
Arm® Fortran Compiler
Version 21.0

Developer and Reference Guide

Copyright © 2018–2021 Arm Limited or its affiliates. All rights reserved.
101380_2100_00_en

Arm® Fortran Compiler
Developer and Reference Guide
Copyright © 2018–2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

1830-00 20 June 2018 Non-Confidential Document release for Arm Fortran Compiler version 18.3

1840-00 17 July 2018 Non-Confidential Update for Arm Fortran Compiler version 18.4

1900-00 02 November 2018 Non-Confidential Update for Arm Fortran Compiler version 19.0

1910-00 08 March 2019 Non-Confidential Update for Arm Fortran Compiler version 19.1

1920-00 07 June 2019 Non-Confidential Update for Arm Fortran Compiler version 19.2

1930-00 30 August 2019 Non-Confidential Update for Arm Fortran Compiler version 19.3

2000-00 29 November 2019 Non-Confidential Update for Arm Fortran Compiler version 20.0

2010-00 23 April 2020 Non-Confidential Update for Arm Fortran Compiler version 20.1

2010-01 23 April 2020 Non-Confidential Documentation update 1 for Arm Fortran Compiler version 20.1

2020-00 25 June 2020 Non-Confidential Update for Arm Fortran Compiler version 20.2

2030-00 04 September 2020 Non-Confidential Update for Arm Fortran Compiler version 20.3

2030-01 16 October 2020 Non-Confidential Documentation update 1 for Arm Fortran Compiler version 20.3

2100-00 30 March 2021 Non-Confidential Update for Arm Fortran Compiler version 21.0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

 Arm® Fortran Compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2018–2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact
terms@arm.com.

 Arm® Fortran Compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
https://developer.arm.com
mailto:terms@arm.com

Contents
Arm® Fortran Compiler Developer and Reference
Guide

Preface
About this book 10

Chapter 1 Get started
1.1 Arm® Fortran Compiler 1-13
1.2 Get started with Arm® Fortran Compiler 1-15
1.3 Get support .. 1-17

Chapter 2 Compile and link
2.1 Using the compiler 2-19
2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors 2-23
2.3 Generate annotated assembly code .. 2-25

Chapter 3 Optimize
3.1 Directives 3-27
3.2 Link Time Optimization (LTO) .. 3-34
3.3 Arm Optimization Report 3-40
3.4 Optimization remarks 3-45
3.5 Profile Guided Optimization (PGO) 3-47

Chapter 4 Compiler options
4.1 Arm Fortran Compiler Options by Function 4-54

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

4.2 -### 4-57
4.3 -armpl= 4-58
4.4 -c .. 4-60
4.5 -config .. 4-61
4.6 -cpp .. 4-62
4.7 -D 4-63
4.8 -E 4-64
4.9 -fassociative-math 4-65
4.10 -fbackslash 4-66
4.11 -fconvert= 4-67
4.12 -ffast-math 4-68
4.13 -ffixed-form 4-69
4.14 -ffixed-line-length- .. 4-70
4.15 -ffp-contract= 4-71
4.16 -ffree-form .. 4-72
4.17 -finline-functions 4-73
4.18 -flto 4-74
4.19 -fnative-atomics 4-75
4.20 -fno-crash-diagnostics 4-76
4.21 -fno-fortran-main .. 4-77
4.22 -fopenmp 4-78
4.23 -frealloc-lhs .. 4-79
4.24 -frecursive .. 4-80
4.25 -fsave-optimization-record 4-81
4.26 -fsigned-zeros .. 4-82
4.27 -fsimdmath 4-83
4.28 -fstack-arrays 4-84
4.29 -fsyntax-only 4-85
4.30 -ftrapping-math 4-86
4.31 -fvectorize .. 4-87
4.32 -g 4-88
4.33 -g0 4-89
4.34 -gcc-toolchain= .. 4-90
4.35 -gline-tables-only 4-91
4.36 -help 4-92
4.37 -help-hidden 4-93
4.38 -I 4-94
4.39 -i8 4-95
4.40 -isystem 4-96
4.41 -L 4-97
4.42 -l 4-98
4.43 -march= 4-99
4.44 -mcpu= 4-100
4.45 -nocpp .. 4-101
4.46 -O 4-102
4.47 -o 4-103
4.48 -print-search-dirs 4-104
4.49 -Qunused-arguments 4-105
4.50 -r8 4-106
4.51 -S 4-107

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

4.52 -shared 4-108
4.53 -static 4-109
4.54 -static-arm-libs 4-110
4.55 -U 4-111
4.56 -v .. 4-112
4.57 -version .. 4-113
4.58 -Wl, 4-114
4.59 -Xlinker 4-115

Chapter 5 Fortran language reference
5.1 Data types and file extensions 5-117
5.2 Intrinsics 5-122
5.3 Statements 5-140
5.4 Predefined macro support 5-147

Chapter 6 Standards support
6.1 Fortran 2003 .. 6-149
6.2 Fortran 2008 .. 6-152
6.3 OpenMP 4.0 6-155
6.4 OpenMP 4.5 6-156

Chapter 7 Troubleshoot
7.1 Licensing error codes and corrective actions 7-158
7.2 Application segfaults at -Ofast optimization level 7-161
7.3 Compiling with the -fpic option fails when using GCC compilers 7-162
7.4 Error messages when installing Arm® Compiler for Linux 7-163
7.5 Error moving Arm® Compiler for Linux modulefiles .. 7-164
7.6 Code is not bit-reproducible 7-165
7.7 binutils does not automatically unload with module unload 7-166

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

List of Tables
Arm® Fortran Compiler Developer and Reference
Guide

Table 3-1 Describes the commands for llvm-profdata ... 3-50
Table 5-1 Intrinsic data types ... 5-117
Table 5-2 Supported file extensions ... 5-119
Table 5-3 Bit manipulation functions and subroutines ... 5-122
Table 5-4 Elemental character and logical functions ... 5-123
Table 5-5 Vector and matrix functions ... 5-125
Table 5-6 Array reduction functions ... 5-125
Table 5-7 String construction functions ... 5-127
Table 5-8 Array construction and manipulation functions .. 5-127
Table 5-9 General inquiry functions ... 5-128
Table 5-10 Numeric inquiry functions .. 5-128
Table 5-11 Array inquiry functions ... 5-129
Table 5-12 Transfer functions .. 5-129
Table 5-13 Arithmetic functions ... 5-130
Table 5-14 Miscellaneous functions .. 5-133
Table 5-15 Subroutines ... 5-133
Table 5-16 Fortran 2003 functions ... 5-134
Table 5-17 Fortran 2008 functions ... 5-135
Table 5-18 Unsupported functions ... 5-137
Table 5-19 Unsupported subroutines .. 5-138
Table 5-20 Supported Fortran statements ... 5-140
Table 5-21 Pre-defined macros ... 5-147

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

Table 6-1 Fortran 2003 support ... 6-149
Table 6-2 Fortran 2008 support ... 6-152
Table 6-3 Supported OpenMP 4.0 features ... 6-155
Table 6-4 Supported OpenMP 4.5 features ... 6-156
Table 7-1 Arm Compiler for Linux license errors ... 7-158

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

Preface

This preface introduces the Arm® Fortran Compiler Developer and Reference Guide.

It contains the following:
• About this book on page 10.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

 About this book
Provides information to help you use the Arm Fortran Compiler component of Arm Compiler for Linux.
Arm Fortran Compiler is an auto-vectorizing, Linux user-space Fortran compiler, tailored for Server and
High Performance Computing (HPC) workloads. Arm Fortran Compiler supports popular Fortran and
OpenMP standards and is tuned for Armv8-A based processors.

 Using this book

This book is organized into the following chapters:

Chapter 1 Get started
This chapter introduces Arm Fortran Compiler (part of Arm Compiler for Linux and Arm Allinea
Studio), and describes how to get started with the compiler, and where to find further support.

Chapter 2 Compile and link
This chapter describes the basic functionality of Arm Fortran Compiler, and describes how to
compile your Fortran source with armflang.

Chapter 3 Optimize
This chapter describes the optimization-specific features supported in Arm Fortran Compiler.

Chapter 4 Compiler options
This chapter describes the options supported by armflang.

Chapter 5 Fortran language reference
This chapter can be used as a reference for the Fortran 90, Fortran 95, Fortran 2003, Fortran 2008,
and Fortran 2018 language features that are supported by Arm Fortran Compiler.

Chapter 6 Standards support
This chapter describes the support status of Arm Fortran Compiler with the Fortran language and
OpenMP standards.

Chapter 7 Troubleshoot
This chapter describes how to diagnose problems when compiling applications using Arm Fortran
Compiler.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

 Preface
 About this book

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

https://developer.arm.com/support/arm-glossary

monospace bold
Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Fortran Compiler Developer and Reference Guide.
• The number 101380_2100_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Documentation.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Get started

This chapter introduces Arm Fortran Compiler (part of Arm Compiler for Linux and Arm Allinea
Studio), and describes how to get started with the compiler, and where to find further support.

It contains the following sections:
• 1.1 Arm® Fortran Compiler on page 1-13.
• 1.2 Get started with Arm® Fortran Compiler on page 1-15.
• 1.3 Get support on page 1-17.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

1.1 Arm® Fortran Compiler
Arm Fortran Compiler is a Linux user space Fortran compiler for server and High Performance
Computing (HPC) Arm-based platforms. Arm Fortran Compiler is built on the open-source Clang front-
end and the LLVM 11-based optimization and code generation back-end.

Arm Fortran Compiler supports modern Fortran (see Fortran 2003 on page 6-149 and Fortran 2008
on page 6-152), OpenMP 4.0 on page 6-155, and OpenMP 4.5 on page 6-156 standards, has a built-in
autovectorizer, and is tuned for the 64-bit Armv8-A architecture. Arm Fortran Compiler also supports
compiling for Scalable Vector Extension- (SVE-) and SVE2-enabled.

Arm Fortran Compiler is packaged with Arm C/C++ Compiler and Arm Performance Libraries in a
single package called Arm Compiler for Linux. To use Arm Compiler for Linux, you must have a valid
license for Arm Allinea Studio. Arm Allinea Studio is an end-to-end commercial suite of tools for
developing Linux applications to run on Armv8-A-based targets. For more information about Arm
Allinea Studio and how to license the tools, see the Arm Allinea Studio web page.

Resources
To learn more about Arm Fortran Compiler (part of Arm Compiler for Linux) and other Arm server and
HPC tools, refer to the following information:
• Arm Allinea Studio:

— Arm Allinea Studio
— Arm Fortran Compiler web page
— Installation instructions
— Release history
— Supported platforms

• Porting guidance:
— Porting and tuning resources
— Arm GitLab Packages wiki
— Arm HPC Ecosystem

• SVE and SVE2 information:
— Scalable Vector Extension (SVE, and SVE2) information
— For an overview of SVE and why it is useful for HPC, see Explore the Scalable Vector Extension

(SVE).
— For a list of SVE and SVE2 instructions, see the Arm A64 Instruction Set Architecture.
— White Paper: A sneak peek into SVE and VLA programming. An overview of SVE with

information on the new registers, the new instructions, and the Vector Length Agnostic (VLA)
programming technique, with some examples.

— White Paper: Arm Scalable Vector Extension and application to Machine Learning. In this white
paper, code examples are presented that show how to vectorize some of the core computational
kernels that are part of machine learning system. These examples are written with the Vector
Length Agnostic (VLA) approach introduced by the Scalable Vector Extension (SVE).

— DWARF for the ARM 64-bit Architecture (AArch64) with SVE support. This document describes
the use of the DWARF debug table format in the Application Binary Interface (ABI) for the Arm
64-bit architecture.

— Procedure Call Standard for the ARM 64-bit Architecture (AArch64) with SVE support. This
document describes the Procedure Call Standard use by the Application Binary Interface (ABI)
for the Arm 64-bit architecture.

— Arm Architecture Reference Manual Supplement - The Scalable Vector Extension (SVE), for
ARMv8-A. This supplement describes the Scalable Vector Extension to the Armv8-A architecture
profile.

• Support and sales:
— If you encounter a problem when developing your application and compiling with the Arm

Fortran Compiler, see the Troubleshoot on page 7-157
— Contact Arm Support
— Get software

1 Get started
1.1 Arm® Fortran Compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-fortran-compiler
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/release-history
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/resources/supported-platforms
https://developer.arm.com/products/software-development-tools/hpc/resources/porting-and-tuning
https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/solutions/hpc
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve
https://developer.arm.com/docs/101726/latest/explore-the-scalable-vector-extension-sve
https://developer.arm.com/docs/101726/latest/explore-the-scalable-vector-extension-sve
https://developer.arm.com/docs/ddi0602/latest/a64-sve-instructions-alphabetic-order
https://developer.arm.com//hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com//docs/100985/latest/dwarf-for-the-arm-64-bit-architecture-aarch64-with-sve-support
https://developer.arm.com//docs/100986/latest/procedure-call-standard-for-the-arm-64-bit-architecture-aarch64-with-sve-support
https://developer.arm.com//docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com//docs/ddi0584/latest/arm-architecture-reference-manual-supplement-the-scalable-vector-extension-sve-for-armv8-a
https://developer.arm.com/support
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/get-software

 Note

An HTML version of this guide is available in the <install_location>/<package_name>/share
directory of your product installation.

1 Get started
1.1 Arm® Fortran Compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

1.2 Get started with Arm® Fortran Compiler
Describes how to download and install Arm Compiler for Linux, and how to use Arm Fortran Compiler
to compile Fortran source into an executable binary.

Prerequisites

Download and install Arm Compiler for Linux. You can download Arm Compiler for Linux from the
Arm Allinea Studio Downloads page. Learn how to install and configure Arm Compiler for Linux, using
the Arm Compiler for Linux installation instructions on the Arm Developer website.

Procedure
1. Load the environment module for Arm Compiler for Linux:

a. As part of the installation, Arm recommends that your system administrator makes the Arm
Compiler for Linux environment modules available to all users of the tool suite.
To see which environment modules are available on your system, run:

module avail

 Note

If you cannot see the Arm Compiler for Linux environment module, but you know the installation
location, use module use to update your MODULEPATH environment variable to include that
location:

module use <path/to/installation>/modulefiles/

replacing <path/to/installation> with the path to your installation of Arm Compiler for
Linux. The default installation location is /opt/arm/.

module use sets your MODULEPATH environment variable to include the installation directory:

b. To load the module for Arm Compiler for Linux, run:

module load arm<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load arm21/21.0

c. Check your environment. Examine the PATH variable. PATH must contain the appropriate bin
directory from <path/to/installation>:

echo $PATH
/opt/arm/arm-linux-compiler-21.0_Generic-AArch64_SUSE-15_aarch64-linux/bin:...

 Note

To automatically load the Arm Compiler for Linux every time you log into your Linux terminal, add
the module load command for your system and product version to your .profile file.

2. To generate an executable binary, compile your application with Arm Fortran Compiler.

Specify the input source filename, <source>.<fortran-extension>, and use -o to specify the
output binary file, <binary>:

armflang -o <binary> <source>.<fortran-extension>

Arm Fortran Compiler builds your binary <binary>.

1 Get started
1.2 Get started with Arm® Fortran Compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation

To run your binary, use:

./<binary>

Example 1-1 Example: Compile and run a "Hello World" application

This example describes how to write, compile, and run a simple "Hello World" Fortran application.
1. Load the environment module for your system:

module load arm<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load arm21/21.0

2. Create a "Hello World" application and save it in an .f90 file, for example: hello.f90:

program hello
 print *, 'hello world'
end program

3. To generate an executable binary, compile your "Hello World" application with Arm Fortran
Compiler.

Specify the input file, hello.f90, and the binary name (using -o), hello:

armflang -o hello hello.f90

4. Run the generated binary hello:

./hello

Next Steps

For more information about compiling and linking as separate steps, and how optimization levels effect
auto-vectorization, see Compile and link on page 2-18.

1 Get started
1.2 Get started with Arm® Fortran Compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.3 Get support
To see a list of all the supported compiler options in your terminal, use:

armflang --help

or

man armflang

A description of each supported command-line option is available in Compiler options on page 4-51.

If you encounter a problem when developing your application and compiling with the Arm Compiler for
Linux, see the Troubleshoot on page 7-157 topic.

If you encounter a problem when using Arm Compiler for Linux, contact the Arm Support team:

Contact Arm Support

1 Get started
1.3 Get support

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/support

Chapter 2
Compile and link

This chapter describes the basic functionality of Arm Fortran Compiler, and describes how to compile
your Fortran source with armflang.

It contains the following sections:
• 2.1 Using the compiler on page 2-19.
• 2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors on page 2-23.
• 2.3 Generate annotated assembly code on page 2-25.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential

2.1 Using the compiler
Describes how to generate executable binaries, compile and link object files, and enable optimization
options, with Arm Fortran Compiler.

Compile and link

To generate an executable binary, compile your source file (for example, source.f90) with the
armflang command:

armflang -o source.f90

A binary with the filename source is output.

Optionally, use the -o option to set the binary filename (for example, binary):

armflang -o binary source.f90

You can specify multiple source files on a single line. Each source file is compiled individually and then
linked into a single executable binary. For example, to compile the source files source1.f90 and
source2.f90, use:

armflang -o binary source1.f90 source2.f90

To compile each of your source files individually into an object file, specify the compile-only option, -c,
and then pass the resulting object files into another invocation of armflang to link them into an
executable binary.

armflang -c source1.f90
armflang -c source2.f90
armflang -o binary source1.o source2.o

Increase the optimization level

To control the optimization level, specify the -O<level> option on your compile line, and replace
<level> with one of 0, 1, 2, 3, or fast. -O0 option is the lowest, and the default, optimization level. -
Ofast is the highest optimization level. Arm Fortran Compiler performs auto-vectorization at levels -O2,
03, and -Ofast.

For example, to compile source.f90 into a binary called binary, and use the -O3 optimization level,
use:

armflang -O3 -o binary source.f90

Compile and optimize using CPU auto-detection

If you tell Arm Fortran Compiler what target CPU your application will run on, the compiler can make
target-specific optimization decisions. Target-specific optimization decisions help ensure your
application runs as efficiently as possible. To tell the compiler to make target-specific compilation
decisions, use the -mcpu=<target> option and replace <target> with your target processor (from a
supported list of targets). To see what processors are supported by the -mcpu option, see -mcpu=
on page 4-100.

In addition, the -mcpu option also supports a native argument. -mcpu=native enables Arm Fortran
Compiler to auto-detect the architecture and processor type of the CPU that you are running the compiler
on.

For example, to auto-detect the target CPU and optimize the application for this target, use:

armflang -O3 -mcpu=native -o binary source.f90

2 Compile and link
2.1 Using the compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential

The -mcpu option supports a range of Armv8-A-based Systems-on-Chips (SoCs), including: ThunderX2,
Neoverse N1, Neoverse N2, Neoverse V1, and A64FX. When -mcpu is not specified, by default, -
mcpu=generic is set, which generates portable output suitable for any Armv8-A-based target.

 Note

• The optimizations that are performed from setting the -mcpu option (also known as hardware, or
CPU, tuning) are independent of the optimizations that are performed from setting the -O<level>
option.

• If you run the compiler on one target, but will run the application you are compiling on a different
target, do not use -mcpu=native. Instead, use -mcpu=<target> where <target> is the target
processor that you will run the application on.

Link to a math library

You can get greater performance from your code if you enable linking to optimized math libraries at
compilation time.

To enable you to get the best performance on Arm-based systems, Arm recommends linking to Arm
Performance Libraries. Arm Performance Libraries provide optimized standard core math libraries for
high-performance computing applications on Arm processors. Through a Fortran interface, the following
types of routines are available:

• BLAS: Basic Linear Algebra Subprograms (including XBLAS, the extended precision BLAS).
• LAPACK 3.9.0: A comprehensive package of higher level linear algebra routines.
• FFT functions: A set of Fast Fourier Transform routines for real and complex data using the FFTW

interface.
• Sparse linear algebra
• libamath: A subset of libm, which is a set of optimized mathematical functions.

To instruct Arm Fortran Compiler to use the optimum version of Arm Performance Libraries for your
target architecture and implementation, you can use the -armpl= compiler option. -armpl= enables the
tuned scalar and vector implementations of Fortran math intrinsics, and auto-vectorization of
mathematical functions (which can be disabled using -fno-simdmath). -armpl= supports arguments
which enable you to use 32- or 64-bit integers, and either the serial library or the OpenMP multi-threaded
library.

For example:
• To link to the OpenMP multi-threaded Arm Performance Libraries with a 64-bit integer interface, and

include compiler and library optimizations for an A64FX-based system, use:

armflang code_with_math_routines.f90 -armpl=ilp64,parallel -mcpu=a64fx

• To link to the OpenMP multi-threaded Arm Performance Libraries with a 32-bit integer interface, and
build portable output that is suitable for any Armv8-A-based system, use:

armflang code_with_math_routines.f90 -armpl -fopenmp -mcpu=generic

• To link to the serial implementation of Arm Performance Libraries with a 32-bit integer interface, and
include compiler and library optimizations for a Neoverse N1-based system, use:

armflang code_with_math_routines.f90 -armpl=lp64,sequential -mcpu=neoverse-n1

For a full list of supported arguments for -armpl, see doc:../compiler-options/armflang-
Optimization_Group-armpl_EQ.

If you want to link to another custom library, you can specify the library to armflang using the -
l<library> compiler option. For more information, see -l on page 4-98.

2 Compile and link
2.1 Using the compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

Common compiler options
This section describes some common options to use with Arm Fortran Compiler.

 Note

For more information about all the supported compiler options, run man armflang, armflang --help,
or see Compiler options on page 4-51.

-S

Outputs assembly code, rather than object code. Produces a text .s file containing annotated
assembly code.

-c

Performs the compilation step, but does not perform the link step. Produces an Executable and
Linkable Format (ELF) object file (<file>.o). To later link object files into an executable
binary, run armflang again, passing in the object files.

-o <file>

Specifies the name of the output file.

-march=name[+[no]feature]
Targets an architecture profile, generating generic code that runs on any processor of that
architecture. For example -march=armv8-a, -march=armv8-a+sve, or -march=armv8-a+sve2.

 Note

If you know what your target CPU is, Arm recommends using the -mcpu option instead of -
march. For a complete list of supported targets, see -march= on page 4-99.

-mcpu=native

Enables the compiler to automatically detect the CPU you are running the compiler on, and
optimize accordingly. The compiler selects a suitable target profile for that CPU. If you use -
mcpu, you do not need to use the -march option.

-mcpu supports a number of Armv8-A-based Systems-on-Chip (SoCs), including: ThunderX2,
Neoverse N1, Neoverse N2, Neoverse V1, and A64FX.

 Note

When -mcpu is not specified, it defaults to -mcpu=generic which generates portable output
suitable for any Armv8-A-based target.

For more information, see -mcpu= on page 4-100.

-O<level>
Specifies the level of optimization to use when compiling source files. The supported options
are: -O0, -O1, -O2, -O3, and -Ofast. The default is -O0. Auto-vectorization is enabled at -O2, -
O3, and -Ofast

 Warning

-Ofast performs aggressive optimizations that might violate strict compliance with language
standards.

For more information, see -O on page 4-102.

2 Compile and link
2.1 Using the compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

--config /path/to/<config-file>

Passes the location of a configuration file to the compile command. Use a configuration file to
specify a set of compile options to be run at compile time. The configuration file can be passed
at compile time, or an environment variable can be set for it to be used for every invocation of
the compiler. For more information about creating and using a configuration file, see Configure
Arm Compiler for Linux.

