

Unity

Revision: 02

Optimization Opportunities in Unity
Non-Confidential Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates).

All rights reserved.

102314

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 2 of 50

Unity

Optimization Opportunities in Unity

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 12th January 2021 Non-Confidential First release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of

the information contained in this document may be protected by one or more patents or pending patent

applications. No part of this document may be reproduced in any form by any means without the express

prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual

property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use

or permit others to use the information for the purposes of determining whether implementations infringe

any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,

EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF

MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR

PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation

with respect to, has undertaken no analysis to identify or understand the scope and content of, patents,

copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,

INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,

duplication or disclosure of this document complies fully with any relevant export laws and regulations to

assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such

export laws. Use of the word “partner” in reference to Arm's customers is not intended to create or refer to

any partnership relationship with any other company. Arm may make changes to this document at any

time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any

conflict between the English version of this document and any translation, the terms of the English version

of the Agreement shall prevail.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 3 of 50

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm

Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names

mentioned in this document may be the trademarks of their respective owners. Please follow Arm's

trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to

license restrictions in accordance with the terms of the agreement entered into by Arm and the party that

Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

We believe that this document contains no offensive terms. If you find offensive terms in this document,

please email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://developer.arm.com/
mailto:terms@arm.com

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 50

Contents

1 Overview ...6

1.1 Before you begin .. 6

1.2 Understanding the optimization process .. 6

1.3 The Ice Cave Demo .. 7

2 Application processor optimizations ...8

2.1 Use coroutines ... 8

2.1.1 Use coroutines instead of Invoke() ... 8

2.1.2 Use coroutines for relaxed updates ... 9

2.2 Avoid hard-coded values for tags ... 9

2.3 Reduce the number of physics calculations ... 10

2.4 Remove empty callbacks .. 10

2.5 Avoid using GameObject.Find() in every frame .. 11

2.6 Use the StringBuilder class to concatenate strings ... 12

2.7 Use the CompareTag() method .. 12

2.8 Use object pools ... 13

2.9 Cache component retrievals .. 14

2.10 Use OnBecameVisible() and OnBecameInvisible() callbacks .. 14

2.11 Use sqrMagnitude for comparing vector magnitudes ... 15

2.12 Use built-in arrays .. 15

2.13 Use planes as collision targets ... 15

2.14 Use compound primitive colliders .. 16

3 GPU optimizations .. 17

3.1 Use static batching ... 17

3.2 Use 4x MSAA .. 17

3.3 Use Level of Detail .. 18

3.4 Avoid mathematical functions in custom shaders .. 19

3.5 Use lightmaps and light probes ... 19

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 5 of 50

3.5.1 Setting up lightmapping ... 22

3.5.2 Scene-level lighting options .. 23

3.5.3 Review the Baked Lightmaps ... 26

3.5.4 Object-level lighting options ... 27

3.5.5 Use light probes for dynamic objects in your game .. 29

3.6 Use ASTC texture compression .. 30

3.7 Mipmapping ... 36

3.8 Use cubemaps for skyboxes .. 37

3.9 Limit shadow complexity .. 37

3.9.1 Use real-time shadows sparingly.. 39

3.10 Set up occlusion culling ... 40

3.11 Use OnBecameVisible() and OnBecomeInvisible() callbacks ... 41

3.12 Specify the rendering order .. 42

3.13 Consider using depth prepass.. 44

4 Asset optimizations .. 46

4.1 Disable read or write for static textures ... 46

4.2 Combine meshes to reduce draw calls .. 46

4.3 Do not import animations data on FBX mesh models unnecessarily ... 46

4.4 Avoid read or write meshes ... 47

4.5 Use profiling to focus your optimizations ... 47

5 Related information ... 49

6 Next steps .. 50

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 6 of 50

1 Overview
Optimization is the process of taking an application and making it more efficient. For graphical

applications, optimization typically means modifying the application to make it faster. For

example, a game with a low frame rate might appear jumpy, which gives a bad impression and

can make a game difficult to play. You can use optimization to improve the frame rate of a

game, making it a better, smoother experience.

This guide introduces ways that you can optimize your Unity programs, especially their GPU

usage. The guide groups optimizations into three chapters:

• Application processor optimizations

• GPU optimizations

• Asset optimizations

1.1 Before you begin

This guide is intended for experienced game developers who are already familiar with Unity.

This guide was last reviewed with Unity 2019.3

1.2 Understanding the optimization process

Before we learn about optimization techniques, let’s review the general process you should

follow when optimizing an application.

The optimization process is iterative. To find and remove performance problems, perform the

following steps:

1. Take measurements of your application with a profiler.

The profiler analyzes the measurements so that you can isolate and identify the source of any

performance problem.

2. Locate the bottleneck by analyzing the profiler data

3. Determine the relevant optimization to apply

4. Verify that the optimization works

5. If the performance is still not acceptable, return to step 1 and repeat the process

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 7 of 50

Here is a brief example of the optimization process:

You have a game that does not have the performance you require. You can use a profiler to take

measurements of your application. Profiling shows that the problem with the game is that it

renders too many vertices, so you reduce the number of vertices in your meshes. Execute the

game again to ensure that the optimization worked.

If the game is not performing as expected after you have completed the optimization process,

you can restart the process by profiling the application again. This enables you to find out what

else is causing problems.

1.3 The Ice Cave Demo

The Arm Guide for Unity Developers series often refers to the Ice Cave Demo. The Ice Cave demo

is a demonstration application created by Arm that uses a number of optimized techniques to

produce high-quality visual content for mobile devices.

You can see the Ice Cave demo in action on our YouTube channel, and read more about it on

the blog post Virtual Reality: The Ice Cave and on our Unity Demos page.

Arm has started to release some of the effects used in our demos. You can find them in the

Unity Asset Store.

https://www.youtube.com/watch?v=C_rojvspDZI&feature=emb_logo&ab_channel=Arm
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/virtual-reality-the-ice-cave
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/unity-demos
https://assetstore.unity.com/publishers/21069

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 50

2 Application processor

optimizations
This section of the guide describes a few application processor optimizations that can improve

the performance of your Unity programs.

