
 

 

 

Advanced graphic techniques - 

Getting started 
Non-Confidential Issue 0200 

Copyright © 2020-21 Arm Limited (or its affiliates).  

All rights reserved. 

102224_0200_00 

  



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 2 of 37 

 

Advanced graphic techniques - Getting started 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Release information 

Document history 

Issue Date Confidentiality Change 

01 21st September 2020 Non-confidential First release 

02 16th April 2021 Non-confidential Update to script WorldSpaceNormalsCreators 

Non-Confidential Proprietary Notice 

This document is protected by copyright and other related rights and the practice or implementation of 

the information contained in this document may be protected by one or more patents or pending patent 

applications. No part of this document may be reproduced in any form by any means without the express 

prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual 

property rights is granted by this document unless specifically stated. 

Your access to the information in this document is conditional upon your acceptance that you will not use 

or permit others to use the information for the purposes of determining whether implementations infringe 

any third party patents. 

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, 

EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF 

MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR 

PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation 

with respect to, and has undertaken no analysis to identify or understand the scope and content of, 

patents, copyrights, trade secrets, or other rights.   

This document may include technical inaccuracies or typographical errors. 

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, 

INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR 

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, 

ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY 

OF SUCH DAMAGES. 

This document consists solely of commercial items. You shall be responsible for ensuring that any use, 

duplication or disclosure of this document complies fully with any relevant export laws and regulations to 

assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such 

export laws. Use of the word “partner” in reference to Arm's customers is not intended to create or refer to 

any partnership relationship with any other company. Arm may make changes to this document at any 

time and without notice. 

If any of the provisions contained in these terms conflict with any of the provisions of any click through or 

signed written agreement covering this document with Arm, then the click through or signed written 

agreement prevails over and supersedes the conflicting provisions of these terms. This document may be 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 3 of 37 

translated into other languages for convenience, and you agree that if there is any conflict between the 

English version of this document and any translation, the terms of the English version of the Agreement 

shall prevail. 

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm 

Limited (or its affiliates) in the US and/or elsewhere. All rights reserved.  Other brands and names 

mentioned in this document may be the trademarks of their respective owners. Please follow Arm's 

trademark usage guidelines at http://www.arm.com/company/policies/trademarks.   

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved.   

Arm Limited. Company 02557590 registered in England.  

110 Fulbourn Road, Cambridge, England CB1 9NJ.  

(LES-PRE-20349) 

Confidentiality Status 

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to 

license restrictions in accordance with the terms of the agreement entered into by Arm and the party that 

Arm delivered this document to. 

Unrestricted Access is an Arm internal classification. 

Product Status 

The information in this document is Final, that is for a developed product.  

Progressive terminology commitment 

We believe that this document contains no offensive terms. If you find offensive terms in this document, 

please email terms@arm.com. 

Web Address 

www.arm.com

http://www.arm.com/company/policies/trademarks
mailto:terms@arm.com
https://www.arm.com/


Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 4 of 37 

Contents 

1 Overview .......................................................................................................................................5 

1.1 Before you begin ................................................................................................................................................ 5 

2 Custom shaders ............................................................................................................................6 

2.1 Shader structure .................................................................................................................................................. 7 

2.2 Compilation directives ...................................................................................................................................... 9 

2.3 Includes ................................................................................................................................................................ 10 

2.4 OpenGL ES 3.0 and Vulkan graphics pipelines ........................................................................................ 11 

2.5 Vertex shaders ................................................................................................................................................... 12 

2.6 Vertex shader input .......................................................................................................................................... 14 

2.7 Vertex shader output and varyings ............................................................................................................. 14 

2.8 Fragment shaders ............................................................................................................................................. 17 

2.9 Provide data to shaders .................................................................................................................................. 18 

2.10 Debug shaders in Unity ................................................................................................................................ 21 

3 Early-Z ........................................................................................................................................ 24 

4 Tangent space to world space normal conversion tool ........................................................ 25 

4.1 WorldSpaceNormalsCreators C# script ..................................................................................................... 25 

4.2 WorldSpaceNormalCreator shader ............................................................................................................. 31 

5 Related information ................................................................................................................. 36 

6 Next steps .................................................................................................................................. 37 

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 5 of 37 

1 Overview 
This guide introduces you to some advanced graphics concepts in Unity. You will need to use 

custom shaders, and this guide takes you through them, as well as introducing you to some 

other mobile concepts and tools. 

At the end of this guide you will have learned: 

• How to implement vertex and fragment shaders 

• What Early-Z is 

• How to use the tangent space to world space normal conversion tool 

1.1 Before you begin 

You will need general familiarity with Unity, programming, and their terminologies. You do not 

need any knowledge of advanced graphic techniques to work through this guide. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 6 of 37 

2 Custom shaders 
This section of the guide describes custom shaders and shows you how to implement them 

within Unity.  

When creating objects in Unity, it helps the user’s eye if the object looks as real as possible. 

Shaders have an important part to play in making the object look real. This is because the 

shaders hold the mathematical calculations that render the pixels.  

Unity 5 and higher includes a Physically Based Shading (PBS) model which is incorporated in the 

standard shader. PBS simulates the interactions between material and light. PBS also provides a 

high level of realism and makes it possible to achieve a consistent look under different lighting 

conditions. 

Note: You can easily use PBS with the standard shader. If you create your own material it 

defaults to using the standard shader.  

There are several other built-in shaders including the standard shader. The following image 

shows how you can see all the available built-in shaders:  

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 7 of 37 

Figure 1 Unity built-in shaders 

Note: The source code of the built-in shaders is available in the Unity download archive which 

contains more than 120 shaders. 

There are many effects that cannot be achieved by using existing shaders. For example, standard 

shaders cannot implement reflections based on local cubemaps. For more information, see Local 

cubemap rendering techniques. 

In Unity there are three main ways of customizing shaders: 

• Shader Graph (URP and HDRP only) allows a shader to be graphically created, putting 

together the wanted effects see, the blog post Introduction to Shader Graph for more 

information. 

