

Migrating Unity shaders to Universal

Render Pipeline
Non-Confidential Issue 0100

Copyright © 2021 Arm Limited (or its affiliates).

All rights reserved.

102487_0100_00

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 2 of 21

Migrating Unity shaders to Universal Render Pipeline

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 30th April 2021 Non-confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of

the information contained in this document may be protected by one or more patents or pending patent

applications. No part of this document may be reproduced in any form by any means without the express

prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual

property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use

or permit others to use the information for the purposes of determining whether implementations infringe

any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,

EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR

PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation

with respect to, has undertaken no analysis to identify or understand the scope and content of, patents,

copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,

INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,

duplication or disclosure of this document complies fully with any relevant export laws and regulations to

assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such

export laws. Use of the word “partner” in reference to Arm's customers is not intended to create or refer to

any partnership relationship with any other company. Arm may make changes to this document at any

time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any

conflict between the English version of this document and any translation, the terms of the English version

of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm

Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 3 of 21

mentioned in this document may be the trademarks of their respective owners. Please follow Arm's

trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to

license restrictions in accordance with the terms of the agreement entered into by Arm and the party that

Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

We believe that this document contains no offensive terms. If you find offensive terms in this document,

please email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://developer.arm.com/
mailto:terms@arm.com

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 21

Contents

1 Overview ...5

1.1 Before you begin .. 5

2 What is the Universal Render Pipeline? ...6

3 Migrating built-in shaders to the Universal Render Pipeline..7

3.1 Differences between the built-in shader and URP shaders ... 8

4 Migrating custom shaders to the Universal Render Pipeline ... 10

4.1 Migrating include files and functions ... 10

4.1.1 cginc .. 10

4.1.2 Space transforms ... 11

4.1.3 Shader variable functions ... 11

4.1.4 Common include ... 12

4.2 Preprocessor macros ... 12

4.3 LightMode tags ... 13

4.4 Changing replacement shaders.. 14

4.5 Post-processing... 18

4.5.1 If you are using custom post-processing and Unity 2019.4... 18

4.5.2 Mobile-friendly features .. 19

5 Related information ... 20

6 Next steps .. 21

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 5 of 21

1 Overview
The Universal Render Pipeline (URP) in Unity optimizes your graphics across a range of

platforms, from mobile to computer. URP produces good quality graphics on high end devices

and optimized performances on lower-end devices. Other advantages of URP are described in

What is Universal Render Pipeline?

In this guide, we describe how to migrate Unity shaders that have been written for the built-in

pipeline to the URP. The guide also describes how to migrate your custom shaders to URP. This

is because these shaders cannot automatically migrate to URP.

At the end of the guide, you will:

• Be familiar with URP

• Understand how you can migrate your shaders to URP

1.1 Before you begin

Before you work through this guide, you will need general familiarity with Unity, specifically

implementing shaders in Unity. To learn more, read our guides:

• Real-time 3D art best practices: materials and shaders

• Advanced graphic techniques

https://developer.arm.com/documentation/102471/latest/
https://developer.arm.com/documentation/102224/latest/

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 6 of 21

2 What is the Universal Render

Pipeline?
The Universal Render Pipeline is a prebuilt implementation of the Scriptable Render Pipeline

(SRP). The URP is optimized to deliver high graphics performance and is the successor of the

Lightweight Render Pipeline (LWRP). The URP makes some tradeoffs around lighting and

shading, to make sure that there is consistent performance on a platform.

The URP provides a friendly workflow that allow artists to easily create optimized graphics across

a range of platforms.

Migrating your current project to the URP makes it is easier for you to build custom shaders.

Migrating your built-in pipeline to the URP also gives you access to the following features:

• Screen Space Ambient Occlusion (SSAO)

• Clear Coat

• Camera Normals Texture

• Detail Map and Detail Normal Map

• Shadow Distance Fade

• Shadow Cascade

• Shadowmask

• Parallax mapping and Height Map property

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 7 of 21

3 Migrating built-in shaders to the

Universal Render Pipeline
If your project contains built-in shaders, these must be converted to URP shaders. This is because

built-in shaders are not compatible with URP shaders.