2.1 Use coroutines

A coroutine is a function of type IEnumerator that can return control to Unity with a

special yield return statement. You can call the function again later, and it resumes where it

left off.

2.1.1 Use coroutines instead of Invoke()

The Monobehaviour.Invoke() method is a fast and convenient way to call a method in a

class with a time delay. However, the method has the following limitations:

• Monobehaviour.Invoke() uses reflection in C# to find the method to call, which can be

slower than calling the method directly.

• There are no compile-time checks on the method signature.

• You cannot supply more parameters.

The following code shows the Invoke() function:

public void Function()

{

 [...]

}

Invoke("Function", 3.0f);

An alternative method is to use coroutines. The following code shows calling coroutines through

the MonoBehaviour.StartCoroutine() method:

public IEnumerator Function(float delay)

{

 yield return new WaitForSeconds(delay);

 [...]

}

StartCoroutine(Function(3.0f));

Changing from the Monobehaviour.Invoke() method to using coroutines provides more

flexibility over the parameters that are passed to the functions that deal with animation states.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 9 of 50

2.1.2 Use coroutines for relaxed updates

If your game requires a repeated action at a specific time interval, you can try launching a

coroutine in the MonoBehaviour.Start() callback. Launching a coroutine is an alternative to

performing an action in every frame through the MonoBehaviour.Update() callback. The

following code shows an example of a coroutine:

void Update()

{

 // Perform an action every frame

}

IEnumerator Start()

{

 while(true)

 {

 // Do something every quarter of second

 yield return new WaitForSeconds(0.25f);

 }

}

Another use of coroutines is to spawn enemies at irregular intervals rather than regular intervals.

You can use an infinite loop inside the coroutine that spawns an enemy and generates a

random number. Then pass the random number to the WaitForSeconds() function.

2.2 Avoid hard-coded values for tags

Avoid hard-coded values for tags. This is because hard-coded values restrict the scalability and

robustness of your game. For example, with tag names, if you refer to the names directly by

strings you cannot easily modify them. Therefore, you are potentially exposed to spelling errors.

A hard-coded value for a tag is shown in the following code:

if(gameObject.CompareTag("Player"))

{

 [...]

}

You can improve the preceding code by implementing a special class for tags that exposes

public constant strings. For example:

public class Tags

{

 public const string Player = "Player";

 [...]

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 50

}

if(gameObject.CompareTag(Tags.Player))

{

 [...]

}

2.3 Reduce the number of physics calculations

Most physics calculations take place at a fixed time step. You can increase or decrease the length

of this step to reduce computation load. Increasing the time step decreases the load on the

application processor, but reduces the accuracy of physics calculations.

To access the time manager from the main menu, select Edit > Project Settings > Time.

The following screenshot shows the time manager:

Image 1: Fixed timestep settings

2.4 Remove empty callbacks

If your code includes empty definitions for functions, like Awake(), Start(), or Update(),

remove them. There is an overhead associated with the empty functions. This is because the

engine attempts to access them even though they are empty. For example:

// Remove the following empty definition

void Awake()

{

}

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 50

2.5 Avoid using GameObject.Find() in every frame

GameObject.Find() is a function that iterates through every object in the scene. This function

can cause a significant increase in the main thread size if it is used in an incorrect part of your

code. For example:

void Update()

{

 GameObject playerGO = GameObject.Find("Player");

 playerGO.transform.Translate(Vector3.forward * Time.deltaTime);

}

A better technique is to call GameObject.Find() on startup and cache the result, for example,

in the Start() or Awake() function. The following code uses the Start() function:

private GameObject _playerGO = null;

void Start()

{

 _playerGO = GameObject.Find("Player");

}

void Update()

{

 _playerGO.transform.Translate(Vector3.forward * Time.deltaTime);

}

The function GameObject.FindWithTag() is a faster alternative to GameObject.Find().

The following code shows GameObject.FindWithTag():

void Update()

{

 GameObject playerGO = GameObject.FindWithTag("Player");

 playerGO.transform.Translate(Vector3.forward * Time.deltaTime);

}

Use a dedicated class called LocatorManager that performs all the object retrievals

immediately after the scene finishes loading. This allows other classes to use LocatorManager

as a service, so that objects are not retrieved multiple times.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 12 of 50

2.6 Use the StringBuilder class to concatenate

strings

When concatenating complex strings, use the System.Text.StringBuilder class. This class

is faster than the string.Format() method and uses less memory than concatenation with

the plus operator. This code shows the plus operator concatenation and string.Format()

methods:

// Concatenation with the plus operator

string str = "foo" + "bar";

// String.Format() method

string str = string.Format("{1}{2}", "foo", "bar");

To make the code faster, use the System.Text.StringBuilder class:

// StringBuilder class

using System.Text;

StringBuilder strBld = new StringBuilder();

strBld.Append("foo");

strBld.Append("bar");

string str = strBld.toString();

The following screenshot shows the difference in performance between using the

string.Format() method, the concatenation method and the StringBuilder class:

Image 2: Performance for the three methods

2.7 Use the CompareTag() method

Use the GameObject.CompareTag() method instead of the GameObject.tag property. This

is because the CompareTag() method is faster and does not allocate extra memory. These

methods are shown in the following code:

GameObject mainCamera = GameObject.Find("Main Camera");

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 50

// Gameobject.tag property

if(mainCamera.tag == "MainCamera")

{

 // Perform an action

}

// Gameobject.CompareTag() method

if(mainCamera.CompareTag("MainCamera"))

{

 // Perform an action

}

The following screenschot compares the use of CompareTag() and GameObject:

Image 3: Compare tag and game object comparison

2.8 Use object pools

If your game has many objects of the same kind that are created and destroyed at runtime, you

can use the design pattern object pool. This design pattern avoids the performance penalty of

allocating and freeing many objects dynamically. Using object pools for enemies and bombs

restricts the allocation of those objects to the loading phase of the game.