• Surface shaders (standard Render Pipeline only) are commonly used when lights and 

shadows affect the shaders. Unity does the work related to the lighting model for you, 

enabling you to write more compact shaders. 

• Vertex and fragment shaders are the most flexible shaders, but you must implement 

everything. Unity contains a powerful shading and material language called ShaderLab, which 

focuses on more than vertex and fragment shaders. But vertex and fragment shaders are the 

main programmable part of the graphics pipeline where shading is done. 

2.1 Shader structure 

The following code shows a simple vertex and fragment shader that contains most of the 

elements required in a vertex or fragment shader: 

Note: The example shader is written in Cg. Unity also supports the HLSL language for shader 

snippets. The Cg program snippets are written between CGPROGRAM and ENDCG. 
Shader "Custom/ctTextured" 

{ 

 Properties 

 { 

  _AmbientColor ("Ambient Color", Color) = (0.2,0.2,0.2,1.0) 

  _MainTex ("Base (RGB)", 2D) = "white" {} 

 } 

 SubShader 

 { 

  Pass 

  { 

   CGPROGRAM 

   #pragma target 3.0 

   #pragma glsl 

   #pragma vertex vert 

https://unity3d.com/get-unity/download/archive
https://blogs.unity3d.com/2018/02/27/introduction-to-shader-graph-build-your-shaders-with-a-visual-editor/


Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 8 of 37 

   #pragma fragment frag 

   #include "UnityCG.cginc" 

   // User-specified uniforms 

   uniform float4 _AmbientColor; 

   uniform sampler2D _MainTex; 

   struct vertexInput 

   { 

    float4 vertex : POSITION; 

    float4 texCoord : TEXCOORD0; 

   }; 

   struct vertexOutput 

   { 

    float4 pos : SV_POSITION; 

    float4 tex : TEXCOORD0; 

   }; 

   // Vertex shader. 

   vertexOutput vert(vertexInput input) 

   { 

    vertexOutput output; 

    output.tex = input.texCoord; 

    output.pos = mul(UNITY_MATRIX_MVP, input.vertex); 

    return output; 

   } 

   // Fragment shader. 

   float4 frag(vertexOutput input) : COLOR 

   { 

    float4 texColor = tex2D(_MainTex, input.tex); 

    return _AmbientColor + texColor; 

   } 

   ENDCG 

  } 

 } 

 Fallback "Diffuse" 

} 

The first line in the code is Shader: Custom/cTextured, which is the path/name of the 

shader. The path defines the category where the shader is displayed in the drop-down menu 

when you are setting a material. The shader from the example is displayed under the category of 

custom shaders in the drop-down menu. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 9 of 37 

The Properties{} block lists the shader parameters that are visible in the inspector and what 

parameters you can interact with. 

Each shader in Unity contains of a list of SubShaders. When Unity renders a mesh, it looks for a 

shader to use and selects the first SubShader that can run on the graphics card. This way 

shaders are executed correctly on different graphics cards that support different shader models. 

Executing shaders this way is important. This is because GPU hardware and Application 

Programming Interfaces (APIs) are constantly evolving. For example, you can write your main 

shader targeting an Arm Mali Midgard GPU to use the latest features of OpenGL ES 3.0. Then in 

a separate subshader, write a replacement shader for graphics cards supporting OpenGL ES 2.0 

and earlier. 

The Pass block causes the geometry of an object to be rendered once. A shader can contain 

one or more passes. You can use multiple passes on old hardware, or to achieve special effects, 

for example hardware that only supports an early OpenGL ES version might need multiple passes 

to achieve an effect that you can do in one pass in new hardware. 

If Unity cannot find a SubShader in the body of the shader that can render the geometry 

correctly, it rolls back to another shader that is defined after the Fallback statement. In our 

example, the SubShader is the Diffuse built-in shader. 

2.2 Compilation directives 

The compilation directives indicate the shader functions that need to be compiled. You pass 

compilation directives as #pragma statements. 

Each compilation directive must contain at least the directives to compile the vertex and the 

fragment shader, for example: #pragma vertex name, #pragma fragment name. 

By default, Unity compiles shaders into Shader Model 2.0. However, the directive #pragma 

target enables shaders to be compiled into other capability levels. Shaders being compiled 

into other capability levels are useful as Shader model 2.0 has a low instruction limit. Therefore, if 

the shader becomes large you get an error of the following type: 

Shader error in 'Custom/MyShader': Arithmetic instruction limit of 64 exceeded; 83 

arithmetic instructions needed to compile program; 

If you get the preceding error message, you must change from Shader Model 2.0 to Shader 

Model 3.0 by adding #pragma target 3.0. This is because the Shader model 3.0 has a much 

higher instruction limit. 

Passing several varying variables from vertex shader to fragment shader might cause the 

following error: 

Shader error in 'Custom/MyShader': Too many interpolators used (maybe you want #pragma 

glsl?) at line 75. 

To resolve the preceding error, add the compilation directive #pragma glsl. This directive 

converts Cg or HLSL code into GLSL. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 10 of 37 

Unity supports several rendering APIs like vulkan, gles, gles3, OpenGL, d3d11, d3d11_9x, 

Xbox one, and PS4. By default, all these shaders are compiled to the platform. However, you can 

explicitly limit this number using the #pragma only_renderers, followed by the render APIs 

that you want, leaving a blank space between them. 

Note: If you are targeting mobile devices only, limit shader compilations to vulkan, gles, 

and gles3. You must also add the opengl and d3d11 renderers that are used by the Unity 

Editor, as shown in the following example: 

#pragma only_renderers vulkan gles gles3 [opengl, d3d11] 

2.3 Includes 

In a shader include files can be added. Unity makes available include files that give predefined 

variables and helper functions. Available includes can be found in C:\Program 

Files\Unity\Hub\Editor\<version>\Editor\Data\CGIncludes. For example, in the 

include UnityCG.cginc there are several useful helper functions and macros that are used in 

many standard shaders. To use these functions or macros, declare the includes in your shader. 

