
Arm® Instruction Emulator
Version 21.0

Developer and Reference Guide

Copyright © 2020, 2021 Arm Limited or its affiliates. All rights reserved.
102190_2100_00_en

Arm® Instruction Emulator
Developer and Reference Guide
Copyright © 2020, 2021 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

2010-00 21 August 2020 Non-Confidential First release for Arm Instruction Emulator version 20.1

2100-00 30 March 2021 Non-Confidential Update for Arm Instruction Emulator version 21.0

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is
not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2020, 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

 Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive. Arm strives to
lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please contact
terms@arm.com.

 Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

https://developer.arm.com
mailto:terms@arm.com

Contents
Arm® Instruction Emulator Developer and
Reference Guide

Preface
About this book 9

Chapter 1 Get started
1.1 Install Arm® Instruction Emulator 1-12
1.2 Get started with Arm® Instruction Emulator 1-14
1.3 Troubleshoot: Use -s 1-17

Chapter 2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator .

.. 2-19
2.2 Build an emulation-aware instrumentation client 2-29
2.3 Building custom analysis instrumentation .. 2-35
2.4 About instrumentation clients 2-41
2.5 View the drrun command 2-44

Chapter 3 Reference
3.1 armie command reference 3-47
3.2 Emulation Functions Reference 3-49

Chapter 4 Further resources
4.1 Arm® Instruction Emulator resources 4-52

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

4.2 Scalable Vector Extension (SVE) resources 4-53

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

List of Figures
Arm® Instruction Emulator Developer and
Reference Guide

Figure 2-1 Plot of SVE Instructions ... 2-23
Figure 2-2 Diagram showing the key functions in opcodes_emulated.cpp ... 2-42

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

List of Tables
Arm® Instruction Emulator Developer and
Reference Guide

Table 3-1 armie command options .. 3-47
Table 3-2 data fields for emulated_instr_t ... 3-50

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

Preface

This preface introduces the Arm® Instruction Emulator Developer and Reference Guide.

It contains the following:
• About this book on page 9.

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

 About this book
This guide helps you use Arm Instruction Emulator (ArmIE). Arm Instruction Emulator runs on
AArch64 platforms and is a software tool that emulates Scalable Vector Extension (SVE) instructions.
Arm Instruction Emulator allows you to run your compiled SVE application binaries on hardware that is
not SVE-enabled.

 Using this book

This book is organized into the following chapters:

Chapter 1 Get started
This chapter describes how to install and get started with Arm Instruction Emulator.

Chapter 2 Tutorials
Learn how to build instrumentation clients and custom analysis instrumentation for Arm
Instruction Emulator, and how to use Arm Instruction Emulator to analyze your Scalable Vector
Extension (SVE) applications.

Chapter 3 Reference
This chapter contains reference information for armie command and the emulation functions
included with Arm Instruction Emulator.

Chapter 4 Further resources
Lists the additional resources available which you can to use to learn more about Arm Instruction
Emulator or the Scalable Vector Extension (SVE).

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

monospace bold
Denotes language keywords when used outside example code.

<and>

Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

 Preface
 About this book

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

https://developer.arm.com/support/arm-glossary

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Instruction Emulator Developer and Reference Guide.
• The number 102190_2100_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Documentation.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Chapter 1
Get started

This chapter describes how to install and get started with Arm Instruction Emulator.

Arm Instruction Emulator (armie) is an emulator that runs on any Armv8-A-based AArch64 platform
and emulates Scalable Vector Extension (SVE) instructions. Arm Instruction Emulator lets you develop
SVE code without needing access to SVE-enabled hardware.

It contains the following sections:
• 1.1 Install Arm® Instruction Emulator on page 1-12.
• 1.2 Get started with Arm® Instruction Emulator on page 1-14.
• 1.3 Troubleshoot: Use -s on page 1-17.

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-11

Non-Confidential

1.1 Install Arm® Instruction Emulator
Follow these steps to download and install Arm Instruction Emulator.

Prerequisites

Ensure that either Environment Modules or the Lmod Environment Modules system are installed on your
machine. Some information on how to install Environment Modules is available in the Arm Allinea
Studion environment configuration documentation.

Procedure
1. Download the appropriate Arm Instruction Emulator package for your Linux host platform. To

download Arm Instruction Emulator, see the Arm Instruction Emulator downloads page on the Arm
Developer website.

2. Extract the downloaded package:

tar -xvzf <package_name>.tar.gz

replacing <package_name> with the full name of the downloaded package.
3. To see the extracted files, change to the extracted package directory:

cd <package_name>

4. Run the installation script as a privileged user:

sudo ./arm-instruction-emulator-21.0*_aarch64-linux-rpm.sh <option> <option>

where <option> are options supported by the installation script. Supported options include:

-a, --accept

Automatically accept the EULA (the EULA still displays).

-i, --install-to <location>

Install to the given directory.

Use this option if you do not have sudo rights to install to /opt/arm or another central
location.

-f, --force

Force an install attempt to a non empty directory.

-h, --help

Display this table in the form of a help message in the terminal.

If no options are supplied, and you run a default installation, the packages are unpacked
to /opt/arm/<package_name>. If you use the -i (or --install-to) option to specify a custom
install location, such as <install-dir>:

./<package_name>.sh --install-to <install_dir>

The package will be installed to the <install_dir> that you pass to -i (or --install-to).
 Note

If you use the --install-to option, you need to manually make the installation and module files
available to other users, if they require them.

5. Unless you have included the -a (or --accept) option, the installer displays the EULA and prompts
you to agree to the terms. To agree, type 'yes' at the prompt. For more information about the release
contents, see the release notes, located in the <install-dir>/<package_name> directory.

Arm Instruction Emulator is installed on your system.

1 Get started
1.1 Install Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-12

Non-Confidential

https://modules.readthedocs.io/en/latest/index.html
https://lmod.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/index.html
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation/configure
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-software/download

Next Steps

• Configure your Linux environment:
1. To see which environment modules are available on your system, run:

module avail

2. If you do not see the Arm Instruction Emulator environment module, configure the MODULEPATH
environment variable to include the Arm Instruction Emulator installation directory:

export MODULEPATH=$MODULEPATH:<install-dir>/modulefiles/

Re-check which which environment modules are now available on your system:

module avail

3. Load the appropriate Arm Instruction Emulator module for the processors in your system, and for
the compiler you are using:

module load armie<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load armie21/21.0

Tip: Add the module load command to your .profile to run it automatically every time you log
in.

4. Check your environment by examining the PATH variable. It should contain the appropriate Arm
Instruction Emulator bin directory from <install-dir>/:

echo $PATH /opt/arm/arm-instruction-emulator-21.0_Generic-AArch64_RHEL-8_aarch64-
linux/bin64:...

• To learn how to use Arm Instruction Emulator, refer to Get started with Arm® Instruction Emulator
on page 1-14.

• For information about environment variables used by the Arm-provided suite of server and High
Performance Computing (HPC) tools, see the Environment variables reference topic.

• To uninstall Arm Instruction Emulator, run the uninstall.sh script located in <install-dir>/arm-
instruction-emulator-<version>_<microarch>_<OS>-<OS_Version>_aarch64-linux/
uninstall.sh

1 Get started
1.1 Install Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-13

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/help/help-and-tutorials/environment-variables-reference-for-arm-hpc-tools

1.2 Get started with Arm® Instruction Emulator
This tutorial uses a couple of simple examples to demonstrate how to compile Scalable Vector Extension
(SVE) code and run the resulting binary with Arm Instruction Emulator.

Before you begin
• This task uses Arm Compiler for Linux (part of Arm Allinea Studio) as the compiler. Alternatively,

you can use GCC for the compilation steps.

If you want to use Arm Compiler for Linux, download and install Arm Compiler for Linux for your
platform.

• Load the Arm Instruction Emulator module for your platform:

module load armie<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load armie21/21.0

To check that your environment is now configured to run Arm Instruction Emulator, examine the
PATH variable and confirm that it contains the appropriate Arm Instruction Emulator bin directory
from your installation location <install-dir>:

echo $PATH /<install-dir>/arm-instruction-emulator-21.0_Generic-AArch64_RHEL-8_aarch64-
linux/bin:...

Procedure
1. Compile your source code and generate an executable binary.
2. Run the binary with Arm Instruction Emulator. Either:

a. Invoke Arm Instruction Emulator and specify the vector length to use:

armie -msve-vector-bits=<length> ./<binary>

b. Invoke Arm Instruction Emulator with an instrumentation (-i) or emulation (-e) client, and
specify the vector length to use:

armie -msve-vector-bits=<arg> -e <emulation_client> -i <instrumentation_client> -- ./
<binary>

Instrumentation and emulation clients enable you to extract data on the execution of your binary.

Example: Compile and run a 'Hello World' application
In this example you will write a simple 'Hello World' application in C, compile it with Arm Compiler for
Linux, and then run it using Arm Instruction Emulator. The example does not contain SVE code.
1. Load the Arm Compiler for Linux module for your platform:

module load arm<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load arm21/21.0

2. Create a simple 'Hello World' C application and save it as a file named hello.c.

/* Hello World */

#include <stdio.h>

int main()
{
 printf("Hello World\n");
 return 0;
}

1 Get started
1.2 Get started with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-14

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/downloads/arm-allinea-studio
https://developer.arm.com/tools-and-software/server-and-hpc/arm-allinea-studio/installation

3. To generate an executable binary, compile your application with Arm C/C++ Compiler.

armclang -O3 -march=armv8-a+sve -o hello hello.c

The -O3 option ensures the highest optimization level with auto-vectorization is enabled. The -
march=armv8-a+sve option targets hardware with the Armv8-A architecture, and generates SVE
instructions in the executable binary.

 Note

In this example, no SVE code is used. However, it is good practice to enable the highest level of auto-
vectorization and target an SVE-enabled architecture when compiling any code to be run using Arm
Instruction Emulator.

4. Run the generated binary hello using Arm Instruction Emulator:

armie -msve-vector-bits=256 ./hello

Which returns:

Hello World

For this simple 'Hello World' example, Arm Instruction Emulator runs the code on an emulated SVE-
enabled architecture without using SVE instructions.

To use Arm Instruction Emulator to its full potential, that is, to emulate SVE instructions, we must
look at a more complex application. An example of an application containing SVE code is available
in the next section of this tutorial.