If you know the total number of objects that you require, you can create them all immediately

and disable the objects that are not immediately required. When a new object is required, search

the pool for the first unused one and enable it.

When an object is not required anymore, you can return it to the pool by disabling it and

resetting it to a default starting state.

You can use this technique with objects like enemies, projectiles, and particles. If you do not

know the exact number of objects that you require, test to find out how many are used. So that

you have a safety margin, create a pool that is slightly bigger than the number that you find.

Without a safety margin, the player experience can be affected by an object that disappears as

the game creates a new one. The game might even crash if it fails to create needed objects.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 50

2.9 Cache component retrievals

Cache the component instance that GameObject.GetComponent<Type>() returns. The

function call that is involved is quite expensive.

Properties like GameObject.camera, GameObject.renderer, or GameObject.transform

are shortcuts to the corresponding GameObject.GetComponent<Camera>(),

GameObject.GetComponent<Renderer>(),

and GameObject.GetComponent<Transform>(). The following code shows the correct

usage:

private Transform _transform = null;

void Start()

{

 _transform = GameObject.GetComponent<Transform>();

}

void Update()

{

 _transform.Translate(Vector3.forward * Time.deltaTime);

}

Consider caching the return value of Transform.position. Even though the function is a C#

getter property, there is overhead associated with running it. The overhead comes from iterating

over the transform hierarchy to calculate the global position.

In Unity 5 and newer, the transform component is automatically cached.

2.10 Use OnBecameVisible() and

OnBecameInvisible() callbacks

Callbacks like MonoBehaviour.OnBecameVisible() and

MonoBehaviour.OnBecameInvisible() notify your scripts if their associated game objects

become visible or invisible on screen.

These calls enable you to, for example, disable computationally heavy code routines or effects

when a game object is not rendered on screen.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15 of 50

2.11 Use sqrMagnitude for comparing vector

magnitudes

If your application requires the comparison of vector magnitudes, use

Vector3.sqrMagnitude instead of Vector3.Distance() or Vector3.magnitude.

Vector3.sqrMagnitude sums the squared components without calculating the root, but this

sum is useful for comparisons. The other calls use a computationally expensive square root.

The following code shows the three different techniques that are used to compare two positions

in space:

// Vector3.sqrMagnitude property

if ((_transform.position - targetPos).sqrMagnitude < maxDistance * maxDistance)

{

 // Perform an action

}

// Vector3.Distance() method

if (Vector3.Distance(transform.position, targetPos) < maxDistance)

{

 // Perform an action

}

// Vector3.magnitude property

if ((_transform.position - targetPos).magnitude < maxDistance)

{

 // Perform an action

}

2.12 Use built-in arrays

If you know the size of an array in advance, use the built-in arrays.

The ArrayList and List classes have more flexibility than built-in arrays. This is because they

grow when you insert more elements. However, they are slower than the built-in arrays.

2.13 Use planes as collision targets

If your scene only requires particle collisions with planar objects like floors or walls, change the

particle system collision mode to Planes to reduce the required computations. In this mode, you

can provide Unity with a list of empty GameObjects to act as the collider planes.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 50

The following screenshot shows collision settings for Planes mode:

Image 4: Collision settings for Planes mode

2.14 Use compound primitive colliders

Mesh colliders are based on the real geometry of an object. Mesh colliders are accurate for

collision detection but are computationally expensive.

You can combine shapes like boxes, capsules, or spheres into a compound collider that mimics

the shape of the original mesh. Combining shapes provides similar results to mesh colliders, with

a much lower computational overhead.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 50

3 GPU optimizations
This section of the guide shows how you can use various graphics optimizations to reduce the

time and effort that your CPU or GPU need to run your game.

3.1 Use static batching

Static batching is a common optimization technique that reduces the number of draw calls, and

therefore application processor use.

Unity performs dynamic batching transparently, but cannot apply it to objects that are made of

many vertices. This is because the computational overhead becomes too large.

Static batching can work on objects that are made of many vertices, but the batched objects

must not move, rotate, or scale during rendering.

To enable Unity to group objects for static batching, mark them as static in the Inspector

window.

The following screenshot shows static batching settings:

Image 5: Static batching settings

3.2 Use 4x MSAA

Arm Mali GPUs can do 4x Multi-Sample Anti-Aliasing (MSAA) with a low computational

overhead.

You can enable 4x MSAA in:

• The Universal Render Pipeline (URP) settings if you are using the URP. The following

screenshot shows the setting:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 50

Image 6: MSAA settings

• The Unity Quality Settings if you are not using URP. Select Edit > Project Settings >

Quality Settings.

3.3 Use Level of Detail

Level of Detail (LOD) is a technique in which the Unity engine renders different meshes for the

same object at different distances from the camera. Geometry is more detailed when the object

is close to the camera. The LOD is reduced as the object moves away from the camera. At the

furthest distance, you can use a planar-aligned billboard.

To set up LOD groups to manage the meshes that you use and the associated distance ranges,

select Add Component > Rendering > LOD Group.

From Unity 5, you can set a Fade Mode for each LOD level to blend to contiguous LODs. Fade

Mode smooths the transition between the LODs. Unity calculates a blending factor according to

the screen size of the object and passes it to your shader for blending. You must implement the

geometry blending in a shader. The following screenshot shows the LOD group settings:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 50

Image 7: Level of Detail group settings

3.4 Avoid mathematical functions in custom shaders

When writing custom shaders, minimize the use of expensive built-in mathematical functions.

This is because these functions can cause the custom shader to take longer to run. Expensive

functions include:

• pow()

• exp()

• log()

• cos()

• sin()

• tan()

• sqrt()

3.5 Use lightmaps and light probes

Runtime lighting calculations are computationally expensive. A popular technique to reduce

the computational cost is called lightmapping. Lightmapping pre-computes the lighting

calculations and bakes them into a texture called a lightmap. With a lightmap, you lose the

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 20 of 50

flexibility of a fully dynamically lit environment. However, you get high-quality images without

affecting performance.