UnityShaderVariables.cginc is included automatically in Unity and contains many built-

in variables that are available to shaders in the include. This means that 

UnityShaderVariables.cginc does not need to be declared. Several useful transformation 

matrices and magnitudes are directly available in the shaders. It is important to know if they are 

available in the shaders to avoid doing unnecessary work. For example, if you need them, there 

may be includes that provide you with the following: 

• A matrix to the shader 

• Camera position 

• Projection parameters 

• Light parameters 

Sometimes it improves performance to execute an operation in the CPU. Then pass the result to 

the GPU instead of executing it in the vertex shader for every vertex, multiplication of matrix 

uniforms is an example of this. For this reason, Unity makes available several compound matrices 

as built-in uniforms. Some of the important Unity shader built-in values are shown in the 

following table: 

Table 1 Important Unity shader built-in values 

Built-in Uniform Description 

UNITY_MATRIX_V Current view matrix 

UNITY_MATRIX_P Current projection matrix 

Object2World Current model matrix 

_World2Object Inverse of current world matrix 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 11 of 37 

Built-in Uniform Description 

UNITY_MATRIX_VP Current view * projection matrix 

UNITY_MATRIX_MV Current model * view matrix 

UNITY_MATRIX_MVP Current model * view * projection matrix 

UNITY_MATRIX_IT_MV Invert transpose of current model * view matrix 

_WorldSpaceCameraPos Camera position in world space 

_ProjectionParams Near and far planes and 1/farPlane as components of a 

vector 

_Time Current time and fractions in a vector (t/20, t, t*2, t*3) 

2.4 OpenGL ES 3.0 and Vulkan graphics pipelines 

OpenGL ES and Vulkan are two different APIs. However, their graphics pipelines are essentially 

the same, therefore, the vertex and fragment shaders sit in similar places. 

Note: This section of the guide does not compare OpenGL ES and Vulkan. Instead, itdescribes 

the generalized graphics API pipeline. Therefore, if you would like more information see Vulkan: 

Migrating from OpenGL ES. 

The following image shows a schematic view of the OpenGL ES 3.0 graphic pipeline flow: 

 

 

Figure 2 OpenGL ES 3.0 Programmable Pipeline 

Let us look at what is happening at each stage of the graphic pipeline flow: 

https://docs.imgtec.com/Vulkan_Migrating_from_OpenGLES/topics/vulkan_migrating_comparison.html
https://docs.imgtec.com/Vulkan_Migrating_from_OpenGLES/topics/vulkan_migrating_comparison.html


Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 12 of 37 

• In the primitives’ stage, the pipeline operates on the geometric primitives that are described 

by vertices, points, lines, and polygons. 

• The vertex shader implements a general-purpose programmable method for operating on 

vertices. The vertex shader transforms and lights vertices. 

• In primitive assembly, the vertices are assembled into geometric primitives. The resulting 

primitives are clipped to a clipping volume and sent to the rasterizer. 

• Output values from the vertex shader are calculated for every generated fragment. This 

process is known as interpolation. During rasterization, the primitives are converted into a set 

of two-dimensional fragments that are then sent to the fragment shader. 

• Transform feedback enables selective writing to an output buffer from the vertex shader and 

is later sent back to the vertex shader. This feature is not exposed by Unity, but it is used 

internally to, for example, optimize the skinning of characters. 

• The fragment shader implements a general-purpose programmable method for operating on 

fragments before they are sent to the next stage. 

• In per-fragment operations, several functions and tests are applied on each fragment:  

o Pixel ownership test 

o Scissor test 

o Stencil 

o Depth tests 

o Blending 

o Dithering 

Applying the preceding functions and tests in the per-fragment stage means that either: 

 Fragment color, depth, or stencil value must write to the frame buffer in screen 

coordinates.  

 The frame buffer discards the fragment. 

2.5 Vertex shaders 

The vertex shader example that is shown in Shader structure runs once for every vertex of the 

geometry. The vertex shader transforms the 3D position of each vertex to the projected 2D 

position in screen space. Then the vertex shader calculates the depth value for the Z-buffer.  

The transformed position is expected in the output of the vertex shader. If the vertex shader 

does not return a value, the console displays the following error: 

Shader error in 'Custom/ctTextured': '' : function does not return a value: vert at 

line 36 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 13 of 37 

In the Shader structure example, the vertex shader receives the vertex coordinates in local space 

and the texture coordinates. Vertex coordinates are transformed from local to screen space using 

the Model View Projection matrix: UNITY_MATRIX_MVP. The Model View Projection matrix is a 

Unity built-in value, as shown in the following code: 

output.pos = mul(UNITY_MATRIX_MVP, input.vertex); 

Note: Texture coordinates are passed to the fragment shaders as a varying variable, but this 

does not mean that they are not transformed. 

Normal vectors are transformed from object space to world space in a different manner. To 

guarantee that the normal is still normal to the triangle after a non-uniform scaling operation, it 

must be multiplied by the transpose of the inverse of the transformation matrix. To apply the 

transpose operation, you flip the order of factors in the multiplication. The inverse of the local to 

world matrix is the built-in World2Object Unity matrix. This matrix is a 4x4 matrix so you must 

build a four-component vector from the three-component normal input vector, as shown in the 

following code: 

float4 normalWorld = mul(float4(input.normal, 0.0), _World2Object); 

When building the four-component vector, you add a zero as the fourth component. Adding 

zero as the fourth component is necessary to handle vector transformation correctly in four-

dimensional space. In contrast, for co-ordinates the fourth component of the vector must be 

one.  

If normals are already supplied in world coordinates, you can skip the process of normal 

transformation, which saves work in the vertex shader. This optimization cannot be used if the 

object mesh could potentially be handled by any Unity built-in shader. This is because then 

normals are expected in object coordinates. 