Example: Compile, vectorize, and run an application with SVE code
This example compiles and vectorizes some C code that targets an SVE-enabled Armv8-A architecture,
then uses Arm Instruction Emulator to run the SVE binary.
1. Load the Arm Compiler for Linux module for your platform:

module load arm<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.

For example:

module load arm21/21.0

2. Create a file called example.c, containing the following code:

// example.c
#include <stdio.h>
#include <stdlib.h>

#define ARRAYSIZE 1024
int a[ARRAYSIZE];
int b[ARRAYSIZE];
int c[ARRAYSIZE];
void subtract_arrays(int *restrict a, int *restrict b, int *restrict c)
{
for (int i = 0; i < ARRAYSIZE; i++)
{
 a[i] = b[i] - c[i];
}
}

int main() {
for (int i = 0; i < ARRAYSIZE; i++)
{
 // Generate a random number between 200 and 300
 b[i] = (rand() % 100) + 200;
 // Generate a random number between 0 and 100
 c[i] = rand() % 100;
}

subtract_arrays(a, b, c);

printf("i \ta[i] \tb[i] \tc[i] \n");
printf("=============================\n");

1 Get started
1.2 Get started with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-15

Non-Confidential

for (int i = 0; i < ARRAYSIZE; i++)
{
 printf("%d \t%d \t%d \t%d\n", i, a[i], b[i], c[i]);
}

}

This C code subtracts corresponding elements in two arrays, and writes the result to a third array. The
three arrays are declared using the restrict keyword, which indicates to the compiler that they do
not overlap in memory.

3. Compile the C code with Arm C/C++ Compiler:

armclang -O3 -march=armv8-a+sve -o example example.c

4. Run the binary with Arm Instruction Emulator:

armie -msve-vector-bits=256 ./example

The application returns:

i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
2 258 293 35
\...
1021 165 234 69
1022 232 295 63
1023 204 235 31

The SVE architecture extension specifies an IMPLEMENTATION DEFINED vector length. The -msve-
vector-bits option lets you specify the vector length for Arm Instruction Emulator to use. The
vector length must be a multiple of 128 bits, with a maximum of 2048 bits. To list all valid vector
lengths, use the -mlist-vector-lengths option :

armie -mlist-vector-lengths

Which returns:

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Next Steps

To learn how to analyze your application using the emulation and instrumentation clients available for
Arm Instruction Emulator, see Analyze Scalable Vector Extension (SVE) applications with Arm®

Instruction Emulator on page 2-19.

Related concepts
1.3 Troubleshoot: Use -s on page 1-17
Related references
3.1 armie command reference on page 3-47
Related information
Learn more about Arm Instruction Emulator
DynamoRIO dynamic binary instrumentation tool platform
DynamoRIO API
DynamoRIO API Usage Tutorial
Porting and Optimizing HPC Applications for Arm SVE guide

1 Get started
1.2 Get started with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
http://dynamorio.org
https://dynamorio.org/files.html
https://dynamorio.org/files.html/API_tutorial
https://developer.arm.com/documentation/101726/latest

1.3 Troubleshoot: Use -s
Describes how you can use the -s option to better understand what the emulation commands and files
Arm Instruction Emulator uses, and what to send to Arm Support if you require further assistance.

The -s and --show-drrun-cmd options

To show how Arm Instruction Emulator used DynamoRIO's drrun command to emulate and instrument
an SVE binary, invoke the -s (or --show-drrun-cmd) option.

For example, in the following command line, libsve_512.so is the SVE emulation client and
libinscount_emulated.so is the instrumentation client:

armie -s -msve-vector-bits=512 -i libinscount_emulated.so -- ./example_sve

Which returns:

/path/to/armie/bin64/drrun -client /path/to/armie/lib64/release/libsve_512.so 0 "" -client /
path/to/armie/samples/bin64/libinscount_emulated.so 1 "" -max_bb_instrs 32 -max_trace_bbs 4
-- ./example_sve
Client inscount is running
. . .

The -s option allows you to understand how Arm Instruction Emulator uses DynamoRIO, and can be
used to pass parameters and debug options to DynamoRIO's drrun command. For example, the inscount
client has an -only_from_app option which only counts the application instructions and ignores
libraries. Passing the -only_from_app option using the drrun command:

/path/to/install/bin64/drrun -client /path/to/install/lib64/release/libsve_512.so 0 "" -
client /path/to/install/samples/bin64/libinscount_emulated.so 1 "-only_from_app" -
max_bb_instrs 32 -max_trace_bbs 4 -- ./example_sve

returns:

Client inscount is running
955 instructions executed of which 709 were SVE instructions

which shows that the application used 955 non-SVE instructions, compared to 118497 when also
counting library instructions.

The preferred method to pass command line arguments to instrumentation clients is to use the -a or --
arg-iclient option. For more information, see armie command reference on page 3-47. The preceding
method, which uses the drrun command, is useful in cases where both the command line arguments to
instrumentation clients are required, as well as the parameters and debug options to DynamoRIO's drrun
command.

Contact Arm Support

In the event of a program crash, the operating system kernel creates a core dump file. The location and
name of this core dump file depends on your system's core dump configuration. If your configuration
specifies that core dump filenames include the name of the crashed binary, note that this is the name of
the executable being emulated rather than the Arm Instruction Emulator binary name (armie).

Core dump files should be sent to Arm support along with the output of armie --version. However, if
you have confidentiality concerns regarding sensitive data in the core dump file, do not send the core
dump to Arm. However, without a core dump file, the Arm Support team might not be able to investigate
your issue.

To request technical support, Contact Arm Support.

1 Get started
1.3 Troubleshoot: Use -s

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/support

Chapter 2
Tutorials

Learn how to build instrumentation clients and custom analysis instrumentation for Arm Instruction
Emulator, and how to use Arm Instruction Emulator to analyze your Scalable Vector Extension (SVE)
applications.

It contains the following sections:
• 2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

on page 2-19.
• 2.2 Build an emulation-aware instrumentation client on page 2-29.
• 2.3 Building custom analysis instrumentation on page 2-35.
• 2.4 About instrumentation clients on page 2-41.
• 2.5 View the drrun command on page 2-44.

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-18

Non-Confidential

2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction
Emulator

Describes how to use the instrumentation and emulation clients and run your applications with Arm
Instruction Emulator.

You can use Arm Instruction Emulator without any instrumentation or emulation clients, as described in
Get started with Arm® Instruction Emulator on page 1-14, to verify that the code you have developed can
run on SVE hardware. However, if you are developing high-performance applications and want to gain
insights into their execution behavior, runtime analysis is required . Runtime analysis enables you to
identify heavily-used loops and instruction sequences, so that improvements can be made to execution
speed and memory access.

To emulate and instrument SVE binaries on AArch64 hardware, Arm Instruction Emulator uses
DynamoRIO . DynamoRIO is a publicly available Dynamic Binary Instrumentation (DBI) tool platform
which supports x86 and Arm binaries. DynamoRIO provides an API which enables you to write your
own binary-level runtime instrumentation and supply some example instrumentation. Each Arm
Instruction Emulator release integrates a stable version of DynamoRIO.

Arm Instruction Emulator also provides a set of instrumentation clients which can be used to analyze
SVE binaries at runtime. In this context, 'instrumentation client' refers to how Arm Instruction Emulator
uses DynamoRIO to work as an analysis tool and an emulator.

 Note

Before looking at an example of an instrumentation client for emulated binaries using Arm Instruction
Emulator, Arm recommends that you understand the basic principles of instrumenting binaries using the
DynamoRIO API. For more information, see the DynamoRIO API usage tutorial.

For example, one Arm Instruction Emulator instrumentation feature is called Regions-of-Interest (RoI).
Sometimes, when analyzing large, complex, and long running applications, it is necessary to limit the
amount of runtime data collected (such as memory traces, instruction, and opcode counts) to specific
parts of code. You can use the RoI feature to collect runtime data for regions of the code that are marked
with RoI markers. Before you can add RoI markers and build the application, you must have access to
the source code under analysis. To mark a RoI, use start and stop macros in the source. These RoI
markers are described in an example below.

 Note

There are restrictions to the use of RoI markers in source code. RoIs must not be nested and they must
not overlap. Violating these restrictions will result in undefined behavior.

To emulate and analyze an SVE binary, invoke Arm Instruction Emulator with an instrumentation client
and the SVE binary. The client is a shared object file which uses the DynamoRIO API to capture and
process wanted runtime events.

Before you begin
• Ensure you have loaded the Arm Instruction Emulator environment module for your platform:

module load armie<major-version>/<package-version>

where <package-version> is <major-version>.<minor-version>{.<patch-version>}.
• Ensure you have already compiled your application binary.

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-19

Non-Confidential

http://dynamorio.org
https://dynamorio.org/files.html
https://dynamorio.org/files.html/API_tutorial

Procedure
1. Invoke Arm Instruction Emulator with an instrumentation (-i <instrumentation_client>) or

emulation (-e <emulation_client>) client and the binary, use:

armie -msve-vector-bits=<arg> -e <emulation_client> -i <instrumentation_client> -- ./
<binary>

2. Analyze the results provided by the clients.

Example: Analyze an application with SVE code

The following example demonstrates how to count native AArch64 as well as emulated SVE
instructions.

event_bb_analysis() is the function which counts instructions in the sample client :file::<install-dir>/
arm-instruction-emulator/samples/inscount_emulated.cpp.

 /* Count instructions */
bb_counts.native_instrs = bb_counts.emulated_instrs = 0;
bool is_emulation = false;
for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
 next_instr = instr_get_next(instr);

 if (drmgr_is_emulation_start(instr)) { ←[1]
 bb_counts.emulated_instrs++;
 is_emulation = true;
 /* Data about the emulated instruction can be extracted from the
 * start label using drmgr_get_emulated_instr_data().
 */
 emulated_instr_t emulated;
 drmgr_get_emulated_instr_data(instr, &emulated); ←[2]
 dr_printf("SVE: %p\t", emulated.pc);
 int *sveinstr;
 sveinstr = ((int *)instr_get_raw_bits(emulated.instr));
 dr_printf("0x%08x\n", *sveinstr);

 continue;
 }
 if (drmgr_is_emulation_end(instr)) { ←[3]
 is_emulation = false;
 continue;
 }
 if (is_emulation)
 continue;
 if (!instr_is_app(instr))
 continue;
 bb_counts.native_instrs++;
}

 /* Insert clean call */
 dr_insert_clean_call(drcontext, bb, instrlist_first_app(bb),
 (void *)inscount, false /* save fpstate */, 2,
 OPND_CREATE_INT64(bb_counts.native_instrs),
 OPND_CREATE_INT64(bb_counts.emulated_instrs))

The count instructions example function is inserted at the end of each basic-block, at transformation
time, and iterates over each instruction in a basic-block, at execution time.