--help

Describes the most common options that are supported by Arm Fortran Compiler. To see more
detailed descriptions of all the options, use man armflang.

--version

Displays version information.

For a detailed description of all the supported compiler options, see Compiler options on page 4-51.

To view the supported options on the command-line, use the man pages:

man armflang

Alternatively, if you use a bash terminal and have the 'bash-completion' package installed, you can use
'command line completion' (also known as 'tab completion'). To complete the command or option that
you are typing in your terminal, press the Tab button on your keyboard. If there are multiple options
available to complete the command or option with, the terminal presents these as a list. If an option is
specified in full, and you press Tab, Arm Compiler for Linux returns the supported arguments to that
option.

For more information about how command line completion is enabled for bash terminal users of Arm
Compiler for Linux, see the Arm Allinea Studio installation instructions.

Related tasks
2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors on page 2-23
Related references
Chapter 4 Compiler options on page 4-51

2 Compile and link
2.1 Using the compiler

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/single-page

2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors
This topic describes how to use Arm Fortran Compiler to compile your code for Scalable Vector
Extension- (SVE-) and SVE2-enabled target processors.

SVE and SVE2 support enables you to:
• Assemble source code containing SVE and SVE2 instructions.
• Disassemble ELF object files containing SVE and SVE2 instructions.
• Compile Fortran code for SVE and SVE2-enabled targets, with an advanced auto-vectorizer that is

capable of taking advantage of the SVE and SVE2 features.

This topic shows you how to compile code to take advantage of SVE (or SVE2) functionality. The
generated executable can be run on SVE-enabled (or SVE2-enabled) hardware, or emulated using Arm
Instruction Emulator.

Prerequisites

• Ensure you have installed Arm Compiler for Linux.

For information about installing Arm Compiler for Linux, see Install Arm Compiler for Linux.
• Ensure you have loaded the environment module for Arm Compiler for Linux. To load the

environment module, run:

module load arm<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load arm21/21.0

• Your target must be SVE- or SVE2-enabled hardware, or you must download, install, and load the
correct environment module for Arm Instruction Emulator.

For more information about installing and setting up your environment for Arm Instruction Emulator,
see Install Arm Instruction Emulator.

Procedure
1. Compile your SVE or SVE2 source:

• If you are both compiling and running on SVE-enabled (or SVE2-enabled) hardware, enable
compiler optimizations using -mcpu=native.

To compile SVE or SVE2 code without linking to Arm Performance Libraries, use:

armflang -O<level> -mcpu=native -o <binary> <source.f90>

To compile SVE or SVE2 code and link to Arm Performance Libraries, use:

armflang -O<level> -mcpu=native -armpl -o <binary> <source.f90>

• To compile SVE (or SVE2) code on hardware that is not SVE-enabled, but that will be run on
SVE-enabled (or SVE2-enabled) hardware, specify your SVE-enabled (or SVE2-enabled)
processor using -mcpu=<target>.

To compile SVE or SVE2 code without linking to Arm Performance Libraries, use:

armflang -O<level> -mcpu=<target> -o <binary> <source.f90>

To compile SVE or SVE2 code and link to Arm Performance Libraries, use:

armflang -O<level> -mcpu=<target> -armpl -o <binary> <source.f90>

2 Compile and link
2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/installing-arm-instruction-emulator

 Note

If you do not know the target processor, specify an SVE-enabled target architecture using -
march=armv8-a+sve (or an SVE2-enabled target using -march=armv8-a+sve2), instead of using
-mcpu=<target>.

• To compile SVE (or SVE2) code to emulate with Arm Instruction Emulator, compile the code and
specify an SVE-enabled (or SVE2-enabled) architecture using -march=.

To compile SVE code without linking to Arm Performance Libraries, use:

armflang -O<level> -march=armv8-a+sve -o <binary> <source.f90>

To compile SVE code and link to Arm Performance Libraries, use:

armflang -O<level> -march=armv8-a+sve -armpl -o <binary> <source.f90>

To compile SVE code for an Armv8.2-A-based target, and link to Arm Performance Libraries,
use:

armflang -O<level> -march=armv8.2-a+sve -armpl -o <binary> <source.f90>

 Note

To compile SVE2 code, replace +sve with +sve2 in the -march option argument.

For more information about the supported options for -armpl, for example to control using 32-bit or
64-bit integers, or to use the single or OpenMP multi-threaded library, see the -armpl description in -
armpl= on page 4-58.

 Note

• To enable optimal vectorization, set -O<level> to be -O2, or higher.
• There are several SVE2 Cryptographic Extensions available: sve2-aes, sve2-bitperm, sve2-

sha3, and sve2-sm4. Each extension is enabled using the march compiler option. For a full list of
supported -march options, see -march= on page 4-99.

• sve2 also enables sve.

2. Run the executable:
• To run the executable on SVE-enabled (or SVE2-enabled) hardware, use:

./<binary>

• To run and emulate the instructions using Arm Instruction Emulator, use:

armie -msve-vector-bits=<value> ./<binary>

Replace <value> with the vector length to use (which must be a multiple of 128 bits up to 2048
bits).

 Note

For more information about using Arm Instruction Emulator, see the Arm Instruction Emulator
documentation.

2 Compile and link
2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources

2.3 Generate annotated assembly code
Arm Fortran Compiler can produce annotated assembly code. Generating annotated assembly code is a
good first step to see how the compiler vectorizes loops.

 Note

To use SVE functionality, you need to use a different set of compiler options. For more information, refer
to Compile Fortran code for Arm SVE and SVE2-enabled processors on page 2-23.

Prerequisites

• Install Arm Compiler for Linux. For information about installing Arm Compiler for Linux, see Install
Arm Compiler for Linux.

• Load the module for Arm Compiler for Linux, run:

module load arm<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load arm21/21.0

Procedure
1. Compile your source and specify an assembly code output:

armflang -S <source>.f90

The option -S is used to output assembly code.

The compiler outputs a <source>.s file.
2. Inspect the <source>.s file to see the annotated assembly code that was created.
Related tasks
2.2 Compile Fortran code for Arm SVE and SVE2-enabled processors on page 2-23

2 Compile and link
2.3 Generate annotated assembly code

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

Chapter 3
Optimize

This chapter describes the optimization-specific features supported in Arm Fortran Compiler.

It contains the following sections:
• 3.1 Directives on page 3-27.
• 3.2 Link Time Optimization (LTO) on page 3-34.
• 3.3 Arm Optimization Report on page 3-40.
• 3.4 Optimization remarks on page 3-45.
• 3.5 Profile Guided Optimization (PGO) on page 3-47.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-26

Non-Confidential

3.1 Directives
Directives are used to provide additional information to the compiler, and to control the compilation of
specific code blocks, for example, loops. This chapter describes what directives are supported in Arm
Fortran Compiler.

To specify a compiler directive in your source file, use:
• For free-form Fortran, use !dir$ to indicate a directive, or !$omp to indicate an OpenMP directive.
• For fixed-form Fortran, either !dir$ or cdir$ can be used to indicate a directive, and either !$omp or

c$omp can be used to indicate an OpenMP directive.
 Warning

Directives using cdir$ or c$omp must start from the first column.

 Note

To enable OpenMP directives, you must also include the -fopenmp compiler option in the compile
command line.

For more information about which OpenMP directives are supported, see Standards support
on page 6-148. For more information about the -fopenmp option, see -fopenmp on page 4-78.

This section contains the following subsections:
• 3.1.1 ivdep on page 3-27.
• 3.1.2 omp simd on page 3-28.
• 3.1.3 prefetch on page 3-29.
• 3.1.4 unroll on page 3-29.
• 3.1.5 nounroll on page 3-30.
• 3.1.6 vector always on page 3-31.
• 3.1.7 novector on page 3-32.

3.1.1 ivdep

Apply this general-purpose directive to a loop to force the vectorizer to ignore memory dependencies of
iterative loops, and proceed with the vectorization.

Syntax

Command-line option:

None

Source:

!dir$ ivdep
 <loops>

Parameters

None

Example: Using ivdep
Example usage of the ivdep directive.

subroutine sum(myarr1,myarr2,ub)
 integer, pointer :: myarr1(:)
 integer, pointer :: myarr2(:)
 integer :: ub

 !dir$ ivdep
 do i=1,ub
 myarr1(i) = myarr1(i)+myarr2(i)

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-27

Non-Confidential

 end do
end subroutine

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Command-line invocation
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize
-Rpass=loop-vectorize

The -Rpass and -Rpass-missed options enable optimization remarks about vectorized loops to be
reported. To learn more about optimization remarks, see Optimization remarks on page 3-45.

Outputs
1. With the pragma, the loop in the sum subroutine produces the following remark:

remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]

2. Without the pragma, the loop in the sum subroutine produces the following remark:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

3.1.2 omp simd

Apply this OpenMP directive to a loop to indicate that the loop can be transformed into a SIMD loop.

Syntax

Command-line option:

-fopenmp

Source:

!$omp simd
 <do-loops>

Parameters
None

 Note

Clauses for omp simd are not supported.

Example: Using omp simd

Example usage of the omp simd directive.

Code example:

subroutine sum(myarr1,myarr2,myarr3,myarr4,myarr5,ub)
 integer, pointer :: myarr1(:)
 integer, pointer :: myarr2(:)
 integer, pointer :: myarr3(:)
 integer, pointer :: myarr4(:)
 integer, pointer :: myarr5(:)
 integer :: ub

 !$omp simd
 do i=1,ub
 myarr1(i) = myarr2(myarr4(i))+myarr3(myarr5(i))
 end do
end subroutine

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-28

Non-Confidential

Command-line invocation
armflang -O3 -fopenmp <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

The -Rpass and -Rpass-missed options enable optimization remarks about vectorized loops to be
reported. To learn more about optimization remarks, see Optimization remarks on page 3-45.

Outputs
1. With the pragma, the loop that is given below says the following:

remark vectorized loop (vectorization width: 2, interleaved
count: 1) [-Rpass=loop-vectorize]

2. Without the pragma, the loop that is given below says the following:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

Related references
4.22 -fopenmp on page 4-78
Chapter 6 Standards support on page 6-148

3.1.3 prefetch

Tells the compiler to generate prefetch instructions to fetch elements and load them in the data cache,
ahead of their first use. Users can provide a prefetch distance. Prefetching elements can improve
performance by reducing main memory latency.

Syntax

Command-line option:

None

Source:

!$mem prefetch <var_1>[,<var_2>[,...]]

where <var_n> is any valid array element reference, member, or variable.

Parameters

None

Example: Using prefetch

The following example uses the prefetch directive to prefetch the value in array x, eight iterations
before the value is used.

Code example:

program mn
 integer:: i
 integer :: x(100), y(100)
 integer :: a = 20
 do i=1,100
 !$mem prefetch x(i+8)
 y(i) = y(i) + a*x(i);
 end do
end program

3.1.4 unroll

Instructs the compiler optimizer to unroll a DO loop when optimization is enabled with an optimization
level of -02, -O3, or -Ofast.

Syntax

Command-line option:

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-29

Non-Confidential

None

Source:

!dir$ unroll[(n)]
 <loops>

Parameters

(n)

(Optional) Specifies the number of iterations, n, to unroll. n must be an integer value. Without a
value for n, the directive unrolls completely, and therefore is only applicable to a loop with a
constant upperbound.

Example: Using unroll

Example usage of the unroll directive where the loop has an upperbound constant of 1000.

Code example:

subroutine add(a,b,c,d)
 integer, parameter :: m = 1000
 integer :: a(m), b(m), c(m), d(m)
 integer :: i

 !DIR$ UNROLL
 do i = 1, m
 b(i) = a(i) + 1
 d(i) = c(i) + 1
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Example: Using unroll to unroll with a specific number of unroll iterations

Example usage of the unroll directive where the loop has an upperbound constant of 1000, but is told to
only unroll 5 iterations (n is 5).

Code example:

subroutine add(a,b,c,d)
 integer, parameter :: m = 1000
 integer :: a(m), b(m), c(m), d(m)
 integer :: i
 !dir$ unroll(5)
 do i =1, m
 b(i) = a(i) + 1
 d(i) = c(i) + 1
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Related references
3.1.5 nounroll on page 3-30
3.4 Optimization remarks on page 3-45
4.1 Arm Fortran Compiler Options by Function on page 4-54

3.1.5 nounroll

Prevents the compiler optimizer from unrolling a DO loop when optimization is enabled with an
optimization level of -02, -O3, or -Ofast.

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-30

Non-Confidential

Syntax

Command-line option:

None

Source:

!dir$ nounroll
 <loops>

Parameters

None

Example: Using nounroll

Example usage of the nounroll directive.

Code example:

subroutine add(a,b,c,d)
 integer, parameter :: m = 1000
 integer :: a(m), b(m), c(m), d(m)
 integer :: i

 !DIR$ NOUNROLL
 do i =1, m
 b(i) = a(i) + 1
 d(i) = c(i) + 1
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Related references
3.1.4 unroll on page 3-29
3.4 Optimization remarks on page 3-45
4.1 Arm Fortran Compiler Options by Function on page 4-54

3.1.6 vector always

Apply this directive to force vectorization of a loop. The directive tells the vectorizer to ignore any
potential cost-based implications.

 Note

The loop needs to be able to be vectorized.

Syntax

Command-line option:

None

Source:

!dir$ vector always
 <loops>

Parameters

None

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-31

Non-Confidential

Example: Using vector always

Example usage of the vector always directive.

Code example:

subroutine add(a,b,c,d,e,ub)
 implicit none
 integer :: i, ub
 integer, dimension(:) :: a, b, c, d, e

 !dir$ vector always
 do i=1, ub
 e(i) = a(c(i)) + b(d(i))
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Command-line invocation
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

The -Rpass and -Rpass-missed options enable optimization remarks about vectorized loops to be
reported. To learn more about optimization remarks, see Optimization remarks on page 3-45.

Outputs
• With the pragma, the output for the example is:

remark: vectorized loop (vectorization width: 4, interleaved
count: 1) [-Rpass=loop-vectorize]

• Without the pragma, the output for the example is:

remark: the cost-model indicates that vectorization is not beneficial [-Rpass-missed=loop-
vectorize]

Related references
3.4 Optimization remarks on page 3-45

3.1.7 novector

Apply this directive to disable vectorization of a loop.

 Note

Use this directive when vectorization would cause a performance regression, instead of a performance
improvement.

Syntax

Command-line option:

None

Source:

!dir$ novector
 <loops>

Parameters

None

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-32

Non-Confidential

Example: Using novector

Example usage of the novector directive.

Code example:

subroutine add(arr1,arr2,arr3,ub)
 integer :: arr1(ub), arr2(ub), arr3(ub)
 integer :: i

 !dir$ novector
 do i=1,ub
 arr1(i) = arr1(i) + arr2(i)
 end do
end subroutine add

 Note

The example uses the free-form syntax. For fixed-form formats, replace !dir$ with cdir$.

Command-line invocation
armflang -O3 <test>.f90 -S -Rpass-missed=loop-vectorize -Rpass=loop-vectorize

The -Rpass and -Rpass-missed options enable optimization remarks about vectorized loops to be
reported. To learn more about optimization remarks, see Optimization remarks on page 3-45.

Outputs
• With the pragma, the output for the example is:

remark: loop not vectorized [-Rpass-missed=loop-vectorize]

• Without the pragma, the output for the example is:

remark: vectorized loop (vectorization width: 4, interleaved count: 2)
[-Rpass=loop-vectorize]

Related references
3.4 Optimization remarks on page 3-45
Related references
3.1.1 ivdep on page 3-27
3.1.2 omp simd on page 3-28
3.1.3 prefetch on page 3-29
3.1.4 unroll on page 3-29
3.1.5 nounroll on page 3-30
3.1.6 vector always on page 3-31
3.1.7 novector on page 3-32

3 Optimize
3.1 Directives

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-33

Non-Confidential

3.2 Link Time Optimization (LTO)
This section describes what Link Time Optimization (LTO) is, when LTO is useful, and how to compile
with LTO. The section also provides reference information about the llvm-ar and llvm-ranlib LLVM
utilities that are required to compile static libraries with LTO.

This section contains the following subsections:
• 3.2.1 What is Link Time Optimization (LTO) on page 3-34.
• 3.2.2 Compile with Link Time Optimization (LTO) on page 3-35.
• 3.2.3 armllvm-ar and reference on page 3-38.
• 3.2.4 armllvm-ranlib reference on page 3-38.

3.2.1 What is Link Time Optimization (LTO)

Link Time Optimization is a form of interprocedural optimization that is performed at the time of linking
application code. Without LTO, Arm Compiler for Linux compiles and optimizes each source file
independently of one another, then links them to form the executable. With LTO, Arm Compiler for
Linux can process, consume, and use inter-module dependency information from across all the source
files to enable further optimizations at link time. LTO is particularly useful when source files that have
already been compiled separately.

The following describes the workflow that Arm Compiler for Linux takes with and without LTO enabled,
in more detail:
• Without LTO:

1. Source files are translated into separate ELF object files (.o) and passed to the linker.
2. The linker processes the separate ELF object files, together with library code, to create the ELF

executable.
• With LTO:

1. Source files are translated into a bitcode object files (.o), and passed to the linker. LLVM Bitcode
is an intermediate form of code that is understood by the optimizer.

2. To extract the module dependency information, the linker processes the bitcode and object files
together and passes them to the LLVM optimizer utility, libLTO.

3. The LLVM optimizer utility, libLTO, uses the module dependency information to filter out unused
modules, and create a single highly optimized ELF object file. Additional optimizations are
possible by knowing the module dependency information. The new ELF object file is returned to
the linker.

4. The linker links the new ELF object file with the remaining ELF object files and library code, to
generate an ELF executable.

Limitations
LTO in Arm Compiler for Linux has some limitations:
• To compile static libraries, you must create a library archive file that libLTO can use at link time.

armllvm-ar, as well as some open-source utility tools can create this archive file. For more
information about armllvm-ar, see armllvm-ar and reference on page 3-38.

• Partial linking is not supported with LTO because partial linking only works with ELF objects, rather
than bitcode files.

• If your library code calls a function that was defined in the source code, but is removed by libLTO,
you might get linking errors.

• Bitcode objects are not guaranteed to be compatible across Arm Compiler for Linux versions. When
linking with LTO, ensure that all your bitcode files are built using the same version of the compiler.

• You can not analyze LTO-optimized code using Arm Optimization Reports. Arm Optimization
Reports analyzes object files that are generated by Arm Compiler for Linux before they are passed to
the linker. Therefore, you can not use Arm Optimization Reports to investigate the vectorization
decisions that LTO enables the linker to make.

3 Optimize
3.2 Link Time Optimization (LTO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

3.2.2 Compile with Link Time Optimization (LTO)

This topic describes how to compile your Fortran source code with Link Time Optimization (LTO), using
Arm Fortran Compiler.

Prerequisites

• Download and install Arm Compiler for Linux. You can download Arm Compiler for Linux from the
Arm Allinea Studio Downloads page. Learn how to install and configure Arm Compiler for Linux,
using the Arm Compiler for Linux installation instructions on the Arm Developer website.

• Load the environment module for Arm Compiler for Linux for your system.
• To compile your code with static libraries, you must create an archive of your libraries using an

archive utility tool. Arm Compiler for Linux version 20.3+ includes variants of the LLVM archive
utility tools llvm-ar (armllvm-ar) and llvm-ranlib (armllvmran-lib).

If you use a Makefile to create the library archive and compile your application, open your Makefile
and update any references of llvm-ar to armllvm-ar, and llvm-ranlib to armllvm-ranlib.

 Note

If you use ar to create your archives, you must also use the LLVM Gold Plugin to enable ar to use
LLVM bitcode object files. For more information, see the LLVM gold plugin documentation.

For more information about armllvm-ar, see armllvm-ar and reference on page 3-38. For more
information about armllvm-ranlib, see armllvm-ranlib reference on page 3-38.

Procedure
1. To generate an executable binary with LTO enabled, compile and link your code with armflang, and

pass the -flto option:
• For dynamic library compilation, use:

armflang -O<level> -flto -o <binary> <sources>

• For static library compilation:
1. Compile, but do not link, your code with LTO:

armflang -O<level> -flto -c <sources>

The result is one or more .o files, one per source file that was passed to armflang.
2. Create the archive file for your static library object files:

armllvm-ar [config-options] [operation{modifiers)}] <archive> [<files>]
armllvm-ranlib <archive>

For example:

armllvm-ar rc example-archive.a source1.o source2.o
armllvm-ranlib example-archive.a

armllvm-ar builds a single archive file from one or more .o files. r is an operation that
instructs armllvm-ar to replace existing archive files or, if they are new files, add the files to
the end of the archive. c is a modifier to r that disables the warning which informs you that an
archive has been created.

armllvm-ranlib builds an index for the <archive> file.

For a more detailed description of armllvm-ar, see armllvm-ar and reference on page 3-38.
For a more detailed description of armllvm-ar, see armllvm-ranlib reference on page 3-38.

3. Link your remaining object files together with your archive file:

armflang -O<level> -flto -o <binary> <sources>.o <archive>

3 Optimize
3.2 Link Time Optimization (LTO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation
https://llvm.org/docs/GoldPlugin.html

 Note

The <archive> file is used in place of the object files that where combined into the
<archive> file by armllvm-ar.

2. (Optional) Use a tool like objdump to analyze the binary and view how the compiler optimized your
code:

objdump -d <binary>

Arm Fortran Compiler builds your LTO-optimized binary <binary>.

To run your binary, use:

./<binary>

Example 3-1 Example: Compare code compiled with and without LTO

The following example application code is composed of two source files. main.f90 contains the main
function which calls and a second function, foo, contained in foo.f90. Compiling and analyzing
example code without LTO enabled, then with LTO enabled, allows us to see the effect that LTO has on
the application compilation.

 Note

This example does not use static libraries.

1. Create the example source code files:
a. Write and save the following code as a main.f90 source file:

PROGRAM main
 IMPLICIT NONE
 REAL, EXTERNAL :: foo
 INTEGER :: i, numelts, numargs
 CHARACTER(len=256) :: filename, elts, progname
 REAL, DIMENSION(:), ALLOCATABLE :: data
 numargs = command_argument_count()
 IF (numargs .NE. 2) THEN
 CALL get_command_argument(0, progname)
 WRITE(*,*) "Incorrect arguments."
 WRITE(*,*) " Usage: " // &
 progname(1:len_trim(progname)) // &
 " <filename> <size>'"
 STOP
 END IF
 CALL get_command_argument(1, filename)
 CALL get_command_argument(2, elts)
 READ(elts, *) numelts
 ALLOCATE(data(numelts))
 OPEN(42, FILE=filename, STATUS='old', &
 ACCESS='stream', FORM='unformatted')
 READ(42) data
 DO i = 1, numelts
 data(i) = foo(data(i))
 END DO
 REWIND(42)
 WRITE(42) data
 CLOSE(42)

3 Optimize
3.2 Link Time Optimization (LTO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

 DEALLOCATE(data)
END PROGRAM

b. Write and save the following code as a foo.f90 source file:

REAL FUNCTION foo(val)
 foo = val*2.0
END FUNCTION

2. Use armflang to compile the code both without and with LTO enabled:
a. To compile without LTO, into a binary called binary-no-lto, use:

armflang -O3 -o binary-no-lto main.f90 foo.f90

b. To compile with LTO, into a binary called binary-lto, use:

armflang -O3 -flto -o binary-lto main.f90 foo.f90

3. To analyze the files to see the effect that LTO has on the generated code, use objdump to investigate
the main function in the binary:

objdump -d binary-no-lto

In the following pseudo code:
• {addr*} represents an address. {addr_main}, {addr_foo}, and {addr_loop_start} are

addresses that are given specific pseudo address names for the purpose of this example.
• {enc} represents the encoding.