To bake the resulting lighting in a static lightmap, follow these steps:

1. Navigate to the Inspector window for the geometry that is receiving the lighting.

2. Set the geometry to Static.

3. Navigate to Mesh Renderer > Lighting:

a. Check the Contribute Global Illumination option.

b. Set Receive Global Illumination to Lightmaps.

The Settings window is shown in the following screenshot:

Image 8: Settings for geometry receiving global illumination

4. Navigate to Window > Rendering > Lighting Settings > Scene tab select the Baked

Global Illumination option.

To see the resulting lightmap, select the geometry and do one of the following:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 of 50

• Open the Lighting window and view the Baked Lightmaps.

• Open the Inspector window for the object and select Baked Lightmap > Open Preview.

If the Continuous Baking option is selected, Unity bakes the lightmap and updates the scene in

the Editor window in seconds. If the Continuous Baking option is not selected, select Generate

Lighting to update the scene.

A quick way to check that the lightmap has set up correctly is to run the game in the Editor

window and disable the light. If the lighting is still there, the lightmap has been created correctly

and is in use.

The following screenshot shows a baked lightmap as opened from either the Inspector

window’s Lightmapping section or the Lighting window:

Image 9: The baked lightmap

The following screenshot shows the Editor window displaying lighting from a green light at the

end of a cave. The lighting is generated with a static lightmap:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 50

Image 10: Adding a light to bake a static lightmap

The following screenshot shows the result of the static lightmap in the Ice Cave demo:

Image 11: Lightmapped cave

3.5.1 Setting up lightmapping

To prepare an object for lightmapping, you need:

• A model in your scene with lightmap UVs. You can do this by selecting Generate Lightmap

UVs when importing the mesh.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 23 of 50

• The model must be set as Lightmap Static. Objects that are not marked as static are not

placed in the lightmap.

• There must be a light within range of the model. The Baking type of this light must be set

to Baked.

These objects are not likely to be perfect, so experiment to see what works best for your game.

To set up lightmapping, follow these steps:

1. Navigate to the main menu and select Lighting > Window and Lightmapping.

2. Select one of the following options:

 Scene

 Baked Lightmaps

 Real-time Lightmaps, if you are not using the URP

3.5.2 Scene-level lighting options

The options in the Lighting > Scene tab can have a big impact on performance. Here, we review

a few of the important ones:

• In the Environment section, the Environment Reflections > Bounces option is the most

important from the performance point of view. Reflection bounces defines the number of

inter-reflections between reflective objects, that is, the number of bake times for the probe

that sees the objects. If the reflection probes are updated at runtime, they can have a large,

negative impact on performance. Only set the number of bounces higher than one if the

reflective objects are visible in the probes.

The following screenshot shows the Environment section:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 24 of 50

Image 12: Environment settings

• In the Mixed Lighting section:

o Select a Lighting Mode. The different modes have significant performance

variations; you can review them on the Unity documentation site.

o In URP, there is no option for Real-time Global Illumination. However, you can

select Baked Global Illumination to create lightmaps, as shown in the following

screenshot:

Image 13: Mixed Lighting settings

• In the Lightmapping Settings:

o Select the Lightmapper > Progressive GPU option for fast updates while setting

up your scene. Select Progressive CPU for the final version.

https://docs.unity3d.com/Manual/lighting-mode.html

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 25 of 50

o Set the lightmap texture to be compressed by selecting the Compress Lightmaps

option. Compressing lightmap textures requires less storage space and less

bandwidth at runtime. However, the compression process can add artifacts to the

texture.

o Be careful with the Directional Mode option. When Directional Mode is set

to Directional instead of Non-Directional, an extra lightmap is created to store

the dominant direction of incoming light. As a result, Directional mode requires

about twice as much storage space and video memory, compared to Non-

Directional. If you cannot use deferred lighting with dual lightmaps, another

technique you may want to use is directional lightmaps. Directional lightmaps

enable you to use normal mapping and specular lighting without real-time lights.

Use directional lightmaps if normal mapping must be preserved but dual

lightmaps are not available. This situation is typical for mobile devices.

o Reduce Lightmap Resolution, Lightmap Padding, and Lightmap Size to a level

just above the level that causes artifacts.

The following screenshot shows lightmapping settings in line with the recommendations in this

section of the guide:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 50

 Image 14: Lightmapping Settings

3.5.3 Review the Baked Lightmaps

Use the Baked Lightmaps tab to preview the impact of the lightmap settings you selected in the

Scene tab.

The following screenshot shows lightmaps in the Lighting tab:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 27 of 50

Image 15: Lightmaps in the Lighting tab

3.5.4 Object-level lighting options

You can modify the object settings that impact the lightmapping process in the Inspector

window.

You can change the following options for your object:

• If you select a light, set Mode to Baked, Real-time, or Mixed. Setting most lights

to Baked, or at least Mixed, ensures that the number of calculations at runtime is relatively

low. The mode is a top-level lighting setting and has a huge impact on performance.

The following screenshot shows the Light settings with a mixed mode:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 28 of 50

Image 16: Light settings with Mixed Mode

• Shadow options also need careful consideration. To learn more about shadows, see Limit

shadow complexity.

• If you select an object with geometry, the two most important options for performance are:

o Lightmapping > Stitch seams, which you will often want to use for getting correct

lightmapping on complex objects.

o Lighting > Contribute Global Illumination and Receive Global Illumination set to

Lightmaps for a static geometry, as shown in the following screenshot:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 29 of 50

Image 17: Global illumination settings

3.5.5 Use light probes for dynamic objects in your game

Light probes add dynamic lighting to lightmapped scenes. Light probes take a sample, or probe,

of the lighting in an area. If the probes form a volume, or cell, the lighting is interpolated

between these probes, depending on their position within the cell.