 Note

The difference between transformation and execution is described in the Code Transformation and
code Execution section of About instrumentation clients on page 2-41.

In the count instructions example function:

• bb_counts.native_instrs and bb_counts.emulated_instrs, increment depending on if the
instruction is emulated or not.

The count instructions example function distinguishes between emulated and native instructions
using the drmgr_is_emulation_start() ([1]) and drmgr_is_emulation_end() ([3]) functions of
DynamoRIO.

• Where an instruction is the start of a sequence of instructions that emulate an SVE instruction,
drmgr_is_emulation_start() returns true.

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-20

Non-Confidential

The drmgr_is_emulation_start() instruction also contains data about the instruction being
emulated. The instruction data can be extracted using drmgr_get_emulated_instr_data() ([2]).

• Where an instruction is the last instruction of a sequence of instructions that emulate an SVE
instruction, drmgr_is_emulation_end() returns true.

 Note

The reference documentation for these functions is not yet available on the DynamoRIO web site. For a
full description of these functions, see Emulation Functions Reference on page 3-49.

To extract useful information about the instruction being emulated, you can use the
drmgr_get_emulated_instr_data() function, the PC address, and the instruction encoding.
1. Run Arm Instruction Emulator with the libinscount_emulated.so instrumentation client on your

example code:

armie -msve-vector-bits=512 -i libinscount_emulated.so -- ./example_sve

Which returns:

Client inscount is running
SVE: 0x000000000040053c 0x04a0e3ef
SVE: 0x0000000000400554 0x04a14001
SVE: 0x000000000040055c 0x25aa1fe0
SVE: 0x0000000000400560 0x05a039e0
SVE: 0x0000000000400570 0xe5494101
SVE: 0x0000000000400574 0x04b0e3e9
SVE: 0x0000000000400578 0x04a00021
SVE: 0x000000000040057c 0x25aa1d20
SVE: 0x0000000000400570 0xe5494101
SVE: 0x0000000000400574 0x04b0e3e9
SVE: 0x0000000000400578 0x04a00021
SVE: 0x000000000040057c 0x25aa1d20
SVE: 0x00000000004005a8 0x25ac1fe0
SVE: 0x00000000004005b4 0xa5494100
SVE: 0x00000000004005b8 0xa54941a1
SVE: 0x00000000004005bc 0x85604140
SVE: 0x00000000004005c0 0x04a10000
SVE: 0x00000000004005c4 0xe5494160
SVE: 0x00000000004005c8 0x04b0e3e9
SVE: 0x00000000004005cc 0x25ac1d20
SVE: 0x00000000004005b4 0xa5494100
SVE: 0x00000000004005b8 0xa54941a1
SVE: 0x00000000004005bc 0x85604140
SVE: 0x00000000004005c0 0x04a10000
SVE: 0x00000000004005c4 0xe5494160
SVE: 0x00000000004005c8 0x04b0e3e9
SVE: 0x00000000004005cc 0x25ac1d20
120827 instructions executed of which 709 were emulated instructions

2. To convert the encodings output by dr_printf("0x%08x\n", *sveinstr) to instruction
mnemonics, use the example helper script /<install-dir>/arm-instruction-emulator/bin64/
enc2instr.py. enc2instr.py shows the use of the enc2instr() function and can be copied and
modified for your own output transformations.

Example: Analyze the effect of the vector length on the number of AArch64 and
emulated SVE instructions
This example uses the same instrumentation client that was used in the preceding example,
libinscount_emulated.so. However, in this example we show how you can use
libinscount_emulated.so to investigate the effect that vector length has on the number of SVE
instructions. For example, to minimize them and help reduce time spent in execution.
1. Invoke Arm Instruction Emulator with an instrumentation client named libinscount_emulated.so

and run the example binary:

armie -msve-vector-bits=128 -i libinscount_emulated.so -- ./example_sve

Which returns:

Client inscount is running

SVE: 0x00000000004006c8 0x25a91fe0

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-21

Non-Confidential

SVE: 0x00000000004006d0 0xa54842a0
SVE: 0x00000000004006d4 0xa54842c1
SVE: 0x00000000004006d8 0x04a10400
SVE: 0x00000000004006dc 0xe54842e0
SVE: 0x00000000004006e0 0x04b0e3e8
SVE: 0x00000000004006e4 0x25a91d00
SVE: 0x00000000004006d0 0xa54842a0
SVE: 0x00000000004006d4 0xa54842c1
SVE: 0x00000000004006d8 0x04a10400
SVE: 0x00000000004006dc 0xe54842e0
SVE: 0x00000000004006e0 0x04b0e3e8
SVE: 0x00000000004006e4 0x25a91d00

i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
2 258 293 35
3 194 286 92
. . .
1019 243 290 47
1020 185 261 76
1021 165 234 69
1022 232 295 63
1023 204 235 31

2134094 instructions executed of which 1537 were emulated instructions

Notice the difference in output from the preceding example shown in Get started with Arm®

Instruction Emulator on page 1-14 (see section Compile, vectorize, and run an application with
SVE code) which did not use -i libinscount_emulated.so. The additional information is what the
instrumentation client, libinscount_emulated.so, outputs as part of its analysis of the example
binary as it runs:

Client inscount is running
SVE: 0x00000000004006c8 0x25a91fe0
...
2134094 instructions executed of which 1537 were emulated instructions

2. Run the example binary with each vector length and tabulate the results:

Vector Length 128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

SVE Instructions 1537 769 517 385 313 259 223 193 175 157 145 133 121 115 109 97

3. Plot the results on a line graph:

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-22

Non-Confidential

Figure 2-1 Plot of SVE Instructions

The graph shows us that the largest reduction in SVE instructions executed occurs between 128 and
about 512 bits. This type of analysis of the runtime behavior of an application can be used with other
types of analysis. For example, to study the impact of vector length on performance.

Example: Analyze Regions-of-Interest (RoI)

To avoid large trace files and focus on trace behavior of specific sections of code, you can insert start and
stop trace macros into the source code being analyzed:

#define __START_TRACE() {asm volatile (".inst 0x2520e020");}
#define __STOP_TRACE() {asm volatile (".inst 0x2520e040");}

These start and stop macros instruct Arm Instruction Emulator to start and stop collecting trace data,
which allows you to focus your analysis on specific areas of code, instead of analyzing the entire
application. Focussing on specific sections of code makes the analysis of large long-running applications
much easier and less time-consuming.

The code in this example illustrates the use of the libinscount_emulated.so client, an instrumentation
client that allows you to limit the amount of runtime data collected to specific parts of code. Limiting the
amount of runtime data is particularly useful when analyzing large, complex, or long-running
applications.

The application used in this example, loops, contains two loops. This example uses the RoI feature to
limit instruction counting to a single loop. First, the first loop is investigated, then the second is
investigated and compared. The initial source code for loops is:

#define N 42
int a[N], b[N], c[N];

int main(void) {

 a[0] = 0;
 b[0] = 1;
 c[0] = a[0] + b[0];

for(int i=0; i<N; ++1)

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-23

Non-Confidential

 c[i] = i;

for(int i=0; i<N; ++i)
 a[i] = b[i] + b[c[i]];
}

1. Build and run the example loops application with the libinscount_emulated.so client:

armie -msve-vector-bits=512 -i libinscount_emulated.so ./loops

which returns:

Client inscount is running
89539 instructions executed of which 36 were emulated instructions

All executed instructions are counted.
2. To limit instruction counting to a specific area of code, or the region of interest (RoI), add RoI

markers to the loops source:
• To indicate where to start counting, add the __START_TRACE() marker.
• To indicate where to stop counting, add the __STOP_TRACE() marker.

For example, to wrap the first loop of the loops code in RoI markers, use:

#define N 42
int a[N], b[N], c[N];

#define __START_TRACE() { asm volatile (".inst 0x2520e020"); }
#define __STOP_TRACE() { asm volatile (".inst 0x2520e040"); }

int main(void) {
 __START_TRACE();

 a[0] = 0;
 b[0] = 1;
 c[0] = a[0] + b[0];

for(int i=0; i<N; ++i)
 c[i] = i;

 __STOP_TRACE();

 for(int i=0; i<N; ++i)
 a[i] = b[i] + b[c[i]];
}

3. Build the new binary and call it first_loop.
4. Run first_loop with the libinscount_emulated.so client:

armie -msve-vector-bits=512 -i libinscount_emulated.so -a -roi ./first_loop
Client inscount is running
31 instructions executed of which 16 were emulated instructions

The results are different to the loops run:
• Only the first loop has been instrumented and as a result fewer executed instructions have been

counted at runtime.
• The armie command includes the -a -roi option to inform the libinscount_emulated.so

client. a roi informs the client to enable and disable instruction counting, based on the
__START_TRACE() and __STOP_TRACE() macros. Without the -a -roi option, the client ignores
the macros and counts all instructions producing the same output as for the loops run above:

armie -msve-vector-bits=512 -i libinscount_emulated.so ./first_loop
Client inscount is running
89539 instructions executed of which 36 were emulated instructions

The -a option enables you to pass command line arguments to instrumentation clients. In this
case, the argument is -roi but it can be any string which the client can use to adjust its behavior
at execution time. For a description of the -a option, run armie --help or, see the armie
command reference on page 3-47 section.