For binary-no-lto, you can see separate functions main and foo in the following pseudo code:

{addr_main} <MAIN_>:
 ...
 {addr_loop_start}: {enc} add x0, x8, x20
 {addr*}: {enc} bl {addr_foo} <foo_>
 {addr*}: {enc} ldr x8, [sp, #680]
 {addr*}: {enc} subs x19, x19, #0x1
 {addr*}: {enc} str s0, [x8, x20]
 {addr*}: {enc} add x20, x20, #0x4
 {addr*}: {enc} b.ne {addr_loop_start}
 ...
...

{addr_foo} <foo_>:
 {addr*}: {enc} ldr s0, [x0]
 {addr*}: {enc} fadd s0, s0, s0
 {addr*}: {enc} ret

main has a scalar loop with a branch to foo in it:

{addr*}: {enc} bl {addr_foo} <foo_>

Whereas in binary-lto, you see one main function:

objdump -d binary-lto

Which gives:

{addr_main} <MAIN_>:
 ...
 {addr_loop_start}: {enc} ldr q0, [x13], #16
 {addr*}: {enc} subs x12, x12, #0x4
 {addr*}: {enc} fadd v0.4s, v0.4s, v0.4s
 {addr*}: {enc} str q0, [x14]
 {addr*}: {enc} mov x14, x13
 {addr*}: {enc} b.ne {addr_loop_start}
 ...

In main in binary-lto, the simple foo function has been inlined and transformed into a vectorized
loop: fadd v0.4s, v0.4s, v0.4s.

Related references
3.2.3 armllvm-ar and reference on page 3-38
3.2.4 armllvm-ranlib reference on page 3-38

3 Optimize
3.2 Link Time Optimization (LTO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

3.2.3 armllvm-ar and reference

This topic describes armllvm-ar. armllvm-ar is a utility tool provided in the Arm Compiler for Linux
package, and is a variant of the LLVM llvm-ar utility tool.

armllvm-ar is an archiving tool that is similar to the Unix utility ar. However, unlike ar, armllvm-ar is
able to understand the LLVM bitcode files that LLVM-based compilers produce when Link Time
Optimization (LTO) is enabled.

armllvm-ar can archive several .o object (or bitcode object) files into a single archive library. As
armllvm-ar archives the files, the tool creates a symbol table of the files. At link time, you can pass the
archive to the compiler to link it into your application. When an archive is used by the compiler at link
time, the symbol table enables linking to be performed faster than it would take the linker to link each
file separately.

 Note

For information about how llvm-ar differs from ar, see the llvm-ar LLVM command documentation.

Syntax

armllvm-ar can be run on the command line or through a Machine Readable Instruction (MRI) script.
The following syntax is the command line syntax

armllvm-ar [config-options] [operation{modifiers)}] <archive> [<files>]

 Note

armllvm-ar inherits the same syntax as llvm-ar.

Options for armllvm-ar are separated into Configuration options, Operations, and Modifiers:
• Configuration options are options that either configure how llvm-ar runs (for example how to set the

default archive format), or are options to display help or version information.
• Operations are actions that are performed on an archive. You can only pass one operation to

armllvm-ar.
• Modifiers control how the operation completes the action. You can specify multiple modifiers to an

operation, however, each operation supports different modifiers.

Options, Operations, and Modifiers

armllvm-ar supports the same options, operations, and modifiers that are supported by LLVM's llvm-ar
tool. To see the options, operations, and modifiers that are supported by both utility tools, see the LLVM
llvm-ar reference documentation.

Outputs

A successful run of armllvm-ar returns 0 and creates an archive called <archive>, which normally has
a .a suffix. A nonzero return value indicates an error.

Related references
3.2.4 armllvm-ranlib reference on page 3-38

3.2.4 armllvm-ranlib reference

This topic describes armllvm-ranlib. armllvm-ranlib is a utility tool provided in the Arm Compiler
for Linux package, and is a variant of the LLVM llvm-ranlib utility tool.

3 Optimize
3.2 Link Time Optimization (LTO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

https://llvm.org/docs/CommandGuide/llvm-ar.html
https://llvm.org/docs/CommandGuide/llvm-ar.html
https://llvm.org/docs/CommandGuide/llvm-ar.html

Like, llvm-ranlib is a synonym to the LLVM archiver tool llvm-ar -s, armllvm-ranlib is a
synonym for running armllvm-ar -s.

 Note

For a full description of llvm-ranlib see the llvm-ranlib LLVM command documentation.

Related concepts
3.2.1 What is Link Time Optimization (LTO) on page 3-34
Related tasks
3.2.2 Compile with Link Time Optimization (LTO) on page 3-35
Related references
3.2.3 armllvm-ar and reference on page 3-38
3.2.4 armllvm-ranlib reference on page 3-38

3 Optimize
3.2 Link Time Optimization (LTO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

https://llvm.org/docs/CommandGuide/llvm-ranlib.html

3.3 Arm Optimization Report
Arm Optimization Report builds on the llvm-opt-report tool available in open-source LLVM. Arm
Optimization Report shows you the optimization decisions that the compiler is making, in-line with your
source code, enabling you to better understand the unrolling, vectorization, and interleaving behavior.

Unrolling

Unrolling is when a scalar loop is transformed to perform multiple iterations at once, but still as scalar
instructions.

The unroll factor is the number of iterations of the original loop that are performed at once. Sometimes,
loops with known small iteration counts are completely unrolled, such that no loop structure remains. In
completely unrolled cases, the unroll factor is the total scalar iteration count.

Vectorization

Vectorization is when multiple iterations of a scalar loop are replaced by a single iteration of vector
instructions.

The vectorization factor is the number of lanes in the vector unit, and corresponds to the number of scalar
iterations that are performed by each vector instruction

 Note

The true vectorization factor is unknown at compile-time for SVE, because SVE supports scalable
vectors.

When SVE is enabled, Arm Optimization Report reports a vectorization factor that corresponds to a 128-
bit SVE implementation.

If you are working with an SVE implementation with a larger vector width (for example, 256 bits or 512
bits), the number of scalar iterations that are performed by each vector instruction increases
proportionally.

SVE scaling factor = <true SVE vector width> / 128

Loops vectorized using scalable vectors are annotated with VS<F,I>. For more information, see arm-opt-
report reference on page 3-42.

Interleaving

Interleaving is a combination of vectorization followed by unrolling; multiple streams of vector
instructions are performed in each iteration of the loop.

The combination of vectorization and unrolling information tells you how many iterations of the original
scalar loop are performed in each iteration of the generated code.

Number of scalar iterations = <unroll factor> x <vectorization factor> x <interleave count>
x <SVE scaling factor>

 Note

The number of scalar iterations is not an exact figure. For SVE code, the compiler can use the
predication capabilities of SVE. For example, a 10-iteration scalar operation on 64-bit values takes 3
iterations on a 256-bit SVE-enabled target.

Reference

The annotations Arm Optimization Report uses to annotate the source code, and the options that can be
passed to arm-opt-report are described in the Arm Optimization Report reference.

3 Optimize
3.3 Arm Optimization Report

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

This section contains the following subsections:
• 3.3.1 How to use Arm Optimization Report on page 3-41.
• 3.3.2 arm-opt-report reference on page 3-42.

3.3.1 How to use Arm Optimization Report

This topic describes how to use Arm Optimization Report.

Prerequisites

Download and install Arm Compiler for Linux. For more information, see Download Arm Compiler for
Linux and Installation.

Procedure
1. To generate a machine-readable .opt.yaml report, at compile time add -fsave-optimization-

record to your command line.

A <filename>.opt.yaml report is generated by Arm Compiler, where <filename> is the name of
the binary.

2. To inspect the <filename>.opt.yaml report, as augmented source code, use arm-opt-report:

arm-opt-report <filename>.opt.yaml

Annotated source code appears in the terminal.

Example 3-2 Example

1. Create an example file called example.f90 containing the following code:

subroutine foo
 implicit none
 call bar()
end subroutine foo

subroutine test
 implicit none
 integer :: i
 integer, dimension(1600) :: res, p, d

 do i = 1, 1600
 res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
 end do

 do i = 1, 16
 res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
 end do

 call foo()
 call foo()
 call bar()
 call foo()
end subroutine test

2. Compile the file, for example to a shared object called example.o:

armflang -O3 -fsave-optimization-record -c -o example.o example.f90

This generates a file, example.opt.yaml, in the same directory as the built object.

For compilations that create multiple object files, there is a report for each build object.
 Note

This example compiles to a shared object, however, you could also compile to a static object or to a
binary.

3. View the example.opt.yaml file using arm-opt-report:

arm-opt-report example.opt.yaml

3 Optimize
3.3 Arm Optimization Report

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/download
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation

Annotated source code is displayed in the terminal:

< example.f90
 1 | subroutine foo
 2 | implicit none
 3 | call bar()
 4 | end subroutine foo
 5 |
 6 | subroutine test
 7 | implicit none
 8 | integer :: i
 9 | integer, dimension(1600) :: res, p, d
10 |
11 |
12 | do i = 1, 1600
13 | res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
14 V4,2 | end do
15 |
16 |
17 | do i = 1, 16
18 | res(i) = merge(res(i), res(i) + d(i), p(i) == 0)
19 U16 | end do
20 |
21 I | call foo()
22 I | call foo()
23 | call bar()
24 I | call foo()
25 | end subroutine test

The example Arm Optimization Report output is interpreted as follows:
• The do loop on line 12:

— Is vectorized
— Has a vectorization factor of four (there are four 32-bit integer lanes)
— Has an interleave factor of two (the loop was unrolled twice)

• The for loop on line 19 is unrolled 16 times. This means it is completely unrolled, with no
remaining loops.

• All three instances of call foo() are inlined

Related references
3.3.2 arm-opt-report reference on page 3-42
Related information
Arm Compiler for Linux and Arm Allinea Studio
Take a trial
Help and tutorials

3.3.2 arm-opt-report reference

This reference topic describes the options that are available for arm-opt-report. The topic also
describes the annotations that arm-opt-report can use to annotate source code.

arm-opt-report uses a YAML optimization record, as produced by the -fsave-optimization-record
option of LLVM, to output annotated source code that shows the various optimization decisions taken by
the compiler.

 Note

-fsave-optimization-record is not set by default by Arm Compiler for Linux.

Possible annotations are:

Annotation Description

I A function was inlined.

U<N> A loop was unrolled <N> times.

3 Optimize
3.3 Arm Optimization Report

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio
https://pages.arm.com/Hpc-trial-request
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/documentation

 (continued)

Annotation Description

V<F, I> A loop has been vectorized.

Each vector iteration performed has the equivalent of F*I scalar iterations.

Vectorization Factor, F, is the number of scalar elements that are processed in parallel.

Interleave count, I, is the number of times the vector loop was unrolled.

VS<F,I> A loop has been vectorized using scalable vectors.

Each vector iteration performed has the equivalent of N*F*I scalar iterations, where N is the number of vector granules,
which can vary according to the machine the application is run on.

 Note

LLVM assumes a granule size of 128 bits when targeting SVE.

F (Vectorization Factor) and I (Interleave count) are as described for V<F,I>.

Syntax

arm-opt-report [options] <input>

Options

Generic Options:

--help

Displays the available options (use --help-hidden for more).

--help-list

Displays a list of available options (--help-list-hidden for more).

--version

Displays the version information for arm-opt-report.

llvm-opt-report options:

--hide-detrimental-vectorization-info

Hides remarks about vectorization being forced despite the cost-model indicating that it is not
beneficial.

--hide-inline-hints

Hides suggestions to inline function calls which are preventing vectorization.

--hide-lib-call-remark

Hides remarks about the calls to library functions that are preventing vectorization.

--hide-vectorization-cost-info

Hides remarks about the cost of loops that are not beneficial for vectorization.

--no-demangle

Does not demangle function names.

-o=<string>

Specifies an output file to write the report to.

3 Optimize
3.3 Arm Optimization Report

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

-r=<string>

Specifies the root for relative input paths.

-s

Omits vectorization factors and associated information.

--strip-comments

Removes comments for brevity

--strip-comments=<arg>
Removes comments for brevity. Arguments are:
• none: Do not strip comments.
• c: Strip C-style comments.
• c++: Strip C++-style comments.
• fortran: Strip Fortran-style comments.

Outputs

Annotated source code.

Related tasks
3.3.1 How to use Arm Optimization Report on page 3-41
Related tasks
3.3.1 How to use Arm Optimization Report on page 3-41
Related references
3.3.2 arm-opt-report reference on page 3-42

3 Optimize
3.3 Arm Optimization Report

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

3.4 Optimization remarks
Optimization remarks provide you with information about the choices that are made by the compiler. You
can use them to see which code has been inlined or they can help you understand why a loop has not
been vectorized.

By default, Arm Compiler for Linux prints optimization remark information to stderr. If this is your
terminal output, you might want to redirect the terminal output to a separate file to store and search the
remark information more easily.

To enable optimization remarks, pass one or more of the following Rpass options to armflang at
compile time:

• -Rpass=<regex>: Information about what the compiler has optimized.
• -Rpass-analysis=<regex>: Information about what the compiler has analyzed.
• -Rpass-missed=<regex>: Information about what the compiler failed to optimize.

For each option, replace <regex> with a remark expression that you want see. The supported remark
types are:

• loop-vectorize: Remarks about vectorized loops.
• inline: Remarks about inlining.
• loop-unroll: Remarks about unrolled loops.

<regex> can be one or more of the preceding remark types. If you filter for multiple types, separate each
type with a pipe (|) character.

Alternatively, you can choose to print all optimization remark information by specifying .* for <regex>.

 Note

Use .* with caution; depending on the size of code, and the level of optimization, the compiler can print
a lot of information.

When you provide -Rpass, armflang generates debug line tables equivalent to passing -gline-tables-
only, unless you instruct it not to by another debug controlling option. This default behavior ensures that
source location information is available to print the remarks.

The general syntax to compile with optimization remarks enabled (-Rpass[-<option>]), optionally
include debug options, and redirect the information to an output file (<remarks-file.txt>), is:

armflang -O<level> -Rpass[-<option>]=<remarks> <source> [<debug-option>] 2> <remarks-
file.txt>

 Note

2> <remarks-file.txt> assumes a Bourne-shell syntax. You will need to replace this with the
appropriate syntax to redirect output in your shell type.

This section contains the following subsection:
• 3.4.1 Enable optimization remarks on page 3-45.

3.4.1 Enable optimization remarks

Describes how to enable optimization remarks and redirect the information they provide to an output file.

Prerequisites

Download and install Arm Compiler for Linux. You can download Arm Compiler for Linux from the
Arm Allinea Studio Downloads page. Learn how to install and configure Arm Compiler for Linux, using
the Arm Compiler for Linux installation instructions on the Arm Developer website.

3 Optimize
3.4 Optimization remarks

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation

Procedure
1. Compile your code with optimization remarks. To enable optimization remarks, pass one or more of -

Rpass=<regex>, -Rpass-missed=<regex>, or Rpass-analysis=<regex> on your compile line.

For example, to report all the remarks about vectorized loops (-Rpass=loop-vectorize), when
compiling an input file called source.f90, use:

armflang -O3 -Rpass=loop-vectorize source.f90 -gline-tables-only

Result:

example.f90:21: vectorized loop (vectorization width: 2,
interleaved count: 1)
 [-Rpass=loop-vectorize]
 do i=1

2. Or, to print the optimization remark information to a separate file, instead of stderr, run:

armflang -O<level> -Rpass[-<option>]=<remarks> <source> [<debug-option>] 2> <remarks-file>

Replacing 2> with the appropriate redirection syntax for the shell type

For example, to redirect the output to a file called vecreport.txt, use:

armflang -O3 -Rpass=loop-vectorize -Rpass-analysis=loop-vectorize -Rpass-missed=loop-
vectorize source.F90 -gline-tables-only 2> vecreport.txt

A <remarks-file.txt> file is created which contains the optimization remarks.

Related information
Arm Fortran Compiler
Related tasks
3.4.1 Enable optimization remarks on page 3-45

3 Optimize
3.4 Optimization remarks

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-fortran-compiler

3.5 Profile Guided Optimization (PGO)
Learn about Profile Guided Optimization (PGO) and how to use llvm-profdata. llvm-profdata is
LLVM's utility tool for profiling data and displaying profile counter and function information. llvm-
profdata is included in Arm Compiler for Linux.

Profile Guided Optimization (PGO) is a technique where you use profiling information to improve
application run-time performance. To use PGO, you must generate profile information from an
application, then recompile the application code while passing profile information to the compiler. The
compiler can interpret and use the profile information to make informed optimization decisions. For
example, when the compiler knows the frequency of a function call in an applications code, it can help
the compiler make inlining decisions.

To enable the compiler to make the best optimization decisions for your applications code, you must pass
profiling data that is representative of the applications typical workload. To generate profiling
information that is representative of a typical workload, compile your application with your typical
compiler options and run the application as you typically would.

The profile information can be generated from either:

• A sampling profiler
• An instrumented version of the code.

LLVM's documentation describes both methods. In this section, we only describe how to:
• Generate profile information from an instrumented version of the application code.
• Use llvm-profdata to combine and convert profile information from instrumented code into a

format that the compiler can read as an input.

This section contains the following subsections:
• 3.5.1 How to compile with Profile Guided Optimization (PGO) on page 3-47.
• 3.5.2 llvm-profdata reference on page 3-49.

3.5.1 How to compile with Profile Guided Optimization (PGO)

Learn how to use Profile Guided Optimization (PGO) with Arm Fortran Compiler.

 Note

The following procedure describes how to generate, and use, profile data using Arm Compiler for Linux.
Profile data files generated by GCC compilers cannot be used by Arm Compiler for Linux.

Prerequisites

• Download and install Arm Compiler for Linux.
• Load the Arm Compiler for Linux environment module for your system.
• Add the llvm-bin directory to your PATH. For example:

PATH=$PATH:<install-dir>/../llvm-bin

Where <install-dir> is the Arm Compiler for Linux install location.
 Note

To obtain <install-dir> for your system, load the Arm Compiler for Linux environment module
and run which armflang. The returned path is your <install-dir>.

3 Optimize
3.5 Profile Guided Optimization (PGO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

https://clang.llvm.org/docs/UsersManual.html

Procedure
1. Build an instrumented version of your application code. Compile your application with the -

fprofile-generate option:

armflang -O<level> [options] -fprofile-generate=<profile_dir> <source> -o <binary>

 Note

• When using PGO, Arm recommends using -O2 optimization level, or higher.
• To ensure that the instrumented executable represents the real executable, compile your

application code with the same compiler options.
• To specify the output location for the profile file, supply a directory name as an argument to -

fprofile-generate=. If you do not specify a directory, <profile_dir>, the profile file is
generated in the same directory as the source file.

• By default, the profile data file has the filename form default-<id>.profraw, where <id> is
replaced with a unique identifier for the file. The next step in the procedure describes how to
override the default filename behavior, if required.

2. Run your application code with a typical workload. Either:
• Run it with default behavior:

./<binary>

The profile data file, default-<id>.profraw, is written to the directory location specified in the
previous step, or if no directory was specified, to the same location as the source file.

• Specify a new profile data filename using the LLVM_PROFILE_FILE environment variable, and run
the application:

LLVM_PROFILE_FILE=<profdata_file>.profraw ./<binary>

Replace "<profdata_file>.profraw" with the filename, or file form, for your profile file. To
define a filename form to ensure that repeat runs generate a unique profile file, use one or more of
the following modifiers:
— %p to state the process ID
— %h to state the hostname
— %m to state the unique profile name

For example, LLVM_PROFILE_FILE="example-{%p|%h|%m}.profraw".

The profile data is written to <profdata_file>.profraw.
3. Combine and convert your .profraw files into a single processed .profdata file using the llvm-

profdata tool merge command:
• If you have a single .profraw file, use:

llvm-profdata merge -output=<filename>.profdata <filename>.profraw

 Note

Where you only have one .profraw file, no files are combined, however, you must still run the
merge command to convert the file format to .profdata.

• If you have multiple .profraw files, you can combine and convert them into a single .profdata
profile data file. Navigate to the directory where your .profraw file (or files) is and either:
— Pass each .profraw file in separately:

llvm-profdata merge -output=<filename>.profdata <filename1>.profraw
[<filename2>.profraw ...]

— Pass in all of the .profraw files in that directory location:

llvm-profdata merge -output=<filename>.profdata *.profraw

3 Optimize
3.5 Profile Guided Optimization (PGO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

4. Recompile your application code and pass the profile data file, <filename>.profdata, to armflang
using the -fprofile-use=<filename>.profdata option:

armflang -O<level> -fprofile-use=<filename>.profdata <source> -o <binary>

This step can be repeated without having to regenerate a new profile data file. However, as
compilation decisions change and change the output application code, armflang might get to a point
where the profile data can no longer be used. At this point, armflang outputs a warning.

Example 3-3 Example: Compiling code with PGO

This example uses 'foo.f90' as the source code file and 'foo-binary'.
1. Build an instrumented version of the foo-binary application code:

armflang -O2 -fprofile-generate foo.f90 -o foo-binary

2. Run foo-binary with a typical workload twice, creating separate .profraw files using their process
ID to distinguish them:

LLVM_PROFILE_FILE="foorun-%p.profraw"
./foo-binary
./foo-binary

3. Combine and convert the .profraw files into a single processed .profdata file:

llvm-profdata merge -output=foorun.profdata foorun-*.profraw

4. Recompile the foo-binary application code passing the foorun.profdata profile data file to
armflang:

armflang -O2 -fprofile-use=foorun.profdata foo.f90 -o foo-binary

Related concepts
3.5.2 llvm-profdata reference on page 3-49
Related information
LLVM's documentation
LLVM Command Guide

3.5.2 llvm-profdata reference

This topic describes the commands and lists the options for the llvm-profdata tool, for instrumentation-
built profile data.

 Note

Full documentation for the llvm-profdata is available online in the LLVM Command Guide.

In Arm Compiler for Linux, the llvm-profdata tool is located in <install_dir>/arm-linux-
compiler-*/llvm-bin. To enable the llvm-profdata tool, add the llvm-bin directory to your PATH.

llvm-profdata accepts three commands: merge, show, and overlap. The following table describes
each.

3 Optimize
3.5 Profile Guided Optimization (PGO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

https://clang.llvm.org/docs/UsersManual.html
https://llvm.org/docs/CommandGuide/llvm-profdata.html
https://llvm.org/docs/CommandGuide/llvm-profdata.html

Table 3-1 Describes the commands for llvm-profdata

Command Syntax Description Common options

merge llvm-profdata merge -
instr [options]
[filename1]
{[filename2] ...}

merge combines multiple,
instrumentation-built, profile data
files into a single, indexed,
profile data file.

• -weighted-files=<weight>,<filename>
• -input-files=<path>
• -sparse=true|false
• -num-threads=<value>
• -prof-sym-list=<path>
• -compress-all-sections=true|false

show llvm-profdata show -
instr [options]
[filename]

show displays profile counter and
(optional) function information
for a profile data file.