The more probes there are, the more accurate the lighting is. You do not typically require many

light probes. This is because there is interpolation between probes. This means that the lighting

at any position can be approximated. Approximation is done by interpolating between the

samples that are taken by the nearest probes. You require more light probes in areas where

there are large changes in light color or intensity.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 30 of 50

Be careful when you are placing the light probes. For the meshes that you want to be influenced

by the probes, select Receive Global Illumination and Light Probes. The following screenshot

shows light probe settings for an object with a mesh, in Object Settings:

Image 18: Probes settings

The following screenshot shows multiple light probes:

Image 19: Multiple light probes in a scene

3.6 Use ASTC texture compression

Adaptive Scalable Texture Compression (ASTC) is an official extension to the OpenGL and

OpenGL ES graphics APIs, and is a core feature in the Vulkan API. ASTC can reduce the memory

requirements of your application, and the memory bandwidth use of your GPU.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 31 of 50

ASTC offers texture compression with high quality and low bitrate, and has many options. ASTC

includes the following features:

• Bit rates range from 8 bits per pixel (bpp) to less than 1bpp. This enables you to fine-tune the

trade-off of file size against quality.

• Support for 1-4 color channels

• Support for both Low Dynamic Range (LDR) and High Dynamic Range (HDR) images

• Support for 2D and 3D images

• Support for selecting different combinations of features

You can turn on ASTC for all textures in File > Build Settings. But we suggest leaving Texture

Compression set to Don’t override and giving texture-specific settings. This compression

setting is global for all the textures. The Don’t override option means that the default format

will be used.

The following screenshot shows a setting of Don’t override, rather than ASTC:

Image 20: Texture Compression set to Don’t override

The following screenshot shows the section in Inspector > Texture Settings that deals with

platform-specific formatting:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 32 of 50

Image 21: Platform-specific texture settings

If you select Best for Compressor Quality, the compressor will try a lot of different ASTC block

options to find the best result for quality and size. If you select Fast, the compressor will try only

the most promising options, which will often not be the best ones. This means that Best

provides a better quality than Fast, at the cost of being slower. You may want to select

Fast when you are experimenting with your scene and want to iterate quickly, and Best for your

final version.

There are several block sizes available in the ASTC settings window. The larger block sizes

provide higher compression. Select large block sizes for textures that are not shown in detail, for

example, objects far away from the camera. Select smaller block sizes for textures that show

more detail, for example those closer to camera.

The following screenshot shows the block sizes for different texture compression formats:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 33 of 50

Image 22: Texture compression block sizes

Compression in mobile devices:

• OpenGL ES 2 does not support ASTC. Therefore, if you want to target OpenGL ES 2 devices

and use texture compression, you may want to build a separate Android Application

Package (APK) for those devices and use ETC encoding.

• Most Android devices now support ASTC, so normally you should use ASTC to compress the

textures in your 3D content. If you are targeting devices that do not support ASTC, try using

ETC2.

• You must differentiate between textures that are used in 3D content from textures that are

used in the Graphical User Interface (GUI) elements. This differentiation lets you select

different compressions for each texture use. In some cases, you might want to leave the GUI

textures uncompressed to avoid unwanted artifacts, but must still compress the 3D

elements. Leaving 3D elements uncompressed can affect the game performance, especially

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 34 of 50

on mobile devices. You may also want to differentiate between your 3D background and 3D

hero character, so that you can choose a different compression for the background.

Each ASTC texture type needs a different compression format to achieve the best

possible results.

Texture compression algorithms have different channel formats, typically RGB and RGBA.

ASTC supports several other formats, but these formats are not exposed within Unity.

Each texture type is typically used for a different purpose, for example:

• Standard texturing

• Normal mapping

• Specular

• HDR

• Alpha

• Look up textures

The following screenshot shows the texture types in the Inspector window:

Image 23: Texture Types in Import Settings

Unity typically imports your texture as the default type, which is suitable for most images,

but uses more specialist ones where appropriate. For example, it is important to specify when

a normal map is used. This is because ASTC needs to compress differently for normal

maps, where the RGB components do not correlate with color.

Selecting individual settings for all your textures improves the visual quality of your project and

avoids unnecessary texture data at compression time.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 35 of 50

For example, the following screenshot shows settings for a GUI texture with some transparency.

Because the texture is for a GUI, sRGB and Mip Maps are disabled. To include transparency, you

need the alpha channel. To improve performance with an alpha channel, select Override for

Android and choose an appropriate ASTC block size and compression format.

The following screenshot shows the Inspector with Advanced options:

Image 24: Default texture settings

The following table shows the compression ratio for the available ASTC block sizes in Unity for

an RGBA 8 bits per channel texture with a 1024x1024 pixel resolution at 4 MB in size:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 36 of 50

ASTC block
size

Size Compression
ratio

Bits
per texel

4x4 1 MB 4.00 8.00

5x5 655 KB 6.25 5.12

6x6 455 KB 9.00 3.56

8x8 256 KB 16.00 2.00

10x10 164 KB 24.97 1.28

12x12 144 KB 35.93 0.89

 Table 1: Compression ratios for the ASTC block sizes available in Unity

3.7 Mipmapping

Mipmapping is a texturing technique that can enhance both the visual quality and performance

of your game.

Mipmaps are pre-calculated versions of a texture at different sizes. Each texture that is generated

is called a level, and it is half as wide and half as high as the preceding level. Unity can

automatically generate the complete set of levels. The levels start at the original size and go

down to a 1x1 pixel version.

If a texture does not have mipmap levels, and is bigger than the area, in pixels, that it covers, the

GPU scales the texture down to fit the smaller area. Scaling the texture down increases the load

on the GPU, and leads to inaccuracies that damage the quality. If a texture does have mipmap

levels, the GPU fetches pixel data from the level that is closest to the object size to render the

texture. Fetching the correct level ensures a higher quality image, compared to not using

mipmaps. Fetching also reduces the GPU workload, because the GPU fetches a level that it

produced earlier, rather than scaling down while displaying the game.

To generate the mipmaps, follow these steps:

1. In the Project window, select a texture and for Texture Type, select Advanced.

2. In the Inspector window, select Generate Mip Maps.

The following screenshot shows mipmap settings:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 37 of 50

Image 25: Mipmap settings

The disadvantage of mipmapping is that it requires 33% more memory to store the texture data.