Most graphic effects are implemented in the fragment shader, but some effects can be done in 

the vertex shader. For example, vertex displacement mapping, also known as displacement 

mapping, is a well-known technique that enables you to deform a polygonal mesh using a 

texture to add surface detail, height maps in terrain generation are an example of this. To access 

this texture in the vertex shader, also known as displacement map, you must add the pragma 

directive #pragma target 3.0. This is because the displacement map is only available in 

Shader Model 3.0. According to the Shader Model 3.0, at least four texture units must be 

accessible inside the vertex shader. However, if you force the editor to use the OpenGL renderer, 

then #pragma glsl must be added to the shader. If this directive is not declared, the following 

error message appears: 

Shader error in 'Custom/ctTextured': function "tex2D" not supported in this profile 

(maybe you want #pragma glsl?) at line 57 

In the vertex shader, you can also animate vertices using procedural animation techniques. You 

can use the time variable in shaders enabling modification of the vertex coordinates as a 

function of time. Mesh skinning is another type of functionality implemented in the vertex 

shader. Unity uses mesh skinning to animate the vertices of the meshes associated with 

character skeletons. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 14 of 37 

2.6 Vertex shader input 

Structures define the input and output of the vertex shader. In the input structure of the Shader 

structure example, you declare only the vertex attributes position and texture coordinates. 

You can define more attributes as input, for example: 

• A second set of texture coordinates 

• Normal vectors in object coordinates 

• Colors 

• Tangents 

The preceding list can be defined using the following semantics: 

struct vertexInput 

{ 

 float4 vertex : POSITION; 

 float4 tangent : TANGENT; 

 float3 normal : NORMAL; 

 float4 texcoord : TEXCOORD0; 

 float4 texcoord1 : TEXCOORD1; 

 fixed4 color : COLOR; 

}; 

Note: A semantic is a string attached to a shader input or output that provides information 

about the use of a parameter. You must specify a semantic for all variables passed between 

shader stages. 

If you use the incorrect semantics like float3 tangent2 : TANGENTIAL, you get an error of 

the following type: 

Shader error in 'Custom/ctTextured': unknown semantics "TANGENTIAL" specified for 

"tangent2" at line 32 

For optimum performance, only specify the parameters in the input structure that you require. 

Unity has some predefined input structures for the most common cases of input parameter 

combinations in the UnityCG.cginc include file. For example, appdata_base, appdata_tan 

and appdata_full. The previous vertex input structure example corresponds to 

appdata_full, where you are not required to declare the structure, only declare the include 

file. 

2.7 Vertex shader output and varyings 

Vertex shader output is defined in an output structure that must contain the vertex transformed 

coordinates. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 15 of 37 

The following example shows the output structure which lists the semantics supported by Unity, 

but you can add other magnitudes: 

struct vertexOutput 

{ 

 float4 pos : SV_POSITION; 

 float4 tex : TEXCOORD0; 

 float4 texSpecular : TEXCOORD1; 

 float3 vertexInWorld : TEXCOORD2; 

 float3 viewDirInWorld : TEXCOORD3; 

 float3 normalInWorld : TEXCOORD4; 

 float3 vertexToLightInWorld : TEXCOORD5; 

 float4 vertexInScreenCoords : TEXCOORD6; 

 float4 shadowsVertexInScreenCoords : TEXCOORD7; 

}; 

In the preceding example, the transformed vertex coordinates are defined with the semantic 

SV_POSITION. Two textures, several vectors, and coordinates in different spaces calling the 

semantic TEXCOORDn are also passed to the fragment shader. 

TEXCOORD0 is typically reserved for UVs and TEXCOORD1 for lightmap UVs, but you can send 

anything from TEXCOORD0 to TEXCOORD7 to the fragment shader. It is important to notice that 

each interpolator, that is, each semantic, can only process a maximum of four floats, putting 

larger variables like matrices into multiple interpolators. Therefore, if you define a matrix to be 

passed as a varying: float4x4 myMatrix : TEXCOORD2, Unity uses the interpolators 

from TEXCOORD2 to TEXCOORD5. 

Everything that you send from the vertex shader to the fragment shader is linearly interpolated 

by default. The rasterizer is the stage of the graphics pipeline that turns vertex data into pixels 

ready to feed into the fragment shader (a pixel shader). Every triangle is defined by two vertices 

– which we can label V1, V2 and V3. The rasterizer calculates pixel co-ordinates and data values 

for the pixel through a linear interpolation of the vertices using barycentric co-ordinates - λ1, λ2 

and λ3. This is shown in the following image: 

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 16 of 37 

 

Figure 3 Linear interpolation using barycentric coordinates 

The following image shows V1 being fully red, V2 fully green and V3 fully blue and the rasterizer 

linearly interpolating the color values between them to get the color for each pixel in between: 

 

Figure 4 Color Interpolation 

The same interpolation is applied to any varying that is passed from the vertex to the fragment 

shader. The int interpolation in the rasterizer is a very powerful tool because there is a hardware 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 17 of 37 

linear interpolator. For example, if you want to apply a color as a function of the distance to a 

point C, you pass the coordinates of C to the vertex shader. The vertex shader then calculates the 

squared distance from the vertex to C and passes that magnitude to the fragment shader. The 

distance value is automatically interpolated for you in every pixel of every triangle. 

Values are linearly interpolated, so it is possible to perform per-vertex computations and reuse 

them in the fragment shader. In other words, a value that is linearly interpolated in the fragment 

shader can be calculated in the vertex shader instead. Calculating the value in the vertex shader 

can provide a substantial performance boost. This is because the vertex shader runs on a much 

smaller data set than the fragment shader. 

Note: You must be careful with the use of varyings, especially in mobile phones where 

performance and memory bandwidth consumption are critical to the success of many games. 

The more varyings there are, the more bandwidths that are used on vertex accesses and 

fragment shader varying reads. Therefore, aim for a reasonable balance of data versus quality 

when using varyings. 

2.8 Fragment shaders 

The fragment shader is after the primitive rasterization on the graphics pipeline stage, as shown 

in the following image:  

 

 

For each sample of the pixels that is covered by a primitive, a fragment is generated. The 

fragment shader code is executed for every generated fragment. There are many more 

fragments than vertices, so you must be careful about the number of operations that are 

performed in the fragment shader. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 18 of 37 

In the fragment shader you can access the fragment co-ordinates in 3D screen space. Similarly, 

all other values that have been interpolated from per-vertex values output by the vertex shader 

are available in 3D screen space. 