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-24

Non-Confidential

5. Next, analyze the second loop. Move the __START_TRACE() and __STOP_TRACE markers to surround
the second for loop:

#define N 42
int a[N], b[N], c[N];

#define __START_TRACE() { asm volatile (".inst 0x2520e020"); }
#define __STOP_TRACE() { asm volatile (".inst 0x2520e040"); }

int main(void) {

 a[0] = 0;
 b[0] = 1;
 c[0] = a[0] + b[0];

 for(int i=0; i<N; ++i)
 c[i] = i;

 __START_TRACE();

 for(int i=0; i<N; ++i)
 a[i] = b[i] + b[c[i]];

 __STOP_TRACE();
}

6. Build the new binary and call it second_loop.
7. Run and analyze the second_loop binary:

armie -msve-vector-bits=512 -i libinscount_emulated.so -a -roi ./second_loop

Which returns:

Client inscount is running
31 instructions executed of which 20 were emulated instructions

In the second_loop run, more SVE instructions are executed than in the first_loop run. More
instructions are run because of the extra vector load and arithmetic instructions in the second loop.

 Note

The example source code is in the samples directory of your Arm Instruction Emulator installation. You
can modify these clients for your own custom analysis requirements.

Traces can be used in post-processing to prune any non-SVE accesses outside the RoI.

In addition to the libinscount_emulated client, the following clients also support __START_TRACE and
__STOP_TRACE: memtrace_emulated, instrace_emulated, meminstrace_emulated, and
opcodes_emulated.

To enable RoIs, all these clients accept the -a -roi Arm Instruction Emulator option. If you do not use
the -a -roi option, RoIs are ignored and all instructions are counted or traced.

Example: Count the dynamic instruction counts

Dynamic instruction counts, or in other words, counting instructions executed by a binary at runtime, is a
useful way of assessing the performance-related behavior of an application. An instruction count client,
libinscount.so, is supplied as an example of how to use the DynamoRIO API with SVE emulation.
The client source code is available as a DynamoRIO example in api/samples/inscount.cpp. Use the -
i (or --iclient) option to run the client with armie, for example:

armie -msve-vector-bits=512 -i libinscount.so -- ./example_sve

Which returns:

Client inscount is running
Instrumentation results: 106384 instructions executed

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-25

Non-Confidential

To compare the number of SVE instructions to the number of native AArch64 instructions executed, use
the libinscount_emulated.so client, for example:

armie -msve-vector-bits=512 -i libinscount_emulated.so -- ./example_sve

Which returns:

Client inscount is running
106384 instructions executed of which 22 were emulated instructions

The source code is available in samples/inscount_emulated.cpp.

Another useful way of assessing the performance-related behavior of an application is to count
instructions executed by opcode type. Such a count can give you more detailed insights into execution
behavior than a total instruction count. For an example, see the Emulating SVE on Armv8 using
DynamoRIO and ArmIE blog.

Example: Examine memory access behavior

The memory access behavior of an executable is another useful aspect of performance. Memory trace
emulation clients for all vector lengths, libmemtrace_sve_<vector length>.so are supplied to work
with the DynamoRIO instrumentation client, libmemtrace_emulated.so. To trace memory accesses,
use the -e and -i options of armie. For example:

armie -e libmemtrace_sve_512.so -i libmemtrace_emulated.so -- ./example_sve

This command creates two trace files in the current directory: a non-SVE AArch64 trace from
libmemtrace_emulated.so, and an SVE trace from libmemtrace_sve_512.so. For example:

head memtrace.example_sve.10120.0000.log
0: 0, 0, 0, 8, 0xffffe31ea730, 0x40043c
1: 0, 0, 0, 8, 0x400460, 0x400448
2: 0, 0, 0, 8, 0x400468, 0x40044c
3: 0, 0, 0, 8, 0x400470, 0x400450
4: 0, 0, 0, 8, 0x420000, 0x400404
5: 0, 0, 1, 16, 0xffffe31ea720, 0x4003e0
6: 0, 0, 0, 8, 0x41fff8, 0x4003e8
7: 0, 0, 1, 16, 0xffffe31ea5c0, 0x400610
8: 0, 0, 1, 16, 0xffffe31ea5d8, 0x400618

head sve-memtrace.example_sve.10120.log
27, -1, 0, 1, 0, (nil), (nil)
40, 0, 0, 0, 64, 0x4200d8, 0x4005e4
41, 0, 0, 0, 64, 0x420030, 0x4005e8
42, 0, 3, 0, 4, 0x420030, 0x4005ec
43, 0, 2, 0, 4, 0x420034, 0x4005ec
44, 0, 2, 0, 4, 0x420038, 0x4005ec
45, 0, 2, 0, 4, 0x42003c, 0x4005ec
46, 0, 2, 0, 4, 0x420040, 0x4005ec
47, 0, 2, 0, 4, 0x420044, 0x4005ec
48, 0, 2, 0, 4, 0x420048, 0x4005ec
. . .
86, 0, 2, 0, 4, 0x4200c8, 0x4005ec
87, 0, 2, 0, 4, 0x4200cc, 0x4005ec
88, 0, 6, 0, 4, 0x4200d0, 0x4005ec
89, 0, 0, 0, 36, 0x420200, 0x4005f4
90, -2, 0, 1, 0, (nil), (nil)

The SVE trace includes start and stop trace entries to delimit the chosen Region-of-Interest (RoI):

start -> xx, -1, 0, 1, 0, (nil), (nil)
stop -> xx, -2, 0, 1, 0, (nil), (nil)

For an explanation on RoI, see the previous example.

The sequence number of the SVE trace is delimited by a comma. The sequence number of a non-SVE
trace is delimited by a colon.

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-26

Non-Confidential

https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/emulating-sve-on-armv8-using-dynamorio-and-armie

To enable you to analyze memory trace files, utilities are provided. For example, the merge utility
produces one file with each trace, in chronological order, from a non-SVE AArch64 trace file and an
SVE trace file:

merge memtrace.example_sve.10120.0000.log sve-memtrace.example_sve.10120.log > merged-
memtrace.log

Memory tracing format

The memory trace uses a comma-separated-value format with the following fields:

sequence, tid, bundle, isWrite, size, addr, pc

Where:

sequence

Sequence number which orders the load/stores across multiple trace files.

tid

Thread id

bundle

Support bundling of multiple mem_refs for gather/scatter/strided accesses.

isWrite

true if store, false if load.

size

Number of bytes that are stored or loaded.

addr

Load or store address.

pc

Instruction address.

Next steps
• Further instrumentation clients are available, that provide different insights, including:

— inscount_emulated.cpp
— instrace_emulated.c
— meminstrace_emulated.c
— memtrace_emulated.c
— opcodes_emulated.cpp

These are RoI-capable and their source code is in the Arm Instruction Emulator installation samples
directory:

/path/to/your/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/

You can modify and enhance these clients for your specific analysis requirements. For examples and
guidance on how to modify and enhance clients, see Building custom analysis instrumentation
on page 2-35.

• For more advanced analysis examples of a real-world application, see Emulating SVE on existing
Armv8-A hardware using DynamoRIO and ArmIE. The blog includes use-case examples of
libopcodes_emulated.so and libmemtrace_simple.so.

Related references
2.3 Building custom analysis instrumentation on page 2-35
Related information
Porting and Optimizing HPC Applications for Arm SVE

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

https://community.arm.com/tools/hpc/b/hpc/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/tools/hpc/b/hpc/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://developer.arm.com/docs/101726/latest

Arm Instruction Emulator

2 Tutorials
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

2.2 Build an emulation-aware instrumentation client
The ability to instrument emulated applications is a recent addition to the DynamoRIO API. Therefore,
most of the samples which come with DynamoRIO (and Arm Instruction Emulator) are not capable of
interpreting emulated instructions. This tutorial demonstrates how to modify existing native-only clients
to also handle emulated instructions, and how to write your own emulation aware clients.

Arm Instruction Emulator allows developers to use the API of DynamoRIO API to write instrumentation
clients, which run alongside emulation clients, to analyze emulated binaries at runtime.

The following emulation aware functions can be used in an instrumentation client:
• bool drmgr_is_emulation_start(instr_t *instr)
• bool drmgr_is_emulation_end(instr_t *instr)
• bool drmgr_get_emulated_instr_data(instr_t *instr, emulated_instr_t *emulated)

typedef struct _emulated_instr_t {
 size_t size;
 app_pc pc;
 instr_t *instr;
} emulated_instr_t;

Prerequisites

• This tutorial assumes that you have a good working knowledge about the DynamoRIO API.
Documentation is available at:

https://dynamorio.org/files.html

and includes the event driven usage model of DynamoRIO and example clients, from which the
following clients are derived:
— samples/inscount_emulated.cpp
— samples/instrace_emulated.c
— samples/memtrace_simple.c
— samples/memtrace_emulated.c
— samples/meminstrace_emulated.c
— samples/opcodes_emulated.cpp

• Understand the About instrumentation clients on page 2-41.
• Understand how to run a pre-built instrumentation client. For more information on running

instruction clients, see Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction
Emulator on page 2-19.

Procedure
1. Run the pre-built libbbcount.so client with Arm Instruction Emulator, which counts the number of

basic blocks executed by an application:

armie -msve-vector-bits=128 -i libbbcount.so -- ./example

Which returns:

Client bbcount is running
i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
. . .
1021 165 234 69
1022 232 295 63
1023 204 235 31
Instrumentation results:
449561 basic block executions
 1971 basic blocks needed flag saving
 0 basic blocks did not

We will change the code to write both native and emulated basic block execution counts to stdout.

2 Tutorials
2.2 Build an emulation-aware instrumentation client

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

https://dynamorio.org/files.html
https://dynamorio.org/files.html/using
https://dynamorio.org/files.html/API_samples

2. Add the emulated instruction counter variable. Copy the bbcount.cpp file to bbcount_tut2.cpp
in: /<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/samples.

