconnect Technical Reference Manual 

CoreLink CCI-500 Cache Coherent Interconnect Configuration and Sign-off Guide 

CoreLink CCI-500 Cache Coherent Interconnect Integration Manual 

NIC-400: 

CoreLink NIC-400 Network Interconnect Technical Reference Manual 

CoreLink NIC-400 Network Interconnect Integration Manual 

CoreLink NIC-400 Network Interconnect Implementation Guide 

GIC-500: 

CoreLink GIC-500 Generic Interrupt Controller Technical Reference Manual 

CoreLink GIC-500 Generic Interrupt Controller Implementation Guide 

CoreLink GIC-500 Generic Interrupt Integration Manual 

MMU-500: 

CoreLink MMU-500 System Memory Management Unit Technical Reference Manual 

https://developer.arm.com/docs/ddi0500/j
https://developer.arm.com/docs/100023/0100
https://developer.arm.com/docs/100459/0000
https://developer.arm.com/docs/ddi0516/e
https://developer.arm.com/docs/101150/0004
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TZC-400: 

CoreLink TZC-400 TrustZone Address Space Controller Technical Reference Manual 

CoreLink TZC-400 TrustZone Address Space Controller Implementation Guide 

CoreLink TZC-400 TrustZone Address Space Controller Integration Manual 

ADB-400:  

CoreLink ADB-400 AMBA Domain Bridge User Guide 

SoC-400: 

CoreSight SoC-400 Technical Reference Manual 

CoreSight SoC-400 System Design Kit 

CoreSight SoC-400 Implementation Guide 

CoreSight SoC-400 Integration Manual 

CoreSight SoC-400 User Guide 

BP140: 

PrimeCell Infrastructure AMBA 3 AXI Internal Memory Interface (BP140) Design Manual 

PrimeCell Infrastructure AMBA 3 AXI Internal Memory Interface (BP140) Technical Overview 

PrimeCell Infrastructure AMBA 3 AXI TrustZone Memory Adapter (BP141) Design Manual 

PrimeCell Infrastructure AMBA 3 AXI TrustZone Memory Adapter (BP141) Technical 
Overview 

UART PL011: 

UART PL011 Cycle Model User Guide 

PrimeCell UART PL011 Technical Reference Manual 

GPIO PL061: 

Arm PrimeCell General Purpose Input/Output (PL061) Technical Reference Manual  

PCK-400: 

CoreSight PCK-400 Power Control Kit Technical Reference Manual 

CoreSight PCK-400 Power Control Kit Configuration and Integration Manual 

APB dual timers and watchdog timers: 

https://developer.arm.com/docs/100325/0001
https://developer.arm.com/docs/ddi0480/g
https://developer.arm.com/docs/dui1064/a
https://developer.arm.com/docs/ddi0190/b
https://developer.arm.com/docs/101150/0004
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Cortex-M System Design Kit Technical Reference Manual 
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16 Next steps 
This guide provides essential knowledge that you must have to design and build a powerful SoC 
suitable for machine learning at the edge. The IP that is covered in this guide is all available 
through the Arm Flexible Access program. You can review the options for the Arm Flexible 
Access program. 

Because this guide only gives a high-level overview, you must further customize your own SoC 
to meet your requirements. this means that you will need to review all the configuration options 
for each piece of IP you use. However, customization might also involve removing certain pieces 
of IP, or adding different IP. You can customize the interfaces on the NIC-400, so that you can 
add extra IP to your SoC. 

A useful next step might involve learning more about the configuration options available for 
each piece of IP. You could also learn how to integrate and implement the IP. The documents in 
Related information can help you do this. 

 

 

 

https://www.arm.com/products/flexible-access/product
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