In the shader example that is shown in Shader structure, the fragment shader receives the 

interpolated texture coordinates from the vertex shader. The fragment shader performs a texture 

lookup to obtain the color at these coordinates. The fragment shader then combines this color 

with the ambient color to produce the final output color. From the declaration of the fragment 

shader float4 frag(vertexOutput input) : COLOR it is clear that the shader is 

expected to ouput the fragment color. The fragment shader is where you calculate the look you 

want the geometry to have. The fragment shader achieves this by assigning the correct color to 

each fragment. 

2.9 Provide data to shaders 

Any data that is declared as a uniform in the Pass block in the Shader structure code example 

is available to both the vertex shader and the fragment shaders. 

A uniform is like a global constant variable because it cannot be modified inside the shader. 

You can supply this uniform to the shader in the following ways: 

• Using the Properties block 

• Programmatically from a script 

The Properties block enables you to define uniforms interactively in the Inspector. Any 

variable that is declared in the Properties block appears in the material inspector that is listed 

with the variable name. 

The following code shows the Properties block of the shader example that is associated with 

the material ctSphereMat: 

Properties 

{ 

 _AmbientColor ("Ambient Color", Color) = (0.2,0.2,0.2,1.0) 

 _MainTex ("Base (RGB)", 2D) = "white" {} 

} 

The variables _AmbientColor and _MainTex that are declared in the Properties block with 

the names Ambient Color and Base (RGB) appear in the Material Inspector with those 

names. 

The following image shows the Properties of the Material Inspector: 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 19 of 37 

 

Figure 5 Properties in Material Inspector 

Passing data to the shader through the Properties block is very useful. Passing data this way 

is especially useful when you are in the development stage of the shader. This is because you can 

change the data interactively and see the effect at runtime. 

You can put the following types of variables in the Properties block: 

• Float 

• Color 

• Texture 2D 

• Cubemap 

• Rectangle 

• Vector 

Consider a situation in which data is required from a previous calculation or data is required to 

be passed at specific point in time. In these situations, the Properties block is not a useful way 

of passing data.  

Another way to pass data to the shaders is programmatically from a script. The material class 

exposes several methods that you can use to pass data associated with a material to a shader. 

The following table lists the most common methods: 

Table 2 Common methods for passing data associated with a material to a shader 

Method 

SetColor (propertyName: string, color: Color); 

SetFloat (propertyName: string, value: float); 

SetInt (propertyName: string, value: int); 

SetMatrix (propertyName: string, matrix: Matrix4x4); 

SetVector (propertyName: string, vector: Vector4); 

SetTexture (propertyName: string, texture: Texture); 

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 20 of 37 

In the following code shwMats contains a list of materials. The code shows how the materials 

send matrices and textures to the shader. Immediately before the main camera renders the 

scene, a secondary camera shwCam renders the shadows to a texture which combines with the 

main camera render pass: 

// Called before object is rendered. 

public void OnWillRenderObject() 

{ 

 // Perform different checks. 

 ... 

 CreateShadowsTexture(); 

 // Set up shadows camera shwCam. 

 ... 

 // Pass matrices to the shader 

 for(int i = 0; i < shwMats.Count; i++) 

 { 

  shwMats[i].SetMatrix("_ShwCamProjMat", shwCam.projectionMatrix); 

  shwMats[i].SetMatrix("_ShwCamViewMat", 

shwCam.transform.worldToLocalMatrix); 

 } 

 // Render shadows texture 

 shwCam.Render(); 

 for(int i = 0; i < shwMats.Count; i++) 

 { 

  shwMats[i].SetTexture( "_ShadowsTex", m_ShadowsTexture ); 

 } 

 s_RenderingShadows = false; 

}  

For the shadow texture projection process, the vertices must be transformed in a convenient 

manner. Therefore, the following passes to the shader: 

• Shadow camera projection matrix: shwCam.projectionMatrix 

• World to local transformation matrix: shwCam.transform.worldToLocalMatrix  

• The rendered shadow texture: m_ShadowsTexture 

These values are available in the shader as uniforms with the names _ShwCamProjMat, 

_ShwCamViewMat and m_ShadowsTexture. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 21 of 37 

2.10 Debug shaders in Unity 

In Unity, it is not possible to debug shaders in the same way that you debug with traditional 

code. You can, however, use the output of the fragment shader to visualize the values that you 

want to debug. You can then interpret the image produced. 

The following image shows the output of the shader ctReflLocalCubemap.shader applied 

to the reflective surface of the floor:

 

Figure 6 Chess room with reflections 

In the fragment shader code, you can replace the output color with the normalized local 

corrected reflection vector, as follows:  

return float4(normalize(localCorrReflDirWS), 1.0); 

Instead of the reflected image, the output it visualizes the components of the reflected vector 

normalized as colors. 

The reddish color zone in the floor indicates that the reflected vector has a strong X component. 

This means that the reflected vector is mostly orienting towards the X Axis. The red area of the 

image shows that the reflection comes from that direction, that is, from the windowed wall. 

The blue zone indicates a predominance of reflected vectors that are oriented to the Z axis, 

which is shown as the reflection from the right wall. 

In the black zone, the vectors are mainly orienting to –Z, but the colors can only have positive 

components. This is because the negative components clamp to 0. 

The following image shows the result of replacing the output color of the fragment with the 

normalized local reflected vector: 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 22 of 37 

 

Figure 7 Shader debugging with multiple colors 

Initially it is difficult to interpret the meaning of the colors while debugging. Therefore, you 

should try to focus on a single-color component. For example, you can return only the Y 

component of the normalized local corrected reflected vector, as shown in the following code: 

float3 normLocalCorrReflDirWS = normalize(localCorrReflDirWS); 

return float4(0, normLocalCorrReflDirWS.y, 0, 1); 

In the preceding code, the output is only the reflections that are coming mainly from the roof 

above the camera. This is the part of the room that is oriented to the Y axis. The reflections from 

the walls of the room are coming from the X, Z, and –Z directions, so they are rendered in black. 