Where bbcount.cpp, is:

/* we only have a global count */
static int global_count;

#ifdef SHOW_RESULTS
/* some meta-stats: static (not per-execution) */
static int bbs_eflags_saved;
static int bbs_no_eflags_saved;
#endif

static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[512];
 int len;
 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Instrumentation results:\n"
 "%10d basic block executions\n"

 "%10d basic blocks needed flag saving\n"
 "%10d basic blocks did not\n",
 global_count, bbs_eflags_saved, bbs_no_eflags_saved);

 DR_ASSERT(len > 0);
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 drx_exit();
 drreg_exit();
 drmgr_exit();
}

Edit bbcount_tut2.cpp to add a global emulation counter variable:

/* we have global native and emulated counts */
static int native_count;
static int emulated_count;

#ifdef SHOW_RESULTS
/* some meta-stats: static (not per-execution) */
static int bbs_eflags_saved;
static int bbs_no_eflags_saved;
#endif

static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[512];
 int len;
 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Instrumentation results:\n"
 "%10d native basic block executions\n
 "%10d emulated basic block executions
 "%10d basic blocks needed flag saving
 "%10d basic blocks did not\n",
 native_count, emulated_count,
 bbs_eflags_saved, bbs_no_eflags_saved
 DR_ASSERT(len > 0);
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 drx_exit();
 drreg_exit();
 drmgr_exit();
}

3. Add the basic block emulation counting function. Modify the instrumentation callback function
event_app_instruction() to look for at least one emulated instruction in a block, and if found,
increment emulated_count when the block is executed.

2 Tutorials
2.2 Build an emulation-aware instrumentation client

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

bbcount.c:

static dr_emit_flags_t
event_app_instruction(void *drcontext, void *tag, instrlist_t *bb, instr_t *inst,
 bool for_trace, bool translating, void *user_data)
{

#ifdef SHOW_RESULTS
 bool aflags_dead;
#endif

 /* By default drmgr enables auto-predication, which predicates all instructions with
 * the predicate of the current instruction on ARM.
 * We disable it here because we want to unconditionally execute the following
 * instrumentation.
 */
 drmgr_disable_auto_predication(drcontext, bb);
 if (!drmgr_is_first_instr(drcontext, inst))
 return DR_EMIT_DEFAULT;

#ifdef VERBOSE
 dr_printf("in dynamorio_basic_block(tag=" PFX ")\n", tag);
ifdef VERBOSE_VERBOSE
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
endif
#endif

#ifdef SHOW_RESULTS
 if (drreg_are_aflags_dead(drcontext, inst, &aflags_dead) == DRREG_SUCCESS && !
aflags_dead)
 bbs_eflags_saved++;
 else
 bbs_no_eflags_saved++;
#endif

 /* racy update on the counter for better performance */
 drx_insert_counter_update(drcontext, bb, inst,
 /* We're using drmgr, so these slots
 * here won't be used: drreg's slots will be.
 */
 SPILL_SLOT_MAX + 1,
 IF_AARCHXX_(SPILL_SLOT_MAX + 1) & global_count, 1, 0);

#if defined(VERBOSE) && defined(VERBOSE_VERBOSE)
 dr_printf("Finished instrumenting dynamorio_basic_block(tag=" PFX ")\n", tag);
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
#endif
 return DR_EMIT_DEFAULT;
}

bbcount_tut2.c:

static dr_emit_flags_t
event_app_instruction(void *drcontext, void *tag, instrlist_t *bb, instr_t *inst,
 bool for_trace, bool translating, void *user_data)
{
 instr_t *instr, *next_instr;

#ifdef SHOW_RESULTS
 bool aflags_dead;
#endif

 /* By default drmgr enables auto-predication, which predicates all instructions wi
 * the predicate of the current instruction on ARM.
 * We disable it here because we want to unconditionally execute the following
 * instrumentation.
 */
 drmgr_disable_auto_predication(drcontext, bb);
 if (!drmgr_is_first_instr(drcontext, inst))
 return DR_EMIT_DEFAULT;

#ifdef VERBOSE
 dr_printf("in dynamorio_basic_block(tag=" PFX ")\n", tag);
ifdef VERBOSE_VERBOSE
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
endif
#endif

#ifdef SHOW_RESULTS
 if (drreg_are_aflags_dead(drcontext, inst, &aflags_dead) == DRREG_SUCCESS && !
aflags_dead)
 bbs_eflags_saved++;
 else

2 Tutorials
2.2 Build an emulation-aware instrumentation client

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

 bbs_no_eflags_saved++;
#endif

 for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
 next_instr = instr_get_next(instr);

 if (drmgr_is_emulation_start(instr)) {
 drx_insert_counter_update(drcontext, bb, inst,
 SPILL_SLOT_MAX + 1,
 IF_AARCHXX_(SPILL_SLOT_MAX + 1) & emulated_count, 1, 0);
 return DR_EMIT_DEFAULT;
 }
 }

 /* racy update on the counter for better performance */
 drx_insert_counter_update(drcontext, bb, inst,
 /* We're using drmgr, so these slots
 * here won't be used: drreg's slots will be.
 */
 SPILL_SLOT_MAX + 1,
 IF_AARCHXX_(SPILL_SLOT_MAX + 1) & native_count, 1, 0);

#if defined(VERBOSE) && defined(VERBOSE_VERBOSE)
 dr_printf("Finished instrumenting dynamorio_basic_block(tag=" PFX ")\n", tag);
 instrlist_disassemble(drcontext, tag, bb, STDOUT);
#endif
 return DR_EMIT_DEFAULT;
}

There are three things to note about this code change:

a. The for() loop uses instrlist_first() and instr_get_next() to look at each instruction in a
block. Using instrlist_first() and instr_get_next() to look at each instruction in a block is
a standard DynamoRIO method used in many clients.

b. The drmgr_is_emulation_start() function is used to detect if an instruction is the start of a
sequence of instructions which are emulating a non-native instruction. There is also a
drmgr_is_emulation_end() function which detects the end of the sequence but it is not required
in this client as we only want to know if there is at least one emulated instruction in the block. See
opcodes_emulated.cpp as an example of how drmgr_is_emulation_start()and
drmgr_is_emulation_end() are used together.

 Note

The reference documentation for these functions is not yet available at the DynamoRIO web site.
See Emulation Functions Reference on page 3-49 for a full description of these functions.

c. Instead of using dr_insert_clean_call(), as in opcodes_emulated.cpp, the client uses
drx_insert_counter_update() to increment native_count and emulated_count. The
difference is that dr_insert_clean_call()inserts a user-defined function, which is run when the
block is executed. Whereas, drx_insert_counter_update()inserts its own code to increment a
variable, which is run when the block is executed. See the DynamoRIO API reference
documentation for more details.

4. Download the files bbcount.c and bbcount_tut2.c and compare them with a diff viewer to look at the
modifications in full.

5. To build the modified client, add bbcount_tut2.c to /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/
CMakeLists.txt:

. . .
add_sample_client(bbcount "bbcount.c" "drmgr;drreg;drx")
add_sample_client(bbcount_tut2 "bbcount_tut2.c" "drmgr;drreg;drx")
add_sample_client(bbsize "bbsize.c" "drmgr")
. . .

6. Run cmake.

2 Tutorials
2.2 Build an emulation-aware instrumentation client

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

https://dynamorio.org/files.html
https://dynamorio.org/files.html
https://developer.arm.com/-/media/developer/products/software-tools/hpc/arm-instruction-emulator/bbcount.c
https://developer.arm.com/-/media/developer/products/software-tools/hpc/arm-instruction-emulator/bbcount_tut2.c

 Note

The current version of Arm Instruction Emulator (21.0) requires that clients are built with GCC
version 7.1.0 or higher:

cmake .

which returns:

-- The C compiler identification is GNU 7.1.0
-- The CXX compiler identification is GNU 7.1.0
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/cc
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/c++
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/c++ -- works
-- Detecting CXX compiler ABI info -- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features -- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /<path/to/your/installation>/arm-instruction-
emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples

7. Run make:

make

Which returns:

. . .
Scanning dependencies of target bbcount_tut2
[46%] Building C object CMakeFiles/bbcount_tut2.dir/bbcount_tut2.c.o
[48%] Linking C shared library bin/libbbcount_tut2.so
Usage: pass to drconfig or drrun: -c /<path/to/your/installation>/arm-instruction-
emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin/libbbcount_tut2.so
[48%] Built target bbcount_tut2
. . .

8. Copy the built client from /<path/to/your/installation>/arm-instruction-emulator-
<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin to /<path/to/your/
installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/
samples/bin64:

cp bin/libbbcount_tut2.so ./bin64/
file bin64/libbbcount_tut2.so bin64/libbbcount_tut2.so: ELF 64-bit LSB shared object, ARM
aarch64, version 1 (SYSV), dynamically linked, not stripped

9. Run the modified client:

armie -msve-vector-bits=128 -i libbbcount_tut2.so -- ./example

The output now includes a count for blocks which contain at least one emulated instruction:

Client bbcount is running
i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
2 258 293 35
. . .
1021 165 234 69
1022 232 295 63
1023 204 235 31
Instrumentation results:
449306 native basic block executions
 256 emulated basic block executions
 1971 basic blocks needed flag saving
 0 basic blocks did not

2 Tutorials
2.2 Build an emulation-aware instrumentation client

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

The output now includes a count for blocks which contain at least one emulated instruction.

Example 2-1 Examples

For examples of typical usage, see:
• samples/inscount_emulated.cpp
• samples/instrace_emulated.c
• samples/memtrace_simple.c
• samples/memtrace_emulated.c
• samples/meminstrace_emulated.c
• samples/opcodes_emulated.cpp

and the examples described in Analyze Scalable Vector Extension (SVE) applications with Arm®

Instruction Emulator on page 2-19.

Related references
2.3 Building custom analysis instrumentation on page 2-35
3.2 Emulation Functions Reference on page 3-49
2.4 About instrumentation clients on page 2-41
Related information
Arm Instruction Emulator

2 Tutorials
2.2 Build an emulation-aware instrumentation client

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-34

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

2.3 Building custom analysis instrumentation
Using the DynamoRIO API, you can change existing instrumentation clients or write your own from
scratch. This tutorial describes how to modify the instrumentation of an existing client for your own
purposes and build and execute the modified client with Arm Instruction Emulator.

Before you begin
• You need a good working knowledge about the DynamoRIO API. DynamoRIO documentation is

available and includes DynamoRIO's event driven usage model example clients, from which
inscount_emulated.cpp, opcodes_emulated.cpp, and memtrace_simple.c are derived.

• To learn how to run a pre-built instrumentation client, work through Analyze Scalable Vector
Extension (SVE) applications with Arm® Instruction Emulator on page 2-19.

• Understand the About instrumentation clients on page 2-41, libopcodes_emulated.so and its
implementation in the file opcodes_emulated.cpp.