• -all-functions
• -counts
• -function=<string>
• -text
• -topn=<value>
• -memop-sizes
• -list-below-cutoff
• -showcs

overlap llvm-profdata overlap
[options] [base
profile] [test
profile]

overlap displays the overlap of
profile counter information for
two profile data files or,
optionally, for any functions that
match a given string
(<string>).

• -function=<string>
• -value-cutoff=<value>
• -cs

Global options that all of the commands accept include:
• -help
• -output=<filename>

Related information
LLVM Command Guide
Related concepts
3.5.2 llvm-profdata reference on page 3-49
Related tasks
3.5.1 How to compile with Profile Guided Optimization (PGO) on page 3-47

3 Optimize
3.5 Profile Guided Optimization (PGO)

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

https://llvm.org/docs/CommandGuide/llvm-profdata.html

Chapter 4
Compiler options

This chapter describes the options supported by armflang.

armflang provides many command-line options, including most Flang command-line options in addition
to a number of Arm-specific options. Flang is a Fortran language front-end integrated with LLVM which,
similar to Clang, supports community-supported options. Many common options, together with the Arm-
specific options, are described in this chapter. The same options are also described in the tool through the
--help option (run armflang --help), and in the man pages (run man armflang).

Additional information about community feature command-line options is available on the Flang
community GitHub web site.

To see a list of arguments that Arm Fortran Compiler supports for a specific option, bash terminal users
can also use command line completion (also known as tab completion). For example, to list the
supported arguments for -ffp-contract= with armflang type the following command line into your
terminal (but do not run it):

armflang -ffp-contract=

Press the Tab button on your keyboard. The arguments supported by -ffp-contract= return:

fast off on

 Note

For more information about enabling this for other terminal types, see the Arm Allinea Studio installation
instructions.

It contains the following sections:
• 4.1 Arm Fortran Compiler Options by Function on page 4-54.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-51

Non-Confidential

https://github.com/flang-compiler/flang
https://github.com/flang-compiler/flang
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/single-page
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/single-page

• 4.2 -### on page 4-57.
• 4.3 -armpl= on page 4-58.
• 4.4 -c on page 4-60.
• 4.5 -config on page 4-61.
• 4.6 -cpp on page 4-62.
• 4.7 -D on page 4-63.
• 4.8 -E on page 4-64.
• 4.9 -fassociative-math on page 4-65.
• 4.10 -fbackslash on page 4-66.
• 4.11 -fconvert= on page 4-67.
• 4.12 -ffast-math on page 4-68.
• 4.13 -ffixed-form on page 4-69.
• 4.14 -ffixed-line-length- on page 4-70.
• 4.15 -ffp-contract= on page 4-71.
• 4.16 -ffree-form on page 4-72.
• 4.17 -finline-functions on page 4-73.
• 4.18 -flto on page 4-74.
• 4.19 -fnative-atomics on page 4-75.
• 4.20 -fno-crash-diagnostics on page 4-76.
• 4.21 -fno-fortran-main on page 4-77.
• 4.22 -fopenmp on page 4-78.
• 4.23 -frealloc-lhs on page 4-79.
• 4.24 -frecursive on page 4-80.
• 4.25 -fsave-optimization-record on page 4-81.
• 4.26 -fsigned-zeros on page 4-82.
• 4.27 -fsimdmath on page 4-83.
• 4.28 -fstack-arrays on page 4-84.
• 4.29 -fsyntax-only on page 4-85.
• 4.30 -ftrapping-math on page 4-86.
• 4.31 -fvectorize on page 4-87.
• 4.32 -g on page 4-88.
• 4.33 -g0 on page 4-89.
• 4.34 -gcc-toolchain= on page 4-90.
• 4.35 -gline-tables-only on page 4-91.
• 4.36 -help on page 4-92.
• 4.37 -help-hidden on page 4-93.
• 4.38 -I on page 4-94.
• 4.39 -i8 on page 4-95.
• 4.40 -isystem on page 4-96.
• 4.41 -L on page 4-97.
• 4.42 -l on page 4-98.
• 4.43 -march= on page 4-99.
• 4.44 -mcpu= on page 4-100.
• 4.45 -nocpp on page 4-101.
• 4.46 -O on page 4-102.
• 4.47 -o on page 4-103.
• 4.48 -print-search-dirs on page 4-104.
• 4.49 -Qunused-arguments on page 4-105.
• 4.50 -r8 on page 4-106.
• 4.51 -S on page 4-107.
• 4.52 -shared on page 4-108.
• 4.53 -static on page 4-109.
• 4.54 -static-arm-libs on page 4-110.
• 4.55 -U on page 4-111.
• 4.56 -v on page 4-112.
• 4.57 -version on page 4-113.

4 Compiler options

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-52

Non-Confidential

• 4.58 -Wl, on page 4-114.
• 4.59 -Xlinker on page 4-115.

4 Compiler options

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

4.1 Arm Fortran Compiler Options by Function
This provides a summary of the armflang command-line options that Arm Fortran Compiler supports.

Actions

Options that control what action to perform on the input.

Option Description

-E on page 4-64 Stop after pre-processing. Output the pre-processed source.

-S on page 4-107 Stop after compiling the source and emit assembler files.

-c on page 4-60 Stop after compiling or assembling sources and do not link. This outputs object files.

-fopenmp on page 4-78 Enable ('-fopenmp') or disable ('-fno-openmp' [default]) OpenMP and link in the OpenMP library,
libomp.

-fsyntax-only on page 4-85 Show syntax errors but do not perform any compilation.

File options

Options that specify input or output files.

Option Description

-I on page 4-94 Add a directory to include search path and Fortran module search path.

-config on page 4-61 Passes the location of a configuration file to the compile command.

-isystem on page 4-96 Add a directory to the include search path, before system header file directories.

-o on page 4-103 Write the output to '<file>'.

Basic driver options

Options that affect basic functionality of the armclang or armflang driver.

Option Description

-### on page 4-57 Print (but do not run) the commands to run for this compilation.

-gcc-toolchain= on page 4-90 Use the gcc toolchain at the given directory.

-help on page 4-92 Display available options.

-help-hidden on page 4-93 Display hidden options. Only use these options if advised to do so by your Arm representative.

-print-search-dirs on page 4-104 Print the paths that are used for finding libraries and programs.

-v on page 4-112 Show commands to run and use verbose output.

-version on page 4-113 Show the version number and some other basic information about the compiler.

Optimization options

Options that control what optimizations should be performed.

Option Description

-O on page 4-102 Specifies the level of optimization to use when compiling source files.

-armpl= on page 4-58 Enable Arm Performance Libraries (ArmPL).

-fassociative-math on page 4-65 Allow ('-fassociative-math') or do not allow ('-fno-associative-math' [default]) the re-
association of operands in a series of floating-point operations.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-54

Non-Confidential

 (continued)

Option Description

-ffast-math on page 4-68 Enable ('-ffast-math') or disable ('-fno-fast-math' [default, except with '-Ofast']) aggressive,
lossy floating-point optimizations.

-ffp-contract= on page 4-71 Controls when the compiler is permitted to generate fused floating-point operations (for
example, Fused Multiply-Add (FMA) operations).

-finline-functions on page 4-73 Inline ('-finline-functions') or do not inline ('-fno-inline-functions') suitable functions.

-flto on page 4-74 Enable ('-flto') or disable ('-fno-lto' [default]) Link Time Optimizations (LTO).

-fsave-optimization-record on page 4-81 Enable ('-fsave-optimization-record') or disable ('-fno-save-optimization-record' [default])
the generation of a YAML optimization record file.

-fsigned-zeros on page 4-82 Allow ('-fno-signed-zeros') or do not allow ('-fsigned-zeros' [default, except with '-Ofast'])
optimizations that ignore the sign of floating point zeros.

-fsimdmath on page 4-83 Enable ('-fsimdmath' [default for 'armflang']) or disable ('-fno-simdmath' [default for
'armclang|armclang++']) the vectorized libm library to support the vectorization of loops
containing calls to basic library functions, such as those declared in math.h

-ftrapping-math on page 4-86 Tell the compiler to assume ('-ftrapping-math'), or not to assume ('-fno-trapping-math'), that
floating point operations can trap. For example, divide by zero.

-fvectorize on page 4-87 Enable ('-fvectorize' [default]) or disable ('-fno-vectorize') loop vectorization.

-march= on page 4-99 Specifies the base architecture and extensions available on the target.

-mcpu= on page 4-100 Select which CPU architecture to optimize for.

Fortran Options

Options that affect the way Fortran workloads are compiled.

Option Description

-fbackslash on page 4-66 Treat backslash as C-style escape character ('-fbackslash' [default]) or as a normal character ('-fno-
backslash').

-fconvert= on page 4-67 Generate code suitable for a big- or little-endian system.

-ffixed-form on page 4-69 Force fixed-form format Fortran. This is default for .f and .F files, and is the inverse of -ffree-form.

-ffixed-line-length- on page 4-70 Set line length (0 | 72 | 132 | none) in fixed-form format Fortran. Default is 72. 0 and none are
equivalent and set the line length to a very large value (>132).

-ffree-form on page 4-72 Force free-form format for Fortran. This is default for .f90 and .F90 files, and is the inverse of -
ffixed-form.

-fnative-atomics on page 4-75 Enable ('-fnative-atomics' [default]) or disable ('-fno-native-atomics') the use of native atomic
instructions for OpenMP atomics.

-fno-fortran-main on page 4-77 Do not link in Fortran main.

-frealloc-lhs on page 4-79 Select semantics for assignments to allocatables.

-frecursive on page 4-80 Allocate all local arrays on the stack, allowing thread-safe recursion (enabled by default with -
fopenmp).

-fstack-arrays on page 4-84 Place all automatic arrays on stack memory (enabled by default with -Ofast).

-i8 on page 4-95 Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.

-r8 on page 4-106 Treat REAL as REAL*8.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-55

Non-Confidential

Development options

Options that facilitate code development.

Option Description

-g on page 4-88 Generate source-level debug information with DWARF version 4.

-g0 on page 4-89 Disable the generation of source-level debug information.

-gline-tables-only on page 4-91 Emit debug line number tables only.

Warning options

Options that control the behavior of warnings.

Option Description

-Qunused-arguments on page 4-105 Do not emit a warning for unused driver arguments.

-fno-crash-diagnostics on page 4-76 Disable the auto-generation of preprocessed source files and a script for reproduction during a
clang crash.

Preprocessor options

Options that control the behavior of the preprocessor.

Option Description

-D on page 4-63 Define a macro name to a value, '-D<macro>=<value>'. If a value is omitted, the macro is defined as 1.

-U on page 4-111 Undefine a macro, '-U<macro>'.

-cpp on page 4-62 Preprocess Fortran files.

-nocpp on page 4-101 Do not preprocess Fortran files.

Linker options

Options that are passed on to the linker or affect linking.

Option Description

-L on page 4-97 Add a directory to the list of paths that the linker searches for user libraries.

-Wl, on page 4-114 Pass comma-separated arguments to the linker, '-Wl,<arg>,<arg>,…'.

-Xlinker on page 4-115 Pass an argument to the linker, ‘-Xlinker <arg>’.

-l on page 4-98 Search for a library when linking, ‘-l<library>’.

-shared on page 4-108 Create a shared object that can be linked against.

-static on page 4-109 Link against static libraries.

-static-arm-libs on page 4-110 Link against static Arm libraries.

4 Compiler options
4.1 Arm Fortran Compiler Options by Function

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-56

Non-Confidential

4.2 -###
Print (but do not run) the commands to run for this compilation.

Syntax
armflang -###

4 Compiler options
4.2 -###

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-57

Non-Confidential

4.3 -armpl=
Enable Arm Performance Libraries (ArmPL).

Instructs the compiler to load the optimum version of Arm Performance Libraries for your target
architecture and implementation. This option also enables optimized versions of the C mathematical
functions declared in the math.h library, tuned scalar and vector implementations of Fortran math
intrinsics. This option implies -fsimdmath.

ArmPL provides libraries suitable for a range of supported CPUs. If you intend to use -armpl, you must
also specify the required architecture using the -mcpu flag.

The -armpl option also enables:
• Optimized versions of the C mathematical functions declared in math.h.
• Optimized versions of Fortran math intrinsics.
• Auto-vectorization of C mathematical functions (disable this with -fno-simdmath).
• Auto-vectorization of Fortran math intrinsics (disable this with -fno-simdmath).

Default

By default, -armpl is not set (in other words, OFF)

Default argument behavior

If -armpl is set with no arguments, the default behavior of the option is armpl=lp64,sequential.

However, the default behavior of the arguments is also determined by the specification (or not) of the -
i8 (when using armflang) and -fopenmp options:

• If the -i8 option is not specified, lp64 is enabled by default. If -i8 is specified, ilp64 is enabled by
default.

• If the -fopenmp option is not specified, sequential is enabled by default. If -fopenmp is specified,
parallel is enabled by default.

In other words:
• Specifying -armpl sets -armpl=lp64,sequential.
• Specifying -armpl and -i8 sets -armpl=ilp64,sequential.
• Specifying -armpl and -fopenmp sets -armpl=lp64,parallel.
• Specifying -armpl, -i8, and -fopenmp sets -armpl=ilp64,parallel.

Syntax
armflang -armpl=<arg1>,<arg2>...

Arguments

lp64

Use 32-bit integers. (default)

ilp64

Use 64-bit integers. Inverse of lp64. (default if using -i8 with armflang).

sequential

Use the single-threaded implementation of Arm Performance Libraries. (default)

parallel

Use the OpenMP multi-threaded implementation of Arm Performance Libraries. Inverse of
sequential. (default if using -fopenmp)

4 Compiler options
4.3 -armpl=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-58

Non-Confidential

Note:
• To enable SVE compilation and library usage on SVE-enabled targets, use -armpl -mcpu=native.
• To enable SVE(2) compilation and library usage on a target without native support for these features,

use -armpl -march=armv8-a+<Feature>, where <Feature> is one of sve, sve2, sve2-bitperm,
sve2-aes, sve2-sha3, or sve2-sm4.

4 Compiler options
4.3 -armpl=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-59

Non-Confidential

4.4 -c
Stop after compiling or assembling sources and do not link. This outputs object files.

Syntax
armflang -c

4 Compiler options
4.4 -c

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-60

Non-Confidential

4.5 -config
Passes the location of a configuration file to the compile command.

Use a configuration file to specify a set of compile options to be run at compile time. The configuration
file can be passed at compile time, or an environment variable can be set for it to be used for every
invocation of the compiler. For more information about creating and using a configuration file, see
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/
installation/configure.

Syntax
armflang --config <arg>

4 Compiler options
4.5 -config

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-61

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/arm-allinea-studio/installation/configure

4.6 -cpp
Preprocess Fortran files.

Syntax
armflang -cpp

4 Compiler options
4.6 -cpp

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-62

Non-Confidential

4.7 -D
Define a macro name to a value, '-D<macro>=<value>'. If a value is omitted, the macro is defined as 1.

Syntax
armflang -D<macro>=<value>

4 Compiler options
4.7 -D

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-63

Non-Confidential

4.8 -E
Stop after pre-processing. Output the pre-processed source.

Syntax
armflang -E

4 Compiler options
4.8 -E

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-64

Non-Confidential

4.9 -fassociative-math
Allow ('-fassociative-math') or do not allow ('-fno-associative-math' [default]) the re-association of
operands in a series of floating-point operations.

For example, (a * b) + (a * c) => a * (b + c). Note: Using -fassociative-math violates the ISO C and
C++ language standard.

Default

Default is -fno-associative-math.

Syntax
armflang -fassociative-math, -fno-associative-math

4 Compiler options
4.9 -fassociative-math

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-65

Non-Confidential

4.10 -fbackslash
Treat backslash as C-style escape character ('-fbackslash' [default]) or as a normal character ('-fno-
backslash').

Default

Default is the C-style, -fbackslash.

Syntax
armflang -fbackslash, -fno-backslash

4 Compiler options
4.10 -fbackslash

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-66

Non-Confidential

4.11 -fconvert=
Generate code suitable for a big- or little-endian system.

Default

Default is -fconvert=native.

Syntax
armflang -fconvert={native \| swap \| big-endian \| little-endian}

Arguments

native

Automatically detect the endianness of the system that you are running the compiler on, and
generate code suitable for the detected endianness. (Default)

swap

Automatically detect the endianness of the system that you are running the compiler on, and
generate code suitable for the opposite endianness. For example, if the compiler detects a big-
endian system, generate code for a little-endian system.

big-endian

Generate code suitable for a big-endian system.

little-endian

Generate code suitable for a little-endian system.

4 Compiler options
4.11 -fconvert=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-67

Non-Confidential

4.12 -ffast-math
Enable ('-ffast-math') or disable ('-fno-fast-math' [default, except with '-Ofast']) aggressive, lossy
floating-point optimizations.

Using -ffast-math is equivalent to specifying the following options individually:
• -fassociative-math
• -ffinite-math-only
• -ffp-contract=fast
• -fno-math-errno
• -fno-signed-zeros
• -fno-trapping-math
• -freciprocal-math

Default

Default is -fno-fast-math, except where -Ofast is used. Using -Ofast enables -ffast-math.

Syntax
armflang -ffast-math

4 Compiler options
4.12 -ffast-math

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-68

Non-Confidential

4.13 -ffixed-form
Force fixed-form format Fortran. This is default for .f and .F files, and is the inverse of -ffree-form.

Syntax
armflang -ffixed-form

4 Compiler options
4.13 -ffixed-form

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-69

Non-Confidential

4.14 -ffixed-line-length-
Set line length (0 | 72 | 132 | none) in fixed-form format Fortran. Default is 72. 0 and none are equivalent
and set the line length to a very large value (>132).

Default

Default is -ffixed-line-length-72.

Syntax
armflang -ffixed-line-length-{0 \| 72 \| 132 \| none}

4 Compiler options
4.14 -ffixed-line-length-

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-70

Non-Confidential

4.15 -ffp-contract=
Controls when the compiler is permitted to generate fused floating-point operations (for example, Fused
Multiply-Add (FMA) operations).

On the compile line, -ffp-contract supports three arguments to control the generation of fused
floating-point operations: OFF, ON, and FAST. However, at the source level, you can also use the STDC
FP_CONTRACT={OFF|ON} pragma to control the fused floating-point operation generation for C/C++ code:

• When -ffp-contract is set to {off|on}, STDC FP_CONTRACT={OFF|ON} is honored where it is
specified, and can switch the generation.

• When -ffp-contract is set to fast, generation is always set to FAST and the STDC FP_CONTRACT
pragma is ignored.

To produce better optimized code, allow the compiler to generate fused floating-point operations.
 Note

The fused floating-point instructions typically operate to a higher degree of accuracy than individual
multiply and add instructions.

Default

For Fortran code, the default is -ffp-contract=fast. For C/C++ code, the default is -ffp-
contract=off.

Syntax
armflang -ffp-contract={fast\|on\|off}

Arguments

fast

Generate fused floating-point operations whenever possible, even if the operations are not
permitted by the language standard. Note: Some fused floating-point contractions are not
permitted by the C/C++ standard because they can lead to deviations from the expected results.

on

Generate fused floating-point operations only when the language permits it. For example, for
C/C++ code, floating-point contractions are permitted in a single C/C++ statement, however, for
Fortran code, floating-point contractions are always permitted.

off

Do not generate fused floating-point operations.

4 Compiler options
4.15 -ffp-contract=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-71

Non-Confidential

4.16 -ffree-form
Force free-form format for Fortran. This is default for .f90 and .F90 files, and is the inverse of -ffixed-
form.

Syntax
armflang -ffree-form

4 Compiler options
4.16 -ffree-form

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

4.17 -finline-functions
Inline ('-finline-functions') or do not inline ('-fno-inline-functions') suitable functions.

Note: For all -finline-* and -fno-inline-* options, the compiler ignores all but the last option that is
passed to the compiler command.

Default

For armclang|armclang++, the default at -O0 and -O1 is -fno-inline-functions, and the default at -
O2 and higher is -finline-functions. For armflang, the default at all optimization levels is -finline-
functions.

Syntax
armflang -finline-functions, -fno-inline-functions

4 Compiler options
4.17 -finline-functions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

4.18 -flto
Enable ('-flto') or disable ('-fno-lto' [default]) Link Time Optimizations (LTO).

You must pass the option to both the link and compile commands. When LTO is enabled, compiler object
files contain an intermediate representation of the original code. When linking the objects together into a
binary at link time, the compiler performs optimizations. It can allow the compiler to inline functions
from different files, for example.

Default

Default is -fno-lto.

Syntax
armflang -flto, -fno-lto

4 Compiler options
4.18 -flto

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

4.19 -fnative-atomics
Enable ('-fnative-atomics' [default]) or disable ('-fno-native-atomics') the use of native atomic
instructions for OpenMP atomics.

By default, armflang generates native atomic instructions for OpenMP atomic operations, falling back to
libatomic when no suitable native instruction is available. Use -fno-native-atomics to disable this
feature and have armflang generate code that use barriers to guarantee atomicity. This will normally
result in a slower program.

Default

Default is -fnative-atomics.

Syntax
armflang -fnative-atomics, -fno-native-atomics

4 Compiler options
4.19 -fnative-atomics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

4.20 -fno-crash-diagnostics
Disable the auto-generation of preprocessed source files and a script for reproduction during a clang
crash.

Default

By default, -fno-crash-diagnostics is disabled. The default behavior of the compiler enables crash
diagnostics.

Syntax
armflang -fno-crash-diagnostics

4 Compiler options
4.20 -fno-crash-diagnostics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

4.21 -fno-fortran-main
Do not link in Fortran main.

Syntax
armflang -fno-fortran-main

4 Compiler options
4.21 -fno-fortran-main

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

4.22 -fopenmp
Enable ('-fopenmp') or disable ('-fno-openmp' [default]) OpenMP and link in the OpenMP library,
libomp.

Default

Default is -fno-openmp.

Syntax
armflang -fopenmp, -fno-openmp

4 Compiler options
4.22 -fopenmp

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

4.23 -frealloc-lhs
Select semantics for assignments to allocatables.

Fortran 2003 allows dynamic reallocation, which will error in Fortran 90/95. Use -fno-realloc-lhs to
restore the F95 behavior. Default is F2003 semantics (-frealloc-lhs).

Default

Default is F2003 semantics (-frealloc-lhs).

Syntax
armflang -frealloc-lhs, -fno-realloc-lhs

4 Compiler options
4.23 -frealloc-lhs

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

4.24 -frecursive
Allocate all local arrays on the stack, allowing thread-safe recursion (enabled by default with -fopenmp).

In the absence of this flag, some large local arrays may be allocated in static memory. This reduces stack
usage, but is not thread-safe.

Default

-frecursive is enabled by default with -fopenmp.

Syntax
armflang -frecursive

4 Compiler options
4.24 -frecursive

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

4.25 -fsave-optimization-record
Enable ('-fsave-optimization-record') or disable ('-fno-save-optimization-record' [default]) the generation
of a YAML optimization record file.

Optimization records are files named <output name>.opt.yaml, which can be parsed by arm-opt-report to
show what optimization decisions the compiler is making, in-line with your source code. For more
information, see the 'Optimize' chapter in the compiler developer and reference guide.

Default

Default is fno-save-optimization-record.

Syntax
armflang -fsave-optimization-record, -fno-save-optimization-record

4 Compiler options
4.25 -fsave-optimization-record

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

4.26 -fsigned-zeros
Allow ('-fno-signed-zeros') or do not allow ('-fsigned-zeros' [default, except with '-Ofast']) optimizations
that ignore the sign of floating point zeros.