The following image shows shader debugging with a single color: 

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 23 of 37 

Figure 8 Shader debugging with a single color 

Note: You must check that the magnitude you are debugging with color is between zero and 

one. This is because any other value is automatically clamped. Any negative value is assigned 

zero and any value greater than one is assigned one. 

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 24 of 37 

3 Early-Z 
Arm Mali GPUs include an Early-Z algorithm The Early-Z algorithm improves performance by 

doing an early depth check to remove overdrawn fragments before the GPU wastes effort 

running the shaders for them.  

The Arm Mali GPU typically executes the Early-Z algorithm on most content, but there are cases 

where, to preserve correctness, the algorithm is not executed. However, determining where 

Early-Z will not be executed is difficult to control within Unity, because it depends on both the 

Unity engine and the code that generated by the compiler. But there are some signs that you 

can look for in your code.  

When compiling your shader for mobile, look at your code and make sure that the shader does 

not fall into one of the following categories. Falling into one of the following categories can 

mean that either Early-Z cannot be enabled, or that results are incorrect: 

• Shader has side effects means that a shader thread modifies global state during its execution, 

so executing the shader a second time might produce different results. Typically, shader has 

side effects means that your shader writes to a shared read/write memory buffer like shader 

storage buffer objects or images. For example, if you create a shader that increments a 

counter to measure performance, this shader has side effects. 

The following are not classed as side effects: 

o Read-only memory accesses 

o Writes to write-only buffers 

o Purely local memory accesses 

• If the fragment shader can call discard() during its execution, the Arm Mali GPU cannot 

enable Early-Z. This is because the fragment shader can discard the current fragment. But the 

depth value was previously modified by the Early-Z test and this modification cannot be 

reverted. 

• If Alpha-to-coverage is enabled, the fragment shader computes data that is later accessed to 

define the alpha. 

For example, when rendering the leaves of a tree, they are typically represented as a plane. 

The region of the leaf that is transparent or opaque is defined by the texture. If Early-Z is 

enabled, you get incorrect results. This is because part of the scene can be occluded by a 

transparent part of the plane. 

• If your fragment shader writes to gl_FragDepth, the Arm Mali GPU cannot perform the 

Early-Z test. Therefore, the depth value used for depth testing does not come from the vertex 

shader. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 25 of 37 

4 Tangent space to world space 

normal conversion tool 
This section of the guide describes the tangent space to world space normal conversion tool. 

This tool is composed of a C# script and a shader. The tool runs offline from inside the Unity 

editor and it does not affect the runtime performance of your game. 

Profiling the Ice Cave demo showed that there was a bottleneck in the arithmetic pipeline. To 

reduce the load, the Ice Cave demo uses world space normal maps, instead of tangent space 

normal maps, for the static geometry. 

Tangent space normal maps are useful for animated and dynamic objects but require extra 

computations to correctly orient the sampled normal. 

Most of the geometry in the Ice Cave demo is static, therefore, the normal maps are converted 

into world space normal maps. This conversion ensures that normals sampled from their maps 

are already correctly oriented in world space ready for use by the shader. This change is possible 

because the Ice Cave demo lighting is computed in a custom shader, whereas the Unity standard 

shader uses tangent space normal maps. 

The conversion tool is composed of: 

• A C# script that adds a new option in the editor 

• A shader that performs the conversion 

The tool runs offline from inside the Unity editor and it does not affect the runtime performance 

of your game. 

4.1 WorldSpaceNormalsCreators C# script 

The following is the code of the WorldSpaceNormalsCreators C# script: 

using UnityEngine; 

using UnityEditor; 

using System.Collections; 

public class WorldSpaceNormalsCreator : ScriptableWizard 

{ 

 public GameObject _currentObj; 

 private Camera _renderCamera; 

 void OnWizardUpdate() 

 { 

  helpString = "Select object from which generate the world space normals"; 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 26 of 37 

  if (_currentObj != null) 

  {  

   isValid = true; 

  } 

  else 

  { 

   isValid = false; 

  } 

 } 

 void OnWizardCreate () 

 { 

  // Set antialiasing 

  QualitySettings.antiAliasing = 4; 

  Shader wns = Shader.Find ("Custom/WorldSpaceNormalCreator"); 

  GameObject go = new GameObject( "WorldSpaceNormalsCam", typeof(Camera) ); 

  //Set the new camera to perform orthographic projection 

  _renderCamera = go.GetComponent<Camera>(); 

  _renderCamera.orthographic = true; 

  _renderCamera.nearClipPlane = 0.0f; 

  _renderCamera.farClipPlane = 10f; 

  _renderCamera.orthographicSize = 1.0f; 

  //Save the current object layer and set it to an unused one 

  int prevObjLayer = _currentObj.layer; 

  _currentObj.layer = 30; //0x40000000 

  //Set the replacement shader for the camera 

  _renderCamera.SetReplacementShader (wns,null); 

  _renderCamera.useOcclusionCulling = false; 

  //Rotate the camera to look at the object to avoid frustum culling 

  _renderCamera.transform.rotation = 

Quaternion.LookRotation(_currentObj.transform.position - 

_renderCamera.transform.position);  

  MeshRenderer mr = _currentObj.GetComponent<MeshRenderer>(); 

  Material[] materials = mr.sharedMaterials; 

  foreach (Material m in materials) 

  { 

   Texture t = m.GetTexture("_BumpMap"); 

   if (t == null) 

   { 

    Debug.LogError("the material has no texture assigned named 

Bump Map"); 

    continue; 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 27 of 37 

   } 

   //Render the world space normal maps to a texture 

   Shader.SetGlobalTexture ("_BumpMapGlobal", t); 

   RenderTexture rt = new RenderTexture(t.width,t.height,1); 

   _renderCamera.targetTexture = rt; 

   _renderCamera.pixelRect = new Rect(0,0,t.width,t.height); 

   _renderCamera.backgroundColor = new Color( 0.5f, 0.5f, 0.5f); 

   _renderCamera.clearFlags = CameraClearFlags.Color; 

   _renderCamera.cullingMask = 0x40000000; 

   _renderCamera.Render(); 