Procedure
1. Use the following command to run Arm Instruction Emulator, with the pre-built instrumentation

client, libopcodes_emulated.so. This client writes native AArch64 opcode counts to stdout and
emulated counts to a file:

armie -msve-vector-bits=128 -i libopcodes_emulated.so -- ./example

Which returns:

Client opcodes_emulated is running

i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
. . .
1022 232 295 63
1023 204 235 31

Opcode execution counts in AArch64 mode:
 34900 : bl
 39725 : and
 41232 : csel
 44149 : ret
 54344 : ldrb
 68104 : cbnz
 73037 : ldp
 77676 : cbz
 79184 : stp
 100349 : sub
 110960 : movz
 126343 : str
 144182 : bcond
 171068 : subs
 171899 : orr
 183813 : add
 234517 : ldr
7 unique emulated instructions written to undecoded.txt

The file undecoded.txt contains:

256 : 0xe54842e0
256 : 0xa54842c1
256 : 0xa54842a0
256 : 0x25a91d00
256 : 0x04b0e3e8
256 : 0x04a10400
 1 : 0x25a91fe0

2 Tutorials
2.3 Building custom analysis instrumentation

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-35

Non-Confidential

https://dynamorio.org/files.html

We are going to modify this instrumentation client, so that it writes both native and emulated counts
to stdout in a format which makes it easier to be parsed by scripts when running and collating output
from many applications, typically in an automated test environment.

 Note

To correctly modify the libopcodes_emulated.so client, you must understand its existing
implementation, opcodes_emulated.cpp. Refer to About instrumentation clients on page 2-41 for a
detailed description of instrumentation client structure.

2. Copy the opcodes_emulated.cpp file to a new file, opcodes_emulated_tut1.cpp and save it in the
following location:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux/samples

3. Edit opcodes_emulated_tut1.cpp to merge opcount() and record_emulated_inst() into one
function:

opcodes_emulated.cpp:

static void
record_emulated_inst(uint code)
{
 emulated[code]++;
}

static void
opcount(uint opcode)
{
 count[opcode]++;
}

opcodes_emulated_tut1.cpp:

static void
opcount(uint opcode, int is_emulated)
{
 if (is_emulated == 0)
 count[opcode]++;
 else
 emulated[opcode]++;
}

4. Update the dr_insert_clean_call() calls which insert opcount():

opcodes_emulated.cpp:

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
 bool for_trace, bool translating)
{
 instr_t *instr;

 for (instr = instrlist_first(bb);
 instr != NULL;
 instr = instr_get_next(instr)) {

 if (drmgr_is_emulation_start(instr)) {
 is_emulation = true;
 emulated_instr_t emulated;
 drmgr_get_emulated_instr_data(instr, &emulated);
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)record_emulated_inst, false, 1,
 OPND_CREATE_INT32(
 instr_get_raw_word(emulated.instr, 0)));
 }
 if (drmgr_is_emulation_end(instr))
 is_emulation = false;
 if (is_emulation)
 continue;
 if (!instr_is_app(instr))
 continue;
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)opcount, false, 1,
 OPND_CREATE_INT32(instr_get_opcode(instr)));

 }

2 Tutorials
2.3 Building custom analysis instrumentation

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-36

Non-Confidential

 return DR_EMIT_DEFAULT;
}

opcodes_emulated_tut1.cpp:

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
 bool for_trace, bool translating)
{
 instr_t *instr;

 for (instr = instrlist_first(bb);
 instr != NULL;
 instr = instr_get_next(instr)) {

 if (drmgr_is_emulation_start(instr)) {
 is_emulation = true;
 emulated_instr_t emulated;
 drmgr_get_emulated_instr_data(instr, &emulated);
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)opcount, false, 2,
 OPND_CREATE_INT32(instr_get_raw_word(emulated.instr, 0)),
 OPND_CREATE_INT(1));
 }
 if (drmgr_is_emulation_end(instr))
 is_emulation = false;
 if (is_emulation)
 continue;
 if (!instr_is_app(instr))
 continue;
 dr_insert_clean_call(drcontext, bb, instr,
 (void *)opcount, false, 2,
 OPND_CREATE_INT32(instr_get_opcode(instr)),
 OPND_CREATE_INT(0));
 }

 return DR_EMIT_DEFAULT;
}

Notice that by merging opcount() and record_emulated_inst() into one callback function,
opcount(), the dr_insert_clean_call() functions, which insert opcount(), must now define two
input parameters, rather than one. The dr_insert_clean_call() functions must also pass 1 for
emulated instructions and 0 for native instructions.

5. Update event_exit() to write the emulated instruction data to stdout rather than a file:

opcodes_emulated.cpp:

static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[(NUM_COUNT_SHOW + 2) * 80];
 int len, i;
 size_t sofar = 0;
 /* First, sort the counts */
 uint indices[NUM_COUNT];
 /* Initialise indices */
 for (i = 0; i < NUM_COUNT; i++)
 indices[i] = i;
 qsort(indices, NUM_COUNT, sizeof(indices[0]), compare_counts);

 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Opcode execution counts in AArch64 mode:\n");
 DR_ASSERT(len > 0);
 sofar += len;
 for (i = OP_LAST - 1 - NUM_COUNT_SHOW; i <= OP_LAST; i++) {
 if(count[indices[i]] != 0) {
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 " %9lu : %-15s\n", count[indices[i]],
 decode_opcode_name(indices[i]));
 DR_ASSERT(len > 0);
 sofar += len;
 }
 }
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 "%u unique emulated instructions written to undecoded.txt\n",
 emulated.size());
 DR_ASSERT(len > 0);
 sofar += len;
 NULL_TERMINATE(msg);

2 Tutorials
2.3 Building custom analysis instrumentation

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-37

Non-Confidential

 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 map<uint,long>::iterator iter;
 multimap<long,uint>::reverse_iterator iter2;

 for(iter=emulated.begin(); iter!=emulated.end();++iter) {
 ranks.insert(make_pair(iter->second,iter->first));
 }

 for(iter2=ranks.rbegin(); iter2!=ranks.rend(); ++iter2) {
 fprintf(file, "%9lu : 0x%08x\n", iter2->first, iter2->second);
 }

 fclose(file);
 emulated.clear();

 if (!drmgr_unregister_bb_app2app_event(event_basic_block))
 DR_ASSERT(false);
 drmgr_exit();
}

opcodes_emulated_tut1.cpp:

static void
event_exit(void)
{
#ifdef SHOW_RESULTS
 char msg[(NUM_COUNT_SHOW + 2) * 80];
 int len, i;
 size_t sofar = 0;
 /* First, sort the counts */
 uint indices[NUM_COUNT];
 /* Initialise indices */
 for (i = 0; i < NUM_COUNT; i++)
 indices[i] = i;
 qsort(indices, NUM_COUNT, sizeof(indices[0]), compare_counts);

 len = dr_snprintf(msg, sizeof(msg) / sizeof(msg[0]),
 "Opcode execution counts for AArch64 instructions:\n");
 DR_ASSERT(len > 0);
 sofar += len;
 for (i = OP_LAST - 1 - NUM_COUNT_SHOW; i <= OP_LAST; i++) {
 if(count[indices[i]] != 0) {
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 " %9lu : %-15s\n", count[indices[i]],
 decode_opcode_name(indices[i]));
 DR_ASSERT(len > 0);
 sofar += len;
 }
 }
 len = dr_snprintf(msg + sofar, sizeof(msg) / sizeof(msg[0]) - sofar,
 "Instruction execution counts for %u emulated instructions:",
 emulated.size());
 DR_ASSERT(len > 0);
 sofar += len;
 NULL_TERMINATE(msg);
 DISPLAY_STRING(msg);
#endif /* SHOW_RESULTS */
 map<uint,long>::iterator iter;
 multimap<long,uint>::reverse_iterator iter2;

 for(iter=emulated.begin(); iter!=emulated.end();++iter) {
 ranks.insert(make_pair(iter->second,iter->first));
 }

 for(iter2=ranks.rbegin(); iter2!=ranks.rend(); ++iter2) {
 dr_printf(" %9lu : 0x%08x\n", iter2->first, iter2->second);
 }

 fclose(file);
 emulated.clear();

 if (!drmgr_unregister_bb_app2app_event(event_basic_block))
 DR_ASSERT(false);
 drmgr_exit();
}

Download the files for opcodes_emulated.cpp and opcodes_emulated_tut1.cpp and compare
them with a diff viewer to view the modifications in full.

2 Tutorials
2.3 Building custom analysis instrumentation

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-38

Non-Confidential

6. To build the modified client, add opcodes_emulated_tut1.cpp to /<path/to/your/
installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/
samples/CMakeLists.txt:

. . .
add_sample_client(opcodes "opcodes.c" "drmgr;drreg;drx")
add_sample_client(opcodes_emulated "opcodes_emulated.cpp" "drmgr;drreg")
add_sample_client(opcodes_emulated_tut1 "opcodes_emulated_tut1.cpp" "drmgr;drreg")
add_sample_client(stl_test "stl_test.cpp" "")
. . .

7. Run cmake.
 Note

The current version of Arm Instruction Emulator (21.0) requires that clients are built with GCC
version 7.1.0 or higher:

cmake .

Which returns:

-- The C compiler identification is GNU 7.1.0
-- The CXX compiler identification is GNU 7.1.0
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/cc
-- Check for working C compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/cc -- works
-- Detecting C compiler ABI info -- Detecting C compiler ABI info - done -- Detecting C
compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/c++
-- Check for working CXX compiler: /opt/arm/gcc-7.1.0_Generic-AArch64_SUSE-12_aarch64-
linux/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features -- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /<path/to/your/installation>/arm-instruction-
emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples

8. Run make:

make

Which returns:

. . .
Scanning dependencies of target opcodes_emulated_tut1
[7%] Building CXX object CMakeFiles/opcodes_emulated_tut1.dir/opcodes_emulated_tut1.cpp.o
[9%] Linking CXX shared library bin/libopcodes_emulated_tut1.so
Usage: pass to drconfig or drrun: -c /<path/to/your/installation>/arm-instruction-
emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/samples/bin/libopcodes_emulated_tut1.so
[9%] Built target opcodes_emulated_tut1
. . .