Textures that are used in a 2D UI do not usually need mipmapping. UI textures are typically

rendered on screen without scaling, so that they only use the first level in the mipmap chain. To

change this setting, in the Inspector window of the texture, either:

• For Texture Type select Editor GUI and Legacy GUI.

• For Texture Type select Default, and clear the Generate Mip Maps checkbox.

3.8 Use cubemaps for skyboxes

Games and other applications often use skyboxes to generate backgrounds. There are several

methods to implement skyboxes. One method is drawing the skybox by rendering the

background of the camera using a single cubemap.

Drawing a skybox with a cubemap requires one cubemap texture and one draw call. Compared

to other methods, a cubemap uses less memory and memory bandwidth, and fewer draw calls.

3.9 Limit shadow complexity

Shadows add perspective and realism to your scenes. Without shadows, it can sometimes be

difficult to understand the depth of objects, especially if they look like other surrounding

objects.

Shadow algorithms can be complex, especially when rendering accurate, high-resolution

shadows. Ensure that you use the simplest shadowing possible to enhance performance.

For example, the Ice Cave demo implements custom shadows: shadows based on

local cubemaps are combined with shadows that are rendered at runtime.

Unity has several options for shadows in the URP object that can impact the performance of your

game. The URP options are shown in the following screenshot:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 38 of 50

Image 26: URP shadow options

If you are not using URP, the shadow options are at Edit > Project Settings > Quality.

Two of the URP shadow options that impact performance are soft shadows and shadow distance:

• Soft shadows look more realistic but take longer to calculate than hard shadows.

• The Shadow Distance option defines the distance from the camera that shadows appear

in. Increasing the shadow distance increases the number of visible shadows, which increases

the computational load. Increasing the shadow distance also increases the number of texels

that are available for the shadows in the shadow map. This increase in the number of texels

passively increases the resolution of your shadows.

You can use hard shadows with a small shadow distance and a high resolution. This combination

produces reasonable quality shadows that are not too close to the camera and not too complex.

Lightmapped objects do not produce real-time shadows, so the more static shadows you can

bake into the scene, the fewer real-time calculations the GPU does.

The following screenshot shows an alien character with a shadow:

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 39 of 50

Image 27: Alien casting shadow

3.9.1 Use real-time shadows sparingly

Real-time shadows can dramatically enhance the realism of a scene, but they are

computationally expensive, so use them sparingly.

On mobile devices in particular, try to limit the number of lights that include real-time shadows.

Try to use lightmapping instead. Usually, the moving characters should cast real-time shadows,

but not receive them. Instead, moving characters should receive the baked shadows from static

objects. Static objects, on the other hand, should:

• Receive real-time shadows from the characters

• Only cast shadows to the baked lightmaps, not real-time

Consider whether, in the URP object, additional lights need to cast shadows. You can set this

option for each individual light.

For the URP object, consider the following settings:

• Use Shadow Resolution to balance quality and processing time. There is a range of options

between 256 and 4,096 pixels, and your choice will depend on the number of objects and

lights in the scene.

• Use Shadow Cascades to balance quality and processing time. You can set the shadow

cascades to zero, two, or four. Cascaded Shadow Maps are used for directional lights to

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 40 of 50

achieve good shadow quality, especially for long viewing distances. A higher number of

cascades produces better quality but increases processing overhead.

The following screenshot shows lighting and shadows settings for good performance:

Image 28: Lighting and shadow settings

3.10 Set up occlusion culling

Occlusion culling disables the rendering of objects when they are obscured from the view of the

camera. This process saves GPU processing time by rendering fewer objects.

Unity automatically performs frustum culling when objects exit the camera frustum completely.

However, the style of your application might mean that there are other objects that cannot be

seen and do not need to be rendered.

Unity includes an occlusion culling system with most settings at Window > Rendering

> Occlusion Culling.

The settings that you use for occlusion culling depend on the style of your game. You must be

careful picking settings. This is because incorrect settings can degrade performance.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 41 of 50

3.11 Use OnBecameVisible()

and OnBecomeInvisible() callbacks

If you use the callbacks MonoBehaviour.OnBecameVisible() and

MonoBehaviour.OnBecameInvisible(), Unity notifies your scripts when their associated

game objects move in or out of a camera frustum.

You can use these callbacks to optimize the rendering process. For example, rendering

reflections on a pool with a second camera and render targets involves rendering geometry and

combining textures off screen before rendering to the final screen surface. This technique is

relatively expensive, so only use it when necessary. You are only required to render a reflection

when it is visible. For example, you do not need a reflection if:

• The reflection surface is not in the camera frustum.

• An opaque object is in front of the surface.

The following code checks conditions with the OnBecameVisible() and

OnBecameInvisible() callbacks from the reflective surface:

void OnBecomeVisible()

{

enabled = true;

}

void OnBecomeInvisible()

{

enabled = false;

}

Even with these checks in place, sometimes a reflection is rendered off screen even though it is

not visible onscreen. To avoid this situation, you can add another condition, for example, that the

camera must be inside the room of the reflective surface. The following code shows another

condition being added to avoid a reflection rendering offscreen:

void OnBecomeVisible()

{

 if (inside == false)

 {

 return;

 }

 enabled = true;

}

void OnBecomeInvisible()

{

 if (inside == false)

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 42 of 50

 {

 return;

 }

 enabled = false;

}

void OnTriggerEnter()

{

 inside = true;

}

void OnTriggerExit()

{

 inside = false;

}

The preceding conditions restrict the rendering of reflections to specific areas of the game. This

means that you can add effects in other, less compute intensive areas of the game.

3.12 Specify the rendering order

In a scene, the object rendering order is important for performance. If objects are rendered in

random order, an object might be rendered and then be occluded by another object in front of

it. In this situation, all the computations to render the occluded object are wasted.