This section of the guide describes how to migrate your built-in shaders to the Universal Render

Pipeline. Migrating built-in shaders uses the Unity upgrader. We will review migrating custom

shaders in Migrating custom shaders to the Universal Render Pipeline.

To upgrade your built-in shaders, follow these steps:

1. Open your project in Unity.

2. Go to Window > Package Manager.

3. In the Packages dropdown list, select Unity Registry. This option lists all packages available

for your version of Unity.

4. From the list of packages, select Universal RP.

5. Click Install. Unity installs the URP for your project.

The following screenshot shows Universal RP selected in the Unity Registry list:

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 21

6. Go to Edit > Render Pipeline > Universal Render Pipeline.

7. Select either Upgrade Project Materials to URP Materials or Upgrade Selected Materials

to URP Materials.

When you run the shader upgrader, the Unity built-in shaders convert automatically to a set of

URP shaders.

The Unity guide Upgrading your shaders contains a table that shows you which built-in shaders

convert to which URP shader. Many built-in shaders are converted to the Universal Render

Pipeline Simple Lit shader.

3.1 Differences between the built-in shader and URP

shaders

There are two differences between built-in shaders and URP shaders:

Image 1: Selecting URP in the Package Manager

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.1/manual/upgrading-your-shaders.html

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 9 of 21

• In URP, the C for graphics (Cg) shader programming language has been replaced with High

Level Shading Language (HLSL). However, using HLSL has not dramatically changed the

shader syntax and the functionality.

• The shaders in Unity are written in ShaderLab syntax to define the shader properties,

subshaders, and passes. However, in the URP the shader code inside the passes is written in

HLSL. This means that the shaders that are written for the built-in pipeline are automatically

disabled in the URP. This is because the shaders from the built-in pipelines perform separate

shader passes for every light that reaches an object. However, the URP handles all lighting

and shading in a single pass using arrays. This change leads to different structures to store

light data and new shading libraries with new conventions.

The following render pass code from the URP shows that the shader code is delimited using the

HLSLPROGRAM / ENDHLSL macros:

SubShader

 {

 Tags {"RenderPipeline" = "UniversalPipeline" }

 Pass {

 HLSLPROGRAM

 ...

 ENDHLSL

 }

 }

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 21

4 Migrating custom shaders to the

Universal Render Pipeline
Unlike built-in shaders, custom shaders cannot be automatically converted by the shader

upgrader that we used in the previous section of the guide. Therefore, migrating custom shaders

to URP requires some manual actions.

This section of the guide reviews the actions that you need to take when migrating your custom

shaders to the URP. These actions include changing the following elements:

• Includes

• Preprocessor Macros

• LightMode tags

• Replacement shaders

• Post-processing

4.1 Migrating include files and functions

First, we describe how to migrate your include files and functions to the Universal Render

Pipeline.

4.1.1 cginc

Replace cginc include files with the HLSL equivalents.

You can find the cginc files in your Unity installation folder. You can find the HLSL includes and

headers in the Unity Graphics GitHub repository, and see how the functions are implemented.

Note: In CG, the include files have the extension .cginc, and shader files have the extension

.shader. In HLSL, the includes have the extension .hlsl, and the shaders files have the same

.shader extension as CG.

The following table shows the most commonly included files:

CGS HLSL

UnityCG.cginc Packages/com.unity.render-
pipelines.universal/ShaderLibrary/Core.hlsl

https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Core.hlsl

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 21

CGS HLSL

AutoLight.cginc Packages/com.unity.render-
pipelines.universal/ShaderLibrary/Lighting.hlsl

Packages/com.unity.render-
pipelines.universal/ShaderLibrary/Shadows.hlsl

 Table 1. Example of CGS and HLSL include files

4.1.2 Space transforms

Replace the functions that you use in your custom shaders with equivalent HLSL functions.