9. Copy the built client from:

For example:

cp bin/libopcodes_emulated_tut1.so ./bin64/
file ./libopcodes_emulated_tut1.so ./libopcodes_emulated_tut1.so: ELF 64-bit LSB shared
object, ARM aarch64, version 1 (SYSV), dynamically linked, not stripped

10. Run the modified client. Now, the emulated instruction output is written to stdout and the
undecoded.txt file is not created:

armie -msve-vector-bits=128 -i libopcodes_emulated_tut1.so -- ./example

Which returns:

. . .
1022 232 295 63
1023 204 235 31
Opcode execution counts for AArch64 instructions:

2 Tutorials
2.3 Building custom analysis instrumentation

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-39

Non-Confidential

 34900 : bl
 39725 : and
 41232 : csel
 44149 : ret
 54344 : ldrb
 68104 : cbnz
 73037 : ldp
 77676 : cbz
 79184 : stp
 100349 : sub
 110960 : movz
 126343 : str
 144182 : bcond
 171068 : subs
 171899 : orr
 183813 : add
 234517 : ldr
Instruction execution counts for 7 emulated instructions:
 256 : 0xe54842e0
 256 : 0xa54842c1
 256 : 0xa54842a0
 256 : 0x25a91d00
 256 : 0x04b0e3e8
 256 : 0x04a10400
 1 : 0x25a91fe0

Results

Notice that the emulated instructions appear as raw encodings rather than mnemonics. This is a reflection
of the current state of emulation support in the Public DynamoRIO API. Arm is working to improve such
emulated instrumentation features and more comprehensive features will be available in the public API
for future Arm Instruction Emulator releases.

Until then, as a workaround, a helper script is provided with Arm Instruction Emulator, enc2instr.py,
which can be used to disassemble the encodings in your own post-processing scripts:

export LLVM_MC=/<install-dir>/arm-linux-compiler-<xx.y>_Generic-AArch64_<OS>-<OS-
version>_aarch64-linux/llvm-bin/llvm-mc
echo 0xe54842e0 | /<install-dir>/arm-instruction-emulator-<xx.y>_Generic-
AArch64_<OS>_aarch64-linux//bin64/enc2instr.py 0xe54842e0 : st1w {z0.s}, p0, [x23, x8, lsl
#2]

Next steps
• Build an emulation-aware instrumentation client on page 2-29

Related references
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator on page 2-19
Related information
Arm Instruction Emulator

2 Tutorials
2.3 Building custom analysis instrumentation

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-40

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

2.4 About instrumentation clients
This topic describes the basic structure of an instrumentation client, including the main events which
occur during execution and what is typically done in each event.

Arm Instruction Emulator provides a set of instrumentation clients which can be used to analyze SVE
binaries at runtime. The term 'instrumentation client' in this context refers to how Arm Instruction
Emulator uses DynamoRIO to work as an analysis tool as well as an emulator. Arm Instruction Emulator
is invoked with an instrumentation client and the SVE binary to be emulated and analyzed. The client is
simply a shared object file which uses the DynamoRIO API to capture and process wanted run-time
events.

To correctly modify the libopcodes_emulated.so client, you must understand its existing
implementation, opcodes_emulated.cpp (download opcodes_emulated.cpp). The diagram below shows
the key functions in opcodes_emulated.cpp and how they relate to each other.

2 Tutorials
2.4 About instrumentation clients

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-41

Non-Confidential

http://dynamorio.org
https://developer.arm.com/-/media/developer/products/software-tools/hpc/arm-instruction-emulator/opcodes_emulated.cpp

Figure 2-2 Diagram showing the key functions in opcodes_emulated.cpp

The easiest way to understand the client is to think of it as event-driven. Each function is called as a
result of events which occur as the application is running:

1. DynamoRIO loads and runs the client, calling dr_client_main(), before beginning to execute the
application.

2. In dr_client_main(), the client registers a function which is called just before the client stops
running, event_exit(). Registering such a function for an event is usually referred to as a 'callback
function'.

3. In dr_client_main(), the client registers a callback function as each block of code in the application
is prepared before being executed.

4. In event_basic_block(), the client registers a callback function which is executed for each
emulated instruction which appears in the code of the application, record_emulated_inst(). The
record_emulated_inst() function is the instrumentation which is the purpose of the client.

2 Tutorials
2.4 About instrumentation clients

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-42

Non-Confidential

5. In event_basic_block(), the client registers a callback function which is executed for each native
instruction which appears in the code of the application, opcount(). The opcount() function is the
instrumentation which is the purpose of the client.

6. The application stops running and DynamoRIO calls event_exit().
The preceding information is a simplified explanation of how a client operates. For a more detailed
information, read the opcodes_emulated.cpp file, which can be downloaded from the Arm Developer
website, and refer to details of key functions in the DynamoRIO functions reference manual, especially:
• dr_insert_clean_call(), which implements the instrumentation you

want.
• drmgr_register_bb_app2app_event(), which defines where the

instrumentation must be inserted.

Code Transformation and code Execution

If you are new to the DynamoRIO Dynamic Binary Instrumentation (DBI) tool platform in general, and
DynamoRIO in particular, ensure you understand the method by which instrumentation is added to
application code.

Remember that instrumentation occurs in two phases, transformation and execution:
• Transformation - Instrumentation code is inserted into the application code.
• Execution - The application code runs, including the instrumentation code which was inserted during

transformation.

DynamoRIO performs transformation and execution transparently, provided that you conform to the
rules of its API.

In the preceding example, event_basic_block() is the transformation phase. Calls to opcount() or
record_emulated_inst() are inserted for each instruction but are not called at transformation time. If
or when a particular block of code is run at execution time, those functions are called, to increment and
store the instruction and count.

This is a subtle distinction for new users. The best way to think of the difference is to recognize that
dr_insert_clean_call() will be called once when a block of application code is transformed but the
function it registered may be called many times when the block is executed.

Related references
2.3 Building custom analysis instrumentation on page 2-35
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator on page 2-19
3.2 Emulation Functions Reference on page 3-49
Related information
Arm Instruction Emulator

2 Tutorials
2.4 About instrumentation clients

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-43

Non-Confidential

https://developer.arm.com//-/media/developer/products/software-tools/hpc/arm-instruction-emulator/opcodes_emulated.cpp
https://dynamorio.org/files.html
http://dynamorio.org
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

2.5 View the drrun command
This topic describes how to use the -s or --show-drrun-cmd Arm Instruction Emulator option to output
the full DynamoRIO drrun command that Arm Instruction Emulator uses.

The -s option is provided to enable the full range of options for drrun, and to pass command-line
arguments to clients. Without this feature, options and arguments are required to be passed through the -
a or -arg-iclient options.

Procedure
1. Run Arm Instruction Emulator with the -s option, using the example described in Get started with

Arm® Instruction Emulator on page 1-14:

armie -msve-vector-bits=128 -s -- ./example

Which returns:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-
linux/bin64/drrun -max_bb_instrs 32 -max_trace_bbs 4 -c /<path/to/your/installation>/arm-
instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-linux/lib64/release/
libsve_128.so -- ./example
 i a[i] b[i] c[i]
=============================
0 197 283 86
1 262 277 15
. . .
1021 165 234 69
1022 232 295 63
1023 204 235 31

Notice that drrun uses the emulation client libsve_128.so to run the example binary.
2. If an instrumentation client is specified:

armie -msve-vector-bits=128 -s -i libinscount_emulated.so -- ./example

Which returns:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-
linux/bin64/drrun -client /<path/to/your/installation>/arm-instruction-emulator-
<xx.y>_Generic-AArch64_<OS>_aarch64-linux/lib64/release/libsve_128.so 0 "" -client /
<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-
linux/samples/bin64/libinscount_emulated.so 1 "" -max_bb_instrs 32 -max_trace_bbs 4 -- ./
example

Client inscount is running
. . .

1022 232 295 63
1023 204 235 31
 2134094 instructions executed of which 1537 were emulated instructions

Notice that drrun now uses two clients: the emulation client libsve_128.so and
libinscount_emulated.so to run and count instructions executed by example.

3. The -only_from_app option for the libinscount_emulated.so client only counts instructions
executed by the application, rather than also including linked libraries. You can copy and paste the
above command and add -only_from_app:

/<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-
linux/bin64/drrun -client /<path/to/your/installation>/arm-instruction-emulator-
<xx.y>_Generic-AArch64_<OS>_aarch64-linux/lib64/release/libsve_128.so 0 "" -client /
<path/to/your/installation>/arm-instruction-emulator-<xx.y>_Generic-AArch64_<OS>_aarch64-
linux/samples/bin64/libinscount_emulated.so 1 "-only_from_app" -max_bb_instrs 32 -
max_trace_bbs 4 -- ./example

Client inscount is running
 . . .
 1021 165 234 69
 1022 232 295 63
 1023 204 235 31
 42902 instructions executed of which 1537 were emulated instructions

2 Tutorials
2.5 View the drrun command

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-44

Non-Confidential

Notice that the native AArch64 instruction count has dropped to 42902, from 2134094, due to the
exclusion of library instructions.

Related references
2.3 Building custom analysis instrumentation on page 2-35
1.2 Get started with Arm® Instruction Emulator on page 1-14
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator on page 2-19
Related information
Arm Instruction Emulator

2 Tutorials
2.5 View the drrun command

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

2-45

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator

Chapter 3
Reference

This chapter contains reference information for armie command and the emulation functions included
with Arm Instruction Emulator.

It contains the following sections:
• 3.1 armie command reference on page 3-47.
• 3.2 Emulation Functions Reference on page 3-49.

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

3.1 armie command reference
The armie command runs a compiled binary using Arm Instruction Emulator. Arm Instruction Emulator
is an emulator that can execute AArch64 Scalable Vector Extension (SVE) instructions on any Armv8-A-
based hardware.

 Note

The following content is relevant for Arm Instruction Emulator versions 18.2 and later. If you are using a
previous version of Arm Instruction Emulator, download the Arm Instruction Emulator v1.2.1 user
guide.

Usage

To execute and provide operational instructions to the Arm Instruction Emulator, use:

armie [options] -- <command to execute>

Options

Table 3-1 armie command options

Option Description

-m<string>

-msve-vector-
bits=<uint>

-mlist-vector-
lengths

Architecture-specific options.