Various software and hardware techniques exist to reduce the amount of wasted computation

for occluded objects. However, you can manually improve this process because you know how a

player explores the scene.

Early-Z is a hardware technique for reducing wasted computation. It is one of the techniques

that is available on the Arm Mali GPUs from the Mali-T600 series onwards. Early-Z is a system

that performs a Z-test before the fragment shader is processed. If the GPU cannot enable Early-Z

optimization, the depth test is executed after the fragment shader. This can

be computationally expensive, and the computations can be wasted if the fragment is occluded.

The Early-Z system checks that the depth of the pixel being processed is not already occupied by

a nearer pixel. If the pixel is occupied, the system does not execute the fragment shader.

The Early-Z system provides performance benefits, but sometimes it is automatically disabled.

For example, Early-Z is disabled if the fragment shader modifies the depth by writing

into the gl_FragDepth variable. This means that the fragment shader calls discard.

To help this system achieve maximum efficiency, ensure that opaque objects are rendered from

front to back. This rendering helps to reduce the overdraw factor in scenes with only opaque

objects.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 43 of 50

Ordering the rendering of each frame from front to back can be expensive and incorrect if you

render transparent objects in the same pass. However, Arm Mali GPUs from T620 onwards

provide a mechanism called Forward Pixel Kill (FPK). Mali GPUs are pipelined so that multiple

threads can be concurrently executing for the same pixel. If a thread completes its execution,

the FPK system stops all other threads for that pixel if the current one covers them. The effect is

a reduction of wasted computations.

Unity provides queue options inside the shader to specify the order of rendering, so that

rendering does not rely entirely on hardware inference. If you set the order of rendering in the

shader, objects that have a material that uses this shader are rendered together. Inside this

rendering group, the order of rendering is random. However, this is not always the case. For

example, transparency affects rendering order.

You can override a rendering group for a material in the material script. By default, Unity

provides some standard groups that are rendered from first to last in the order shown in the

table:

Name Value Notes

Background 1000 -

Geometry 2000 Default used for opaque geometry.

AlphaTest 3000 The AlphaTest is drawn after all

opaque objects, for example, foliage.

Transparent 4000 This group is also rendered in back to

front order to provide the correct

results.

Overlay 5000 Overlay effects, for example, user

interface, lens flares, dirty lens.

Table 2: Queue values for specifying rendering order

The integer values can be used instead of their string names. Integer values are not the only

values available. You can specify other queues using an integer value between those that are

shown. The higher the number, the later it is rendered. For example, you can use one of the

following instructions to render a shader after the Geometry queue, but before

the AlphaTest queue:

Tags { "Queue" = "Geometry+1" }

Tags { "Queue" = "2001" }

In the Ice Cave demo, the cave covers large parts of the screen and its shaders are expensive.

Where possible, parts were not rendered. This is because rendering them could degrade

performance.

Rendering order optimization was included in the Ice Cave demo after looking at the

composition of the framebuffers. The tools that were used to look at the composition of the

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 44 of 50

framebuffers include the Unity Frame Debugger and tools like the Graphics Analyzer. These tools

show the rendering order.

Use the Unity Frame Debugger to debug in play mode and get the sequence of drawings that

Unity executes.

In the Ice Cave demo, scrolling down the draw calls shows that the cave is rendered first. This

means that the objects are rendered into the scene, occluding the parts of the cave that are

already rendered. Another example is the reflective crystals that in some scenes are occluded by

the cave. In these cases, setting a higher rendering order means fragment shaders are not

executed for the occluded crystals, resulting in a reduction in computations.

3.13 Consider using depth prepass

Setting the rendering order for objects to avoid overdraw is useful, but it is not always possible

to specify the rendering order for each object. For example, if you have a set of objects that the

camera can rotate around freely, you cannot specify their order ahead of time. This is because

objects that were previously at the back can now appear at the front. In this case, if there is a

static rendering order set for these objects, some objects might be drawn last, even if they are

occluded. You also cannot specify rendering order if an object can cover parts of itself. In

cases like this, a depth prepass can sometimes reduce overdraw.

Usually, depth prepass is an optimization that reduces performance, rather than improves

it. But it can be worth evaluating whether depth prepass will help if your game:

• Is fragment bound

• Has spare capacity on the CPU and vertex shader

• Has significant transparency parts in scenes

Make sure to check the effect on performance and remember that Forward Pixel Kill (FPK) will

already reduce a lot of the wasted computation.

In Unity, add an extra pass to your shaders, if you want to do a rendering prepass for objects

with custom shaders.

The following code shows an extra pass that renders to the depth buffer only:

// extra pass that renders to depth buffer only

Pass {

ZWrite On

ColorMask 0

}

After adding this pass, the frame debugger shows that the objects are rendered twice. The first

time that they are rendered, there are no changes in the color buffer. This is because the depth

prepass renders the geometry without writing colors in the frame buffer.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 45 of 50

This process initializes the depth buffer for each pixel with the depth of the nearest visible object.

After this prepass, the geometry is rendered as usual. However, using the Early-Z technique, only

the objects that contribute to the final scene are rendered.

Extra vertex shader computations are required for this technique. This is because the vertex

shader is computed two times for each object, one time for filling the depth buffer and another

time for the actual rendering.

You can see the depth buffer by choosing it in the top-left menu of the frame debugger.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 46 of 50

4 Asset optimizations
This section of the guide describes some asset optimizations that you can use in Unity as a game

developer. Other asset optimizations are reviewed in the artists guides that we list in Related

information.

4.1 Disable read or write for static textures

If you do not dynamically modify a texture, uncheck the Read or Write Enabled option in

the Inspector window.

4.2 Combine meshes to reduce draw calls

You can combine several meshes into one with the Mesh.CombineMeshes() method. If the

meshes all share the same material, set the mergeSubMeshes argument to true. The

mergeSubMeshes argument then generates a single sub-mesh out of each mesh in

the combined group.