Default

Default is -fsigned-zeros, except where -Ofast is used. Using -Ofast enables -fno-signed-zeros.

Syntax
armflang -fsigned-zeros, -fno-signed-zeros

4 Compiler options
4.26 -fsigned-zeros

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

4.27 -fsimdmath
Enable ('-fsimdmath' [default for 'armflang']) or disable ('-fno-simdmath' [default for 'armclang|armclang
++']) the vectorized libm library to support the vectorization of loops containing calls to basic library
functions, such as those declared in math.h

When vectorizing, -fsimdmath allows the compiler to generate calls to various vectorized library
routines. These routines might use different algorithms to the scalar routine algorithms and their bit-
reproducibility is not guaranteed. If you require your code to be bit reproducible, compile your code
using the -fno-simdmath option.

Default

For armclang|armclang++, the default is -fno-simdmath. For armflang, the default is -fsimdmath.

Syntax
armflang -fsimdmath, -fno-simdmath

4 Compiler options
4.27 -fsimdmath

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

4.28 -fstack-arrays
Place all automatic arrays on stack memory (enabled by default with -Ofast).

Use this option if your Fortran code frequently performs small allocations and deallocations of memory.
-fstack-arrays improves application performance by using memory on the stack instead of allocating
it through malloc, or similar. For programs using very large arrays on particular operating systems,
consider extending stack memory runtime limits.

Syntax
armflang -fstack-arrays, -fno-stack-arrays

4 Compiler options
4.28 -fstack-arrays

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

4.29 -fsyntax-only
Show syntax errors but do not perform any compilation.

Syntax
armflang -fsyntax-only

4 Compiler options
4.29 -fsyntax-only

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

4.30 -ftrapping-math
Tell the compiler to assume ('-ftrapping-math'), or not to assume ('-fno-trapping-math'), that floating
point operations can trap. For example, divide by zero.

Possible traps include:
• Division by zero
• Underflow
• Overflow
• Inexact result
• Invalid operation.

Default

Default is -ftrapping-math, except where -Ofast is used. Using -Ofast enables -fno-trapping-
math.

Syntax
armflang -ftrapping-math, -fno-trapping-math

4 Compiler options
4.30 -ftrapping-math

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

4.31 -fvectorize
Enable ('-fvectorize' [default]) or disable ('-fno-vectorize') loop vectorization.

Default

Default is -fno-vectorize, except where -O2, -O3, or -Ofast are used. Using -O2, -O3, or -Ofast
enables -fvectorize.

Syntax
armflang -fvectorize, -fno-vectorize

4 Compiler options
4.31 -fvectorize

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

4.32 -g
Generate source-level debug information with DWARF version 4.

Default

Disabled by default.

Syntax
armflang -g

4 Compiler options
4.32 -g

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

4.33 -g0
Disable the generation of source-level debug information.

Default

Enabled by default.

Syntax
armflang -g0

4 Compiler options
4.33 -g0

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

4.34 -gcc-toolchain=
Use the gcc toolchain at the given directory.

Syntax
armflang --gcc-toolchain=<arg>

4 Compiler options
4.34 -gcc-toolchain=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

4.35 -gline-tables-only
Emit debug line number tables only.

Syntax
armflang -gline-tables-only

4 Compiler options
4.35 -gline-tables-only

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

4.36 -help
Display available options.

Syntax
armflang -help, --help

4 Compiler options
4.36 -help

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

4.37 -help-hidden
Display hidden options. Only use these options if advised to do so by your Arm representative.

Syntax
armflang --help-hidden

4 Compiler options
4.37 -help-hidden

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

4.38 -I
Add a directory to include search path and Fortran module search path.

Directories specified with the -I option apply to both the quote form of the include directive and the
system header form. For example, #include "file" (quote form), and #include <file> (system header
form). Directories specified with -I are searched before system include directories and, in armclang|
armclang++ only, after directories specified with -iquote (for the quoted form). If any directory is
specified with both -I and -isystem then the directory is searched for as if it were only specified with -
isystem.

For armflang, search for module-files in the directories that are specified with the -I option. Directories
that are specified with -I are searched after the current working directory and before standard system
module locations.

Syntax
armflang -I<dir>

4 Compiler options
4.38 -I

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-94

Non-Confidential

4.39 -i8
Treat INTEGER and LOGICAL as INTEGER*8 and LOGICAL*8.

Syntax
armflang -i8

4 Compiler options
4.39 -i8

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-95

Non-Confidential

4.40 -isystem
Add a directory to the include search path, before system header file directories.

Directories specified with the -isystem option apply to both the quote form of the include directive and
the system header form. For example, #include "file" (quote form), and #include <file> (system header
form). Directories specified with the -isystem option are searched after directories specified with -I and
before system header file directories. Directories specified with -isystem are treated as system
directories. If any directory is specified with both -I and -isystem then the directory is searched for as
if it were only specified with -isystem.

Syntax
armflang -isystem<directory>

4 Compiler options
4.40 -isystem

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-96

Non-Confidential

4.41 -L
Add a directory to the list of paths that the linker searches for user libraries.

Syntax
armflang -L<dir>

4 Compiler options
4.41 -L

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-97

Non-Confidential

4.42 -l
Search for a library when linking, '-l<library>'.

Note: 'lib' is prepended to the supplied library name. For example, to search for 'libm', use -lm.

Syntax
armflang -l<library>

4 Compiler options
4.42 -l

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-98

Non-Confidential

4.43 -march=
Specifies the base architecture and extensions available on the target.

Usage: -march=<arg> where <arg> is constructed as name[+[no]feature+…]:

name

armv8-a : Armv8 application architecture profile.

armv8.1-a : Armv8.1 application architecture profile.

armv8.2-a : Armv8.2 application architecture profile.

armv8.3-a : Armv8.3 application architecture profile.

armv8.4-a : Armv8.4 application architecture profile.

armv8.5-a : Armv8.5 application architecture profile.

armv8.6-a : Armv8.6 application architecture profile.

feature

Is the name of an optional architectural feature that can be explicitly enabled with +feature and
disabled with +nofeature.

For AArch64, the following features can be specified:
• crc - Enable CRC extension. On by default for -march=armv8.1-a or higher.
• crypto - Enable Cryptographic extension.
• fullfp16 - Enable FP16 extension.
• lse - Enable Large System Extension instructions. On by default for -march=armv8.1-a or

higher.
• sve - Scalable Vector Extension (SVE). This feature also enables fullfp16. See Scalable

Vector Extension for more information.
• sve2- Scalable Vector Extension version two (SVE2). This feature also enables sve. See

Arm A64 Instruction Set Architecture for SVE and SVE2 instructions.
• sve2-aes - SVE2 Cryptographic extension. This feature also enables sve2.
• sve2-bitperm - SVE2 Cryptographic Extension. This feature also enables sve2.
• sve2-sha3 - SVE2 Cryptographic Extension. This feature also enables sve2.
• sve2-sm4 - SVE2 Cryptographic Extension. This feature also enables sve2.

Syntax
armflang -march=<arg>

4 Compiler options
4.43 -march=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-99

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/sve
https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/sve
https://developer.arm.com/docs/ddi0602/latest/a64-sve-instructions-alphabetic-order

4.44 -mcpu=
Select which CPU architecture to optimize for.

Syntax
armflang -mcpu=<arg>

Arguments

native

Auto-detect the CPU architecture from the build computer.

thunderx2t99

Optimize for Marvell ThunderX2 based computers.

neoverse-n1

Optimize for Neoverse N1 based computers.

neoverse-n2

Optimize for Neoverse N2 based computers.

neoverse-v1

Optimize for Neoverse V1 based computers.

a64fx

Optimize for Fujitsu A64FX based computers.

generic

Generate portable code suitable for any Armv8-A based computer.

4 Compiler options
4.44 -mcpu=

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-100

Non-Confidential

4.45 -nocpp
Do not preprocess Fortran files.

Syntax
armflang -nocpp

4 Compiler options
4.45 -nocpp

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-101

Non-Confidential

4.46 -O
Specifies the level of optimization to use when compiling source files.

Note: If you use -O2, -O3, or -Ofast with the -fsimdmath option, the compiler might vectorize loops
using calls to vectorized math routines, affecting the bit reproducibility. For more information, see the -
fsimdmath option description.

Default

The default is -O0. However, for the best balance between ease of debugging, code size, and
performance, it is important to choose an optimization level that is appropriate for your goals.

Syntax
armflang -O<level>

Arguments

0

Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly corresponds
to the source code. Therefore, this might result in a significantly larger image. This is the default
optimization level.

1

Restricted optimization. When debugging is enabled, this option gives the best debug view for
the trade-off between image size, performance, and debug.

2

High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The compiler might
perform optimizations that cannot be described by debug information.

3

Very high optimization. When debugging is enabled, this option typically gives a poor debug
view. Arm recommends debugging at lower optimization levels.

fast

Enables all the optimizations from level 3 including those performed with the -ffp-mode=fast
option. This level also performs other aggressive optimizations that might violate strict
compliance with language standards. -Ofast implies -ffast-math.

4 Compiler options
4.46 -O

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-102

Non-Confidential

4.47 -o
Write the output to '<file>'.

Default

If a user-defined filename is not provided, the compiler uses the input filename as the output filename
(replacing the extension, as appropriate). If a user-defined filename is provided, the compiler writes the
output to the provided filename.

Syntax
armflang -o<file>

4 Compiler options
4.47 -o

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-103

Non-Confidential

4.48 -print-search-dirs
Print the paths that are used for finding libraries and programs.

Syntax
armflang -print-search-dirs, --print-search-dirs

4 Compiler options
4.48 -print-search-dirs

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-104

Non-Confidential

4.49 -Qunused-arguments
Do not emit a warning for unused driver arguments.

Syntax
armflang -Qunused-arguments

4 Compiler options
4.49 -Qunused-arguments

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-105

Non-Confidential

4.50 -r8
Treat REAL as REAL*8.

Syntax
armflang -r8

4 Compiler options
4.50 -r8

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-106

Non-Confidential

4.51 -S
Stop after compiling the source and emit assembler files.

Syntax
armflang -S

4 Compiler options
4.51 -S

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-107

Non-Confidential

4.52 -shared
Create a shared object that can be linked against.

Syntax
armflang -shared, --shared

4 Compiler options
4.52 -shared

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-108

Non-Confidential

4.53 -static
Link against static libraries.

This option prevents runtime dependencies on shared libraries. This is likely to result in larger binaries.

Syntax
armflang -static, --static

4 Compiler options
4.53 -static

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-109

Non-Confidential

4.54 -static-arm-libs
Link against static Arm libraries.

This option prevents runtime dependencies on libraries shipped with Arm Compiler for Linux (such as
libamath, libastring and Arm Performance Libraries). This is likely to result in larger binaries.

Syntax
armflang -static-arm-libs

4 Compiler options
4.54 -static-arm-libs

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-110

Non-Confidential

4.55 -U
Undefine a macro, '-U<macro>'.

Syntax
armflang -U<macro>

4 Compiler options
4.55 -U

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-111

Non-Confidential

4.56 -v
Show commands to run and use verbose output.

Syntax
armflang -v

4 Compiler options
4.56 -v

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-112

Non-Confidential

4.57 -version
Show the version number and some other basic information about the compiler.

Syntax
armflang --version, --vsn

4 Compiler options
4.57 -version

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-113

Non-Confidential

4.58 -Wl,
Pass comma-separated arguments to the linker, '-Wl,<arg>,<arg>,…'.

Syntax
armflang -Wl,<arg>,<arg2>...

4 Compiler options
4.58 -Wl,

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-114

Non-Confidential

4.59 -Xlinker
Pass an argument to the linker, '-Xlinker <arg>'.

Syntax
armflang -Xlinker <arg>

4 Compiler options
4.59 -Xlinker

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

4-115

Non-Confidential

Chapter 5
Fortran language reference

This chapter can be used as a reference for the Fortran 90, Fortran 95, Fortran 2003, Fortran 2008, and
Fortran 2018 language features that are supported by Arm Fortran Compiler.

The support level for the latest Fortran standards (2003 and 2008) are described in Standards support
on page 6-148.

For information about the Fortran standards, see the JTC1/SC22/WG5 Fortran standards website.

It contains the following sections:
• 5.1 Data types and file extensions on page 5-117.
• 5.2 Intrinsics on page 5-122.
• 5.3 Statements on page 5-140.
• 5.4 Predefined macro support on page 5-147.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-116

Non-Confidential

https://wg5-fortran.org/

5.1 Data types and file extensions
Describes the data types and file extensions that are supported by the Arm Fortran Compiler.

This section contains the following subsections:
• 5.1.1 Data types on page 5-117.
• 5.1.2 Supported file extensions on page 5-118.
• 5.1.3 Logical variables and constants on page 5-119.
• 5.1.4 C/Fortran inter-language calling on page 5-119.
• 5.1.5 Character on page 5-120.
• 5.1.6 Complex on page 5-120.
• 5.1.7 Fortran implementation notes on page 5-120.

5.1.1 Data types

Arm Fortran Compiler provides the following intrinsic data types:

Table 5-1 Intrinsic data types

Data Type Specified as Size (bytes)

INTEGER INTEGER

INTEGER*1

INTEGER([KIND=]1)

INTEGER*2

INTEGER([KIND=]2)

INTEGER*4

INTEGER([KIND=]4)

INTEGER*8

INTEGER([KIND=]8)

4

1

1

2

2

4

4

8

8

REAL REAL

REAL*4

REAL([KIND=]4)

REAL*8

REAL([KIND=]8)

4

4

4

8

8

DOUBLE PRECISION DOUBLE PRECISION (same as REAL*8, no KIND parameter is permitted) 16

COMPLEX COMPLEX

COMPLEX*8

COMPLEX([KIND=]4)

COMPLEX*16

COMPLEX([KIND=]8)

4

8

8

16

16

DOUBLE COMPLEX DOUBLE COMPLEX (same as COMPLEX*8, no KIND parameter is permitted) 8

5 Fortran language reference
5.1 Data types and file extensions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-117

Non-Confidential

Table 5-1 Intrinsic data types (continued)

Data Type Specified as Size (bytes)

LOGICAL LOGICAL

LOGICAL*1

LOGICAL([KIND=]1)

LOGICAL*2

LOGICAL([KIND=]2)

LOGICAL*4

LOGICAL([KIND=]4)

LOGICAL*8

LOGICAL([KIND=]8)

4

1

1

2

2

4

4

8

8

CHARACTER CHARACTER

CHARACTER([KIND=]1)

1

1

BYTE BYTE (same as INTEGER([KIND=]1)) 1

 Note

• The default entries are the first entries for each intrinsic data type.
• To determine the kind type parameter of a representation method, use the intrinsic function KIND.

For more portable programs, define a PARAMETER constant using the appropriate SELECTED_INT_KIND or
SELECTED_REAL_KIND functions, as appropriate.

For example, this code defines a PARAMETER constant for an INTEGER kind. The kind has the value of a
real data type, with the decimal precision of at least 6 digits and an exponent range of at least 17 digits
(single precision):

INTEGER, PARAMETER :: my_real_kind = SELECTED_REAL_KIND(6, 17)
...
REAL(my_real_kind) :: x
...

Or, alternatively, use the ISO_FORTRAN_ENV intrinsic module, which then makes the REAL32 and REAL64
kind parameters available to use. For example:

USE ISO_FORTRAN_ENV
INTEGER, PARAMETER :: my_real_kind = REAL32
...
REAL(my_real_kind) :: x
...

5.1.2 Supported file extensions

The extensions f90, .f95, .f03, and .f08 are used for modern, free-form source code conforming to the
Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards, respectively.

The extensions .F90, .F95, .F03, and .F08 are used for modern, free-form source code that require
preprocessing, and conform to the Fortran 90, Fortran 95, Fortran 2003, and Fortran 2008 standards,
respectively.

The .f and .for extensions are typically used for older, fixed-form code such as FORTRAN77.

The file extensions that are compatible with Arm Fortran Compiler are:

5 Fortran language reference
5.1 Data types and file extensions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-118

Non-Confidential

Table 5-2 Supported file extensions

File Extension Interpretation

a.out Executable output file.

file.a Library of object files.

file.f

file.for

Fixed-format Fortran source file.

file.fpp

file.F

Fixed-format Fortran source file that requires preprocessing.

file.f90

file.f95

file.f03

file.f08

Free-format Fortran source file.

file.F90

file.F95

file.F03

file.F08

Free-format Fortran source file that requires preprocessing.

file.o Compiled object file.

file.s Assembler source file.

5.1.3 Logical variables and constants

This topic describes LOGICAL variables and constants.

A LOGICAL constant is either True or False. The Fortran standard does not specify how variables of
LOGICAL type are represented. However, it does require LOGICAL variables of default kind to have the
same storage size as default INTEGER and REAL variables.

For Arm Fortran Compiler:
• .TRUE. corresponds to -1 and has a default storage size of 4-bytes.
• .FALSE. corresponds to 0 and has a default storage size of 4-bytes.

 Note

Some compilers represent .TRUE. and .FALSE. as 1 and 0, respectively.

5.1.4 C/Fortran inter-language calling

This section provides some useful troubleshooting information when handling argument passing and
return values for Fortran functions or subroutines that are called from C/C++ code.

In Fortran, arguments are passed by reference. Here, reference means the address of the argument is
passed, rather than the argument itself. In C/C++, arguments are passed by value, except for strings and
arrays, which are passed by reference.

C/C++ provides some flexibility when solving passing difference with Fortran. Usually, intelligent use of
the & and * operators in argument passing enables you to call Fortran from C/C++, and in argument
declarations when Fortran is calling C/C++.

5 Fortran language reference
5.1 Data types and file extensions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-119

Non-Confidential

Fortran functions which return CHARACTER or COMPLEX data types require special consideration when
called from C/C++ code.

5.1.5 Character

This topic describes how C/C++ functions call Fortran functions that return a CHARACTER.

Fortran functions that return a CHARACTER require the calling C/C++ function to have two arguments to
describe the result:

1. The first argument provides the address of the returned character.
2. The second argument provides the length of the returned character.

For example, the Fortran function:

CHARACTER*(*) FUNCTION CHF(C1, I)
 CHARACTER*(*) C1
 INTEGER I
END

when called in C/C++, has an extra declaration:

extern void chf_();
 char tmp[10];
 char c1[9];
 int i;
 chf_(tmp, 10, c1, &i, 9);

The argument, tmp, provides the address, and the length is defined with the second argument, 10.
 Note

• Fortran functions declared with a character return length, for example CHARACTER*4 FUNCTION
CHF(), still require the second parameter to be supplied to the calling C/C++ code.

• The value of the character function is not automatically NULL-terminated.

5.1.6 Complex

This topic describes how to call Fortran functions that return a COMPLEX data type, from C or C++.

Fortran functions that return a COMPLEX data type cannot be directly called from C or C++. Instead, a
workaround is possible by passing a C or C++ function a pointer to a memory area. This memory area
can then be calling the COMPLEX function and storing the returned value.

For example, the Fortran function:

SUBROUTINE INTER_CF(C, I)
 COMPLEX C
 COMPLEX CF
 C = CF(I)
 RETURN
END

COMPLEX FUNCTION CF(I)
 . . .
END

when called in C/C++ is completed using a memory pointer:

extern void inter_cf_();
 typedef struct {float real, imag;} cplx;
 cplx c1;
 int i;
 inter_cf_(&c1, &i);

5.1.7 Fortran implementation notes

Details information that is specific to the implementation of Fortran in Arm Fortran Compiler.

5 Fortran language reference
5.1 Data types and file extensions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-120

Non-Confidential

Implementation information:
• Arm Fortran Compiler does not initialize arrays or variables with zeros.

 Note

This behavior varies from compiler to compiler and is not defined in Fortran standards. The best
practice is not to assume that arrays are filled with zeros when they are created.

Related concepts
5.1.4 C/Fortran inter-language calling on page 5-119
5.1.6 Complex on page 5-120
Related references
5.1.1 Data types on page 5-117
5.1.2 Supported file extensions on page 5-118
5.1.3 Logical variables and constants on page 5-119
5.1.5 Character on page 5-120
5.1.7 Fortran implementation notes on page 5-120

5 Fortran language reference
5.1 Data types and file extensions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-121

Non-Confidential

5.2 Intrinsics
The Fortran language standards that are implemented in Arm Fortran Compiler are Fortran 77, Fortran
90, Fortran 95, Fortran 2003, and Fortran 2008. This topic details the supported and unsupported Fortran
intrinsics in Arm Fortran Compiler.

This section contains the following subsections:
• 5.2.1 Fortran intrinsics overview on page 5-122.
• 5.2.2 Bit manipulation functions and subroutines on page 5-122.
• 5.2.3 Elemental character and logical functions on page 5-123.
• 5.2.4 Vector/Matrix functions on page 5-125.
• 5.2.5 Array reduction functions on page 5-125.
• 5.2.6 String construction functions on page 5-127.
• 5.2.7 Array construction manipulation functions on page 5-127.
• 5.2.8 General inquiry functions on page 5-128.
• 5.2.9 Numeric inquiry functions on page 5-128.
• 5.2.10 Array inquiry functions on page 5-129.
• 5.2.11 Transfer functions on page 5-129.
• 5.2.12 Arithmetic functions on page 5-130.
• 5.2.13 Miscellaneous functions on page 5-133.
• 5.2.14 Subroutines on page 5-133.
• 5.2.15 Fortran 2003 functions on page 5-134.
• 5.2.16 Fortran 2008 functions on page 5-134.
• 5.2.17 Unsupported functions on page 5-136.
• 5.2.18 Unsupported subroutines on page 5-138.

5.2.1 Fortran intrinsics overview

An intrinsic is a function made available for a given language standard, for example, Fortran 95. Intrinsic
functions accept arguments and return values. When an intrinsic function is called in the source code, the
compiler replaces the function with a set of automatically generated instructions. It is best practice to use
these intrinsics to enable the compiler to optimize the code most efficiently.

 Note

The intrinsics listed in the following tables are specific to Fortran 90/95, unless explicitly stated.

5.2.2 Bit manipulation functions and subroutines

Functions and subroutines for manipulating bits.

Table 5-3 Bit manipulation functions and subroutines

Intrinsic Description Num. of
Arguments

Argument Type Result

AND Perform a logical AND on corresponding bits
of the arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or
LOGICAL

BIT_SIZE Return the number of bits (the precision) of
the integer argument.

1 INTEGER INTEGER

BTEST Test the binary value of a bit in a specified
position of an integer argument.

2 INTEGER, INTEGER LOGICAL

IAND Perform a bit-by-bit logical AND on the
arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

IBCLR Clear one bit to zero. 2 INTEGER, INTEGER >=0 INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-122

Non-Confidential

Table 5-3 Bit manipulation functions and subroutines (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

IBITS Extract a sequence of bits. 3 INTEGER, INTEGER >=0,
INTEGER >=0

INTEGER

IBSET Set one bit to one. 2 INTEGER, INTEGER >=0 INTEGER

IEOR Perform a bit-by-bit logical exclusive OR on
the arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

IOR Perform a bit-by-bit logical OR on the
arguments.