The following table shows a few space transform HLSL functions and what they do:

Built-in function Action

float4x4 GetObjectToWorldMatrix() Return the PreTranslated ObjectToWorld Matrix

float4x4 GetWorldToObjectMatrix() Return the WorldToObject Matrix

float4x4 GetWorldToHClipMatrix() Transform to homogenous clip space

float4x4 GetViewToHClipMatrix() Transform to homogenous clip space

float3 TransformObjectToWorld(float3 position Object Space) As the function name indicates

float3 TransformWorldToObject(float3 position World Space) As the function name indicates

float3 TransformWorldToView(float3 position World Space) As the function name indicates

Table 2. Examples of HLSL space transform functions

Note: You can find more space transform HLSL functions in the include file SpaceTransforms.

4.1.3 Shader variable functions

Replace the functions that you use in your custom shaders with equivalent HLSL functions.

The following table shows some shader variable functions and what they do:

Built-in function Action

VertexPositionInputs GetVertexPositionInputs(float3

positionOS)

Returns input.positionWS, input.positionVS, input.positionCS,

input.positionNDC

VertexNormalInputs GetVertexNormalInputs(float3

normalOS)

Returns input. tangentWS, input. bitangentWS, input.

normalWS

float3 GetCameraPositionWS() Returns camera position in world space.

float3 GetCurrentViewPosition() Returns current view position in world space.

float3 GetViewForwardDir() Returns the forward (central) direction of the current view in

the world space.

https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl
http://graphics/com.unity.render-pipelines.core/ShaderLibrary/SpaceTransforms.hlsl

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 12 of 21

Built-in function Action

float3 GetWorldSpaceViewDir(float3 positionWS) Computes the world space view direction (pointing towards

the viewer).

Table 3. Examples of HLSL shader variable functions

Note: Other fog and UV-related functions can be found in the include file

ShaderVariablesFunctions.

4.1.4 Common include

The Common include contains many built-in functions that are related to some platform-specific

functions, common math functions, and space transformations. Replace the functions that you

use in your custom shaders with equivalent HLSL functions.

The following list shows some of the HLSL functions in the common include:

• real DegToRad(real deg)

• real RadToDeg(real rad)

• bool IsPower2(uint x)

• real FastACosPos(real inX)

• real FastASin(real x)

• real FastATan(real x)

• uint FastLog2(uint x)

• real3 Orthonormalize(real3 tangent, real3 normal)

• real Pow4(real x)

• float4x4 Inverse(float4x4 m)

• float ComputeTextureLOD(float2 uv, float bias = 0.0)

• float Linear01Depth(float depth, float4 zBufferParam)

4.2 Preprocessor macros

Preprocessor macros are defined when compiling each shader. However, when migrating the

built-in shaders to new URP shaders, you must replace the C for graphics (Cg) macros with their

High-Level Shading Language (HLSL) equivalents.

The following table shows a few of the replacements:

http://graphics/com.unity.render-pipelines.universal/ShaderLibrary/ShaderVariablesFunctions.hlsl

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 21

Built-in Cg macros URP HLSL equivalents

UNITY_PROJ_COORD(a) Replace with a.xy/a.w

UNITY_INITIALIZE_OUTPUT(type, name) ZERO_INITIALIZE(type, name)

Shadow Mapping.

Shadow Mapping Macros need the shadows include.

UNITY_DECLARE_SHADOWMAP(tex) TEXTURE2D_SHADOW_PARAM(textureName,

samplerName)

UNITY_SAMPLE_SHADOW(tex, uv) SAMPLE_TEXTURE2D_SHADOW(textureName,

samplerName, coord3)

UNITY_SAMPLE_SHADOW_PROJ(tex, uv) SAMPLE_TEXTURE2D_SHADOW(textureName,

samplerName, coord4.xyz/coord4.w)

Texture or Sampler declaration

For built-in Texture/Sampler declarations see the Unity documentation

UNITY_DECLARE_TEX2D(name) TEXTURE2D(textureName);

SAMPLER(samplerName);

UNITY_DECLARE_TEX2D_NOSAMPLER(name) TEXTURE2D(textureName);

UNITY_SAMPLE_TEX2D_SAMPLER(name,samplername,uv) SAMPLE_TEXTURE2D(textureName, samplerName,

coord2)

Table 4. Examples of relevant Cg macros and their HLSL equivalents

4.3 LightMode tags

LightMode tags define the role of Pass in the lighting pipeline. For custom shaders that are in

the built-in pipeline, the LightMode tags must specify how the pass is considered in the lighting

pipeline.