   Shader.SetGlobalTexture ("_BumpMapGlobal", null); 

   Texture2D outTex = new Texture2D(t.width,t.height); 

   RenderTexture.active = rt; 

   outTex.ReadPixels(new Rect(0,0,t.width,t.height), 0, 0); 

   outTex.Apply(); 

   RenderTexture.active = null; 

   //Save it to PNG 

   byte[] _pixels = outTex.EncodeToPNG(); 

 System.IO.File.WriteAllBytes("Assets/Textures/GeneratedWorldSpaceNormals/" + 

t.name + "_WorldSpace.png", _pixels); 

  } 

  _currentObj.layer = prevObjLayer; 

  DestroyImmediate(go); 

 } 

 [MenuItem("GameObject/World Space Normals Creator")] 

 static void CreateWorldSpaceNormals () 

 { 

  ScriptableWizard.DisplayWizard("Create World Space Normal", 

  typeof(WorldSpaceNormalsCreator),"Create"); 

 } 

} 

Let’s look at how you can use The WorldSpaceNormalsCreators C# script.  

You must place the C# script in the Unity Assets/Editor directory. Placing the script in the 

Assets/Editor directory enables the script to add a new option to the GameObject menu in 

the Unity editor. If the Assets/Editor directory does not exist, you must create it. The 

following code shows you how to add a new option in the Unity editor: 

[MenuItem("GameObject/World Space Normals Creator")] 

static void CreateWorldSpaceNormals () 

{ 

 ScriptableWizard.DisplayWizard("Create World Space Normal", 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 28 of 37 

 typeof(WorldSpaceNormalsCreator),"Create"); 

} 

The following image shows the GameObject menu option that the script adds: 

 

 

Figure 9 GameObject menu option added by the script 

The WorldSpaceNormalsCreator class that is defined in the C# script derives from the Unity 

ScriptableWizard class, and accesses some of the ScriptableWizard members. Derives 

from the ScriptableWizard class can be used to create an editor wizard. Editor wizards are 

typically opened using a menu item. 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 29 of 37 

In the OnWizardUpdate code, the helpString variable holds a help message that is 

displayed in the window that the wizard creates. 

The isValid member is used to define when all the correct parameters are selected and the 

Create button is available. In this case, the _currentObj member is checked to ensure it points 

to a valid object. 

The fields of the Wizard windows are the public members of the class. In this case, only the 

_currentObj is public, so the Wizard window only has one field. 

The following image shows the Custom Wizard window: 

 

Figure 10 Custom Wizard window 

When an object is selected and the Create button is clicked, the OnWizardCreate() function is 

called. 

The OnWizardCreate() function performs the main work of the conversion. 

To convert the normal, the tool creates a temporary camera that renders the new World space 

normal to a RenderTexture. To render the new World space normal, the camera is set to 

orthographic mode and the layer of the object is changed to an unused level. This means it can 

render the object on its own, even if it is already part of the scene. 

The following code shows how the camera is set up: 

// Set antialiasing 

QualitySettings.antiAliasing = 4; 

Shader wns = Shader.Find ("Custom/WorldSpaceNormalCreator"); 

GameObject go = new GameObject( "WorldSpaceNormalsCam", typeof(Camera) ); 

_renderCamera = go.GetComponent<Camera> (); 

_renderCamera.orthographic = true; 

_renderCamera.nearClipPlane = 0.0f; 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 30 of 37 

_renderCamera.farClipPlane = 10f; 

_renderCamera.orthographicSize = 1.0f; 

int prevObjLayer = _currentObj.layer; 

_currentObj.layer = 30; //0x40000000 

The script sets a replacement shader that executes the conversion: 

_renderCamera.SetReplacementShader (wns,null); 

_renderCamera.useOcclusionCulling = false; 

The camera is pointed at the object, preventing the object being removed from rendering during 

frustum culling: 

_renderCamera.transform.rotation = Quaternion.LookRotation 

(_currentObj.transform.position - _renderCamera.transform.position); 

For each material that is assigned to the object, the script locates the _BumpMap texture. This 

texture is set as source texture for the replacement shader using the shader global functions. 

The clear color is set to (0.5,0.5,0.5). This is because normals pointing at negative directions must 

be represented, as shown in the following code:  

foreach (Material m in materials) 

{ 

 Texture t = m.GetTexture("_BumpMap"); 

 if ( t == null ) 

 { 

  Debug.LogError("the material has no texture assigned named Bump Map"); 

  continue; 

 } 

 Shader.SetGlobalTexture ("_BumpMapGlobal", t); 

 RenderTexture rt = new RenderTexture(t.width,t.height,1); 

 _renderCamera.targetTexture = rt; 

 _renderCamera.pixelRect = new Rect(0,0,t.width,t.height); 

 _renderCamera.backgroundColor = new Color( 0.5f, 0.5f, 0.5f); 

 _renderCamera.clearFlags = CameraClearFlags.Color; 

 _renderCamera.cullingMask = 0x40000000; 

 _renderCamera.Render(); 

 Shader.SetGlobalTexture ("_BumpMapGlobal", null); 

 After the camera renders the scene, the pixels are read back and saved as a PNG 

image. 

 Texture2D outTex = new Texture2D(t.width,t.height); 

 RenderTexture.active = rt; 

 outTex.ReadPixels(new Rect(0,0,t.width,t.height), 0, 0); 

 outTex.Apply(); 

 RenderTexture.active = null; 

 byte[] _pixels = outTex.EncodeToPNG(); 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 31 of 37 

 System.IO.File.WriteAllBytes("Assets/Textures/GeneratedWorldSpaceNormals/"+t.nam

e +"_WorldSpace.png",_pixels); 

} 

The camera culling mask uses a binary mask that is represented in hexadecimal format, to specify 

what layers to render. 

In this case layer 30 was used: 

_currentObj.layer = 30; 

The hexadecimal is 0x40000000 because its 30th bit is set to 1. 