-msve-vector-bits=<uint> specifies the vector length to use. <uint> must be a
multiple of 128 bits, up to a maxiumum of 2048 bits.

-mlist-vector-lengths lists all the valid vector lengths.

-e <client>, --eclient
<client>

Use a DynamoRIO API-based emulation client.

The libmemtrace_sve_<width>.so SVE emulation clients (in lib64/release) can be used
with the memory tracing instrumentation clients. <width> is the vector width between 128 bits
and 2048 bits (in increments of 128 bits).

 Note

If an SVE emulation client is not specified, the default SVE client is used by armie.

-i <client>, --iclient
<client>

Use a DynamoRIO API-based instrumentation client.

The following instrumentation clients are provided with Arm Instruction Emulator (in
samples/bin64):
• libinscount_emulated.so
• libinstrace_emulated.so
• libmeminstrace_emulated.so
• libmemtrace_emulated.so
• libopcodes_emulated.so
• libemulated_regs.so

To learn how to create your own custom instrumentation client, see Building custom analysis
instrumentation on page 2-35 and Build an emulation-aware instrumentation client on page 2-29

-a, --arg-iclient <string> Pass an (optional) <string> argument to the instrumentation client.

3 Reference
3.1 armie command reference

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

https://developer.arm.com//-/media/developer/products/software-tools/hpc/arm-instruction-emulator/arm_instruction_emulator_user_guide_101212_0121_01_en.pdf
https://developer.arm.com//-/media/developer/products/software-tools/hpc/arm-instruction-emulator/arm_instruction_emulator_user_guide_101212_0121_01_en.pdf

Table 3-1 armie command options (continued)

Option Description

-x, --unsafe-ldstex This options is DEPRECATED

The -x and --unsafe-ldstex options enable a workaround to avoid an exclusive load/store
bug on specific AArch64 hardware. -x is always enabled and is no longer set from the command
line, if required.

For more information about the details of the need for this workaround, see the Known Issues
section in RELEASE_NOTES.txt.

-y, --safe-ldstex Use -y in the unlikely event that -x or --unsafe-ldstex must be disabled.

-s, --show-drrun-cmd Write the full DynamoRIO drrun command used to execute armie to stderr.

-s can be useful when debugging or developing clients.

-h, --help Show the command help.

-V, --version Print the version.

Example: Use -mlist-vector-lengths to list the valid vector lengths

To list all valid vector lengths, use:

armie -mlist-vector-lengths

Which returns:

128 256 384 512 640 768 896 1024 1152 1280 1408 1536 1664 1792 1920 2048

Example: Use '-msve-vector-bits' to specify the number of vector bits

To run the compiled binary 'sve_program' with 256-bit vectors, use:

armie -msve-vector-bits=256 -- ./sve_program

Related references
1.2 Get started with Arm® Instruction Emulator on page 1-14
2.1 Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator on page 2-19

3 Reference
3.1 armie command reference

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.2 Emulation Functions Reference
This topic describes the emulation functions applicable to Arm Instruction Emulator.

Arm Instruction Emulator (ArmIE) is based on the DynamoRIO Dynamic Binary Instrumentation (DBI)
tool platform and allows developers to use the API of DynamoRIO to write instrumentation clients which
run alongside the SVE emulation client. These instrumentation clients can allow you to analyze SVE
binaries at runtime:
• drmgr_is_emulation_start()
• drmgr_is_emulation_end()
• drmgr_get_emulated_instr_data()
• emulated_instr_t

drmgr_is_emulation_start()

Checks the instruction instr to see if it is an emulation start label created by
drmgr_insert_emulation_start(). Typically drmgr_is_emulation_start() is useful to use
in an instrumentation client that runs with an emulation client.

Syntax

bool drmgr_is_emulation_start (instr_t* instr)

Returns
• true if instr is an emulation start label
• false if it is not an emulation start label.

drmgr_is_emulation_end()

Checks the instruction instr to see if it is an emulation end label created by
drmgr_insert_emulation_end(). Typically drmgr_is_emulation_end() is usefult to use in
an instrumentation client that runs with an emulation client.

Syntax

bool drmgr_is_emulation_end (instr_t* instr)

Returns
• true if instr is an emulation end label
• false if it is not an emulation end label.

drmgr_get_emulated_instr_data()

Loads emulated with the emulated instruction data from instr (set by
drmgr_insert_emulation_start()). When you call drmgr_get_emulated_instr_data(), to
enable the API to check for compatibility, you must use sizeof() to set the size field of
emulated.

Syntax

bool drmgr_get_emulated_instr_data (instr_t* instr, emulated_instr_t* emulated)

Parameters

instr

Input parameter. The label instruction that specifies the start of emulation.

emulated

Output parameter. The emulated instruction data.

Returns
• true if emulated_instr_t of the caller is compatible
• false if emulated_instr_t of the caller is not compatible

3 Reference
3.2 Emulation Functions Reference

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

http://dynamorio.org
http://dynamorio.org
https://dynamorio.org/files.html

emulated_instr_t

Holds data about an emulated instruction. Typically, emulated_instr_t can be populated by an
emulation client and read by an observational client.

Data fields:

Table 3-2 data fields for emulated_instr_t

size_t size

app_pc pc

instr_t* instr

The emulated instruction instr is part of the label represented by emulated_instr_t. instr is
freed when the label created by drmgr_insert_emulation_start() is freed.

Syntax

typedef struct _emulated_instr_t emulated_instr_t

Fields

instr

The emulated instruction.

instr_t* _emulated_instr_t::instr

pc

The PC address of the emulated instruction.

app_pc _emulated_instr_t::pc

size

The size of this struct, used for API compatibility checks.

size_t _emulated_instr_t::size

Related references
1.2 Get started with Arm® Instruction Emulator on page 1-14
Related information
Arm Instruction Emulator
API Usage Tutorial
Learn about SVE

3 Reference
3.2 Emulation Functions Reference

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://dynamorio.org/page_tutorials.html
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/resources/tutorials/sve

Chapter 4
Further resources

Lists the additional resources available which you can to use to learn more about Arm Instruction
Emulator or the Scalable Vector Extension (SVE).

It contains the following sections:
• 4.1 Arm® Instruction Emulator resources on page 4-52.
• 4.2 Scalable Vector Extension (SVE) resources on page 4-53.

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

4-51

Non-Confidential

4.1 Arm® Instruction Emulator resources
This topic lists some useful resources where you can read more about Arm Instruction Emulator.

• Arm Instruction Emulator
• Download Arm Instruction Emulator
• Release history
• Get help
• Blog: DynamoRIO and ArmIE
• Blog: Optimizing HPCG for Arm SVE

4 Further resources
4.1 Arm® Instruction Emulator resources

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

4-52

Non-Confidential

https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-software/download
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-software/download/release-history
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-instruction-emulator/get-help
https://community.arm.com/tools/hpc/b/hpc/posts/emulating-sve-on-armv8-using-dynamorio-and-armie
https://community.arm.com/developer/tools-software/hpc/b/hpc-blog/posts/optimizing-hpcg-for-arm-sve

4.2 Scalable Vector Extension (SVE) resources
This topic lists some useful resources you can use to learn more about the Scalable Vector Extension
(SVE).

• Porting and Tuning HPC Applications for Arm SVE

A guide to the tools and methodologies to porting your applications to SVE-enabled hardware, or to
emulate with Arm Instruction Emulator.

• Past presentations and hackathon materials

Past presentations at Arm events, including downloadable SVE Hackathon materials.
• White Paper: A sneak peek into SVE and VLA programming

An overview of SVE with information on the new registers, the new instructions, and the Vector
Length Agnostic (VLA) programming technique, with some examples.

• White Paper: Arm Scalable Vector Extension and application to Machine Learning

In this white paper, code examples are presented that show how to vectorize some of the core
computational kernels that are part of a machine learning system. The examples are written using the
Vector Length Agnostic (VLA) approach introduced by the Scalable Vector Extension (SVE).

• Arm C Language Extensions (ACLE) for SVE

The SVE ACLE defines a set of C and C++ types and accessors for SVE vectors and predicates.
• DWARF for the ARM 64-bit Architecture (AArch64) with SVE support

This document describes the use of the DWARF debug table format in the Application Binary
Interface (ABI) for the Arm 64-bit architecture.

• Procedure Call Standard for the ARM 64-bit Architecture (AArch64) with SVE support

This document describes the Procedure Call Standard use by the Application Binary Interface (ABI)
for the Arm 64-bit architecture.

• Arm Architecture Reference Manual Supplement - The Scalable Vector Extension (SVE), for ARMv8-
A

This supplement describes the Scalable Vector Extension to the Armv8-A architecture profile.

4 Further resources
4.2 Scalable Vector Extension (SVE) resources

102190_2100_00_en Copyright © 2020, 2021 Arm Limited or its affiliates. All rights
reserved.

4-53

Non-Confidential

https://developer.arm.com/documentation/101726/latest
https://developer.arm.com/solutions/hpc/presentations
https://developer.arm.com/hpc/resources/hpc-white-papers/a-sneak-peek-into-sve-and-vla-programming
https://developer.arm.com/hpc/resources/hpc-white-papers/arm-scalable-vector-extensions-and-application-to-machine-learning
https://developer.arm.com/documentation/100987/latest
https://developer.arm.com/documentation/100985/latest
https://developer.arm.com/documentation/100986/latest
https://developer.arm.com/documentation/ddi0584/latest
https://developer.arm.com/documentation/ddi0584/latest

	Arm® Instruction Emulator Developer and Reference Guide
	Table of Contents
	List of Figures
	List of Tables
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Get started
	1.1 : Install Arm® Instruction Emulator
	1.2 : Get started with Arm® Instruction Emulator
	1.3 : Troubleshoot: Use -s

	2 : Tutorials
	2.1 : Analyze Scalable Vector Extension (SVE) applications with Arm® Instruction Emulator
	2.2 : Build an emulation-aware instrumentation client
	2.3 : Building custom analysis instrumentation
	2.4 : About instrumentation clients
	2.5 : View the drrun command

	3 : Reference
	3.1 : armie command reference
	3.2 : Emulation Functions Reference

	4 : Further resources
	4.1 : Arm® Instruction Emulator resources
	4.2 : Scalable Vector Extension (SVE) resources