To migrate your LightMode tags to the URP, replace them with their equivalent URP tags.

The following table shows the equivalent LightMode tags that are used in the built-in pipeline

and the URP tags:

Built-in Description URP

Always Always rendered; no lighting is applied Not supported

ForwardBase Used in Forward rendering. Ambient, main

directional light, vertex/ SH lights and lightmaps

are applied.

UniversalForward

ForwardAdd Used in Forward rendering. Additive per-pixel lights

are applied, one pass per light.

Not supported

Deferred Used in Deferred Shading; renders g-buffer UniversalGBuffer

ShadowCaster Renders object depth into the shadow map or a

depth texture.

ShadowCaster

https://github.com/Unity-Technologies/Graphics/blob/master/com.unity.render-pipelines.universal/ShaderLibrary/Shadows.hlsl
https://docs.unity3d.com/2021.1/Documentation/Manual/SL-BuiltinMacros.html
https://docs.unity3d.com/Manual/SL-PassTags.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.3/manual/urp-shaders/urp-shaderlab-pass-tags.html

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 21

Built-in Description URP

MotionVectors Used to calculate per-object motion vectors Not supported yet

No equivalent The URP uses this tag value in the Forward

Rendering Path. The Pass renders object geometry

and evaluates all light contributions.

UniversalForwardOnly

No equivalent The URP uses this tag value in the 2D Renderer. The

Pass renders objects and evaluates 2D light

contributions.

Universal2D

No equivalent The Pass renders only depth information from the

perspective of a Camera into a depth texture.

DepthOnly

No equivalent This Pass is executed only when baking lightmaps

in the Unity Editor. Unity strips this Pass from

shaders when building a Player.

Meta

No equivalent Use this tag value to draw an extra Pass when

rendering objects. It is valid for both the Forward

and the Deferred Rendering Paths.

The URP uses this tag value as the default value

when a Pass does not have a LightMode tag.

SRPDefaultUnlit

Table 5. LightMode tags used in the built-in pipeline and the equivalent URP tags

Note: Several legacy built-in tags are not supported at all in the URP: MotionVectors,

PrepassBase, PrepassFinal, Vertex, VertexLMRGBM, and VertexLM. Also, some tags are only in

URP and have no equivalent in the built-in pipeline.

4.4 Changing replacement shaders

The URP does not support a replacement shader. You can use a replacement renderer to

implement the behavior of a replacement shader.

The project Dynamic Soft Shadows Based on Local Cubemaps was originally written for the

built-in pipeline. This project uses a replacement shader to render the chess-pieces with the very

simple Custom/ctShadowMap shader. This means that the shadow camera is placed at the light

position and uses the Custom/ctShadowMap shader to render the geometry of the chess pieces

to a texture. The resulting texture is later projected on the chessboard to produce the shadows

from the chess pieces, as shown in the following two images:

https://assetstore.unity.com/packages/vfx/shaders/dynamic-soft-shadows-based-on-local-cubemaps-61640#releases

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15 of 21

Image 2: Chess pieces rendered to texture with the replacement shader

Image 3: Projected shadows using the rendered texture

To use a replacement renderer to implement the behavior of a replacement shader:

1. Create a new URP renderer asset: right-click anywhere in the Project view, then select Create

> Rendering > Universal Render Pipeline > Forward Renderer.

2. Name the Forward Renderer. For example, CameraReplacementRenderer.

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 21

3. Click on the CameraReplacementRenderer asset to edit its properties. This is shown in the

following screenshot:

Image 4: Properties of a Forward Renderer

4. Set both Opaque Layer Mask and Transparent Layer Mask to Nothing. This changes the

filtering and disables normal camera rendering, otherwise we would render everything twice.