2 INTEGER, INTEGER (of same
kind)

INTEGER

ISHFT Perform a logical shift. 2 INTEGER, INTEGER INTEGER

ISHFTC Perform a circular shift of the rightmost bits. 2 or 3 INTEGER, INTEGER

or

INTEGER, INTEGER,
INTEGER

INTEGER

LSHIFT Perform a logical shift to the left. 2 INTEGER, INTEGER INTEGER

MVBITS Copy bit sequence. 5 INTEGER(IN), INTEGER(IN),
INTEGER(IN), INTEGER(IN,
OUT), INTEGER(IN)

N/A

NOT Perform a bit-by-bit logical complement on
the argument.

2 INTEGER INTEGER

OR Perform a logical OR on each bit of the
arguments.

2 Any except CHAR or
COMPLEX

INTEGER or
LOGICAL

POPCNT Return the number of one bits. (F2008) 1 INTEGER or bits INTEGER

POPPAR Return the bitwise parity. (F2008) 1 INTEGER or bits INTEGER

RSHIFT Perform a logical shift to the right. 2 INTEGER, INTEGER INTEGER

SHIFT Perform a logical shift. 2 Any except CHAR or
COMPLEX, INTEGER

INTEGER or
LOGICAL

XOR Perform a logical exclusive OR on each bit of
the arguments.

2 INTEGER, INTEGER INTEGER

ZEXT Zero-extend the argument. 1 INTEGER or LOGICAL INTEGER

5.2.3 Elemental character and logical functions

Elemental character logical conversion functions.

Table 5-4 Elemental character and logical functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ACHAR Return character in specified ASCII collating
position.

1 INTEGER CHARACTER

ADJUSTL Left adjust string. 1 CHARACTER CHARACTER

ADJUSTR Right adjust string. 1 CHARACTER CHARACTER

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-123

Non-Confidential

Table 5-4 Elemental character and logical functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

CHAR Return character with specified ASCII value. 1 LOGICAL*1 INTEGER CHARACTER
CHARACTER

IACHAR Return position of character in ASCII collating
sequence.

1 CHARACTER INTEGER

ICHAR Return position of character in the character set's
collating sequence.

1 CHARACTER INTEGER

INDEX Return starting position of substring in first string. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

LEN Return the length of string. 1 CHARACTER INTEGER

LEN_TRIM Return the length of the supplied string minus the
number of trailing blanks.

1 CHARACTER INTEGER

LGE Test the supplied strings to determine if the first
string is lexically greater than or equal to the
second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LGT Test the supplied strings to determine if the first
string is lexically greater than the second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LLE Test the supplied strings to determine if the first
string is lexically less than or equal to the second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LLT Test the supplied strings to determine if the first
string is lexically less than the second.

Note: From F2008, character kind ASCII is also
supported.

2 CHARACTER,
CHARACTER

LOGICAL

LOGICAL Logical conversion. 1 2 LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-124

Non-Confidential

Table 5-4 Elemental character and logical functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

SCAN Scan string for characters in set. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

VERIFY Determine if string contains all characters in set. 2

3

CHARACTER,
CHARACTER

CHARACTER,
CHARACTER,
LOGICAL

INTEGER

INTEGER

5.2.4 Vector/Matrix functions

Functions for vector or matrix multiplication.

Table 5-5 Vector and matrix functions

Intrinsic Description Num. of
Arguments

Argument Type Result

DOT_PRODUCT Perform dot product on two
vectors.

2 INTEGER, REAL,
COMPLEX, or LOGICAL

INTEGER, REAL,
COMPLEX, or LOGICAL

MATMUL Perform matrix multiply on two
matrices.

2 INTEGER, REAL,
COMPLEX, or LOGICAL

INTEGER, REAL,
COMPLEX, or LOGICAL

 Note

All matrix outputs are the same type as the argument supplied.

5.2.5 Array reduction functions

Functions for determining information from, or calculating using, the elements in an array.

Table 5-6 Array reduction functions

Intrinsic Description Num. of Arguments Argument Type Result

ALL Determine if all array values are true. 1

2

LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

ANY Determine if any array value is true. 1

2

LOGICAL

LOGICAL, INTEGER

LOGICAL

LOGICAL

COUNT Count true values in array. 1

2

LOGICAL

LOGICAL, INTEGER

INTEGER

INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-125

Non-Confidential

Table 5-6 Array reduction functions (continued)

Intrinsic Description Num. of Arguments Argument Type Result

MAXLOC Determine the position of the array element
with the maximum value.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MAXVAL Determine the maximum value of the array
elements.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MINLOC Determine the position of the array element
with the minimum value.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

MINVAL Determine the minimum value of the array
elements.

1

2

2

3

1

2

2

3

INTEGER

INTEGER, LOGICAL

INTEGER, INTEGER

INTEGER, INTEGER, LOGICAL

REAL

REAL, LOGICAL

REAL, INTEGER

REAL, INTEGER, LOGICAL

INTEGER

INTEGER

INTEGER

INTEGER

REAL

REAL

REAL

REAL

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-126

Non-Confidential

Table 5-6 Array reduction functions (continued)

Intrinsic Description Num. of Arguments Argument Type Result

PRODUCT Calculate the product of the elements of an
array.

1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

NUMERIC

NUMERIC

NUMERIC

SUM Calculate the sum of the elements of an array. 1

2

2

3

NUMERIC

NUMERIC, LOGICAL

NUMERIC, INTEGER

NUMERIC, INTEGER, LOGICAL

NUMERIC

NUMERIC

NUMERIC

NUMERIC

5.2.6 String construction functions

Functions for constructing strings.

Table 5-7 String construction functions

Intrinsic Description Num. of Arguments Argument Type Result

REPEAT Concatenate copies of a string. 2 CHARACTER, INTEGER CHARACTER

TRIM Remove trailing blanks from a string. 1 CHARACTER CHARACTER

5.2.7 Array construction manipulation functions

Functions for constructing and manipulating arrays.

Table 5-8 Array construction and manipulation functions

Intrinsic Description Num. of Arguments Argument Type Result

CSHIFT Perform circular shift on an array. 2

3

ARRAY, INTEGER

ARRAY, INTEGER, INTEGER

ARRAY

ARRAY

OESHIFT Perform end-off shift on an array. 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, Any

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, Any, INTEGER

ARRAY

ARRAY

ARRAY

ARRAY, ARRAY

MERGE Merge two arguments using the
logical mask.

3 Any, Any, LOGICAL

The second argument must be of the
same type as the first argument.

Any

PACK Pack an array into a rank-one array. 2

3

ARRAY, LOGICAL

ARRAY, LOGICAL, VECTOR

ARRAY

ARRAY

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-127

Non-Confidential

Table 5-8 Array construction and manipulation functions (continued)

Intrinsic Description Num. of Arguments Argument Type Result

RESHAPE Change the shape of an array. 2

3

3

4

ARRAY, INTEGER

ARRAY, INTEGER, ARRAY

ARRAY, INTEGER, INTEGER

ARRAY, INTEGER, ARRAY,
INTEGER

ARRAY

ARRAY

ARRAY

ARRAY

SPREAD Replicate an array by adding a
dimension.

3 Any, INTEGER, INTEGER ARRAY

TRANSPOSE Transpose an array of rank two. 1 ARRAY (m, n) ARRAY (n, m)

UNPACK Unpack a rank-one array into an
array of multiple dimensions.

3 VECTOR, LOGICAL, ARRAY ARRAY

 Note

All ARRAY outputs are the same type as the argument supplied.

5.2.8 General inquiry functions

Functions for general determining.

Table 5-9 General inquiry functions

Intrinsic Description Num. of Arguments Argument Type Result

ASSOCIATED Determine association status. 1

2

POINTER, POINTER, …,
POINTER, TARGET

LOGICAL

LOGICAL

KIND Determine the kind of an argument. 1 Any intrinsic type INTEGER

PRESENT Determine presence of optional argument. 1 Any LOGICAL

5.2.9 Numeric inquiry functions

Functions for determining numeric information.

Table 5-10 Numeric inquiry functions

Intrinsic Description Num. of
Arguments

Argument Type Result

DIGITS Determine the number of significant
digits.

1

1

INTEGER

REAL

INTEGER

EPSILON Smallest number that can be represented. 1 REAL REAL

HUGE Largest number that can be represented. 1

1

INTEGER

REAL

INTEGER

REAL

MAXEXPONENT Value of the maximum exponent. 1 REAL INTEGER

MINEXPONENT Value of the minimum exponent. 1 REAL INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-128

Non-Confidential

Table 5-10 Numeric inquiry functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

PRECISION Decimal precision. 1

1

REAL

COMPLEX

INTEGER

INTEGER

RADIX Base of the model. 1

1

INTEGER

REAL

INTEGER

INTEGER

RANGE Decimal exponent range. 1

1

1

INTEGER

REAL

COMPLEX

INTEGER

INTEGER

INTEGER

SELECTED_
INT_KIND

Kind-type titlemeter in range. 1 INTEGER INTEGER

SELECTED_
REAL_KIND

Kind-type titlemeter in range.

Syntax:SELECTED _REAL_KIND(P
[,R]) where P is precision and R is the
range.

1

2

INTEGER

INTEGER,
INTEGER

INTEGER,
INTEGER

TINY Smallest positive number that can be
represented.

1 REAL REAL

5.2.10 Array inquiry functions

Functions for determining information about an array.

Table 5-11 Array inquiry functions

Intrinsic Description Num. of Arguments Argument Type Result

ALLOCATED Determine if an array is allocated. 1 ARRAY LOGICAL

LBOUND Determine the lower bounds. 1

2

ARRAY

ARRAY, INTEGER

INTEGER

SHAPE Determine the shape. 1 Any INTEGER

SIZE Determine the number of elements. 1

2

ARRAY

ARRAY, INTEGER

INTEGER

UBOUND Determine the upper bounds. 1

2

ARRAY

ARRAY, INTEGER

INTEGER

5.2.11 Transfer functions

Functions for transferring types.

Table 5-12 Transfer functions

Intrinsic Description Num. of Arguments Argument Type Result

TRANSFER Change the type but maintain bit representation. 2 3 Any, Any Any, Any, INTEGER Any*

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-129

Non-Confidential

*Must be of the same type as the second argument

5.2.12 Arithmetic functions

Functions for manipulating arithmetic.

Table 5-13 Arithmetic functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ABS Return absolute value of the supplied
argument.

1 INTEGER, REAL,
 or COMPLEX

INTEGER, REAL,
 or COMPLEX

ACOS Return the arccosine (in radians) of the
specified value.

1 REAL REAL

ACOSD Return the arccosine (in degrees) of
the specified value.

1 REAL REAL

AIMAG Return the value of the imaginary part
of a complex number.

1 COMPLEX REAL

AINT Truncate the supplied value to a whole
number.

2 REAL INTEGER REAL

AND Perform a logical AND on
corresponding bits of the arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or LOGICAL

ANINT Return the nearest whole number to
the supplied argument.

2 REAL, INTEGER REAL

ASIN Return the arcsine (in radians) of the
specified value.

1 REAL REAL

ASIND Return the arcsine (in degrees) of the
specified value.

1 REAL REAL

ATAN Return the arctangent (in radians) of
the specified value.

1 REAL REAL

ATAN2 Return the arctangent (in radians) of
the specified pair of values.

2 REAL, REAL REAL

ATAN2D Return the arctangent (in degrees) of
the specified pair of values.

1 REAL, REAL REAL

ATAND Return the arctangent (in degrees) of
the specified value.

1 REAL REAL

CEILING Return the least integer greater than or
equal to the supplied real argument.

2 REAL, KIND INTEGER

CMPLX Convert the supplied argument or
arguments to complex type.

2

3

{INTEGER, REAL,
or COMPLEX,},
{INTEGER, REAL,
or COMPLEX}

{INTEGER, REAL,
or COMPLEX},
{INTEGER or REAL},
KIND

COMPLEX

COMPLEX

COMPL Perform a logical complement on the
argument.

1 Any, except CHAR or
COMPLEX

N/A

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-130

Non-Confidential

Table 5-13 Arithmetic functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

COS Return the cosine (in radians) of the
specified value.

1 REAL COMPLEX REAL

COSD Return the cosine (in degrees) of the
specified value.

1 REAL COMPLEX REAL

COSH Return the hyperbolic cosine of the
specified value.

1 REAL REAL

DBLE Convert to double precision real. 1 INTEGER, REAL,
or COMPLEX

REAL

DCMPLX Convert the argument or supplied
arguments to double complex type.

1

2

INTEGER, REAL,
or COMPLEX

INTEGER, REAL

DOUBLE COMPLEX

DOUBLE COMPLEX

DPROD Double precision real product. 2 REAL, REAL REAL (double
precision)

EQV Perform a logical exclusive NOR on
the arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or LOGICAL

EXP Exponential function. 1 REAL COMPLEX REAL COMPLEX

EXPONENT Return the exponent part of a real
number.

1 REAL INTEGER

FLOOR Return the greatest integer less than or
equal to the supplied real argument.

1

2

REAL

REAL, KIND

REAL KIND

FRACTION Return the fractional part of a real
number.

1 REAL INTEGER

IINT Convert a value to a short integer type. 1 INTEGER, REAL,
 or COMPLEX

INTEGER

ININT Return the nearest short integer to the
real argument.

1 REAL INTEGER

INT Convert a value to integer type. 1

2

INTEGER, REAL, or
COMPLEX

{INTEGER, REAL,
or COMPLEX}, KIND

INTEGER

INTEGER

INT8 Convert a real value to a long integer
type.

1 REAL INTEGER

IZEXT Zero-extend the argument. 1 LOGICAL or INTEGER INTEGER

JINT Convert a value to an integer type. 1 INTEGER, REAL,
or COMPLEX

INTEGER

JNINT Return the nearest integer to the real
argument.

1 REAL INTEGER

KNINT Return the nearest integer to the real
argument.

1 REAL INTEGER (long)

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-131

Non-Confidential

Table 5-13 Arithmetic functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

LOG Return the natural logarithm. 1 REAL or COMPLEX REAL

LOG10 Return the common logarithm. 1 REAL REAL

MAX Return the maximum value of the
supplied arguments.

2 or more INTEGER or REAL (all of
same kind)

Same as argument type

MIN Return the minimum value of the
supplied arguments.

2 or more INTEGER or REAL (all of
same kind)

Same as argument type

MOD Find the remainder. 2 or more {INTEGER or REAL},
{INTEGER or REAL} (all
of same kind)

Same as argument type

MODULO Return the modulo value of the
arguments.

2 or more {INTEGER or REAL},
{INTEGER or REAL} (all
of same kind)

Same as argument type

NEAREST Return the nearest different number
that can be represented, by a machine,
in a given direction.

2 REAL, REAL (nonzero) REAL

NEQV Perform a logical exclusive OR on the
arguments.

2 Any, except CHAR or
COMPLEX

INTEGER or LOGICAL

NINT Convert a value to integer type. 1

2

REAL

REAL, KIND

INTEGER

REAL Convert the argument to real. 1

2

INTEGER, REAL, or
COMPLEX

{INTEGER, REAL,
or COMPLEX}, KIND

REAL

REAL

RRSPACING Return the reciprocal of the relative
spacing of model numbers near the
argument value.

1 REAL REAL

SET_
EXPONENT

Return the model number whose
fractional part is the fractional part of
the model representation of the first
argument and whose exponent part is
the second argument.

2 REAL, INTEGER REAL

SIGN Return the absolute value of A times
the sign of B. Syntax: SIGN(A, B)

2 {INTEGER or REAL},
{INTEGER or REAL}

Same as argument

SIN Return the sine (in radians) of the
specified value.

1 REAL or COMPLEX REAL

SIND Return the sine (in degrees) of the
specified value.

1 REAL or COMPLEX REAL

SINH Return the hyperbolic sine of the
specified value.

1 REAL REAL

SPACING Return the relative spacing of model
numbers near the argument value.

1 REAL REAL

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-132

Non-Confidential

Table 5-13 Arithmetic functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

SQRT Return the square root of the
argument.

1 REAL or COMPLEX REAL or COMPLEX

TAN Return the tangent (in radians) of the
specified value.

1 REAL REAL

TAND Return the tangent (in degrees) of the
specified value.

1 REAL REAL

TANH Return the hyperbolic tangent of the
specified value.

1 REAL REAL

5.2.13 Miscellaneous functions

Functions for mixcellaneous use.

Table 5-14 Miscellaneous functions

Intrinsic Description Num. of Arguments Argument Type Result

LOC Return the argument address. 1 NUMERIC INTEGER

NULL Assign a disassociated status. 0

1

POINTER POINTER

POINTER

5.2.14 Subroutines

Supported subroutines.

Table 5-15 Subroutines

Intrinsic Description Num. of Arguments Argument Type

CPU_TIME Return processor time. 1 REAL (OUT)

DATE_AND_TIME Return the date and time. 4 (all optional) DATE (CHARACTER, OUT)

TIME (CHARACTER, OUT)

ZONE (CHARACTER, OUT)

VALUES (INTEGER, OUT)

RANDOM_NUMBER Generate pseudo-random numbers. 1 REAL (OUT)

RANDOM_SEED Set or query pseudo-random number generator. 1

1

1

SIZE (INTEGER, OUT)

PUT (INTEGER ARRAY, IN)

GET (INTEGER ARRAY, OUT)

SYSTEM_CLOCK Query the real time clock. 3 (optional) COUNT (INTEGER, OUT)

COUNT_RATE (REAL, OUT)

COUNT_MAX (INTEGER, OUT)

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-133

Non-Confidential

5.2.15 Fortran 2003 functions

Fortran 2003-supported functions.

Table 5-16 Fortran 2003 functions

Intrinsic Description Num. of
Arguments

Argument Type Result

COMMAND
_ARGUMENT
_COUNT

Return a scalar of type default integer that is
equal to the number of arguments that are
passed on the command line when the
containing program was invoked. If no
command arguments are passed, the result is 0.

0 None INTEGER

EXTENDS_TYPE
_OF

Determine whether the dynamic type of A is
an extension type of the dynamic type of B.

Syntax:

EXTENDS_TYPE _OF(A, B)

2 Objects of extensible
type

LOGICAL
SCALAR

GET_COMMAND
_ARGUMENT

Return the specified command line argument
of the command that invoked the program.

1 to 4 INTEGER plus
optionally: CHAR,
INTEGER,
INTEGER

A command
argument

GET_COMMAND Return the entire command line that was used
to invoke the program.

0 to 3 CHAR, INTEGER,
INTEGER

A command line

GET_ENVIRONM
ENT_VARIABLE

Return the value of the specified environment
variable.

1 to 5 CHAR, CHAR,
INTEGER,
INTEGER,
LOGICAL

Stores the value of
NAME in VALUE

IS_IOSTAT _END Test whether a variable has the value of the I/O
status: 'end of file'.

1 INTEGER LOGICAL

IS_IOSTAT _EOR Test whether a variable has the value of the I/O
status: 'end of record'.

1 INTEGER LOGICAL

LEADZ Count the number of leading zero bits. 1 INTEGER or bits INTEGER

MOVE_ALLOC Move an allocation from one allocatable object
to another.

2 Any type and rank None

NEW_LINE Return the newline character. 1 CHARACTER CHARACTER

SAME_TYPE _AS Determine whether the dynamic type of A is
the same as the dynamic type of B.

Syntax:

SAME_TYPE_AS (A, B)

2 Objects of extensible
type

LOGICAL
SCALAR

SCALE Return the value A * B where B is the base of
the number system in use for A.

Syntax:

SCALE(A, B)

2 REAL, INTEGER REAL

5.2.16 Fortran 2008 functions

Fortran 2008-supported functions.

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-134

Non-Confidential

Table 5-17 Fortran 2008 functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ACOSH

ASINH

ATANH

Inverse hyperbolic trigonometric functions 1 REAL REAL

BESSEL_J0

BESSEL_J1

BESSEL_JN

BESSEL_Y0

BESSEL_Y1

BESSEL_YN

Bessel function of:

(J0) the first kind of order 0.

(J1) the first kind of order 1.

(JN) the first kind.

(Y0) the second kind of order 0.

(Y1) the second kind of order 1.

(YN) the second kind.

1

1

2 or 3

1

1

2 or 3

REAL

REAL

{INTEGER, REAL,
or INTEGER},
INTEGER, REAL

REAL

REAL

{INTEGER, REAL,
or INTEGER},
INTEGER, REAL

REAL

REAL

REAL

REAL

REAL

REAL

C_SIZEOF Calculates the number of bytes of storage
the expression A 'occupies'.

Syntax:

C_SIZEOF(A)

1 Any INTEGER

COMPILER_OPTIONS Options passed to the compiler. None None STRING

COMPILER_VERSION Compiler version string. None None CHARACTER

ERF Error function. 1 REAL REAL

ERFC Complementary error function. 1 REAL REAL

ERFC_SCALED Exponentially-scaled complementary error
function.

1 REAL REAL

FINDLOC Finds the location of a specified value in an
array.

Syntax:

FINDLOC(ARRAY, VALUE, DIM, MASK,
KIND, BACK)

Or

FINDLOC(ARRAY, VALUE, MASK ,
KIND, BACK)

3 to 6 ARRAY VALUE,
DIM[, MASK,
KIND, BACK]

Or

ARRAY, VALUE[,
MASK, KIND,
BACK]

INTEGER

ARRAY

GAMMA Computes Gamma of A. For positive,
integer values of X.

1 REAL (not zero or
negative)

REAL

LOG_GAMMA Computes the natural logarithm of the
absolute value of the Gamma function.

1 REAL (not zero or
negative)

REAL

HYPOT Euclidean distance function. 2 REAL, REAL REAL

IS_CONTIGUOUS Tests the contiguity of an array. 1 ARRAY LOGICAL

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-135

Non-Confidential

Table 5-17 Fortran 2008 functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

NORM2 Euclidean vector norm.

Syntax:

NORM2(X[, DIM])

Where: * X shall be a REAL ARRAY. *
DIM is an INTEGER SCALAR with a value
in the range of 1 to n (where n is the rank of
X).

 Note

The current implementation experiences
overflow for arguments containing elements
whose square is at the boundary value for
double-precision floating-point numbers.
There is no such overflow for single-
precision arguments.

1[, or 2] REAL ARRAY[,
INTEGER SCALAR]

The result is the
same type as X.

If DIM is not
present, the result
is SCALAR. If
DIM is present, the
result has rank n−1
and shape [d1,d2,
…,dDIM−1,DIM
+1,…,dn], where n
is the rank of X,
and [d1,d2,…,dn]
is the shape of X.

LEADZ Returns the number of leading zero bits of
an integer.

1 INTEGER INTEGER

POPCNT Return the number of one bits. 1 INTEGER INTEGER

POPPAR Return the bitwise parity. 1 INTEGER INTEGER

SELECTED_REAL_KIND Kind type titlemeter in range.

Syntax:

SELECTED_REAL_KIND(P[, R,
RADIX])

where P is precision and R is the range.

Note: Radix argument added for F2008.

1

2

3

INTEGER

INTEGER,
INTEGER

INTEGER,
INTEGER,
INTEGER

INTEGER

INTEGER

INTEGER

STORAGE_SIZE Storage size of argument A, in bits.

Syntax:

STORAGE_SIZE(A[, KIND])

1[, 2] SCALAR or
ARRAY[, INTEGER]

INTEGER

TRAILZ Number of trailing zero bits of an integer. 1 INTEGER INTEGER

5.2.17 Unsupported functions

Unsupported Fortran 2008 functions:

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-136

Non-Confidential

Table 5-18 Unsupported functions

Intrinsic Description Num. of
Arguments

Argument Type Result

ACOSH

ASINH

ATANH

Inverse hyperbolic trigonometric functions. 1 COMPLEX COMPLEX

BGE

BGT

BLE

BLT

Bitwise greater than or equal to.