4.2 WorldSpaceNormalCreator shader 

The following code shows the WorldSpaceNormalCreator shader in use: 

Shader "Custom/WorldSpaceNormalCreator" { 

 Properties { 

 } 

  SubShader { 

  Cull off 

  Pass 

  { 

   CGPROGRAM 

   #pragma target 3.0 

   #pragma glsl 

   #pragma vertex vert 

   #pragma fragment frag 

   #include "UnityCG.cginc" 

   uniform sampler2D _BumpMapGlobal; 

   struct vin 

   { 

    half4 tex : TEXCOORD0; 

    half3 normal : NORMAL; 

    half4 tangent : TANGENT; 

   }; 

   struct vout 

   { 

    half4 pos : POSITION; 

    half2 tc : TEXCOORD0; 

    half3 normalInWorld : TEXCOORD1; 

    half3 tangentWorld : TEXCOORD2; 

    half3 bitangentWorld : TEXCOORD3; 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 32 of 37 

   }; 

   vout vert (vin input ) 

   { 

    vout output; 

    output.pos = half4(input.tex.x*2.0 - 1.0,((1.0-

input.tex.y)*2.0 - 1.0), 0.0, 1.0); 

    output.tc = input.tex; 

    output.normalInWorld = normalize(mul(half4(input.normal, 

0.0), _World2Object).xyz); 

    output.tangentWorld = normalize(mul(_Object2World, 

half4(input.tangent.xyz, 0.0)).xyz); 

    output.bitangentWorld = 

normalize(cross(output.normalInWorld, output.tangentWorld) * input.tangent.w); 

    return output; 

   } 

   float4 frag( vout input ) : COLOR 

   { 

    half3 normalInWorld = half3(0.0,0.0,0.0); 

    half3 bumpNormal = UnpackNormal(tex2D(_BumpMapGlobal, 

input.tc)); 

    half3x3 local2WorldTranspose = half3x3( 

    input.tangentWorld, 

    input.bitangentWorld, 

    input.normalInWorld); 

    normalInWorld = normalize(mul(bumpNormal, 

local2WorldTranspose)); 

    normalInWorld = normalInWorld*0.5 + 0.5; 

    return half4(normalInWorld,1.0); 

   } 

   ENDCG 

  } 

 } 

} 

Let’s look at the shader itself. 

The shader code that implements the conversion is quite straightforward. Instead of using the 

actual vertex position, it uses the texture coordinate of the vertex, projecting the object onto a 

2D plane as is done for texturing. 

To make the OpenGL pipeline work correctly, the UV coordinatesare moved from the standard 

[0,1] range to the [-1,1] range and the Y coordinate is inverted. The Z coordinate is not used, so it 

can be set to 0 or any value within the near and far clip planes. This is shown in the following 

code: 

output.pos = half4(input.tex.x*2.0 - 1.0,((1.0-input.tex.y)*2.0 - 1.0), 0.0, 1.0); 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 33 of 37 

output.tc = input.tex; 

The normal, tangent, and bitangents are computed in the vertex shader and passed to the 

fragment shader to execute the conversion. This is shown in the following code: 

output.normalInWorld = normalize(mul(half4(input.normal, 0.0), _World2Object).xyz); 

output.tangentWorld = normalize(mul(_Object2World, half4(input.tangent.xyz, 0.0)).xyz); 

output.bitangentWorld = normalize(cross(output.normalInWorld, output.tangentWorld) * 

input.tangent.w); 

The fragment shader: 

1. Converts the normal from tangent space to world space 

2. Scales the normal to the [0,1] range 

3. Outputs the normal to the new texture 

The preceding steps are shown in the following code: 

half3 normalInWorld = half3(0.0,0.0,0.0); 

half3 bumpNormal = UnpackNormal(tex2D(_BumpMapGlobal, input.tc)); 

half3x3 local2WorldTranspose = half3x3( input.tangentWorld, 

input.bitangentWorld, 

input.normalInWorld); 

normalInWorld = normalize(mul(bumpNormal, local2WorldTranspose)); 

normalInWorld = normalInWorld*0.5 + 0.5; 

return half4(normalInWorld,1.0); 

The following image shows a tangent space normal map before processing: 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 34 of 37 

 

Figure 11 Original tangent space normal map 

The following image shows a world space normal map that is generated by the tool: 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 35 of 37 

 

Figure 12 Generated world space normal map 

 



Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 36 of 37 

5 Related information 
Here are some resources related to material in this guide: 

• Arm architecture and reference manuals 

• Arm Community - Ask development questions and find articles and blogs on specific topics 

from Arm experts. 

• Arm-based demos made with Unity 

• Local cubemap rendering techniques (coming soon) 

• Special effects graphic techniques (coming soon) 

• Vulkan: Migrating from OpenGL ES 

 

https://developer.arm.com/docs
https://community.arm.com/
https://developer.arm.com/solutions/graphics-and-gaming/gaming-engine/unity/unity-demos


Advanced graphic techniques - Getting started 102224_0200_00 
Issue 0200 

 
 

Copyright © 2020-21 Arm Limited (or its affiliates). All rights reserved. 

Non-Confidential 

Page 37 of 37 

6 Next steps 
This guide has introduced you to some advanced graphics techniques including custom shaders 

for example vertex shaders, Early-Z, and the tangent space to world space normal conversion 

tool, which showed you the WorldSpaceNormalCreator code. 

After reading this guide, you are ready to implement some of the techniques into your own 

Unity programs. To keep learning about advanced graphics in Unity, see the next two guides in 

our series Local cubemap rendering techniques and Special effects graphic techniques.  


	1 Overview
	1.1 Before you begin

	2 Custom shaders
	2.1 Shader structure
	2.2 Compilation directives
	2.3 Includes
	2.4 OpenGL ES 3.0 and Vulkan graphics pipelines
	2.5 Vertex shaders
	2.6 Vertex shader input
	2.7 Vertex shader output and varyings
	2.8 Fragment shaders
	2.9 Provide data to shaders
	2.10 Debug shaders in Unity

	3 Early-Z
	4 Tangent space to world space normal conversion tool
	4.1 WorldSpaceNormalsCreators C# script
	4.2 WorldSpaceNormalCreator shader

	5 Related information
	6 Next steps