5. Click Add Renderer Feature and select Render Objects (experimental).

6. Click the New Render Objects (Render Objects) that you just created. There are several

options listed, and the following describes what happens if you set filters or overrides:

o Set Filters > Layer Mask to the layers you want it to render.

o Set Overrides > Material to a material that is using your replacement shader.

7. Select Assets/Settings/UniversalRP-HighQuality.asset, click + to add a new renderer, and

drag and drop the CameraReplacementRenderer asset. This is shown in the following

screenshot:

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 21

Image 5: UniversalRP-HighQuality.asset

8. Select the camera that was using the replacement shader.

9. Set Renderer to the new URP renderer asset that you configured for the

CameraReplacementRenderer. This selection is shown in the following screenshot:

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 21

Image 6: Camera using replacement shader

4.5 Post-processing

When migrating a project to the URP, use the post-processing solution that Unity created for the

URP, rather than the Post Processing v2 stack. See the URP post-processing documentation for

more information.

4.5.1 If you are using custom post-processing and Unity 2019.4

In 2019, Unity dropped support for PPv2 in the URP and relied on the new integrated post-

processing stack. However, the new stack did not include the custom post-processing

feature. Unity therefore added support for PPv2 as a fallback mode in 2019.4 LTS, for users who

do not want to upgrade to 2020.

To use custom post-processing in 2019.4 LTS, change the Post Processing > Feature Set from

the integrated solution to Post Processing V2.

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@latest/index.html?subfolder=/manual/integration-with-post-processing.html

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 21

4.5.2 Mobile-friendly features

Post-processing is an expensive operation on mobile, because these effects can take up lots of

frame time. If you are using URP for mobile devices, the following effects are the most mobile-

friendly:

• Bloom. For mobile, disable the High-Quality Filtering option to reduce resource use.

• Chromatic Aberration

• Color Grading

• Lens Distortion

• Vignette

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 20 of 21

5 Related information
Here are some resources related to material in this guide:

• Dynamic soft shadows based on local cubemaps

• LightMode tags

• Unity Render Pipeline tutorials

• Unity Universal Render Pipeline support

• What’s new in URP

https://assetstore.unity.com/packages/vfx/shaders/dynamic-soft-shadows-based-on-local-cubemaps-61640#releases
https://docs.unity3d.com/Manual/SL-PassTags.html
https://blogs.unity3d.com/ru/2020/08/26/learn-how-to-bring-your-game-graphics-to-life/
http://vi.esotericsoftware.com/blog/Unity-Universal-Render-Pipeline-support
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@10.3/manual/whats-new/urp-whats-new.html

Migrating Unity shaders to Universal Render

Pipeline

102487_0100_00
Issue 0100

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 of 21

6 Next steps
This guide has shown you how to migrate your built-in pipeline to Universal Render Pipeline and

the advantages of doing this. To make the best use of URP in your game, use the Unity URP

microsite to explore URP concepts and features. To optimize your game’s performance further,

see our guide Optimization opportunities in Unity.

https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@11.0/manual/index.html
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@11.0/manual/index.html
https://developer.arm.com/documentation/102314/latest/

	1 Overview
	1.1 Before you begin

	2 What is the Universal Render Pipeline?
	3 Migrating built-in shaders to the Universal Render Pipeline
	3.1 Differences between the built-in shader and URP shaders

	4 Migrating custom shaders to the Universal Render Pipeline
	4.1 Migrating include files and functions
	4.1.1 cginc
	4.1.2 Space transforms
	4.1.3 Shader variable functions
	4.1.4 Common include

	4.2 Preprocessor macros
	4.3 LightMode tags
	4.4 Changing replacement shaders
	4.5 Post-processing
	4.5.1 If you are using custom post-processing and Unity 2019.4
	4.5.2 Mobile-friendly features

	5 Related information
	6 Next steps