Bitwise greater than.

Bitwise less than or equal to.

Bitwise less than.

2

2

2

2

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

LOGICAL

LOGICAL

LOGICAL

LOGICAL

DSHIFTL

DSHIFTR

Combined left shift.

Combined right shift.

3

3

INTEGER or BOZ constant,
INTEGER or BOZ constant,
INTEGER

INTEGER or BOZ constant,
INTEGER or BOZ constant,
INTEGER

INTEGER

INTEGER"

IALL

IANY

IPARITY

Bitwise AND of array elements.

Bitwise OR of array elements.

Bitwise XOR of array elements.

Syntax:

IALL(ARRAY[, DIM[, MASK]])

IANY(ARRAY[, DIM[, MASK]])

IPARITY(ARRAY[, DIM[, MASK]])

1

1

1

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY

ARRAY

IMAGE_INDEX

NUM_IMAGES

THIS_IMAGE

Co-subscript to image index conversion.

Number of images.

Co-subscript index of this image.

2

0, 1, or 2

0, 1, or 2

COARRAY, INTEGER

None, INTEGER, or INTEGER,
LOGICAL

None, INTEGER, INTEGER or
COARRAY, INTEGER

INTEGER

INTEGER

INTEGER

LCOBOUND

UCOBOUND

Lower co-dimension of bounds of an array.

Upper co-dimension of bounds of an array.

Syntax:

LCOBOUND(COARRAY[, DIM[, KIND]])

UCOBOUND(COARRAY[, DIM[, KIND]])

1

1

COARRAY

COARRAY

INTEGER

INTEGER

MASKL

MASKR

Left justified mask.

Right justified mask.

Syntax:

MASKL(I[, KIND])

MASKR(I[, KIND])

1[, or 2]

1[, or 2]

INTEGER[, INTEGER]

INTEGER[, INTEGER]

INTEGER

INTEGER

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-137

Non-Confidential

Table 5-18 Unsupported functions (continued)

Intrinsic Description Num. of
Arguments

Argument Type Result

MERGE_BITS Merge of bits under mask. 3 INTEGER, INTEGER, INTEGER INTEGER

PARITY Reduction with exclusive OR.

Syntax:

PARITY(MASK[, DIM])

1[, or 2] LOGICAL ARRAY[,INTEGER] LOGICAL

SHIFTA

SHIFTL

SHIFTR

Right shift with fill.

Left shift.

Right shift.

2

2

2

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER, INTEGER

INTEGER

INTEGER

INTEGER

5.2.18 Unsupported subroutines

Unsupported Fortran 2008 subroutines:

Table 5-19 Unsupported subroutines

Intrinsic Description Num. of
Arguments

Argument Type

ATOMIC_DEFINE Defines the variable ATOM with the value VALUE
atomically.

Syntax:

ATOMIC_DEFINE(ATOM, VALUE[, STAT])

2[, or 3] {INTEGER or
LOGICAL},
{INTEGER or
LOGICAL}[,
INTEGER]

ATOMIC_REF Atomically assigns the value of the variable ATOM to
VALUE.

Syntax:

ATOMIC_REF(ATOM, VALUE[, STAT])

2[, or 3] {INTEGER or
LOGICAL},
{INTEGER or
LOGICAL}[,
INTEGER]

EXECUTE_COMMAND_LINE Execute a shell command.

Syntax:

EXECUTE_COMMAND_LINE(COMMAND[, WAIT,
EXITSTAT, CMDSTAT, CMDMSG])

1 STRING

Related references
5.2.1 Fortran intrinsics overview on page 5-122
5.2.2 Bit manipulation functions and subroutines on page 5-122
5.2.3 Elemental character and logical functions on page 5-123
5.2.4 Vector/Matrix functions on page 5-125
5.2.5 Array reduction functions on page 5-125
5.2.6 String construction functions on page 5-127
5.2.7 Array construction manipulation functions on page 5-127
5.2.8 General inquiry functions on page 5-128
5.2.9 Numeric inquiry functions on page 5-128
5.2.10 Array inquiry functions on page 5-129
5.2.11 Transfer functions on page 5-129

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-138

Non-Confidential

5.2.12 Arithmetic functions on page 5-130
5.2.13 Miscellaneous functions on page 5-133
5.2.14 Subroutines on page 5-133
5.2.15 Fortran 2003 functions on page 5-134
5.2.16 Fortran 2008 functions on page 5-134
5.2.17 Unsupported functions on page 5-136
5.2.18 Unsupported subroutines on page 5-138

5 Fortran language reference
5.2 Intrinsics

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-139

Non-Confidential

5.3 Statements
Describes the Fortran statements that are supported in Arm Fortran Compiler.

The Fortran statements that are supported in the Arm Fortran Compiler, are:

Table 5-20 Supported Fortran statements

Statement Language
standard

Brief description

ACCEPT F77 Causes formatted input to be read on standard input.

ALLOCATABLE F90 Specifies that an array with fixed rank, but deferred shape, is available for a future
ALLOCATE statement.

ALLOCATE F90 Allocates storage for each allocatable array, pointer object, or pointer-based variable that
appears in the statements; declares storage for deferred-shape arrays.

Note: Arm Fortran Compiler does not initialize arrays or variables with zeros. It is best
practice to not assume that arrays are filled with zeros when created.

ASSIGN F77 Assigns a statement label to a variable.

Note: This statement is a deleted feature in the Fortran standard, but remains supported in
the Arm Fortran Compiler.

ASSOCIATE F2003 Associates a name either with a variable or with the value of an expression, while in a
block.

ASYNCHRONOUS F77 Warns the compiler that incorrect results might occur for optimizations involving
movement of code across wait statements, or statements that cause wait operations.

BACKSPACE F77 Positions the file that is connected to the specified unit, to before the preceding record.

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-140

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

BLOCK F08 Indicates where a BLOCK construct starts. The BLOCK construct defines an executable
block of statements or constructs that can contain declarations. This allows you to declare
variables closer to where they are used in your code.

 Note

• To retain the status and value of a local variable of a BLOCK construct after the block
ends, use the SAVE attribute.

• SAVE-ed statements external to a block do not affect the local variables used internally
in a block.

• Control can not be transferred into a block from outside the block, except when the
return is from a procedure call. Transfers in or out of the block are permitted.

Syntax

<optional-name> BLOCK
 <optional-specification-part> ! One or more specification statements
 <statement-block> ! Zero or more statements or constructs
END BLOCK <optional-name>

The following specification statements are not permitted:
• COMMON
• EQUIVALENCE
• IMPLICIT
• INTENT
• NAMELIST
• OPTIONAL
• SUBROUTINE
• VALUE

BLOCK DATA F77 Introduces several non-executable statements that initialize data values in COMMON
tables.

BYTE F77 ext Establishes the data type of a variable by explicitly attaching the name of a variable to a 1-
byte integer, overriding implied data typing.

CALL F77 Transfers control to a subroutine.

CASE F90 Begins a case-statement-block portion of a SELECT CASE statement.

CHARACTER F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
character data type, overriding the implied data typing.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

CLOSE F77 Terminates the connection of the specified file to a unit.

COMMON F77 Defines global blocks of storage that are either sequential or non-sequential. Can be either
static or dynamic form.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-141

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

COMPLEX F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
complex data type, overriding implied data typing.

CONTAINS F90

F2003

Precedes a subprogram, a function or subroutine, and indicates the presence of the
subroutine or function definition inside a main program, external subprogram, or module
subprogram.

In F2003, a CONTAINS statement can also appear in a derived type immediately before
any type-bound procedure definitions.

CONTINUE F77 Passes control to the next statement.

CYCLE F90 Interrupts a DO construct execution and continues with the next iteration of the loop.

DATA F77 Assigns initial values to variables before execution.

Note: This statement amongst execution statements has been marked as obsolescent. This
functionality is redundant and might be removed from future standards. This statement
remains supported in the Arm Fortran Compiler.

DEALLOCATE F90 Causes the memory that is allocated for each pointer-based variable or allocatable array
that appears in the statement to be deallocated (freed). Also might be used to deallocate
storage for deferred-shape arrays.

DECODE F77 ext Transfers data between variables or arrays in internal storage and translates that data from
character form to internal form, according to format specifiers.

DIMENSION F90 Defines the number of dimensions in an array and the number of elements in each
dimension.

DO (Iterative) F90 Introduces an iterative loop and specifies the loop control index and parameters.

Note: Label form DO statements have been marked as obsolescent. Obsolescent statements
are now redundant and might be removed from future standards. This statement remains
supported in the Arm Fortran Compiler.

DO WHILE F77 Introduces a logical DO loop and specifies the loop control expression.

DOUBLE COMPLEX F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double complex data type. This overrides the implied data typing.

DOUBLE PRECISION F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
double precision data type, overriding implied data typing.

ELSE F77 Begins an ELSE block of an IF block, and encloses a series of statements that are
conditionally executed.

ELSE IF F77 Begins an ELSE IF block of an IF block series, and encloses statements that are
conditionally executed.

ELSE WHERE F90 The portion of the WHERE ELSE WHERE construct that permits conditional masked
assignments to the elements of an array, or to a scalar, zero-dimensional array.

ENCODE F77 ext Transfers data between variables or arrays in internal storage and translates that data from
internal to character form, according to format specifiers.

END F77 Terminates a segment of a Fortran program.

END ASSOCIATE F2003 Terminates an ASSOCIATE block.

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-142

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

END DO F77 Terminates a DO or DO WHILE loop.

END FILE F77 Writes an ENDFILE record to the files.

END IF F77 Terminates an IF ELSE or ELSE IF block.

END MAP F77 ext Terminates a MAP declaration.

END SELECT F90 Terminates a SELECT declaration.

END STRUCTURE F77 ext Terminates a STRUCTURE declaration.

END UNION F77 ext Terminates a UNION declaration.

END WHERE F90 Terminates a WHERE ELSE WHERE construct.

ENTRY F77 Allows a subroutine or function to have more than one entry point.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

EQUIVALENCE F77 Allows two or more named regions of data memory to share the same start address.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

ERROR STOP F2008 Stops the program execution and prevents any further execution of the program. ERROR
STOP is similar to STOP, but ERROR STOP indicates that the program terminated in an
error condition.

Note: Also see STOP.

EXIT F90 Interrupts a DO construct execution and continues with the next statement after the loop.

EXTERNAL F77 Identifies a symbolic name as an external or dummy procedure which can then be used as
an argument.

FINAL F2003 Specifies a final subroutine inside a derived type.

FORALL F95 Provides, as a statement or construct, a parallel mechanism to assign values to the elements
of an array.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

FORMAT F77 Specifies format requirements for input or output.

FUNCTION F77 Introduces a program unit; all the statements that follow apply to the function itself.

GENERIC F2003 Specifies a generic type-bound procedure inside a derived type.

GOTO (Assigned) F77 Transfers control so that the statement identified by the statement label is executed next.

Note: This statement is a deleted feature in the Fortran standard, but remains supported in
the Arm Fortran Compiler.

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-143

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

GOTO (Computed) F77 Transfers control to one of a list of labels, according to the value of an expression.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

GOTO (Unconditional) F77 Unconditionally transfers control to the statement with the label, which must be declared in
the code of the program unit containing the GOTO statement, and also must be unique in
that program unit.

IF (Arithmetic) F77 Transfers control to one of three labeled statements, depending on the value of the
arithmetic expression.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

IF (Block) F77 Consists of a series of statements that are conditionally executed.

IF (Logical) F77 Executes or does not execute a statement based on the value of a logical expression.

IMPLICIT F77 Redefines the implied data type of symbolic names from their initial letter, overriding
implied data types.

IMPORT F2003 Gives access to the named entities of the containing scope.

INCLUDE F77 ext Directs the compiler to start reading from another file.

INQUIRE F77 Inquires about the current properties of a particular file or the current connections of a
particular unit.

INTEGER F77 Establishes the data type of a variable by explicitly attaching the name of a variable to an
integer data type, overriding implied data types.

INTENT F90 Specifies the intended use of a dummy argument, but can not be used in a specification
statement of a main program.

INTERFACE F90 Makes an implicit procedure an explicit procedure where the dummy parameters and
procedure type are known to the calling module; Also overloads a procedure name.

INTRINSIC F77 Identifies a symbolic name as an intrinsic function and allows it to be used as an actual
argument.

LOGICAL F77 Establishes the data type of a variable by explicitly attaching the name of a variable to a
logical data type, overriding implied data types.

MAP F77 ext Designates each unique field or group of fields in a UNION statement.

MODULE F90 Specifies the entry point for a Fortran 90, or Fortran 95, module program unit. A module
defines a host environment of scope of the module, and might contain subprograms that are
in the same scoping unit.

NAMELIST F90 Allows the definition of NAMELIST groups for NAMELIST-directed I/O.

NULLIFY F90 Disassociates a pointer from its target.

OPEN F77 Connects an existing file to a unit, creates and connects a file to a unit, creates a file that is
pre-connected, or changes certain specifiers of a connection between a file and a unit.

OPTIONAL F90 Specifies dummy arguments that can be omitted or that are optional.

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-144

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

OPTIONS F77 ext Confirms or overrides certain compiler command-line options.

PARAMETER F77 Gives a symbolic name to a constant.

PAUSE F77 Stops program execution.

Note: This statement is a deleted feature in the Fortran standard, but remains supported in
the Arm Fortran Compiler.

POINTER F90 Provides a means for declaring pointers.

PRINT F77 Transfers data to the standard output device from the items that are specified in the output
list and format specification.

PRIVATE F90

F2003

Specifies that entities that are defined in a module are not accessible outside of the module.
PRIVATE can also appear inside a derived type to disallow access to its data components
outside the defining module.

In F2003, to disallow access to type-bound procedures outside the defining module, a
PRIVATE statement can appear after a CONTAINS statement, in a derived type.

PROCEDURE F2003 Specifies a type-bound procedure, procedure pointer, module procedure, dummy
procedure, intrinsic procedure, or an external procedure.

PROGRAM F77 Specifies the entry point for a linked Fortran program.

PROTECTED F2003 Protects a module variable against modification from outside the module in which it was
declared.

PUBLIC F90 Specifies that entities that are defined in a module are accessible outside of the module.

PURE F95 Indicates that a function or subroutine has no side effects.

READ F77 Transfers data from the standard input device to the items specified in the input and format
specifications.

REAL F90 Establishes the data type of a variable by explicitly attaching the name of a variable to a
data type, overriding implied data types.

RECORD F77 ext A VAX Fortran extension, defines a user-defined aggregate data item.

RECURSIVE F90 Indicates whether a function or subroutine can call itself recursively.

RETURN F77 When used in a subroutine, causes a return to the statement following a CALL. When used
in a function, returns to the relevant arithmetic expression.

Note: This statement has been marked as obsolescent. Obsolescent statements are now
redundant and might be removed from future standards. This statement remains supported
in the Arm Fortran Compiler.

REWIND F77 Positions the file at the start. The statement has no effect if the file is already positioned at
the start, or if the file is connected but does not exist.

SAVE F77 Retains the definition status of an entity after a RETURN or END statement in a subroutine
or function that has been executed.

SELECT CASE F90 Begins a CASE construct.

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-145

Non-Confidential

Table 5-20 Supported Fortran statements (continued)

Statement Language
standard

Brief description

SELECT TYPE F2003 Provides the capability to execute alternative code depending on the dynamic type of a
polymorphic entity, and to gain access to dynamic parts. The alternative code is selected
using the TYPE IS statement for a specific dynamic type, or the CLASS IS statement for a
specific type (and all its type extensions).

Use the optional class default statement to specify all other dynamic types that do not
match a specified TYPE IS or CLASS IS statement. Like the CASE construct, the code
consists of a several blocks and, at most, one is selected for execution.

SEQUENCE F90 A derived type qualifier that specifies the ordering of the storage that is associated with the
derived type. This statement specifies storage for use with COMMON and
EQUIVALENCE statements.

STOP F77 Stops program execution and precludes any further execution of the program.

Note: Also see ERROR STOP.

STRUCTURE F77 ext A VAX extension to FORTRAN 77 that defines an aggregate data type.

SUBROUTINE F77 Introduces a subprogram unit.

TARGET F90 Specifies that a data type can be the object of a pointer variable (for example, pointed to by
a pointer variable). Types that do not have the TARGET attribute cannot be the target of a
pointer variable.

THEN F77 Part of an IF block statement, surrounds a series of statements that are conditionally
executed.

TYPE F90 F2003 Begins a derived type data specification or declares variables of a specified user-defined
type.

Use the optional EXTENDS statement with TYPE to indicate a type extension in F2003.

UNION F77 ext A multi-statement declaration defining a data area that can be shared intermittently during
program execution by one or more fields or groups of fields.

USE F90 Gives a program unit access to the public entities or to the named entities in the specified
module.

VOLATILE F77 ext Inhibits all optimizations on the variables, arrays and common blocks that it identifies.

WAIT F2003 Performs a wait operation for specified pending asynchronous data transfer operations.

WHERE F90 Permits masked assignments to the elements of an array or to a scalar, zero-dimensional
array.

WRITE F77 Transfers data to the standard output device from the items that are specified in the output
list and format specification.

*See WG5 Fortran Standards
 Note

The denoted language standards indicate the standard that they were introduced in, or the standard that
they were last significantly changed.

Related information
WG5 Fortran Standards

5 Fortran language reference
5.3 Statements

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-146

Non-Confidential

https://wg5-fortran.org/
https://wg5-fortran.org/

5.4 Predefined macro support
Discusses predefined macro support in Arm Fortran Compiler.

In Arm Fortran Compiler, the predefined macros are object-like macros (similar to C predefined macros).

Predefined macros are available to use in preprocessor statements in your code and allow you to check
properties at compile time, and if required, change the code in response to those properties. The
properties could be about the compiler, the compilation options, or the system being targeted.

Arm Fortran Compiler supports the following predefined macros:

Table 5-21 Pre-defined macros

Macro Value Purpose

__ARM_LINUX_COMPILER__ 1 Defined as an integer value and expands to 1 to indicate Arm Compiler for Linux.

__ARM_LINUX_COMPILER_BUILD__ INTEGER Defined as an integer value and expands to the Arm Compiler for Linux build
number.

__armclang_major__ INTEGER Defined as an integer value and expands to the Arm Compiler for Linux major
version number.

__armclang_minor__ INTEGER Defined as an integer value and expands to the Arm Compiler for Linux minor
version number.

__armclang_version__ STRING Defined as a string value and expands to the full Arm Compiler for Linux version
number.

__DATE__ STRING Defined as a string value (format mmm dd yyyy) and expands to the current date.

__FILE__ STRING Defined as a string value and expands to the filename of the current file. Where
__FILE__ reports a filepath in addition to the filename, the filepath is relative to
the search path used by the preprocessor to locate the file. __FILE__ is useful to
use with __LINE__ to identify both a file and line of code.

__FLANG 1 Defined as an integer value and expands to 1 to indicate a FLANG-derived
compiler. __FLANG is often included in Makefiles that support flang compilers.

__LINE__ INTEGER Defined as an integer value and expands to the number of the line of code that
contains this macro. __LINE__ is useful to use with __FILE__ to identify both a
file and line of code.

_OPENMP INTEGER Defined as a decimal integer literal value and expands to the year and month
(yyyymm) of the OpenMP standard that is implemented.

__TIME__ STRING Defined as a string value (format hh:mm:ss) and expands to the current time.

 Note

The preceding list is not exhaustive. Instead, it describes the predefined macros that are considered to be
the most useful to use with Arm Fortran Compiler.

5 Fortran language reference
5.4 Predefined macro support

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

5-147

Non-Confidential

Chapter 6
Standards support

This chapter describes the support status of Arm Fortran Compiler with the Fortran language and
OpenMP standards.

It contains the following sections:
• 6.1 Fortran 2003 on page 6-149.
• 6.2 Fortran 2008 on page 6-152.
• 6.3 OpenMP 4.0 on page 6-155.
• 6.4 OpenMP 4.5 on page 6-156.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-148

Non-Confidential

6.1 Fortran 2003
Details the support status with the Fortran 2003 standard.

Table 6-1 Fortran 2003 support

Fortran 2003 Feature Support Status

ISO TR 15580 IEEE Arithmetic Yes

ISO TR 15581 Allocatable Enhancements

Dummy arrays Yes

Function results Yes

Structure components Yes

Data enhancements and object orientation

Parameterized derived types Yes

Procedure pointers Yes

Finalization Yes

Procedures that are bound by name to a type Yes

The PASS attribute Yes

Procedures that are bound to a type as operators Yes

Type extension Yes

Overriding a type-bound procedure Yes

Enumerations Yes

ASSOCIATE construct Yes

Polymorphic entities Yes

SELECT TYPE construct Yes

Deferred bindings and abstract types Yes

Allocatable scalars Yes

Allocatable character length Yes

Miscellaneous enhancements Yes

Structure constructor changes Yes

Generic procedure interfaces with the same name as a type Yes

The allocate statement Yes

Source specifier Yes

Errmsg specifier Yes

Assignment to an allocatable array Yes

Transferring an allocation Yes

More control of access from a module Yes

Renaming operators on the USE statement Yes

Pointer assignment Yes

6 Standards support
6.1 Fortran 2003

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-149

Non-Confidential

Table 6-1 Fortran 2003 support (continued)

Fortran 2003 Feature Support Status

Pointer INTENT Yes

The VOLATILE attribute Yes

One or more issues are observed with this feature.

The IMPORT statement Yes

Intrinsic modules Yes

Access to the computing environment Yes

Support for international character sets Partial

Only selected_char_kind is supported.

Lengths of names and statements

names = 63 Yes

statements = 256 Yes

Binary, octal and hex constants Yes

Array constructor syntax Yes

Specification and initialization expressions Yes

A few intrinsics which are not commonly used are not supported.

Complex constants Yes

Changes to intrinsic functions Yes

Controlling IEEE underflow Yes

Another IEEE class value Yes

I/O enhancements Yes

Derived type I/O Yes

One or more issues are observed with this feature.

Asynchronous I/O Yes

One or more issues are observed with this feature.

FLUSH statement Yes

IOMSG= specifier Yes

Stream access input/output Yes

ROUND= specifier Yes

Not supported for write.

DECIMAL= specifier Yes

SIGN= specifier Yes

processor_defined does not work for open.

Kind type parameters of integer specifiers Yes

6 Standards support
6.1 Fortran 2003

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-150

Non-Confidential

Table 6-1 Fortran 2003 support (continued)

Fortran 2003 Feature Support Status

Recursive input/output Yes

Intrinsic function for newline character Yes

Input and output of IEEE exceptional values Yes

Read does not work for NaN(s).

Comma after a P edit descriptor Yes

Interoperability with

Interoperability of intrinsic types Yes

Interoperability with C pointers Yes

Interoperability of derived types Yes

Interoperability of variables Yes

Interoperability of procedures Yes

Interoperability of global data Yes

 Note

For more information about the features that are listed in the table above, see N1648 - ISO/IEC JTC1/
SC22/WG5: The new features of Fortran 2003.

6 Standards support
6.1 Fortran 2003

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-151

Non-Confidential

https://wg5-fortran.org/N1601-N1650/N1648.pdf
https://wg5-fortran.org/N1601-N1650/N1648.pdf

6.2 Fortran 2008
Details the support status with the Fortran 2008 standard.

Table 6-2 Fortran 2008 support

Fortran 2008 feature Support status

Submodules Yes

Coarrays No

Performance enhancements

do concurrent Partial

The do concurrent syntax is accepted. The
code that is generated is serial.