Combining several meshes into a single larger mesh helps:

• Create more effective occluders

• Turn tile-based assets into a single, large, seamless, solid asset

The mesh combine script can be useful for performance optimization, but this depends on

the makeup of your scene. Large meshes tend to stay in view longer than smaller meshes,

so experiment to get the correct size.

You can combine some meshes directly, if they do not need to stay separate for programming or

while the game is played. If you have meshes that need to stay separate, you can group the

meshes rather than combine them. Follow these steps:

1. Create an empty game object in the hierarchy.

2. Make the object the parent of all the meshes that you want to combine.

3. Attach the parent to a script that includes the Mesh.CombineMeshes() method.

4.3 Do not import animations data on FBX mesh

models unnecessarily

By default, Unity creates animation data when importing an FBX mesh. This process increases the

size of the imported object. If your object is not animated, it does not need this data. In Import

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 47 of 50

Settings > Rag, for Animation Type select None so Unity does not generate the animation

data.

Another way that you can stop the animation is in the Animation tab, where you can clear

the Import Animation checkbox.

4.4 Avoid read or write meshes

By default, Unity keeps a second copy of model mesh data in memory to modify while

preserving the original. Unity does this because it assumes that all models are modified at

runtime. If your model is not modified at runtime, even to be scaled, in Import Settings >

Model clear the Read or Write Enabled checkbox. Unity will not save a second copy, so

memory use will be lower.

4.5 Use profiling to focus your optimizations

Profiling lets you focus your asset optimizations and compromises on the places that matter.

It may not be obvious which part of your scene needs optimization. For example, look at the

following screenshot from Spellsouls, by Nordeus. This image was reviewed in a case study we

published on our blog: Post-processing Effects on Mobile: Optimization and Alternatives:

Image 29: Example frame to profile

The heaviest fragment shading is the terrain, because it covers the whole screen. We can see

what optimizations make the most difference to this frame, for example a lower resolution

lightmap, rendering the whole terrain at 720p instead of 1080p and blitting it in before the

characters. The characters could continue to have high-resolution visuals, because they were not

https://community.arm.com/developer/tools-software/graphics/b/blog/posts/post-processing-effects-on-mobile-optimization-and-alternatives

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 48 of 50

using most of the frame time.

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 49 of 50

5 Related information
Here are some resources related to material in this guide:

• Arm based demos made with Unity

• Arm Community - Ask development questions and find articles and blogs on specific topics

from Arm experts.

• Arm Guide for Unity developers:

o Advanced graphic techniques – Getting started

o Real-time 3D art best practices: texturing

o Real-time 3D art best practices: geometry

o Real-time 3D art best practices: materials and shaders

o Real-time 3D art best practices: lighting

o Key project-wide settings in Unity

• Post processing effects on mobile

• Unity demos

• Unity documentation

• Unity manual Lighting Pipeline Best Practice

• Virtual Reality: The ice cave demo blog post and video

https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/unity-demos
https://community.arm.com/
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers/advanced-graphics-techniques-getting-started
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers/real-time-3d-art-best-practices-texturing
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers/real-time-3d-art-best-practices-geometry
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers/real-time-3d-art-best-practices-materials-and-shaders
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers/real-time-3d-art-best-practices-lighting
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers/key-project-wide-settings-in-unity
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/post-processing-effects-on-mobile-optimization-and-alternatives
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/unity-demos
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/BestPracticeLightingPipelines.html
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/virtual-reality-the-ice-cave
https://www.youtube.com/watch?v=C_rojvspDZI&feature=emb_logo&ab_channel=Arm

Optimization Opportunities in Unity 102314
Issue 0100

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 50 of 50

6 Next steps
This guide has introduced to you some optimization techniques that you can implement in your

Unity programs. We have looked at some application processor optimizations like using built-in

arrays and remove empty callbacks. We have also looked at GPU optimizations like using static

batching and Level of Detail.

After reading this guide, you will be ready to implement some of the techniques into your own

Unity programs. If you want to learn more about Unity, you can read our Arm Guide for Unity

developers.

https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/arm-guide-for-unity-developers

	1 Overview
	1.1 Before you begin
	1.2 Understanding the optimization process
	1.3 The Ice Cave Demo

	2 Application processor optimizations
	2.1 Use coroutines
	2.1.1 Use coroutines instead of Invoke()
	2.1.2 Use coroutines for relaxed updates

	2.2 Avoid hard-coded values for tags
	2.3 Reduce the number of physics calculations
	2.4 Remove empty callbacks
	2.5 Avoid using GameObject.Find() in every frame
	2.6 Use the StringBuilder class to concatenate strings
	2.7 Use the CompareTag() method
	2.8 Use object pools
	2.9 Cache component retrievals
	2.10 Use OnBecameVisible() and OnBecameInvisible() callbacks
	2.11 Use sqrMagnitude for comparing vector magnitudes
	2.12 Use built-in arrays
	2.13 Use planes as collision targets
	2.14 Use compound primitive colliders

	3 GPU optimizations
	3.1 Use static batching
	3.2 Use 4x MSAA
	3.3 Use Level of Detail
	3.4 Avoid mathematical functions in custom shaders
	3.5 Use lightmaps and light probes
	3.5.1 Setting up lightmapping
	3.5.2 Scene-level lighting options
	3.5.3 Review the Baked Lightmaps
	3.5.4 Object-level lighting options
	3.5.5 Use light probes for dynamic objects in your game

	3.6 Use ASTC texture compression
	3.7 Mipmapping
	3.8 Use cubemaps for skyboxes
	3.9 Limit shadow complexity
	3.9.1 Use real-time shadows sparingly

	3.10 Set up occlusion culling
	3.11 Use OnBecameVisible() and OnBecomeInvisible() callbacks
	3.12 Specify the rendering order
	3.13 Consider using depth prepass

	4 Asset optimizations
	4.1 Disable read or write for static textures
	4.2 Combine meshes to reduce draw calls
	4.3 Do not import animations data on FBX mesh models unnecessarily
	4.4 Avoid read or write meshes
	4.5 Use profiling to focus your optimizations

	5 Related information
	6 Next steps