Contiguous attribute Yes

Data Declaration

Maximum rank + corank = 15 No

Long integers Yes

Allocatable components of recursive type No

Implied-shape array No

Pointer initialization No

Data statement restrictions lifted No

Kind of a forall index No

Type statement for intrinsic types No

Declaring type-bound procedures Yes

Supports declaring multiple type-bound
procedures in a single procedure statement.

Value attribute is permitted for any nonallocatable nonpointer noncoarray No

In a pure procedure the intent of an argument need not be specified if it has the value
attribute

Yes

Accessing data objects

Simply contiguous arrays rank remapping to rank>1 target Yes

Omitting an ALLOCATABLE component in a structure constructor No

Multiple allocations with SOURCE= No

Copying the properties of an object in an ALLOCATE statement Yes

MOLD= specifier for ALLOCATE Yes

Copying bounds of source array in ALLOCATE Yes

Polymorphic assignment No

Accessing real and imaginary parts Partial

Not supported for complex arrays.

6 Standards support
6.2 Fortran 2008

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-152

Non-Confidential

Table 6-2 Fortran 2008 support (continued)

Fortran 2008 feature Support status

Pointer function reference is a variable No

Elemental dummy argument restrictions lifted Yes

Input/Output

Finding a unit when opening a file Yes

g0 edit descriptor No

Unlimited format item Yes

Recursive I/O Yes

Execution control

The BLOCK construct Yes

Exit statement No

Stop code Yes

ERROR STOP Yes

Intrinsic procedures for bit processsing

Bit sequence comparison No

Combined shifting No

Counting bits Yes

Masking bits No

Shifting bits No

Merging bits No

Bit transformational functions No

Intrinsic procedures and modules

Storage size Yes

Optional argument RADIX added to SELECTED REAL No

Extensions to trigonometric and hyperbolic intrinsics Partial

Complex types are not accepted for acosh,
asinh and atanh.

Also, atan2 cannot be accessed through atan.

Bessel functions Yes

Error and gamma functions Yes

Euclidean vector norms Yes

The current implementation experiences
overflow for arguments containing elements
whose square is at the boundary value for
double-precision floating-point numbers.
There is no such overflow for single-precision
arguments.

6 Standards support
6.2 Fortran 2008

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-153

Non-Confidential

Table 6-2 Fortran 2008 support (continued)

Fortran 2008 feature Support status

Parity No

Execute command line No

Optional back argument added to maxloc and minloc Yes

Find location in an array Yes

String comparison Yes

Constants Yes

COMPILER_VERSION Yes

COMPILER_OPTIONS Yes

Function for C sizeof Yes

Added optional argument for IEEE_SELECTED_REAL_KIND No

Programs and procedures

Save attribute for module and submodule data Partial

One or more issues are observed with this
feature.

Empty contains section Partial

Not supported for procedures.

Form of end statement for internal and module procedures Yes

Internal procedure as an actual argument Yes

Null pointer or unallocated allocatable as absent dummy arg. Partial

Not supported for null pointer.

Non pointer actual for pointer dummy argument Yes

Generic resolution by procedureness No

Generic resolution by pointer vs. allocatable Yes

Impure elemental procedures Yes

Entry statement becomes obsolescent Yes

Source form

Semicolon at line start Yes

 Note

For more information about the features that are listed in the table above, see N1891 - ISO/IEC JTC1/
SC22/WG5: The new features of Fortran 2008.

6 Standards support
6.2 Fortran 2008

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-154

Non-Confidential

https://wg5-fortran.org/N1851-N1900/N1891.pdf
https://wg5-fortran.org/N1851-N1900/N1891.pdf

6.3 OpenMP 4.0
Describes which OpenMP 4.0 features are supported by Arm Fortran Compiler.

Table 6-3 Supported OpenMP 4.0 features

Open MP 4.0 Feature Support

C/C++ Array Sections N/A

Thread affinity policies Yes

simd construct Partial
 Note

No clauses are supported. To force a loop to vectorize, you can use !$omp simd.

declare simd construct No

Device constructs No

Task dependencies No

taskgroup construct Yes

User defined reductions No

Atomic capture swap Yes

Atomic seq_cst No

Cancellation Yes

OMP_DISPLAY_ENV Yes

Related information
OpenMP thread mapping

6 Standards support
6.3 OpenMP 4.0

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-155

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/resources/tutorials/arm-compiler-for-linux-openmp-settings

6.4 OpenMP 4.5
Describes which OpenMP 4.5 features are supported by Arm Fortran Compiler.

Table 6-4 Supported OpenMP 4.5 features

Open MP 4.5 Feature Support

doacross loop nests with ordered No

linear clause on loop construct No

simdlen clause on simd construct No

Task priorities No

taskloop construct Yes

Extensions to device support No

if clause for combined constructs Yes

hint clause for critical construct No

source and sink dependence types No

C++ Reference types in data sharing attribute clauses N/A

Reductions on C/C++ array sections N/A

ref, val, and uval modifiers for linear clause. No

Thread affinity query functions Yes

Hints for lock API Yes

Related information
OpenMP thread mapping

6 Standards support
6.4 OpenMP 4.5

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

6-156

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/resources/tutorials/arm-compiler-for-linux-openmp-settings

Chapter 7
Troubleshoot

This chapter describes how to diagnose problems when compiling applications using Arm Fortran
Compiler.

It contains the following sections:
• 7.1 Licensing error codes and corrective actions on page 7-158.
• 7.2 Application segfaults at -Ofast optimization level on page 7-161.
• 7.3 Compiling with the -fpic option fails when using GCC compilers on page 7-162.
• 7.4 Error messages when installing Arm® Compiler for Linux on page 7-163.
• 7.5 Error moving Arm® Compiler for Linux modulefiles on page 7-164.
• 7.6 Code is not bit-reproducible on page 7-165.
• 7.7 binutils does not automatically unload with module unload on page 7-166.

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-157

Non-Confidential

7.1 Licensing error codes and corrective actions
This topic describes the licensing error codes that you might see when using Arm Compiler for Linux.
The topic also describes the actions you can take to address the issues that are causing the errors.

Table 7-1 Arm Compiler for Linux license errors

Error code Return
value

Description Possible actions

EBAD_FILE -104 [Invalid/Incorrect] type of
license file (type: {file
type}).

• Try changing the permissions with chmod.
• Contact your network administrator, or Arm Support

to obtain and install a valid license file or a valid
license file type.

ECANNOT_CONTACT_SERVER -116 Cannot contact the specified
server (wrong port, or
firewall or server not
running).

Check that the host name or IP address of the machine
running Arm Licence Server is correct in the client license
file.

See Arm Licence Server User Guide for details about
configuring the server connection details in the client
license file.

ECANNOT_RESOLVE_SERVER -115 Cannot resolve the address
of the remote server.

Check that the host name or IP address of the machine
running Arm Licence Server is correct in the client license
file.

See Arm Licence Server User Guide for details about
configuring the server connection details in the client
license file.

EEXPIRED -108 Your license expired at
{date/time}.

Contact your network administrator, or Arm Support to
obtain a new license.

EFILE_NOT_EXIST -102 Cannot find a license file;
you do not have permission
to read the file {filename}.

• Try changing the permissions with chmod.
• Contact your network administrator to grant you

permissions to access this file.

EINVALID_HASH -101 The serial number in the
license file {filename} has
been modified and is no
longer valid.

Replace the installed license file with the original file
supplied by Arm, or contact your network administrator
about requesting a valid license from Arm Support.

 Note

If you make any modifications to the license file, such as
changing the hostname on a floating license to include the
Arm Licence Server address details, ensure that you do
not modify any other details and render the license file
invalid.

EINVALID_USER -107 Your current user name
{username} does not match
any of the user names in the
license.

Contact your network administrator to check your
permissions to access the software.

ENO_LICENCE_FILES_FOUND -106 Cannot find a valid license in
directory {directory}.

Contact your network administrator to check your
permissions to access the software.

7 Troubleshoot
7.1 Licensing error codes and corrective actions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-158

Non-Confidential

Table 7-1 Arm Compiler for Linux license errors (continued)

Error code Return
value

Description Possible actions

ENO_MATCHING_LICENCE -105 Either the license could not
be found on the server or a
specific serial number cannot
be found.

Check with your network administrator that the license is
installed.

ENO_NETWORK -117 There is no network
connection.

Contact your network administrator, or Arm Support.

ENO_SEATS -113 The Arm Licence Server has
no available seats.

Contact your network administrator, or Arm Support.

ENOT_ENOUGH_INFO -112 • Client license {filename}
has no [hostname/serial
number] set.

• Could not find any MAC
address on your system.

Check that the Arm Licence Server details
configured in the license file are

correct.

Contact your network administrator, or Arm
Support to obtain a new

license.

See Arm Licence Server User Guide for details about
configuring the server connection details in the client
license file.

EPERMISSION_DENIED -103 When attempting to load a
license file, permission was
denied.

Contact your network administrator to check that your
permissions allow you access to the license file directory.

EREPLAY_ERROR -119 The server returned an
invalid license.

Contact Arm Support to obtain a valid license.

ESERVER_ERROR -112 Something went wrong on
the server that does not fall
into any other error.

Contact your network administrator, or Arm Support.

ESERVER_TIMEOUT -113 Timed out while contacting
the server.

Check that the server is running.

Contact your network administrator

ESUPPORT_EXPIRED -109 Your software maintenance
expired at {date/time}.

Contact your network administrator, or Arm Support to
obtain a new license.

EUNKNOWN -118 There has been an
unexpected error.

Contact Arm Support.

EWRONG_NODE -110 The MAC address of this
node does not match that
specified by the license file.

Ensure that you are using the correct node.

If you are using the correct node, your license file
may be incorrect.

Contact your network administrator, or Arm
Support.

Report an error to Arm Support
To report an error with Arm Compiler for Linux, contact Arm Support, and include:
• A detailed explanation of the issue.
• A copy of the license file you are using or the license ID that Arm supplied to you.
• Details of the license types you are using (floating server license, or named user license).

7 Troubleshoot
7.1 Licensing error codes and corrective actions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-159

Non-Confidential

• MAC address of the machine on which the license is installed.
• Any error codes or messages you have experienced.
• If you are using Arm Performance Libraries, include details about the the system and the library. To

get the necessary and library information, run the libarmpl.so file: ./<install_location>/lib/
libarmpl.so.

 Note

— You can find the libarmpl.so file in the /lib/ directory of your installation.
— You must load the Arm Performance Libraries environment module for your system before

running libarmpl.so.

Related information
Contact Arm Support
License Arm Allinea Studio
Add an Arm Allinea Studio named user license
Set up an Arm Allinea Studio floating license
Change the license file location

7 Troubleshoot
7.1 Licensing error codes and corrective actions

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-160

Non-Confidential

https://developer.arm.com/support
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing/adding-a-named-user-license-for-arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing/setting-up-a-floating-license-for-arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/licensing/changing-the-license-file-location

7.2 Application segfaults at -Ofast optimization level
A program runs correctly when the binary is built using the -O3 optimization level, but encounters a
runtime crash or segfault with -Ofast optimization level.

Condition

The runtime segfault only occurs when -Ofast is used to compile the code. The segfault disappears
when you add the -fno-stack-arrays option to the compile line. .

The -fstack-arrays option is enabled by default at -Ofast

When the -fstack-arrays option is enabled, either on its own or enabled with -Ofast by default, the
compiler allocates arrays for all sizes using the local stack for local and temporary arrays. This helps to
improve performance, because it avoids slower heap operations with malloc() and free(). However,
applications that use large arrays might reach the Linux stack-size limit at runtime and produce program
segfaults. On typical Linux systems, a default stack-size limit is set, such as 8192 kilobytes. You can
adjust this default stack-size limit to a suitable value.

Solution

Use -Ofast -fno-stack-arrays instead. The combination of -Ofast -fno-stack-arrays disables
automatic arrays on the local stack, and keeps all other -Ofast optimizations. Alternatively, to set the
stack so that it is larger than the default size, call ulimit -s unlimited before running the program.

If you continue to experience problems, Contact Arm Support.

7 Troubleshoot
7.2 Application segfaults at -Ofast optimization level

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-161

Non-Confidential

https://developer.arm.com/support

7.3 Compiling with the -fpic option fails when using GCC compilers
Describes the difference between the -fpic and -fPIC options when compiling for Arm with GCC and
Arm Compiler for Linux.

Condition
Failure can occur at the linking stage when building Position-Independent Code (PIC) on AArch64 using
the lower-case -fpic compiler option with GCC compilers (gfortran, gcc, g++), in preference to using
the upper-case -fPIC option.

 Note

• This issue does not occur when using the -fpic option with Arm Compiler for Linux (armflang/
armclang/armclang++), and it also does not occur on x86_64 because -fpic operates the same as -
fPIC.

• PIC is code which is suitable for shared libraries.

Cause
Using the -fpic compiler option with GCC compilers on AArch64 causes the compiler to generate one
less instruction per address computation in the code, and can provide code size and performance benefits.
However, it also sets a limit of 32k for the Global Offset Table (GOT), and the build can fail at the
executable linking stage because the GOT overflows.

 Note

When building PIC with Arm Compiler for Linux on AArch64, or building PIC on x86_64, -fpic does
not set a limit for the GOT, and this issue does not occur.

Solution

Consider using the -fPIC compiler option with GCC compilers on AArch64, because it ensures that the
size of the GOT for a dynamically linked executable will be large enough to allow the entries to be
resolved by the dynamic loader.

7 Troubleshoot
7.3 Compiling with the -fpic option fails when using GCC compilers

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-162

Non-Confidential

7.4 Error messages when installing Arm® Compiler for Linux
If you experience a problem when installing Arm Compiler for Linux, consider the following points.

• To perform a system-wide install, ensure that you have the correct permissions. If you do not have the
correct permissions, the following errors are returned:
— Systems using RPM Package Manager (RPM):

error: can't create transaction lock on /var/lib/rpm/.rpm.lock (Permission denied)

— Debian systems using dpkg:

dpkg: error: requested operation requires superuser privilege

• If you install using the --install-to <directory> option, ensure that the system you are installing
on has the required rpm or dpkg binaries installed. If it does not, the following errors are returned:
— Systems using RPM Package Manager (RPM):

Cannot find 'rpm' on your PATH. Unable to extract .rpm files.

— Debian systems using dpkg:

Cannot find 'dpkg' on your PATH. Unable to extract .deb files.

7 Troubleshoot
7.4 Error messages when installing Arm® Compiler for Linux

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-163

Non-Confidential

7.5 Error moving Arm® Compiler for Linux modulefiles
Describes a workaround to use if you move Arm Compiler for Linux environment modulefiles.

Moving installed Arm® Compiler for Linux modulefiles causes them to stop working

By default, Arm Compiler for Linux modulefiles are configured to find the Arm Compiler for Linux
binaries at a location that is relative to the modulefiles.

Moving or copying the modulefiles to a new location means that the installed binaries are no longer at
the same relative location to the new modulefile location. When trying to locate binaries, the broken
relative links between the new modulefile location and the location of the installed binaries causes the
new modulefiles to fail.

Workaround
Move the dependency modulefile directories /moduledeps and module_globals with the modulefile or
modulefile directory you are moving:
• If you move an individual modulefile, such as the arm<major-version>/<package-version>

modulefile, move the /moduledeps/ and /module_globals/ modulefile directories to one directory
level above the new location of the modulefile you moved.

• If you move the /modulefiles/ directory, move the /moduledeps/ and /module_globals/
modulefile directories to the same new directory location as /modulefiles/.

 Note

<package-version> is equivalent to <major-version>.<minor-version>{.<patch-version>}.

Related information
Arm Allinea Studio installation instructions

7 Troubleshoot
7.5 Error moving Arm® Compiler for Linux modulefiles

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-164

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation

7.6 Code is not bit-reproducible
Describes the compiler options to use to generate bit-reproducible code.

Condition
Code is being compiled with autovectorization enabled (using one of the -O2, -O3, or -Ofast
optimization levels, or using -fvectorize), and compiled with the -fsimdmath option.

 Note

For armflang, -fsimdmath is enabled by default.

Autovectorization with -fsimdmath is preventing bit-reproducibility

The -fsimdmath option allows the compiler to generate calls to vectorized library routines. The
vectorized library routines might use different algorithms to the scaler routine algorithms, and bit-
reproducibility between the two versions is not guaranteed. In other words, both the scalar and vector
routines give the same result, but the scalar version might not give the exact same bits as the vector
version.

Therefore, when -fsimdmath is used on your compile line alongside enabling autovectorization, the
compiler might vectorize loops using calls to vectorized math routines, affecting the bit reproducibility.

Solution

If you require your code to be bit reproducible, compile your code using the -fno-simdmath option.

7 Troubleshoot
7.6 Code is not bit-reproducible

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-165

Non-Confidential

7.7 binutils does not automatically unload with module unload
Describes what to do if you have unloaded the Arm Compiler for Linux modulefile, but still see 'binutils'
loaded.

Conditions

The Arm Compiler for Linux modulefile has been loaded for a compiling session, and at the end of the
compiling session, the Arm Compiler for Linux modulefile has been unloaded using the module unload
<modulefile> command.

After unloading the Arm Compiler for Linux modulefile, the 'binutils' modulefile remains loaded. If you
use any other utility tools that use 'binutils', such as ld or objdump, they will use the incorrect 'binutils'
modulefile on your system.

 Note

• If you use module purge to unload all loaded modulefiles, you will not experience this issue.
• This unloading behavior applies to both Environment Modules-based systems and lmod environment

modules-based systems.

Cause

'binutils' is required by the Arm Compiler for Linux and the binutils modulefile is automatically loaded
when the Arm Compiler for Linux modulefile is loaded. However,the 'binutils' modulefile is not
automatically unloaded when the Arm Compiler for Linux modulefile is unloaded using the module
unload command.

Workaround

At the end of your compiling session, you must explicitly unload both the Arm Compiler for Linux and
'binutils' modulefiles. Alternatively, you can unload all modulefiles at once, for example, using the
module purge command.

7 Troubleshoot
7.7 binutils does not automatically unload with module unload

101380_2100_00_en Copyright © 2018–2021 Arm Limited or its affiliates. All rights
reserved.

7-166

Non-Confidential

https://modules.readthedocs.io/en/latest/index.html
https://lmod.readthedocs.io/en/latest/
https://lmod.readthedocs.io/en/latest/

	Arm® Fortran Compiler Developer and Reference Guide
	Table of Contents
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Get started
	1.1 : Arm® Fortran Compiler
	1.2 : Get started with Arm® Fortran Compiler
	1.3 : Get support

	2 : Compile and link
	2.1 : Using the compiler
	2.2 : Compile Fortran code for Arm SVE and SVE2-enabled processors
	2.3 : Generate annotated assembly code

	3 : Optimize
	3.1 : Directives
	3.1.1 : ivdep
	3.1.2 : omp simd
	3.1.3 : prefetch
	3.1.4 : unroll
	3.1.5 : nounroll
	3.1.6 : vector always
	3.1.7 : novector

	3.2 : Link Time Optimization (LTO)
	3.2.1 : What is Link Time Optimization (LTO)
	3.2.2 : Compile with Link Time Optimization (LTO)
	3.2.3 : armllvm-ar and reference
	3.2.4 : armllvm-ranlib reference

	3.3 : Arm Optimization Report
	3.3.1 : How to use Arm Optimization Report
	3.3.2 : arm-opt-report reference

	3.4 : Optimization remarks
	3.4.1 : Enable optimization remarks

	3.5 : Profile Guided Optimization (PGO)
	3.5.1 : How to compile with Profile Guided Optimization (PGO)
	3.5.2 : llvm-profdata reference

	4 : Compiler options
	4.1 : Arm Fortran Compiler Options by Function
	4.2 : -###
	4.3 : -armpl=
	4.4 : -c
	4.5 : -config
	4.6 : -cpp
	4.7 : -D
	4.8 : -E
	4.9 : -fassociative-math
	4.10 : -fbackslash
	4.11 : -fconvert=
	4.12 : -ffast-math
	4.13 : -ffixed-form
	4.14 : -ffixed-line-length-
	4.15 : -ffp-contract=
	4.16 : -ffree-form
	4.17 : -finline-functions
	4.18 : -flto
	4.19 : -fnative-atomics
	4.20 : -fno-crash-diagnostics
	4.21 : -fno-fortran-main
	4.22 : -fopenmp
	4.23 : -frealloc-lhs
	4.24 : -frecursive
	4.25 : -fsave-optimization-record
	4.26 : -fsigned-zeros
	4.27 : -fsimdmath
	4.28 : -fstack-arrays
	4.29 : -fsyntax-only
	4.30 : -ftrapping-math
	4.31 : -fvectorize
	4.32 : -g
	4.33 : -g0
	4.34 : -gcc-toolchain=
	4.35 : -gline-tables-only
	4.36 : -help
	4.37 : -help-hidden
	4.38 : -I
	4.39 : -i8
	4.40 : -isystem
	4.41 : -L
	4.42 : -l
	4.43 : -march=
	4.44 : -mcpu=
	4.45 : -nocpp
	4.46 : -O
	4.47 : -o
	4.48 : -print-search-dirs
	4.49 : -Qunused-arguments
	4.50 : -r8
	4.51 : -S
	4.52 : -shared
	4.53 : -static
	4.54 : -static-arm-libs
	4.55 : -U
	4.56 : -v
	4.57 : -version
	4.58 : -Wl,
	4.59 : -Xlinker

	5 : Fortran language reference
	5.1 : Data types and file extensions
	5.1.1 : Data types
	5.1.2 : Supported file extensions
	5.1.3 : Logical variables and constants
	5.1.4 : C/Fortran inter-language calling
	5.1.5 : Character
	5.1.6 : Complex
	5.1.7 : Fortran implementation notes

	5.2 : Intrinsics
	5.2.1 : Fortran intrinsics overview
	5.2.2 : Bit manipulation functions and subroutines
	5.2.3 : Elemental character and logical functions
	5.2.4 : Vector/Matrix functions
	5.2.5 : Array reduction functions
	5.2.6 : String construction functions
	5.2.7 : Array construction manipulation functions
	5.2.8 : General inquiry functions
	5.2.9 : Numeric inquiry functions
	5.2.10 : Array inquiry functions
	5.2.11 : Transfer functions
	5.2.12 : Arithmetic functions
	5.2.13 : Miscellaneous functions
	5.2.14 : Subroutines
	5.2.15 : Fortran 2003 functions
	5.2.16 : Fortran 2008 functions
	5.2.17 : Unsupported functions
	5.2.18 : Unsupported subroutines

	5.3 : Statements
	5.4 : Predefined macro support

	6 : Standards support
	6.1 : Fortran 2003
	6.2 : Fortran 2008
	6.3 : OpenMP 4.0
	6.4 : OpenMP 4.5

	7 : Troubleshoot
	7.1 : Licensing error codes and corrective actions
	7.2 : Application segfaults at -Ofast optimization level
	7.3 : Compiling with the -fpic option fails when using GCC compilers
	7.4 : Error messages when installing Arm® Compiler for Linux
	7.5 : Error moving Arm® Compiler for Linux modulefiles
	7.6 : Code is not bit-reproducible
	7.7 : binutils does not automatically unload with module unload

